Sample records for functional connectivity mri

  1. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  2. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Multimodal Classification of Schizophrenia Patients with MEG and fMRI Data Using Static and Dynamic Connectivity Measures

    PubMed Central

    Cetin, Mustafa S.; Houck, Jon M.; Rashid, Barnaly; Agacoglu, Oktay; Stephen, Julia M.; Sui, Jing; Canive, Jose; Mayer, Andy; Aine, Cheryl; Bustillo, Juan R.; Calhoun, Vince D.

    2016-01-01

    Mental disorders like schizophrenia are currently diagnosed by physicians/psychiatrists through clinical assessment and their evaluation of patient's self-reported experiences as the illness emerges. There is great interest in identifying biological markers of prognosis at the onset of illness, rather than relying on the evolution of symptoms across time. Functional network connectivity, which indicates a subject's overall level of “synchronicity” of activity between brain regions, demonstrates promise in providing individual subject predictive power. Many previous studies reported functional connectivity changes during resting-state using only functional magnetic resonance imaging (fMRI). Nevertheless, exclusive reliance on fMRI to generate such networks may limit the inference of the underlying dysfunctional connectivity, which is hypothesized to be a factor in patient symptoms, as fMRI measures connectivity via hemodynamics. Therefore, combination of connectivity assessments using fMRI and magnetoencephalography (MEG), which more directly measures neuronal activity, may provide improved classification of schizophrenia than either modality alone. Moreover, recent evidence indicates that metrics of dynamic connectivity may also be critical for understanding pathology in schizophrenia. In this work, we propose a new framework for extraction of important disease related features and classification of patients with schizophrenia based on using both fMRI and MEG to investigate functional network components in the resting state. Results of this study show that the integration of fMRI and MEG provides important information that captures fundamental characteristics of functional network connectivity in schizophrenia and is helpful for prediction of schizophrenia patient group membership. Combined fMRI/MEG methods, using static functional network connectivity analyses, improved classification accuracy relative to use of fMRI or MEG methods alone (by 15 and 12.45%, respectively), while combined fMRI/MEG methods using dynamic functional network connectivity analyses improved classification up to 5.12% relative to use of fMRI alone and up to 17.21% relative to use of MEG alone. PMID:27807403

  4. Associations of resting-state fMRI functional connectivity with flow-BOLD coupling and regional vasculature.

    PubMed

    Tak, Sungho; Polimeni, Jonathan R; Wang, Danny J J; Yan, Lirong; Chen, J Jean

    2015-04-01

    There has been tremendous interest in applying functional magnetic resonance imaging-based resting-state functional connectivity (rs-fcMRI) measurements to the study of brain function. However, a lack of understanding of the physiological mechanisms of rs-fcMRI limits their ability to interpret rs-fcMRI findings. In this work, the authors examine the regional associations between rs-fcMRI estimates and dynamic coupling between the blood oxygenation level-dependent (BOLD) and cerebral blood flow (CBF), as well as resting macrovascular volume. Resting-state BOLD and CBF data were simultaneously acquired using a dual-echo pseudocontinuous arterial spin labeling (pCASL) technique, whereas macrovascular volume fraction was estimated using time-of-flight MR angiography. Functional connectivity within well-known functional networks—including the default mode, frontoparietal, and primary sensory-motor networks—was calculated using a conventional seed-based correlation approach. They found the functional connectivity strength to be significantly correlated with the regional increase in CBF-BOLD coupling strength and inversely proportional to macrovascular volume fraction. These relationships were consistently observed within all functional networks considered. Their findings suggest that highly connected networks observed using rs-fcMRI are not likely to be mediated by common vascular drainage linking distal cortical areas. Instead, high BOLD functional connectivity is more likely to reflect tighter neurovascular connections, attributable to neuronal pathways.

  5. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity.

    PubMed

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N

    2015-01-01

    To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen-Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure-function relationships but requires further validation in other populations of CP.

  6. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  7. In vivo Visuotopic Brain Mapping with Manganese-Enhanced MRI and Resting-State Functional Connectivity MRI

    PubMed Central

    Chan, Kevin C.; Fan, Shu-Juan; Chan, Russell W.; Cheng, Joe S.; Zhou, Iris Y.; Wu, Ed X.

    2014-01-01

    The rodents are an increasingly important model for understanding the mechanisms of development, plasticity, functional specialization and disease in the visual system. However, limited tools have been available for assessing the structural and functional connectivity of the visual brain network globally, in vivo and longitudinally. There are also ongoing debates on whether functional brain connectivity directly reflects structural brain connectivity. In this study, we explored the feasibility of manganese-enhanced MRI (MEMRI) via 3 different routes of Mn2+ administration for visuotopic brain mapping and understanding of physiological transport in normal and visually deprived adult rats. In addition, resting-state functional connectivity MRI (RSfcMRI) was performed to evaluate the intrinsic functional network and structural-functional relationships in the corresponding anatomical visual brain connections traced by MEMRI. Upon intravitreal, subcortical, and intracortical Mn2+ injection, different topographic and layer-specific Mn enhancement patterns could be revealed in the visual cortex and subcortical visual nuclei along retinal, callosal, cortico-subcortical, transsynaptic and intracortical horizontal connections. Loss of visual input upon monocular enucleation to adult rats appeared to reduce interhemispheric polysynaptic Mn2+ transfer but not intra- or inter-hemispheric monosynaptic Mn2+ transport after Mn2+ injection into visual cortex. In normal adults, both structural and functional connectivity by MEMRI and RSfcMRI was stronger interhemispherically between bilateral primary/secondary visual cortex (V1/V2) transition zones (TZ) than between V1/V2 TZ and other cortical nuclei. Intrahemispherically, structural and functional connectivity was stronger between visual cortex and subcortical visual nuclei than between visual cortex and other subcortical nuclei. The current results demonstrated the sensitivity of MEMRI and RSfcMRI for assessing the neuroarchitecture, neurophysiology and structural-functional relationships of the visual brains in vivo. These may possess great potentials for effective monitoring and understanding of the basic anatomical and functional connections in the visual system during development, plasticity, disease, pharmacological interventions and genetic modifications in future studies. PMID:24394694

  8. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information flow is introduced and used to model the propagation of information between GM areas through WM fiber bundles. The link capacity, i.e., ability to transfer information, is characterized by the relative strength of fiber bundles, e.g., fiber count gathered from the tractography of dMRI data. The node information demand is considered to be proportional to the correlation between neural activity at various cortical areas involved in a particular functional mode (e.g. visual, motor, etc.). These two properties lead to the link capacity and node demand constraints in the proposed model. Moreover, the information flow of a link cannot exceed the demand from either end node. This is captured by the feasibility constraints. Two different cost functions are considered in the optimization formulation in this paper. The first cost function, the reciprocal of fiber strength represents the unit cost for information passing through the link. In the second cost function, a min-max (minimizing the maximal link load) approach is used to balance the usage of each link. Optimizing the first cost function selects the pathway with strongest fiber strength for information propagation. In the second case, the optimization procedure finds all the possible propagation pathways and allocates the flow proportionally to their strength. Additionally, a penalty term is incorporated with both the cost functions to capture the possible missing and weak anatomical connections. With this set of constraints and the proposed cost functions, solving the network optimization problem recovers missing and weak anatomical connections supported by the functional information and provides the functional-associated anatomical subnetworks. Feasibility is demonstrated using realistic diffusion and functional MRI phantom data. It is shown that the proposed model recovers the maximum number of true connections, with fewest number of false connections when compared with the connectivity derived from a joint probabilistic model using the expectation-maximization (EM) algorithm presented in a prior work. We also apply the proposed method to data provided by the Human Connectome Project (HCP).

  9. Altered task-based and resting-state amygdala functional connectivity following real-time fMRI amygdala neurofeedback training in major depressive disorder.

    PubMed

    Young, Kymberly D; Siegle, Greg J; Misaki, Masaya; Zotev, Vadim; Phillips, Raquel; Drevets, Wayne C; Bodurka, Jerzy

    2018-01-01

    We have previously shown that in participants with major depressive disorder (MDD) trained to upregulate their amygdala hemodynamic response during positive autobiographical memory (AM) recall with real-time fMRI neurofeedback (rtfMRI-nf) training, depressive symptoms diminish. Here, we assessed the effect of rtfMRI-nf on amygdala functional connectivity during both positive AM recall and rest. The current manuscript consists of a secondary analysis on data from our published clinical trial of neurofeedback. Patients with MDD completed two rtfMRI-nf sessions (18 received amygdala rtfMRI-nf, 16 received control parietal rtfMRI-nf). One-week prior-to and following training participants also completed a resting-state fMRI scan. A GLM-based functional connectivity analysis was applied using a seed ROI in the left amygdala. We compared amygdala functional connectivity changes while recalling positive AMs from the baseline run to the final transfer run during rtfMRI-nf training, as well during rest from the baseline to the one-week follow-up visit. Finally, we assessed the correlation between change in depression scores and change in amygdala connectivity, as well as correlations between amygdala regulation success and connectivity changes. Following training, amygdala connectivity during positive AM recall increased with widespread regions in the frontal and limbic network. During rest, amygdala connectivity increased following training within the fronto-temporal-limbic network. During both task and resting-state analyses, amygdala-temporal pole connectivity decreased. We identified increased amygdala-precuneus and amygdala-inferior frontal gyrus connectivity during positive memory recall and increased amygdala-precuneus and amygdala-thalamus connectivity during rest as functional connectivity changes that explained significant variance in symptom improvement. Amygdala-precuneus connectivity changes also explain a significant amount of variance in neurofeedback regulation success. Neurofeedback training to increase amygdala hemodynamic activity during positive AM recall increased amygdala connectivity with regions involved in self-referential, salience, and reward processing. Results suggest future targets for neurofeedback interventions, particularly interventions involving the precuneus.

  10. Mobile Device Applications for the Visualization of Functional Connectivity Networks and EEG Electrodes: iBraiN and iBraiNEEG.

    PubMed

    Rojas, Gonzalo M; Fuentes, Jorge A; Gálvez, Marcelo

    2016-01-01

    Multiple functional MRI (fMRI)-based functional connectivity networks were obtained by Yeo et al. (2011), and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with electroencephalography (EEG) data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10-20 EEG electrodes with Yeo's seven functional connectivity networks.

  11. Insulin Resistance-Associated Interhemispheric Functional Connectivity Alterations in T2DM: A Resting-State fMRI Study

    PubMed Central

    Xia, Wenqing; Wang, Shaohua; Spaeth, Andrea M.; Rao, Hengyi; Wang, Pin; Yang, Yue; Huang, Rong; Cai, Rongrong; Sun, Haixia

    2015-01-01

    We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM) by using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR) among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG) and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR) negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients. PMID:26064945

  12. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer's disease patients.

    PubMed

    Son, Seong-Jin; Kim, Jonghoon; Park, Hyunjin

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer's disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint.

  13. Structural and functional connectional fingerprints in mild cognitive impairment and Alzheimer’s disease patients

    PubMed Central

    Son, Seong-Jin; Kim, Jonghoon

    2017-01-01

    Regional volume atrophy and functional degeneration are key imaging hallmarks of Alzheimer’s disease (AD) in structural and functional magnetic resonance imaging (MRI), respectively. We jointly explored regional volume atrophy and functional connectivity to better characterize neuroimaging data of AD and mild cognitive impairment (MCI). All data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We compared regional volume atrophy and functional connectivity in 10 subcortical regions using structural MRI and resting-state functional MRI (rs-fMRI). Neuroimaging data of normal controls (NC) (n = 35), MCI (n = 40), and AD (n = 30) were compared. Significant differences of regional volumes and functional connectivity measures between groups were assessed using permutation tests in 10 regions. The regional volume atrophy and functional connectivity of identified regions were used as features for the random forest classifier to distinguish among three groups. The features of the identified regions were also regarded as connectional fingerprints that could distinctively separate a given group from the others. We identified a few regions with distinctive regional atrophy and functional connectivity patterns for NC, MCI, and AD groups. A three label classifier using the information of regional volume atrophy and functional connectivity of identified regions achieved classification accuracy of 53.33% to distinguish among NC, MCI, and AD. We identified distinctive regional atrophy and functional connectivity patterns that could be regarded as a connectional fingerprint. PMID:28333946

  14. Validity of semi-quantitative scale for brain MRI in unilateral cerebral palsy due to periventricular white matter lesions: Relationship with hand sensorimotor function and structural connectivity

    PubMed Central

    Fiori, Simona; Guzzetta, Andrea; Pannek, Kerstin; Ware, Robert S.; Rossi, Giuseppe; Klingels, Katrijn; Feys, Hilde; Coulthard, Alan; Cioni, Giovanni; Rose, Stephen; Boyd, Roslyn N.

    2015-01-01

    Aim To provide first evidence of construct validity of a semi-quantitative scale for brain structural MRI (sqMRI scale) in children with unilateral cerebral palsy (UCP) secondary to periventricular white matter (PWM) lesions, by examining the relationship with hand sensorimotor function and whole brain structural connectivity. Methods Cross-sectional study of 50 children with UCP due to PWM lesions using 3 T (MRI), diffusion MRI and assessment of hand sensorimotor function. We explored the relationship of lobar, hemispheric and global scores on the sqMRI scale, with fractional anisotropy (FA), as a measure of brain white matter microstructure, and with hand sensorimotor measures (Assisting Hand Assessment, AHA; Jebsen–Taylor Test for Hand Function, JTTHF; Melbourne Assessment of Unilateral Upper Limb Function, MUUL; stereognosis; 2-point discrimination). Results Lobar and hemispheric scores on the sqMRI scale contralateral to the clinical side of hemiplegia correlated with sensorimotor paretic hand function measures and FA of a number of brain structural connections, including connections of brain areas involved in motor control (postcentral, precentral and paracentral gyri in the parietal lobe). More severe lesions correlated with lower sensorimotor performance, with the posterior limb of internal capsule score being the strongest contributor to impaired hand function. Conclusion The sqMRI scale demonstrates first evidence of construct validity against impaired motor and sensory function measures and brain structural connectivity in a cohort of children with UCP due to PWM lesions. More severe lesions correlated with poorer paretic hand sensorimotor function and impaired structural connectivity in the hemisphere contralateral to the clinical side of hemiplegia. The quantitative structural MRI scoring may be a useful clinical tool for studying brain structure–function relationships but requires further validation in other populations of CP. PMID:26106533

  15. Longitudinal Changes of Resting-State Functional Connectivity during Motor Recovery after Stroke

    PubMed Central

    Park, Chang-hyun; Chang, Won Hyuk; Ohn, Suk Hoon; Kim, Sung Tae; Bang, Oh Young; Pascual-Leone, Alvaro; Kim, Yun-Hee

    2013-01-01

    Background and Purpose Functional magnetic resonance imaging (fMRI) studies could provide crucial information on the neural mechanisms of motor recovery in stroke patients. Resting-state fMRI is applicable to stroke patients who are not capable of proper performance of the motor task. In this study, we explored neural correlates of motor recovery in stroke patients by investigating longitudinal changes in resting-state functional connectivity of the ipsilesional primary motor cortex (M1). Methods A longitudinal observational study using repeated fMRI experiments was conducted in 12 patients with stroke. Resting-state fMRI data were acquired four times over a period of 6 months. Patients participated in the first session of fMRI shortly after onset, and thereafter in subsequent sessions at 1, 3, and 6 months after onset. Resting-state functional connectivity of the ipsilesional M1 was assessed and compared with that of healthy subjects. Results Compared with healthy subjects, patients demonstrated higher functional connectivity with the ipsilesional frontal and parietal cortices, bilateral thalamus, and cerebellum. Instead, functional connectivity with the contralesional M1 and occipital cortex were decreased in stroke patients. Functional connectivity between the ipsilesional and contralesional M1 showed the most asymmetry at 1 month after onset to the ipsilesional side. Functional connectivity of the ipsilesional M1 with the contralesional thalamus, supplementary motor area, and middle frontal gyrus at onset was positively correlated with motor recovery at 6 months after stroke. Conclusions Resting-state fMRI elicited distinctive but comparable results with previous task-based fMRI, presenting complementary and practical values for use in the study of stroke patients. PMID:21441147

  16. Mobile Device Applications for the Visualization of Functional Connectivity Networks and EEG Electrodes: iBraiN and iBraiNEEG

    PubMed Central

    Rojas, Gonzalo M.; Fuentes, Jorge A.; Gálvez, Marcelo

    2016-01-01

    Multiple functional MRI (fMRI)-based functional connectivity networks were obtained by Yeo et al. (2011), and the visualization of these complex networks is a difficult task. Also, the combination of functional connectivity networks determined by fMRI with electroencephalography (EEG) data could be a very useful tool. Mobile devices are becoming increasingly common among users, and for this reason, we describe here two applications for Android and iOS mobile devices: one that shows in an interactive way the seven Yeo functional connectivity networks, and another application that shows the relative position of 10–20 EEG electrodes with Yeo’s seven functional connectivity networks. PMID:27807416

  17. Analyzing and Assessing Brain Structure with Graph Connectivity Measures

    DTIC Science & Technology

    2014-05-09

    structural brain networks, i.e. determining which regions of the brain are physically connected. Meanwhile, functional MRI ( fMRI ) yields an image of...produced by fMRI is a map of which parts are of the brain are active and which are not at a given time. In creating functional networks, regions of...the brain which often activitate together, i.e., often show up on fMRI as deoxygenated regions together, are considered connected. DTI allows the

  18. Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI

    PubMed Central

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8–79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' “brain ages” from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI. PMID:22952990

  19. Decoding lifespan changes of the human brain using resting-state functional connectivity MRI.

    PubMed

    Wang, Lubin; Su, Longfei; Shen, Hui; Hu, Dewen

    2012-01-01

    The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.

  20. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  1. Functional Connectivity of Human Chewing

    PubMed Central

    Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.

    2013-01-01

    Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525

  2. Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: a proof-of-concept study.

    PubMed

    Orlov, Natasza D; Giampietro, Vincent; O'Daly, Owen; Lam, Sheut-Ling; Barker, Gareth J; Rubia, Katya; McGuire, Philip; Shergill, Sukhwinder S; Allen, Paul

    2018-02-12

    Neurocognitive models and previous neuroimaging work posit that auditory verbal hallucinations (AVH) arise due to increased activity in speech-sensitive regions of the left posterior superior temporal gyrus (STG). Here, we examined if patients with schizophrenia (SCZ) and AVH could be trained to down-regulate STG activity using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF). We also examined the effects of rtfMRI-NF training on functional connectivity between the STG and other speech and language regions. Twelve patients with SCZ and treatment-refractory AVH were recruited to participate in the study and were trained to down-regulate STG activity using rtfMRI-NF, over four MRI scanner visits during a 2-week training period. STG activity and functional connectivity were compared pre- and post-training. Patients successfully learnt to down-regulate activity in their left STG over the rtfMRI-NF training. Post- training, patients showed increased functional connectivity between the left STG, the left inferior prefrontal gyrus (IFG) and the inferior parietal gyrus. The post-training increase in functional connectivity between the left STG and IFG was associated with a reduction in AVH symptoms over the training period. The speech-sensitive region of the left STG is a suitable target region for rtfMRI-NF in patients with SCZ and treatment-refractory AVH. Successful down-regulation of left STG activity can increase functional connectivity between speech motor and perception regions. These findings suggest that patients with AVH have the ability to alter activity and connectivity in speech and language regions, and raise the possibility that rtfMRI-NF training could present a novel therapeutic intervention in SCZ.

  3. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.

    PubMed

    Chen, Rong; Nixon, Erika; Herskovits, Edward

    2016-04-01

    Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

  4. Resting State Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage: Independent Component and Seed-Based Analyses

    PubMed Central

    Iraji, Armin; Benson, Randall R.; Welch, Robert D.; O'Neil, Brian J.; Woodard, John L.; Imran Ayaz, Syed; Kulek, Andrew; Mika, Valerie; Medado, Patrick; Soltanian-Zadeh, Hamid; Liu, Tianming; Haacke, E. Mark

    2015-01-01

    Abstract Mild traumatic brain injury (mTBI) accounts for more than 1 million emergency visits each year. Most of the injured stay in the emergency department for a few hours and are discharged home without a specific follow-up plan because of their negative clinical structural imaging. Advanced magnetic resonance imaging (MRI), particularly functional MRI (fMRI), has been reported as being sensitive to functional disturbances after brain injury. In this study, a cohort of 12 patients with mTBI were prospectively recruited from the emergency department of our local Level-1 trauma center for an advanced MRI scan at the acute stage. Sixteen age- and sex-matched controls were also recruited for comparison. Both group-based and individual-based independent component analysis of resting-state fMRI (rsfMRI) demonstrated reduced functional connectivity in both posterior cingulate cortex (PCC) and precuneus regions in comparison with controls, which is part of the default mode network (DMN). Further seed-based analysis confirmed reduced functional connectivity in these two regions and also demonstrated increased connectivity between these regions and other regions of the brain in mTBI. Seed-based analysis using the thalamus, hippocampus, and amygdala regions further demonstrated increased functional connectivity between these regions and other regions of the brain, particularly in the frontal lobe, in mTBI. Our data demonstrate alterations of multiple brain networks at the resting state, particularly increased functional connectivity in the frontal lobe, in response to brain concussion at the acute stage. Resting-state functional connectivity of the DMN could serve as a potential biomarker for improved detection of mTBI in the acute setting. PMID:25285363

  5. Prediction of individual brain maturity using fMRI.

    PubMed

    Dosenbach, Nico U F; Nardos, Binyam; Cohen, Alexander L; Fair, Damien A; Power, Jonathan D; Church, Jessica A; Nelson, Steven M; Wig, Gagan S; Vogel, Alecia C; Lessov-Schlaggar, Christina N; Barnes, Kelly Anne; Dubis, Joseph W; Feczko, Eric; Coalson, Rebecca S; Pruett, John R; Barch, Deanna M; Petersen, Steven E; Schlaggar, Bradley L

    2010-09-10

    Group functional connectivity magnetic resonance imaging (fcMRI) studies have documented reliable changes in human functional brain maturity over development. Here we show that support vector machine-based multivariate pattern analysis extracts sufficient information from fcMRI data to make accurate predictions about individuals' brain maturity across development. The use of only 5 minutes of resting-state fcMRI data from 238 scans of typically developing volunteers (ages 7 to 30 years) allowed prediction of individual brain maturity as a functional connectivity maturation index. The resultant functional maturation curve accounted for 55% of the sample variance and followed a nonlinear asymptotic growth curve shape. The greatest relative contribution to predicting individual brain maturity was made by the weakening of short-range functional connections between the adult brain's major functional networks.

  6. Large-scale DCMs for resting-state fMRI.

    PubMed

    Razi, Adeel; Seghier, Mohamed L; Zhou, Yuan; McColgan, Peter; Zeidman, Peter; Park, Hae-Jeong; Sporns, Olaf; Rees, Geraint; Friston, Karl J

    2017-01-01

    This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity . This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM-with functional connectivity priors-is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.

  7. Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior

    PubMed Central

    Barch, Deanna M.; Burgess, Gregory C.; Harms, Michael P.; Petersen, Steven E.; Schlaggar, Bradley L.; Corbetta, Maurizio; Glasser, Matthew F.; Curtiss, Sandra; Dixit, Sachin; Feldt, Cindy; Nolan, Dan; Bryant, Edward; Hartley, Tucker; Footer, Owen; Bjork, James M.; Poldrack, Russ; Smith, Steve; Johansen-Berg, Heidi; Snyder, Abraham Z.; Van Essen, David C.

    2014-01-01

    The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a group and individual level. PMID:23684877

  8. Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients

    NASA Astrophysics Data System (ADS)

    Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.

    2016-03-01

    Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.

  9. Investigating the neural basis for functional and effective connectivity. Application to fMRI

    PubMed Central

    Horwitz, Barry; Warner, Brent; Fitzer, Julie; Tagamets, M.-A; Husain, Fatima T; Long, Theresa W

    2005-01-01

    Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations. PMID:16087450

  10. A study of structural and functional connectivity in early Alzheimer's disease using rest fMRI and diffusion tensor imaging.

    PubMed

    Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S

    2015-05-01

    Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind

    PubMed Central

    Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239

  12. White-matter functional networks changes in patients with schizophrenia.

    PubMed

    Jiang, Yuchao; Luo, Cheng; Li, Xuan; Li, Yingjia; Yang, Hang; Li, Jianfu; Chang, Xin; Li, Hechun; Yang, Huanghao; Wang, Jijun; Duan, Mingjun; Yao, Dezhong

    2018-04-13

    Resting-state functional MRI (rsfMRI) is a useful technique for investigating the functional organization of human gray-matter in neuroscience and neuropsychiatry. Nevertheless, most studies have demonstrated the functional connectivity and/or task-related functional activity in the gray-matter. White-matter functional networks have been investigated in healthy subjects. Schizophrenia has been hypothesized to be a brain disorder involving insufficient or ineffective communication associated with white-matter abnormalities. However, previous studies have mainly examined the structural architecture of white-matter using MRI or diffusion tensor imaging and failed to uncover any dysfunctional connectivity within the white-matter on rsfMRI. The current study used rsfMRI to evaluate white-matter functional connectivity in a large cohort of ninety-seven schizophrenia patients and 126 healthy controls. Ten large-scale white-matter networks were identified by a cluster analysis of voxel-based white-matter functional connectivity and classified into superficial, middle and deep layers of networks. Evaluation of the spontaneous oscillation of white-matter networks and the functional connectivity between them showed that patients with schizophrenia had decreased amplitudes of low-frequency oscillation and increased functional connectivity in the superficial perception-motor networks. Additionally, we examined the interactions between white-matter and gray-matter networks. The superficial perception-motor white-matter network had decreased functional connectivity with the cortical perception-motor gray-matter networks. In contrast, the middle and deep white-matter networks had increased functional connectivity with the superficial perception-motor white-matter network and the cortical perception-motor gray-matter network. Thus, we presumed that the disrupted association between the gray-matter and white-matter networks in the perception-motor system may be compensated for through the middle-deep white-matter networks, which may be the foundation of the extensively disrupted connections in schizophrenia. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Transcortical Sensory Aphasia after Left Frontal Lobe Infarction: Loss of Functional Connectivity.

    PubMed

    Kwon, Miseon; Shim, Woo Hyun; Kim, Sang-Joon; Kim, Jong S

    2017-01-01

    The underlying mechanism of transcortical sensory aphasia (TSA) caused by lesions occurring in the left frontal lobe remains unclear. We attempted to investigate the mechanism with the use of functional MRI (fMRI). We studied 2 patients with TSA after a left frontal infarction identified by diffusion-weighted MRI. As control subjects, a patient with transcortical motor aphasia and a healthy normal adult were chosen. The Korean version of Western Aphasia Battery was performed initially and at 3 months post stroke. We performed fMRI using verb generation and sentence completion tasks. Resting-state fMRI (rs-fMRI) was also obtained for network-level analysis initially and at 3 months post stroke. The results of diffusion- and perfusion-weighted MRI revealed no diffusion-perfusion mismatch. Initial fMRI in patients with TSA showed no reversed inter-/intrahemispheric activation patterns. rs-fMRI showed significantly decreased resting-state functional connectivity in the language network in patients with TSA compared with the control subjects. Follow-up rs-fMRI studies showed improvement in functional connectivity along with the recovery of patients' language function. Our data showed that the auditory comprehension deficits in patients with frontal lobe infarcts is attributed to difficulty accessing the posterior language area due to functional disconnection between language centers in the acute stage of stroke. © 2017 S. Karger AG, Basel.

  14. Sparse dictionary learning of resting state fMRI networks.

    PubMed

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  15. A METHOD FOR USING BLOCKED AND EVENT-RELATED FMRI DATA TO STUDY “RESTING STATE” FUNCTIONAL CONNECTIVITY

    PubMed Central

    Fair, Damien A.; Schlaggar, Bradley L.; Cohen B.A., Alexander L.; Miezin, Francis M.; Dosenbach, Nico U.F.; Wenger, Kristin K.; Fox, Michael D.; Snyder, Abraham Z.; Raichle, Marcus E.; Petersen, Steven E.

    2007-01-01

    Resting state functional connectivity MRI (fcMRI) has become a particularly useful tool for studying regional relationships in typical and atypical populations. Because many investigators have already obtained large datasets of task related fMRI, the ability to use this existing task data for resting state fcMRI is of considerable interest. Two classes of datasets could potentially be modified to emulate resting state data. These datasets include: 1) “interleaved” resting blocks from blocked or mixed blocked/event-related sets, and 2) residual timecourses from event-related sets that lack rest blocks. Using correlation analysis, we compared the functional connectivity of resting epochs taken from a mixed blocked/event-related design fMRI data set and the residuals derived from event-related data with standard continuous resting state data to determine which class of data can best emulate resting state data. We show that despite some differences, the functional connectivity for the interleaved resting periods taken from blocked designs is both qualitatively and quantitatively very similar to that of “continuous” resting state data. In contrast, despite being qualitatively similar to “continuous” resting state data, residuals derived from event-related design data had several distinct quantitative differences. These results suggest that the interleaved resting state data such as those taken from blocked or mixed blocked/event-related fMRI designs are well-suited for resting state functional connectivity analyses. Although using event-related data residuals for resting state functional connectivity may still be useful, results should be interpreted with care. PMID:17239622

  16. Development of the brain's functional network architecture.

    PubMed

    Vogel, Alecia C; Power, Jonathan D; Petersen, Steven E; Schlaggar, Bradley L

    2010-12-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks.

  17. Development of the Brain's Functional Network Architecture

    PubMed Central

    Power, Jonathan D.; Petersen, Steven E.; Schlaggar, Bradley L.

    2013-01-01

    A full understanding of the development of the brain's functional network architecture requires not only an understanding of developmental changes in neural processing in individual brain regions but also an understanding of changes in inter-regional interactions. Resting state functional connectivity MRI (rs-fcMRI) is increasingly being used to study functional interactions between brain regions in both adults and children. We briefly review methods used to study functional interactions and networks with rs-fcMRI and how these methods have been used to define developmental changes in network functional connectivity. The developmental rs-fcMRI studies to date have found two general properties. First, regional interactions change from being predominately anatomically local in children to interactions spanning longer cortical distances in young adults. Second, this developmental change in functional connectivity occurs, in general, via mechanisms of segregation of local regions and integration of distant regions into disparate subnetworks. PMID:20976563

  18. A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy

    PubMed Central

    Shafi, Mouhsin M.; Whitfield-Gabrieli, Susan; Chu, Catherine J.; Pascual-Leone, Alvaro; Chang, Bernard S.

    2017-01-01

    Resting-state functional connectivity MRI (rs-fcMRI) is a technique that identifies connectivity between different brain regions based on correlations over time in the blood-oxygenation level dependent signal. rs-fcMRI has been applied extensively to identify abnormalities in brain connectivity in different neurologic and psychiatric diseases. However, the relationship among rs-fcMRI connectivity abnormalities, brain electrophysiology and disease state is unknown, in part because the causal significance of alterations in functional connectivity in disease pathophysiology has not been established. Transcranial Magnetic Stimulation (TMS) is a technique that uses electromagnetic induction to noninvasively produce focal changes in cortical activity. When combined with electroencephalography (EEG), TMS can be used to assess the brain's response to external perturbations. Here we provide a protocol for combining rs-fcMRI, TMS and EEG to assess the physiologic significance of alterations in functional connectivity in patients with neuropsychiatric disease. We provide representative results from a previously published study in which rs-fcMRI was used to identify regions with abnormal connectivity in patients with epilepsy due to a malformation of cortical development, periventricular nodular heterotopia (PNH). Stimulation in patients with epilepsy resulted in abnormal TMS-evoked EEG activity relative to stimulation of the same sites in matched healthy control patients, with an abnormal increase in the late component of the TMS-evoked potential, consistent with cortical hyperexcitability. This abnormality was specific to regions with abnormal resting-state functional connectivity. Electrical source analysis in a subject with previously recorded seizures demonstrated that the origin of the abnormal TMS-evoked activity co-localized with the seizure-onset zone, suggesting the presence of an epileptogenic circuit. These results demonstrate how rs-fcMRI, TMS and EEG can be utilized together to identify and understand the physiological significance of abnormal brain connectivity in human diseases. PMID:27911366

  19. Functional connectivity of dissociation in patients with psychogenic non-epileptic seizures.

    PubMed

    van der Kruijs, Sylvie J M; Bodde, Nynke M G; Vaessen, Maarten J; Lazeron, Richard H C; Vonck, Kristl; Boon, Paul; Hofman, Paul A M; Backes, Walter H; Aldenkamp, Albert P; Jansen, Jacobus F A

    2012-03-01

    Psychogenic non-epileptic seizures (PNES) resemble epileptic seizures, but lack epileptiform brain activity. Instead, the cause is assumed to be psychogenic. An abnormal coping strategy may be exhibited by PNES patients, as indicated by their increased tendency to dissociate. Investigation of resting-state networks may reveal altered routes of information and emotion processing in PNES patients. The authors therefore investigated whether PNES patients differ from healthy controls in their resting-state functional connectivity characteristics and whether these connections are associated with the tendency to dissociate. 11 PNES patients without psychiatric comorbidity and 12 healthy controls underwent task-related paradigms (picture-encoding and Stroop paradigms) and resting-state functional MRI (rsfMRI). Global cognitive performance was tested using the Raven's Matrices test and participants completed questionnaires for evaluating dissociation. Functional connectivity analysis on rsfMRI was based on seed regions extracted from task-related fMRI activation maps. The patients displayed a significantly lower cognitive performance and significantly higher dissociation scores. No significant differences were found between the picture-encoding and Stroop colour-naming activation maps between controls and patients with PNES. However, functional connectivity maps from the rsfMRI were statistically different. For PNES patients, stronger connectivity values between areas involved in emotion (insula), executive control (inferior frontal gyrus and parietal cortex) and movement (precentral sulcus) were observed, which were significantly associated with dissociation scores. The abnormal, strong functional connectivity in PNES patients provides a neurophysiological correlate for the underlying psychoform and somatoform dissociation mechanism where emotion can influence executive control, resulting in altered motor function (eg, seizure-like episodes).

  20. Resting State Network Topology of the Ferret Brain

    PubMed Central

    Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-01-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024

  1. Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI.

    PubMed

    Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan

    2018-01-01

    Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem, cerebellum, subcortical and hippocampus brain areas. It can be presumed that the functional connectivity network is closely related to the mechanism of acupuncture, and central integration plays a critical role in the acupuncture mechanism. Copyright © 2017 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  2. Establishing the resting state default mode network derived from functional magnetic resonance imaging tasks as an endophenotype: A twins study.

    PubMed

    Korgaonkar, Mayuresh S; Ram, Kaushik; Williams, Leanne M; Gatt, Justine M; Grieve, Stuart M

    2014-08-01

    The resting state default mode network (DMN) has been shown to characterize a number of neurological and psychiatric disorders. Evidence suggests an underlying genetic basis for this network and hence could serve as potential endophenotype for these disorders. Heritability is a defining criterion for endophenotypes. The DMN is measured either using a resting-state functional magnetic resonance imaging (fMRI) scan or by extracting resting state activity from task-based fMRI. The current study is the first to evaluate heritability of this task-derived resting activity. 250 healthy adult twins (79 monozygotic and 46 dizygotic same sex twin pairs) completed five cognitive and emotion processing fMRI tasks. Resting state DMN functional connectivity was derived from these five fMRI tasks. We validated this approach by comparing connectivity estimates from task-derived resting activity for all five fMRI tasks, with those obtained using a dedicated task-free resting state scan in an independent cohort of 27 healthy individuals. Structural equation modeling using the classic twin design was used to estimate the genetic and environmental contributions to variance for the resting-state DMN functional connectivity. About 9-41% of the variance in functional connectivity between the DMN nodes was attributed to genetic contribution with the greatest heritability found for functional connectivity between the posterior cingulate and right inferior parietal nodes (P<0.001). Our data provide new evidence that functional connectivity measures from the intrinsic DMN derived from task-based fMRI datasets are under genetic control and have the potential to serve as endophenotypes for genetically predisposed psychiatric and neurological disorders. Copyright © 2014 Wiley Periodicals, Inc.

  3. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.

    PubMed

    Wu, Lei; Eichele, Tom; Calhoun, Vince D

    2010-10-01

    Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset

    PubMed Central

    Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926

  5. Functional Connectivity Mapping in the Animal Model: Principles and Applications of Resting-State fMRI

    PubMed Central

    Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan

    2017-01-01

    “Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914

  6. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation.

    PubMed

    Stevens, Michael C

    2016-11-01

    This review summarizes functional magnetic resonance imaging (fMRI) research done over the past decade that examined changes in the function and organization of brain networks across human adolescence. Its over-arching goal is to highlight how both resting state functional connectivity (rs-fcMRI) and task-based functional connectivity (t-fcMRI) have jointly contributed - albeit in different ways - to our understanding of the scope and types of network organization changes that occur from puberty until young adulthood. These two approaches generally have tested different types of hypotheses using different analysis techniques. This has hampered the convergence of findings. Although much has been learned about system-wide changes to adolescents' neural network organization, if both rs-fcMRI and t-fcMRI approaches draw upon each other's methodology and ask broader questions, it will produce a more detailed connectome-informed theory of adolescent neurodevelopment to guide physiological, clinical, and other lines of research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder.

    PubMed

    Demirtaş, Murat; Tornador, Cristian; Falcón, Carles; López-Solà, Marina; Hernández-Ribas, Rosa; Pujol, Jesús; Menchón, José M; Ritter, Petra; Cardoner, Narcis; Soriano-Mas, Carles; Deco, Gustavo

    2016-08-01

    Resting-state fMRI (RS-fMRI) has become a useful tool to investigate the connectivity structure of mental health disorders. In the case of major depressive disorder (MDD), recent studies regarding the RS-fMRI have found abnormal connectivity in several regions of the brain, particularly in the default mode network (DMN). Thus, the relevance of the DMN to self-referential thoughts and ruminations has made the use of the resting-state approach particularly important for MDD. The majority of such research has relied on the grand averaged functional connectivity measures based on the temporal correlations between the BOLD time series of various brain regions. We, in our study, investigated the variations in the functional connectivity over time at global and local level using RS-fMRI BOLD time series of 27 MDD patients and 27 healthy control subjects. We found that global synchronization and temporal stability were significantly increased in the MDD patients. Furthermore, the participants with MDD showed significantly increased overall average (static) functional connectivity (sFC) but decreased variability of functional connectivity (vFC) within specific networks. Static FC increased to predominance among the regions pertaining to the default mode network (DMN), while the decreased variability of FC was observed in the connections between the DMN and the frontoparietal network. Hum Brain Mapp 37:2918-2930, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  8. Markov models for fMRI correlation structure: Is brain functional connectivity small world, or decomposable into networks?

    PubMed

    Varoquaux, G; Gramfort, A; Poline, J B; Thirion, B

    2012-01-01

    Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. fMRI during natural sleep as a method to study brain function during early childhood.

    PubMed

    Redcay, Elizabeth; Kennedy, Daniel P; Courchesne, Eric

    2007-12-01

    Many techniques to study early functional brain development lack the whole-brain spatial resolution that is available with fMRI. We utilized a relatively novel method in which fMRI data were collected from children during natural sleep. Stimulus-evoked responses to auditory and visual stimuli as well as stimulus-independent functional networks were examined in typically developing 2-4-year-old children. Reliable fMRI data were collected from 13 children during presentation of auditory stimuli (tones, vocal sounds, and nonvocal sounds) in a block design. Twelve children were presented with visual flashing lights at 2.5 Hz. When analyses combined all three types of auditory stimulus conditions as compared to rest, activation included bilateral superior temporal gyri/sulci (STG/S) and right cerebellum. Direct comparisons between conditions revealed significantly greater responses to nonvocal sounds and tones than to vocal sounds in a number of brain regions including superior temporal gyrus/sulcus, medial frontal cortex and right lateral cerebellum. The response to visual stimuli was localized to occipital cortex. Furthermore, stimulus-independent functional connectivity MRI analyses (fcMRI) revealed functional connectivity between STG and other temporal regions (including contralateral STG) and medial and lateral prefrontal regions. Functional connectivity with an occipital seed was localized to occipital and parietal cortex. In sum, 2-4 year olds showed a differential fMRI response both between stimulus modalities and between stimuli in the auditory modality. Furthermore, superior temporal regions showed functional connectivity with numerous higher-order regions during sleep. We conclude that the use of sleep fMRI may be a valuable tool for examining functional brain organization in young children.

  10. Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review

    PubMed Central

    Hull, Jocelyn V.; Jacokes, Zachary J.; Torgerson, Carinna M.; Irimia, Andrei; Van Horn, John Darrell

    2017-01-01

    Ongoing debate exists within the resting-state functional MRI (fMRI) literature over how intrinsic connectivity is altered in the autistic brain, with reports of general over-connectivity, under-connectivity, and/or a combination of both. Classifying autism using brain connectivity is complicated by the heterogeneous nature of the condition, allowing for the possibility of widely variable connectivity patterns among individuals with the disorder. Further differences in reported results may be attributable to the age and sex of participants included, designs of the resting-state scan, and to the analysis technique used to evaluate the data. This review systematically examines the resting-state fMRI autism literature to date and compares studies in an attempt to draw overall conclusions that are presently challenging. We also propose future direction for rs-fMRI use to categorize individuals with autism spectrum disorder, serve as a possible diagnostic tool, and best utilize data-sharing initiatives. PMID:28101064

  11. Measuring functional connectivity using MEG: Methodology and comparison with fcMRI

    PubMed Central

    Brookes, Matthew J.; Hale, Joanne R.; Zumer, Johanna M.; Stevenson, Claire M.; Francis, Susan T.; Barnes, Gareth R.; Owen, Julia P.; Morris, Peter G.; Nagarajan, Srikantan S.

    2011-01-01

    Functional connectivity (FC) between brain regions is thought to be central to the way in which the brain processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability to study FC is therefore a key goal for neuroimaging. Functional connectivity (fc) MRI has become a popular tool to make connectivity measurements but the technique is limited by its indirect nature. A multimodal approach is therefore an attractive means to investigate the electrodynamic mechanisms underlying hemodynamic connectivity. In this paper, we investigate resting state FC using fcMRI and magnetoencephalography (MEG). In fcMRI, we exploit the advantages afforded by ultra high magnetic field. In MEG we apply envelope correlation and coherence techniques to source space projected MEG signals. We show that beamforming provides an excellent means to measure FC in source space using MEG data. However, care must be taken when interpreting these measurements since cross talk between voxels in source space can potentially lead to spurious connectivity and this must be taken into account in all studies of this type. We show good spatial agreement between FC measured independently using MEG and fcMRI; FC between sensorimotor cortices was observed using both modalities, with the best spatial agreement when MEG data are filtered into the β band. This finding helps to reduce the potential confounds associated with each modality alone: while it helps reduce the uncertainties in spatial patterns generated by MEG (brought about by the ill posed inverse problem), addition of electrodynamic metric confirms the neural basis of fcMRI measurements. Finally, we show that multiple MEG based FC metrics allow the potential to move beyond what is possible using fcMRI, and investigate the nature of electrodynamic connectivity. Our results extend those from previous studies and add weight to the argument that neural oscillations are intimately related to functional connectivity and the BOLD response. PMID:21352925

  12. Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer’s disease risk

    PubMed Central

    Caffo, Brian S.; Crainiceanu, Ciprian M.; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H.; Bassett, Susan Spear; Pekar, James J.

    2010-01-01

    Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer’s disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer’s disease risk under a verbal paired associates task. We found a indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, that was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. PMID:20227508

  13. Two-stage decompositions for the analysis of functional connectivity for fMRI with application to Alzheimer's disease risk.

    PubMed

    Caffo, Brian S; Crainiceanu, Ciprian M; Verduzco, Guillermo; Joel, Suresh; Mostofsky, Stewart H; Bassett, Susan Spear; Pekar, James J

    2010-07-01

    Functional connectivity is the study of correlations in measured neurophysiological signals. Altered functional connectivity has been shown to be associated with a variety of cognitive and memory impairments and dysfunction, including Alzheimer's disease. In this manuscript we use a two-stage application of the singular value decomposition to obtain data driven population-level measures of functional connectivity in functional magnetic resonance imaging (fMRI). The method is computationally simple and amenable to high dimensional fMRI data with large numbers of subjects. Simulation studies suggest the ability of the decomposition methods to recover population brain networks and their associated loadings. We further demonstrate the utility of these decompositions in a functional logistic regression model. The method is applied to a novel fMRI study of Alzheimer's disease risk under a verbal paired associates task. We found an indication of alternative connectivity in clinically asymptomatic at-risk subjects when compared to controls, which was not significant in the light of multiple comparisons adjustment. The relevant brain network loads primarily on the temporal lobe and overlaps significantly with the olfactory areas and temporal poles. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  14. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    PubMed

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Spinal Cord Injury Disrupts Resting-State Networks in the Human Brain.

    PubMed

    Hawasli, Ammar H; Rutlin, Jerrel; Roland, Jarod L; Murphy, Rory K J; Song, Sheng-Kwei; Leuthardt, Eric C; Shimony, Joshua S; Ray, Wilson Z

    2018-03-15

    Despite 253,000 spinal cord injury (SCI) patients in the United States, little is known about how SCI affects brain networks. Spinal MRI provides only structural information with no insight into functional connectivity. Resting-state functional MRI (RS-fMRI) quantifies network connectivity through the identification of resting-state networks (RSNs) and allows detection of functionally relevant changes during disease. Given the robust network of spinal cord afferents to the brain, we hypothesized that SCI produces meaningful changes in brain RSNs. RS-fMRIs and functional assessments were performed on 10 SCI subjects. Blood oxygen-dependent RS-fMRI sequences were acquired. Seed-based correlation mapping was performed using five RSNs: default-mode (DMN), dorsal-attention (DAN), salience (SAL), control (CON), and somatomotor (SMN). RSNs were compared with normal control subjects using false-discovery rate-corrected two way t tests. SCI reduced brain network connectivity within the SAL, SMN, and DMN and disrupted anti-correlated connectivity between CON and SMN. When divided into separate cohorts, complete but not incomplete SCI disrupted connectivity within SAL, DAN, SMN and DMN and between CON and SMN. Finally, connectivity changed over time after SCI: the primary motor cortex decreased connectivity with the primary somatosensory cortex, the visual cortex decreased connectivity with the primary motor cortex, and the visual cortex decreased connectivity with the sensory parietal cortex. These unique findings demonstrate the functional network plasticity that occurs in the brain as a result of injury to the spinal cord. Connectivity changes after SCI may serve as biomarkers to predict functional recovery following an SCI and guide future therapy.

  16. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity.

    PubMed

    Paret, Christian; Ruf, Matthias; Gerchen, Martin Fungisai; Kluetsch, Rosemarie; Demirakca, Traute; Jungkunz, Martin; Bertsch, Katja; Schmahl, Christian; Ende, Gabriele

    2016-01-15

    Down-regulation of the amygdala with real-time fMRI neurofeedback (rtfMRI NF) potentially allows targeting brain circuits of emotion processing and may involve prefrontal-limbic networks underlying effective emotion regulation. Little research has been dedicated to the effect of rtfMRI NF on the functional connectivity of the amygdala and connectivity patterns in amygdala down-regulation with neurofeedback have not been addressed yet. Using psychophysiological interaction analysis of fMRI data, we present evidence that voluntary amygdala down-regulation by rtfMRI NF while viewing aversive pictures was associated with increased connectivity of the right amygdala with the ventromedial prefrontal cortex (vmPFC) in healthy subjects (N=16). In contrast, a control group (N=16) receiving sham feedback did not alter amygdala connectivity (Group×Condition t-contrast: p<.05 at cluster-level). Task-dependent increases in amygdala-vmPFC connectivity were predicted by picture arousal (β=.59, p<.05). A dynamic causal modeling analysis with Bayesian model selection aimed at further characterizing the underlying causal structure and favored a bottom-up model assuming predominant information flow from the amygdala to the vmPFC (xp=.90). The results were complemented by the observation of task-dependent alterations in functional connectivity of the vmPFC with the visual cortex and the ventrolateral PFC in the experimental group (Condition t-contrast: p<.05 at cluster-level). Taken together, the results underscore the potential of amygdala fMRI neurofeedback to influence functional connectivity in key networks of emotion processing and regulation. This may be beneficial for patients suffering from severe emotion dysregulation by improving neural self-regulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness

    PubMed Central

    Snyder, Abraham Z.; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W.; Shen, Mark D.; Wolff, Jason J.; Botteron, Kelly N.; Dager, Stephen; Estes, Annette M.; Evans, Alan; Gerig, Guido; Hazlett, Heather C.; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Zwaigenbaum, Lonnie; Schlaggar, Bradley L.

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI. PMID:29149191

  18. Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness.

    PubMed

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W; Shen, Mark D; Wolff, Jason J; Botteron, Kelly N; Dager, Stephen; Estes, Annette M; Evans, Alan; Gerig, Guido; Hazlett, Heather C; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Zwaigenbaum, Lonnie; Schlaggar, Bradley L; Piven, Joseph; Pruett, John R; Raichle, Marcus

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI.

  19. Resting state network topology of the ferret brain.

    PubMed

    Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei

    2016-12-01

    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The Nuisance of Nuisance Regression: Spectral Misspecification in a Common Approach to Resting-State fMRI Preprocessing Reintroduces Noise and Obscures Functional Connectivity

    PubMed Central

    Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz

    2013-01-01

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n = 117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r = .10 – .35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. PMID:23747457

  1. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.

    PubMed

    Maggioni, Eleonora; Tana, Maria Gabriella; Arrigoni, Filippo; Zucca, Claudio; Bianchi, Anna Maria

    2014-05-15

    Functional Magnetic Resonance Imaging (fMRI) is used for exploring brain functionality, and recently it was applied for mapping the brain connection patterns. To give a meaningful neurobiological interpretation to the connectivity network, it is fundamental to properly define the network framework. In particular, the choice of the network nodes may affect the final connectivity results and the consequent interpretation. We introduce a novel method for the intra subject topological characterization of the nodes of fMRI brain networks, based on a whole brain parcellation scheme. The proposed whole brain parcellation algorithm divides the brain into clusters that are homogeneous from the anatomical and functional point of view, each of which constitutes a node. The functional parcellation described is based on the Tononi's cluster index, which measures instantaneous correlation in terms of intrinsic and extrinsic statistical dependencies. The method performance and reliability were first tested on simulated data, then on a real fMRI dataset acquired on healthy subjects during visual stimulation. Finally, the proposed algorithm was applied to epileptic patients' fMRI data recorded during seizures, to verify its usefulness as preparatory step for effective connectivity analysis. For each patient, the nodes of the network involved in ictal activity were defined according to the proposed parcellation scheme and Granger Causality Analysis (GCA) was applied to infer effective connectivity. We showed that the algorithm 1) performed well on simulated data, 2) was able to produce reliable inter subjects results and 3) led to a detailed definition of the effective connectivity pattern. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Multivariate Heteroscedasticity Models for Functional Brain Connectivity.

    PubMed

    Seiler, Christof; Holmes, Susan

    2017-01-01

    Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  3. Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co‐registration

    PubMed Central

    Douw, Linda; Stam, Cornelis J.; Tewarie, Prejaas; Hillebrand, Arjan

    2017-01-01

    Abstract Introduction Studies using functional connectivity and network analyses based on magnetoencephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. However, these analyses currently depend on the availability of costly and sometimes burdensome individual MR scans for co‐registration. We evaluated the consistency of these measures when using a template MRI, instead of native MRI, for the analysis of functional connectivity and network topology. Methods Seventeen healthy participants underwent resting‐state eyes‐closed MEG and anatomical MRI. These data were projected into source space using an atlas‐based peak voxel and a centroid beamforming approach either using (1) participants’ native MRIs or (2) the Montreal Neurological Institute's template. For both methods, time series were reconstructed from 78 cortical atlas regions. Relative power was determined in six classical frequency bands per region and globally averaged. Functional connectivity (phase lag index) between each pair of regions was calculated. The adjacency matrices were then used to reconstruct functional networks, of which regional and global metrics were determined. Intraclass correlation coefficients were calculated and Bland–Altman plots were made to quantify the consistency and potential bias of the use of template versus native MRI. Results Co‐registration with the template yielded largely consistent relative power, connectivity, and network estimates compared to native MRI. Discussion These findings indicate that there is no (systematic) bias or inconsistency between template and native MRI co‐registration of MEG. They open up possibilities for retrospective and prospective analyses to MEG datasets in the general population that have no native MRIs available. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. Hum Brain Mapp 39:104–119, 2018. © 2017 Wiley Periodicals, Inc. PMID:28990264

  4. The inclusion of functional connectivity information into fMRI-based neurofeedback improves its efficacy in the reduction of cigarette cravings.

    PubMed

    Kim, Dong-Youl; Yoo, Seung-Schik; Tegethoff, Marion; Meinlschmidt, Gunther; Lee, Jong-Hwan

    2015-08-01

    Real-time fMRI (rtfMRI) neurofeedback (NF) facilitates volitional control over brain activity and the modulation of associated mental functions. The NF signals of traditional rtfMRI-NF studies predominantly reflect neuronal activity within ROIs. In this study, we describe a novel rtfMRI-NF approach that includes a functional connectivity (FC) component in the NF signal (FC-added rtfMRI-NF). We estimated the efficacy of the FC-added rtfMRI-NF method by applying it to nicotine-dependent heavy smokers in an effort to reduce cigarette craving. ACC and medial pFC as well as the posterior cingulate cortex and precuneus are associated with cigarette craving and were chosen as ROIs. Fourteen heavy smokers were randomly assigned to receive one of two types of NF: traditional activity-based rtfMRI-NF or FC-added rtfMRI-NF. Participants received rtfMRI-NF training during two separate visits after overnight smoking cessation, and cigarette craving score was assessed. The FC-added rtfMRI-NF resulted in greater neuronal activity and increased FC between the targeted ROIs than the traditional activity-based rtfMRI-NF and resulted in lower craving score. In the FC-added rtfMRI-NF condition, the average of neuronal activity and FC was tightly associated with craving score (Bonferroni-corrected p = .028). However, in the activity-based rtfMRI-NF condition, no association was detected (uncorrected p > .081). Non-rtfMRI data analysis also showed enhanced neuronal activity and FC with FC-added NF than with activity-based NF. These results demonstrate that FC-added rtfMRI-NF facilitates greater volitional control over brain activity and connectivity and greater modulation of mental function than activity-based rtfMRI-NF.

  5. ICN_Atlas: Automated description and quantification of functional MRI activation patterns in the framework of intrinsic connectivity networks.

    PubMed

    Kozák, Lajos R; van Graan, Louis André; Chaudhary, Umair J; Szabó, Ádám György; Lemieux, Louis

    2017-12-01

    Generally, the interpretation of functional MRI (fMRI) activation maps continues to rely on assessing their relationship to anatomical structures, mostly in a qualitative and often subjective way. Recently, the existence of persistent and stable brain networks of functional nature has been revealed; in particular these so-called intrinsic connectivity networks (ICNs) appear to link patterns of resting state and task-related state connectivity. These networks provide an opportunity of functionally-derived description and interpretation of fMRI maps, that may be especially important in cases where the maps are predominantly task-unrelated, such as studies of spontaneous brain activity e.g. in the case of seizure-related fMRI maps in epilepsy patients or sleep states. Here we present a new toolbox (ICN_Atlas) aimed at facilitating the interpretation of fMRI data in the context of ICN. More specifically, the new methodology was designed to describe fMRI maps in function-oriented, objective and quantitative way using a set of 15 metrics conceived to quantify the degree of 'engagement' of ICNs for any given fMRI-derived statistical map of interest. We demonstrate that the proposed framework provides a highly reliable quantification of fMRI activation maps using a publicly available longitudinal (test-retest) resting-state fMRI dataset. The utility of the ICN_Atlas is also illustrated on a parametric task-modulation fMRI dataset, and on a dataset of a patient who had repeated seizures during resting-state fMRI, confirmed on simultaneously recorded EEG. The proposed ICN_Atlas toolbox is freely available for download at http://icnatlas.com and at http://www.nitrc.org for researchers to use in their fMRI investigations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Multimodal mapping of the brain's functional connectivity and the adult outcome of attention deficit hyperactivity disorder.

    PubMed

    Sudre, Gustavo; Szekely, Eszter; Sharp, Wendy; Kasparek, Steven; Shaw, Philip

    2017-10-31

    We have a limited understanding of why many children with attention deficit hyperactivity disorder do not outgrow the disorder by adulthood. Around 20-30% retain the full syndrome as young adults, and about 50% show partial, rather than complete, remission. Here, to delineate the neurobiology of this variable outcome, we ask if the persistence of childhood symptoms into adulthood impacts on the brain's functional connectivity. We studied 205 participants followed clinically since childhood. In early adulthood, participants underwent magnetoencephalography (MEG) to measure neuronal activity directly and functional MRI (fMRI) to measure hemodynamic activity during a task-free period (the "resting state"). We found that symptoms of inattention persisting into adulthood were associated with disrupted patterns of typical functional connectivity in both MEG and fMRI. Specifically, those with persistent inattention lost the typical balance of connections within the default mode network (DMN; prominent during introspective thought) and connections between this network and those supporting attention and cognitive control. By contrast, adults whose childhood inattentive symptoms had resolved did not differ significantly from their never-affected peers, both hemodynamically and electrophysiologically. The anomalies in functional connectivity tied to clinically significant inattention centered on midline regions of the DMN in both MEG and fMRI, boosting confidence in a possible pathophysiological role. The findings suggest that the clinical course of this common childhood onset disorder impacts the functional connectivity of the adult brain. Published under the PNAS license.

  7. Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease

    PubMed Central

    Price, J.L.; Yan, Z.; Morris, J.C.; Sheline, Y.I.

    2011-01-01

    Objective: Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB. Methods: Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus. Results: Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus. Conclusions: Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD. PMID:21525427

  8. Connectivity changes after laser ablation: Resting-state fMRI.

    PubMed

    Boerwinkle, Varina L; Vedantam, Aditya; Lam, Sandi; Wilfong, Angus A; Curry, Daniel J

    2018-05-01

    Resting-state functional magnetic resonance imaging (rsfMRI) is emerging as a useful tool in the multimodal assessment of patients with epilepsy. In pediatric patients who cannot perform task-based fMRI, rsfMRI may present an adjunct and alternative. Although changes in brain activation during task-based fMRI have been described after surgery for epilepsy, there is limited data on the role of postoperative rsfMRI. In this short review, we discuss the role of postoperative rsfMRI after laser ablation of seizure foci. By establishing standardized anesthesia protocols and imaging parameters, we have been able to perform serial rsfMRI at postoperative follow-up. The development of in-house software that can merge rsfMRI images to surgical navigation systems has allowed us to enhance the clinical applications of this technique. Resting-state fMRI after laser ablation has the potential to identify changes in connectivity, localize new seizure foci, and guide antiepileptic therapy. In our experience, rsfMRI complements conventional MR imaging and task-based fMRI for the evaluation of patients with seizure recurrence after laser ablation, and represents a potential noninvasive biomarker for functional connectivity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Correlated gene expression and anatomical communication support synchronized brain activity in the mouse functional connectome.

    PubMed

    Mills, Brian D; Grayson, David S; Shunmugavel, Anandakumar; Miranda-Dominguez, Oscar; Feczko, Eric; Earl, Eric; Neve, Kim; Fair, Damien A

    2018-05-22

    Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI. SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still largely unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be utilized to streamline preclinical animal studies of disease. Copyright © 2018 the authors.

  10. Test-retest reliability of functional connectivity networks during naturalistic fMRI paradigms.

    PubMed

    Wang, Jiahui; Ren, Yudan; Hu, Xintao; Nguyen, Vinh Thai; Guo, Lei; Han, Junwei; Guo, Christine Cong

    2017-04-01

    Functional connectivity analysis has become a powerful tool for probing the human brain function and its breakdown in neuropsychiatry disorders. So far, most studies adopted resting-state paradigm to examine functional connectivity networks in the brain, thanks to its low demand and high tolerance that are essential for clinical studies. However, the test-retest reliability of resting-state connectivity measures is moderate, potentially due to its low behavioral constraint. On the other hand, naturalistic neuroimaging paradigms, an emerging approach for cognitive neuroscience with high ecological validity, could potentially improve the reliability of functional connectivity measures. To test this hypothesis, we characterized the test-retest reliability of functional connectivity measures during a natural viewing condition, and benchmarked it against resting-state connectivity measures acquired within the same functional magnetic resonance imaging (fMRI) session. We found that the reliability of connectivity and graph theoretical measures of brain networks is significantly improved during natural viewing conditions over resting-state conditions, with an average increase of almost 50% across various connectivity measures. Not only sensory networks for audio-visual processing become more reliable, higher order brain networks, such as default mode and attention networks, but also appear to show higher reliability during natural viewing. Our results support the use of natural viewing paradigms in estimating functional connectivity of brain networks, and have important implications for clinical application of fMRI. Hum Brain Mapp 38:2226-2241, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging

    PubMed Central

    Tsvetanov, Kamen A.; Cam‐CAN; Henson, Richard N.

    2017-01-01

    Abstract Many studies report individual differences in functional connectivity, such as those related to age. However, estimates of connectivity from fMRI are confounded by other factors, such as vascular health, head motion and changes in the location of functional regions. Here, we investigate the impact of these confounds, and pre‐processing strategies that can mitigate them, using data from the Cambridge Centre for Ageing & Neuroscience (www.cam-can.com). This dataset contained two sessions of resting‐state fMRI from 214 adults aged 18–88. Functional connectivity between all regions was strongly related to vascular health, most likely reflecting respiratory and cardiac signals. These variations in mean connectivity limit the validity of between‐participant comparisons of connectivity estimates, and were best mitigated by regression of mean connectivity over participants. We also showed that high‐pass filtering, instead of band‐pass filtering, produced stronger and more reliable age‐effects. Head motion was correlated with gray‐matter volume in selected brain regions, and with various cognitive measures, suggesting that it has a biological (trait) component, and warning against regressing out motion over participants. Finally, we showed that the location of functional regions was more variable in older adults, which was alleviated by smoothing the data, or using a multivariate measure of connectivity. These results demonstrate that analysis choices have a dramatic impact on connectivity differences between individuals, ultimately affecting the associations found between connectivity and cognition. It is important that fMRI connectivity studies address these issues, and we suggest a number of ways to optimize analysis choices. Hum Brain Mapp 38:4125–4156, 2017. © 2017 Wiley Periodicals, Inc. PMID:28544076

  12. Predicting individual brain functional connectivity using a Bayesian hierarchical model.

    PubMed

    Dai, Tian; Guo, Ying

    2017-02-15

    Network-oriented analysis of functional magnetic resonance imaging (fMRI), especially resting-state fMRI, has revealed important association between abnormal connectivity and brain disorders such as schizophrenia, major depression and Alzheimer's disease. Imaging-based brain connectivity measures have become a useful tool for investigating the pathophysiology, progression and treatment response of psychiatric disorders and neurodegenerative diseases. Recent studies have started to explore the possibility of using functional neuroimaging to help predict disease progression and guide treatment selection for individual patients. These studies provide the impetus to develop statistical methodology that would help provide predictive information on disease progression-related or treatment-related changes in neural connectivity. To this end, we propose a prediction method based on Bayesian hierarchical model that uses individual's baseline fMRI scans, coupled with relevant subject characteristics, to predict the individual's future functional connectivity. A key advantage of the proposed method is that it can improve the accuracy of individualized prediction of connectivity by combining information from both group-level connectivity patterns that are common to subjects with similar characteristics as well as individual-level connectivity features that are particular to the specific subject. Furthermore, our method also offers statistical inference tools such as predictive intervals that help quantify the uncertainty or variability of the predicted outcomes. The proposed prediction method could be a useful approach to predict the changes in individual patient's brain connectivity with the progression of a disease. It can also be used to predict a patient's post-treatment brain connectivity after a specified treatment regimen. Another utility of the proposed method is that it can be applied to test-retest imaging data to develop a more reliable estimator for individual functional connectivity. We show there exists a nice connection between our proposed estimator and a recently developed shrinkage estimator of connectivity measures in the neuroimaging community. We develop an expectation-maximization (EM) algorithm for estimation of the proposed Bayesian hierarchical model. Simulations studies are performed to evaluate the accuracy of our proposed prediction methods. We illustrate the application of the methods with two data examples: the longitudinal resting-state fMRI from ADNI2 study and the test-retest fMRI data from Kirby21 study. In both the simulation studies and the fMRI data applications, we demonstrate that the proposed methods provide more accurate prediction and more reliable estimation of individual functional connectivity as compared with alternative methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

    PubMed

    Case, Michelle; Zhang, Huishi; Mundahl, John; Datta, Yvonne; Nelson, Stephen; Gupta, Kalpna; He, Bin

    2017-01-01

    Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

  14. Is Rest Really Rest? Resting State Functional Connectivity during Rest and Motor Task Paradigms.

    PubMed

    Jurkiewicz, Michael T; Crawley, Adrian P; Mikulis, David J

    2018-04-18

    Numerous studies have identified the default mode network (DMN) within the brain of healthy individuals, which has been attributed to the ongoing mental activity of the brain during the wakeful resting-state. While engaged during specific resting-state fMRI paradigms, it remains unclear as to whether traditional block-design simple movement fMRI experiments significantly influence the default mode network or other areas. Using blood-oxygen level dependent (BOLD) fMRI we characterized the pattern of functional connectivity in healthy subjects during a resting-state paradigm and compared this to the same resting-state analysis performed on motor task data residual time courses after regressing out the task paradigm. Using seed-voxel analysis to define the DMN, the executive control network (ECN), and sensorimotor, auditory and visual networks, the resting-state analysis of the residual time courses demonstrated reduced functional connectivity in the motor network and reduced connectivity between the insula and the ECN compared to the standard resting-state datasets. Overall, performance of simple self-directed motor tasks does little to change the resting-state functional connectivity across the brain, especially in non-motor areas. This would suggest that previously acquired fMRI studies incorporating simple block-design motor tasks could be mined retrospectively for assessment of the resting-state connectivity.

  15. Auditory Resting-State Network Connectivity in Tinnitus: A Functional MRI Study

    PubMed Central

    Maudoux, Audrey; Lefebvre, Philippe; Cabay, Jean-Evrard; Demertzi, Athena; Vanhaudenhuyse, Audrey; Laureys, Steven; Soddu, Andrea

    2012-01-01

    The underlying functional neuroanatomy of tinnitus remains poorly understood. Few studies have focused on functional cerebral connectivity changes in tinnitus patients. The aim of this study was to test if functional MRI “resting-state” connectivity patterns in auditory network differ between tinnitus patients and normal controls. Thirteen chronic tinnitus subjects and fifteen age-matched healthy controls were studied on a 3 tesla MRI. Connectivity was investigated using independent component analysis and an automated component selection approach taking into account the spatial and temporal properties of each component. Connectivity in extra-auditory regions such as brainstem, basal ganglia/NAc, cerebellum, parahippocampal, right prefrontal, parietal, and sensorimotor areas was found to be increased in tinnitus subjects. The right primary auditory cortex, left prefrontal, left fusiform gyrus, and bilateral occipital regions showed a decreased connectivity in tinnitus. These results show that there is a modification of cortical and subcortical functional connectivity in tinnitus encompassing attentional, mnemonic, and emotional networks. Our data corroborate the hypothesized implication of non-auditory regions in tinnitus physiopathology and suggest that various regions of the brain seem involved in the persistent awareness of the phenomenon as well as in the development of the associated distress leading to disabling chronic tinnitus. PMID:22574141

  16. Detecting nonlinear dynamics of functional connectivity

    NASA Astrophysics Data System (ADS)

    LaConte, Stephen M.; Peltier, Scott J.; Kadah, Yasser; Ngan, Shing-Chung; Deshpande, Gopikrishna; Hu, Xiaoping

    2004-04-01

    Functional magnetic resonance imaging (fMRI) is a technique that is sensitive to correlates of neuronal activity. The application of fMRI to measure functional connectivity of related brain regions across hemispheres (e.g. left and right motor cortices) has great potential for revealing fundamental physiological brain processes. Primarily, functional connectivity has been characterized by linear correlations in resting-state data, which may not provide a complete description of its temporal properties. In this work, we broaden the measure of functional connectivity to study not only linear correlations, but also those arising from deterministic, non-linear dynamics. Here the delta-epsilon approach is extended and applied to fMRI time series. The method of delays is used to reconstruct the joint system defined by a reference pixel and a candidate pixel. The crux of this technique relies on determining whether the candidate pixel provides additional information concerning the time evolution of the reference. As in many correlation-based connectivity studies, we fix the reference pixel. Every brain location is then used as a candidate pixel to estimate the spatial pattern of deterministic coupling with the reference. Our results indicate that measured connectivity is often emphasized in the motor cortex contra-lateral to the reference pixel, demonstrating the suitability of this approach for functional connectivity studies. In addition, discrepancies with traditional correlation analysis provide initial evidence for non-linear dynamical properties of resting-state fMRI data. Consequently, the non-linear characterization provided from our approach may provide a more complete description of the underlying physiology and brain function measured by this type of data.

  17. White Matter Connectivity of the Thalamus Delineates the Functional Architecture of Competing Thalamocortical Systems

    PubMed Central

    O'Muircheartaigh, Jonathan; Keller, Simon S.; Barker, Gareth J.; Richardson, Mark P.

    2015-01-01

    There is an increasing awareness of the involvement of thalamic connectivity on higher level cortical functioning in the human brain. This is reflected by the influence of thalamic stimulation on cortical activity and behavior as well as apparently cortical lesion syndromes occurring as a function of small thalamic insults. Here, we attempt to noninvasively test the correspondence of structural and functional connectivity of the human thalamus using diffusion-weighted and resting-state functional MRI. Using a large sample of 102 adults, we apply tensor independent component analysis to diffusion MRI tractography data to blindly parcellate bilateral thalamus according to diffusion tractography-defined structural connectivity. Using resting-state functional MRI collected in the same subjects, we show that the resulting structurally defined thalamic regions map to spatially distinct, and anatomically predictable, whole-brain functional networks in the same subjects. Although there was significant variability in the functional connectivity patterns, the resulting 51 structural and functional patterns could broadly be reduced to a subset of 7 similar core network types. These networks were distinct from typical cortical resting-state networks. Importantly, these networks were distributed across the brain and, in a subset, map extremely well to known thalamocortico-basal-ganglial loops. PMID:25899706

  18. Control Networks in Paediatric Tourette Syndrome Show Immature and Anomalous Patterns of Functional Connectivity

    ERIC Educational Resources Information Center

    Church, Jessica A.; Fair, Damien A.; Dosenbach, Nico U. F.; Cohen, Alexander L.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Tourette syndrome (TS) is a developmental disorder characterized by unwanted, repetitive behaviours that manifest as stereotyped movements and vocalizations called "tics". Operating under the hypothesis that the brain's control systems may be impaired in TS, we measured resting-state functional connectivity MRI (rs-fcMRI) between 39 previously…

  19. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  20. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals

    PubMed Central

    Hedden, Trey; Mormino, Elizabeth C.; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F.

    2017-01-01

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ1–42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ+) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ+ individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F18-AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. PMID:28314821

  1. Phases of Hyperconnectivity and Hypoconnectivity in the Default Mode and Salience Networks Track with Amyloid and Tau in Clinically Normal Individuals.

    PubMed

    Schultz, Aaron P; Chhatwal, Jasmeer P; Hedden, Trey; Mormino, Elizabeth C; Hanseeuw, Bernard J; Sepulcre, Jorge; Huijbers, Willem; LaPoint, Molly; Buckley, Rachel F; Johnson, Keith A; Sperling, Reisa A

    2017-04-19

    Alzheimer's disease (AD) is characterized by two hallmark molecular pathologies: amyloid aβ 1-42 and Tau neurofibrillary tangles. To date, studies of functional connectivity MRI (fcMRI) in individuals with preclinical AD have relied on associations with in vivo measures of amyloid pathology. With the recent advent of in vivo Tau-PET tracers it is now possible to extend investigations on fcMRI in a sample of cognitively normal elderly humans to regional measures of Tau. We modeled fcMRI measures across four major cortical association networks [default-mode network (DMN), salience network (SAL), dorsal attention network, and frontoparietal control network] as a function of global cortical amyloid [Pittsburgh Compound B (PiB)-PET] and regional Tau (AV1451-PET) in entorhinal, inferior temporal (IT), and inferior parietal cortex. Results showed that the interaction term between PiB and IT AV1451 was significantly associated with connectivity in the DMN and salience. The interaction revealed that amyloid-positive (aβ + ) individuals show increased connectivity in the DMN and salience when neocortical Tau levels are low, whereas aβ + individuals demonstrate decreased connectivity in these networks as a function of elevated Tau-PET signal. This pattern suggests a hyperconnectivity phase followed by a hypoconnectivity phase in the course of preclinical AD. SIGNIFICANCE STATEMENT This article offers a first look at the relationship between Tau-PET imaging with F 18 -AV1451 and functional connectivity MRI (fcMRI) in the context of amyloid-PET imaging. The results suggest a nonlinear relationship between fcMRI and both Tau-PET and amyloid-PET imaging. The pattern supports recent conjecture that the AD fcMRI trajectory is characterized by periods of both hyperconnectivity and hypoconnectivity. Furthermore, this nonlinear pattern can account for the sometimes conflicting reports of associations between amyloid and fcMRI in individuals with preclinical Alzheimer's disease. Copyright © 2017 the authors 0270-6474/17/374324-09$15.00/0.

  2. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion

    PubMed Central

    Power, Jonathan D; Barnes, Kelly A; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2011-01-01

    Here, we demonstrate that subject motion produces substantial changes in the timecourses of resting state functional connectivity MRI (rs-fcMRI) data despite compensatory spatial registration and regression of motion estimates from the data. These changes cause systematic but spurious correlation structures throughout the brain. Specifically, many long-distance correlations are decreased by subject motion, whereas many short-distance correlations are increased. These changes in rs-fcMRI correlations do not arise from, nor are they adequately countered by, some common functional connectivity processing steps. Two indices of data quality are proposed, and a simple method to reduce motion-related effects in rs-fcMRI analyses is demonstrated that should be flexibly implementable across a variety of software platforms. We demonstrate how application of this technique impacts our own data, modifying previous conclusions about brain development. These results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements. PMID:22019881

  3. A SVM-based quantitative fMRI method for resting-state functional network detection.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Discriminant analysis of resting-state functional connectivity patterns on the Grassmann manifold

    NASA Astrophysics Data System (ADS)

    Fan, Yong; Liu, Yong; Jiang, Tianzi; Liu, Zhening; Hao, Yihui; Liu, Haihong

    2010-03-01

    The functional networks, extracted from fMRI images using independent component analysis, have been demonstrated informative for distinguishing brain states of cognitive functions and neurological diseases. In this paper, we propose a novel algorithm for discriminant analysis of functional networks encoded by spatial independent components. The functional networks of each individual are used as bases for a linear subspace, referred to as a functional connectivity pattern, which facilitates a comprehensive characterization of temporal signals of fMRI data. The functional connectivity patterns of different individuals are analyzed on the Grassmann manifold by adopting a principal angle based subspace distance. In conjunction with a support vector machine classifier, a forward component selection technique is proposed to select independent components for constructing the most discriminative functional connectivity pattern. The discriminant analysis method has been applied to an fMRI based schizophrenia study with 31 schizophrenia patients and 31 healthy individuals. The experimental results demonstrate that the proposed method not only achieves a promising classification performance for distinguishing schizophrenia patients from healthy controls, but also identifies discriminative functional networks that are informative for schizophrenia diagnosis.

  5. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI.

    PubMed

    Churchill, Nathan W; Hutchison, Michael G; Graham, Simon J; Schweizer, Tom A

    2018-01-01

    Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70) university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1) a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings); and (2) a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks.

  6. Impaired Long Distance Functional Connectivity and Weighted Network Architecture in Alzheimer's Disease

    PubMed Central

    Liu, Yong; Yu, Chunshui; Zhang, Xinqing; Liu, Jieqiong; Duan, Yunyun; Alexander-Bloch, Aaron F.; Liu, Bing; Jiang, Tianzi; Bullmore, Ed

    2014-01-01

    Alzheimer's disease (AD) is increasingly recognized as a disconnection syndrome, which leads to cognitive impairment due to the disruption of functional activity across large networks or systems of interconnected brain regions. We explored abnormal functional magnetic resonance imaging (fMRI) resting-state dynamics, functional connectivity, and weighted functional networks, in a sample of patients with severe AD (N = 18) and age-matched healthy volunteers (N = 21). We found that patients had reduced amplitude and regional homogeneity of low-frequency fMRI oscillations, and reduced the strength of functional connectivity, in several regions previously described as components of the default mode network, for example, medial posterior parietal cortex and dorsal medial prefrontal cortex. In patients with severe AD, functional connectivity was particularly attenuated between regions that were separated by a greater physical distance; and loss of long distance connectivity was associated with less efficient global and nodal network topology. This profile of functional abnormality in severe AD was consistent with the results of a comparable analysis of data on 2 additional groups of patients with mild AD (N = 17) and amnestic mild cognitive impairment (MCI; N = 18). A greater degree of cognitive impairment, measured by the mini-mental state examination across all patient groups, was correlated with greater attenuation of functional connectivity, particularly over long connection distances, for example, between anterior and posterior components of the default mode network, and greater reduction of global and nodal network efficiency. These results indicate that neurodegenerative disruption of fMRI oscillations and connectivity in AD affects long-distance connections to hub nodes, with the consequent loss of network efficiency. This profile was evident also to a lesser degree in the patients with less severe cognitive impairment, indicating that the potential of resting-state fMRI measures as biomarkers or predictors of disease progression in AD. PMID:23314940

  7. Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology

    PubMed Central

    Miranda-Dominguez, Oscar; Mills, Brian D.; Grayson, David; Woodall, Andrew; Grant, Kathleen A.; Kroenke, Christopher D.

    2014-01-01

    Resting state functional connectivity MRI (rs-fcMRI) may provide a powerful and noninvasive “bridge” for comparing brain function between patients and experimental animal models; however, the relationship between human and macaque rs-fcMRI remains poorly understood. Here, using a novel surface deformation process for species comparisons in the same anatomical space (Van Essen, 2004, 2005), we found high correspondence, but also unique hub topology, between human and macaque functional connectomes. The global functional connectivity match between species was moderate to strong (r = 0.41) and increased when considering the top 15% strongest connections (r = 0.54). Analysis of the match between functional connectivity and the underlying anatomical connectivity, derived from a previous retrograde tracer study done in macaques (Markov et al., 2012), showed impressive structure–function correspondence in both the macaque and human. When examining the strongest structural connections, we found a 70–80% match between structural and functional connectivity matrices in both species. Finally, we compare species on two widely used metrics for studying hub topology: degree and betweenness centrality. The data showed topological agreement across the species, with nodes of the posterior cingulate showing high degree and betweenness centrality. In contrast, nodes in medial frontal and parietal cortices were identified as having high degree and betweenness in the human as opposed to the macaque. Our results provide: (1) a thorough examination and validation for a surface-based interspecies deformation process, (2) a strong theoretical foundation for making interspecies comparisons of rs-fcMRI, and (3) a unique look at topological distinctions between the species. PMID:24741045

  8. Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm

    PubMed Central

    Iyer, Swathi; Shafran, Izhak; Grayson, David; Gates, Kathleen; Nigg, Joel; Fair, Damien

    2013-01-01

    Resting state functional connectivity MRI (rs-fcMRI) is a popular technique used to gauge the functional relatedness between regions in the brain for typical and special populations. Most of the work to date determines this relationship by using Pearson's correlation on BOLD fMRI timeseries. However, it has been recognized that there are at least two key limitations to this method. First, it is not possible to resolve the direct and indirect connections/influences. Second, the direction of information flow between the regions cannot be differentiated. In the current paper, we follow-up on recent work by Smith et al (2011), and apply a Bayesian approach called the PC algorithm to both simulated data and empirical data to determine whether these two factors can be discerned with group average, as opposed to single subject, functional connectivity data. When applied on simulated individual subjects, the algorithm performs well determining indirect and direct connection but fails in determining directionality. However, when applied at group level, PC algorithm gives strong results for both indirect and direct connections and the direction of information flow. Applying the algorithm on empirical data, using a diffusion-weighted imaging (DWI) structural connectivity matrix as the baseline, the PC algorithm outperformed the direct correlations. We conclude that, under certain conditions, the PC algorithm leads to an improved estimate of brain network structure compared to the traditional connectivity analysis based on correlations. PMID:23501054

  9. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI.

    PubMed

    Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo

    2009-08-01

    In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.

  10. Functional connectivity density mapping: comparing multiband and conventional EPI protocols.

    PubMed

    Cohen, Alexander D; Tomasi, Dardo; Shokri-Kojori, Ehsan; Nencka, Andrew S; Wang, Yang

    2018-06-01

    Functional connectivity density mapping (FCDM) is a newly developed data-driven technique that quantifies the number of local and global functional connections for each voxel in the brain. In this study, we evaluated reproducibility, sensitivity, and specificity of both local functional connectivity density (lFCD) and global functional connectivity density (gFCD). We compared these metrics using the human connectome project (HCP) compatible high-resolution (2 mm isotropic, TR = 0.8 s) multiband (MB), and more typical, lower resolution (3.5 mm isotropic, TR = 2.0 s) single-band (SB) resting state functional MRI (rs-fMRI) acquisitions. Furthermore, in order to be more clinically feasible, only rs-fMRI scans that lasted seven minutes were tested. Subjects were scanned twice within a two-week span. We found sensitivity and specificity increased and reproducibility either increased or did not change for the MB compared to the SB acquisitions. The MB scans also showed improved gray matter/white matter contrast compared to the SB scans. The lFCD and gFCD patterns were similar across MB and SB scans and confined predominantly to gray matter. We also observed a strong spatial correlation of FCD between MB and SB scans indicating the two acquisitions provide similar information. These findings indicate high-resolution MB acquisitions improve the quality of FCD data, and seven minute rs-fMRI scan can provide robust FCD measurements.

  11. Disruption to functional networks in neonates with perinatal brain injury predicts motor skills at 8 months.

    PubMed

    Linke, Annika C; Wild, Conor; Zubiaurre-Elorza, Leire; Herzmann, Charlotte; Duffy, Hester; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2018-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) of neonates with perinatal brain injury could improve prediction of motor impairment before symptoms manifest, and establish how early brain organization relates to subsequent development. This cohort study is the first to describe and quantitatively assess functional brain networks and their relation to later motor skills in neonates with a diverse range of perinatal brain injuries. Infants ( n  = 65, included in final analyses: n  = 53) were recruited from the neonatal intensive care unit (NICU) and were stratified based on their age at birth (premature vs. term), and on whether neuropathology was diagnosed from structural MRI. Functional brain networks and a measure of disruption to functional connectivity were obtained from 14 min of fcMRI acquired during natural sleep at term-equivalent age. Disruption to connectivity of the somatomotor and frontoparietal executive networks predicted motor impairment at 4 and 8 months. This disruption in functional connectivity was not found to be driven by differences between clinical groups, or by any of the specific measures we captured to describe the clinical course. fcMRI was predictive over and above other clinical measures available at discharge from the NICU, including structural MRI. Motor learning was affected by disruption to somatomotor networks, but also frontoparietal executive networks, which supports the functional importance of these networks in early development. Disruption to these two networks might be best addressed by distinct intervention strategies.

  12. Predicting efficacy of robot-aided rehabilitation in chronic stroke patients using an MRI-compatible robotic device.

    PubMed

    Sergi, Fabrizio; Krebs, Hermano Igo; Groissier, Benjamin; Rykman, Avrielle; Guglielmelli, Eugenio; Volpe, Bruce T; Schaechter, Judith D

    2011-01-01

    We are investigating the neural correlates of motor recovery promoted by robot-mediated therapy in chronic stroke. This pilot study asked whether efficacy of robot-aided motor rehabilitation in chronic stroke could be predicted by a change in functional connectivity within the sensorimotor network in response to a bout of motor rehabilitation. To address this question, two stroke patients participated in a functional connectivity MRI study pre and post a 12-week robot-aided motor rehabilitation program. Functional connectivity was evaluated during three consecutive scans before the rehabilitation program: resting-state; point-to-point reaching movements executed by the paretic upper extremity (UE) using a newly developed MRI-compatible sensorized passive manipulandum; resting-state. A single resting-state scan was conducted after the rehabilitation program. Before the program, UE movement reduced functional connectivity between the ipsilesional and contralesional primary motor cortex. Reduced interhemispheric functional connectivity persisted during the second resting-state scan relative to the first and during the resting-state scan after the rehabilitation program. Greater reduction in interhemispheric functional connectivity during the resting-state was associated with greater gains in UE motor function induced by the 12-week robotic therapy program. These findings suggest that greater reduction in interhemispheric functional connectivity in response to a bout of motor rehabilitation may predict greater efficacy of the full rehabilitation program.

  13. Functional Connectivity in an fMRI Study of Semantic and Phonological Processes and the Effect of L-Dopa

    ERIC Educational Resources Information Center

    Tivarus, Madalina E.; Hillier, Ashleigh; Schmalbrock, Petra; Beversdorf, David Q.

    2008-01-01

    We describe an fMRI experiment examining the functional connectivity (FC) between regions of the brain associated with semantic and phonological processing. We wished to explore whether L-Dopa administration affects the interaction between language network components in semantic and phonological categorization tasks, as revealed by FC. We…

  14. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    PubMed

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  15. Glucose Administration Enhances fMRI Brain Activation and Connectivity Related to Episodic Memory Encoding for Neutral and Emotional Stimuli

    ERIC Educational Resources Information Center

    Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan

    2011-01-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…

  16. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    PubMed

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  17. Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression.

    PubMed

    Yuan, Han; Young, Kymberly D; Phillips, Raquel; Zotev, Vadim; Misaki, Masaya; Bodurka, Jerzy

    2014-11-01

    Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD) and normalize with remission. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training with the goal of upregulating amygdala activity during recall of happy autobiographical memories (AMs) has been suggested, and recently explored, as a novel therapeutic approach that resulted in improvement in self-reported mood in depressed subjects. In this study, we assessed the possibility of sustained brain changes as well as the neuromodulatory effects of rtfMRI-nf training of the amygdala during recall of positive AMs in MDD and matched healthy subjects. MDD and healthy subjects went through one visit of rtfMRI-nf training. Subjects were assigned to receive active neurofeedback from the left amygdale (LA) or from a control region putatively not modulated by AM recall or emotion regulation, that is, the left horizontal segment of the intraparietal sulcus. To assess lasting effects of neurofeedback in MDD, the resting-state functional connectivity before and after rtfMRI-nf in 27 depressed subjects, as well as in 27 matched healthy subjects before rtfMRI-nf was measured. Results show that abnormal hypo-connectivity with LA in MDD is reversed after rtfMRI-nf training by recalling positive AMs. Although such neuromodulatory changes are observed in both MDD groups receiving feedback from respective active and control brain regions, only in the active group are larger decreases of depression severity associated with larger increases of amygdala connectivity and a significant, positive correlation is found between the connectivity changes and the days after neurofeedback. In addition, active neurofeedback training of the amygdala enhances connectivity with temporal cortical regions, including the hippocampus. These results demonstrate lasting brain changes induced by amygdala rtfMRI-nf training and suggest the importance of reinforcement learning in rehabilitating emotion regulation in depression.

  18. Resting-State Functional Connectivity Modulation and Sustained Changes After Real-Time Functional Magnetic Resonance Imaging Neurofeedback Training in Depression

    PubMed Central

    Young, Kymberly D.; Phillips, Raquel; Zotev, Vadim; Misaki, Masaya

    2014-01-01

    Abstract Amygdala hemodynamic responses to positive stimuli are attenuated in major depressive disorder (MDD) and normalize with remission. Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) training with the goal of upregulating amygdala activity during recall of happy autobiographical memories (AMs) has been suggested, and recently explored, as a novel therapeutic approach that resulted in improvement in self-reported mood in depressed subjects. In this study, we assessed the possibility of sustained brain changes as well as the neuromodulatory effects of rtfMRI-nf training of the amygdala during recall of positive AMs in MDD and matched healthy subjects. MDD and healthy subjects went through one visit of rtfMRI-nf training. Subjects were assigned to receive active neurofeedback from the left amygdale (LA) or from a control region putatively not modulated by AM recall or emotion regulation, that is, the left horizontal segment of the intraparietal sulcus. To assess lasting effects of neurofeedback in MDD, the resting-state functional connectivity before and after rtfMRI-nf in 27 depressed subjects, as well as in 27 matched healthy subjects before rtfMRI-nf was measured. Results show that abnormal hypo-connectivity with LA in MDD is reversed after rtfMRI-nf training by recalling positive AMs. Although such neuromodulatory changes are observed in both MDD groups receiving feedback from respective active and control brain regions, only in the active group are larger decreases of depression severity associated with larger increases of amygdala connectivity and a significant, positive correlation is found between the connectivity changes and the days after neurofeedback. In addition, active neurofeedback training of the amygdala enhances connectivity with temporal cortical regions, including the hippocampus. These results demonstrate lasting brain changes induced by amygdala rtfMRI-nf training and suggest the importance of reinforcement learning in rehabilitating emotion regulation in depression. PMID:25329241

  19. A Novel Approach of Groupwise fMRI-Guided Tractography Allowing to Characterize the Clinical Evolution of Alzheimer's Disease

    PubMed Central

    Preti, Maria Giulia; Makris, Nikos; Papadimitriou, George; Laganà, Maria Marcella; Griffanti, Ludovica; Clerici, Mario; Nemni, Raffaello; Westin, Carl-Fredrik; Baselli, Giuseppe; Baglio, Francesca

    2014-01-01

    Guiding diffusion tract-based anatomy by functional magnetic resonance imaging (fMRI), we aim to investigate the relationship between structural connectivity and functional activity in the human brain. To this purpose, we introduced a novel groupwise fMRI-guided tractographic approach, that was applied on a population ranging between prodromic and moderate stages of Alzheimer's disease (AD). The study comprised of 15 subjects affected by amnestic mild cognitive impairment (aMCI), 14 diagnosed with AD and 14 elderly healthy adults who were used as controls. By creating representative (ensemble) functionally guided tracts within each group of participants, our methodology highlighted the white matter fiber connections involved in verbal fluency functions for a specific population, and hypothesized on brain compensation mechanisms that potentially counteract or reduce cognitive impairment symptoms in prodromic AD. Our hope is that this fMRI-guided tractographic approach could have potential impact in various clinical studies, while investigating white/gray matter connectivity, in both health and disease. PMID:24637718

  20. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia.

    PubMed

    Richards, T L; Grabowski, T J; Boord, P; Yagle, K; Askren, M; Mestre, Z; Robinson, P; Welker, O; Gulliford, D; Nagy, W; Berninger, V

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4-9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI-fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter-gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning.

  1. Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI–fMRI connectivity correlations in children with and without dysgraphia or dyslexia

    PubMed Central

    Richards, T.L.; Grabowski, T.J.; Boord, P.; Yagle, K.; Askren, M.; Mestre, Z.; Robinson, P.; Welker, O.; Gulliford, D.; Nagy, W.; Berninger, V.

    2015-01-01

    Based on comprehensive testing and educational history, children in grades 4–9 (on average 12 years) were diagnosed with dysgraphia (persisting handwriting impairment) or dyslexia (persisting word spelling/reading impairment) or as typical writers and readers (controls). The dysgraphia group (n = 14) and dyslexia group (n = 17) were each compared to the control group (n = 9) and to each other in separate analyses. Four brain region seed points (left occipital temporal gyrus, supramarginal gyrus, precuneus, and inferior frontal gyrus) were used in these analyses which were shown in a metaanalysis to be related to written word production on four indicators of white matter integrity and fMRI functional connectivity for four tasks (self-guided mind wandering during resting state, writing letter that follows a visually displayed letter in alphabet, writing missing letter to create a correctly spelled real word, and planning for composing after scanning on topic specified by researcher). For those DTI indicators on which the dysgraphic group or dyslexic group differed from the control group (fractional anisotropy, relative anisotropy, axial diffusivity but not radial diffusivity), correlations were computed between the DTI parameter and fMRI functional connectivity for the two writing tasks (alphabet and spelling) by seed points. Analyses, controlled for multiple comparisons, showed that (a) the control group exhibited more white matter integrity than either the dysgraphic or dyslexic group; (b) the dysgraphic and dyslexic groups showed more functional connectivity than the control group but differed in patterns of functional connectivity for task and seed point; and (c) the dysgraphic and dyslexic groups showed different patterns of significant DTI–fMRI connectivity correlations for specific seed points and written language tasks. Thus, dysgraphia and dyslexia differ in white matter integrity, fMRI functional connectivity, and white matter–gray matter correlations. Of clinical relevance, brain differences were observed in dysgraphia and dyslexia on written language tasks yoked to their defining behavioral impairments in handwriting and/or in word spelling and on the cognitive mind wandering rest condition and composition planning. PMID:26106566

  2. Antidepressants normalize the default mode network in patients with dysthymia.

    PubMed

    Posner, Jonathan; Hellerstein, David J; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J; Stewart, Jonathan W; Peterson, Bradley S

    2013-04-01

    The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain's DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. University research institute. Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain's DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain's DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity. The baseline imaging findings are consistent with those found in patients with major depressive disorder and suggest that increased connectivity within the DMN may be important in the pathophysiology of both acute and chronic manifestations of depressive illness. The normalization of DMN connectivity following antidepressant treatment suggests an important causal pathway through which antidepressants may reduce depression.

  3. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers.

    PubMed

    Yamada, Takashi; Hashimoto, Ryu-Ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko; Kawato, Mitsuo

    2017-10-01

    Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., "theranostic biomarker") is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  4. Resting-State Functional Connectivity-Based Biomarkers and Functional MRI-Based Neurofeedback for Psychiatric Disorders: A Challenge for Developing Theranostic Biomarkers

    PubMed Central

    Yamada, Takashi; Hashimoto, Ryu-ichiro; Yahata, Noriaki; Ichikawa, Naho; Yoshihara, Yujiro; Okamoto, Yasumasa; Kato, Nobumasa; Takahashi, Hidehiko

    2017-01-01

    Abstract Psychiatric research has been hampered by an explanatory gap between psychiatric symptoms and their neural underpinnings, which has resulted in poor treatment outcomes. This situation has prompted us to shift from symptom-based diagnosis to data-driven diagnosis, aiming to redefine psychiatric disorders as disorders of neural circuitry. Promising candidates for data-driven diagnosis include resting-state functional connectivity MRI (rs-fcMRI)-based biomarkers. Although biomarkers have been developed with the aim of diagnosing patients and predicting the efficacy of therapy, the focus has shifted to the identification of biomarkers that represent therapeutic targets, which would allow for more personalized treatment approaches. This type of biomarker (i.e., “theranostic biomarker”) is expected to elucidate the disease mechanism of psychiatric conditions and to offer an individualized neural circuit-based therapeutic target based on the neural cause of a condition. To this end, researchers have developed rs-fcMRI-based biomarkers and investigated a causal relationship between potential biomarkers and disease-specific behavior using functional MRI (fMRI)-based neurofeedback on functional connectivity. In this review, we introduce a recent approach for creating a theranostic biomarker, which consists mainly of 2 parts: (1) developing an rs-fcMRI-based biomarker that can predict diagnosis and/or symptoms with high accuracy, and (2) the introduction of a proof-of-concept study investigating the relationship between normalizing the biomarker and symptom changes using fMRI-based neurofeedback. In parallel with the introduction of recent studies, we review rs-fcMRI-based biomarker and fMRI-based neurofeedback, focusing on the technological improvements and limitations associated with clinical use. PMID:28977523

  5. Effects of resting state condition on reliability, trait specificity, and network connectivity of brain function measured with arterial spin labeled perfusion MRI.

    PubMed

    Li, Zhengjun; Vidorreta, Marta; Katchmar, Natalie; Alsop, David C; Wolf, Daniel H; Detre, John A

    2018-06-01

    Resting state fMRI (rs-fMRI) provides imaging biomarkers of task-independent brain function that can be associated with clinical variables or modulated by interventions such as behavioral training or pharmacological manipulations. These biomarkers include time-averaged regional brain function as manifested by regional cerebral blood flow (CBF) measured using arterial spin labeled (ASL) perfusion MRI and correlated temporal fluctuations of function across brain networks with either ASL or blood oxygenation level dependent (BOLD) fMRI. Resting-state studies are typically carried out using just one of several prescribed state conditions such as eyes closed (EC), eyes open (EO), or visual fixation on a cross-hair (FIX), which may affect the reliability and specificity of rs-fMRI. In this study, we collected test-retest ASL MRI data during 4 resting-state task conditions: EC, EO, FIX and PVT (low-frequency psychomotor vigilance task), and examined the effects of these task conditions on reliability and reproducibility as well as trait specificity of regional brain function. We also acquired resting-state BOLD fMRI under FIX and compared the network connectivity reliabilities between the four ASL conditions and the BOLD FIX condition. For resting-state ASL data, EC provided the highest CBF reliability, reproducibility, trait specificity, and network connectivity reliability, followed by EO, while FIX was lowest on all of these measures. PVT demonstrated lower CBF reliability, reproducibility and trait specificity than EO and EC. Overall network connectivity reliability was comparable between ASL and BOLD. Our findings confirm ASL CBF as a reliable, stable, and consistent measure of resting-state regional brain function and support the use of EC or EO over FIX and PVT as the resting-state condition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Functional differentiation of posterior superior temporal sulcus in autism: A functional connectivity MRI study

    PubMed Central

    Shih, Patricia; Keehn, Brandon; Oram, Jessica K.; Leyden, Kelly M.; Keown, Christopher L.; Müller, Ralph-Axel

    2012-01-01

    Background Socio-communicative impairments are salient features of autism spectrum disorder (ASD). Abnormal development of posterior superior temporal sulcus (pSTS), a key processing area for language, biological motion, and social context, may play a role in these deficits. Methods Functional connectivity MRI (fcMRI) was used to examine the synchronization of low frequency BOLD fluctuations during continuous performance on a visual search task. Twenty-one children and adolescents with ASD and 26 typically developing (TD) individuals, matched on age, sex, and IQ, participated in the study. Three subregions of pSTS were delineated with a data-driven approach, and differentiation of pSTS was examined by comparing the connectivity of each subregion. Results In TD individuals, differentiation of networks was positively associated with age and anatomical maturation (cortical thinning in pSTS, greater white matter volume). In the ASD group, differentiation of pSTS connectivity was significantly reduced and correlations with anatomical measures were weak or absent. Moreover, pSTS differentiation was inversely correlated with autism symptom severity. Conclusions Atypical maturation of pSTS suggests altered trajectories for functional segregation and integration of networks in ASD, potentially related to impaired cognitive and sensorimotor development. Furthermore, our findings provide a novel explanation for atypically increased connectivity in ASD observed in some fcMRI studies. PMID:21601832

  7. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping.

    PubMed

    Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S

    2004-02-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.

  8. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping

    PubMed Central

    Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.

    2014-01-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564

  9. Replicability of time-varying connectivity patterns in large resting state fMRI samples.

    PubMed

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D

    2017-12-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Replicability of time-varying connectivity patterns in large resting state fMRI samples

    PubMed Central

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L.; Stephen, Julia M.; Claus, Eric D.; Mayer, Andrew R.; Calhoun, Vince D.

    2018-01-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain’s inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. PMID:28916181

  11. The mean-variance relationship reveals two possible strategies for dynamic brain connectivity analysis in fMRI.

    PubMed

    Thompson, William H; Fransson, Peter

    2015-01-01

    When studying brain connectivity using fMRI, signal intensity time-series are typically correlated with each other in time to compute estimates of the degree of interaction between different brain regions and/or networks. In the static connectivity case, the problem of defining which connections that should be considered significant in the analysis can be addressed in a rather straightforward manner by a statistical thresholding that is based on the magnitude of the correlation coefficients. More recently, interest has come to focus on the dynamical aspects of brain connectivity and the problem of deciding which brain connections that are to be considered relevant in the context of dynamical changes in connectivity provides further options. Since we, in the dynamical case, are interested in changes in connectivity over time, the variance of the correlation time-series becomes a relevant parameter. In this study, we discuss the relationship between the mean and variance of brain connectivity time-series and show that by studying the relation between them, two conceptually different strategies to analyze dynamic functional brain connectivity become available. Using resting-state fMRI data from a cohort of 46 subjects, we show that the mean of fMRI connectivity time-series scales negatively with its variance. This finding leads to the suggestion that magnitude- versus variance-based thresholding strategies will induce different results in studies of dynamic functional brain connectivity. Our assertion is exemplified by showing that the magnitude-based strategy is more sensitive to within-resting-state network (RSN) connectivity compared to between-RSN connectivity whereas the opposite holds true for a variance-based analysis strategy. The implications of our findings for dynamical functional brain connectivity studies are discussed.

  12. Clinical Applications of Resting State Functional Connectivity

    PubMed Central

    Fox, Michael D.; Greicius, Michael

    2010-01-01

    During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951

  13. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  14. Mutual Connectivity Analysis (MCA) Using Generalized Radial Basis Function Neural Networks for Nonlinear Functional Connectivity Network Recovery in Resting-State Functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Zainul; Nagarajan, Mahesh B; Wismüller, Axel

    2016-03-29

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 ± 0.037) as well as the underlying network structure (Rand index = 0.87 ± 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  15. Functional connectivity and microstructural white matter changes in phenocopy frontotemporal dementia.

    PubMed

    Meijboom, R; Steketee, R M E; de Koning, I; Osse, R J; Jiskoot, L C; de Jong, F J; van der Lugt, A; van Swieten, J C; Smits, M

    2017-04-01

    Phenocopy frontotemporal dementia (phFTD) is a rare and poorly understood clinical syndrome. PhFTD shows core behavioural variant FTD (bvFTD) symptoms without associated cognitive deficits and brain abnormalities on conventional MRI and without progression. In contrast to phFTD, functional connectivity and white matter (WM) microstructural abnormalities have been observed in bvFTD. We hypothesise that phFTD belongs to the same disease spectrum as bvFTD and investigated whether functional connectivity and microstructural WM changes similar to bvFTD are present in phFTD. Seven phFTD patients without progression or alternative psychiatric diagnosis, 12 bvFTD patients and 17 controls underwent resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Default mode network (DMN) connectivity and WM measures were compared between groups. PhFTD showed subtly increased DMN connectivity and subtle microstructural changes in frontal WM tracts. BvFTD showed abnormalities in similar regions as phFTD, but had lower increased DMN connectivity and more extensive microstructural WM changes. Our findings can be interpreted as neuropathological changes in phFTD and are in support of the hypothesis that phFTD and bvFTD may belong to the same disease spectrum. Advanced MRI techniques, objectively identifying brain abnormalities, would therefore be potentially suited to improve the diagnosis of phFTD. • PhFTD shows brain abnormalities that are similar to bvFTD. • PhFTD shows increased functional connectivity in the parietal default mode network. • PhFTD shows microstructural white matter abnormalities in the frontal lobe. • We hypothesise phFTD and bvFTD may belong to the same disease spectrum.

  16. Resting state functional MRI reveals abnormal network connectivity in Neurofibromatosis 1

    PubMed Central

    Tomson, S.N.; Schreiner, M.; Narayan, M.; Rosser, Tena; Enrique, Nicole; Silva, Alcino J.; Allen, G.I.; Bookheimer, S.Y.; Bearden, C.E.

    2015-01-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits and autism spectrum disorders. As a single gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity MRI (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. PMID:26304096

  17. Self-regulation of primary motor cortex activity with motor imagery induces functional connectivity modulation: A real-time fMRI neurofeedback study.

    PubMed

    Makary, Meena M; Seulgi, Eun; Kyungmo Park

    2017-07-01

    Recent developments in data acquisition of functional magnetic resonance imaging (fMRI) have led to rapid preprocessing and analysis of brain activity in a quasireal-time basis, what so called real-time fMRI neurofeedback (rtfMRI-NFB). This information is fed back to subjects allowing them to gain a voluntary control over their own region-specific brain activity. Forty-one healthy participants were randomized into an experimental (NFB) group, who received a feedback directly proportional to their brain activity from the primary motor cortex (M1), and a control (CTRL) group who received a sham feedback. The M1 ROI was functionally localized during motor execution and imagery tasks. A resting-state functional run was performed before and after the neurofeedback training to investigate the default mode network (DMN) modulation after training. The NFB group revealed increased DMN functional connectivity after training to the cortical and subcortical sensory/motor areas (M1/S1 and caudate nucleus, respectively), which may be associated with sensorimotor processing of learning in the resting state. These results show that motor imagery training through rtfMRI-NFB could modulate the DMN functional connectivity to motor-related areas, suggesting that this modulation potentially subserved the establishment of motor learning in the NFB group.

  18. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

  19. Decoupling function and anatomy in atlases of functional connectivity patterns: language mapping in tumor patients.

    PubMed

    Langs, Georg; Sweet, Andrew; Lashkari, Danial; Tie, Yanmei; Rigolo, Laura; Golby, Alexandra J; Golland, Polina

    2014-12-01

    In this paper we construct an atlas that summarizes functional connectivity characteristics of a cognitive process from a population of individuals. The atlas encodes functional connectivity structure in a low-dimensional embedding space that is derived from a diffusion process on a graph that represents correlations of fMRI time courses. The functional atlas is decoupled from the anatomical space, and thus can represent functional networks with variable spatial distribution in a population. In practice the atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects. The method also successfully maps functional networks from a healthy population used as a training set to individuals whose language networks are affected by tumors. Copyright © 2014. Published by Elsevier Inc.

  20. Network analysis of EEG related functional MRI changes due to medication withdrawal in focal epilepsy

    PubMed Central

    Hermans, Kees; Ossenblok, Pauly; van Houdt, Petra; Geerts, Liesbeth; Verdaasdonk, Rudolf; Boon, Paul; Colon, Albert; de Munck, Jan C.

    2015-01-01

    Anti-epileptic drugs (AEDs) have a global effect on the neurophysiology of the brain which is most likely reflected in functional brain activity recorded with EEG and fMRI. These effects may cause substantial inter-subject variability in studies where EEG correlated functional MRI (EEG–fMRI) is used to determine the epileptogenic zone in patients who are candidate for epilepsy surgery. In the present study the effects on resting state fMRI are quantified in conditions with AED administration and after withdrawal of AEDs. EEG–fMRI data were obtained from 10 patients in the condition that the patient was on the steady-state maintenance doses of AEDs as prescribed (condition A) and after withdrawal of AEDs (condition B), at the end of a clinically standard pre-surgical long term video-EEG monitoring session. Resting state networks (RSN) were extracted from fMRI. The epileptic component (ICE) was identified by selecting the RSN component with the largest overlap with the EEG–fMRI correlation pattern. Changes in RSN functional connectivity between conditions A and B were quantified. EEG–fMRI correlation analysis was successful in 30% and 100% of the cases in conditions A and B, respectively. Spatial patterns of ICEs are comparable in conditions A and B, except for one patient for whom it was not possible to identify the ICE in condition A. However, the resting state functional connectivity is significantly increased in the condition after withdrawal of AEDs (condition B), which makes resting state fMRI potentially a new tool to study AED effects. The difference in sensitivity of EEG–fMRI in conditions A and B, which is not related to the number of epileptic EEG events occurring during scanning, could be related to the increased functional connectivity in condition B. PMID:26137444

  1. Advances in fMRI Real-Time Neurofeedback.

    PubMed

    Watanabe, Takeo; Sasaki, Yuka; Shibata, Kazuhisa; Kawato, Mitsuo

    2017-12-01

    Functional magnetic resonance imaging (fMRI) neurofeedback is a type of biofeedback in which real-time online fMRI signals are used to self-regulate brain function. Since its advent in 2003 significant progress has been made in fMRI neurofeedback techniques. Specifically, the use of implicit protocols, external rewards, multivariate analysis, and connectivity analysis has allowed neuroscientists to explore a possible causal involvement of modified brain activity in modified behavior. These techniques have also been integrated into groundbreaking new neurofeedback technologies, specifically decoded neurofeedback (DecNef) and functional connectivity-based neurofeedback (FCNef). By modulating neural activity and behavior, DecNef and FCNef have substantially advanced both basic and clinical research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Functional MRI and Multivariate Autoregressive Models

    PubMed Central

    Rogers, Baxter P.; Katwal, Santosh B.; Morgan, Victoria L.; Asplund, Christopher L.; Gore, John C.

    2010-01-01

    Connectivity refers to the relationships that exist between different regions of the brain. In the context of functional magnetic resonance imaging (fMRI), it implies a quantifiable relationship between hemodynamic signals from different regions. One aspect of this relationship is the existence of small timing differences in the signals in different regions. Delays of 100 ms or less may be measured with fMRI, and these may reflect important aspects of the manner in which brain circuits respond as well as the overall functional organization of the brain. The multivariate autoregressive time series model has features to recommend it for measuring these delays, and is straightforward to apply to hemodynamic data. In this review, we describe the current usage of the multivariate autoregressive model for fMRI, discuss the issues that arise when it is applied to hemodynamic time series, and consider several extensions. Connectivity measures like Granger causality that are based on the autoregressive model do not always reflect true neuronal connectivity; however, we conclude that careful experimental design could make this methodology quite useful in extending the information obtainable using fMRI. PMID:20444566

  3. Cerebro-cerebellar functional connectivity profile of an epilepsy patient with periventricular nodular heterotopia.

    PubMed

    Emiliano, Santarnecchi; Giampaolo, Vatti; Daniela, Marino; Nicola, Polizzotto; Alfonso, Cerase; Raffaele, Rocchi; Alessandro, Rossi

    2012-09-01

    Periventricular nodular heterotopia (PNH) is a rare malformation of cortical development often associated with drug resistant focal onset epilepsy. The link between nodules and neocortex have been demonstrated with depth electrodes investigations showing that seizures may arise from both structures. In the last years fMRI resting-state (fMRI-RS) have received a surge in interest due to its capability to track non-invasively physiological and pathological relevant differences in brain network organization. We performed a cerebro-cerebellar voxel-wise and region-of-interest resting state fMRI (RS-fMRI) functional connectivity analysis in a seizure-free epilepsy patient with a PNH in the right temporal horn. Our finding confirms a spontaneous synchronization between PNH and its surrounding cortex, specifically in the inferior temporal, fusiform and occipital gyrus. We also found a significant connectivity with bilateral cerebellum, more intense and widespread on the PNH cerebellar contralateral lobule. RS-fMRI confirmed its potential as a promising tool for non-invasive mapping of cortical and subcortical brain functional organization. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning.

    PubMed

    Zhou, Yongxia; Yu, Fang; Duong, Timothy

    2014-01-01

    This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) were selected from the multi-center Functional Connectome Project. Regional gray matter volume and cortical thickness increased, whereas white matter volume decreased in ASD compared to controls. Small-world network analysis of quantitative MRI data demonstrated decreased global efficiency based on gray matter cortical thickness but not with functional connectivity MRI (fcMRI) or volumetry. An integrative model of 22 quantitative imaging features was used for classification and prediction of phenotypic features that included the autism diagnostic observation schedule, the revised autism diagnostic interview, and intelligence quotient scores. Among the 22 imaging features, four (caudate volume, caudate-cortical functional connectivity and inferior frontal gyrus functional connectivity) were found to be highly informative, markedly improving classification and prediction accuracy when compared with the single imaging features. This approach could potentially serve as a biomarker in prognosis, diagnosis, and monitoring disease progression.

  5. Resting-state fMRI and social cognition: An opportunity to connect.

    PubMed

    Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M

    2017-09-01

    Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Altered resting-state functional connectivity of the frontal-striatal reward system in social anxiety disorder.

    PubMed

    Manning, Joshua; Reynolds, Gretchen; Saygin, Zeynep M; Hofmann, Stefan G; Pollack, Mark; Gabrieli, John D E; Whitfield-Gabrieli, Susan

    2015-01-01

    We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.

  7. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  8. [Functional connectivity of temporal parietal junction in online game addicts:a resting-state functional magnetic resonance imaging study].

    PubMed

    Yuan, Ji; Qian, Ruobing; Lin, Bin; Fu, Xianming; Wei, Xiangpin; Weng, Chuanbo; Niu, Chaoshi; Wang, Yehan

    2014-02-11

    To explore the functions of temporal parietal junction (TPJ) as parts of attention networks in the pathogenesis of online game addiction using resting-state functional magnetic resonance imaging (fMRI). A total of 17 online game addicts (OGA) were recruited as OGA group and 17 healthy controls during the same period were recruited as CON group. The neuropsychological tests were performed for all of them to compare the inter-group differences in the results of Internet Addiction Test (IAT) and attention functions. All fMRI data were preprocessed after resting-state fMRI scanning. Then left and right TPJ were selected as regions of interest (ROIs) to calculate the linear correlation between TPJ and entire brain to compare the inter-group differences. Obvious differences existed between OGA group (71 ± 5 scores) and CON group (19 ± 7 scores) in the IAT results and attention function (P < 0.05). Compared with the controls, right TPJ in online game addicts showed decreased functional connectivity with bilateral ventromedial prefrontal cortex (VMPFC), bilateral hippocampal gyrus and bilateral amygdaloid nucleus, but increased functional connectivity with right cuneus.However, left TPJ demonstrated decreased functional connectivity with bilateral superior frontal gyrus and bilateral middle frontal gyrus, but increased functional connectivity with bilateral cuneus (P < 0.05). Altered functional connectivity of TPJ reflected its dysfunction in online game addicts.It suggests that TPJ is an important component of attention networks participating in the generation of online game addiction.

  9. Translational MR Neuroimaging of Stroke and Recovery

    PubMed Central

    Mandeville, Emiri T.; Ayata, Cenk; Zheng, Yi; Mandeville, Joseph B.

    2016-01-01

    Multiparametric magnetic resonance imaging (MRI) has become a critical clinical tool for diagnosing focal ischemic stroke severity, staging treatment, and predicting outcome. Imaging during the acute phase focuses on tissue viability in the stroke vicinity, while imaging during recovery requires the evaluation of distributed structural and functional connectivity. Preclinical MRI of experimental stroke models provides validation of non-invasive biomarkers in terms of cellular and molecular mechanisms, while also providing a translational platform for evaluation of prospective therapies. This brief review of translational stroke imaging discusses the acute to chronic imaging transition, the principles underlying common MRI methods employed in stroke research, and experimental results obtained by clinical and preclinical imaging to determine tissue viability, vascular remodeling, structural connectivity of major white matter tracts, and functional connectivity using task-based and resting-state fMRI during the stroke recovery process. PMID:27578048

  10. Resting-State Seed-Based Analysis: An Alternative to Task-Based Language fMRI and Its Laterality Index.

    PubMed

    Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C

    2017-06-01

    Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.

  11. Thinking About a Task Is Associated with Increased Connectivity in Regions Activated by Task Performance

    PubMed Central

    Robertson, Edwin M.; Manoach, Dara S.; Stickgold, Robert

    2016-01-01

    Abstract We investigated whether functional neuroimaging of quiet “rest” can reveal the neural correlates of conscious thought. Using resting-state functional MRI, we measured functional connectivity during a resting scan that immediately followed performance of a finger tapping motor sequence task. Self-reports of the amount of time spent thinking about the task during the resting scan correlated with connectivity between regions of the motor network activated during task performance. Thus, thinking about a task is associated with coordinated activity in brain regions responsible for that task's performance. More generally, this study demonstrates the feasibility of using the combination of functional connectivity MRI and self-reports to examine the neural correlates of thought. PMID:26650337

  12. Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder.

    PubMed

    Posner, Jonathan; Marsh, Rachel; Maia, Tiago V; Peterson, Bradley S; Gruber, Allison; Simpson, H Blair

    2014-06-01

    Cortico-striato-thalamo-cortical (CSTC) loops project from the cortex to the striatum, then from the striatum to the thalamus via the globus pallidus, and finally from the thalamus back to the cortex again. These loops have been implicated in Obsessive-Compulsive Disorder (OCD) with particular focus on the limbic CSTC loop, which encompasses the orbitofrontal and anterior cingulate cortices, as well as the ventral striatum. Resting state functional-connectivity MRI (rs-fcMRI) studies, which examine temporal correlations in neural activity across brain regions at rest, have examined CSTC loop connectivity in patients with OCD and suggest hyperconnectivity within these loops in medicated adults with OCD. We used rs-fcMRI to examine functional connectivity within CSTC loops in unmedicated adults with OCD (n = 23) versus healthy controls (HCs) (n = 20). Contrary to prior rs-fcMRI studies in OCD patients on medications that report hyperconnectivity in the limbic CSTC loop, we found that compared with HCs, unmedicated OCD participants had reduced connectivity within the limbic CSTC loop. Exploratory analyses revealed that reduced connectivity within the limbic CSTC loop correlated with OCD symptom severity in the OCD group. Our finding of limbic loop hypoconnectivity in unmedicted OCD patients highlights the potential confounding effects of antidepressants on connectivity measures and the value of future examinations of the effects of pharmacological and/or behavioral treatments on limbic CSTC loop connectivity. Copyright © 2013 Wiley Periodicals, Inc.

  13. Region-specific connectivity in patients with periventricular nodular heterotopia and epilepsy: A study combining diffusion tensor imaging and functional MRI.

    PubMed

    Liu, Wenyu; An, Dongmei; Tong, Xin; Niu, Running; Gong, Qiyong; Zhou, Dong

    2017-10-01

    Periventricular nodular heterotopia (PNH) is an important cause of chronic epilepsy. The purpose of this study was to evaluate region-specific connectivity in PNH patients with epilepsy and assess correlation between connectivity strength and clinical factors including duration and prognosis. Diffusion tensor imaging (DTI) and resting state functional MRI (fMRI) were performed in 28 subjects (mean age 27.4years; range 9-56years). The structural connectivity of fiber bundles passing through the manually-selected segmented nodules and other brain regions were analyzed by tractography. Cortical lobes showing functional correlations to nodules were also determined. For all heterotopic gray matter nodules, including at least one in each subject, the most frequent segments to which nodular heterotopia showed structural (132/151) and functional (146/151) connectivity were discrete regions of the ipsilateral overlying cortex. Agreement between diffusion tensor tractography and functional connectivity analyses was conserved in 81% of all nodules (122/151). In patients with longer duration or refractory epilepsy, the connectivity was significantly stronger, particularly to the frontal and temporal lobes (P<0.05). Nodules in PNH were structurally and functionally connected to the cortex. The extent is stronger in patients with longstanding or intractable epilepsy. These findings suggest the region-specific interactions may help better evaluate prognosis and seek medical or surgical interventions of PNH-related epilepsy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. The power of using functional fMRI on small rodents to study brain pharmacology and disease

    PubMed Central

    Jonckers, Elisabeth; Shah, Disha; Hamaide, Julie; Verhoye, Marleen; Van der Linden, Annemie

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations. PMID:26539115

  15. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  16. Asymmetric projections of the arcuate fasciculus to the temporal cortex underlie lateralized language function in the human brain

    DOE PAGES

    Takaya, Shigetoshi; Kuperberg, Gina R.; Tufts Univ., Medford, MA; ...

    2015-09-15

    The arcuate fasciculus (AF) in the human brain has asymmetric structural properties. However, the topographic organization of the asymmetric AF projections to the cortex and its relevance to cortical function remain unclear. Here we mapped the posterior projections of the human AF in the inferior parietal and lateral temporal cortices using surface-based structural connectivity analysis based on diffusion MRI and investigated their hemispheric differences. We then performed the cross-modal comparison with functional connectivity based on resting-state functional MRI (fMRI) and task-related cortical activation based on fMRI using a semantic classification task of single words. Structural connectivity analysis showed that themore » left AF connecting to Broca's area predominantly projected in the lateral temporal cortex extending from the posterior superior temporal gyrus to the mid part of the superior temporal sulcus and the middle temporal gyrus, whereas the right AF connecting to the right homolog of Broca's area predominantly projected to the inferior parietal cortex extending from the mid part of the supramarginal gyrus to the anterior part of the angular gyrus. The left-lateralized projection regions of the AF in the left temporal cortex had asymmetric functional connectivity with Broca's area, indicating structure-function concordance through the AF. During the language task, left-lateralized cortical activation was observed. Among them, the brain responses in the temporal cortex and Broca's area that were connected through the left-lateralized AF pathway were specifically correlated across subjects. These results suggest that the human left AF, which structurally and functionally connects the mid temporal cortex and Broca's area in asymmetrical fashion, coordinates the cortical activity in these remote cortices during a semantic decision task. As a result, the unique feature of the left AF is discussed in the context of the human capacity for language.« less

  17. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study.

    PubMed

    Luo, Cheng; Qiu, Chuan; Guo, Zhiwei; Fang, Jiajia; Li, Qifu; Lei, Xu; Xia, Yang; Lai, Yongxiu; Gong, Qiyong; Zhou, Dong; Yao, Dezhong

    2011-01-01

    Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of the neuro-pathophysiological mechanism of epilepsy.

  18. Interplay between Functional Connectivity and Scale-Free Dynamics in Intrinsic fMRI Networks

    PubMed Central

    Ciuciu, Philippe; Abry, Patrice; He, Biyu J.

    2014-01-01

    Studies employing functional connectivity-type analyses have established that spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals are organized within large-scale brain networks. Meanwhile, fMRI signals have been shown to exhibit 1/f-type power spectra – a hallmark of scale-free dynamics. We studied the interplay between functional connectivity and scale-free dynamics in fMRI signals, utilizing the fractal connectivity framework – a multivariate extension of the univariate fractional Gaussian noise model, which relies on a wavelet formulation for robust parameter estimation. We applied this framework to fMRI data acquired from healthy young adults at rest and performing a visual detection task. First, we found that scale-invariance existed beyond univariate dynamics, being present also in bivariate cross-temporal dynamics. Second, we observed that frequencies within the scale-free range do not contribute evenly to inter-regional connectivity, with a systematically stronger contribution of the lowest frequencies, both at rest and during task. Third, in addition to a decrease of the Hurst exponent and inter-regional correlations, task performance modified cross-temporal dynamics, inducing a larger contribution of the highest frequencies within the scale-free range to global correlation. Lastly, we found that across individuals, a weaker task modulation of the frequency contribution to inter-regional connectivity was associated with better task performance manifesting as shorter and less variable reaction times. These findings bring together two related fields that have hitherto been studied separately – resting-state networks and scale-free dynamics, and show that scale-free dynamics of human brain activity manifest in cross-regional interactions as well. PMID:24675649

  19. Alterations of parenchymal microstructure, neuronal connectivity and cerebrovascular resistance at adolescence following mild to moderate traumatic brain injury in early development.

    PubMed

    Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar

    2018-06-01

    TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.

  20. Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI.

    PubMed

    Cai, Biao; Zille, Pascal; Stephen, Julia M; Wilson, Tony W; Calhoun, Vince D; Wang, Yu Ping

    2018-05-01

    Functional connectivity (FC) estimated from functional magnetic resonance imaging (fMRI) time series, especially during resting state periods, provides a powerful tool to assess human brain functional architecture in health, disease, and developmental states. Recently, the focus of connectivity analysis has shifted toward the subnetworks of the brain, which reveals co-activating patterns over time. Most prior works produced a dense set of high-dimensional vectors, which are hard to interpret. In addition, their estimations to a large extent were based on an implicit assumption of spatial and temporal stationarity throughout the fMRI scanning session. In this paper, we propose an approach called dynamic sparse connectivity patterns (dSCPs), which takes advantage of both matrix factorization and time-varying fMRI time series to improve the estimation power of FC. The feasibility of analyzing dynamic FC with our model is first validated through simulated experiments. Then, we use our framework to measure the difference between young adults and children with real fMRI data set from the Philadelphia Neurodevelopmental Cohort (PNC). The results from the PNC data set showed significant FC differences between young adults and children in four different states. For instance, young adults had reduced connectivity between the default mode network and other subnetworks, as well as hyperconnectivity within the visual system in states 1 and 3, and hypoconnectivity in state 2. Meanwhile, they exhibited temporal correlation patterns that changed over time within functional subnetworks. In addition, the dSCPs model indicated that older people tend to spend more time within a relatively connected FC pattern. Overall, the proposed method provides a valid means to assess dynamic FC, which could facilitate the study of brain networks.

  1. Biocytin-Derived MRI Contrast Agent for Longitudinal Brain Connectivity Studies

    PubMed Central

    2011-01-01

    To investigate the connectivity of brain networks noninvasively and dynamically, we have developed a new strategy to functionalize neuronal tracers and designed a biocompatible probe that can be visualized in vivo using magnetic resonance imaging (MRI). Furthermore, the multimodal design used allows combined ex vivo studies with microscopic spatial resolution by conventional histochemical techniques. We present data on the functionalization of biocytin, a well-known neuronal tract tracer, and demonstrate the validity of the approach by showing brain networks of cortical connectivity in live rats under MRI, together with the corresponding microscopic details, such as fibers and neuronal morphology under light microscopy. We further demonstrate that the developed molecule is the first MRI-visible probe to preferentially trace retrograde connections. Our study offers a new platform for the development of multimodal molecular imaging tools of broad interest in neuroscience, that capture in vivo the dynamics of large scale neural networks together with their microscopic characteristics, thereby spanning several organizational levels. PMID:22860157

  2. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest

    PubMed Central

    Johnen, Vanessa M; Neubert, Franz-Xaver; Buch, Ethan R; Verhagen, Lennart; O'Reilly, Jill X; Mars, Rogier B; Rushworth, Matthew F S

    2015-01-01

    Correlations in brain activity between two areas (functional connectivity) have been shown to relate to their underlying structural connections. We examine the possibility that functional connectivity also reflects short-term changes in synaptic efficacy. We demonstrate that paired transcranial magnetic stimulation (TMS) near ventral premotor cortex (PMv) and primary motor cortex (M1) with a short 8-ms inter-pulse interval evoking synchronous pre- and post-synaptic activity and which strengthens interregional connectivity between the two areas in a pattern consistent with Hebbian plasticity, leads to increased functional connectivity between PMv and M1 as measured with functional magnetic resonance imaging (fMRI). Moreover, we show that strengthening connectivity between these nodes has effects on a wider network of areas, such as decreasing coupling in a parallel motor programming stream. A control experiment revealed that identical TMS pulses at identical frequencies caused no change in fMRI-measured functional connectivity when the inter-pulse-interval was too long for Hebbian-like plasticity. DOI: http://dx.doi.org/10.7554/eLife.04585.001 PMID:25664941

  3. Maturing Thalamocortical Functional Connectivity Across Development

    PubMed Central

    Fair, Damien A.; Bathula, Deepti; Mills, Kathryn L.; Dias, Taciana G. Costa; Blythe, Michael S.; Zhang, Dongyang; Snyder, Abraham Z.; Raichle, Marcus E.; Stevens, Alexander A.; Nigg, Joel T.; Nagel, Bonnie J.

    2010-01-01

    Recent years have witnessed a surge of investigations examining functional brain organization using resting-state functional connectivity MRI (rs-fcMRI). To date, this method has been used to examine systems organization in typical and atypical developing populations. While the majority of these investigations have focused on cortical–cortical interactions, cortical–subcortical interactions also mature into adulthood. Innovative work by Zhang et al. (2008) in adults have identified methods that utilize rs-fcMRI and known thalamo-cortical topographic segregation to identify functional boundaries in the thalamus that are remarkably similar to known thalamic nuclear grouping. However, despite thalamic nuclei being well formed early in development, the developmental trajectory of functional thalamo-cortical relations remains unexplored. Thalamic maps generated by rs-fcMRI are based on functional relationships, and should modify with the dynamic thalamo-cortical changes that occur throughout maturation. To examine this possibility, we employed a strategy as previously described by Zhang et al. to a sample of healthy children, adolescents, and adults. We found strengthening functional connectivity of the cortex with dorsal/anterior subdivisions of the thalamus, with greater connectivity observed in adults versus children. Temporal lobe connectivity with ventral/midline/posterior subdivisions of the thalamus weakened with age. Changes in sensory and motor thalamo-cortical interactions were also identified but were limited. These findings are consistent with known anatomical and physiological cortical–subcortical changes over development. The methods and developmental context provided here will be important for understanding how cortical–subcortical interactions relate to models of typically developing behavior and developmental neuropsychiatric disorders. PMID:20514143

  4. Interhemispheric functional connectivity in anorexia and bulimia nervosa.

    PubMed

    Canna, Antonietta; Prinster, Anna; Monteleone, Alessio Maria; Cantone, Elena; Monteleone, Palmiero; Volpe, Umberto; Maj, Mario; Di Salle, Francesco; Esposito, Fabrizio

    2017-05-01

    The functional interplay between hemispheres is fundamental for behavioral, cognitive, and emotional control. Anorexia nervosa (AN) and bulimia nervosa (BN) have been largely studied with brain magnetic resonance imaging (MRI) in relation to the functional mechanisms of high-level processing, but not in terms of possible inter-hemispheric functional connectivity anomalies. Using resting-state functional MRI (fMRI), voxel-mirrored homotopic connectivity (VMHC) and regional inter-hemispheric spectral coherence (IHSC) were studied in 15 AN and 13 BN patients and 16 healthy controls (HC). Using T1-weighted and diffusion tensor imaging MRI scans, regional VMHC values were correlated with the left-right asymmetry of corresponding homotopic gray matter volumes and with the white matter callosal fractional anisotropy (FA). Compared to HC, AN patients exhibited reduced VMHC in cerebellum, insula, and precuneus, while BN patients showed reduced VMHC in dorso-lateral prefrontal and orbito-frontal cortices. The regional IHSC analysis highlighted that the inter-hemispheric functional connectivity was higher in the 'Slow-5' band in all regions except the insula. No group differences in left-right structural asymmetries and in VMHC vs. callosal FA correlations were significant in the comparisons between cohorts. These anomalies, not explained by structural changes, indicate that AN and BN, at least in their acute phase, are associated with a loss of inter-hemispheric connectivity in regions implicated in self-referential, cognitive control and reward processing. These findings may thus gather novel functional markers to explore aberrant features of these eating disorders. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    PubMed

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  6. Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder

    PubMed Central

    Costa Dias, Taciana G.; Wilson, Vanessa B.; Bathula, Deepti R.; Iyer, Swathi P.; Mills, Kathryn L.; Thurlow, Bria L.; Stevens, Corinne A.; Musser, Erica D.; Carpenter, Samuel D.; Grayson, David S.; Mitchell, Suzanne H.; Nigg, Joel T.; Fair, Damien A.

    2012-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a prevalent psychiatric disorder that has poor long-term outcomes and remains a major public health concern. Recent theories have proposed that ADHD arises from alterations in multiple neural pathways. Alterations in reward circuits are hypothesized as one core dysfunction, leading to altered processing of anticipated rewards. The nucleus accumbens (NAcc) is particularly important for reward processes; task-based fMRI studies have found atypical activation of this region while the participants performed a reward task. Understanding how reward circuits are involved with ADHD may be further enhanced by considering how the NAcc interacts with other brain regions. Here we used the technique of resting-state functional connectivity MRI (rs-fcMRI) to examine the alterations in the NAcc interactions and how they relate to impulsive decision making in ADHD. Using rs-fcMRI, this study: examined differences in functional connectivity of the NAcc between children with ADHD and control children; correlated the functional connectivity of NAcc with impulsivity, as measured by a delay discounting task; and combined these two initial segments to identify the atypical NAcc connections that were associated with impulsive decision making in ADHD. We found that functional connectivity of NAcc was atypical in children with ADHD and the ADHD-related increased connectivity between NAcc and the prefrontal cortex was associated with greater impulsivity (steeper delayed-reward discounting). These findings are consistent with the hypothesis that atypical signaling of the NAcc to the prefrontal cortex in ADHD may lead to excessive approach and failure in estimating future consequences; thus, leading to impulsive behavior. PMID:23206930

  7. Acupuncture-induced changes in functional connectivity of the primary somatosensory cortex varied with pathological stages of Bell's palsy.

    PubMed

    He, Xiaoxuan; Zhu, Yifang; Li, Chuanfu; Park, Kyungmo; Mohamed, Abdalla Z; Wu, Hongli; Xu, Chunsheng; Zhang, Wei; Wang, Linying; Yang, Jun; Qiu, Bensheng

    2014-10-01

    Bell's palsy is the most common cause of acute facial nerve paralysis. In China, Bell's palsy is frequently treated with acupuncture. However, its efficacy and underlying mechanism are still controversial. In this study, we used functional MRI to investigate the effect of acupuncture on the functional connectivity of the brain in Bell's palsy patients and healthy individuals. The patients were further grouped according to disease duration and facial motor performance. The results of resting-state functional MRI connectivity show that acupuncture induces significant connectivity changes in the primary somatosensory region of both early and late recovery groups, but no significant changes in either the healthy control group or the recovered group. In the recovery group, the changes also varied with regions and disease duration. Therefore, we propose that the effect of acupuncture stimulation may depend on the functional connectivity status of patients with Bell's palsy.

  8. Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses.

    PubMed

    Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R

    2013-01-01

    Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.

  9. Network diffusion accurately models the relationship between structural and functional brain connectivity networks

    PubMed Central

    Abdelnour, Farras; Voss, Henning U.; Raj, Ashish

    2014-01-01

    The relationship between anatomic connectivity of large-scale brain networks and their functional connectivity is of immense importance and an area of active research. Previous attempts have required complex simulations which model the dynamics of each cortical region, and explore the coupling between regions as derived by anatomic connections. While much insight is gained from these non-linear simulations, they can be computationally taxing tools for predicting functional from anatomic connectivities. Little attention has been paid to linear models. Here we show that a properly designed linear model appears to be superior to previous non-linear approaches in capturing the brain’s long-range second order correlation structure that governs the relationship between anatomic and functional connectivities. We derive a linear network of brain dynamics based on graph diffusion, whereby the diffusing quantity undergoes a random walk on a graph. We test our model using subjects who underwent diffusion MRI and resting state fMRI. The network diffusion model applied to the structural networks largely predicts the correlation structures derived from their fMRI data, to a greater extent than other approaches. The utility of the proposed approach is that it can routinely be used to infer functional correlation from anatomic connectivity. And since it is linear, anatomic connectivity can also be inferred from functional data. The success of our model confirms the linearity of ensemble average signals in the brain, and implies that their long-range correlation structure may percolate within the brain via purely mechanistic processes enacted on its structural connectivity pathways. PMID:24384152

  10. DIFFUSION-WEIGHTED IMAGING TRACTOGRAPHY-BASED PARCELLATION OF THE HUMAN PARIETAL CORTEX AND COMPARISON WITH HUMAN AND MACAQUE RESTING STATE FUNCTIONAL CONNECTIVITY

    PubMed Central

    Mars, Rogier B.; Jbabdi, Saad; Sallet, Jérôme; O’Reilly, Jill X.; Croxson, Paula L.; Olivier, Etienne; Noonan, MaryAnn P.; Bergmann, Caroline; Mitchell, Anna S.; Baxter, Mark G.; Behrens, Timothy E.J.; Johansen-Berg, Heidi; Tomassini, Valentina; Miller, Karla L.; Rushworth, Matthew F.S.

    2011-01-01

    Despite the prominence of parietal activity in human neuromaging investigations of sensorimotor and cognitive processes there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species but the validity of such comparisons has been questioned by claims that there are fundamental differences between the parietal cortex in humans and other primates. A scheme is presented for parcellation of human lateral parietal cortex into component regions on the basis of anatomical connectivity and the functional interactions of the resulting clusters with other brain regions. Anatomical connectivity was estimated using diffusion-weighted magnetic resonance image (MRI) based tractography and functional interactions were assessed by correlations in activity measured with functional MRI (fMRI) at rest. Resting state functional connectivity was also assessed directly in the rhesus macaque lateral parietal cortex in an additional experiment and the patterns found reflected known neuroanatomical connections. Cross-correlation in the tractography-based connectivity patterns of parietal voxels reliably parcellated human lateral parietal cortex into ten component clusters. The resting state functional connectivity of human superior parietal and intraparietal clusters with frontal and extrastriate cortex suggested correspondences with areas in macaque superior and intraparietal sulcus. Functional connectivity patterns with parahippocampal cortex and premotor cortex again suggested fundamental correspondences between inferior parietal cortex in humans and macaques. In contrast, the human parietal cortex differs in the strength of its interactions between the central inferior parietal lobule region and the anterior prefrontal cortex. PMID:21411650

  11. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    PubMed

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  12. Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits

    PubMed Central

    Marsh, Abigail A.; Finger, Elizabeth C.; Fowler, Katherine A.; Jurkowitz, Ilana T.N.; Schechter, Julia C.; Yu, Henry H.; Pine, Daniel S.; Blair, R. J. R.

    2011-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. PMID:22047730

  13. Study on the Relationships between Intrinsic Functional Connectivity of the Default Mode Network and Transient Epileptic Activity.

    PubMed

    Lopes, Renaud; Moeller, Friederike; Besson, Pierre; Ogez, François; Szurhaj, William; Leclerc, Xavier; Siniatchkin, Michael; Chipaux, Mathilde; Derambure, Philippe; Tyvaert, Louise

    2014-01-01

    Simultaneous recording of electroencephalogram and functional MRI (EEG-fMRI) is a powerful tool for localizing epileptic networks via the detection of hemodynamic changes correlated with interictal epileptic discharges (IEDs). fMRI can be used to study the long-lasting effect of epileptic activity by assessing stationary functional connectivity during the resting-state period [especially, the connectivity of the default mode network (DMN)]. Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) are associated with low responsiveness and disruption of DMN activity. A dynamic functional connectivity approach might enable us to determine the effect of IEDs on DMN connectivity and to better understand the correlation between DMN connectivity changes and altered consciousness. We studied dynamic changes in DMN intrinsic connectivity and their relation to IEDs. Six IGE patients (with generalized spike and slow-waves) and 6 TLE patients (with unilateral left temporal spikes) were included. Functional connectivity before, during, and after IEDs was estimated using a sliding window approach and compared with the baseline period. No dependence on window size was observed. The baseline DMN connectivity was decreased in the left hemisphere (ipsilateral to the epileptic focus) in TLEs and was less strong but remained bilateral in IGEs. We observed an overall increase in DMN intrinsic connectivity prior to the onset of IEDs in both IGEs and TLEs. After IEDs in TLEs, we found that DMN connectivity increased before it returned to baseline values. Most of the DMN regions with increased connectivity before and after IEDs were lateralized to the left hemisphere in TLE (i.e., ipsilateral to the epileptic focus). RESULTS suggest that DMN connectivity may facilitate IED generation and may be affected at the time of the IED. However, these results need to be confirmed in a larger independent cohort.

  14. Investigating changes in resting-state connectivity from functional MRI data in patients with HIV associated neurocognitive disorder using MCA and machine learning

    NASA Astrophysics Data System (ADS)

    DSouza, Adora M.; Abidin, Anas Z.; Wismüller, Axel

    2017-03-01

    Infection of the brain by the Human Immunodeficiency Virus (HIV) causes irreversible damage to the synaptic connections resulting in cognitive impairment. Patients with HIV infection, showing signs of impairment in multiple cognitive domains, as assessed by neuropsychological testing, are said to exhibit symptoms of HIV Associated Neurocognitive Disorder (HAND). In this study, we use resting-state functional MRI (fMRI) data to distinguish between healthy subjects and subjects with symptoms of HAND. To this end, we first establish a measure of interaction between pairs of regional time-series by quantifying their non-linear functional connectivity using Mutual Connectivity Analysis (MCA). Subsequently, we use a classifier to distinguish patterns of interaction between healthy and diseased individuals. Our results, quantified as the mean Area under the ROC curve (AUC) over 75 iterations, indicate that, using fMRI data, we can discriminate between the two cohorts well (AUC > 0.8). Specifically, we find that MCA (mean AUC = 0.89) based connectivity features perform significantly better (p < 0.05) when compared to cross-correlation (mean AUC = 0.82) at the classification task. A higher AUC using our approach suggests that such a nonlinear approach is better able to capture connectivity changes between brain regions and has potential for the development of novel neuro-imaging biomarkers.

  15. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    PubMed

    Vassal, François; Schneider, Fabien; Boutet, Claire; Jean, Betty; Sontheimer, Anna; Lemaire, Jean-Jacques

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to other cognitive functions such as visual recognition, spatial attention, executive functions, memory, and processing of emotional and behavioral aspects.

  16. Antidepressants Normalize the Default Mode Network in Patients With Dysthymia

    PubMed Central

    Posner, Jonathan; Hellerstein, David J.; Gat, Inbal; Mechling, Anna; Klahr, Kristin; Wang, Zhishun; McGrath, Patrick J.; Stewart, Jonathan W.; Peterson, Bradley S.

    2014-01-01

    Importance The default mode network (DMN) is a collection of brain regions that reliably deactivate during goal-directed behaviors and is more active during a baseline, or so-called resting, condition. Coherence of neural activity, or functional connectivity, within the brain’s DMN is increased in major depressive disorder relative to healthy control (HC) subjects; however, whether similar abnormalities are present in persons with dysthymic disorder (DD) is unknown. Moreover, the effect of antidepressant medications on DMN connectivity in patients with DD is also unknown. Objective To use resting-state functional-connectivity magnetic resonance imaging (MRI) to study (1) the functional connectivity of the DMN in subjects with DD vs HC participants and (2) the effects of antidepressant therapy on DMN connectivity. Design After collecting baseline MRI scans from subjects with DD and HC participants, we enrolled the participants with DD into a 10-week prospective, double-blind, placebo-controlled trial of duloxetine and collected MRI scans again at the conclusion of the study. Enrollment occurred between 2007 and 2011. Setting University research institute. Participants Volunteer sample of 41 subjects with DD and 25 HC participants aged 18 to 53 years. Control subjects were group matched to patients with DD by age and sex. Main Outcome Measures We used resting-state functional-connectivity MRI to measure the functional connectivity of the brain’s DMN in persons with DD compared with HC subjects, and we examined the effects of treatment with duloxetine vs placebo on DMN connectivity. Results Of the 41 subjects with DD, 32 completed the clinical trial and MRI scans, along with the 25 HC participants. At baseline, we found that the coherence of neural activity within the brain’s DMN was greater in persons with DD compared with HC subjects. Following a 10-week clinical trial, we found that treatment with duloxetine, but not placebo, normalized DMN connectivity. Conclusions and Relevance The baseline imaging findings are consistent with those found in patients with major depressive disorder and suggest that increased connectivity within the DMN may be important in the pathophysiology of both acute and chronic manifestations of depressive illness. The normalization of DMN connectivity following antidepressant treatment suggests an important causal pathway through which antidepressants may reduce depression. PMID:23389382

  17. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization.

    PubMed

    Brier, Matthew R; Mitra, Anish; McCarthy, John E; Ances, Beau M; Snyder, Abraham Z

    2015-11-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization

    PubMed Central

    Brier, Matthew R.; Mitra, Anish; McCarthy, John E.; Ances, Beau M.; Snyder, Abraham Z.

    2015-01-01

    Functional connectivity refers to shared signals among brain regions and is typically assessed in a task free state. Functional connectivity commonly is quantified between signal pairs using Pearson correlation. However, resting-state fMRI is a multivariate process exhibiting a complicated covariance structure. Partial covariance assesses the unique variance shared between two brain regions excluding any widely shared variance, hence is appropriate for the analysis of multivariate fMRI datasets. However, calculation of partial covariance requires inversion of the covariance matrix, which, in most functional connectivity studies, is not invertible owing to rank deficiency. Here we apply Ledoit-Wolf shrinkage (L2 regularization) to invert the high dimensional BOLD covariance matrix. We investigate the network organization and brain-state dependence of partial covariance-based functional connectivity. Although RSNs are conventionally defined in terms of shared variance, removal of widely shared variance, surprisingly, improved the separation of RSNs in a spring embedded graphical model. This result suggests that pair-wise unique shared variance plays a heretofore unrecognized role in RSN covariance organization. In addition, application of partial correlation to fMRI data acquired in the eyes open vs. eyes closed states revealed focal changes in uniquely shared variance between the thalamus and visual cortices. This result suggests that partial correlation of resting state BOLD time series reflect functional processes in addition to structural connectivity. PMID:26208872

  19. A Putative Multiple-Demand System in the Macaque Brain.

    PubMed

    Mitchell, Daniel J; Bell, Andrew H; Buckley, Mark J; Mitchell, Anna S; Sallet, Jerome; Duncan, John

    2016-08-17

    In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this "multiple-demand" (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. In humans, a frontoparietal "multiple-demand" (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar network to exist in nonhuman primates, but this remains controversial. Here, we sought to identify a macaque counterpart to the human MD system using fMRI connectivity. Putative macaque MD regions were functionally connected under anesthesia and were further refined by iterative optimization. The result is a network including lateral frontal, dorsomedial frontal, and insular and inferior parietal regions closely similar to the human counterpart. The proposed macaque MD regions can be useful in guiding electrophysiological recordings or in task-based fMRI to test predictions of similar functional properties to human MD cortex. Copyright © 2016 Mitchell et al.

  20. Upsampling to 400-ms Resolution for Assessing Effective Connectivity in Functional Magnetic Resonance Imaging Data with Granger Causality

    PubMed Central

    Kerr, Deborah L.; Nitschke, Jack B.

    2013-01-01

    Abstract Granger causality analysis of functional magnetic resonance imaging (fMRI) blood-oxygen-level-dependent signal data allows one to infer the direction and magnitude of influence that brain regions exert on one another. We employed a method for upsampling the time resolution of fMRI data that does not require additional interpolation beyond the interpolation that is regularly used for slice-timing correction. The mathematics for this new method are provided, and simulations demonstrate its viability. Using fMRI, 17 snake phobics and 19 healthy controls viewed snake, disgust, and neutral fish video clips preceded by anticipatory cues. Multivariate Granger causality models at the native 2-sec resolution and at the upsampled 400-ms resolution assessed directional associations of fMRI data among 13 anatomical regions of interest identified in prior research on anxiety and emotion. Superior sensitivity was observed for the 400-ms model, both for connectivity within each group and for group differences in connectivity. Context-dependent analyses for the 400-ms multivariate Granger causality model revealed the specific trial types showing group differences in connectivity. This is the first demonstration of effective connectivity of fMRI data using a method for achieving 400-ms resolution without sacrificing accuracy available at 2-sec resolution. PMID:23134194

  1. Information processing architecture of functionally defined clusters in the macaque cortex.

    PubMed

    Shen, Kelly; Bezgin, Gleb; Hutchison, R Matthew; Gati, Joseph S; Menon, Ravi S; Everling, Stefan; McIntosh, Anthony R

    2012-11-28

    Computational and empirical neuroimaging studies have suggested that the anatomical connections between brain regions primarily constrain their functional interactions. Given that the large-scale organization of functional networks is determined by the temporal relationships between brain regions, the structural limitations may extend to the global characteristics of functional networks. Here, we explored the extent to which the functional network community structure is determined by the underlying anatomical architecture. We directly compared macaque (Macaca fascicularis) functional connectivity (FC) assessed using spontaneous blood oxygen level-dependent functional magnetic resonance imaging (BOLD-fMRI) to directed anatomical connectivity derived from macaque axonal tract tracing studies. Consistent with previous reports, FC increased with increasing strength of anatomical connection, and FC was also present between regions that had no direct anatomical connection. We observed moderate similarity between the FC of each region and its anatomical connectivity. Notably, anatomical connectivity patterns, as described by structural motifs, were different within and across functional modules: partitioning of the functional network was supported by dense bidirectional anatomical connections within clusters and unidirectional connections between clusters. Together, our data directly demonstrate that the FC patterns observed in resting-state BOLD-fMRI are dictated by the underlying neuroanatomical architecture. Importantly, we show how this architecture contributes to the global organizational principles of both functional specialization and integration.

  2. Neural basis of exertional fatigue in the heat: A review of magnetic resonance imaging methods.

    PubMed

    Tan, X R; Low, I C C; Stephenson, M C; Soong, T W; Lee, J K W

    2018-03-01

    The central nervous system, specifically the brain, is implicated in the development of exertional fatigue under a hot environment. Diverse neuroimaging techniques have been used to visualize the brain activity during or after exercise. Notably, the use of magnetic resonance imaging (MRI) has become prevalent due to its excellent spatial resolution and versatility. This review evaluates the significance and limitations of various brain MRI techniques in exercise studies-brain volumetric analysis, functional MRI, functional connectivity MRI, and arterial spin labeling. The review aims to provide a summary on the neural basis of exertional fatigue and proposes future directions for brain MRI studies. A systematic literature search was performed where a total of thirty-seven brain MRI studies associated with exercise, fatigue, or related physiological factors were reviewed. The findings suggest that with moderate dehydration, there is a decrease in total brain volume accompanied with expansion of ventricular volume. With exercise fatigue, there is increased activation of sensorimotor and cognitive brain areas, increased thalamo-insular activation and decreased interhemispheric connectivity in motor cortex. Under passive hyperthermia, there are regional changes in cerebral perfusion, a reduction in local connectivity in functional brain networks and an impairment to executive function. Current literature suggests that the brain structure and function are influenced by exercise, fatigue, and related physiological perturbations. However, there is still a dearth of knowledge and it is hoped that through understanding of MRI advantages and limitations, future studies will shed light on the central origin of exertional fatigue in the heat. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Structural network efficiency is associated with cognitive impairment in small-vessel disease.

    PubMed

    Lawrence, Andrew J; Chung, Ai Wern; Morris, Robin G; Markus, Hugh S; Barrick, Thomas R

    2014-07-22

    To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. © 2014 American Academy of Neurology.

  4. Structural network efficiency is associated with cognitive impairment in small-vessel disease

    PubMed Central

    Chung, Ai Wern; Morris, Robin G.; Markus, Hugh S.; Barrick, Thomas R.

    2014-01-01

    Objective: To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. Methods: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Results: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Conclusions: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. PMID:24951477

  5. Addiction Related Alteration in Resting-state Brain Connectivity

    PubMed Central

    Ma, Ning; Liu, Ying; Li, Nan; Wang, Chang-Xin; Zhang, Hao; Jiang, Xiao-Feng; Xu, Hu-Sheng; Fu, Xian-Ming; Hu, Xiaoping; Zhang, Da-Ren

    2009-01-01

    It is widely accepted that addictive drug use is related to abnormal functional organization in the user’s brain. The present study aimed to identify this type of abnormality within the brain networks implicated in addiction by resting-state functional connectivity measured with functional magnetic resonance imaging (fMRI). With fMRI data acquired during resting state from 14 chronic heroin users (12 of whom were being treated with methadone) and 13 non-addicted controls, we investigated the addiction related alteration in functional connectivity between the regions in the circuits implicated in addiction with seed-based correlation analysis. Compared with controls, chronic heroin users showed increased functional connectivity between nucleus accumbens and ventral/rostral anterior cingulate cortex (ACC), and orbital frontal cortex (OFC), between amygdala and OFC; and reduced functional connectivity between prefrontal cortex and OFC, and ACC. These observations of altered resting-state functional connectivity suggested abnormal functional organization in the addicted brain and may provide additional evidence supporting the theory of addiction that emphasizes enhanced salience value of a drug and its related cues but weakened cognitive control in the addictive state. PMID:19703568

  6. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.

    PubMed

    Kim, Jae-Hun; Lee, Jong-Min; Jo, Hang Joon; Kim, Sook Hui; Lee, Jung Hee; Kim, Sung Tae; Seo, Sang Won; Cox, Robert W; Na, Duk L; Kim, Sun I; Saad, Ziad S

    2010-02-01

    Noninvasive parcellation of the human cerebral cortex is an important goal for understanding and examining brain functions. Recently, the patterns of anatomical connections using diffusion tensor imaging (DTI) have been used to parcellate brain regions. Here, we present a noninvasive parcellation approach that uses "functional fingerprints" obtained by correlation measures on resting state functional magnetic resonance imaging (fMRI) data to parcellate brain regions. In other terms, brain regions are parcellated based on the similarity of their connection--as reflected by correlation during resting state--to the whole brain. The proposed method was used to parcellate the medial frontal cortex (MFC) into supplementary motor areas (SMA) and pre-SMA subregions. In agreement with anatomical landmark-based parcellation, we find that functional fingerprint clustering of the MFC results in anterior and posterior clusters. The probabilistic maps from 12 subjects showed that the anterior cluster is mainly located rostral to the vertical commissure anterior (VCA) line, whereas the posterior cluster is mainly located caudal to VCA line, suggesting the homologues of pre-SMA and SMA. The functional connections from the putative pre-SMA cluster were connected to brain regions which are responsible for complex/cognitive motor control, whereas those from the putative SMA cluster were connected to brain regions which are related to the simple motor control. These findings demonstrate the feasibility of the functional connectivity-based parcellation of the human cerebral cortex using resting state fMRI. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  7. Long-term intensive gymnastic training induced changes in intra- and inter-network functional connectivity: an independent component analysis.

    PubMed

    Huang, Huiyuan; Wang, Junjing; Seger, Carol; Lu, Min; Deng, Feng; Wu, Xiaoyan; He, Yuan; Niu, Chen; Wang, Jun; Huang, Ruiwang

    2018-01-01

    Long-term intensive gymnastic training can induce brain structural and functional reorganization. Previous studies have identified structural and functional network differences between world class gymnasts (WCGs) and non-athletes at the whole-brain level. However, it is still unclear how interactions within and between functional networks are affected by long-term intensive gymnastic training. We examined both intra- and inter-network functional connectivity of gymnasts relative to non-athletes using resting-state fMRI (R-fMRI). R-fMRI data were acquired from 13 WCGs and 14 non-athlete controls. Group-independent component analysis (ICA) was adopted to decompose the R-fMRI data into spatial independent components and associated time courses. An automatic component identification method was used to identify components of interest associated with resting-state networks (RSNs). We identified nine RSNs, the basal ganglia network (BG), sensorimotor network (SMN), cerebellum (CB), anterior and posterior default mode networks (aDMN/pDMN), left and right fronto-parietal networks (lFPN/rFPN), primary visual network (PVN), and extrastriate visual network (EVN). Statistical analyses revealed that the intra-network functional connectivity was significantly decreased within the BG, aDMN, lFPN, and rFPN, but increased within the EVN in the WCGs compared to the controls. In addition, the WCGs showed uniformly decreased inter-network functional connectivity between SMN and BG, CB, and PVN, BG and PVN, and pDMN and rFPN compared to the controls. We interpret this generally weaker intra- and inter-network functional connectivity in WCGs during the resting state as a result of greater efficiency in the WCGs' brain associated with long-term motor skill training.

  8. Multisite Reliability of MR-Based Functional Connectivity

    PubMed Central

    Noble, Stephanie; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Papademetris, Xenophon; McEwen, Sarah C.; Bearden, Carrie E.; Addington, Jean; Goodyear, Bradley; Cadenhead, Kristin S.; Mirzakhanian, Heline; Cornblatt, Barbara A.; Olvet, Doreen M.; Mathalon, Daniel H.; McGlashan, Thomas H.; Perkins, Diana O.; Belger, Aysenil; Seidman, Larry J.; Thermenos, Heidi; Tsuang, Ming T.; van Erp, Theo G.M.; Walker, Elaine F.; Hamann, Stephan; Woods, Scott W.; Cannon, Tyrone D.; Constable, R. Todd

    2016-01-01

    Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0.17), but increases with increasing scan duration (ICC=0.21–0.36 at 25 min). The limited effects of site and scanner manufacturer support the use of multisite studies, such as NAPLS, as a viable means of collecting data on rare populations and increasing power in univariate functional connectivity studies. However, the results indicate that aggregation of fcMRI data across longer scan durations is necessary to increase the reliability of connectivity estimates at the single-subject level. PMID:27746386

  9. Impact of Autocorrelation on Functional Connectivity

    PubMed Central

    Arbabshirani, Mohammad R.; Damaraju, Eswar; Phlypo, Ronald; Plis, Sergey; Allen, Elena; Ma, Sai; Mathalon, Daniel; Preda, Adrian; Vaidya, Jatin G.; Adali, Tülay; Calhoun, Vince D.

    2014-01-01

    Although the impact of serial correlation (autocorrelation) in residuals of general linear models for fMRI time-series has been studied extensively, the effect of autocorrelation on functional connectivity studies has been largely neglected until recently. Some recent studies based on results from economics have questioned the conventional estimation of functional connectivity and argue that not correcting for autocorrelation in fMRI time-series results in “spurious” correlation coefficients. In this paper, first we assess the effect of autocorrelation on Pearson correlation coefficient through theoretical approximation and simulation. Then we present this effect on real fMRI data. To our knowledge this is the first work comprehensively investigating the effect of autocorrelation on functional connectivity estimates. Our results show that although FC values are altered, even following correction for autocorrelation, results of hypothesis testing on FC values remain very similar to those before correction. In real data we show this is true for main effects and also for group difference testing between healthy controls and schizophrenia patients. We further discuss model order selection in the context of autoregressive processes, effects of frequency filtering and propose a preprocessing pipeline for connectivity studies. PMID:25072392

  10. Individual differences in intrinsic brain connectivity predict decision strategy.

    PubMed

    Barnes, Kelly Anne; Anderson, Kevin M; Plitt, Mark; Martin, Alex

    2014-10-15

    When humans are provided with ample time to make a decision, individual differences in strategy emerge. Using an adaptation of a well-studied decision making paradigm, motion direction discrimination, we probed the neural basis of individual differences in strategy. We tested whether strategies emerged from moment-to-moment reconfiguration of functional brain networks involved in decision making with task-evoked functional MRI (fMRI) and whether intrinsic properties of functional brain networks, measured at rest with functional connectivity MRI (fcMRI), were associated with strategy use. We found that human participants reliably selected one of two strategies across 2 days of task performance, either continuously accumulating evidence or waiting for task difficulty to decrease. Individual differences in decision strategy were predicted both by the degree of task-evoked activation of decision-related brain regions and by the strength of pretask correlated spontaneous brain activity. These results suggest that spontaneous brain activity constrains strategy selection on perceptual decisions.

  11. Striatal changes in Parkinson disease: An investigation of morphology, functional connectivity and their relationship to clinical symptoms.

    PubMed

    Owens-Walton, Conor; Jakabek, David; Li, Xiaozhen; Wilkes, Fiona A; Walterfang, Mark; Velakoulis, Dennis; van Westen, Danielle; Looi, Jeffrey C L; Hansson, Oskar

    2018-05-30

    We sought to investigate morphological and resting state functional connectivity changes to the striatal nuclei in Parkinson disease (PD) and examine whether changes were associated with measures of clinical function. Striatal nuclei were manually segmented on 3T-T1 weighted MRI scans of 74 PD participants and 27 control subjects, quantitatively analysed for volume, shape and also functional connectivity using functional MRI data. Bilateral caudate nuclei and putamen volumes were significantly reduced in the PD cohort compared to controls. When looking at left and right hemispheres, the PD cohort had significantly smaller left caudate nucleus and right putamen volumes compared to controls. A significant correlation was found between greater atrophy of the caudate nucleus and poorer cognitive function, and between greater atrophy of the putamen and more severe motor symptoms. Resting-state functional MRI analysis revealed altered functional connectivity of the striatal structures in the PD group. This research demonstrates that PD involves atrophic changes to the caudate nucleus and putamen that are linked to clinical dysfunction. Our work reveals important information about a key structure-function relationship in the brain and provides support for caudate nucleus and putamen atrophy as neuroimaging biomeasures in PD. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Mild cognitive impairment and fMRI studies of brain functional connectivity: the state of the art

    PubMed Central

    Farràs-Permanyer, Laia; Guàrdia-Olmos, Joan; Peró-Cebollero, Maribel

    2015-01-01

    In the last 15 years, many articles have studied brain connectivity in Mild Cognitive Impairment patients with fMRI techniques, seemingly using different connectivity statistical models in each investigation to identify complex connectivity structures so as to recognize typical behavior in this type of patient. This diversity in statistical approaches may cause problems in results comparison. This paper seeks to describe how researchers approached the study of brain connectivity in MCI patients using fMRI techniques from 2002 to 2014. The focus is on the statistical analysis proposed by each research group in reference to the limitations and possibilities of those techniques to identify some recommendations to improve the study of functional connectivity. The included articles came from a search of Web of Science and PsycINFO using the following keywords: f MRI, MCI, and functional connectivity. Eighty-one papers were found, but two of them were discarded because of the lack of statistical analysis. Accordingly, 79 articles were included in this review. We summarized some parts of the articles, including the goal of every investigation, the cognitive paradigm and methods used, brain regions involved, use of ROI analysis and statistical analysis, emphasizing on the connectivity estimation model used in each investigation. The present analysis allowed us to confirm the remarkable variability of the statistical analysis methods found. Additionally, the study of brain connectivity in this type of population is not providing, at the moment, any significant information or results related to clinical aspects relevant for prediction and treatment. We propose to follow guidelines for publishing fMRI data that would be a good solution to the problem of study replication. The latter aspect could be important for future publications because a higher homogeneity would benefit the comparison between publications and the generalization of results. PMID:26300802

  13. The Exercising Brain: Changes in Functional Connectivity Induced by an Integrated Multimodal Cognitive and Whole-Body Coordination Training

    PubMed Central

    Demirakca, Traute; Cardinale, Vita; Dehn, Sven; Ruf, Matthias; Ende, Gabriele

    2016-01-01

    This study investigated the impact of “life kinetik” training on brain plasticity in terms of an increased functional connectivity during resting-state functional magnetic resonance imaging (rs-fMRI). The training is an integrated multimodal training that combines motor and cognitive aspects and challenges the brain by introducing new and unfamiliar coordinative tasks. Twenty-one subjects completed at least 11 one-hour-per-week “life kinetik” training sessions in 13 weeks as well as before and after rs-fMRI scans. Additionally, 11 control subjects with 2 rs-fMRI scans were included. The CONN toolbox was used to conduct several seed-to-voxel analyses. We searched for functional connectivity increases between brain regions expected to be involved in the exercises. Connections to brain regions representing parts of the default mode network, such as medial frontal cortex and posterior cingulate cortex, did not change. Significant connectivity alterations occurred between the visual cortex and parts of the superior parietal area (BA7). Premotor area and cingulate gyrus were also affected. We can conclude that the constant challenge of unfamiliar combinations of coordination tasks, combined with visual perception and working memory demands, seems to induce brain plasticity expressed in enhanced connectivity strength of brain regions due to coactivation. PMID:26819776

  14. Sparse Multivariate Autoregressive Modeling for Mild Cognitive Impairment Classification

    PubMed Central

    Li, Yang; Wee, Chong-Yaw; Jie, Biao; Peng, Ziwen

    2014-01-01

    Brain connectivity network derived from functional magnetic resonance imaging (fMRI) is becoming increasingly prevalent in the researches related to cognitive and perceptual processes. The capability to detect causal or effective connectivity is highly desirable for understanding the cooperative nature of brain network, particularly when the ultimate goal is to obtain good performance of control-patient classification with biological meaningful interpretations. Understanding directed functional interactions between brain regions via brain connectivity network is a challenging task. Since many genetic and biomedical networks are intrinsically sparse, incorporating sparsity property into connectivity modeling can make the derived models more biologically plausible. Accordingly, we propose an effective connectivity modeling of resting-state fMRI data based on the multivariate autoregressive (MAR) modeling technique, which is widely used to characterize temporal information of dynamic systems. This MAR modeling technique allows for the identification of effective connectivity using the Granger causality concept and reducing the spurious causality connectivity in assessment of directed functional interaction from fMRI data. A forward orthogonal least squares (OLS) regression algorithm is further used to construct a sparse MAR model. By applying the proposed modeling to mild cognitive impairment (MCI) classification, we identify several most discriminative regions, including middle cingulate gyrus, posterior cingulate gyrus, lingual gyrus and caudate regions, in line with results reported in previous findings. A relatively high classification accuracy of 91.89 % is also achieved, with an increment of 5.4 % compared to the fully-connected, non-directional Pearson-correlation-based functional connectivity approach. PMID:24595922

  15. Enhanced Thalamic Functional Connectivity with No fMRI Responses to Affected Forelimb Stimulation in Stroke-Recovered Rats.

    PubMed

    Shim, Woo H; Suh, Ji-Yeon; Kim, Jeong K; Jeong, Jaeseung; Kim, Young R

    2016-01-01

    Neurological recovery after stroke has been extensively investigated to provide better understanding of neurobiological mechanism, therapy, and patient management. Recent advances in neuroimaging techniques, particularly functional MRI (fMRI), have widely contributed to unravel the relationship between the altered neural function and stroke-affected brain areas. As results of previous investigations, the plastic reorganization and/or gradual restoration of the hemodynamic fMRI responses to neural stimuli have been suggested as relevant mechanisms underlying the stroke recovery process. However, divergent study results and modality-dependent outcomes have clouded the proper interpretation of variable fMRI signals. Here, we performed both evoked and resting state fMRI (rs-fMRI) to clarify the link between the fMRI phenotypes and post-stroke functional recovery. The experiments were designed to examine the altered neural activity within the contra-lesional hemisphere and other undamaged brain regions using rat models with large unilateral stroke, which despite the severe injury, exhibited nearly full recovery at ∼6 months after stroke. Surprisingly, both blood oxygenation level-dependent and blood volume-weighted (CBVw) fMRI activities elicited by electrical stimulation of the stroke-affected forelimb were completely absent, failing to reveal the neural origin of the behavioral recovery. In contrast, the functional connectivity maps showed highly robust rs-fMRI activity concentrated in the contra-lesional ventromedial nucleus of thalamus (VM). The negative finding in the stimuli-induced fMRI study using the popular rat middle cerebral artery model denotes weak association between the fMRI hemodynamic responses and neurological improvement. The results strongly caution the indiscreet interpretation of stroke-affected fMRI signals and demonstrate rs-fMRI as a complementary tool for efficiently characterizing stroke recovery.

  16. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain

    NASA Astrophysics Data System (ADS)

    Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.

    2017-04-01

    Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.

  17. Altered fronto-cerebellar connectivity in alcohol-naïve youth with a family history of alcoholism

    PubMed Central

    Herting, Megan M.; Fair, Damien; Nagel, Bonnie J.

    2011-01-01

    Fronto-cerebellar connections are thought to be involved in higher-order cognitive functioning. It is suspected that damage to this network may contribute to cognitive deficits in chronic alcoholics. However, it remains to be elucidated if fronto-cerebellar circuitry is altered in high-risk individuals even prior to alcohol use onset. The current study used functional connectivity MRI (fcMRI) to examine fronto-cerebellar circuitry in 13 alcohol-naïve, at-risk youth with a family history of alcoholism (FH+) and 14 age-matched controls. In addition, we examined how white matter microstructure, as evidenced by fractional anisotropy (FA) related to fcMRI. FH+ youth showed significantly reduced functional connectivity between bilateral anterior prefrontal cortices and contralateral cerebellar seed regions compared to controls. We found that this reduction in connectivity significantly correlated with reduced FA in the anterior limb of the internal capsule and the superior longitudinal fasciculus. Taken together, our findings reflect associated aberrant functional and structural connectivity in substance-naïve FH+ adolescents, perhaps suggesting an identifiable neurophenotypic precursor to substance use. Given the role of frontal and cerebellar brain regions in subserving executive functioning, the presence of premorbid abnormalities in fronto-cerebellar circuitry may heighten the risk for developing an alcohol use disorder in FH+ youth through atypical control processing. PMID:20970506

  18. Limbic hyperconnectivity in the vegetative state.

    PubMed

    Di Perri, Carol; Bastianello, Stefano; Bartsch, Andreas J; Pistarini, Caterina; Maggioni, Giorgio; Magrassi, Lorenzo; Imberti, Roberto; Pichiecchio, Anna; Vitali, Paolo; Laureys, Steven; Di Salle, Francesco

    2013-10-15

    To investigate functional connectivity between the default mode network (DMN) and other networks in disorders of consciousness. We analyzed MRI data from 11 patients in a vegetative state and 7 patients in a minimally conscious state along with age- and sex-matched healthy control subjects. MRI data analysis included nonlinear spatial normalization to compensate for disease-related anatomical distortions. We studied brain connectivity data from resting-state MRI temporal series, combining noninferential (independent component analysis) and inferential (seed-based general linear model) methods. In DMN hypoconnectivity conditions, a patient's DMN functional connectivity shifts and paradoxically increases in limbic structures, including the orbitofrontal cortex, insula, hypothalamus, and the ventral tegmental area. Concurrently with DMN hypoconnectivity, we report limbic hyperconnectivity in patients in vegetative and minimally conscious states. This hyperconnectivity may reflect the persistent engagement of residual neural activity in self-reinforcing neural loops, which, in turn, could disrupt normal patterns of connectivity.

  19. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    PubMed

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  20. Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits.

    PubMed

    Marsh, Abigail A; Finger, Elizabeth C; Fowler, Katherine A; Jurkowitz, Ilana T N; Schechter, Julia C; Yu, Henry H; Pine, Daniel S; Blair, R J R

    2011-12-30

    We used functional magnetic resonance imaging (fMRI) to investigate dysfunction in the amygdala and orbitofrontal cortex in adolescents with disruptive behavior disorders and psychopathic traits during a moral judgment task. Fourteen adolescents with psychopathic traits and 14 healthy controls were assessed using fMRI while they categorized illegal and legal behaviors in a moral judgment implicit association task. fMRI data were then analyzed using random-effects analysis of variance and functional connectivity. Youths with psychopathic traits showed reduced amygdala activity when making judgments about legal actions and reduced functional connectivity between the amygdala and orbitofrontal cortex during task performance. These results suggest that psychopathic traits are associated with amygdala and orbitofrontal cortex dysfunction. This dysfunction may relate to previous findings of disrupted moral judgment in this population. 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Frontal networks associated with command following after hemorrhagic stroke.

    PubMed

    Mikell, Charles B; Banks, Garrett P; Frey, Hans-Peter; Youngerman, Brett E; Nelp, Taylor B; Karas, Patrick J; Chan, Andrew K; Voss, Henning U; Connolly, E Sander; Claassen, Jan

    2015-01-01

    Level of consciousness is frequently assessed by command-following ability in the clinical setting. However, it is unclear what brain circuits are needed to follow commands. We sought to determine what networks differentiate command following from noncommand following patients after hemorrhagic stroke. Structural MRI, resting-state functional MRI, and electroencephalography were performed on 25 awake and unresponsive patients with acute intracerebral and subarachnoid hemorrhage. Structural injury was assessed via volumetric T1-weighted MRI analysis. Functional connectivity differences were analyzed against a template of standard resting-state networks. The default mode network (DMN) and the task-positive network were investigated using seed-based functional connectivity. Networks were interrogated by pairwise coherence of electroencephalograph leads in regions of interest defined by functional MRI. Functional imaging of unresponsive patients identified significant differences in 6 of 16 standard resting-state networks. Significant voxels were found in premotor cortex, dorsal anterior cingulate gyrus, and supplementary motor area. Direct interrogation of the DMN and task-positive network revealed loss of connectivity between the DMN and the orbitofrontal cortex and new connections between the task-positive network and DMN. Coherence between electrodes corresponding to right executive network and visual networks was also decreased in unresponsive patients. Resting-state functional MRI and electroencephalography coherence data support a model in which multiple, chiefly frontal networks are required for command following. Loss of DMN anticorrelation with task-positive network may reflect a loss of inhibitory control of the DMN by motor-executive regions. Frontal networks should thus be a target for future investigations into the mechanism of responsiveness in the intensive care unit environment. © 2014 American Heart Association, Inc.

  2. Patient-specific connectivity pattern of epileptic network in frontal lobe epilepsy

    PubMed Central

    Luo, Cheng; An, Dongmei; Yao, Dezhong; Gotman, Jean

    2014-01-01

    There is evidence that focal epilepsy may involve the dysfunction of a brain network in addition to the focal region. To delineate the characteristics of this epileptic network, we collected EEG/fMRI data from 23 patients with frontal lobe epilepsy. For each patient, EEG/fMRI analysis was first performed to determine the BOLD response to epileptic spikes. The maximum activation cluster in the frontal lobe was then chosen as the seed to identify the epileptic network in fMRI data. Functional connectivity analysis seeded at the same region was also performed in 63 healthy control subjects. Nine features were used to evaluate the differences of epileptic network patterns in three connection levels between patients and controls. Compared with control subjects, patients showed overall more functional connections between the epileptogenic region and the rest of the brain and higher laterality. However, the significantly increased connections were located in the neighborhood of the seed, but the connections between the seed and remote regions actually decreased. Comparing fMRI runs with interictal epileptic discharges (IEDs) and without IEDs, the patient-specific connectivity pattern was not changed significantly. These findings regarding patient-specific connectivity patterns of epileptic networks in FLE reflect local high connectivity and connections with distant regions differing from those of healthy controls. Moreover, the difference between the two groups in most features was observed in the strictest of the three connection levels. The abnormally high connectivity might reflect a predominant attribute of the epileptic network, which may facilitate propagation of epileptic activity among regions in the network. PMID:24936418

  3. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R; Setsompop, Kawin; Brown, Emery N; Hämäläinen, Matti S; Rosen, Bruce R; Wald, Lawrence L

    2016-06-01

    Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s). The delineated Pearson's correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson's disease, and other motor disorders.

  4. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity.

    PubMed

    Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko

    2012-01-01

    Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.

  5. A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs.

    PubMed

    Patel, Ameera X; Bullmore, Edward T

    2016-11-15

    Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The implications of brain connectivity in the neuropsychology of autism

    PubMed Central

    Maximo, Jose O.; Cadena, Elyse J.; Kana, Rajesh K.

    2014-01-01

    Autism is a neurodevelopmental disorder that has been associated with atypical brain functioning. Functional connectivity MRI (fcMRI) studies examining neural networks in autism have seen an exponential rise over the last decade. Such investigations have led to characterization of autism as a distributed neural systems disorder. Studies have found widespread cortical underconnectivity, local overconnectivity, and mixed results suggesting disrupted brain connectivity as a potential neural signature of autism. In this review, we summarize the findings of previous fcMRI studies in autism with a detailed examination of their methodology, in order to better understand its potential and to delineate the pitfalls. We also address how a multimodal neuroimaging approach (incorporating different measures of brain connectivity) may help characterize the complex neurobiology of autism at a global level. Finally, we also address the potential of neuroimaging-based markers in assisting neuropsychological assessment of autism. The quest for a biomarker for autism is still ongoing, yet new findings suggest that aberrant brain connectivity may be a promising candidate. PMID:24496901

  7. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation.

    PubMed

    Tsvetanov, Kamen A; Henson, Richard N A; Tyler, Lorraine K; Razi, Adeel; Geerligs, Linda; Ham, Timothy E; Rowe, James B

    2016-03-16

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18-88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. Copyright © 2016 Tsvetanov et al.

  8. Extrinsic and Intrinsic Brain Network Connectivity Maintains Cognition across the Lifespan Despite Accelerated Decay of Regional Brain Activation

    PubMed Central

    Henson, Richard N.A.; Tyler, Lorraine K.; Razi, Adeel; Geerligs, Linda; Ham, Timothy E.; Rowe, James B.

    2016-01-01

    The maintenance of wellbeing across the lifespan depends on the preservation of cognitive function. We propose that successful cognitive aging is determined by interactions both within and between large-scale functional brain networks. Such connectivity can be estimated from task-free functional magnetic resonance imaging (fMRI), also known as resting-state fMRI (rs-fMRI). However, common correlational methods are confounded by age-related changes in the neurovascular signaling. To estimate network interactions at the neuronal rather than vascular level, we used generative models that specified both the neural interactions and a flexible neurovascular forward model. The networks' parameters were optimized to explain the spectral dynamics of rs-fMRI data in 602 healthy human adults from population-based cohorts who were approximately uniformly distributed between 18 and 88 years (www.cam-can.com). We assessed directed connectivity within and between three key large-scale networks: the salience network, dorsal attention network, and default mode network. We found that age influences connectivity both within and between these networks, over and above the effects on neurovascular coupling. Canonical correlation analysis revealed that the relationship between network connectivity and cognitive function was age-dependent: cognitive performance relied on neural dynamics more strongly in older adults. These effects were driven partly by reduced stability of neural activity within all networks, as expressed by an accelerated decay of neural information. Our findings suggest that the balance of excitatory connectivity between networks, and the stability of intrinsic neural representations within networks, changes with age. The cognitive function of older adults becomes increasingly dependent on these factors. SIGNIFICANCE STATEMENT Maintaining cognitive function is critical to successful aging. To study the neural basis of cognitive function across the lifespan, we studied a large population-based cohort (n = 602, 18–88 years), separating neural connectivity from vascular components of fMRI signals. Cognitive ability was influenced by the strength of connection within and between functional brain networks, and this positive relationship increased with age. In older adults, there was more rapid decay of intrinsic neuronal activity in multiple regions of the brain networks, which related to cognitive performance. Our data demonstrate increased reliance on network flexibility to maintain cognitive function, in the presence of more rapid decay of neural activity. These insights will facilitate the development of new strategies to maintain cognitive ability. PMID:26985024

  9. On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.

    PubMed

    Pedersen, Mangor; Omidvarnia, Amir; Zalesky, Andrew; Jackson, Graeme D

    2018-06-08

    Correlation-based sliding window analysis (CSWA) is the most commonly used method to estimate time-resolved functional MRI (fMRI) connectivity. However, instantaneous phase synchrony analysis (IPSA) is gaining popularity mainly because it offers single time-point resolution of time-resolved fMRI connectivity. We aim to provide a systematic comparison between these two approaches, on both temporal and topological levels. For this purpose, we used resting-state fMRI data from two separate cohorts with different temporal resolutions (45 healthy subjects from Human Connectome Project fMRI data with repetition time of 0.72 s and 25 healthy subjects from a separate validation fMRI dataset with a repetition time of 3 s). For time-resolved functional connectivity analysis, we calculated tapered CSWA over a wide range of different window lengths that were temporally and topologically compared to IPSA. We found a strong association in connectivity dynamics between IPSA and CSWA when considering the absolute values of CSWA. The association between CSWA and IPSA was stronger for a window length of ∼20 s (shorter than filtered fMRI wavelength) than ∼100 s (longer than filtered fMRI wavelength), irrespective of the sampling rate of the underlying fMRI data. Narrow-band filtering of fMRI data (0.03-0.07 Hz) yielded a stronger relationship between IPSA and CSWA than wider-band (0.01-0.1 Hz). On a topological level, time-averaged IPSA and CSWA nodes were non-linearly correlated for both short (∼20 s) and long (∼100 s) windows, mainly because nodes with strong negative correlations (CSWA) displayed high phase synchrony (IPSA). IPSA and CSWA were anatomically similar in the default mode network, sensory cortex, insula and cerebellum. Our results suggest that IPSA and CSWA provide comparable characterizations of time-resolved fMRI connectivity for appropriately chosen window lengths. Although IPSA requires narrow-band fMRI filtering, we recommend the use of IPSA given that it does not mandate a (semi-)arbitrary choice of window length and window overlap. A code for calculating IPSA is provided. Copyright © 2018. Published by Elsevier Inc.

  10. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    PubMed

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Disrupted Brain Functional Network Architecture in Chronic Tinnitus Patients

    PubMed Central

    Chen, Yu-Chen; Feng, Yuan; Xu, Jin-Jing; Mao, Cun-Nan; Xia, Wenqing; Ren, Jun; Yin, Xindao

    2016-01-01

    Purpose: Resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated the disruptions of multiple brain networks in tinnitus patients. Nonetheless, several studies found no differences in network processing between tinnitus patients and healthy controls (HCs). Its neural bases are poorly understood. To identify aberrant brain network architecture involved in chronic tinnitus, we compared the resting-state fMRI (rs-fMRI) patterns of tinnitus patients and HCs. Materials and Methods: Chronic tinnitus patients (n = 24) with normal hearing thresholds and age-, sex-, education- and hearing threshold-matched HCs (n = 22) participated in the current study and underwent the rs-fMRI scanning. We used degree centrality (DC) to investigate functional connectivity (FC) strength of the whole-brain network and Granger causality to analyze effective connectivity in order to explore directional aspects involved in tinnitus. Results: Compared to HCs, we found significantly increased network centrality in bilateral superior frontal gyrus (SFG). Unidirectionally, the left SFG revealed increased effective connectivity to the left middle orbitofrontal cortex (OFC), left posterior lobe of cerebellum (PLC), left postcentral gyrus, and right middle occipital gyrus (MOG) while the right SFG exhibited enhanced effective connectivity to the right supplementary motor area (SMA). In addition, the effective connectivity from the bilateral SFG to the OFC and SMA showed positive correlations with tinnitus distress. Conclusions: Rs-fMRI provides a new and novel method for identifying aberrant brain network architecture. Chronic tinnitus patients have disrupted FC strength and causal connectivity mostly in non-auditory regions, especially the prefrontal cortex (PFC). The current findings will provide a new perspective for understanding the neuropathophysiological mechanisms in chronic tinnitus. PMID:27458377

  12. Structural connectivity patterns associated with the putative visual word form area and children's reading ability.

    PubMed

    Fan, Qiuyun; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E

    2014-10-24

    With the advent of neuroimaging techniques, especially functional MRI (fMRI), studies have mapped brain regions that are associated with good and poor reading, most centrally a region within the left occipito-temporal/fusiform region (L-OT/F) often referred to as the visual word form area (VWFA). Despite an abundance of fMRI studies of the putative VWFA, research about its structural connectivity has just started. Provided that the putative VWFA may be connected to distributed regions in the brain, it remains unclear how this network is engaged in constituting a well-tuned reading circuitry in the brain. Here we used diffusion MRI to study the structural connectivity patterns of the putative VWFA and surrounding areas within the L-OT/F in children with typically developing (TD) reading ability and with word recognition deficits (WRD; sometimes referred to as dyslexia). We found that L-OT/F connectivity varied along a posterior-anterior gradient, with specific structural connectivity patterns related to reading ability in the ROIs centered upon the putative VWFA. Findings suggest that the architecture of the putative VWFA connectivity is fundamentally different between TD and WRD, with TD showing greater connectivity to linguistic regions than WRD, and WRD showing greater connectivity to visual and parahippocampal regions than TD. Findings thus reveal clear structural abnormalities underlying the functional abnormalities in the putative VWFA in WRD. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Functional Imaging and Migraine: New Connections?

    PubMed Central

    Schwedt, Todd J.; Chong, Catherine D.

    2015-01-01

    Purpose of Review Over the last several years, a growing number of brain functional imaging studies have provided insights into mechanisms underlying migraine. This manuscript reviews the recent migraine functional neuroimaging literature and provides recommendations for future studies that will help fill knowledge gaps. Recent Findings Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have identified brain regions that might be responsible for mediating the onset of a migraine attack and those associated with migraine symptoms. Enhanced activation of brain regions that facilitate processing of sensory stimuli suggests a mechanism by which migraineurs are hypersensitive to visual, olfactory, and cutaneous stimuli. Resting state functional connectivity MRI studies have identified numerous brain regions and functional networks with atypical functional connectivity in migraineurs, suggesting that migraine is associated with aberrant brain functional organization. Summary fMRI and PET studies that have identified brain regions and brain networks that are atypical in migraine have helped to describe the neurofunctional basis for migraine symptoms. Future studies should compare functional imaging findings in migraine to other headache and pain disorders and should explore the utility of functional imaging data as biomarkers for diagnostic and treatment purposes. PMID:25887764

  14. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis

    PubMed Central

    Harris, N.G.; Verley, D.R.; Gutman, B.A.; Thompson, P.M.; Yeh, H.J.; Brown, J.A.

    2016-01-01

    While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI. PMID:26730520

  15. Disconnection and hyper-connectivity underlie reorganization after TBI: A rodent functional connectomic analysis.

    PubMed

    Harris, N G; Verley, D R; Gutman, B A; Thompson, P M; Yeh, H J; Brown, J A

    2016-03-01

    While past neuroimaging methods have contributed greatly to our understanding of brain function after traumatic brain injury (TBI), resting state functional MRI (rsfMRI) connectivity methods have more recently provided a far more unbiased approach with which to monitor brain circuitry compared to task-based approaches. However, current knowledge on the physiologic underpinnings of the correlated blood oxygen level dependent signal, and how changes in functional connectivity relate to reorganizational processes that occur following injury is limited. The degree and extent of this relationship remain to be determined in order that rsfMRI methods can be fully adapted for determining the optimal timing and type of rehabilitative interventions that can be used post-TBI to achieve the best outcome. Very few rsfMRI studies exist after experimental TBI and therefore we chose to acquire rsfMRI data before and at 7, 14 and 28 days after experimental TBI using a well-known, clinically-relevant, unilateral controlled cortical impact injury (CCI) adult rat model of TBI. This model was chosen since it has widespread axonal injury, a well-defined time-course of reorganization including spine, dendrite, axonal and cortical map changes, as well as spontaneous recovery of sensorimotor function by 28 d post-injury from which to interpret alterations in functional connectivity. Data were co-registered to a parcellated rat template to generate adjacency matrices for network analysis by graph theory. Making no assumptions about direction of change, we used two-tailed statistical analysis over multiple brain regions in a data-driven approach to access global and regional changes in network topology in order to assess brain connectivity in an unbiased way. Our main hypothesis was that deficits in functional connectivity would become apparent in regions known to be structurally altered or deficient in axonal connectivity in this model. The data show the loss of functional connectivity predicted by the structural deficits, not only within the primary sensorimotor injury site and pericontused regions, but the normally connected homotopic cortex, as well as subcortical regions, all of which persisted chronically. Especially novel in this study is the unanticipated finding of widespread increases in connection strength that dwarf both the degree and extent of the functional disconnections, and which persist chronically in some sensorimotor and subcortically connected regions. Exploratory global network analysis showed changes in network parameters indicative of possible acutely increased random connectivity and temporary reductions in modularity that were matched by local increases in connectedness and increased efficiency among more weakly connected regions. The global network parameters: shortest path-length, clustering coefficient and modularity that were most affected by trauma also scaled with the severity of injury, so that the corresponding regional measures were correlated to the injury severity most notably at 7 and 14 days and especially within, but not limited to, the contralateral cortex. These changes in functional network parameters are discussed in relation to the known time-course of physiologic and anatomic data that underlie structural and functional reorganization in this experiment model of TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    PubMed

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.

  17. Functional network integrity presages cognitive decline in preclinical Alzheimer disease.

    PubMed

    Buckley, Rachel F; Schultz, Aaron P; Hedden, Trey; Papp, Kathryn V; Hanseeuw, Bernard J; Marshall, Gad; Sepulcre, Jorge; Smith, Emily E; Rentz, Dorene M; Johnson, Keith A; Sperling, Reisa A; Chhatwal, Jasmeer P

    2017-07-04

    To examine the utility of resting-state functional connectivity MRI (rs-fcMRI) measurements of network integrity as a predictor of future cognitive decline in preclinical Alzheimer disease (AD). A total of 237 clinically normal older adults (aged 63-90 years, Clinical Dementia Rating 0) underwent baseline β-amyloid (Aβ) imaging with Pittsburgh compound B PET and structural and rs-fcMRI. We identified 7 networks for analysis, including 4 cognitive networks (default, salience, dorsal attention, and frontoparietal control) and 3 noncognitive networks (primary visual, extrastriate visual, motor). Using linear and curvilinear mixed models, we used baseline connectivity in these networks to predict longitudinal changes in preclinical Alzheimer cognitive composite (PACC) performance, both alone and interacting with Aβ burden. Median neuropsychological follow-up was 3 years. Baseline connectivity in the default, salience, and control networks predicted longitudinal PACC decline, unlike connectivity in the dorsal attention and all noncognitive networks. Default, salience, and control network connectivity was also synergistic with Aβ burden in predicting decline, with combined higher Aβ and lower connectivity predicting the steepest curvilinear decline in PACC performance. In clinically normal older adults, lower functional connectivity predicted more rapid decline in PACC scores over time, particularly when coupled with increased Aβ burden. Among examined networks, default, salience, and control networks were the strongest predictors of rate of change in PACC scores, with the inflection point of greatest decline beyond the fourth year of follow-up. These results suggest that rs-fcMRI may be a useful predictor of early, AD-related cognitive decline in clinical research settings. © 2017 American Academy of Neurology.

  18. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    PubMed

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  19. Intrinsic functional connectivity alterations in progressive supranuclear palsy: Differential effects in frontal cortex, motor, and midbrain networks.

    PubMed

    Rosskopf, Johannes; Gorges, Martin; Müller, Hans-Peter; Lulé, Dorothée; Uttner, Ingo; Ludolph, Albert C; Pinkhardt, Elmar; Juengling, Freimut D; Kassubek, Jan

    2017-07-01

    The topography of functional network changes in progressive supranuclear palsy can be mapped by intrinsic functional connectivity MRI. The objective of this study was to study functional connectivity and its clinical and behavioral correlates in dedicated networks comprising the cognition-related default mode and the motor and midbrain functional networks in patients with PSP. Whole-brain-based "resting-state" functional MRI and high-resolution T1-weighted magnetic resonance imaging data together with neuropsychological and video-oculographic data from 34 PSP patients (22 with Richardson subtype and 12 with parkinsonian subtype) and 35 matched healthy controls were subjected to network-based functional connectivity and voxel-based morphometry analysis. After correction for global patterns of brain atrophy, the group comparison between PSP patients and controls revealed significantly decreased functional connectivity (P < 0.05, corrected) in the prefrontal cortex, which was significantly correlated with cognitive performance (P = 0.006). Of note, midbrain network connectivity in PSP patients showed increased connectivity with the thalamus, on the one hand, whereas, on the other hand, lower functional connectivity within the midbrain was significantly correlated with vertical gaze impairment, as quantified by video-oculography (P = 0.004). PSP Richardson subtype showed significantly increased functional motor network connectivity with the medial prefrontal gyrus. PSP-associated neurodegeneration was attributed to both decreased and increased functional connectivity. Decreasing functional connectivity was associated with worse behavioral performance (ie, dementia severity and gaze palsy), whereas the pattern of increased functional connectivity may be a potential adaptive mechanism. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  20. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging.

    PubMed

    Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko

    2018-05-17

    Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders

    PubMed Central

    Woodward, Neil D.; Heckers, Stephan

    2015-01-01

    Objective There is considerable evidence that the thalamus is abnormal in psychotic disorders. Resting-state fMRI (RS-fMRI) has revealed an intriguing pattern of thalamic dysconnectivity in psychosis characterized by reduced prefrontal cortex (PFC) connectivity and increased somatomotor-thalamic connectivity. However, critical knowledge gaps remain with respect to the onset, anatomical specificity, and clinical correlates of thalamic dysconnectivity in psychosis. Method RS-fMRI was collected on 105 healthy subjects and 148 individuals with psychosis, including 53 early stage psychosis patients. Using all 253 subjects, the thalamus was parceled into functional regions-of-interest (ROIs) on the basis of connectivity with six a-priori defined cortical ROIs covering most of the cortical mantle. Functional connectivity between each cortical ROI and its corresponding thalamic ROI was quantified and compared across groups. Significant differences in the ROI-to-ROI analysis were followed up with voxel-wise seed-based analyses to further localize thalamic dysconnectivity. Results ROI analysis revealed reduced PFC-thalamic connectivity and increased somatomotor-thalamic connectivity in both chronic and early stages psychosis patients. PFC hypo-connectivity and motor cortex hyper-connectivity correlated in patients suggesting they result from a common pathophysiological mechanism. Seed-based analyses revealed thalamic hypo-connectivity in psychosis localized to dorsolateral PFC, medial PFC, and cerebellar areas of the well-described ‘executive control’ network. Across all subjects, thalamic connectivity with areas of the fronto-parietal network correlated with cognitive functioning, including verbal learning and memory. Conclusions Thalamocortical dysconnectivity is present in both chronic and early stages of psychosis, includes reduced thalamic connectivity with the executive control network, and is related to cognitive impairment. PMID:26248537

  2. Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys.

    PubMed

    Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min

    2017-11-15

    This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. Copyright © 2017 the authors 0270-6474/17/3711192-12$15.00/0.

  3. Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys

    PubMed Central

    2017-01-01

    This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened resting-state fMRI functional connectivity (FC) in input-deprived and reorganized digit regions in area 3b of the S1 and S2. Concurrent reductions in local field potential and spike FC validated the use of resting-state fMRI signals for probing neural intrinsic FC alterations in pathological deafferented cortex, and indicated that disrupted FC between mesoscale functionally highly related regions may contribute to the behavioral impairments. PMID:29038239

  4. Spinal Cord Stimulation (SCS) and Functional Magnetic Resonance Imaging (fMRI): Modulation of Cortical Connectivity With Therapeutic SCS.

    PubMed

    Deogaonkar, Milind; Sharma, Mayur; Oluigbo, Chima; Nielson, Dylan M; Yang, Xiangyu; Vera-Portocarrero, Louis; Molnar, Gregory F; Abduljalil, Amir; Sederberg, Per B; Knopp, Michael; Rezai, Ali R

    2016-02-01

    The neurophysiological basis of pain relief due to spinal cord stimulation (SCS) and the related cortical processing of sensory information are not completely understood. The aim of this study was to use resting state functional magnetic resonance imaging (rs-fMRI) to detect changes in cortical networks and cortical processing related to the stimulator-induced pain relief. Ten patients with complex regional pain syndrome (CRPS) or neuropathic leg pain underwent thoracic epidural spinal cord stimulator implantation. Stimulation parameters associated with "optimal" pain reduction were evaluated prior to imaging studies. Rs-fMRI was obtained on a 3 Tesla, Philips Achieva MRI. Rs-fMRI was performed with stimulator off (300TRs) and stimulator at optimum (Opt, 300 TRs) pain relief settings. Seed-based analysis of the resting state functional connectivity was conducted using seeds in regions established as participating in pain networks or in the default mode network (DMN) in addition to the network analysis. NCUT (normalized cut) parcellation was used to generate 98 cortical and subcortical regions of interest in order to expand our analysis of changes in functional connections to the entire brain. We corrected for multiple comparisons by limiting the false discovery rate to 5%. Significant differences in resting state connectivity between SCS off and optimal state were seen between several regions related to pain perception, including the left frontal insula, right primary and secondary somatosensory cortices, as well as in regions involved in the DMN, such as the precuneus. In examining changes in connectivity across the entire brain, we found decreased connection strength between somatosensory and limbic areas and increased connection strength between somatosensory and DMN with optimal SCS resulting in pain relief. This suggests that pain relief from SCS may be reducing negative emotional processing associated with pain, allowing somatosensory areas to become more integrated into default mode activity. SCS reduces the affective component of pain resulting in optimal pain relief. Study shows a decreased connectivity between somatosensory and limbic areas associated with optimal pain relief due to SCS. © 2015 International Neuromodulation Society.

  5. Cortical connective field estimates from resting state fMRI activity.

    PubMed

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.

  6. Maintenance and Representation of Mind Wandering during Resting-State fMRI.

    PubMed

    Chou, Ying-Hui; Sundman, Mark; Whitson, Heather E; Gaur, Pooja; Chu, Mei-Lan; Weingarten, Carol P; Madden, David J; Wang, Lihong; Kirste, Imke; Joliot, Marc; Diaz, Michele T; Li, Yi-Ju; Song, Allen W; Chen, Nan-Kuei

    2017-01-12

    Major advances in resting-state functional magnetic resonance imaging (fMRI) techniques in the last two decades have provided a tool to better understand the functional organization of the brain both in health and illness. Despite such developments, characterizing regulation and cerebral representation of mind wandering, which occurs unavoidably during resting-state fMRI scans and may induce variability of the acquired data, remains a work in progress. Here, we demonstrate that a decrease or decoupling in functional connectivity involving the caudate nucleus, insula, medial prefrontal cortex and other domain-specific regions was associated with more sustained mind wandering in particular thought domains during resting-state fMRI. Importantly, our findings suggest that temporal and between-subject variations in functional connectivity of above-mentioned regions might be linked with the continuity of mind wandering. Our study not only provides a preliminary framework for characterizing the maintenance and cerebral representation of different types of mind wandering, but also highlights the importance of taking mind wandering into consideration when studying brain organization with resting-state fMRI in the future.

  7. EXPLORING FUNCTIONAL CONNECTIVITY IN FMRI VIA CLUSTERING.

    PubMed

    Venkataraman, Archana; Van Dijk, Koene R A; Buckner, Randy L; Golland, Polina

    2009-04-01

    In this paper we investigate the use of data driven clustering methods for functional connectivity analysis in fMRI. In particular, we consider the K-Means and Spectral Clustering algorithms as alternatives to the commonly used Seed-Based Analysis. To enable clustering of the entire brain volume, we use the Nyström Method to approximate the necessary spectral decompositions. We apply K-Means, Spectral Clustering and Seed-Based Analysis to resting-state fMRI data collected from 45 healthy young adults. Without placing any a priori constraints, both clustering methods yield partitions that are associated with brain systems previously identified via Seed-Based Analysis. Our empirical results suggest that clustering provides a valuable tool for functional connectivity analysis.

  8. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    PubMed

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  9. The Involvement of Speed-of-Processing in Story Listening in Preschool Children: A Functional and Structural Connectivity Study.

    PubMed

    Horowitz-Kraus, Tzipi; Farah, Rola; DiFrancesco, Mark; Vannest, Jennifer

    2017-02-01

    Story listening in children relies on brain regions supporting speech perception, auditory word recognition, syntax, semantics, and discourse abilities, along with the ability to attend and process information (part of executive functions). Speed-of-processing is an early-developed executive function. We used functional and structural magnetic resonance imaging (MRI) to demonstrate the relationship between story listening and speed-of-processing in preschool-age children. Eighteen participants performed story-listening tasks during MRI scans. Functional and structural connectivity analysis was performed using the speed-of-processing scores as regressors. Activation in the superior frontal gyrus during story listening positively correlated with speed-of-processing scores. This region was functionally connected with the superior temporal gyrus, insula, and hippocampus. Fractional anisotropy in the inferior frontooccipital fasciculus, which connects the superior frontal and temporal gyri, was positively correlated with speed-of-processing scores. Our results suggest that speed-of-processing skills in preschool-age children are reflected in functional activation and connectivity during story listening and may act as a biomarker for future academic abilities. Georg Thieme Verlag KG Stuttgart · New York.

  10. AICHA: An atlas of intrinsic connectivity of homotopic areas.

    PubMed

    Joliot, Marc; Jobard, Gaël; Naveau, Mikaël; Delcroix, Nicolas; Petit, Laurent; Zago, Laure; Crivello, Fabrice; Mellet, Emmanuel; Mazoyer, Bernard; Tzourio-Mazoyer, Nathalie

    2015-10-30

    Atlases of brain anatomical ROIs are widely used for functional MRI data analysis. Recently, it was proposed that an atlas of ROIs derived from a functional brain parcellation could be advantageous, in particular for understanding how different regions share information. However, functional atlases so far proposed do not account for a crucial aspect of cerebral organization, namely homotopy, i.e. that each region in one hemisphere has a homologue in the other hemisphere. We present AICHA (for Atlas of Intrinsic Connectivity of Homotopic Areas), a functional brain ROIs atlas based on resting-state fMRI data acquired in 281 individuals. AICHA ROIs cover the whole cerebrum, each having 1-homogeneity of its constituting voxels intrinsic activity, and 2-a unique homotopic contralateral counterpart with which it has maximal intrinsic connectivity. AICHA was built in 4 steps: (1) estimation of resting-state networks (RSNs) using individual resting-state fMRI independent components, (2) k-means clustering of voxel-wise group level profiles of connectivity, (3) homotopic regional grouping based on maximal inter-hemispheric functional correlation, and (4) ROI labeling. AICHA includes 192 homotopic region pairs (122 gyral, 50 sulcal, and 20 gray nuclei). As an application, we report inter-hemispheric (homotopic and heterotopic) and intra-hemispheric connectivity patterns at different sparsities. ROI functional homogeneity was higher for AICHA than for anatomical ROI atlases, but slightly lower than for another functional ROI atlas not accounting for homotopy. AICHA is ideally suited for intrinsic/effective connectivity analyses, as well as for investigating brain hemispheric specialization. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Effect of deafferentation from spinal anesthesia on pain sensitivity and resting-state functional brain connectivity in healthy male volunteers.

    PubMed

    Niesters, Marieke; Sitsen, Elske; Oudejans, Linda; Vuyk, Jaap; Aarts, Leon P H J; Rombouts, Serge A R B; de Rover, Mischa; Khalili-Mahani, Najmeh; Dahan, Albert

    2014-08-01

    Patients may perceive paradoxical heat sensation during spinal anesthesia. This could be due to deafferentation-related functional changes at cortical, subcortical, or spinal levels. In the current study, the effect of spinal deafferentation on sensory (pain) sensitivity was studied and linked to whole-brain functional connectivity as assessed by resting-state functional magnetic resonance imaging (RS-fMRI) imaging. Deafferentation was induced by sham or spinal anesthesia (15 mg bupivacaine injected at L3-4) in 12 male volunteers. RS-fMRI brain connectivity was determined in relation to eight predefined and seven thalamic resting-state networks (RSNs) and measured before, and 1 and 2 h after spinal/sham injection. To measure the effect of deafferentation on pain sensitivity, responses to heat pain were measured at 15-min intervals on nondeafferented skin and correlated to RS-fMRI connectivity data. Spinal anesthesia altered functional brain connectivity within brain regions involved in the sensory discriminative (i.e., pain intensity related) and affective dimensions of pain perception in relation to somatosensory and thalamic RSNs. A significant enhancement of pain sensitivity on nondeafferented skin was observed after spinal anesthesia compared to sham (area-under-the-curve [mean (SEM)]: 190.4 [33.8] versus 13.7 [7.2]; p<0.001), which significantly correlated to functional connectivity changes observed within the thalamus in relation to the thalamo-prefrontal network, and in the anterior cingulate cortex and insula in relation to the thalamo-parietal network. Enhanced pain sensitivity from spinal deafferentation correlated with functional connectivity changes within brain regions involved in affective and sensory pain processing and areas involved in descending control of pain.

  12. Decreased functional connectivity in an executive control network is related to impaired executive function in Internet gaming disorder.

    PubMed

    Dong, Guangheng; Lin, Xiao; Potenza, Marc N

    2015-03-03

    Resting brain spontaneous neural activities across cortical regions have been correlated with specific functional properties in psychiatric groups. Individuals with Internet gaming disorder (IGD) demonstrate impaired executive control. Thus, it is important to examine executive control networks (ECNs) during resting states and their relationships to executive control during task performance. Thirty-five IGD and 36 healthy control participants underwent a resting-state fMRI scan and performed a Stroop task inside and outside of the MRI scanner. Correlations between Stroop effect and functional connectivity among ECN regions of interest (ROIs) were calculated within and between groups. IGD subjects show lower functional connectivity in ECNs than do HC participants during resting state; functional-connectivity measures in ECNs were negatively correlated with Stroop effect and positively correlated with brain activations in executive-control regions across groups. Within groups, negative trends were found between Stroop effect and functional connectivity in ECNs in IGD and HC groups, separately; positive trends were found between functional connectivity in ECNs and brain activations in Stroop task in IGD and HC groups, separately. Higher functional connectivity in ECNs may underlie better executive control and may provide resilience with respect to IGD. Lower functional connectivity in ECNs may represent an important feature in understanding and treating IGD. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Hierarchical functional modularity in the resting-state human brain.

    PubMed

    Ferrarini, Luca; Veer, Ilya M; Baerends, Evelinda; van Tol, Marie-José; Renken, Remco J; van der Wee, Nic J A; Veltman, Dirk J; Aleman, André; Zitman, Frans G; Penninx, Brenda W J H; van Buchem, Mark A; Reiber, Johan H C; Rombouts, Serge A R B; Milles, Julien

    2009-07-01

    Functional magnetic resonance imaging (fMRI) studies have shown that anatomically distinct brain regions are functionally connected during the resting state. Basic topological properties in the brain functional connectivity (BFC) map have highlighted the BFC's small-world topology. Modularity, a more advanced topological property, has been hypothesized to be evolutionary advantageous, contributing to adaptive aspects of anatomical and functional brain connectivity. However, current definitions of modularity for complex networks focus on nonoverlapping clusters, and are seriously limited by disregarding inclusive relationships. Therefore, BFC's modularity has been mainly qualitatively investigated. Here, we introduce a new definition of modularity, based on a recently improved clustering measurement, which overcomes limitations of previous definitions, and apply it to the study of BFC in resting state fMRI of 53 healthy subjects. Results show hierarchical functional modularity in the brain. Copyright 2009 Wiley-Liss, Inc

  14. Study on the Relationships between Intrinsic Functional Connectivity of the Default Mode Network and Transient Epileptic Activity

    PubMed Central

    Lopes, Renaud; Moeller, Friederike; Besson, Pierre; Ogez, François; Szurhaj, William; Leclerc, Xavier; Siniatchkin, Michael; Chipaux, Mathilde; Derambure, Philippe; Tyvaert, Louise

    2014-01-01

    Rationale: Simultaneous recording of electroencephalogram and functional MRI (EEG–fMRI) is a powerful tool for localizing epileptic networks via the detection of hemodynamic changes correlated with interictal epileptic discharges (IEDs). fMRI can be used to study the long-lasting effect of epileptic activity by assessing stationary functional connectivity during the resting-state period [especially, the connectivity of the default mode network (DMN)]. Temporal lobe epilepsy (TLE) and idiopathic generalized epilepsy (IGE) are associated with low responsiveness and disruption of DMN activity. A dynamic functional connectivity approach might enable us to determine the effect of IEDs on DMN connectivity and to better understand the correlation between DMN connectivity changes and altered consciousness. Method: We studied dynamic changes in DMN intrinsic connectivity and their relation to IEDs. Six IGE patients (with generalized spike and slow-waves) and 6 TLE patients (with unilateral left temporal spikes) were included. Functional connectivity before, during, and after IEDs was estimated using a sliding window approach and compared with the baseline period. Results: No dependence on window size was observed. The baseline DMN connectivity was decreased in the left hemisphere (ipsilateral to the epileptic focus) in TLEs and was less strong but remained bilateral in IGEs. We observed an overall increase in DMN intrinsic connectivity prior to the onset of IEDs in both IGEs and TLEs. After IEDs in TLEs, we found that DMN connectivity increased before it returned to baseline values. Most of the DMN regions with increased connectivity before and after IEDs were lateralized to the left hemisphere in TLE (i.e., ipsilateral to the epileptic focus). Conclusion: Results suggest that DMN connectivity may facilitate IED generation and may be affected at the time of the IED. However, these results need to be confirmed in a larger independent cohort. PMID:25346721

  15. Localized reductions in resting-state functional connectivity in children with prenatal alcohol exposure.

    PubMed

    Fan, Jia; Taylor, Paul A; Jacobson, Sandra W; Molteno, Christopher D; Gohel, Suril; Biswal, Bharat B; Jacobson, Joseph L; Meintjes, Ernesta M

    2017-10-01

    Fetal alcohol spectrum disorders (FASD) are characterized by impairment in cognitive function that may or may not be accompanied by craniofacial anomalies, microcephaly, and/or growth retardation. Resting-state functional MRI (rs-fMRI), which examines the low-frequency component of the blood oxygen level dependent (BOLD) signal in the absence of an explicit task, provides an efficient and powerful mechanism for studying functional brain networks even in low-functioning and young subjects. Studies using independent component analysis (ICA) have identified a set of resting-state networks (RSNs) that have been linked to distinct domains of cognitive and perceptual function, which are believed to reflect the intrinsic functional architecture of the brain. This study is the first to examine resting-state functional connectivity within these RSNs in FASD. Rs-fMRI scans were performed on 38 children with FASD (19 with either full fetal alcohol syndrome (FAS) or partial FAS (PFAS), 19 nonsyndromal heavily exposed (HE)), and 19 controls, mean age 11.3 ± 0.9 years, from the Cape Town Longitudinal Cohort. Nine resting-state networks were generated by ICA. Voxelwise group comparison between a combined FAS/PFAS group and controls revealed localized dose-dependent functional connectivity reductions in five regions in separate networks: anterior default mode, salience, ventral and dorsal attention, and R executive control. The former three also showed lower connectivity in the HE group. Gray matter connectivity deficits in four of the five networks appear to be related to deficits in white matter tracts that provide intra-RSN connections. Hum Brain Mapp 38:5217-5233, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    PubMed

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  17. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1.

    PubMed

    Tomson, Steffie N; Schreiner, Matthew J; Narayan, Manjari; Rosser, Tena; Enrique, Nicole; Silva, Alcino J; Allen, Genevera I; Bookheimer, Susan Y; Bearden, Carrie E

    2015-11-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. © 2015 Wiley Periodicals, Inc.

  18. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    PubMed

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.

    PubMed

    Bhattacharyya, Pallab K; Mullin, Jeffery; Lee, Bryan S; Gonzalez-Martinez, Jorge A; Jones, Stephen E

    2017-05-01

    Surgical resection of the epileptogenic zone (EZ) is a potential cure for medically refractory focal epilepsy. Proper identification of the EZ is essential for such resection. Synergistic application of functional magnetic resonance imaging (fMRI) simultaneously with stimulation of a single externalized intracranial stereotactic EEG (SEEG) electrode has the potential to improve identification of the EZ. While most EEG-fMRI studies use the electrodes passively to record electrical activity, it is possible to stimulate the brain using the electrodes by connecting them with conducting cables to the stimulation hardware. In this study, we investigated the effect of MRI-induced heating on a single SEEG electrode and its sensitivity to geometry, configuration, and associated connections required for the stimulation. The temperature increase of a single electrode embedded within a gel phantom and connected to an external stimulation system was measured during 1.5T MRI scans using adjacent fluoroptic temperature sensors. A receive-only split-array head coil and a transmit-receive head coil were used for testing. Sequences included a standard localizer, T1-weighted axial fast low-angle shot (FLASH), gradient echo-planar imaging (GE-EPI) axial fMRI, and a high specific absorption rate T2-weighted turbo spin-echo (TSE) axial scan. Variations of the electrode location and connecting cable configuration were tested. No unacceptable heating was observed with the standard sequences used for evaluation of the EZ. Considerable heating (up to 14°C) was observed with the TSE sequence, which is not used clinically. The temperature increase was insignificant (<0.05°C) for electrode contacts closest to the isocenter and connecting cables lying along the isocenter, and varied with configurations of the connecting cable assembly. Simultaneous intracranial electrode stimulation during fMRI using an externalized stimulation system may be safe with strict adherence to settings tested prior to the fMRI. Localizer, FLASH, and GE-EPI fMRI may be safely performed in patients with a single SEEG electrode following the configurations tested in this study, but high SAR TSE scans should not be performed in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Altered Cortico-Striatal–Thalamic Connectivity in Relation to Spatial Working Memory Capacity in Children with ADHD

    PubMed Central

    Mills, Kathryn L.; Bathula, Deepti; Dias, Taciana G. Costa; Iyer, Swathi P.; Fenesy, Michelle C.; Musser, Erica D.; Stevens, Corinne A.; Thurlow, Bria L.; Carpenter, Samuel D.; Nagel, Bonnie J.; Nigg, Joel T.; Fair, Damien A.

    2012-01-01

    Introduction: Attention deficit hyperactivity disorder (ADHD) captures a heterogeneous group of children, who are characterized by a range of cognitive and behavioral symptoms. Previous resting-state functional connectivity MRI (rs-fcMRI) studies have sought to understand the neural correlates of ADHD by comparing connectivity measurements between those with and without the disorder, focusing primarily on cortical–striatal circuits mediated by the thalamus. To integrate the multiple phenotypic features associated with ADHD and help resolve its heterogeneity, it is helpful to determine how specific circuits relate to unique cognitive domains of the ADHD syndrome. Spatial working memory has been proposed as a key mechanism in the pathophysiology of ADHD. Methods: We correlated the rs-fcMRI of five thalamic regions of interest (ROIs) with spatial span working memory scores in a sample of 67 children aged 7–11 years [ADHD and typically developing children (TDC)]. In an independent dataset, we then examined group differences in thalamo-striatal functional connectivity between 70 ADHD and 89 TDC (7–11 years) from the ADHD-200 dataset. Thalamic ROIs were created based on previous methods that utilize known thalamo-cortical loops and rs-fcMRI to identify functional boundaries in the thalamus. Results/Conclusion: Using these thalamic regions, we found atypical rs-fcMRI between specific thalamic groupings with the basal ganglia. To identify the thalamic connections that relate to spatial working memory in ADHD, only connections identified in both the correlational and comparative analyses were considered. Multiple connections between the thalamus and basal ganglia, particularly between medial and anterior dorsal thalamus and the putamen, were related to spatial working memory and also altered in ADHD. These thalamo-striatal disruptions may be one of multiple atypical neural and cognitive mechanisms that relate to the ADHD clinical phenotype. PMID:22291667

  1. Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson's Disease.

    PubMed

    Harrington, Deborah L; Shen, Qian; Castillo, Gabriel N; Filoteo, J Vincent; Litvan, Irene; Takahashi, Colleen; French, Chelsea

    2017-01-01

    Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson's disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological, rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90%) of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia.

  2. Effect of Acupuncture on Functional Connectivity of Anterior Cingulate Cortex for Bell's Palsy Patients with Different Clinical Duration

    PubMed Central

    Wu, Hongli; Kan, Hongxing; Li, Chuanfu; Park, Kyungmo; Zhu, Yifang; Mohamed, Abdalla Z.; Xu, Chunsheng; Wu, Yuanyuan; Zhang, Wei

    2015-01-01

    Acupuncture is widely used in the treatment of Bell's palsy (BP) in many countries, but its underlying physiological mechanism remained controversial. In order to explore the potential mechanism, changes of functional connectivity (FC) of anterior cingulate gyrus (ACC) were investigated. We collected 20 healthy (control group) participants and 28 BP patients with different clinical duration accepted resting state functional MRI (rfMRI) scans before and after acupuncture, respectively. The FC of ACC before and after acupuncture was compared with paired t-test and the detailed results are presented in the paper. Our results showed that effects of the acupuncture on FC were closely related to clinical duration in patients with BP, which suggested that brain response to acupuncture was closely connected with the status of brain functional connectivity and implied that acupuncture plays a homeostatic role in the BP treatment. PMID:26161125

  3. Different Resting-State Functional Connectivity Alterations in Smokers and Nonsmokers with Internet Gaming Addiction

    PubMed Central

    Chen, Xue; Wang, Yao; Zhou, Yan; Sun, Yawen; Ding, Weina; Zhuang, Zhiguo; Xu, Jianrong; Du, Yasong

    2014-01-01

    This study investigated changes in resting-state functional connectivity (rsFC) of posterior cingulate cortex (PCC) in smokers and nonsmokers with Internet gaming addiction (IGA). Twenty-nine smokers with IGA, 22 nonsmokers with IGA, and 30 healthy controls (HC group) underwent a resting-state fMRI scan. PCC connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. Compared with the nonsmokers with IGA, the smokers with IGA exhibited decreased rsFC with PCC in the right rectus gyrus. Left middle frontal gyrus exhibited increased rsFC. The PCC connectivity with the right rectus gyrus was found to be negatively correlated with the CIAS scores in the smokers with IGA before correction. Our results suggested that smokers with IGA had functional changes in brain areas related to motivation and executive function compared with the nonsmokers with IGA. PMID:25506057

  4. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    PubMed Central

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the neural populations at the seed-point, suggestive of greater directional coupling from the seed out to the site electrodes. PMID:26747745

  5. Evidence for a Functional Hierarchy of Association Networks.

    PubMed

    Choi, Eun Young; Drayna, Garrett K; Badre, David

    2018-05-01

    Patient lesion and neuroimaging studies have identified a rostral-to-caudal functional gradient in the lateral frontal cortex (LFC) corresponding to higher-order (complex or abstract) to lower-order (simple or concrete) cognitive control. At the same time, monkey anatomical and human functional connectivity studies show that frontal regions are reciprocally connected with parietal and temporal regions, forming parallel and distributed association networks. Here, we investigated the link between the functional gradient of LFC regions observed during control tasks and the parallel, distributed organization of association networks. Whole-brain fMRI task activity corresponding to four orders of hierarchical control [Badre, D., & D'Esposito, M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19, 2082-2099, 2007] was compared with a resting-state functional connectivity MRI estimate of cortical networks [Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125-1165, 2011]. Critically, at each order of control, activity in the LFC and parietal cortex overlapped onto a common association network that differed between orders. These results are consistent with a functional organization based on separable association networks that are recruited during hierarchical control. Furthermore, corticostriatal functional connectivity MRI showed that, consistent with their participation in functional networks, rostral-to-caudal LFC and caudal-to-rostral parietal regions had similar, order-specific corticostriatal connectivity that agreed with a striatal gating model of hierarchical rule use. Our results indicate that hierarchical cognitive control is subserved by parallel and distributed association networks, together forming multiple localized functional gradients in different parts of association cortex. As such, association networks, while connectionally organized in parallel, may be functionally organized in a hierarchy via dynamic interaction with the striatum.

  6. Long-Term Functional Outcomes and Correlation with Regional Brain Connectivity by MRI Diffusion Tractography Metrics in a Near-Term Rabbit Model of Intrauterine Growth Restriction

    PubMed Central

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis. PMID:24143189

  7. Long-term functional outcomes and correlation with regional brain connectivity by MRI diffusion tractography metrics in a near-term rabbit model of intrauterine growth restriction.

    PubMed

    Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard

    2013-01-01

    Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.

  8. Tractography-Based Score for Learning Effective Connectivity From Multimodal Imaging Data Using Dynamic Bayesian Networks.

    PubMed

    Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun K

    2018-05-01

    Effective connectivity (EC) is the methodology for determining functional-integration among the functionally active segregated regions of the brain. By definition EC is "the causal influence exerted by one neuronal group on another" which is constrained by anatomical connectivity (AC) (axonal connections). AC is necessary for EC but does not fully determine it, because synaptic communication occurs dynamically in a context-dependent fashion. Although there is a vast emerging evidence of structure-function relationship using multimodal imaging studies, till date only a few studies have done joint modeling of the two modalities: functional MRI (fMRI) and diffusion tensor imaging (DTI). We aim to propose a unified probabilistic framework that combines information from both sources to learn EC using dynamic Bayesian networks (DBNs). DBNs are probabilistic graphical temporal models that learn EC in an exploratory fashion. Specifically, we propose a novel anatomically informed (AI) score that evaluates fitness of a given connectivity structure to both DTI and fMRI data simultaneously. The AI score is employed in structure learning of DBN given the data. Experiments with synthetic-data demonstrate the face validity of structure learning with our AI score over anatomically uninformed counterpart. Moreover, real-data results are cross-validated by performing classification-experiments. EC inferred on real fMRI-DTI datasets is found to be consistent with previous literature and show promising results in light of the AC present as compared to other classically used techniques such as Granger-causality. Multimodal analyses provide a more reliable basis for differentiating brain under abnormal/diseased conditions than the single modality analysis.

  9. Impact of real-time fMRI working memory feedback training on the interactions between three core brain networks.

    PubMed

    Zhang, Qiushi; Zhang, Gaoyan; Yao, Li; Zhao, Xiaojie

    2015-01-01

    Working memory (WM) refers to the temporary holding and manipulation of information during the performance of a range of cognitive tasks, and WM training is a promising method for improving an individual's cognitive functions. Our previous work demonstrated that WM performance can be improved through self-regulation of dorsal lateral prefrontal cortex (PFC) activation using real-time functional magnetic resonance imaging (rtfMRI), which enables individuals to control local brain activities volitionally according to the neurofeedback. Furthermore, research concerning large-scale brain networks has demonstrated that WM training requires the engagement of several networks, including the central executive network (CEN), the default mode network (DMN) and the salience network (SN), and functional connectivity within the CEN and DMN can be changed by WM training. Although a switching role of the SN between the CEN and DMN has been demonstrated, it remains unclear whether WM training can affect the interactions between the three networks and whether a similar mechanism also exists during the training process. In this study, we investigated the dynamic functional connectivity between the three networks during the rtfMRI feedback training using independent component analysis (ICA) and correlation analysis. The results indicated that functional connectivity within and between the three networks were significantly enhanced by feedback training, and most of the changes were associated with the insula and correlated with behavioral improvements. These findings suggest that the insula plays a critical role in the reorganization of functional connectivity among the three networks induced by rtfMRI training and in WM performance, thus providing new insights into the mechanisms of high-level functions and the clinical treatment of related functional impairments.

  10. Simultaneous tDCS-fMRI Identifies Resting State Networks Correlated with Visual Search Enhancement.

    PubMed

    Callan, Daniel E; Falcone, Brian; Wada, Atsushi; Parasuraman, Raja

    2016-01-01

    This study uses simultaneous transcranial direct current stimulation (tDCS) and functional MRI (fMRI) to investigate tDCS modulation of resting state activity and connectivity that underlies enhancement in behavioral performance. The experiment consisted of three sessions within the fMRI scanner in which participants conducted a visual search task: Session 1: Pre-training (no performance feedback), Session 2: Training (performance feedback given), Session 3: Post-training (no performance feedback). Resting state activity was recorded during the last 5 min of each session. During the 2nd session one group of participants underwent 1 mA tDCS stimulation and another underwent sham stimulation over the right posterior parietal cortex. Resting state spontaneous activity, as measured by fractional amplitude of low frequency fluctuations (fALFF), for session 2 showed significant differences between the tDCS stim and sham groups in the precuneus. Resting state functional connectivity from the precuneus to the substantia nigra, a subcortical dopaminergic region, was found to correlate with future improvement in visual search task performance for the stim over the sham group during active stimulation in session 2. The after-effect of stimulation on resting state functional connectivity was measured following a post-training experimental session (session 3). The left cerebellum Lobule VIIa Crus I showed performance related enhancement in resting state functional connectivity for the tDCS stim over the sham group. The ability to determine the relationship that the relative strength of resting state functional connectivity for an individual undergoing tDCS has on future enhancement in behavioral performance has wide ranging implications for neuroergonomic as well as therapeutic, and rehabilitative applications.

  11. The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex.

    PubMed

    Knösche, Thomas R; Tittgemeyer, Marc

    2011-01-01

    This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  12. Thalamo-Sensorimotor Functional Connectivity Correlates with World Ranking of Olympic, Elite, and High Performance Athletes.

    PubMed

    Huang, Zirui; Davis, Henry Hap; Wolff, Annemarie; Northoff, Georg

    2017-01-01

    Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI) in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers ( n = 30). Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1-35). Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers' motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.

  13. Anatomical and functional organization of the human substantia nigra and its connections

    PubMed Central

    Zhang, Yu; Larcher, Kevin Michel-Herve; Misic, Bratislav

    2017-01-01

    We investigated the anatomical and functional organization of the human substantia nigra (SN) using diffusion and functional MRI data from the Human Connectome Project. We identified a tripartite connectivity-based parcellation of SN with a limbic, cognitive, motor arrangement. The medial SN connects with limbic striatal and cortical regions and encodes value (greater response to monetary wins than losses during fMRI), while the ventral SN connects with associative regions of cortex and striatum and encodes salience (equal response to wins and losses). The lateral SN connects with somatomotor regions of striatum and cortex and also encodes salience. Behavioral measures from delay discounting and flanker tasks supported a role for the value-coding medial SN network in decisional impulsivity, while the salience-coding ventral SN network was associated with motor impulsivity. In sum, there is anatomical and functional heterogeneity of human SN, which underpins value versus salience coding, and impulsive choice versus impulsive action. PMID:28826495

  14. Linked Sex Differences in Cognition and Functional Connectivity in Youth.

    PubMed

    Satterthwaite, Theodore D; Wolf, Daniel H; Roalf, David R; Ruparel, Kosha; Erus, Guray; Vandekar, Simon; Gennatas, Efstathios D; Elliott, Mark A; Smith, Alex; Hakonarson, Hakon; Verma, Ragini; Davatzikos, Christos; Gur, Raquel E; Gur, Ruben C

    2015-09-01

    Sex differences in human cognition are marked, but little is known regarding their neural origins. Here, in a sample of 674 human participants ages 9-22, we demonstrate that sex differences in cognitive profiles are related to multivariate patterns of resting-state functional connectivity MRI (rsfc-MRI). Males outperformed females on motor and spatial cognitive tasks; females were faster in tasks of emotion identification and nonverbal reasoning. Sex differences were also prominent in the rsfc-MRI data at multiple scales of analysis, with males displaying more between-module connectivity, while females demonstrated more within-module connectivity. Multivariate pattern analysis using support vector machines classified subject sex on the basis of their cognitive profile with 63% accuracy (P < 0.001), but was more accurate using functional connectivity data (71% accuracy; P < 0.001). Moreover, the degree to which a given participant's cognitive profile was "male" or "female" was significantly related to the masculinity or femininity of their pattern of brain connectivity (P = 2.3 × 10(-7)). This relationship was present even when considering males and female separately. Taken together, these results demonstrate for the first time that sex differences in patterns of cognition are in part represented on a neural level through divergent patterns of brain connectivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Predicting haemodynamic networks using electrophysiology: The role of non-linear and cross-frequency interactions

    PubMed Central

    Tewarie, P.; Bright, M.G.; Hillebrand, A.; Robson, S.E.; Gascoyne, L.E.; Morris, P.G.; Meier, J.; Van Mieghem, P.; Brookes, M.J.

    2016-01-01

    Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology. PMID:26827811

  16. Sources of group differences in functional connectivity: an investigation applied to autism spectrum disorder.

    PubMed

    Jones, Tyler B; Bandettini, Peter A; Kenworthy, Lauren; Case, Laura K; Milleville, Shawn C; Martin, Alex; Birn, Rasmus M

    2010-01-01

    An increasing number of fMRI studies are using the correlation of low-frequency fluctuations between brain regions, believed to reflect synchronized variations in neuronal activity, to infer "functional connectivity". In studies of autism spectrum disorder (ASD), decreases in this measure of connectivity have been found by focusing on the response to task modulation, by using only the rest periods, or by analyzing purely resting-state data. This difference in connectivity, however, could result from a number of different mechanisms--differences in noise, task-related fluctuations, task performance, or spontaneous neuronal activity. In this study, we investigate the difference in functional connectivity between adolescents with high-functioning ASD and typically developing control subjects by examining the residual fluctuations occurring on top of the fMRI response to an overt verbal fluency task. We find decreased correlations of these residuals (a decreased "connectivity") in ASD subjects. Furthermore, we find that this decrease was not due to task-related effects, block-to-block variations in task performance, or increased noise, and the difference was greatest when primarily rest periods are considered. These findings suggest that the estimate of disrupted functional connectivity in ASD is likely driven by differences in task-unrelated neuronal fluctuations.

  17. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach.

    PubMed

    Xu, Nan; Spreng, R Nathan; Doerschuk, Peter C

    2017-01-01

    Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the "common driver" problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.

  18. Sexually dimorphic functional connectivity in response to high vs. low energy-dense food cues in obese humans: an fMRI study.

    PubMed

    Atalayer, Deniz; Pantazatos, Spiro P; Gibson, Charlisa D; McOuatt, Haley; Puma, Lauren; Astbury, Nerys M; Geliebter, Allan

    2014-10-15

    Sexually-dimorphic behavioral and biological aspects of human eating have been described. Using psychophysiological interaction (PPI) analysis, we investigated sex-based differences in functional connectivity with a key emotion-processing region (amygdala, AMG) and a key reward-processing area (ventral striatum, VS) in response to high vs. low energy-dense (ED) food images using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in obese persons in fasted and fed states. When fed, in response to high vs. low-ED food cues, obese men (vs. women) had greater functional connectivity with AMG in right subgenual anterior cingulate, whereas obese women had greater functional connectivity with AMG in left angular gyrus and right primary motor areas. In addition, when fed, AMG functional connectivity with pre/post-central gyrus was more associated with BMI in women (vs. men). When fasted, obese men (vs. women) had greater functional connectivity with AMG in bilateral supplementary frontal and primary motor areas, left precuneus, and right cuneus, whereas obese women had greater functional connectivity with AMG in left inferior frontal gyrus, right thalamus, and dorsomedial prefrontal cortex. When fed, greater functional connectivity with VS was observed in men in bilateral supplementary and primary motor areas, left postcentral gyrus, and left precuneus. These sex-based differences in functional connectivity in response to visual food cues may help partly explain differential eating behavior, pathology prevalence, and outcomes in men and women. Published by Elsevier Inc.

  19. Correlation between brain circuit segregation and obesity.

    PubMed

    Chao, Seh-Huang; Liao, Yin-To; Chen, Vincent Chin-Hung; Li, Cheng-Jui; McIntyre, Roger S; Lee, Yena; Weng, Jun-Cheng

    2018-01-30

    Obesity is a major public health problem. Herein, we aim to identify the correlation between brain circuit segregation and obesity using multimodal functional magnetic resonance imaging (fMRI) techniques and analysis. Twenty obese patients (BMI=37.66±5.07) and 30 healthy controls (BMI=22.64±3.45) were compared using neuroimaging and assessed for symptoms of anxiety and depression using the Hospital Anxiety and Depression Scale (HADS). All participants underwent resting-state fMRI (rs-fMRI) and T1-weighted imaging using a 1.5T MRI. Multimodal MRI techniques and analyses were used to assess obese patients, including the functional connectivity (FC), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), graph theoretical analysis (GTA), and voxel-based morphometry (VBM). Correlations between brain circuit segregation and obesity were also calculated. In the VBM, obese patients showed altered gray matter volumes in the amygdala, thalamus and putamen. In the FC, the obesity group showed increased functional connectivity in the bilateral anterior cingulate cortex and decreased functional connectivity in the frontal gyrus of default mode network. The obesity group also exhibited altered ALFF and ReHo in the prefrontal cortex and precuneus. In the GTA, the obese patients showed a significant decrease in local segregation and a significant increase in global integration, suggesting a shift toward randomization in their functional networks. Our results may provide additional evidence for potential structural and functional imaging markers for clinical diagnosis and future research, and they may improve our understanding of the underlying pathophysiology of obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multimodal approaches to functional connectivity in autism spectrum disorders: An integrative perspective.

    PubMed

    Mash, Lisa E; Reiter, Maya A; Linke, Annika C; Townsend, Jeanne; Müller, Ralph-Axel

    2018-05-01

    Atypical functional connectivity has been implicated in autism spectrum disorders (ASDs). However, the literature to date has been largely inconsistent, with mixed and conflicting reports of hypo- and hyper-connectivity. These discrepancies are partly due to differences between various neuroimaging modalities. Functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) measure distinct indices of functional connectivity (e.g., blood-oxygenation level-dependent [BOLD] signal vs. electrical activity). Furthermore, each method has unique benefits and disadvantages with respect to spatial and temporal resolution, vulnerability to specific artifacts, and practical implementation. Thus far, functional connectivity research on ASDs has remained almost exclusively unimodal; therefore, interpreting findings across modalities remains a challenge. Multimodal integration of fMRI, EEG, and MEG data is critical in resolving discrepancies in the literature, and working toward a unifying framework for interpreting past and future findings. This review aims to provide a theoretical foundation for future multimodal research on ASDs. First, we will discuss the merits and shortcomings of several popular theories in ASD functional connectivity research, using examples from the literature to date. Next, the neurophysiological relationships between imaging modalities, including their relationship with invasive neural recordings, will be reviewed. Finally, methodological approaches to multimodal data integration will be presented, and their future application to ASDs will be discussed. Analyses relating transient patterns of neural activity ("states") are particularly promising. This strategy provides a comparable measure across modalities, captures complex spatiotemporal patterns, and is a natural extension of recent dynamic fMRI research in ASDs. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 456-473, 2018. © 2017 Wiley Periodicals, Inc.

  1. Hippocampal Networks Habituate as Novelty Accumulates

    ERIC Educational Resources Information Center

    Murty, Vishnu P.; Ballard, Ian C.; Macduffie, Katherine E.; Krebs, Ruth M.; Adcock, R. Alison

    2013-01-01

    Novelty detection, a critical computation within the medial temporal lobe (MTL) memory system, necessarily depends on prior experience. The current study used functional magnetic resonance imaging (fMRI) in humans to investigate dynamic changes in MTL activation and functional connectivity as experience with novelty accumulates. fMRI data were…

  2. MDMA (Ecstasy) association with impaired fMRI BOLD thalamic coherence and functional connectivity*

    PubMed Central

    Salomon, Ronald M.; Karageorgiou, John; Dietrich, Mary S.; McLellan, Jessica Y.; Charboneau, Evonne J.; Blackford, Jennifer U.; Cowan, Ronald L.

    2011-01-01

    Background MDMA exposure is associated with chronic serotonergic dysfunction in preclinical and clinical studies. A recent functional magnetic resonance imaging (fMRI) comparison of past MDMA users to non-MDMA-using controls revealed increased spatial extent and amplitude of activation in the supplementary motor area during motor tasks (Karageorgiou et al., 2009). Blood oxygenation level dependent (BOLD) data from that study were reanalyzed for intraregional coherence and for inter-regional temporal correlations between time series, as functional connectivity. Methods Fourteen MDMA users and ten controls reporting similar non-MDMA abuse performed finger taps during fMRI. Fourteen motor pathway regions plus a pontine raphé region were examined. Coherence was expressed as percent of voxels positively correlated with an intraregional index voxel. Functional connectivity was determined using wavelet correlations. Results Intraregional thalamic coherence was significantly diminished at low frequencies in MDMA users compared to controls (p=0.009). Inter-regional functional connectivity was significantly weaker for right thalamo - left caudate (p=0.002), right thalamo - left thalamus (p=0.007), right caudate - right postcentral (p=0.007) and right supplementary motor area - right precentral gyrus (p=0.011) region pairs compared to controls. When stratified by lifetime exposure, significant negative associations were observed between cumulative MDMA use and functional connectivity in seven other region-pairs, while only one region-pair showed a positive association. Conclusions Reported prior MDMA use was associated with deficits in BOLD intraregional coherence and inter-regional functional connectivity, even among functionally robust pathways involving motor regions. This suggests that MDMA use is associated with long-lasting effects on brain neurophysiology beyond the cognitive domain. PMID:21807471

  3. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy.

    PubMed

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-07-01

    The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale.The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores.Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA.The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment.

  4. The reorganization of functional architecture in the early-stages of Parkinson's disease.

    PubMed

    Tuovinen, Noora; Seppi, Klaus; de Pasquale, Francesco; Müller, Christoph; Nocker, Michael; Schocke, Michael; Gizewski, Elke R; Kremser, Christian; Wenning, Gregor K; Poewe, Werner; Djamshidian, Atbin; Scherfler, Christoph; Seki, Morinobu

    2018-05-01

    The study aim was to identify longitudinal abnormalities of functional connectivity and its relation with motor disability in early to moderately advanced stages of Parkinson's disease patients. 3.0T structural and resting-state functional MRI was performed in healthy subjects (n = 16) and Parkinson's disease patients (n = 16) with mean disease duration of 2.2 ± 1.2 years at baseline with a clinical follow-up of 1.5 ± 0.3 years. Resting-state fMRI analysis included region-to-region connectivity in correlation with UPDRS-III scores and computation of Global Efficiency and Degree Centrality. At baseline, patients' connectivity increased between the cerebellum and somatomotor network, and decreased between motor regions (Rolandic operculum, precentral gyrus, supplementary motor area, postcentral gyrus) and cingulate connectivity. At 1.5 years follow-up, connectivity remained altered in the same regions identified at baseline. The cerebellum showed additional hyperconnectivity within itself and to the caudate nucleus, thalamus and amygdala compared to controls. These differences correlated with UPDRS-III scores. Seed-based connectivity revealed increased involvement of the default mode network with precentral gyrus in patients at follow-up investigation. Resting-state fMRI identified marked disturbances of the overall architecture of connectivity in Parkinson's disease. The noted alterations in cortical motor areas were associated with cerebellar hyperconnectivity in early to moderately advanced stages of Parkinson's disease suggesting ongoing attempts of recovery and compensatory mechanism for affected functions. The potential to identify connectivity alterations in regions related to both motor and attentional functions requires further evaluation as an objective marker to monitor disease progression, and medical, as well as surgical interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Novel MRI methodology to detect human whole-brain connectivity changes after ingestion of fructose or glucose

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Wilkins, Bryce; Page, Kathleen A.; Singh, Manbir

    2012-03-01

    A novel MRI protocol has been developed to investigate the differential effects of glucose or fructose consumption on whole-brain functional brain connectivity. A previous study has reported a decrease in the fMRI blood oxygen level dependent (BOLD) signal of the hypothalamus following glucose ingestion, but due to technical limitations, was restricted to a single slice covering the hypothalamus, and thus unable to detect whole-brain connectivity. In another previous study, a protocol was devised to acquire whole-brain fMRI data following food intake, but only after restricting image acquisition to an MR sampling or repetition time (TR) of 20s, making the protocol unsuitable to detect functional connectivity above 0.025Hz. We have successfully implemented a continuous 36-min, 40 contiguous slices, whole-brain BOLD acquisition protocol on a 3T scanner with TR=4.5s to ensure detection of up to 0.1Hz frequencies for whole-brain functional connectivity analysis. Human data were acquired first with ingestion of water only, followed by a glucose or fructose drink within the scanner, without interrupting the scanning. Whole-brain connectivity was analyzed using standard correlation methodology in the 0.01-0.1 Hz range. The correlation coefficient differences between fructose and glucose ingestion among targeted regions were converted to t-scores using the water-only correlation coefficients as a null condition. Results show a dramatic increase in the hypothalamic connectivity to the hippocampus, amygdala, insula, caudate and the nucleus accumben for fructose over glucose. As these regions are known to be key components of the feeding and reward brain circuits, these results suggest a preference for fructose ingestion.

  6. Ventral Striatum Functional Connectivity as a Predictor of Adolescent Depressive Disorder in a Longitudinal Community-Based Sample.

    PubMed

    Pan, Pedro Mario; Sato, João R; Salum, Giovanni A; Rohde, Luis A; Gadelha, Ary; Zugman, Andre; Mari, Jair; Jackowski, Andrea; Picon, Felipe; Miguel, Eurípedes C; Pine, Daniel S; Leibenluft, Ellen; Bressan, Rodrigo A; Stringaris, Argyris

    2017-11-01

    Previous studies have implicated aberrant reward processing in the pathogenesis of adolescent depression. However, no study has used functional connectivity within a distributed reward network, assessed using resting-state functional MRI (fMRI), to predict the onset of depression in adolescents. This study used reward network-based functional connectivity at baseline to predict depressive disorder at follow-up in a community sample of adolescents. A total of 637 children 6-12 years old underwent resting-state fMRI. Discovery and replication analyses tested intrinsic functional connectivity (iFC) among nodes of a putative reward network. Logistic regression tested whether striatal node strength, a measure of reward-related iFC, predicted onset of a depressive disorder at 3-year follow-up. Further analyses investigated the specificity of this prediction. Increased left ventral striatum node strength predicted increased risk for future depressive disorder (odds ratio=1.54, 95% CI=1.09-2.18), even after excluding participants who had depressive disorders at baseline (odds ratio=1.52, 95% CI=1.05-2.20). Among 11 reward-network nodes, only the left ventral striatum significantly predicted depression. Striatal node strength did not predict other common adolescent psychopathology, such as anxiety, attention deficit hyperactivity disorder, and substance use. Aberrant ventral striatum functional connectivity specifically predicts future risk for depressive disorder. This finding further emphasizes the need to understand how brain reward networks contribute to youth depression.

  7. Identifying Individuals with Antisocial Personality Disorder Using Resting-State fMRI

    PubMed Central

    Tang, Yan; Jiang, Weixiong; Liao, Jian; Wang, Wei; Luo, Aijing

    2013-01-01

    Antisocial personality disorder (ASPD) is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI) data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity) and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint. PMID:23593272

  8. Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy.

    PubMed

    Braakman, Hilde M H; Vaessen, Maarten J; Jansen, Jacobus F A; Debeij-van Hall, Mariette H J A; de Louw, Anton; Hofman, Paul A M; Vles, Johan S H; Aldenkamp, Albert P; Backes, Walter H

    2013-03-01

    Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Thirty-two children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad-range cognitive impairments in children with FLE. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  9. Adaptation of brain functional and structural networks in aging.

    PubMed

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  10. Resting-state functional connectivity and motor imagery brain activation

    PubMed Central

    Saiote, Catarina; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Bommarito, Giulia; Cordano, Christian; Battaglia, Mario; Mancardi, Giovanni Luigi; Inglese, Matilde

    2016-01-01

    Motor imagery (MI) relies on the mental simulation of an action without any overt motor execution (ME), and can facilitate motor learning and enhance the effect of rehabilitation in patients with neurological conditions. While functional magnetic resonance imaging (fMRI) during MI and ME reveals shared cortical representations, the role and functional relevance of the resting-state functional connectivity (RSFC) of brain regions involved in MI is yet unknown. Here, we performed resting-state fMRI followed by fMRI during ME and MI with the dominant hand. We used a behavioral chronometry test to measure ME and MI movement duration and compute an index of performance (IP). Then, we analyzed the voxel-matched correlation between the individual MI parameter estimates and seed-based RSFC maps in the MI network to measure the correspondence between RSFC and MI fMRI activation. We found that inter-individual differences in intrinsic connectivity in the MI network predicted several clusters of activation. Taken together, present findings provide first evidence that RSFC within the MI network is predictive of the activation of MI brain regions, including those associated with behavioral performance, thus suggesting a role for RSFC in obtaining a deeper understanding of neural substrates of MI and of MI ability. PMID:27273577

  11. Changes in Thalamic Connectivity in the Early and Late Stages of Amnestic Mild Cognitive Impairment: A Resting-State Functional Magnetic Resonance Study from ADNI

    PubMed Central

    Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M.; Ren, Junchan; Ren, Aifeng

    2015-01-01

    We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer’s disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI. PMID:25679386

  12. Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: a resting-state functional magnetic resonance study from ADNI.

    PubMed

    Cai, Suping; Huang, Liyu; Zou, Jia; Jing, Longlong; Zhai, Buzhong; Ji, Gongjun; von Deneen, Karen M; Ren, Junchan; Ren, Aifeng

    2015-01-01

    We used resting-state functional magnetic resonance imaging (fMRI) to investigate changes in the thalamus functional connectivity in early and late stages of amnestic mild cognitive impairment. Data of 25 late stages of amnestic mild cognitive impairment (LMCI) patients, 30 early stages of amnestic mild cognitive impairment (EMCI) patients and 30 well-matched healthy controls (HC) were analyzed from the Alzheimer's disease Neuroimaging Initiative (ADNI). We focused on the correlation between low frequency fMRI signal fluctuations in the thalamus and those in all other brain regions. Compared to healthy controls, we found functional connectivity between the left/right thalamus and a set of brain areas was decreased in LMCI and/or EMCI including right fusiform gyrus (FG), left and right superior temporal gyrus, left medial frontal gyrus extending into supplementary motor area, right insula, left middle temporal gyrus (MTG) extending into middle occipital gyrus (MOG). We also observed increased functional connectivity between the left/right thalamus and several regions in LMCI and/or EMCI including left FG, right MOG, left and right precuneus, right MTG and left inferior temporal gyrus. In the direct comparison between the LMCI and EMCI groups, we obtained several brain regions showed thalamus-seeded functional connectivity differences such as the precentral gyrus, hippocampus, FG and MTG. Briefly, these brain regions mentioned above were mainly located in the thalamo-related networks including thalamo-hippocampus, thalamo-temporal, thalamo-visual, and thalamo-default mode network. The decreased functional connectivity of the thalamus might suggest reduced functional integrity of thalamo-related networks and increased functional connectivity indicated that aMCI patients could use additional brain resources to compensate for the loss of cognitive function. Our study provided a new sight to understand the two important states of aMCI and revealed resting-state fMRI is an appropriate method for exploring pathophysiological changes in aMCI.

  13. Resting-state activity in development and maintenance of normal brain function.

    PubMed

    Pizoli, Carolyn E; Shah, Manish N; Snyder, Abraham Z; Shimony, Joshua S; Limbrick, David D; Raichle, Marcus E; Schlaggar, Bradley L; Smyth, Matthew D

    2011-07-12

    One of the most intriguing recent discoveries concerning brain function is that intrinsic neuronal activity manifests as spontaneous fluctuations of the blood oxygen level-dependent (BOLD) functional MRI signal. These BOLD fluctuations exhibit temporal synchrony within widely distributed brain regions known as resting-state networks. Resting-state networks are present in the waking state, during sleep, and under general anesthesia, suggesting that spontaneous neuronal activity plays a fundamental role in brain function. Despite its ubiquitous presence, the physiological role of correlated, spontaneous neuronal activity remains poorly understood. One hypothesis is that this activity is critical for the development of synaptic connections and maintenance of synaptic homeostasis. We had a unique opportunity to test this hypothesis in a 5-y-old boy with severe epileptic encephalopathy. The child developed marked neurologic dysfunction in association with a seizure disorder, resulting in a 1-y period of behavioral regression and progressive loss of developmental milestones. His EEG showed a markedly abnormal pattern of high-amplitude, disorganized slow activity with frequent generalized and multifocal epileptiform discharges. Resting-state functional connectivity MRI showed reduced BOLD fluctuations and a pervasive lack of normal connectivity. The child underwent successful corpus callosotomy surgery for treatment of drop seizures. Postoperatively, the patient's behavior returned to baseline, and he resumed development of new skills. The waking EEG revealed a normal background, and functional connectivity MRI demonstrated restoration of functional connectivity architecture. These results provide evidence that intrinsic, coherent neuronal signaling may be essential to the development and maintenance of the brain's functional organization.

  14. Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine.

    PubMed

    Nasrallah, Fatima A; Lew, Si Kang; Low, Amanda Si-Min; Chuang, Kai-Hsiang

    2014-01-01

    Correlative fluctuations in functional MRI (fMRI) signals across the brain at rest have been taken as a measure of functional connectivity, but the neural basis of this resting-state MRI (rsMRI) signal is not clear. Previously, we found that the α2 adrenergic agonist, medetomidine, suppressed the rsMRI correlation dose-dependently but not the stimulus evoked activation. To understand the underlying electrophysiology and neurovascular coupling, which might be altered due to the vasoconstrictive nature of medetomidine, somatosensory evoked potential (SEP) and resting electroencephalography (EEG) were measured and correlated with corresponding BOLD signals in rat brains under three dosages of medetomidine. The SEP elicited by electrical stimulation to both forepaws was unchanged regardless of medetomidine dosage, which was consistent with the BOLD activation. Identical relationship between the SEP and BOLD signal under different medetomidine dosages indicates that the neurovascular coupling was not affected. Under resting state, EEG power was the same but a depression of inter-hemispheric EEG coherence in the gamma band was observed at higher medetomidine dosage. Different from medetomidine, both resting EEG power and BOLD power and coherence were significantly suppressed with increased isoflurane level. Such reduction was likely due to suppressed neural activity as shown by diminished SEP and BOLD activation under isoflurane, suggesting different mechanisms of losing synchrony at resting-state. Even though, similarity between electrophysiology and BOLD under stimulation and resting-state implicates a tight neurovascular coupling in both medetomidine and isoflurane. Our results confirm that medetomidine does not suppress neural activity but dissociates connectivity in the somatosensory cortex. The differential effect of medetomidine and its receptor specific action supports the neuronal origin of functional connectivity and implicates the mechanism of its sedative effect. © 2013. Published by Elsevier Inc. All rights reserved.

  15. Connectivity in Autism: A review of MRI connectivity studies

    PubMed Central

    Rane, Pallavi; Cochran, David; Hodge, Steven M.; Haselgrove, Christian; Kennedy, David; Frazier, Jean A.

    2016-01-01

    Autism Spectrum Disorder (ASD) affects 1 in 50 children between the ages of 6–17 years as per a 2012 CDC survey of parents. The etiology of ASD is not precisely known. ASD is an umbrella term, which includes low (IQ<70) to high functioning (IQ>70) individuals. A better understanding of the disorder, and how it manifests in an individual subject can lead to more effective intervention plans to fulfill the individual’s treatment needs. Magnetic resonance imaging (MRI) is a non-invasive investigational tool that can help study the ways in which the brain develops and/or deviates from the typical developmental trajectory. MRI offers insights into the structure, function, and metabolism of the brain. In this article, we review published studies on brain connectivity changes in ASD using either resting state functional MRI or diffusion tensor imaging. The general findings of decreases in white matter integrity and long-range neural coherence are prevalent in ASD literature. However, there is somewhat less of a consensus in the detailed localization of these findings. There are even fewer studies linking these connectivity alterations with the behavioral phenotype of the disorder. Nevertheless, with the help of data sharing and large-scale analytic efforts, the field is advancing towards several convergent themes. These include reduced functional coherence of long-range intra-hemispheric cortico-cortical default mode circuitry, impaired inter-hemispheric regulation, and an associated, perhaps compensatory, increase in local and short-range cortico-subcortical coherence. PMID:26146755

  16. Optimizing and Interpreting Insular Functional Connectivity Maps Obtained During Acute Experimental Pain: The Effects of Global Signal and Task Paradigm Regression.

    PubMed

    Ibinson, James W; Vogt, Keith M; Taylor, Kevin B; Dua, Shiv B; Becker, Christopher J; Loggia, Marco; Wasan, Ajay D

    2015-12-01

    The insula is uniquely located between the temporal and parietal cortices, making it anatomically well-positioned to act as an integrating center between the sensory and affective domains for the processing of painful stimulation. This can be studied through resting-state functional connectivity (fcMRI) imaging; however, the lack of a clear methodology for the analysis of fcMRI complicates the interpretation of these data during acute pain. Detected connectivity changes may reflect actual alterations in low-frequency synchronous neuronal activity related to pain, may be due to changes in global cerebral blood flow or the superimposed task-induced neuronal activity. The primary goal of this study was to investigate the effects of global signal regression (GSR) and task paradigm regression (TPR) on the changes in functional connectivity of the left (contralateral) insula in healthy subjects at rest and during acute painful electric nerve stimulation of the right hand. The use of GSR reduced the size and statistical significance of connectivity clusters and created negative correlation coefficients for some connectivity clusters. TPR with cyclic stimulation gave task versus rest connectivity differences similar to those with a constant task, suggesting that analysis which includes TPR is more accurately reflective of low-frequency neuronal activity. Both GSR and TPR have been inconsistently applied to fcMRI analysis. Based on these results, investigators need to consider the impact GSR and TPR have on connectivity during task performance when attempting to synthesize the literature.

  17. Resting state functional connectivity magnetic resonance imaging integrated with intraoperative neuronavigation for functional mapping after aborted awake craniotomy

    PubMed Central

    Batra, Prag; Bandt, S. Kathleen; Leuthardt, Eric C.

    2016-01-01

    Background: Awake craniotomy is currently the gold standard for aggressive tumor resections in eloquent cortex. However, a significant subset of patients is unable to tolerate this procedure, particularly the very young or old or those with psychiatric comorbidities, cardiopulmonary comorbidities, or obesity, among other conditions. In these cases, typical alternative procedures include biopsy alone or subtotal resection, both of which are associated with diminished surgical outcomes. Case Description: Here, we report the successful use of a preoperatively obtained resting state functional connectivity magnetic resonance imaging (MRI) integrated with intraoperative neuronavigation software in order to perform functional cortical mapping in the setting of an aborted awake craniotomy due to loss of airway. Conclusion: Resting state functional connectivity MRI integrated with intraoperative neuronavigation software can provide an alternative option for functional cortical mapping in the setting of an aborted awake craniotomy. PMID:26958419

  18. Regional homogeneity of fMRI time series in autism spectrum disorders.

    PubMed

    Shukla, Dinesh K; Keehn, Brandon; Müller, Ralph Axel

    2010-05-26

    Functional magnetic resonance imaging (fMRI) and functional connectivity MRI (fcMRI) studies of autism spectrum disorders (ASD) have suggested atypical patterns of activation and long-distance connectivity for diverse tasks and networks in ASD. We explored the regional homogeneity (ReHo) approach in ASD, which is analogous to conventional fcMRI, but focuses on local connectivity. FMRI data of 26 children with ASD and 29 typically developing (TD) children were acquired during continuous task performance (visual search). Effects of motion and task were removed and Kendall's coefficient of concordance (KCC) was computed, based on the correlation of the blood oxygen level dependent (BOLD) time series for each voxel and its six nearest neighbors. ReHo was lower in the ASD than the TD group in superior parietal and anterior prefrontal regions. Inverse effects of greater ReHo in the ASD group were detected in lateral and medial temporal regions, predominantly in the right hemisphere. Our findings suggest that ReHo is a sensitive measure for detecting cortical abnormalities in autism. However, impact of methodological factors (such as spatial resolution) on ReHo require further investigation. Published by Elsevier Ireland Ltd.

  19. Brain correlates of hypnotic paralysis-a resting-state fMRI study.

    PubMed

    Pyka, M; Burgmer, M; Lenzen, T; Pioch, R; Dannlowski, U; Pfleiderer, B; Ewert, A W; Heuft, G; Arolt, V; Konrad, C

    2011-06-15

    Hypnotic paralysis has been used since the times of Charcot to study altered states of consciousness; however, the underlying neurobiological correlates are poorly understood. We investigated human brain function during hypnotic paralysis using resting-state functional magnetic resonance imaging (fMRI), focussing on two core regions of the default mode network and the representation of the paralysed hand in the primary motor cortex. Hypnotic suggestion induced an observable left-hand paralysis in 19 participants. Resting-state fMRI at 3T was performed in pseudo-randomised order awake and in the hypnotic condition. Functional connectivity analyses revealed increased connectivity of the precuneus with the right dorsolateral prefrontal cortex, angular gyrus, and a dorsal part of the precuneus. Functional connectivity of the medial frontal cortex and the primary motor cortex remained unchanged. Our results reveal that the precuneus plays a pivotal role during maintenance of an altered state of consciousness. The increased coupling of selective cortical areas with the precuneus supports the concept that hypnotic paralysis may be mediated by a modified representation of the self which impacts motor abilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Specialization and integration of functional thalamocortical connectivity in the human infant.

    PubMed

    Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David

    2015-05-19

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.

  1. Specialization and integration of functional thalamocortical connectivity in the human infant

    PubMed Central

    Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391

  2. Combined Functional and Causal Connectivity Analyses of Language Networks in Children: A Feasibility Study

    ERIC Educational Resources Information Center

    Wilke, Marko; Lidzba, Karen; Krageloh-Mann, Ingeborg

    2009-01-01

    Instead of assessing activation in distinct brain regions, approaches to investigating the networks underlying distinct brain functions have come into the focus of neuroscience research. Here, we provide a completely data-driven framework for assessing functional and causal connectivity in functional magnetic resonance imaging (fMRI) data,…

  3. Defining Functional Areas in Individual Human Brains using Resting Functional Connectivity MRI

    PubMed Central

    Cohen, Alexander L.; Fair, Damien A.; Dosenbach, Nico U.F.; Miezin, Francis M.; Dierker, Donna; Van Essen, David C.; Schlaggar, Bradley L.; Petersen, Steven E.

    2009-01-01

    The cerebral cortex is anatomically organized at many physical scales starting at the level of single neurons and extending up to functional systems. Current functional magnetic resonance imaging (fMRI) studies often focus at the level of areas, networks, and systems. Except in restricted domains, (e.g. topographically-organized sensory regions), it is difficult to determine area boundaries in the human brain using fMRI. The ability to delineate functional areas non-invasively would enhance the quality of many experimental analyses allowing more accurate across-subject comparisons of independently identified functional areas. Correlations in spontaneous BOLD activity, often referred to as resting state functional connectivity (rs-fcMRI), are especially promising as a way to accurately localize differences in patterns of correlated activity across large expanses of cortex. In the current report, we applied a novel set of image analysis tools to explore the utility of rs-fcMRI for defining wide-ranging functional area boundaries. We find that rs-fcMRI patterns show sharp transitions in correlation patterns and that these putative areal boundaries can be reliably detected in individual subjects as well as in group data. Additionally, combining surface-based analysis techniques with image processing algorithms allows automated mapping of putative areal boundaries across large expanses of cortex without the need for prior information about a region’s function or topography. Our approach reliably produces maps of bounded regions appropriate in size and number for putative functional areas. These findings will hopefully stimulate further methodological refinements and validations. PMID:18367410

  4. OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis.

    PubMed

    Koush, Yury; Ashburner, John; Prilepin, Evgeny; Sladky, Ronald; Zeidman, Peter; Bibikov, Sergei; Scharnowski, Frank; Nikonorov, Artem; De Ville, Dimitri Van

    2017-08-01

    Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia.

    PubMed

    Sambataro, Fabio; Blasi, Giuseppe; Fazio, Leonardo; Caforio, Grazia; Taurisano, Paolo; Romano, Raffaella; Di Giorgio, Annabella; Gelao, Barbara; Lo Bianco, Luciana; Papazacharias, Apostolos; Popolizio, Teresa; Nardini, Marcello; Bertolino, Alessandro

    2010-03-01

    Earlier studies have shown widespread alterations of functional connectivity of various brain networks in schizophrenia, including the default mode network (DMN). The DMN has also an important role in the performance of cognitive tasks. Furthermore, treatment with second-generation antipsychotic drugs may ameliorate to some degree working memory (WM) deficits and related brain activity. The aim of this study was to evaluate the effects of treatment with olanzapine monotherapy on functional connectivity among brain regions of the DMN during WM. Seventeen patients underwent an 8-week prospective study and completed two functional magnetic resonance imaging (fMRI) scans at 4 and 8 weeks of treatment during the performance of the N-back WM task. To control for potential repetition effects, 19 healthy controls also underwent two fMRI scans at a similar time interval. We used spatial group-independent component analysis (ICA) to analyze fMRI data. Relative to controls, patients with schizophrenia had reduced connectivity strength within the DMN in posterior cingulate, whereas it was greater in precuneus and inferior parietal lobule. Treatment with olanzapine was associated with increases in DMN connectivity with ventromedial prefrontal cortex, but not in posterior regions of DMN. These results suggest that treatment with olanzapine is associated with the modulation of DMN connectivity in schizophrenia. In addition, our findings suggest critical functional differences in the regions of DMN.

  6. Treatment with Olanzapine is Associated with Modulation of the Default Mode Network in Patients with Schizophrenia

    PubMed Central

    Sambataro, Fabio; Blasi, Giuseppe; Fazio, Leonardo; Caforio, Grazia; Taurisano, Paolo; Romano, Raffaella; Di Giorgio, Annabella; Gelao, Barbara; Lo Bianco, Luciana; Papazacharias, Apostolos; Popolizio, Teresa; Nardini, Marcello; Bertolino, Alessandro

    2010-01-01

    Earlier studies have shown widespread alterations of functional connectivity of various brain networks in schizophrenia, including the default mode network (DMN). The DMN has also an important role in the performance of cognitive tasks. Furthermore, treatment with second-generation antipsychotic drugs may ameliorate to some degree working memory (WM) deficits and related brain activity. The aim of this study was to evaluate the effects of treatment with olanzapine monotherapy on functional connectivity among brain regions of the DMN during WM. Seventeen patients underwent an 8-week prospective study and completed two functional magnetic resonance imaging (fMRI) scans at 4 and 8 weeks of treatment during the performance of the N-back WM task. To control for potential repetition effects, 19 healthy controls also underwent two fMRI scans at a similar time interval. We used spatial group-independent component analysis (ICA) to analyze fMRI data. Relative to controls, patients with schizophrenia had reduced connectivity strength within the DMN in posterior cingulate, whereas it was greater in precuneus and inferior parietal lobule. Treatment with olanzapine was associated with increases in DMN connectivity with ventromedial prefrontal cortex, but not in posterior regions of DMN. These results suggest that treatment with olanzapine is associated with the modulation of DMN connectivity in schizophrenia. In addition, our findings suggest critical functional differences in the regions of DMN. PMID:19956088

  7. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study

    PubMed Central

    Samson, Andrea C.; Kirsch, Valerie; Blautzik, Janusch; Grothe, Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F.; Hennig-Fast, Kristina; Meindl, Thomas

    2013-01-01

    Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration. PMID:23825652

  8. The effect of hippocampal function, volume and connectivity on posterior cingulate cortex functioning during episodic memory fMRI in mild cognitive impairment.

    PubMed

    Papma, Janne M; Smits, Marion; de Groot, Marius; Mattace Raso, Francesco U; van der Lugt, Aad; Vrooman, Henri A; Niessen, Wiro J; Koudstaal, Peter J; van Swieten, John C; van der Veen, Frederik M; Prins, Niels D

    2017-09-01

    Diminished function of the posterior cingulate cortex (PCC) is a typical finding in early Alzheimer's disease (AD). It is hypothesized that in early stage AD, PCC functioning relates to or reflects hippocampal dysfunction or atrophy. The aim of this study was to examine the relationship between hippocampus function, volume and structural connectivity, and PCC activation during an episodic memory task-related fMRI study in mild cognitive impairment (MCI). MCI patients (n = 27) underwent episodic memory task-related fMRI, 3D-T1w MRI, 2D T2-FLAIR MRI and diffusion tensor imaging. Stepwise linear regression analysis was performed to examine the relationship between PCC activation and hippocampal activation, hippocampal volume and diffusion measures within the cingulum along the hippocampus. We found a significant relationship between PCC and hippocampus activation during successful episodic memory encoding and correct recognition in MCI patients. We found no relationship between the PCC and structural hippocampal predictors. Our results indicate a relationship between PCC and hippocampus activation during episodic memory engagement in MCI. This may suggest that during episodic memory, functional network deterioration is the most important predictor of PCC functioning in MCI. • PCC functioning during episodic memory relates to hippocampal functioning in MCI. • PCC functioning during episodic memory does not relate to hippocampal structure in MCI. • Functional network changes are an important predictor of PCC functioning in MCI.

  9. Multiple sclerosis lesions affect intrinsic functional connectivity of the spinal cord.

    PubMed

    Conrad, Benjamin N; Barry, Robert L; Rogers, Baxter P; Maki, Satoshi; Mishra, Arabinda; Thukral, Saakshi; Sriram, Subramaniam; Bhatia, Aashim; Pawate, Siddharama; Gore, John C; Smith, Seth A

    2018-06-01

    Patients with multiple sclerosis present with focal lesions throughout the spinal cord. There is a clinical need for non-invasive measurements of spinal cord activity and functional organization in multiple sclerosis, given the cord's critical role in the disease. Recent reports of spontaneous blood oxygenation level-dependent fluctuations in the spinal cord using functional MRI suggest that, like the brain, cord activity at rest is organized into distinct, synchronized functional networks among grey matter regions, likely related to motor and sensory systems. Previous studies looking at stimulus-evoked activity in the spinal cord of patients with multiple sclerosis have demonstrated increased levels of activation as well as a more bilateral distribution of activity compared to controls. Functional connectivity studies of brain networks in multiple sclerosis have revealed widespread alterations, which may take on a dynamic trajectory over the course of the disease, with compensatory increases in connectivity followed by decreases associated with structural damage. We build upon this literature by examining functional connectivity in the spinal cord of patients with multiple sclerosis. Using ultra-high field 7 T imaging along with processing strategies for robust spinal cord functional MRI and lesion identification, the present study assessed functional connectivity within cervical cord grey matter of patients with relapsing-remitting multiple sclerosis (n = 22) compared to a large sample of healthy controls (n = 56). Patient anatomical images were rated for lesions by three independent raters, with consensus ratings revealing 19 of 22 patients presented with lesions somewhere in the imaged volume. Linear mixed models were used to assess effects of lesion location on functional connectivity. Analysis in control subjects demonstrated a robust pattern of connectivity among ventral grey matter regions as well as a distinct network among dorsal regions. A gender effect was also observed in controls whereby females demonstrated higher ventral network connectivity. Wilcoxon rank-sum tests detected no differences in average connectivity or power of low frequency fluctuations in patients compared to controls. The presence of lesions was, however, associated with local alterations in connectivity with differential effects depending on columnar location. The patient results suggest that spinal cord functional networks are generally intact in relapsing-remitting multiple sclerosis but that lesions are associated with focal abnormalities in intrinsic connectivity. These findings are discussed in light of the current literature on spinal cord functional MRI and the potential neurological underpinnings.

  10. Effects of behavioral activation on default mode network connectivity in subthreshold depression: A preliminary resting-state fMRI study.

    PubMed

    Yokoyama, Satoshi; Okamoto, Yasumasa; Takagaki, Koki; Okada, Go; Takamura, Masahiro; Mori, Asako; Shiota, Syouichi; Ichikawa, Naho; Jinnin, Ran; Yamawaki, Shigeto

    2018-02-01

    Subthreshold depression is a risk factor for major depressive disorder, and it is known to have a negative impact on quality of life (QOL). Although behavioral activation, which is one type of cognitive behavioral therapy, is an effective psychological intervention for subthreshold depression, neural mechanisms of behavioral activation are unclear. Enhanced functional connectivity between default mode network (DMN) and the other regions has been demonstrated in participants with subthreshold depression. The purpose of this study was to examine the effects of behavioral activation on DMN abnormalities by using resting-state functional MRI (rs-fMRI). Participants with subthreshold depression (N =40) were randomly assigned to either an intervention group or a non-intervention group. They were scanned using rs-fMRI before and after the intervention. Independent component analysis indicated three subnetworks of the DMN. Analyzing intervention effects on functional connectivity of each subnetwork indicated that connectivity of the anterior DMN subnetwork with the dorsal anterior cingulate was reduced after the intervention. Moreover, this reduction was correlated with an increase in health-related QOL. We did not compare the findings with healthy participants. Further research should be conducted by including healthy controls to verify the results of this study. Mechanisms of behavioral activation might be related to enhanced ability to independently use the dACC and the DMN, which increases an attention control to positive external stimuli. This is the first study to investigate neural mechanisms of behavioral activation using rs-fMRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Functional connectivity change as shared signal dynamics

    PubMed Central

    Cole, Michael W.; Yang, Genevieve J.; Murray, John D.; Repovš, Grega; Anticevic, Alan

    2015-01-01

    Background An increasing number of neuroscientific studies gain insights by focusing on differences in functional connectivity – between groups, individuals, temporal windows, or task conditions. We found using simulations that additional insights into such differences can be gained by forgoing variance normalization, a procedure used by most functional connectivity measures. Simulations indicated that these functional connectivity measures are sensitive to increases in independent fluctuations (unshared signal) in time series, consistently reducing functional connectivity estimates (e.g., correlations) even though such changes are unrelated to corresponding fluctuations (shared signal) between those time series. This is inconsistent with the common notion of functional connectivity as the amount of inter-region interaction. New Method Simulations revealed that a version of correlation without variance normalization – covariance – was able to isolate differences in shared signal, increasing interpretability of observed functional connectivity change. Simulations also revealed cases problematic for non-normalized methods, leading to a “covariance conjunction” method combining the benefits of both normalized and non-normalized approaches. Results We found that covariance and covariance conjunction methods can detect functional connectivity changes across a variety of tasks and rest in both clinical and non-clinical functional MRI datasets. Comparison with Existing Method(s) We verified using a variety of tasks and rest in both clinical and non-clinical functional MRI datasets that it matters in practice whether correlation, covariance, or covariance conjunction methods are used. Conclusions These results demonstrate the practical and theoretical utility of isolating changes in shared signal, improving the ability to interpret observed functional connectivity change. PMID:26642966

  12. Inferring multi-scale neural mechanisms with brain network modelling

    PubMed Central

    Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo

    2018-01-01

    The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767

  13. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2015-09-01

    connectivity networks during natural sleep as a neurologic biomarker for ASD that is suitable for diagnostic use in young children (ages 1-4). Existing... Autism Spectrum Disorders (ASD); functional magnetic resonance imaging (fMRI); connectivity modeling 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...Requirements………………………………….. 4 9. Appendices…………………………………………………………….. 4 1. INTRODUCTION Autism spectrum disorders (ASD), characterized by abnormal

  14. Resting-state functional magnetic resonance imaging in hepatic encephalopathy: current status and perspectives.

    PubMed

    Zhang, Long Jiang; Wu, Shengyong; Ren, Jiaqian; Lu, Guang Ming

    2014-09-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which develops in patients with severe liver diseases and/or portal-systemic shunting. Minimal HE, the earliest manifestation of HE, has drawn increasing attention in the last decade. Minimal HE is associated with a series of brain functional changes, such as attention, working memory, and so on. Blood oxygen level dependent (BOLD) functional MRI (fMRI), especially resting-state fMRI has been used to explore the brain functional changes of HE, yielding important insights for understanding pathophysiological mechanisms and functional reorganization of HE. This paper briefly reviews the principles of BOLD fMRI, potential applications of resting-state fMRI with advanced post-processing algorithms such as regional homogeneity, amplitude of low frequency fluctuation, functional connectivity and future research perspective in this field.

  15. Radiation-induced functional connectivity alterations in nasopharyngeal carcinoma patients with radiotherapy

    PubMed Central

    Ma, Qiongmin; Wu, Donglin; Zeng, Ling-Li; Shen, Hui; Hu, Dewen; Qiu, Shijun

    2016-01-01

    Abstract The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale. The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores. Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA. The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment. PMID:27442663

  16. Effective Connectivity Modeling for fMRI: Six Issues and Possible Solutions Using Linear Dynamic Systems

    PubMed Central

    Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry

    2012-01-01

    Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an “instantaneous” connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity analysis. PMID:22279430

  17. Causes, effects and connectivity changes in MS-related cognitive decline.

    PubMed

    Rimkus, Carolina de Medeiros; Steenwijk, Martijn D; Barkhof, Frederik

    2016-01-01

    Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.

  18. Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach

    PubMed Central

    Xu, Nan; Spreng, R. Nathan; Doerschuk, Peter C.

    2017-01-01

    Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain. PMID:28559793

  19. Antidepressant Effects of Electroconvulsive Therapy Correlate With Subgenual Anterior Cingulate Activity and Connectivity in Depression

    PubMed Central

    Liu, Yi; Du, Lian; Li, Yongmei; Liu, Haixia; Zhao, Wenjing; Liu, Dan; Zeng, Jinkun; Li, Xingbao; Fu, Yixiao; Qiu, Haitang; Li, Xirong; Qiu, Tian; Hu, Hua; Meng, Huaqing; Luo, Qinghua

    2015-01-01

    Abstract The mechanisms underlying the effects of electroconvulsive therapy (ECT) in major depressive disorder (MDD) are not fully understood. Resting-state functional magnetic resonance imaging (rs-fMRI) is a new tool to study the effects of brain stimulation interventions, particularly ECT. The authors aim to investigate the mechanisms of ECT in MDD by rs-fMRI. They used rs-fMRI to measure functional changes in the brain of first-episode, treatment-naive MDD patients (n = 23) immediately before and then following 8 ECT sessions (brief-pulse square-wave apparatus, bitemporal). They also computed voxel-wise amplitude of low-frequency fluctuation (ALFF) as a measure of regional brain activity and selected the left subgenual anterior cingulate cortex (sgACC) to evaluate functional connectivity between the sgACC and other brain regions. Increased regional brain activity measured by ALFF mainly in the left sgACC following ECT. Functional connectivity of the left sgACC increased in the ipsilateral parahippocampal gyrus, pregenual ACC, contralateral middle temporal pole, and orbitofrontal cortex. Importantly, reduction in depressive symptoms were negatively correlated with increased ALFF in the left sgACC and left hippocampus, and with distant functional connectivity between the left sgACC and contralateral middle temporal pole. That is, across subjects, as depression improved, regional brain activity in sgACC and its functional connectivity increased in the brain. Eight ECT sessions in MDD patients modulated activity in the sgACC and its networks. The antidepressant effects of ECT were negatively correlated with sgACC brain activity and connectivity. These findings suggest that sgACC-associated prefrontal-limbic structures are associated with the therapeutic effects of ECT in MDD. PMID:26559309

  20. Further evidence of alerted default network connectivity and association with theory of mind ability in schizophrenia.

    PubMed

    Mothersill, Omar; Tangney, Noreen; Morris, Derek W; McCarthy, Hazel; Frodl, Thomas; Gill, Michael; Corvin, Aiden; Donohoe, Gary

    2017-06-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) has repeatedly shown evidence of altered functional connectivity of large-scale networks in schizophrenia. The relationship between these connectivity changes and behaviour (e.g. symptoms, neuropsychological performance) remains unclear. Functional connectivity in 27 patients with schizophrenia or schizoaffective disorder, and 25 age and gender matched healthy controls was examined using rs-fMRI. Based on seed regions from previous studies, we examined functional connectivity of the default, cognitive control, affective and attention networks. Effects of symptom severity and theory of mind performance on functional connectivity were also examined. Patients showed increased connectivity between key nodes of the default network including the precuneus and medial prefrontal cortex compared to controls (p<0.01, FWE-corrected). Increasing positive symptoms and increasing theory of mind performance were both associated with altered connectivity of default regions within the patient group (p<0.01, FWE-corrected). This study confirms previous findings of default hyper-connectivity in schizophrenia spectrum patients and reveals an association between altered default connectivity and positive symptom severity. As a novel find, this study also shows that default connectivity is correlated to and predictive of theory of mind performance. Extending these findings by examining the effects of emerging social cognition treatments on both default connectivity and theory of mind performance is now an important goal for research. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    PubMed

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. State-space model with deep learning for functional dynamics estimation in resting-state fMRI

    PubMed Central

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2017-01-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. PMID:26774612

  3. Hyperconnectivity is a fundamental response to neurological disruption.

    PubMed

    Hillary, Frank G; Roman, Cristina A; Venkatesan, Umesh; Rajtmajer, Sarah M; Bajo, Ricardo; Castellanos, Nazareth D

    2015-01-01

    In the cognitive and clinical neurosciences, the past decade has been marked by dramatic growth in a literature examining brain "connectivity" using noninvasive methods. We offer a critical review of the blood oxygen level dependent functional MRI (BOLD fMRI) literature examining neural connectivity changes in neurological disorders with focus on brain injury and dementia. The goal is to demonstrate that there are identifiable shifts in local and large-scale network connectivity that can be predicted by the degree of pathology. We anticipate that the most common network response to neurological insult is hyperconnectivity but that this response depends upon demand and resource availability. To examine this hypothesis, we initially reviewed the results from 1,426 studies examining functional brain connectivity in individuals diagnosed with multiple sclerosis, traumatic brain injury, mild cognitive impairment, and Alzheimer's disease. Based upon inclusionary criteria, 126 studies were included for detailed analysis. RESULTS from 126 studies examining local and whole brain connectivity demonstrated increased connectivity in traumatic brain injury and multiple sclerosis. This finding is juxtaposed with findings in mild cognitive impairment and Alzheimer's disease where there is a shift to diminished connectivity as degeneration progresses. This summary of the functional imaging literature using fMRI methods reveals that hyperconnectivity is a common response to neurological disruption and that it may be differentially observable across brain regions. We discuss the factors contributing to both hyper- and hypoconnectivity results after neurological disruption and the implications these findings have for network plasticity. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  4. Trade-off of cerebello-cortical and cortico-cortical functional networks for planning in 6-year-old children.

    PubMed

    Kipping, Judy A; Margulies, Daniel S; Eickhoff, Simon B; Lee, Annie; Qiu, Anqi

    2018-08-01

    Childhood is a critical period for the development of cognitive planning. There is a lack of knowledge on its neural mechanisms in children. This study aimed to examine cerebello-cortical and cortico-cortical functional connectivity in association with planning skills in 6-year-olds (n = 76). We identified the cerebello-cortical and cortico-cortical functional networks related to cognitive planning using activation likelihood estimation (ALE) meta-analysis on existing functional imaging studies on spatial planning, and data-driven independent component analysis (ICA) of children's resting-state functional MRI (rs-fMRI). We investigated associations of cerebello-cortical and cortico-cortical functional connectivity with planning ability in 6-year-olds, as assessed using the Stockings of Cambridge task. Long-range functional connectivity of two cerebellar networks (lobules VI and lateral VIIa) with the prefrontal and premotor cortex were greater in children with poorer planning ability. In contrast, cortico-cortical association networks were not associated with the performance of planning in children. These results highlighted the key contribution of the lateral cerebello-frontal functional connectivity, but not cortico-cortical association functional connectivity, for planning ability in 6-year-olds. Our results suggested that brain adaptation to the acquisition of planning ability during childhood is partially achieved through the engagement of the cerebello-cortical functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Resting-state functional magnetic resonance imaging: the impact of regression analysis.

    PubMed

    Yeh, Chia-Jung; Tseng, Yu-Sheng; Lin, Yi-Ru; Tsai, Shang-Yueh; Huang, Teng-Yi

    2015-01-01

    To investigate the impact of regression methods on resting-state functional magnetic resonance imaging (rsfMRI). During rsfMRI preprocessing, regression analysis is considered effective for reducing the interference of physiological noise on the signal time course. However, it is unclear whether the regression method benefits rsfMRI analysis. Twenty volunteers (10 men and 10 women; aged 23.4 ± 1.5 years) participated in the experiments. We used node analysis and functional connectivity mapping to assess the brain default mode network by using five combinations of regression methods. The results show that regressing the global mean plays a major role in the preprocessing steps. When a global regression method is applied, the values of functional connectivity are significantly lower (P ≤ .01) than those calculated without a global regression. This step increases inter-subject variation and produces anticorrelated brain areas. rsfMRI data processed using regression should be interpreted carefully. The significance of the anticorrelated brain areas produced by global signal removal is unclear. Copyright © 2014 by the American Society of Neuroimaging.

  6. Mapping white-matter functional organization at rest and during naturalistic visual perception.

    PubMed

    Marussich, Lauren; Lu, Kun-Han; Wen, Haiguang; Liu, Zhongming

    2017-02-01

    Despite the wide applications of functional magnetic resonance imaging (fMRI) to mapping brain activation and connectivity in cortical gray matter, it has rarely been utilized to study white-matter functions. In this study, we investigated the spatiotemporal characteristics of fMRI data within the white matter acquired from humans both in the resting state and while watching a naturalistic movie. By using independent component analysis and hierarchical clustering, resting-state fMRI data in the white matter were de-noised and decomposed into spatially independent components, which were further assembled into hierarchically organized axonal fiber bundles. Interestingly, such components were partly reorganized during natural vision. Relative to resting state, the visual task specifically induced a stronger degree of temporal coherence within the optic radiations, as well as significant correlations between the optic radiations and multiple cortical visual networks. Therefore, fMRI contains rich functional information about the activity and connectivity within white matter at rest and during tasks, challenging the conventional practice of taking white-matter signals as noise or artifacts. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. On consciousness, resting state fMRI, and neurodynamics

    PubMed Central

    2010-01-01

    Background During the last years, functional magnetic resonance imaging (fMRI) of the brain has been introduced as a new tool to measure consciousness, both in a clinical setting and in a basic neurocognitive research. Moreover, advanced mathematical methods and theories have arrived the field of fMRI (e.g. computational neuroimaging), and functional and structural brain connectivity can now be assessed non-invasively. Results The present work deals with a pluralistic approach to "consciousness'', where we connect theory and tools from three quite different disciplines: (1) philosophy of mind (emergentism and global workspace theory), (2) functional neuroimaging acquisitions, and (3) theory of deterministic and statistical neurodynamics – in particular the Wilson-Cowan model and stochastic resonance. Conclusions Based on recent experimental and theoretical work, we believe that the study of large-scale neuronal processes (activity fluctuations, state transitions) that goes on in the living human brain while examined with functional MRI during "resting state", can deepen our understanding of graded consciousness in a clinical setting, and clarify the concept of "consiousness" in neurocognitive and neurophilosophy research. PMID:20522270

  8. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions

    PubMed Central

    Gawryluk, Jodie R.; Mazerolle, Erin L.; D'Arcy, Ryan C. N.

    2014-01-01

    Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI. PMID:25152709

  9. Blunted amygdala functional connectivity during a stress task in alcohol dependent individuals: A pilot study.

    PubMed

    Wade, Natasha E; Padula, Claudia B; Anthenelli, Robert M; Nelson, Erik; Eliassen, James; Lisdahl, Krista M

    2017-12-01

    Scant research has been conducted on neural mechanisms underlying stress processing in individuals with alcohol dependence (AD). We examined neural substrates of stress in AD individuals compared with controls using an fMRI task previously shown to induce stress, assessing amygdala functional connectivity to medial prefrontal cortex (mPFC). For this novel pilot study, 10 abstinent AD individuals and 11 controls completed a modified Trier stress task while undergoing fMRI acquisition. The amygdala was used as a seed region for whole-brain seed-based functional connectivity analysis. After controlling for family-wise error (p = 0.05), there was significantly decreased left and right amygdala connectivity with frontal (specifically mPFC), temporal, parietal, and cerebellar regions. Subjective stress, but not craving, increased from pre-to post-task. This study demonstrated decreased connectivity between the amygdala and regions important for stress and emotional processing in long-term abstinent individuals with AD. These results suggest aberrant stress processing in individuals with AD even after lengthy periods of abstinence.

  10. Negative mood influences default mode network functional connectivity in chronic low back pain patients: Implications for functional neuroimaging biomarkers

    PubMed Central

    Letzen, Janelle E.; Robinson, Michael E.

    2016-01-01

    The default mode network (DMN) has been proposed as a biomarker for several chronic pain conditions. DMN functional connectivity (fcMRI) is typically examined during resting-state fMRI, in which participants are instructed to let thoughts wander. However, factors at the time of data collection (e.g., negative mood) that might systematically impact pain perception and its brain activity, influencing the application of the DMN as a pain biomarker, are rarely reported. The present study measured whether positive and negative moods altered DMN fcMRI patterns in chronic low back pain (CLBP) patients, specifically focusing on negative mood due to its clinical-relevance. Thirty-three participants (CLBP = 17) underwent resting-state fMRI scanning before and after sad and happy mood inductions, and rated levels of mood and pain intensity at the time of scanning. Two-way repeated measures ANOVAs were conducted on resting-state functional connectivity data. Significant group (CLBP > HC) X condition (sadness > baseline) interaction effects were identified in clusters spanning parietal operculum/postcentral gyrus, insular cortices, anterior cingulate cortex, frontal pole, and a portion of the cerebellum (pFDR < .05). However, only one significant cluster covering a portion of the cerebellum was identified examining a two-way repeated measures ANOVA for happiness > baseline (pFDR < .05). Overall, these findings suggest that DMN fcMRI is affected by negative mood in individuals with and without CLBP. It is possible that DMN fcMRI seen in chronic pain patients is related to an affective dimension of pain, which is important to consider in future neuroimaging biomarker development and implementation. PMID:27583568

  11. Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure

    PubMed Central

    Wozniak, Jeffrey R.; Mueller, Bryon A.; Muetzel, Ryan L.; Bell, Christopher J.; Hoecker, Heather L.; Nelson, Miranda L.; Chang, Pi-Nian; Lim, Kelvin O.

    2010-01-01

    Background MRI studies, including recent diffusion tensor imaging (DTI) studies, have shown corpus callosum abnormalities in children prenatally exposed to alcohol, especially in the posterior regions. These abnormalities appear across the range of Fetal Alcohol Spectrum Disorders (FASD). Several studies have demonstrated cognitive correlates of callosal abnormalities in FASD including deficits in visual-motor skill, verbal learning, and executive functioning. The goal of this study was to determine if inter-hemispheric structural connectivity abnormalities in FASD are associated with disrupted inter-hemispheric functional connectivity and disrupted cognition. Methods Twenty-one children with FASD and 23 matched controls underwent a six minute resting-state functional MRI scan as well as anatomical imaging and DTI. Using a semiautomated method, we parsed the corpus callosum and delineated seven inter-hemispheric white matter tracts with DTI tractography. Cortical regions of interest (ROIs) at the distal ends of these tracts were identified. Right-left correlations in resting fMRI signal were computed for these sets of ROIs and group comparisons were done. Correlations with facial dysmorphology, cognition, and DTI measures were computed. Results A significant group difference in inter-hemispheric functional connectivity was seen in a posterior set of ROIs, the para-central region. Children with FASD had functional connectivity that was 12% lower than controls in this region. Sub-group analyses were not possible due to small sample size, but the data suggest that there were effects across the FASD spectrum. No significant association with facial dysmorphology was found. Para-central functional connectivity was significantly correlated with DTI mean diffusivity, a measure of microstructural integrity, in posterior callosal tracts in controls but not in FASD. Significant correlations were seen between these structural and functional measures and Wechsler perceptual reasoning ability. Conclusions Inter-hemispheric functional connectivity disturbances were observed in children with FASD relative to controls. The disruption was measured in medial parietal regions (para-central) that are connected by posterior callosal fiber projections. We have previously shown microstructural abnormalities in these same posterior callosal regions and the current study suggests a possible relationship between the two. These measures have clinical relevance as they are associated with cognitive functioning. PMID:21303384

  12. Altered Amygdala Resting-State Functional Connectivity in Maintenance Hemodialysis End-Stage Renal Disease Patients with Depressive Mood.

    PubMed

    Chen, Hui Juan; Wang, Yun Fei; Qi, Rongfeng; Schoepf, U Joseph; Varga-Szemes, Akos; Ball, B Devon; Zhang, Zhe; Kong, Xiang; Wen, Jiqiu; Li, Xue; Lu, Guang Ming; Zhang, Long Jiang

    2017-04-01

    The purpose of this study was to investigate patterns in the amygdala-based emotional processing circuit of hemodialysis patients using resting-state functional MR imaging (rs-fMRI). Fifty hemodialysis patients (25 with depressed mood and 25 without depressed mood) and 26 healthy controls were included. All subjects underwent neuropsychological tests and rs-fMRI, and patients also underwent laboratory tests. Functional connectivity of the bilateral amygdala was compared among the three groups. The relationship between functional connectivity and clinical markers was investigated. Depressed patients showed increased positive functional connectivity of the left amygdala with the left superior temporal gyrus and right parahippocampal gyrus (PHG) but decreased amygdala functional connectivity with the left precuneus, angular gyrus, posterior cingulate cortex (PCC), and left inferior parietal lobule compared with non-depressed patients (P < 0.05, AlphaSim corrected). Depressed patients had increased positive functional connectivity of the right amygdala with bilateral supplementary motor areas and PHG but decreased amygdala functional connectivity with the right superior frontal gyrus, superior parietal lobule, bilateral precuneus, and PCC (P < 0.05, AlphaSim corrected). After including anxiety as a covariate, we discovered additional decreased functional connectivity with anterior cingulate cortex (ACC) for bilateral amygdala (P < 0.05, AlphaSim corrected). For the depressed, neuropsychological test scores were correlated with functional connectivity of multiple regions (P < 0.05, AlphaSim corrected). In conclusion, functional connectivity in the amygdala-prefrontal-PCC-limbic circuits was impaired in depressive hemodialysis patients, with a gradual decrease in ACC between controls, non-depressed, and depressed patients for the right amygdala. This indicates that ACC plays a role in amygdala-based emotional regulatory circuits in these patients.

  13. From Structure to Circuits: The Contribution of MEG Connectivity Studies to Functional Neurosurgery.

    PubMed

    Pang, Elizabeth W; Snead Iii, O C

    2016-01-01

    New advances in structural neuroimaging have revealed the intricate and extensive connections within the brain, data which have informed a number of ambitious projects such as the mapping of the human connectome. Elucidation of the structural connections of the brain, at both the macro and micro levels, promises new perspectives on brain structure and function that could translate into improved outcomes in functional neurosurgery. The understanding of neuronal structural connectivity afforded by these data now offers a vista on the brain, in both healthy and diseased states, that could not be seen with traditional neuroimaging. Concurrent with these developments in structural imaging, a complementary modality called magnetoencephalography (MEG) has been garnering great attention because it too holds promise for being able to shed light on the intricacies of functional brain connectivity. MEG is based upon the elemental principle of physics that an electrical current generates a magnetic field. Hence, MEG uses highly sensitive biomagnetometers to measure extracranial magnetic fields produced by intracellular neuronal currents. Put simply then, MEG is a measure of neurophysiological activity, which captures the magnetic fields generated by synchronized intraneuronal electrical activity. As such, MEG recordings offer exquisite resolution in the time and oscillatory domain and, as well, when co-registered with magnetic resonance imaging (MRI), offer excellent resolution in the spatial domain. Recent advances in MEG computational and graph theoretical methods have led to studies of connectivity in the time-frequency domain. As such, MEG can elucidate a neurophysiological-based functional circuitry that may enhance what is seen with MRI connectivity studies. In particular, MEG may offer additional insight not possible by MRI when used to study complex eloquent function, where the precise timing and coordination of brain areas is critical. This article will review the traditional use of MEG for functional neurosurgery, describe recent advances in MEG connectivity analyses, and consider the additional benefits that could be gained with the inclusion of MEG connectivity studies. Since MEG has been most widely applied to the study of epilepsy, we will frame this article within the context of epilepsy surgery and functional neurosurgery for epilepsy.

  14. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  15. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  16. Lower grey matter density and functional connectivity in the anterior insula in smokers compared to never-smokers

    PubMed Central

    Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden

    2015-01-01

    Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865

  17. Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers.

    PubMed

    Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden

    2016-07-01

    Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). © 2015 Society for the Study of Addiction.

  18. Altered basal ganglia-cortical functional connections in frontal lobe epilepsy: A resting-state fMRI study.

    PubMed

    Dong, Li; Wang, Pu; Peng, Rui; Jiang, Sisi; Klugah-Brown, Benjamin; Luo, Cheng; Yao, Dezhong

    2016-12-01

    The purpose of this study was to investigate alterations of basal ganglia-cortical functional connections in patients with frontal lobe epilepsy (FLE). Resting-state functional magnetic resonance imaging (fMRI) data were gathered from 19 FLE patients and 19 age- and gender-matched healthy controls. Functional connectivity (FC) analysis was used to assess the functional connections between basal ganglia and cerebral cortex. Regions of interest, including the left/right caudate, putamen, pallidum and thalamus, were selected as the seeds. Two sample t-test was used to determine the difference between patients and controls, while controlling the age, gender and head motions. Compared with controls, FLE patients demonstrated increased FCs between basal ganglia and regions including the right fusiform gyrus, the bilateral cingulate gyrus, the precuneus and anterior cingulate gyrus. Reduced FCs were mainly located in a range of brain regions including the bilateral middle occipital gyrus, the ventral frontal lobe, the right putamen, the left fusiform gyrus and right rolandic operculum. In addition, the relationships between basal ganglia-cingulate connections and durations of epilepsy were also found. The alterations of functional integrity within the basal ganglia, as well as its connections to limbic and ventral frontal areas, indicate the important roles of the basal ganglia-cortical functional connections in FLE, and provide new insights in the pathophysiological mechanism of FLE. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Early life social stress and resting state functional connectivity in postpartum rat anterior cingulate circuits.

    PubMed

    Nephew, Benjamin C; Febo, Marcelo; Huang, Wei; Colon-Perez, Luis M; Payne, Laurellee; Poirier, Guillaume L; Greene, Owen; King, Jean A

    2018-03-15

    Continued development and refinement of resting state functional connectivity (RSFC) fMRI techniques in both animal and clinical studies has enhanced our comprehension of the adverse effects of stress on psychiatric health. The objective of the current study was to assess both maternal behavior and resting state functional connectivity (RSFC) changes in these animals when they were dams caring for their own young. It was hypothesized that ECSS exposed dams would express depressed maternal care and exhibit similar (same networks), yet different specific changes in RSFC (different individual nuclei) than reported when they were adult females. We have developed an ethologically relevant transgenerational model of the role of chronic social stress (CSS) in the etiology of postpartum depression and anxiety. Initial fMRI investigation of the CSS model indicates that early life exposure to CSS (ECSS) induces long term changes in functional connectivity in adult nulliparous female F1 offspring. ECSS in F1 dams resulted in depressed maternal care specifically during early lactation, consistent with previous CSS studies, and induced changes in functional connectivity in regions associated with sensory processing, maternal and emotional responsiveness, memory, and the reward pathway, with robust changes in anterior cingulate circuits. The sample sizes for the fMRI groups were low, limiting statistical power. This behavioral and functional neuroanatomical foundation can now be used to enhance our understanding of the neural etiology of early life stress associated disorders and test preventative measures and treatments for stress related disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Association Between Brain Activation and Functional Connectivity.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  1. Independent functional connectivity networks underpin food and monetary reward sensitivity in excess weight.

    PubMed

    Verdejo-Román, Juan; Fornito, Alex; Soriano-Mas, Carles; Vilar-López, Raquel; Verdejo-García, Antonio

    2017-02-01

    Overvaluation of palatable food is a primary driver of obesity, and is associated with brain regions of the reward system. However, it remains unclear if this network is specialized in food reward, or generally involved in reward processing. We used functional magnetic resonance imaging (fMRI) to characterize functional connectivity during processing of food and monetary rewards. Thirty-nine adults with excess weight and 37 adults with normal weight performed the Willingness to Pay for Food task and the Monetary Incentive Delay task in the fMRI scanner. A data-driven graph approach was applied to compare whole-brain, task-related functional connectivity between groups. Excess weight was associated with decreased functional connectivity during the processing of food rewards in a network involving primarily frontal and striatal areas, and increased functional connectivity during the processing of monetary rewards in a network involving principally frontal and parietal areas. These two networks were topologically and anatomically distinct, and were independently associated with BMI. The processing of food and monetary rewards involve segregated neural networks, and both are altered in individuals with excess weight. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Elucidating the nature and mechanism of tic improvement in tourette syndrome: a pilot study.

    PubMed

    Shprecher, David R; Gannon, Keenan; Agarwal, Nivedita; Shi, Xianfeng; Anderson, Jeffrey S

    2014-01-01

    For unclear reasons, many Tourette syndrome (TS) children report near-complete tic remission by young adulthood. Immature maturation of brain networks, observed with resting-state functional MRI (rs-fc-MRI) in adolescents and adults with TS, might evolve to a mature pattern in adults who experience tic improvement or remission. We explored the feasibility of testing this hypothesis in our population of young adult TS males, each with prior clinical assessments completed during childhood as part of a separate TS Association Genetics Consortium study. A total of 10 TS males (off tic suppressing drugs for at least 6 months) aged 19-32 years, mean follow-up interval 7.5 (2 to 13) years, and 11 neurologically normal controls were enrolled and underwent 3-Tesla structural and rs-fc-MRI sequences. The mean change in Yale Global Tic Severity Scale (YGTSS) was -31.5% (total) and -26.6% (YGTSS motor+vocal). Two subjects reported resolution of tic-related disability, with drops from mean 45 to 16.5 (YGTSS-total) and 25 to 11.5 (YGTSS motor+vocal.). Rs-fc-MRI revealed significantly increased connectivity between the ipsilateral anterior and mid cingulate cortex and striatum, increased connectivity between local connections, and decreased connectivity between more distant connections; representing an immature connectivity pattern. Similar to previous reports, we found immature patterns of functional connectivity in adult TS subjects. Despite a lack of complete tic remission, two subjects exhibited dramatic drops in tic severity that correlated with tic-related disability improvement. More work is needed to elucidate the mechanism of such dramatic improvement in TS.

  3. Determination of Vascular Dementia Brain in Distinct Frequency Bands with Whole Brain Functional Connectivity Patterns

    PubMed Central

    Zhang, Delong; Liu, Bo; Chen, Jun; Peng, Xiaoling; Liu, Xian; Fan, Yuanyuan; Liu, Ming; Huang, Ruiwang

    2013-01-01

    Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD. PMID:23359801

  4. Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression

    PubMed Central

    Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna

    2016-01-01

    Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11–60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD. PMID:26593265

  5. Increased Default Mode Network Connectivity in Individuals at High Familial Risk for Depression.

    PubMed

    Posner, Jonathan; Cha, Jiook; Wang, Zhishun; Talati, Ardesheer; Warner, Virginia; Gerber, Andrew; Peterson, Bradley S; Weissman, Myrna

    2016-06-01

    Research into the pathophysiology of major depressive disorder (MDD) has focused largely on individuals already affected by MDD. Studies have thus been limited in their ability to disentangle effects that arise as a result of MDD from precursors of the disorder. By studying individuals at high familial risk for MDD, we aimed to identify potential biomarkers indexing risk for developing MDD, a critical step toward advancing prevention and early intervention. Using resting-state functional connectivity MRI (rs-fcMRI) and diffusion MRI (tractography), we examined connectivity within the default mode network (DMN) and between the DMN and the central executive network (CEN) in 111 individuals, aged 11-60 years, at high and low familial risk for depression. Study participants were part of a three-generation longitudinal, cohort study of familial depression. Based on rs-fcMRI, individuals at high vs low familial risk for depression showed increased DMN connectivity, as well as decreased DMN-CEN-negative connectivity. These findings remained significant after excluding individuals with a current or lifetime history of depression. Diffusion MRI measures based on tractography supported the findings of decreased DMN-CEN-negative connectivity. Path analyses indicated that decreased DMN-CEN-negative connectivity mediated a relationship between familial risk and a neuropsychological measure of impulsivity. Our findings suggest that DMN and DMN-CEN connectivity differ in those at high vs low risk for depression and thus suggest potential biomarkers for identifying individuals at risk for developing MDD.

  6. Improvement of white matter and functional connectivity abnormalities by repetitive transcranial magnetic stimulation in crossed aphasia in dextral.

    PubMed

    Lu, Haitao; Wu, Haiyan; Cheng, Hewei; Wei, Dongjie; Wang, Xiaoyan; Fan, Yong; Zhang, Hao; Zhang, Tong

    2014-01-01

    As a special aphasia, the occurrence of crossed aphasia in dextral (CAD) is unusual. This study aims to improve the language ability by applying 1 Hz repetitive transcranial magnetic stimulation (rTMS). We studied multiple modality imaging of structural connectivity (diffusion tensor imaging), functional connectivity (resting fMRI), PET, and neurolinguistic analysis on a patient with CAD. Furthermore, we applied rTMS of 1 Hz for 40 times and observed the language function improvement. The results indicated that a significantly reduced structural and function connectivity was found in DTI and fMRI data compared with the control. The PET imaging showed hypo-metabolism in right hemisphere and left cerebellum. In conclusion, one of the mechanisms of CAD is that right hemisphere is the language dominance. Stimulating left Wernicke area could improve auditory comprehension, stimulating left Broca's area could enhance expression, and the results outlasted 6 months by 1 Hz rTMS balancing the excitability inter-hemisphere in CAD.

  7. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture

    PubMed Central

    Meszlényi, Regina J.; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. PMID:29089883

  8. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    PubMed

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  9. Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI.

    PubMed

    Garcés, Pilar; Pereda, Ernesto; Hernández-Tamames, Juan A; Del-Pozo, Francisco; Maestú, Fernando; Pineda-Pardo, José Ángel

    2016-01-01

    Structural and functional connectivity (SC and FC) have received much attention over the last decade, as they offer unique insight into the coordination of brain functioning. They are often assessed independently with three imaging modalities: SC using diffusion-weighted imaging (DWI), FC using functional magnetic resonance imaging (fMRI), and magnetoencephalography/electroencephalography (MEG/EEG). DWI provides information about white matter organization, allowing the reconstruction of fiber bundles. fMRI uses blood-oxygenation level-dependent (BOLD) contrast to indirectly map neuronal activation. MEG and EEG are direct measures of neuronal activity, as they are sensitive to the synchronous inputs in pyramidal neurons. Seminal studies have targeted either the electrophysiological substrate of BOLD or the anatomical basis of FC. However, multimodal comparisons have been scarcely performed, and the relation between SC, fMRI-FC, and MEG-FC is still unclear. Here we present a systematic comparison of SC, resting state fMRI-FC, and MEG-FC between cortical regions, by evaluating their similarities at three different scales: global network, node, and hub distribution. We obtained strong similarities between the three modalities, especially for the following pairwise combinations: SC and fMRI-FC; SC and MEG-FC at theta, alpha, beta and gamma bands; and fMRI-FC and MEG-FC in alpha and beta. Furthermore, highest node similarity was found for regions of the default mode network and primary motor cortex, which also presented the highest hubness score. Distance was partially responsible for these similarities since it biased all three connectivity estimates, but not the unique contributor, since similarities remained after controlling for distance. © 2015 Wiley Periodicals, Inc.

  10. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    PubMed Central

    Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works. PMID:26977400

  11. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    PubMed

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge to the current understanding of functional brain networks in BPD. However, due to limitation of small sample sizes, the results of the current study should be viewed as exploratory and need to be validated on large samples in future works.

  12. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

    PubMed

    Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N

    2018-05-28

    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Utility of functional MRI in pediatric neurology.

    PubMed

    Freilich, Emily R; Gaillard, William D

    2010-01-01

    Functional MRI (fMRI), a tool increasingly used to study cognitive function, is also an important tool for understanding not only normal development in healthy children, but also abnormal development, as seen in children with epilepsy, attention-deficit/hyperactivity disorder, and autism. Since its inception almost 15 years ago, fMRI has seen an explosion in its use and applications in the adult literature. However, only recently has it found a home in pediatric neurology. New adaptations in study design and technologic advances, especially the study of resting state functional connectivity as well as the use of passive task design in sedated children, have increased the utility of functional imaging in pediatrics to help us gain understanding into the developing brain at work. This article reviews the background of fMRI in pediatrics and highlights the most recent literature and clinical applications.

  14. Altered functional brain connectivity in children and young people with opsoclonus-myoclonus syndrome.

    PubMed

    Chekroud, Adam M; Anand, Geetha; Yong, Jean; Pike, Michael; Bridge, Holly

    2017-01-01

    Opsoclonus-myoclonus syndrome (OMS) is a rare, poorly understood condition that can result in long-term cognitive, behavioural, and motor sequelae. Several studies have investigated structural brain changes associated with this condition, but little is known about changes in function. This study aimed to investigate changes in brain functional connectivity in patients with OMS. Seven patients with OMS and 10 age-matched comparison participants underwent 3T magnetic resonance imaging (MRI) to acquire resting-state functional MRI data (whole-brain echo-planar images; 2mm isotropic voxels; multiband factor ×2) for a cross-sectional study. A seed-based analysis identified brain regions in which signal changes over time correlated with the cerebellum. Model-free analysis was used to determine brain networks showing altered connectivity. In patients with OMS, the motor cortex showed significantly reduced connectivity, and the occipito-parietal region significantly increased connectivity with the cerebellum relative to the comparison group. A model-free analysis also showed extensive connectivity within a visual network, including the cerebellum and basal ganglia, not present in the comparison group. No other networks showed any differences between groups. Patients with OMS showed reduced connectivity between the cerebellum and motor cortex, but increased connectivity with occipito-parietal regions. This pattern of change supports widespread brain involvement in OMS. © 2016 Mac Keith Press.

  15. Dynamic Granger causality based on Kalman filter for evaluation of functional network connectivity in fMRI data

    PubMed Central

    Havlicek, Martin; Jan, Jiri; Brazdil, Milan; Calhoun, Vince D.

    2015-01-01

    Increasing interest in understanding dynamic interactions of brain neural networks leads to formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger causality based on standard multivariate autoregressive (MAR) modeling to assess the brain connectivity. Nevertheless, one important flaw of this commonly proposed method is that it requires the analyzed time series to be stationary, whereas such assumption is mostly violated due to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. Therefore, we propose an approach to dynamic Granger causality in the frequency domain for evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the dynamic approach was significantly improved by combining a forward and backward Kalman filter that improved estimates compared to the standard time-invariant MAR modeling. In our method, the functional networks were first detected by independent component analysis (ICA), a computational method for separating a multivariate signal into maximally independent components. Then the measure of Granger causality was evaluated using generalized partial directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric provides identification of causal relation in frequency domain, which allows one to distinguish the frequency components related to the experimental paradigm. The procedure of evaluating Granger causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-invariant MAR model was provided. PMID:20561919

  16. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects.

    PubMed

    Wörsching, Jana; Padberg, Frank; Helbich, Konstantin; Hasan, Alkomiet; Koch, Lena; Goerigk, Stephan; Stoecklein, Sophia; Ertl-Wagner, Birgit; Keeser, Daniel

    2017-07-15

    Transcranial Direct Current Stimulation (tDCS) of the prefrontal cortex (PFC) can be used for probing functional brain connectivity and meets general interest as novel therapeutic intervention in psychiatric and neurological disorders. Along with a more extensive use, it is important to understand the interplay between neural systems and stimulation protocols requiring basic methodological work. Here, we examined the test-retest (TRT) characteristics of tDCS-induced modulations in resting-state functional-connectivity MRI (RS fcMRI). Twenty healthy subjects received 20minutes of either active or sham tDCS of the dorsolateral PFC (2mA, anode over F3 and cathode over F4, international 10-20 system), preceded and ensued by a RS fcMRI (10minutes each). All subject underwent three tDCS sessions with one-week intervals in between. Effects of tDCS on RS fcMRI were determined at an individual as well as at a group level using both ROI-based and independent-component analyses (ICA). To evaluate the TRT reliability of individual active-tDCS and sham effects on RS fcMRI, voxel-wise intra-class correlation coefficients (ICC) of post-tDCS maps between testing sessions were calculated. For both approaches, results revealed low reliability of RS fcMRI after active tDCS (ICC (2,1) = -0.09 - 0.16). Reliability of RS fcMRI (baselines only) was low to moderate for ROI-derived (ICC (2,1) = 0.13 - 0.50) and low for ICA-derived connectivity (ICC (2,1) = 0.19 - 0.34). Thus, for ROI-based analyses, the distribution of voxel-wise ICC was shifted to lower TRT reliability after active, but not after sham tDCS, for which the distribution was similar to baseline. The intra-individual variation observed here resembles variability of tDCS effects in motor regions and may be one reason why in this study robust tDCS effects at a group level were missing. The data can be used for appropriately designing large scale studies investigating methodological issues such as sources of variability and localisation of tDCS effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Tracking the development of brain connectivity in adolescence through a fast Bayesian integrative method

    NASA Astrophysics Data System (ADS)

    Zhang, Aiying; Jia, Bochao; Wang, Yu-Ping

    2018-03-01

    Adolescence is a transitional period between childhood and adulthood with physical changes, as well as increasing emotional activity. Studies have shown that the emotional sensitivity is related to a second dramatical brain growth. However, there is little focus on the trend of brain development during this period. In this paper, we aim to track the functional brain connectivity development in adolescence using resting state fMRI (rs-fMRI), which amounts to a time-series analysis problem. Most existing methods either require the time point to be fairly long or are only applicable to small graphs. To this end, we adapted a fast Bayesian integrative analysis (FBIA) to address the short time-series difficulty, and combined with adaptive sum of powered score (aSPU) test for group difference. The data we used are the resting state fMRI (rs-fMRI) obtained from the publicly available Philadelphia Neurodevelopmental Cohort (PNC). They include 861 individuals aged 8-22 years who were divided into five different adolescent stages. We summarized the networks with global measurements: segregation and integration, and provided full brain functional connectivity pattern in various stages of adolescence. Moreover, our research revealed several brain functional modules development trends. Our results are shown to be both statistically and biologically significant.

  18. The Influence of Head Motion on Intrinsic Functional Connectivity MRI

    PubMed Central

    Van Dijk, Koene R.A.; Sabuncu, Mert R.; Buckner, Randy L.

    2011-01-01

    Functional connectivity MRI (fcMRI) has been widely applied to explore group and individual differences. A confounding factor is head motion. Children move more than adults, older adults more than younger adults, and patients more than controls. Head motion varies considerably among individuals within the same population. Here we explored the influence of head motion on fcMRI estimates. Mean head displacement, maximum head displacement, the number of micro movements (> 0.1 mm), and head rotation were estimated in 1000 healthy, young adult subjects each scanned for two resting-state runs on matched 3T scanners. The majority of fcMRI variation across subjects was not linked to estimated head motion. However, head motion had significant, systematic effects on fcMRI network measures. Head motion was associated with decreased functional coupling in the default and frontoparietal control networks – two networks characterized by coupling among distributed regions of association cortex. Other network measures increased with motion including estimates of local functional coupling and coupling between left and right motor regions – a region pair sometimes used as a control in studies to establish specificity. Comparisons between groups of individuals with subtly different levels of head motion yielded difference maps that could be mistaken for neuronal effects in other contexts. These effects are important to consider when interpreting variation between groups and across individuals. PMID:21810475

  19. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    PubMed

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  20. A method for functional network connectivity among spatially independent resting-state components in schizophrenia.

    PubMed

    Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D

    2008-02-15

    Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in healthy individuals as well as in patients with brain disorders. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject's ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients.

  1. A Method for Functional Network Connectivity Among Spatially Independent Resting-State Components in Schizophrenia

    PubMed Central

    Jafri, Madiha J; Pearlson, Godfrey D; Stevens, Michael; Calhoun, Vince D

    2011-01-01

    Functional connectivity of the brain has been studied by analyzing correlation differences in time courses among seed voxels or regions with other voxels of the brain in patients versus controls. The spatial extent of strongly temporally coherent brain regions co-activated during rest has also been examined using independent component analysis (ICA). However, the weaker temporal relationships among ICA component time courses, which we operationally define as a measure of functional network connectivity (FNC), have not yet been studied. In this study, we propose an approach for evaluating FNC and apply it to functional magnetic resonance imaging (fMRI) data collected from persons with schizophrenia and healthy controls. We examined the connectivity and latency among ICA component time courses to test the hypothesis that patients with schizophrenia would show increased functional connectivity and increased lag among resting state networks compared to controls. Resting state fMRI data were collected and the inter-relationships among seven selected resting state networks (identified using group ICA) were evaluated by correlating each subject’s ICA time courses with one another. Patients showed higher correlation than controls among most of the dominant resting state networks. Patients also had slightly more variability in functional connectivity than controls. We present a novel approach for quantifying functional connectivity among brain networks identified with spatial ICA. Significant differences between patient and control connectivity in different networks were revealed possibly reflecting deficiencies in cortical processing in patients. PMID:18082428

  2. Connectopic mapping with resting-state fMRI.

    PubMed

    Haak, Koen V; Marquand, Andre F; Beckmann, Christian F

    2018-04-15

    Brain regions are often topographically connected: nearby locations within one brain area connect with nearby locations in another area. Mapping these connection topographies, or 'connectopies' in short, is crucial for understanding how information is processed in the brain. Here, we propose principled, fully data-driven methods for mapping connectopies using functional magnetic resonance imaging (fMRI) data acquired at rest by combining spectral embedding of voxel-wise connectivity 'fingerprints' with a novel approach to spatial statistical inference. We apply the approach in human primary motor and visual cortex, and show that it can trace biologically plausible, overlapping connectopies in individual subjects that follow these regions' somatotopic and retinotopic maps. As a generic mechanism to perform inference over connectopies, the new spatial statistics approach enables rigorous statistical testing of hypotheses regarding the fine-grained spatial profile of functional connectivity and whether that profile is different between subjects or between experimental conditions. The combined framework offers a fundamental alternative to existing approaches to investigating functional connectivity in the brain, from voxel- or seed-pair wise characterizations of functional association, towards a full, multivariate characterization of spatial topography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Rapid geodesic mapping of brain functional connectivity: implementation of a dedicated co-processor in a field-programmable gate array (FPGA) and application to resting state functional MRI.

    PubMed

    Minati, Ludovico; Cercignani, Mara; Chan, Dennis

    2013-10-01

    Graph theory-based analyses of brain network topology can be used to model the spatiotemporal correlations in neural activity detected through fMRI, and such approaches have wide-ranging potential, from detection of alterations in preclinical Alzheimer's disease through to command identification in brain-machine interfaces. However, due to prohibitive computational costs, graph-based analyses to date have principally focused on measuring connection density rather than mapping the topological architecture in full by exhaustive shortest-path determination. This paper outlines a solution to this problem through parallel implementation of Dijkstra's algorithm in programmable logic. The processor design is optimized for large, sparse graphs and provided in full as synthesizable VHDL code. An acceleration factor between 15 and 18 is obtained on a representative resting-state fMRI dataset, and maps of Euclidean path length reveal the anticipated heterogeneous cortical involvement in long-range integrative processing. These results enable high-resolution geodesic connectivity mapping for resting-state fMRI in patient populations and real-time geodesic mapping to support identification of imagined actions for fMRI-based brain-machine interfaces. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Functional connectivity pattern during rest within the episodic memory network in association with episodic memory performance in bipolar disorder.

    PubMed

    Oertel-Knöchel, Viola; Reinke, Britta; Matura, Silke; Prvulovic, David; Linden, David E J; van de Ven, Vincent

    2015-02-28

    In this study, we sought to examine the intrinsic functional organization of the episodic memory network during rest in bipolar disorder (BD). The previous work suggests that deficits in intrinsic functional connectivity may account for impaired memory performance. We hypothesized that regions involved in episodic memory processing would reveal aberrant functional connectivity in patients with bipolar disorder. We examined 21 patients with BD and 21 healthy matched controls who underwent functional magnetic resonance imaging (fMRI) during a resting condition. We did a seed-based functional connectivity analysis (SBA), using the regions of the episodic memory network that showed a significantly different activation pattern during task-related fMRI as seeds. The functional connectivity scores (FC) were further correlated with episodic memory task performance. Our results revealed decreased FC scores within frontal areas and between frontal and temporal/hippocampal/limbic regions in BD patients in comparison with controls. We observed higher FC in BD patients compared with controls between frontal and limbic regions. The decrease in fronto-frontal functional connectivity in BD patients showed a significant positive association with episodic memory performance. The association between task-independent dysfunctional frontal-limbic FC and episodic memory performance may be relevant for current pathophysiological models of the disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. A conditional Granger causality model approach for group analysis in functional MRI

    PubMed Central

    Zhou, Zhenyu; Wang, Xunheng; Klahr, Nelson J.; Liu, Wei; Arias, Diana; Liu, Hongzhi; von Deneen, Karen M.; Wen, Ying; Lu, Zuhong; Xu, Dongrong; Liu, Yijun

    2011-01-01

    Granger causality model (GCM) derived from multivariate vector autoregressive models of data has been employed for identifying effective connectivity in the human brain with functional MR imaging (fMRI) and to reveal complex temporal and spatial dynamics underlying a variety of cognitive processes. In the most recent fMRI effective connectivity measures, pairwise GCM has commonly been applied based on single voxel values or average values from special brain areas at the group level. Although a few novel conditional GCM methods have been proposed to quantify the connections between brain areas, our study is the first to propose a viable standardized approach for group analysis of an fMRI data with GCM. To compare the effectiveness of our approach with traditional pairwise GCM models, we applied a well-established conditional GCM to pre-selected time series of brain regions resulting from general linear model (GLM) and group spatial kernel independent component analysis (ICA) of an fMRI dataset in the temporal domain. Datasets consisting of one task-related and one resting-state fMRI were used to investigate connections among brain areas with the conditional GCM method. With the GLM detected brain activation regions in the emotion related cortex during the block design paradigm, the conditional GCM method was proposed to study the causality of the habituation between the left amygdala and pregenual cingulate cortex during emotion processing. For the resting-state dataset, it is possible to calculate not only the effective connectivity between networks but also the heterogeneity within a single network. Our results have further shown a particular interacting pattern of default mode network (DMN) that can be characterized as both afferent and efferent influences on the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC). These results suggest that the conditional GCM approach based on a linear multivariate vector autoregressive (MVAR) model can achieve greater accuracy in detecting network connectivity than the widely used pairwise GCM, and this group analysis methodology can be quite useful to extend the information obtainable in fMRI. PMID:21232892

  6. 219. Changes in Functional Networks Underlying Social Cognition Following Cognitive Training in Individuals at Risk for Psychosis

    PubMed Central

    Haut, Kristen; Saxena, Abhishek; Yin, Hong; Carol, Emily; Dodell-Feder, David; Lincoln, Sarah Hope; Tully, Laura; Keshavan, Matcheri; Seidman, Larry J.; Nahum, Mor; Hooker, Christine

    2017-01-01

    Abstract Background: Deficits in social cognition are prominent features of schizophrenia that play a large role in functional impairments and disability. Performance deficits in these domains are associated with altered activity in functional networks, including those that support social cognitive abilities such as emotion recognition. These social cognitive deficits and alterations in neural networks are present prior to the onset of frank psychotic symptoms and thus present a potential target for intervention in early phases of the illness, including in individuals at clinical high risk (CHR) for psychosis. This study assessed changes in social cognitive functional networks following targeted cognitive training (TCT) in CHR individuals. Methods: 14 CHR subjects (7 male, mean age = 21.9) showing attenuated psychotic symptoms as assessed by the SIPS were included in the study. Subjects underwent a clinical evaluation and a functional MRI session prior to and subsequent to completing 40 hours (8 weeks) of targeted cognitive and social cognitive training using Lumosity and SocialVille. 14 matched healthy control (HC) subjects also underwent a single fMRI session as a comparison group for functional activity. Resting state fMRI was acquired as well as fMRI during performance of an emotion recognition task. Group level differences in BOLD activity between HC and CHR group before TCT, and CHR group before and after TCT were computed. Changes in social cognitive network functional connectivity at rest and during task performance was evaluated using seed-based connectivity analyses and psychophysiological interaction (PPI). Results: Prior to training, CHR individuals demonstrated hyperactivity in the amygdala, posterior cingulate, and superior temporal sulcus (STS) during emotion recognition, suggesting inefficient processing. This hyperactivity normalized somewhat after training, with CHR individuals showing less hyperactivity in the amygdala in response to emotional faces. In addition, training was associated with increased connectivity in emotion processing networks, including greater STS-medial prefrontal connectivity and normalization of amygdala connectivity patterns. Conclusion: These results suggest that targeted cognitive training produced improvements in emotion recognition and may be effective in altering functional network connectivity in networks associated with psychosis risk. TCT may be a useful tool for early intervention in individuals at risk for psychotic disorders to address behaviors that impact functional outcome.

  7. Diffeomorphic functional brain surface alignment: Functional demons.

    PubMed

    Nenning, Karl-Heinz; Liu, Hesheng; Ghosh, Satrajit S; Sabuncu, Mert R; Schwartz, Ernst; Langs, Georg

    2017-08-01

    Aligning brain structures across individuals is a central prerequisite for comparative neuroimaging studies. Typically, registration approaches assume a strong association between the features used for alignment, such as macro-anatomy, and the variable observed, such as functional activation or connectivity. Here, we propose to use the structure of intrinsic resting state fMRI signal correlation patterns as a basis for alignment of the cortex in functional studies. Rather than assuming the spatial correspondence of functional structures between subjects, we have identified locations with similar connectivity profiles across subjects. We mapped functional connectivity relationships within the brain into an embedding space, and aligned the resulting maps of multiple subjects. We then performed a diffeomorphic alignment of the cortical surfaces, driven by the corresponding features in the joint embedding space. Results show that functional alignment based on resting state fMRI identifies functionally homologous regions across individuals with higher accuracy than alignment based on the spatial correspondence of anatomy. Further, functional alignment enables measurement of the strength of the anatomo-functional link across the cortex, and reveals the uneven distribution of this link. Stronger anatomo-functional dissociation was found in higher association areas compared to primary sensory- and motor areas. Functional alignment based on resting state features improves group analysis of task based functional MRI data, increasing statistical power and improving the delineation of task-specific core regions. Finally, a comparison of the anatomo-functional dissociation between cohorts is demonstrated with a group of left and right handed subjects. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Increased power spectral density in resting-state pain-related brain networks in fibromyalgia.

    PubMed

    Kim, Ji-Young; Kim, Seong-Ho; Seo, Jeehye; Kim, Sang-Hyon; Han, Seung Woo; Nam, Eon Jeong; Kim, Seong-Kyu; Lee, Hui Joong; Lee, Seung-Jae; Kim, Yang-Tae; Chang, Yongmin

    2013-09-01

    Fibromyalgia (FM), characterized by chronic widespread pain, is known to be associated with heightened responses to painful stimuli and atypical resting-state functional connectivity among pain-related regions of the brain. Previous studies of FM using resting-state functional magnetic resonance imaging (rs-fMRI) have focused on intrinsic functional connectivity, which maps the spatial distribution of temporal correlations among spontaneous low-frequency fluctuation in functional MRI (fMRI) resting-state data. In the current study, using rs-fMRI data in the frequency domain, we investigated the possible alteration of power spectral density (PSD) of low-frequency fluctuation in brain regions associated with central pain processing in patients with FM. rsfMRI data were obtained from 19 patients with FM and 20 age-matched healthy female control subjects. For each subject, the PSDs for each brain region identified from functional connectivity maps were computed for the frequency band of 0.01 to 0.25 Hz. For each group, the average PSD was determined for each brain region and a 2-sample t test was performed to determine the difference in power between the 2 groups. According to the results, patients with FM exhibited significantly increased frequency power in the primary somatosensory cortex (S1), supplementary motor area (SMA), dorsolateral prefrontal cortex, and amygdala. In patients with FM, the increase in PSD did not show an association with depression or anxiety. Therefore, our findings of atypical increased frequency power during the resting state in pain-related brain regions may implicate the enhanced resting-state baseline neural activity in several brain regions associated with pain processing in FM. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  9. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data

    PubMed Central

    Fair, Damien A.; Nigg, Joel T.; Iyer, Swathi; Bathula, Deepti; Mills, Kathryn L.; Dosenbach, Nico U. F.; Schlaggar, Bradley L.; Mennes, Maarten; Gutman, David; Bangaru, Saroja; Buitelaar, Jan K.; Dickstein, Daniel P.; Di Martino, Adriana; Kennedy, David N.; Kelly, Clare; Luna, Beatriz; Schweitzer, Julie B.; Velanova, Katerina; Wang, Yu-Feng; Mostofsky, Stewart; Castellanos, F. Xavier; Milham, Michael P.

    2012-01-01

    In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD. PMID:23382713

  10. Simultaneous resting-state functional MRI and electroencephalography recordings of functional connectivity in patients with schizophrenia.

    PubMed

    Kirino, Eiji; Tanaka, Shoji; Fukuta, Mayuko; Inami, Rie; Arai, Heii; Inoue, Reiichi; Aoki, Shigeki

    2017-04-01

    It remains unclear how functional connectivity (FC) may be related to specific cognitive domains in neuropsychiatric disorders. Here we used simultaneous resting-state functional magnetic resonance imaging (rsfMRI) and electroencephalography (EEG) recording in patients with schizophrenia, to evaluate FC within and outside the default mode network (DMN). Our study population included 14 patients with schizophrenia and 15 healthy control participants. From all participants, we acquired rsfMRI data, and simultaneously recorded EEG data using an MR-compatible amplifier. We analyzed the rsfMRI-EEG data, and used the CONN toolbox to calculate the FC between regions of interest. We also performed between-group comparisons of standardized low-resolution electromagnetic tomography-based intracortical lagged coherence for each EEG frequency band. FC within the DMN, as measured by rsfMRI and EEG, did not significantly differ between groups. Analysis of rsfMRI data showed that FC between the right posterior inferior temporal gyrus and medial prefrontal cortex was stronger among patients with schizophrenia compared to control participants. Analysis of FC within the DMN using rsfMRI and EEG data revealed no significant differences between patients with schizophrenia and control participants. However, rsfMRI data revealed over-modulated FC between the medial prefrontal cortex and right posterior inferior temporal gyrus in patients with schizophrenia compared to control participants, suggesting that the patients had altered FC, with higher correlations across nodes within and outside of the DMN. Further studies using simultaneous rsfMRI and EEG are required to determine whether altered FC within the DMN is associated with schizophrenia. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  11. The heritability of the functional connectome is robust to common nonlinear registration methods

    NASA Astrophysics Data System (ADS)

    Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.

    2016-03-01

    Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.

  12. Recovery of directed intracortical connectivity from fMRI data

    NASA Astrophysics Data System (ADS)

    Gilson, Matthieu; Ritter, Petra; Deco, Gustavo

    2016-06-01

    The brain exhibits complex spatio-temporal patterns of activity. In particular, its baseline activity at rest has a specific structure: imaging techniques (e.g., fMRI, EEG and MEG) show that cortical areas experience correlated fluctuations, which is referred to as functional connectivity (FC). The present study relies on our recently developed model in which intracortical white-matter connections shape noise-driven fluctuations to reproduce FC observed in experimental data (here fMRI BOLD signal). Here noise has a functional role and represents the variability of neural activity. The model also incorporates anatomical information obtained using diffusion tensor imaging (DTI), which estimates the density of white-matter fibers (structural connectivity, SC). After optimization to match empirical FC, the model provides an estimation of the efficacies of these fibers, which we call effective connectivity (EC). EC differs from SC, as EC not only accounts for the density of neural fibers, but also the concentration of synapses formed at their end, the type of neurotransmitters associated and the excitability of target neural populations. In summary, the model combines anatomical SC and activity FC to evaluate what drives the neural dynamics, embodied in EC. EC can then be analyzed using graph theory to understand how it generates FC and to seek for functional communities among cortical areas (parcellation of 68 areas). We find that intracortical connections are not symmetric, which affects the dynamic range of cortical activity (i.e., variety of states it can exhibit).

  13. Dynamic connectivity states estimated from resting fMRI Identify differences among Schizophrenia, bipolar disorder, and healthy control subjects.

    PubMed

    Rashid, Barnaly; Damaraju, Eswar; Pearlson, Godfrey D; Calhoun, Vince D

    2014-01-01

    Schizophrenia (SZ) and bipolar disorder (BP) share significant overlap in clinical symptoms, brain characteristics, and risk genes, and both are associated with dysconnectivity among large-scale brain networks. Resting state functional magnetic resonance imaging (rsfMRI) data facilitates studying macroscopic connectivity among distant brain regions. Standard approaches to identifying such connectivity include seed-based correlation and data-driven clustering methods such as independent component analysis (ICA) but typically focus on average connectivity. In this study, we utilize ICA on rsfMRI data to obtain intrinsic connectivity networks (ICNs) in cohorts of healthy controls (HCs) and age matched SZ and BP patients. Subsequently, we investigated difference in functional network connectivity, defined as pairwise correlations among the timecourses of ICNs, between HCs and patients. We quantified differences in both static (average) and dynamic (windowed) connectivity during the entire scan duration. Disease-specific differences were identified in connectivity within different dynamic states. Notably, results suggest that patients make fewer transitions to some states (states 1, 2, and 4) compared to HCs, with most such differences confined to a single state. SZ patients showed more differences from healthy subjects than did bipolars, including both hyper and hypo connectivity in one common connectivity state (dynamic state 3). Also group differences between SZ and bipolar patients were identified in patterns (states) of connectivity involving the frontal (dynamic state 1) and frontal-parietal regions (dynamic state 3). Our results provide new information about these illnesses and strongly suggest that state-based analyses are critical to avoid averaging together important factors that can help distinguish these clinical groups.

  14. Changes in Gray Matter Density, Regional Homogeneity, and Functional Connectivity in Methamphetamine-Associated Psychosis: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Zhang, Shengyu; Hu, Qiang; Tang, Tao; Liu, Chao; Li, Chengchong; Zang, Yin-Yin; Cai, Wei-Xiong

    2018-06-13

    BACKGROUND Using regional homogeneity (ReHo) blood oxygen level-dependent functional MR (BOLD-fMRI), we investigated the structural and functional alterations of brain regions among patients with methamphetamine-associated psychosis (MAP). MATERIAL AND METHODS This retrospective study included 17 MAP patients, 16 schizophrenia (SCZ) patients, and 18 healthy controls. Informed consent was obtained from all patients before the clinical assessment, the severity of clinical symptoms was evaluated prior to the fMRI scanning, and then images were acquired and preprocessed after each participant received 6-min fRMI scanning. The participants all underwent BOLD-fMRI scanning. Voxel-based morphometry was used to measure gray matter density (GMD). Resting-state fMRI (rs-fMRI) was conducted to analyze functional MR, ReHo, and functional connectivity (FC). RESULTS GMD analysis results suggest that MAP patients, SCZ patients, and healthy volunteers show different GMDs within different brain regions. Similarly, the ReHo analysis results suggest that MAP patients, SCZ patients, and healthy volunteers have different GMDs within different brain regions. Negative correlations were found between ReHo- and the PANSS-positive scores within the left orbital interior frontal gyrus (L-orb-IFG) of MAP patients. ReHo- and PANSS-negative scores of R-SFG were negatively correlated among SCZ patients. The abnormal FC of R-MFG showed a negative correlation with the PANSS score among MAP patients. CONCLUSIONS The abnormalities in brain structure and FC were associated with the development of MAP.

  15. Time-frequency dynamics of resting-state brain connectivity measured with fMRI.

    PubMed

    Chang, Catie; Glover, Gary H

    2010-03-01

    Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  16. Migraine classification using magnetic resonance imaging resting-state functional connectivity data.

    PubMed

    Chong, Catherine D; Gaw, Nathan; Fu, Yinlin; Li, Jing; Wu, Teresa; Schwedt, Todd J

    2017-08-01

    Background This study used machine-learning techniques to develop discriminative brain-connectivity biomarkers from resting-state functional magnetic resonance neuroimaging ( rs-fMRI) data that distinguish between individual migraine patients and healthy controls. Methods This study included 58 migraine patients (mean age = 36.3 years; SD = 11.5) and 50 healthy controls (mean age = 35.9 years; SD = 11.0). The functional connections of 33 seeded pain-related regions were used as input for a brain classification algorithm that tested the accuracy of determining whether an individual brain MRI belongs to someone with migraine or to a healthy control. Results The best classification accuracy using a 10-fold cross-validation method was 86.1%. Resting functional connectivity of the right middle temporal, posterior insula, middle cingulate, left ventromedial prefrontal and bilateral amygdala regions best discriminated the migraine brain from that of a healthy control. Migraineurs with longer disease durations were classified more accurately (>14 years; 96.7% accuracy) compared to migraineurs with shorter disease durations (≤14 years; 82.1% accuracy). Conclusions Classification of migraine using rs-fMRI provides insights into pain circuits that are altered in migraine and could potentially contribute to the development of a new, noninvasive migraine biomarker. Migraineurs with longer disease burden were classified more accurately than migraineurs with shorter disease burden, potentially indicating that disease duration leads to reorganization of brain circuitry.

  17. Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.

    PubMed

    Peer, Michael; Abboud, Sami; Hertz, Uri; Amedi, Amir; Arzy, Shahar

    2016-07-01

    Seed-based functional connectivity (FC) of resting-state functional MRI data is a widely used methodology, enabling the identification of functional brain networks in health and disease. Based on signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated signal with reduced signal-to-noise ratio in as many as 10% of cortical voxels. Nevertheless, signal attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation can significantly influence FC measures by introducing false functional correlations and diminishing existing correlations between brain regions. We then propose a method for the detection and removal of the attenuated signal ("intensity-based masking") by fitting a Gaussian-based model to the signal intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our method on real-world data, showing that it diminishes false correlations caused by signal dropout, and significantly improves the ability to detect functional networks in single subjects. Furthermore, we show that our method increases inter-subject similarity in FC, enabling reliable distinction of different functional networks. We propose to include the intensity-based masking method as a common practice in the pre-processing of seed-based functional connectivity analysis, and provide software tools for the computation of intensity-based masks on fMRI data. Hum Brain Mapp 37:2407-2418, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. The functional connectivity of semantic task changes in the recovery from stroke aphasia

    NASA Astrophysics Data System (ADS)

    Lu, Jie; Wu, Xia; Yao, Li; Li, Kun-Cheng; Shu, Hua; Dong, Qi

    2007-03-01

    Little is known about the difference of functional connectivity of semantic task between the recovery aphasic patients and normal subject. In this paper, an fMRI experiment was performed in a patient with aphasia following a left-sided ischemic lesion and normal subject. Picture naming was used as semantic activation task in this study. We compared the preliminary functional connectivity results of the recovery aphasic patient with the normal subject. The fMRI data were separated by independent component analysis (ICA) into 90 components. According to our experience and other papers, we chose a region of interest (ROI) of semantic (x=-57, y=15, z=8, r=11mm). From the 90 components, we chose one component as the functional connectivity of the semantic ROI according to one criterion. The criterion is the mean value of the voxels in the ROI. So the component of the highest mean value of the ROI is the functional connectivity of the ROI. The voxel with its value higher than 2.4 was thought as activated (p<0.05). And the functional connectivity networks of the normal subjects were t-tested as group network. From the result, we can know the semantic functional connectivity of stroke aphasic patient and normal subjects are different. The activated areas of the left inferior frontal gyrus and inferior/middle temporal gyrus are larger than the ones of normal. The activated area of the right inferior frontal gyrus is smaller than the ones of normal. The functional connectivity of stroke aphasic patient under semantic condition is different with the normal one. The focus of the stroke aphasic patient can affect the functional connectivity.

  19. Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI

    DTIC Science & Technology

    2017-11-01

    and activation-based fMRI from the Courchesne lab report the presence of structural and functional abnormality in these structures by ages 1 to 2...young ages. With this invaluable resource, we will identify early developmental patterns of intrinsic functional network abnormalities in ASD infants...all infants and toddlers, analyses also investigate whether there may be subtypes of abnormal intrinsic connectivity patterns based on early clinical

  20. Impaired default network functional connectivity in autosomal dominant Alzheimer disease

    PubMed Central

    Chhatwal, Jasmeer P.; Schultz, Aaron P.; Johnson, Keith; Benzinger, Tammie L.S.; Jack, Clifford; Ances, Beau M.; Sullivan, Caroline A.; Salloway, Stephen P.; Ringman, John M.; Koeppe, Robert A.; Marcus, Daniel S.; Thompson, Paul; Saykin, Andrew J.; Correia, Stephen; Schofield, Peter R.; Rowe, Christopher C.; Fox, Nick C.; Brickman, Adam M.; Mayeux, Richard; McDade, Eric; Bateman, Randall; Fagan, Anne M.; Goate, Allison M.; Xiong, Chengjie; Buckles, Virginia D.; Morris, John C.

    2013-01-01

    Objective: To investigate default mode network (DMN) functional connectivity MRI (fcMRI) in a large cross-sectional cohort of subjects from families harboring pathogenic presenilin-1 (PSEN1), presenilin-2 (PSEN2), and amyloid precursor protein (APP) mutations participating in the Dominantly Inherited Alzheimer Network. Methods: Eighty-three mutation carriers and 37 asymptomatic noncarriers from the same families underwent fMRI during resting state at 8 centers in the United States, United Kingdom, and Australia. Using group-independent component analysis, fcMRI was compared using mutation status and Clinical Dementia Rating to stratify groups, and related to each participant's estimated years from expected symptom onset (eYO). Results: We observed significantly decreased DMN fcMRI in mutation carriers with increasing Clinical Dementia Rating, most evident in the precuneus/posterior cingulate and parietal cortices (p < 0.001). Comparison of asymptomatic mutation carriers with noncarriers demonstrated decreased fcMRI in the precuneus/posterior cingulate (p = 0.014) and right parietal cortex (p = 0.0016). We observed a significant interaction between mutation carrier status and eYO, with decreases in DMN fcMRI observed as mutation carriers approached and surpassed their eYO. Conclusion: Functional disruption of the DMN occurs early in the course of autosomal dominant Alzheimer disease, beginning before clinically evident symptoms, and worsening with increased impairment. These findings suggest that DMN fcMRI may prove useful as a biomarker across a wide spectrum of disease, and support the feasibility of DMN fcMRI as a secondary endpoint in upcoming multicenter clinical trials in Alzheimer disease. PMID:23884042

  1. Voxel-wise motion artifacts in population-level whole-brain connectivity analysis of resting-state FMRI.

    PubMed

    Spisák, Tamás; Jakab, András; Kis, Sándor A; Opposits, Gábor; Aranyi, Csaba; Berényi, Ervin; Emri, Miklós

    2014-01-01

    Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that "resting-state" fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.

  2. Segmentation of the Thalamus Based on BOLD Frequencies Affected in Temporal Lobe Epilepsy

    PubMed Central

    Morgan, Victoria L.; Rogers, Baxter P.; Abou-Khalil, Bassel

    2015-01-01

    Objective Temporal lobe epilepsy is associated with functional changes throughout the brain, particularly including a putative seizure propagation network involving the hippocampus, insula and thalamus. We identified a specified frequency range where functional connectivity in this network was related to duration of disease. Then, to identify specific thalamic nuclei involved in seizure propagation, we determined the subregions of the thalamus that have increased resting functional oscillations in this frequency range. Methods Resting-state functional MRI (fMRI) was acquired from twenty unilateral TLE (14 right, 6 left) patients and twenty healthy controls who were each age and gender matched to a specific patient. Wavelet based functional MRI connectivity mapping across the network was computed at each frequency to determine those frequencies where connectivity significantly decreases with duration of disease consistent with impairment due to repeated seizures. The voxel-wise power of the spontaneous blood oxygenation fluctuations of this frequency band was computed in the thalamus of each subject. Results Functional connectivity was impaired in the proposed seizure propagation network over a specific range (0.0067–0.013 Hz and 0.024–0.032 Hz) of blood oxygenation oscillations. Increased power in this frequency band (<0.032 Hz) was detected bilaterally in the pulvinar and anterior nucleus of the thalamus of healthy controls, and was increased over the ipsilateral thalamus compared to the contralateral thalamus in TLE. Significance This study identified frequencies of impaired connectivity in a TLE seizure propagation network and used them to localize the anterior nucleus and pulvinar of the thalamus as subregions most susceptible to TLE seizures. Further examinations of these frequencies in healthy and TLE subjects may provide unique information relating to the mechanism of seizure propagation and potential treatment using electrical stimulation. PMID:26360535

  3. Early classification of Alzheimer's disease using hippocampal texture from structural MRI

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Ding, Yanhui; Wang, Pan; Dou, Xuejiao; Zhou, Bo; Yao, Hongxiang; An, Ningyu; Zhang, Yongxin; Zhang, Xi; Liu, Yong

    2017-03-01

    Convergent evidence has been collected to support that Alzheimer's disease (AD) is associated with reduction in hippocampal volume based on anatomical magnetic resonance imaging (MRI) and impaired functional connectivity based on functional MRI. Radiomics texture analysis has been previously successfully used to identify MRI biomarkers of several diseases, including AD, mild cognitive impairment and multiple sclerosis. In this study, our goal was to determine if MRI hippocampal textures, including the intensity, shape, texture and wavelet features, could be served as an MRI biomarker of AD. For this purpose, the texture marker was trained and evaluated from MRI data of 48 AD and 39 normal samples. The result highlights the presence of hippocampal texture abnormalities in AD, and the possibility that texture may serve as a neuroimaging biomarker for AD.

  4. A Longitudinal Study on Resting State Functional Connectivity in Behavioral Variant Frontotemporal Dementia and Alzheimer's Disease.

    PubMed

    Hafkemeijer, Anne; Möller, Christiane; Dopper, Elise G P; Jiskoot, Lize C; van den Berg-Huysmans, Annette A; van Swieten, John C; van der Flier, Wiesje M; Vrenken, Hugo; Pijnenburg, Yolande A L; Barkhof, Frederik; Scheltens, Philip; van der Grond, Jeroen; Rombouts, Serge A R B

    2017-01-01

    Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD) are the most common types of early-onset dementia. We applied longitudinal resting state functional magnetic resonance imaging (fMRI) to delineate functional brain connections relevant for disease progression and diagnostic accuracy. We used two-center resting state fMRI data of 20 AD patients (65.1±8.0 years), 12 bvFTD patients (64.7±5.4 years), and 22 control subjects (63.8±5.0 years) at baseline and 1.8-year follow-up. We used whole-network and voxel-based network-to-region analyses to study group differences in functional connectivity at baseline and follow-up, and longitudinal changes in connectivity within and between groups. At baseline, connectivity between paracingulate gyrus and executive control network, between cuneal cortex and medial visual network, and between paracingulate gyrus and salience network was higher in AD compared with controls. These differences were also present after 1.8 years. At follow-up, connectivity between angular gyrus and right frontoparietal network, and between paracingulate gyrus and default mode network was lower in bvFTD compared with controls, and lower compared with AD between anterior cingulate gyrus and executive control network, and between lateral occipital cortex and medial visual network. Over time, connectivity decreased in AD between precuneus and right frontoparietal network and in bvFTD between inferior frontal gyrus and left frontoparietal network. Longitudinal changes in connectivity between supramarginal gyrus and right frontoparietal network differ between both patient groups and controls. We found disease-specific brain regions with longitudinal connectivity changes. This suggests the potential of longitudinal resting state fMRI to delineate regions relevant for disease progression and for diagnostic accuracy, although no group differences in longitudinal changes in the direct comparison of AD and bvFTD were found.

  5. A left cerebellar pathway mediates language in prematurely-born young adults

    PubMed Central

    Constable, R. Todd; Vohr, Betty R.; Scheinost, Dustin; Benjamin, Jennifer R.; Fulbright, Robert K.; Lacadie, Cheryl; Schneider, Karen C.; Katz, Karol H.; Zhang, Heping; Papademetris, Xenophon; Ment, Laura R.

    2012-01-01

    Preterm (PT) subjects are at risk for developmental delay, and task-based studies suggest that developmental disorders may be due to alterations in neural connectivity. Since emerging data imply the importance of right cerebellar function for language acquisition in typical development, we hypothesized that PT subjects would have alternate areas of cerebellar connectivity, and that these areas would be responsible for differences in cognitive outcomes between PT subjects and term controls at age 20 years. Nineteen PT and 19 term control young adults were prospectively studied using resting-state functional MRI (fMRI) to create voxel-based contrast maps reflecting the functional connectivity of each tissue element in the grey matter through analysis of the intrinsic connectivity contrast degree (ICC-d). Left cerebellar ICC-d differences between subjects identified a region of interest that was used for subsequent seed-based connectivity analyses. Subjects underwent standardized language testing, and correlations with cognitive outcomes were assessed. There were no differences in gender, hand preference, maternal education, age at study, or Peabody Picture Vocabulary Test (PPVT) scores. Functional connectivity (FcMRI) demonstrated increased tissue connectivity in the biventer, simple and quadrangular lobules of the L cerebellum (p<0.05) in PTs compared to term controls; seed-based analyses from these regions demonstrated alterations in connectivity from L cerebellum to both R and L inferior frontal gyri (IFG) in PTs compared to term controls. For PTs but not term controls, there were significant positive correlations between these connections and PPVT scores (R IFG: r=0.555, p=0.01; L IFG: r=0.454, p=0.05), as well as Verbal Comprehension Index (VCI) scores (R IFG: r=0.472, p=0.04). These data suggest the presence of a left cerebellar language circuit in PT subjects at young adulthood. These findings may represent either a delay in maturation or the engagement of alternative neural pathways for language in the developing PT brain. PMID:22982585

  6. Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression.

    PubMed

    Leaver, Amber M; Wade, Benjamin; Vasavada, Megha; Hellemann, Gerhard; Joshi, Shantanu H; Espinoza, Randall; Narr, Katherine L

    2018-01-01

    Electroconvulsive therapy (ECT) is arguably the most effective available treatment for severe depression. Recent studies have used MRI data to predict clinical outcome to ECT and other antidepressant therapies. One challenge facing such studies is selecting from among the many available metrics, which characterize complementary and sometimes non-overlapping aspects of brain function and connectomics. Here, we assessed the ability of aggregated, functional MRI metrics of basal brain activity and connectivity to predict antidepressant response to ECT using machine learning. A radial support vector machine was trained using arterial spin labeling (ASL) and blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) metrics from n = 46 (26 female, mean age 42) depressed patients prior to ECT (majority right-unilateral stimulation). Image preprocessing was applied using standard procedures, and metrics included cerebral blood flow in ASL, and regional homogeneity, fractional amplitude of low-frequency modulations, and graph theory metrics (strength, local efficiency, and clustering) in BOLD data. A 5-repeated 5-fold cross-validation procedure with nested feature-selection validated model performance. Linear regressions were applied post hoc to aid interpretation of discriminative features. The range of balanced accuracy in models performing statistically above chance was 58-68%. Here, prediction of non-responders was slightly higher than for responders (maximum performance 74 and 64%, respectively). Several features were consistently selected across cross-validation folds, mostly within frontal and temporal regions. Among these were connectivity strength among: a fronto-parietal network [including left dorsolateral prefrontal cortex (DLPFC)], motor and temporal networks (near ECT electrodes), and/or subgenual anterior cingulate cortex (sgACC). Our data indicate that pattern classification of multimodal fMRI metrics can successfully predict ECT outcome, particularly for individuals who will not respond to treatment. Notably, connectivity with networks highly relevant to ECT and depression were consistently selected as important predictive features. These included the left DLPFC and the sgACC, which are both targets of other neurostimulation therapies for depression, as well as connectivity between motor and right temporal cortices near electrode sites. Future studies that probe additional functional and structural MRI metrics and other patient characteristics may further improve the predictive power of these and similar models.

  7. Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real-time fMRI feedback study.

    PubMed

    Spetter, Maartje S; Malekshahi, Rahim; Birbaumer, Niels; Lührs, Michael; van der Veer, Albert H; Scheffler, Klaus; Spuckti, Sophia; Preissl, Hubert; Veit, Ralf; Hallschmid, Manfred

    2017-05-01

    Obese subjects who achieve weight loss show increased functional connectivity between dorsolateral prefrontal cortex (dlPFC) and ventromedial prefrontal cortex (vmPFC), key areas of executive control and reward processing. We investigated the potential of real-time functional magnetic resonance imaging (rt-fMRI) neurofeedback training to achieve healthier food choices by enhancing self-control of the interplay between these brain areas. We trained eight male individuals with overweight or obesity (age: 31.8 ± 4.4 years, BMI: 29.4 ± 1.4 kg/m 2 ) to up-regulate functional connectivity between the dlPFC and the vmPFC by means of a four-day rt-fMRI neurofeedback protocol including, on each day, three training runs comprised of six up-regulation and six passive viewing trials. During the up-regulation runs of the four training days, participants successfully learned to increase functional connectivity between dlPFC and vmPFC. In addition, a trend towards less high-calorie food choices emerged from before to after training, which however was associated with a trend towards increased covertly assessed snack intake. Findings of this proof-of-concept study indicate that overweight and obese participants can increase functional connectivity between brain areas that orchestrate the top-down control of appetite for high-calorie foods. Neurofeedback training might therefore be a useful tool in achieving and maintaining weight loss. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.

    PubMed

    Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.

  9. Amygdala subnuclei response and connectivity during emotional processing.

    PubMed

    Hrybouski, Stanislau; Aghamohammadi-Sereshki, Arash; Madan, Christopher R; Shafer, Andrea T; Baron, Corey A; Seres, Peter; Beaulieu, Christian; Olsen, Fraser; Malykhin, Nikolai V

    2016-06-01

    The involvement of the human amygdala in emotion-related processing has been studied using functional magnetic resonance imaging (fMRI) for many years. However, despite the amygdala being comprised of several subnuclei, most studies investigated the role of the entire amygdala in processing of emotions. Here we combined a novel anatomical tracing protocol with event-related high-resolution fMRI acquisition to study the responsiveness of the amygdala subnuclei to negative emotional stimuli and to examine intra-amygdala functional connectivity. The greatest sensitivity to the negative emotional stimuli was observed in the centromedial amygdala, where the hemodynamic response amplitude elicited by the negative emotional stimuli was greater and peaked later than for neutral stimuli. Connectivity patterns converge with extant findings in animals, such that the centromedial amygdala was more connected with the nuclei of the basal amygdala than with the lateral amygdala. Current findings provide evidence of functional specialization within the human amygdala. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Reduced Hippocampal Functional Connectivity During Episodic Memory Retrieval in Autism

    PubMed Central

    Cooper, Rose A.; Richter, Franziska R.; Bays, Paul M.; Plaisted-Grant, Kate C.; Baron-Cohen, Simon

    2017-01-01

    Abstract Increasing recent research has sought to understand the recollection impairments experienced by individuals with autism spectrum disorder (ASD). Here, we tested whether these memory deficits reflect a reduction in the probability of retrieval success or in the precision of memory representations. We also used functional magnetic resonance imaging (fMRI) to study the neural mechanisms underlying memory encoding and retrieval in ASD, focusing particularly on the functional connectivity of core episodic memory networks. Adults with ASD and typical control participants completed a memory task that involved studying visual displays and subsequently using a continuous dial to recreate their appearance. The ASD group exhibited reduced retrieval success, but there was no evidence of a difference in retrieval precision. fMRI data revealed similar patterns of brain activity and functional connectivity during memory encoding in the 2 groups, though encoding-related lateral frontal activity predicted subsequent retrieval success only in the control group. During memory retrieval, the ASD group exhibited attenuated lateral frontal activity and substantially reduced hippocampal connectivity, particularly between hippocampus and regions of the fronto-parietal control network. These findings demonstrate notable differences in brain function during episodic memory retrieval in ASD and highlight the importance of functional connectivity to understanding recollection-related retrieval deficits in this population. PMID:28057726

  11. Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex.

    PubMed

    Häkkinen, Suvi; Rinne, Teemu

    2018-06-01

    A hierarchical and modular organization is a central hypothesis in the current primate model of auditory cortex (AC) but lacks validation in humans. Here we investigated whether fMRI connectivity at rest and during active tasks is informative of the functional organization of human AC. Identical pitch-varying sounds were presented during a visual discrimination (i.e. no directed auditory attention), pitch discrimination, and two versions of pitch n-back memory tasks. Analysis based on fMRI connectivity at rest revealed a network structure consisting of six modules in supratemporal plane (STP), temporal lobe, and inferior parietal lobule (IPL) in both hemispheres. In line with the primate model, in which higher-order regions have more longer-range connections than primary regions, areas encircling the STP module showed the highest inter-modular connectivity. Multivariate pattern analysis indicated significant connectivity differences between the visual task and rest (driven by the presentation of sounds during the visual task), between auditory and visual tasks, and between pitch discrimination and pitch n-back tasks. Further analyses showed that these differences were particularly due to connectivity modulations between the STP and IPL modules. While the results are generally in line with the primate model, they highlight the important role of human IPL during the processing of both task-irrelevant and task-relevant auditory information. Importantly, the present study shows that fMRI connectivity at rest, during presentation of sounds, and during active listening provides novel information about the functional organization of human AC.

  12. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    PubMed

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  13. Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI

    PubMed Central

    Feng, Pan; Zheng, Yong; Feng, Tingyong

    2015-01-01

    Although disrupting reconsolidation may be a promising approach to attenuate or erase the expression of fear memory, it is not clear how the neural state following fear reminder contribute to the following fear extinction. To address this question, we used resting-state functional magnetic resonance imaging (rs-fMRI) to measure spontaneous neuronal activity and functional connectivity (RSFC) following fear reminder. Some brain regions such as dorsal anterior cingulate (dACC) and ventromedial prefrontal cortex (vmPFC) showed increased amplitude of LFF (ALFF) in the fear reminder group than the no reminder group following fear reminder. More importantly, there was much stronger functional connectivity between the amygdala and vmPFC in the fear reminder group than those in the no reminder group. These findings suggest that the strong functional connectivity between vmPFC and amygdala following a fear reminder could serve as a key role in the followed-up fear extinction stages, which may contribute to the erasing of fear memory. PMID:26576733

  14. Spontaneous brain activity following fear reminder of fear conditioning by using resting-state functional MRI.

    PubMed

    Feng, Pan; Zheng, Yong; Feng, Tingyong

    2015-11-18

    Although disrupting reconsolidation may be a promising approach to attenuate or erase the expression of fear memory, it is not clear how the neural state following fear reminder contribute to the following fear extinction. To address this question, we used resting-state functional magnetic resonance imaging (rs-fMRI) to measure spontaneous neuronal activity and functional connectivity (RSFC) following fear reminder. Some brain regions such as dorsal anterior cingulate (dACC) and ventromedial prefrontal cortex (vmPFC) showed increased amplitude of LFF (ALFF) in the fear reminder group than the no reminder group following fear reminder. More importantly, there was much stronger functional connectivity between the amygdala and vmPFC in the fear reminder group than those in the no reminder group. These findings suggest that the strong functional connectivity between vmPFC and amygdala following a fear reminder could serve as a key role in the followed-up fear extinction stages, which may contribute to the erasing of fear memory.

  15. Left-lateralization of resting state functional connectivity between the presupplementary motor area and primary language areas.

    PubMed

    Lou, William; Peck, Kyung K; Brennan, Nicole; Mallela, Arka; Holodny, Andrei

    2017-07-05

    An abundance of evidence points to the role of a presupplementary motor area (pre-SMA) in human language. This study explores the pre-SMA resting state connectivity network and the nature of its connections to known language areas. We tested the hypothesis that by seeding the pre-SMA, one would be able to establish language laterality to known cortical and subcortical language areas. We analyzed data from 30 right-handed healthy controls and performed the resting state functional MRI. A seed-based analysis using a manually drawn pre-SMA region of interest template was applied. Time-course signals in the pre-SMA region of interest were averaged and cross-correlated to every voxel in the brain. Results show that the pre-SMA has significant left-lateralized functional connectivity to the pars opercularis within Broca's area. Among cortical regions, pre-SMA functional connectivity is strongest to the pars opercularis In addition, pre-SMA connectivity was shown to exist to other cortical language-association regions, including Wernicke's Area, supramarginal gyri, angular gyri, and middle frontal gyri. Among subcortical areas, considerable left-lateralized functional connectivity occurs to the caudate and thalamus, whereas cerebellar subregions show right lateralization. The current study shows that the pre-SMA most strongly connects to the pars opercularis within Broca's area and that cortical connections to language areas are left lateralized among a sample of right-handed patients. We provide resting state functional MRI evidence that the functional connectivity of the pre-SMA is involved in semantic language processing and that this identification may be useful for establishing language laterality in preoperative neurosurgical planning.

  16. Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli.

    PubMed

    Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan

    2011-04-01

    Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Functional connectivity analysis in resting state fMRI with echo-state networks and non-metric clustering for network structure recovery

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; DSouza, Adora M.; Abidin, Anas Z.; Wang, Xixi; Hobbs, Susan K.; Nagarajan, Mahesh B.

    2015-03-01

    Echo state networks (ESN) are recurrent neural networks where the hidden layer is replaced with a fixed reservoir of neurons. Unlike feed-forward networks, neuron training in ESN is restricted to the output neurons alone thereby providing a computational advantage. We demonstrate the use of such ESNs in our mutual connectivity analysis (MCA) framework for recovering the primary motor cortex network associated with hand movement from resting state functional MRI (fMRI) data. Such a framework consists of two steps - (1) defining a pair-wise affinity matrix between different pixel time series within the brain to characterize network activity and (2) recovering network components from the affinity matrix with non-metric clustering. Here, ESNs are used to evaluate pair-wise cross-estimation performance between pixel time series to create the affinity matrix, which is subsequently subject to non-metric clustering with the Louvain method. For comparison, the ground truth of the motor cortex network structure is established with a task-based fMRI sequence. Overlap between the primary motor cortex network recovered with our model free MCA approach and the ground truth was measured with the Dice coefficient. Our results show that network recovery with our proposed MCA approach is in close agreement with the ground truth. Such network recovery is achieved without requiring low-pass filtering of the time series ensembles prior to analysis, an fMRI preprocessing step that has courted controversy in recent years. Thus, we conclude our MCA framework can allow recovery and visualization of the underlying functionally connected networks in the brain on resting state fMRI.

  18. Validation of Shared and Specific Independent Component Analysis (SSICA) for Between-Group Comparisons in fMRI

    PubMed Central

    Maneshi, Mona; Vahdat, Shahabeddin; Gotman, Jean; Grova, Christophe

    2016-01-01

    Independent component analysis (ICA) has been widely used to study functional magnetic resonance imaging (fMRI) connectivity. However, the application of ICA in multi-group designs is not straightforward. We have recently developed a new method named “shared and specific independent component analysis” (SSICA) to perform between-group comparisons in the ICA framework. SSICA is sensitive to extract those components which represent a significant difference in functional connectivity between groups or conditions, i.e., components that could be considered “specific” for a group or condition. Here, we investigated the performance of SSICA on realistic simulations, and task fMRI data and compared the results with one of the state-of-the-art group ICA approaches to infer between-group differences. We examined SSICA robustness with respect to the number of allowable extracted specific components and between-group orthogonality assumptions. Furthermore, we proposed a modified formulation of the back-reconstruction method to generate group-level t-statistics maps based on SSICA results. We also evaluated the consistency and specificity of the extracted specific components by SSICA. The results on realistic simulated and real fMRI data showed that SSICA outperforms the regular group ICA approach in terms of reconstruction and classification performance. We demonstrated that SSICA is a powerful data-driven approach to detect patterns of differences in functional connectivity across groups/conditions, particularly in model-free designs such as resting-state fMRI. Our findings in task fMRI show that SSICA confirms results of the general linear model (GLM) analysis and when combined with clustering analysis, it complements GLM findings by providing additional information regarding the reliability and specificity of networks. PMID:27729843

  19. Regional autonomy changes in resting-state functional MRI in patients with HIV associated neurocognitive disorder

    NASA Astrophysics Data System (ADS)

    DSouza, Adora M.; Abidin, Anas Z.; Chockanathan, Udaysankar; Wismüller, Axel

    2018-03-01

    In this study, we investigate whether there are discernable changes in influence that brain regions have on themselves once patients show symptoms of HIV Associated Neurocognitive Disorder (HAND) using functional MRI (fMRI). Simple functional connectivity measures, such as correlation cannot reveal such information. To this end, we use mutual connectivity analysis (MCA) with Local Models (LM), which reveals a measure of influence in terms of predictability. Once such measures of interaction are obtained, we train two classifiers to characterize difference in patterns of regional self-influence between healthy subjects and subjects presenting with HAND symptoms. The two classifiers we use are Support Vector Machines (SVM) and Localized Generalized Matrix Learning Vector Quantization (LGMLVQ). Performing machine learning on fMRI connectivity measures is popularly known as multi-voxel pattern analysis (MVPA). By performing such an analysis, we are interested in studying the impact HIV infection has on an individual's brain. The high area under receiver operating curve (AUC) and accuracy values for 100 different train/test separations using MCA-LM self-influence measures (SVM: mean AUC=0.86, LGMLVQ: mean AUC=0.88, SVM and LGMLVQ: mean accuracy=0.78) compared with standard MVPA analysis using cross-correlation between fMRI time-series (SVM: mean AUC=0.58, LGMLVQ: mean AUC=0.57), demonstrates that self-influence features can be more discriminative than measures of interaction between time-series pairs. Furthermore, our results suggest that incorporating measures of self-influence in MVPA analysis used commonly in fMRI analysis has the potential to provide a performance boost and indicate important changes in dynamics of regions in the brain as a consequence of HIV infection.

  20. Individual Functional ROI Optimization via Maximization of Group-wise Consistency of Structural and Functional Profiles

    PubMed Central

    Li, Kaiming; Guo, Lei; Zhu, Dajiang; Hu, Xintao; Han, Junwei; Liu, Tianming

    2013-01-01

    Studying connectivities among functional brain regions and the functional dynamics on brain networks has drawn increasing interest. A fundamental issue that affects functional connectivity and dynamics studies is how to determine the best possible functional brain regions or ROIs (regions of interest) for a group of individuals, since the connectivity measurements are heavily dependent on ROI locations. Essentially, identification of accurate, reliable and consistent corresponding ROIs is challenging due to the unclear boundaries between brain regions, variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this paper presents a novel methodology to computationally optimize ROIs locations derived from task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible and predictable across brains. Our computational strategy is to formulate the individual ROI location optimization as a group variance minimization problem, in which group-wise consistencies in functional/structural connectivity patterns and anatomic profiles are defined as optimization constraints. Our experimental results from multimodal fMRI and DTI data show that the optimized ROIs have significantly improved consistency in structural and functional profiles across individuals. These improved functional ROIs with better consistency could contribute to further study of functional interaction and dynamics in the human brain. PMID:22281931

  1. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia.

    PubMed

    Dodell-Feder, David; Delisi, Lynn E; Hooker, Christine I

    2014-06-01

    Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN's hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. The relationship between default mode network connectivity and social functioning in individuals at familial high-risk for schizophrenia

    PubMed Central

    Dodell-Feder, David; DeLisi, Lynn E.; Hooker, Christine I.

    2014-01-01

    Unaffected first-degree relatives of individuals with schizophrenia (i.e., those at familial high-risk [FHR]), demonstrate social dysfunction qualitatively similar though less severe than that of their affected relatives. These social difficulties may be the consequence of genetically conferred disruption to aspects of the default mode network (DMN), such as the dMPFC subsystem, which overlaps with the network of brain regions recruited during social cognitive processes. In the present study, we investigate this possibility, testing DMN connectivity and its relationship to social functioning in FHR using resting-state fMRI. Twenty FHR individuals and 17 controls underwent fMRI during a resting-state scan. Hypothesis-driven functional connectivity analyses examined ROI-to-ROI correlations between the DMN’s hubs, and regions of the dMPFC subsystem and MTL subsystem. Connectivity values were examined in relationship to a measure of social functioning and empathy/perspective-taking. Results demonstrate that FHR exhibit reduced connectivity specifically within the dMPFC subsystem of the DMN. Certain ROI-to-ROI correlations predicted aspects of social functioning and empathy/perspective-taking across all participants. Together, the data indicate that disruption to the dMPFC subsystem of the DMN may be associated with familial risk for schizophrenia, and that these intrinsic connections may carry measurable consequences for social functioning. PMID:24768131

  3. Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting‐state functional connectivity

    PubMed Central

    Scholtens, Lianne H.; Turk, Elise; Mantini, Dante; Vanduffel, Wim; Feldman Barrett, Lisa

    2016-01-01

    Abstract The cerebral cortex is well known to display a large variation in excitatory and inhibitory chemoarchitecture, but the effect of this variation on global scale functional neural communication and synchronization patterns remains less well understood. Here, we provide evidence of the chemoarchitecture of cortical regions to be associated with large‐scale region‐to‐region resting‐state functional connectivity. We assessed the excitatory versus inhibitory chemoarchitecture of cortical areas as an ExIn ratio between receptor density mappings of excitatory (AMPA, M1) and inhibitory (GABAA, M2) receptors, computed on the basis of data collated from pioneering studies of autoradiography mappings as present in literature of the human (2 datasets) and macaque (1 dataset) cortex. Cortical variation in ExIn ratio significantly correlated with total level of functional connectivity as derived from resting‐state functional connectivity recordings of cortical areas across all three datasets (human I: P = 0.0004; human II: P = 0.0008; macaque: P = 0.0007), suggesting cortical areas with an overall more excitatory character to show higher levels of intrinsic functional connectivity during resting‐state. Our findings are indicative of the microscale chemoarchitecture of cortical regions to be related to resting‐state fMRI connectivity patterns at the global system's level of connectome organization. Hum Brain Mapp 37:3103–3113, 2016. © 2016 Wiley Periodicals, Inc. PMID:27207489

  4. Atomoxetine Treatment Strengthens an Anti-Correlated Relationship between Functional Brain Networks in Medication-Naïve Adults with Attention-Deficit Hyperactivity Disorder: A Randomized Double-Blind Placebo-Controlled Clinical Trial

    PubMed Central

    Lin, Hsiang-Yuan

    2016-01-01

    Background: Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. Methods: After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18–52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. Results: At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Conclusions: Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. PMID:26377368

  5. Atomoxetine Treatment Strengthens an Anti-Correlated Relationship between Functional Brain Networks in Medication-Naïve Adults with Attention-Deficit Hyperactivity Disorder: A Randomized Double-Blind Placebo-Controlled Clinical Trial.

    PubMed

    Lin, Hsiang-Yuan; Gau, Susan Shur-Fen

    2015-09-16

    Although atomoxetine demonstrates efficacy in individuals with attention-deficit hyperactivity disorder, its treatment effects on brain resting-state functional connectivity remain unknown. Therefore, we aimed to investigate major brain functional networks in medication-naïve adults with attention-deficit hyperactivity disorder and the efficacy of atomoxetine treatment on resting-state functional connectivity. After collecting baseline resting-state functional MRI scans from 24 adults with attention-deficit hyperactivity disorder (aged 18-52 years) and 24 healthy controls (matched in demographic characteristics), the participants with attention-deficit hyperactivity disorder were randomly assigned to atomoxetine (n=12) and placebo (n=12) arms in an 8-week, double-blind, placebo-controlled trial. The primary outcome was functional connectivity assessed by a resting-state functional MRI. Seed-based functional connectivity was calculated and compared for the affective, attention, default, and cognitive control networks. At baseline, we found atypical cross talk between the default, cognitive control, and dorsal attention networks and hypoconnectivity within the dorsal attention and default networks in adults with attention-deficit hyperactivity disorder. Our first-ever placebo-controlled clinical trial incorporating resting-state functional MRI showed that treatment with atomoxetine strengthened an anticorrelated relationship between the default and task-positive networks and modulated all major brain networks. The strengthened anticorrelations were associated with improving clinical symptoms in the atomoxetine-treated adults. Our results support the idea that atypical default mode network task-positive network interaction plays an important role in the pathophysiology of adult attention-deficit hyperactivity disorder. Strengthening this atypical relationship following atomoxetine treatment suggests an important pathway to treat attention-deficit hyperactivity disorder. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  6. Brain functional network abnormality extends beyond the sensorimotor network in brachial plexus injury patients.

    PubMed

    Feng, Jun-Tao; Liu, Han-Qiu; Hua, Xu-Yun; Gu, Yu-Dong; Xu, Jian-Guang; Xu, Wen-Dong

    2016-12-01

    Brachial plexus injury (BPI) is a type of severe peripheral nerve trauma that leads to central remodeling in the brain, as revealed by functional MRI analysis. However, previously reported remodeling is mostly restricted to sensorimotor areas of the brain. Whether this disturbance in the sensorimotor network leads to larger-scale functional remodeling remains unknown. We sought to explore the higher-level brain functional abnormality pattern of BPI patients from a large-scale network function connectivity dimension in 15 right-handed BPI patients. Resting-state functional MRI data were collected and analyzed using independent component analysis methods. Five components of interest were recognized and compared between patients and healthy subjects. Patients showed significantly altered brain local functional activities in the bilateral fronto-parietal network (FPN), sensorimotor network (SMN), and executive-control network (ECN) compared with healthy subjects. Moreover, functional connectivity between SMN and ECN were significantly less in patients compared with healthy subjects, and connectivity strength between ECN and SMN was negatively correlated with patients' residual function of the affected limb. Functional connectivity between SMN and right FPN were also significantly less than in controls, although connectivity between ECN and default mode network (DMN) was greater than in controls. These data suggested that brain functional disturbance in BPI patients extends beyond the sensorimotor network and cascades serial remodeling in the brain, which significantly correlates with residual hand function of the paralyzed limb. Furthermore, functional remodeling in these higher-level functional networks may lead to cognitive alterations in complex tasks.

  7. Adaptive cyclic physiologic noise modeling and correction in functional MRI.

    PubMed

    Beall, Erik B

    2010-03-30

    Physiologic noise in BOLD-weighted MRI data is known to be a significant source of the variance, reducing the statistical power and specificity in fMRI and functional connectivity analyses. We show a dramatic improvement on current noise correction methods in both fMRI and fcMRI data that avoids overfitting. The traditional noise model is a Fourier series expansion superimposed on the periodicity of parallel measured breathing and cardiac cycles. Correction using this model results in removal of variance matching the periodicity of the physiologic cycles. Using this framework allows easy modeling of noise. However, using a large number of regressors comes at the cost of removing variance unrelated to physiologic noise, such as variance due to the signal of functional interest (overfitting the data). It is our hypothesis that there are a small variety of fits that describe all of the significantly coupled physiologic noise. If this is true, we can replace a large number of regressors used in the model with a smaller number of the fitted regressors and thereby account for the noise sources with a smaller reduction in variance of interest. We describe these extensions and demonstrate that we can preserve variance in the data unrelated to physiologic noise while removing physiologic noise equivalently, resulting in data with a higher effective SNR than with current corrections techniques. Our results demonstrate a significant improvement in the sensitivity of fMRI (up to a 17% increase in activation volume for fMRI compared with higher order traditional noise correction) and functional connectivity analyses. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Altered resting brain function and structure in professional badminton players.

    PubMed

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  9. Graph-based network analysis of resting-state functional MRI.

    PubMed

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  10. Influences of Hunger, Satiety and Oral Glucose on Functional Brain Connectivity: A Multimethod Resting-State fMRI Study.

    PubMed

    Al-Zubaidi, Arkan; Heldmann, Marcus; Mertins, Alfred; Jauch-Chara, Kamila; Münte, Thomas F

    2018-07-01

    A major regulatory task of the organism is to keep brain functions relatively constant in spite of metabolic changes (e.g., hunger vs. satiety) or availability of energy (e.g., glucose administration). Resting-state functional magnetic resonance imaging (rs-fMRI) can reveal resulting changes in brain function but previous studies have focused mostly on the hypothalamus. Therefore, we took a whole-brain approach and examined 24 healthy normal-weight men once after 36 h of fasting and once in a satiated state (six meals over the course of 36 h). At the end of each treatment, rs-fMRI was recorded before and after the oral administration of 75 g of glucose. We calculated local connectivity (regional homogeneity [ReHo]), global connectivity (degree of centrality [DC]), and amplitude (fractional amplitude of low-frequency fluctuation [fALFF]) maps from the rs-fMRI data. We found that glucose administration reduced all measures selectively in the left supplementary motor area and increased ReHo and fALFF in the right middle and superior frontal gyri. For fALFF, we observed a significant interaction between metabolic states and glucose in the left thalamus. This interaction was driven by a fALFF increase after glucose treatment in the hunger relative to the satiety condition. Our results indicate that fALFF analysis is the most sensitive measure to detect effects of metabolic states on resting-state brain activity. Moreover, we show that multimethod rs-fMRI provides an unbiased approach to identify spontaneous brain activity associated with changes in homeostasis and caloric intake. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses

    PubMed Central

    Riera, J; Aubert, E; Iwata, K; Kawashima, R; Wan, X; Ozaki, T

    2005-01-01

    The elucidation of the complex machinery used by the human brain to segregate and integrate information while performing high cognitive functions is a subject of imminent future consequences. The most significant contributions to date in this field, known as cognitive neuroscience, have been achieved by using innovative neuroimaging techniques, such as electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), which measure variations in both the time and the space of some interpretable physical magnitudes. Extraordinary maps of cerebral activation involving function-restricted brain areas, as well as graphs of the functional connectivity between them, have been obtained from EEG and fMRI data by solving some spatio-temporal inverse problems, which constitutes a top-down approach. However, in many cases, a natural bridge between these maps/graphs and the causal physiological processes is lacking, leading to some misunderstandings in their interpretation. Recent advances in the comprehension of the underlying physiological mechanisms associated with different cerebral scales have provided researchers with an excellent scenario to develop sophisticated biophysical models that permit an integration of these neuroimage modalities, which must share a common aetiology. This paper proposes a bottom-up approach, involving physiological parameters in a specific mesoscopic dynamic equations system. Further observation equations encapsulating the relationship between the mesostates and the EEG/fMRI data are obtained on the basis of the physical foundations of these techniques. A methodology for the estimation of parameters from fused EEG/fMRI data is also presented. In this context, the concepts of activation and effective connectivity are carefully revised. This new approach permits us to examine and discuss some future prospects for the integration of multimodal neuroimages. PMID:16087446

  12. Changes in interhemispheric motor connectivity after muscle fatigue

    NASA Astrophysics Data System (ADS)

    Peltier, Scott; LaConte, Stephen M.; Niyazov, Dmitriy; Liu, Jing; Sahgal, Vinod; Yue, Guang; Hu, Xiaoping

    2005-04-01

    Synchronized oscillations in resting state timecourses have been detected in recent fMRI studies. These oscillations are low frequency in nature (< 0.08 Hz), and seem to be a property of symmetric cortices. These fluctuations are important as a potential signal of interest, which could indicate connectivity between functionally related areas of the brain. It has also been shown that the synchronized oscillations decrease in some spontaneous pathological states. Thus, detection of these functional connectivity patterns may help to serve as a gauge of normal brain activity. The cognitive effects of muscle fatigue are not well characterized. Sustained fatigue has the potential to dynamically alter activity in brain networks. In this work, we examined the interhemispheric correlations in the left and right primary motor cortices and how they change with muscle fatigue. Resting-state functional MRI imaging was done before and after a repetitive unilateral fatigue task. We find that the number of significant correlations in the bilateral motor network decreases with fatigue. These results suggest that resting-state interhemispheric motor cortex functional connectivity is affected by muscle fatigue.

  13. Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis

    PubMed Central

    Heitger, Marcus H.; Goble, Daniel J.; Dhollander, Thijs; Dupont, Patrick; Caeyenberghs, Karen; Leemans, Alexander; Sunaert, Stefan; Swinnen, Stephan P.

    2013-01-01

    In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We applied graph-theoretical network analysis (GTNA) to task-driven fMRI data in 16 elderly and 16 young participants using a bimanual coordination task including in-phase and anti-phase flexion/extension wrist movements. Network nodes for the GTNA comprised task-relevant brain areas as defined by fMRI activation foci. The elderly matched the motor performance of the young but showed an increased functional connectivity in both networks across a wide range of connectivity metrics, i.e., higher mean connectivity degree, connection strength, network density and efficiency, together with shorter mean communication path length between the network nodes and also a lower betweenness centrality. More difficult movements showed an increased connectivity in both groups. The network connectivity of both groups had “small world” character. The present findings indicate (a) that bimanual coordination in the aging brain is associated with a higher functional connectivity even between areas also activated in young adults, independently from task difficulty, and (b) that adequate motor coordination in the context of task-driven bimanual control in older adults may not be solely due to additional neural recruitment but also to aging-related changes of functional relationships between brain regions. PMID:23637982

  14. Unravelling the Intrinsic Functional Organization of the Human Striatum: A Parcellation and Connectivity Study Based on Resting-State fMRI

    PubMed Central

    Jung, Wi Hoon; Jang, Joon Hwan; Park, Jin Woo; Kim, Euitae; Goo, Eun-Hoe; Im, Oh-Soo; Kwon, Jun Soo

    2014-01-01

    As the main input hub of the basal ganglia, the striatum receives projections from the cerebral cortex. Many studies have provided evidence for multiple parallel corticostriatal loops based on the structural and functional connectivity profiles of the human striatum. A recent resting-state fMRI study revealed the topography of striatum by assigning each voxel in the striatum to its most strongly correlated cortical network among the cognitive, affective, and motor networks. However, it remains unclear what patterns of striatal parcellation would result from performing the clustering without subsequent assignment to cortical networks. Thus, we applied unsupervised clustering algorithms to parcellate the human striatum based on its functional connectivity patterns to other brain regions without any anatomically or functionally defined cortical targets. Functional connectivity maps of striatal subdivisions, identified through clustering analyses, were also computed. Our findings were consistent with recent accounts of the functional distinctions of the striatum as well as with recent studies about its functional and anatomical connectivity. For example, we found functional connections between dorsal and ventral striatal clusters and the areas involved in cognitive and affective processes, respectively, and between rostral and caudal putamen clusters and the areas involved in cognitive and motor processes, respectively. This study confirms prior findings, showing similar striatal parcellation patterns between the present and prior studies. Given such striking similarity, it is suggested that striatal subregions are functionally linked to cortical networks involving specific functions rather than discrete portions of cortical regions. Our findings also demonstrate that the clustering of functional connectivity patterns is a reliable feature in parcellating the striatum into anatomically and functionally meaningful subdivisions. The striatal subdivisions identified here may have important implications for understanding the relationship between corticostriatal dysfunction and various neurodegenerative and psychiatric disorders. PMID:25203441

  15. BRAPH: A graph theory software for the analysis of brain connectivity

    PubMed Central

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B.; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH–BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer’s disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson’s patients with mild cognitive impairment. PMID:28763447

  16. BRAPH: A graph theory software for the analysis of brain connectivity.

    PubMed

    Mijalkov, Mite; Kakaei, Ehsan; Pereira, Joana B; Westman, Eric; Volpe, Giovanni

    2017-01-01

    The brain is a large-scale complex network whose workings rely on the interaction between its various regions. In the past few years, the organization of the human brain network has been studied extensively using concepts from graph theory, where the brain is represented as a set of nodes connected by edges. This representation of the brain as a connectome can be used to assess important measures that reflect its topological architecture. We have developed a freeware MatLab-based software (BRAPH-BRain Analysis using graPH theory) for connectivity analysis of brain networks derived from structural magnetic resonance imaging (MRI), functional MRI (fMRI), positron emission tomography (PET) and electroencephalogram (EEG) data. BRAPH allows building connectivity matrices, calculating global and local network measures, performing non-parametric permutations for group comparisons, assessing the modules in the network, and comparing the results to random networks. By contrast to other toolboxes, it allows performing longitudinal comparisons of the same patients across different points in time. Furthermore, even though a user-friendly interface is provided, the architecture of the program is modular (object-oriented) so that it can be easily expanded and customized. To demonstrate the abilities of BRAPH, we performed structural and functional graph theory analyses in two separate studies. In the first study, using MRI data, we assessed the differences in global and nodal network topology in healthy controls, patients with amnestic mild cognitive impairment, and patients with Alzheimer's disease. In the second study, using resting-state fMRI data, we compared healthy controls and Parkinson's patients with mild cognitive impairment.

  17. Alteration of functional connectivity during real-time fMRI regulation of PCC

    NASA Astrophysics Data System (ADS)

    Zhang, Gaoyan; Yao, Li; Long, Zhiying

    2012-03-01

    Real-time functional magnetic resonance imaging (rtfMRI) can be used to train the subjects to selectively control activity of specific brain area so as to affect the activation in the target region and even to improve cognition and behavior. So far, whether brain activity in posterior cingulate cortex (PCC) can be regulated by rtfMRI has not been reported. In the present study, we aimed at investigating whether real-time regulation of activity in PCC can change the functional connectivity between PCC and other brain regions. A total of 12 subjects underwent two training runs, each lasts 782s. During the training, subjects were instructed to down regulate activity in PCC by imagining right hand finger movement with the sequence of 4-2-3-1-3-4-2 during task and relax as possible as they can during rest. To control for any effects induced by repeated practice, another 12 subjects in the control group received the same experiment procedure and instruction except with no feedback during training. Experiment results show that increased functional connectivity of PCC with medial frontal cortex (MFC) was observed in both groups during the two training runs. However, PCC of the experimental group is correlated with larger areas in MFC than the control group. Because the positive correlation between task performance and MFC to PCC connectivity has been demonstrated previously, we infer that the stronger connectivity between PCC and MFC in the experimental group may suggest that the experimental group with neurofeedback can more efficiently regulate PCC than the control group without neurofeedback.

  18. Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states

    PubMed Central

    Wang, Chenhao; Ong, Ju Lynn; Patanaik, Amiya; Chee, Michael W. L.

    2016-01-01

    Fluctuations in resting-state functional connectivity occur but their behavioral significance remains unclear, largely because correlating behavioral state with dynamic functional connectivity states (DCS) engages probes that disrupt the very behavioral state we seek to observe. Observing spontaneous eyelid closures following sleep deprivation permits nonintrusive arousal monitoring. During periods of low arousal dominated by eyelid closures, sliding-window correlation analysis uncovered a DCS associated with reduced within-network functional connectivity of default mode and dorsal/ventral attention networks, as well as reduced anticorrelation between these networks. Conversely, during periods when participants’ eyelids were wide open, a second DCS was associated with less decoupling between the visual network and higher-order cognitive networks that included dorsal/ventral attention and default mode networks. In subcortical structures, eyelid closures were associated with increased connectivity between the striatum and thalamus with the ventral attention network, and greater anticorrelation with the dorsal attention network. When applied to task-based fMRI data, these two DCS predicted interindividual differences in frequency of behavioral lapsing and intraindividual temporal fluctuations in response speed. These findings with participants who underwent a night of total sleep deprivation were replicated in an independent dataset involving partially sleep-deprived participants. Fluctuations in functional connectivity thus appear to be clearly associated with changes in arousal. PMID:27512040

  19. Altered functional connectivity of the amygdaloid input nuclei in adolescents and young adults with autism spectrum disorder: a resting state fMRI study.

    PubMed

    Rausch, Annika; Zhang, Wei; Haak, Koen V; Mennes, Maarten; Hermans, Erno J; van Oort, Erik; van Wingen, Guido; Beckmann, Christian F; Buitelaar, Jan K; Groen, Wouter B

    2016-01-01

    Amygdala dysfunction is hypothesized to underlie the social deficits observed in autism spectrum disorders (ASD). However, the neurobiological basis of this hypothesis is underspecified because it is unknown whether ASD relates to abnormalities of the amygdaloid input or output nuclei. Here, we investigated the functional connectivity of the amygdaloid social-perceptual input nuclei and emotion-regulation output nuclei in ASD versus controls. We collected resting state functional magnetic resonance imaging (fMRI) data, tailored to provide optimal sensitivity in the amygdala as well as the neocortex, in 20 adolescents and young adults with ASD and 25 matched controls. We performed a regular correlation analysis between the entire amygdala (EA) and the whole brain and used a partial correlation analysis to investigate whole-brain functional connectivity uniquely related to each of the amygdaloid subregions. Between-group comparison of regular EA correlations showed significantly reduced connectivity in visuospatial and superior parietal areas in ASD compared to controls. Partial correlation analysis revealed that this effect was driven by the left superficial and right laterobasal input subregions, but not the centromedial output nuclei. These results indicate reduced connectivity of specifically the amygdaloid sensory input channels in ASD, suggesting that abnormal amygdalo-cortical connectivity can be traced down to the socio-perceptual pathways.

  20. Dynamic reconfiguration of human brain functional networks through neurofeedback.

    PubMed

    Haller, Sven; Kopel, Rotem; Jhooti, Permi; Haas, Tanja; Scharnowski, Frank; Lovblad, Karl-Olof; Scheffler, Klaus; Van De Ville, Dimitri

    2013-11-01

    Recent fMRI studies demonstrated that functional connectivity is altered following cognitive tasks (e.g., learning) or due to various neurological disorders. We tested whether real-time fMRI-based neurofeedback can be a tool to voluntarily reconfigure brain network interactions. To disentangle learning-related from regulation-related effects, we first trained participants to voluntarily regulate activity in the auditory cortex (training phase) and subsequently asked participants to exert learned voluntary self-regulation in the absence of feedback (transfer phase without learning). Using independent component analysis (ICA), we found network reconfigurations (increases in functional network connectivity) during the neurofeedback training phase between the auditory target region and (1) the auditory pathway; (2) visual regions related to visual feedback processing; (3) insula related to introspection and self-regulation and (4) working memory and high-level visual attention areas related to cognitive effort. Interestingly, the auditory target region was identified as the hub of the reconfigured functional networks without a-priori assumptions. During the transfer phase, we again found specific functional connectivity reconfiguration between auditory and attention network confirming the specific effect of self-regulation on functional connectivity. Functional connectivity to working memory related networks was no longer altered consistent with the absent demand on working memory. We demonstrate that neurofeedback learning is mediated by widespread changes in functional connectivity. In contrast, applying learned self-regulation involves more limited and specific network changes in an auditory setup intended as a model for tinnitus. Hence, neurofeedback training might be used to promote recovery from neurological disorders that are linked to abnormal patterns of brain connectivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex

    PubMed Central

    Stevens, W. Dale; Tessler, Michael Henry; Peng, Cynthia S.; Martin, Alex

    2015-01-01

    One of the most robust and oft-replicated findings in cognitive neuroscience is that several spatially distinct, functionally dissociable ventral occipitotemporal cortex (VOTC) regions respond preferentially to different categories of concrete entities. However, the determinants of this category-related organization remain to be fully determined. One recent proposal is that privileged connectivity of these VOTC regions with other regions that store and/or process category-relevant properties may be a major contributing factor. To test this hypothesis, we used a multi-category functional MRI localizer to individually define category-related brain regions of interest (ROIs) in a large group of subjects (n=33). We then used these ROIs in resting-state functional connectivity MRI analyses to explore spontaneous functional connectivity among these regions. We demonstrate that during rest, distinct category-preferential VOTC regions show differentially stronger functional connectivity with other regions that have congruent category-preference, as defined by the functional localizer. Importantly, a ‘tool’-preferential region in the left medial fusiform gyrus showed differentially stronger functional connectivity with other left lateralized cortical regions associated with perceiving and knowing about common tools – posterior middle temporal gyrus (involved in perception of non-biological motion), lateral parietal cortex (critical for reaching, grasping, manipulating), and ventral premotor cortex (involved in storing/executing motor programs) – relative to other category-related regions in VOTC of both the right and left hemisphere. Our findings support the claim that privileged connectivity with other cortical regions that store and/or process category-relevant properties constrains the category-related organization of VOTC. PMID:25704493

  2. Control networks and hubs.

    PubMed

    Gratton, Caterina; Sun, Haoxin; Petersen, Steven E

    2018-03-01

    Executive control functions are associated with frontal, parietal, cingulate, and insular brain regions that interact through distributed large-scale networks. Here, we discuss how fMRI functional connectivity can shed light on the organization of control networks and how they interact with other parts of the brain. In the first section of our review, we present convergent evidence from fMRI functional connectivity, activation, and lesion studies that there are multiple dissociable control networks in the brain with distinct functional properties. In the second section, we discuss how graph theoretical concepts can help illuminate the mechanisms by which control networks interact with other brain regions to carry out goal-directed functions, focusing on the role of specialized hub regions for mediating cross-network interactions. Again, we use a combination of functional connectivity, lesion, and task activation studies to bolster this claim. We conclude that a large-scale network perspective provides important neurobiological constraints on the neural underpinnings of executive control, which will guide future basic and translational research into executive function and its disruption in disease. © 2017 Society for Psychophysiological Research.

  3. Altered default network resting-state functional connectivity in adolescents with Internet gaming addiction.

    PubMed

    Ding, Wei-na; Sun, Jin-hua; Sun, Ya-wen; Zhou, Yan; Li, Lei; Xu, Jian-rong; Du, Ya-song

    2013-01-01

    Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA). Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week. There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (p<0.0001) and higher CIAS (p<0.0001) and BIS-11 (p = 0.01) scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule. Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders.

  4. Altered Default Network Resting-State Functional Connectivity in Adolescents with Internet Gaming Addiction

    PubMed Central

    Li, Lei; Xu, Jian-rong

    2013-01-01

    Purpose Excessive use of the Internet has been linked to a variety of negative psychosocial consequences. This study used resting-state functional magnetic resonance imaging (fMRI) to investigate whether functional connectivity is altered in adolescents with Internet gaming addiction (IGA). Methods Seventeen adolescents with IGA and 24 normal control adolescents underwent a 7.3 minute resting-state fMRI scan. Posterior cingulate cortex (PCC) connectivity was determined in all subjects by investigating synchronized low-frequency fMRI signal fluctuations using a temporal correlation method. To assess the relationship between IGA symptom severity and PCC connectivity, contrast images representing areas correlated with PCC connectivity were correlated with the scores of the 17 subjects with IGA on the Chen Internet Addiction Scale (CIAS) and Barratt Impulsiveness Scale-11 (BIS-11) and their hours of Internet use per week. Results There were no significant differences in the distributions of the age, gender, and years of education between the two groups. The subjects with IGA showed longer Internet use per week (hours) (p<0.0001) and higher CIAS (p<0.0001) and BIS-11 (p = 0.01) scores than the controls. Compared with the control group, subjects with IGA exhibited increased functional connectivity in the bilateral cerebellum posterior lobe and middle temporal gyrus. The bilateral inferior parietal lobule and right inferior temporal gyrus exhibited decreased connectivity. Connectivity with the PCC was positively correlated with CIAS scores in the right precuneus, posterior cingulate gyrus, thalamus, caudate, nucleus accumbens, supplementary motor area, and lingual gyrus. It was negatively correlated with the right cerebellum anterior lobe and left superior parietal lobule. Conclusion Our results suggest that adolescents with IGA exhibit different resting-state patterns of brain activity. As these alterations are partially consistent with those in patients with substance addiction, they support the hypothesis that IGA as a behavioral addiction that may share similar neurobiological abnormalities with other addictive disorders. PMID:23555827

  5. Altered Structural and Functional Connectivity in Late Preterm Preadolescence: An Anatomic Seed-Based Study of Resting State Networks Related to the Posteromedial and Lateral Parietal Cortex.

    PubMed

    Degnan, Andrew J; Wisnowski, Jessica L; Choi, SoYoung; Ceschin, Rafael; Bhushan, Chitresh; Leahy, Richard M; Corby, Patricia; Schmithorst, Vincent J; Panigrahy, Ashok

    2015-01-01

    Late preterm birth confers increased risk of developmental delay, academic difficulties and social deficits. The late third trimester may represent a critical period of development of neural networks including the default mode network (DMN), which is essential to normal cognition. Our objective is to identify functional and structural connectivity differences in the posteromedial cortex related to late preterm birth. Thirty-eight preadolescents (ages 9-13; 19 born in the late preterm period (≥32 weeks gestational age) and 19 at term) without access to advanced neonatal care were recruited from a low socioeconomic status community in Brazil. Participants underwent neurocognitive testing, 3-dimensional T1-weighted imaging, diffusion-weighted imaging and resting state functional MRI (RS-fMRI). Seed-based probabilistic diffusion tractography and RS-fMRI analyses were performed using unilateral seeds within the posterior DMN (posterior cingulate cortex, precuneus) and lateral parietal DMN (superior marginal and angular gyri). Late preterm children demonstrated increased functional connectivity within the posterior default mode networks and increased anti-correlation with the central-executive network when seeded from the posteromedial cortex (PMC). Key differences were demonstrated between PMC components with increased anti-correlation with the salience network seen only with posterior cingulate cortex seeding but not with precuneus seeding. Probabilistic tractography showed increased streamlines within the right inferior longitudinal fasciculus and inferior fronto-occipital fasciculus within late preterm children while decreased intrahemispheric streamlines were also observed. No significant differences in neurocognitive testing were demonstrated between groups. Late preterm preadolescence is associated with altered functional connectivity from the PMC and lateral parietal cortex to known distributed functional cortical networks despite no significant executive neurocognitive differences. Selective increased structural connectivity was observed in the setting of decreased posterior interhemispheric connections. Future work is needed to determine if these findings represent a compensatory adaptation employing alternate neural circuitry or could reflect subtle pathology resulting in emotional processing deficits not seen with neurocognitive testing.

  6. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    PubMed

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  7. Imaging drugs with and without clinical analgesic efficacy.

    PubMed

    Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David

    2011-12-01

    The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK(1) receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts.

  8. Imaging Drugs with and without Clinical Analgesic Efficacy

    PubMed Central

    Upadhyay, Jaymin; Anderson, Julie; Schwarz, Adam J; Coimbra, Alexandre; Baumgartner, Richard; Pendse, G; George, Edward; Nutile, Lauren; Wallin, Diana; Bishop, James; Neni, Saujanya; Maier, Gary; Iyengar, Smriti; Evelhoch, Jeffery L; Bleakman, David; Hargreaves, Richard; Becerra, Lino; Borsook, David

    2011-01-01

    The behavioral response to pain is driven by sensory and affective components, each of which is mediated by the CNS. Subjective pain ratings are used as readouts when appraising potential analgesics; however, pain ratings alone cannot enable a characterization of CNS pain circuitry during pain processing or how this circuitry is modulated pharmacologically. Having a more objective readout of potential analgesic effects may allow improved understanding and detection of pharmacological efficacy for pain. The pharmacological/functional magnetic resonance imaging (phMRI/fMRI) methodology can be used to objectively evaluate drug action on the CNS. In this context, we aimed to evaluate two drugs that had been developed as analgesics: one that is efficacious for pain (buprenorphine (BUP)) and one that failed as an analgesic in clinical trials aprepitant (APREP). Using phMRI, we observed that activation induced solely by BUP was present in regions with μ-opioid receptors, whereas APREP-induced activation was seen in regions expressing NK1 receptors. However, significant pharmacological modulation of functional connectivity in pain-processing pathways was only observed following BUP administration. By implementing an evoked pain fMRI paradigm, these drugs could also be differentiated by comparing the respective fMRI signals in CNS circuits mediating sensory and affective components of pain. We report a correlation of functional connectivity and evoked pain fMRI measures with pain ratings as well as peak drug concentration. This investigation demonstrates how CNS-acting drugs can be compared, and how the phMRI/fMRI methodology may be used with conventional measures to better evaluate candidate analgesics in small subject cohorts. PMID:21849979

  9. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    PubMed

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.

  10. Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia

    PubMed Central

    Mueller, Sophia; Wang, Danhong; Pan, Ruiqi; Holt, Daphne J.; Liu, Hesheng

    2015-01-01

    Importance Hemispheric specialization of the human brain is a marker of successful neurodevelopment. Altered brain asymmetry that has been repeatedly reported in schizophrenia may represent consequences of disrupted neurodevelopment in the disorder. However, a complete picture of functional specialization in the schizophrenic brain and its connectional substrates are yet to be unveiled. Objective We aimed to quantify intrinsic hemispheric specialization at a cortical and subcortical level and to reveal potential disease effects in schizophrenia. Design/Participants Resting-state functional connectivity MRI has been previously used to quantitatively measure hemispheric specialization in healthy subjects, in a reliable manner. Here we quantified the intrinsic hemispheric specialization at the whole brain level in 31 patients with schizophrenia and 37 demographically matched healthy control subjects using resting-state functional connectivity MRI. Results The caudate nucleus, and cortical regions with connections to the caudate nucleus, showed markedly abnormal hemispheric specialization in schizophrenia. Compared to healthy controls, patients exhibited weaker specialization in the left, but the opposite pattern in the right, caudate nucleus. Schizophrenia patients also displayed a disruption of the inter-hemispheric coordination among the cortical regions with connections to the caudate nucleus. A linear classifier based on the specialization of the caudate nucleus distinguished patients from controls with a classification accuracy of 74%. Conclusions and Relevance These data suggested that hemispheric specialization could serve as a potential imaging biomarker of schizophrenia that, compared to task-based fMRI measures, is less prone to the confounding effects of variation in task compliance, cognitive ability, and command of language. PMID:25830688

  11. Aberrant functional connectivity between motor and language networks in rolandic epilepsy.

    PubMed

    Besseling, René M H; Overvliet, Geke M; Jansen, Jacobus F A; van der Kruijs, Sylvie J M; Vles, Johannes S H; Ebus, Saskia C M; Hofman, Paul A M; de Louw, Anton J A; Aldenkamp, Albert P; Backes, Walter H

    2013-12-01

    Rolandic epilepsy (RE) is an idiopathic focal childhood epilepsy with a well-established neuropsychological profile of language impairment. The aim of this study is to provide a functional correlate that links rolandic (sensorimotor) pathology to language problems using functional MRI. Twenty-three children with RE (8-14 years old) and 21 matched controls underwent extensive language assessment (Clinical Evaluation of Language Fundamentals). fMRI was performed at rest and using word generation, reading, and finger tapping paradigms. Since no activation group differences were found, regions of interest (ROIs) were defined at pooled (patients and controls combined) activation maxima and in contralateral homotopic cortex, and used to assess language lateralization as well as for a resting-state connectivity analysis. Furthermore, the association between connection strength and language performance was investigated. Reduced language performance was found in the children with RE. Bilateral activation was found for both language tasks with some predominance of the left hemisphere in both groups. Compared to controls, patient connectivity was decreased between the left sensorimotor area and right inferior frontal gyrus (p<0.01). For this connection, lower connectivity was associated with lower language scores in the patient group (r=0.49, p=0.02), but not in the controls. Language laterality analysis revealed bilateral language representation in the age range under study (8-14 years). As a consequence, the connection of reduced functional connectivity we found represents an impaired interplay between motor and language networks, and aberrant functional connectivity associated with poorer language performance. These findings provide a first neuronal correlate in terms of aberrant resting-state functional connectivity for language impairment in RE. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Effective connectivity of facial expression network by using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Xiaoting

    2013-10-01

    Functional magnetic resonance imaging (fMRI) is an advanced non-invasive data acquisition technique to investigate the neural activity in human brain. In addition to localize the functional brain regions that is activated by specific cognitive task, fMRI can also be utilized to measure the task-related functional interactions among the active regions of interest (ROI) in the brain. Among the variety of analysis tools proposed for modeling the connectivity of brain regions, Granger causality analysis (GCA) measure the directions of information interactions by looking for the lagged effect among the brain regions. In this study, we use fMRI and Granger Causality analysis to investigate the effective connectivity of brain network induced by viewing several kinds of expressional faces. We focus on four kinds of facial expression stimuli: fearful, angry, happy and neutral faces. Five face selective regions of interest are localized and the effective connectivity within these regions is measured for the expressional faces. Our result based on 8 subjects showed that there is significant effective connectivity from STS to amygdala, from amygdala to OFA, aFFA and pFFA, from STS to aFFA and from pFFA to aFFA. This result suggested that there is an information flow from the STS to the amygdala when perusing expressional faces. This emotional expressional information flow that is conveyed by STS and amygdala, flow back to the face selective regions in occipital-temporal lobes, which constructed a emotional face processing network.

  13. The neural correlates of risk propensity in males and females using resting-state fMRI

    PubMed Central

    Zhou, Yuan; Li, Shu; Dunn, John; Li, Huandong; Qin, Wen; Zhu, Maohu; Rao, Li-Lin; Song, Ming; Yu, Chunshui; Jiang, Tianzi

    2014-01-01

    Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI) data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP) than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity. PMID:24478649

  14. Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention.

    PubMed

    Michels, Lars; O'Gorman, Ruth; Kucian, Karin

    2018-04-01

    Developmental dyscalculia (DD) is a developmental learning disability associated with deficits in processing numerical and mathematical information. Although behavioural training can reduce these deficits, it is unclear which neuronal resources show a functional reorganization due to training. We examined typically developing (TD) children (N=16, mean age: 9.5 years) and age-, gender-, and handedness-matched children with DD (N=15, mean age: 9.5 years) during the performance of a numerical order task with fMRI and functional connectivity before and after 5-weeks of number line training. Using the intraparietal sulcus (IPS) as seed region, DD showed hyperconnectivity in parietal, frontal, visual, and temporal regions before the training controlling for age and IQ. Hyperconnectivity disappeared after training, whereas math abilities improved. Multivariate classification analysis of task-related fMRI data corroborated the connectivity results as the same group of TD could be discriminated from DD before but not after number line training (86.4 vs. 38.9%, respectively). Our results indicate that abnormally high functional connectivity in DD can be normalized on the neuronal level by intensive number line training. As functional connectivity in DD was indistinguishable to TD's connectivity after training, we conclude that training lead to a re-organization of inter-regional task engagement. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Delay discounting differences in brain activation, connectivity, and structure in individuals with addiction: a systematic review protocol.

    PubMed

    Owens, Max M; Amlung, Michael T; Beach, Steven R H; Sweet, Lawrence H; MacKillop, James

    2017-07-11

    Delayed reward discounting (DRD), the degree to which future rewards are discounted relative to immediate rewards, is used as an index of impulsive decision-making and has been associated with a number of problematic health behaviors. Given the robust behavioral association between DRD and addictive behavior, there is an expanding literature investigating the differences in the functional and structural correlates of DRD in the brain between addicted and healthy individuals. However, there has yet to be a systematic review which characterizes differences in regional brain activation, functional connectivity, and structure and places them in the larger context of the DRD literature. The objective of this systematic review is to summarize and critically appraise the existing literature examining differences between addicted and healthy individuals in the neural correlates of DRD using magnetic resonance imaging (MRI) or functional magnetic resonance imaging (fMRI). A systematic search strategy will be implemented that uses Boolean search terms in PubMed/MEDLINE and PsycINFO, as well as manual search methods, to identify the studies comprehensively. This review will include studies using MRI or fMRI in humans to directly compare brain activation, functional connectivity, or structure in relation to DRD between addicted and healthy individuals or continuously assess addiction severity in the context of DRD. Two independent reviewers will determine studies that meet the inclusion criteria for this review, extract data from included studies, and assess the quality of included studies using the Grading of Recommendations Assessment, Development and Evaluation framework. Then, narrative review will be used to explicate the differences in structural and functional correlates of DRD implicated by the literature and assess the strength of evidence for this conclusion. This review will provide a needed critical exegesis of the MRI studies that have been conducted investigating brain differences in addictive behavior in relation to healthy samples in the context of DRD. This will provide clarity on the elements of neural activation, connectivity, and structure that are most implicated in the differences in DRD seen in addicted individuals. PROSPERO CRD42017056857.

  16. Single Subject Classification of Alzheimer's Disease and Behavioral Variant Frontotemporal Dementia Using Anatomical, Diffusion Tensor, and Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Bouts, Mark J R J; Möller, Christiane; Hafkemeijer, Anne; van Swieten, John C; Dopper, Elise; van der Flier, Wiesje M; Vrenken, Hugo; Wink, Alle Meije; Pijnenburg, Yolande A L; Scheltens, Philip; Barkhof, Frederik; Schouten, Tijn M; de Vos, Frank; Feis, Rogier A; van der Grond, Jeroen; de Rooij, Mark; Rombouts, Serge A R B

    2018-01-01

    Overlapping clinical symptoms often complicate differential diagnosis between patients with Alzheimer's disease (AD) and behavioral variant frontotemporal dementia (bvFTD). Magnetic resonance imaging (MRI) reveals disease specific structural and functional differences that aid in differentiating AD from bvFTD patients. However, the benefit of combining structural and functional connectivity measures to-on a subject-basis-differentiate these dementia-types is not yet known. Anatomical, diffusion tensor (DTI), and resting-state functional MRI (rs-fMRI) of 30 patients with early stage AD, 23 with bvFTD, and 35 control subjects were collected and used to calculate measures of structural and functional tissue status. All measures were used separately or selectively combined as predictors for training an elastic net regression classifier. Each classifier's ability to accurately distinguish dementia-types was quantified by calculating the area under the receiver operating characteristic curves (AUC). Highest AUC values for AD and bvFTD discrimination were obtained when mean diffusivity, full correlations between rs-fMRI-derived independent components, and fractional anisotropy (FA) were combined (0.811). Similarly, combining gray matter density (GMD), FA, and rs-fMRI correlations resulted in highest AUC of 0.922 for control and bvFTD classifications. This, however, was not observed for control and AD differentiations. Classifications with GMD (0.940) and a GMD and DTI combination (0.941) resulted in similar AUC values (p = 0.41). Combining functional and structural connectivity measures improve dementia-type differentiations and may contribute to more accurate and substantiated differential diagnosis of AD and bvFTD patients. Imaging protocols for differential diagnosis may benefit from also including DTI and rs-fMRI.

  17. Differentiating between bipolar and unipolar depression in functional and structural MRI studies.

    PubMed

    Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku

    2018-03-28

    Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Risperidone Effects on Brain Dynamic Connectivity-A Prospective Resting-State fMRI Study in Schizophrenia.

    PubMed

    Lottman, Kristin K; Kraguljac, Nina V; White, David M; Morgan, Charity J; Calhoun, Vince D; Butt, Allison; Lahti, Adrienne C

    2017-01-01

    Resting-state functional connectivity studies in schizophrenia evaluating average connectivity over the entire experiment have reported aberrant network integration, but findings are variable. Examining time-varying (dynamic) functional connectivity may help explain some inconsistencies. We assessed dynamic network connectivity using resting-state functional MRI in patients with schizophrenia, while unmedicated ( n  = 34), after 1 week ( n  = 29) and 6 weeks of treatment with risperidone ( n  = 24), as well as matched controls at baseline ( n  = 35) and after 6 weeks ( n  = 19). After identifying 41 independent components (ICs) comprising resting-state networks, sliding window analysis was performed on IC timecourses using an optimal window size validated with linear support vector machines. Windowed correlation matrices were then clustered into three discrete connectivity states (a relatively sparsely connected state, a relatively abundantly connected state, and an intermediately connected state). In unmedicated patients, static connectivity was increased between five pairs of ICs and decreased between two pairs of ICs when compared to controls, dynamic connectivity showed increased connectivity between the thalamus and somatomotor network in one of the three states. State statistics indicated that, in comparison to controls, unmedicated patients had shorter mean dwell times and fraction of time spent in the sparsely connected state, and longer dwell times and fraction of time spent in the intermediately connected state. Risperidone appeared to normalize mean dwell times after 6 weeks, but not fraction of time. Results suggest that static connectivity abnormalities in schizophrenia may partly be related to altered brain network temporal dynamics rather than consistent dysconnectivity within and between functional networks and demonstrate the importance of implementing complementary data analysis techniques.

  19. Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity

    PubMed Central

    Fair, Damien A.; Dosenbach, Nico U. F.; Cohen, Alexander L.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Tourette syndrome (TS) is a developmental disorder characterized by unwanted, repetitive behaviours that manifest as stereotyped movements and vocalizations called ‘tics’. Operating under the hypothesis that the brain's control systems may be impaired in TS, we measured resting-state functional connectivity MRI (rs-fcMRI) between 39 previously defined putative control regions in 33 adolescents with TS. We were particularly interested in the effect of TS on two of the brain's task control networks—a fronto-parietal network likely involved in more rapid, adaptive online control, and a cingulo-opercular network apparently important for set-maintenance. To examine the relative maturity of connections in the Tourette subjects, functional connections that changed significantly over typical development were examined. Age curves were created for each functional connection charting correlation coefficients over age for 210 healthy people aged 7–31 years, and the TS group correlation coefficients were compared to these curves. Many of these connections were significantly less ‘mature’ than expected in the TS group. This immaturity was true not only for functional connections that grow stronger with age, but also for those that diminish in strength with age. To explore other differences between Tourette and typically developing subjects further, we performed a second analysis in which the TS group was directly compared to an age-matched, movement-matched group of typically developing, unaffected adolescents. A number of functional connections were found to differ between the two groups. For these identified connections, a large number of connectional differences were found where the TS group value was out of range compared to typical developmental age curves. These anomalous connections were primarily found in the fronto-parietal network, thought to be important for online adaptive control. These results suggest that in adolescents with TS, immature functional connectivity is widespread, with additional, more profound deviation of connectivity in regions related to adaptive online control. PMID:18952678

  20. Reduced connectivity of the auditory cortex in patients with auditory hallucinations: a resting state functional magnetic resonance imaging study.

    PubMed

    Gavrilescu, M; Rossell, S; Stuart, G W; Shea, T L; Innes-Brown, H; Henshall, K; McKay, C; Sergejew, A A; Copolov, D; Egan, G F

    2010-07-01

    Previous research has reported auditory processing deficits that are specific to schizophrenia patients with a history of auditory hallucinations (AH). One explanation for these findings is that there are abnormalities in the interhemispheric connectivity of auditory cortex pathways in AH patients; as yet this explanation has not been experimentally investigated. We assessed the interhemispheric connectivity of both primary (A1) and secondary (A2) auditory cortices in n=13 AH patients, n=13 schizophrenia patients without auditory hallucinations (non-AH) and n=16 healthy controls using functional connectivity measures from functional magnetic resonance imaging (fMRI) data. Functional connectivity was estimated from resting state fMRI data using regions of interest defined for each participant based on functional activation maps in response to passive listening to words. Additionally, stimulus-induced responses were regressed out of the stimulus data and the functional connectivity was estimated for the same regions to investigate the reliability of the estimates. AH patients had significantly reduced interhemispheric connectivity in both A1 and A2 when compared with non-AH patients and healthy controls. The latter two groups did not show any differences in functional connectivity. Further, this pattern of findings was similar across the two datasets, indicating the reliability of our estimates. These data have identified a trait deficit specific to AH patients. Since this deficit was characterized within both A1 and A2 it is expected to result in the disruption of multiple auditory functions, for example, the integration of basic auditory information between hemispheres (via A1) and higher-order language processing abilities (via A2).

  1. Structural connectivity of the anterior cingulate in children with unilateral cerebral palsy due to white matter lesions

    PubMed Central

    Scheck, Simon M.; Pannek, Kerstin; Raffelt, David A.; Fiori, Simona; Boyd, Roslyn N.; Rose, Stephen E.

    2015-01-01

    In this work we investigate the structural connectivity of the anterior cingulate cortex (ACC) and its link with impaired executive function in children with unilateral cerebral palsy (UCP) due to periventricular white matter lesions. Fifty two children with UCP and 17 children with typical development participated in the study, and underwent diffusion and structural MRI. Five brain regions were identified for their high connectivity with the ACC using diffusion MRI fibre tractography: the superior frontal gyrus, medial orbitofrontal cortex, rostral middle frontal gyrus, precuneus and isthmus cingulate. Structural connectivity was assessed in pathways connecting these regions to the ACC using three diffusion MRI derived measures: fractional anisotropy (FA), mean diffusivity (MD) and apparent fibre density (AFD), and compared between participant groups. Furthermore we investigated correlations of these measures with executive function as assessed by the Flanker task. The ACC–precuneus tract had significantly different MD (p < 0.0001) and AFD (p = 0.0072) between groups, with post-hoc analysis showing significantly increased MD in the right hemisphere of children with left hemiparesis compared with controls. The ACC–superior frontal gyrus tract had significantly different FA (p = 0.0049) and MD (p = 0.0031) between groups. AFD in this tract (contralateral to side of hemiparesis; right hemisphere in controls) showed a significant relationship with Flanker task performance (p = 0.0045, β = −0.5856), suggesting that reduced connectivity correlates with executive dysfunction. Reduced structural integrity of ACC tracts appears to be important in UCP, in particular the connection to the superior frontal gyrus. Although damage to this area is heterogeneous it may be important in early identification of children with impaired executive function. PMID:26640762

  2. Functional Connectivity of the Amygdala in Early Childhood Onset Depression

    PubMed Central

    Luking, Katherine R.; Repovs, Grega; Belden, Andy C.; Gaffrey, Michael S.; Botteron, Kelly N.; Luby, Joan L.; Barch, Deanna M.

    2011-01-01

    Objective Adult major depressive disorder (MDD) is associated with reduced cortico-limbic functional connectivity thought to indicate decreased top-down control of emotion. However, it is unclear whether such connectivity alterations are also present in early childhood onset MDD. Method Fifty-one children ages 7–11 years, prospectively studied since preschool age, completed resting state fMRI and were assigned to four groups: 1) C-MDD (N=13) personal history of early childhood onset MDD; 2) M-MDD (N=11) a maternal history of affective disorders; 3) CM-MDD (N=13) both maternal and early childhood onset MDD or 4) CON (N=14) without either a personal or maternal history. We used seed-based resting state functional connectivity (rsfcMRI) analysis in an independent sample of adults to identify networks showing both positive (e.g., limbic regions) and negative (e.g., dorsal frontal/parietal regions) connectivity with the amygdala. These regions were then used in ROI based analyses of our child sample. Results We found a significant interaction between maternal affective disorder history and the child's MDD history for both positive and negative rsfcMRI networks. Specifically, when copared to CON, we found reduced connectivity between the amygdala and the “Negative Network” in children with C-MDD, M-MDD and CM-MDD. Children with either C-MDD or a maternal history of MDD (but not CM-MDD) displayed reduced connectivity between the amygdala and the “Positive Network”. Conclusions Our finding of an attenuated relationship between the amygdala, a region affected in MDD and involved in emotion processing, and cognitive control regions is consistent with a hypothesis of altered regulation of emotional processing in C-MDD suggesting developmental continuity of this alteration into early childhood. PMID:21961777

  3. An in vivo MRI Template Set for Morphometry, Tissue Segmentation, and fMRI Localization in Rats

    PubMed Central

    Valdés-Hernández, Pedro Antonio; Sumiyoshi, Akira; Nonaka, Hiroi; Haga, Risa; Aubert-Vásquez, Eduardo; Ogawa, Takeshi; Iturria-Medina, Yasser; Riera, Jorge J.; Kawashima, Ryuta

    2011-01-01

    Over the last decade, several papers have focused on the construction of highly detailed mouse high field magnetic resonance image (MRI) templates via non-linear registration to unbiased reference spaces, allowing for a variety of neuroimaging applications such as robust morphometric analyses. However, work in rats has only provided medium field MRI averages based on linear registration to biased spaces with the sole purpose of approximate functional MRI (fMRI) localization. This precludes any morphometric analysis in spite of the need of exploring in detail the neuroanatomical substrates of diseases in a recent advent of rat models. In this paper we present a new in vivo rat T2 MRI template set, comprising average images of both intensity and shape, obtained via non-linear registration. Also, unlike previous rat template sets, we include white and gray matter probabilistic segmentations, expanding its use to those applications demanding prior-based tissue segmentation, e.g., statistical parametric mapping (SPM) voxel-based morphometry. We also provide a preliminary digitalization of latest Paxinos and Watson atlas for anatomical and functional interpretations within the cerebral cortex. We confirmed that, like with previous templates, forepaw and hindpaw fMRI activations can be correctly localized in the expected atlas structure. To exemplify the use of our new MRI template set, were reported the volumes of brain tissues and cortical structures and probed their relationships with ontogenetic development. Other in vivo applications in the near future can be tensor-, deformation-, or voxel-based morphometry, morphological connectivity, and diffusion tensor-based anatomical connectivity. Our template set, freely available through the SPM extension website, could be an important tool for future longitudinal and/or functional extensive preclinical studies. PMID:22275894

  4. Synchronized delta oscillations correlate with the resting-state functional MRI signal

    PubMed Central

    Lu, Hanbing; Zuo, Yantao; Gu, Hong; Waltz, James A.; Zhan, Wang; Scholl, Clara A.; Rea, William; Yang, Yihong; Stein, Elliot A.

    2007-01-01

    Synchronized low-frequency spontaneous fluctuations of the functional MRI (fMRI) signal have recently been applied to investigate large-scale neuronal networks of the brain in the absence of specific task instructions. However, the underlying neural mechanisms of these fluctuations remain largely unknown. To this end, electrophysiological recordings and resting-state fMRI measurements were conducted in α-chloralose-anesthetized rats. Using a seed-voxel analysis strategy, region-specific, anesthetic dose-dependent fMRI resting-state functional connectivity was detected in bilateral primary somatosensory cortex (S1FL) of the resting brain. Cortical electroencephalographic signals were also recorded from bilateral S1FL; a visual cortex locus served as a control site. Results demonstrate that, unlike the evoked fMRI response that correlates with power changes in the γ bands, the resting-state fMRI signal correlates with the power coherence in low-frequency bands, particularly the δ band. These data indicate that hemodynamic fMRI signal differentially registers specific electrical oscillatory frequency band activity, suggesting that fMRI may be able to distinguish the ongoing from the evoked activity of the brain. PMID:17991778

  5. The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans.

    PubMed

    Courtney, Kelly E; Ghahremani, Dara G; Ray, Lara A

    2016-11-01

    Interactions between dopaminergic and opioidergic systems have been implicated in the reinforcing properties of drugs of abuse. The present study investigated the effects of opioid blockade, via naltrexone, on functional magnetic resonance imaging (fMRI) measures during methamphetamine cue-reactivity to elucidate the role of endogenous opioids in the neural systems underlying drug craving. To investigate this question, non-treatment seeking individuals with methamphetamine use disorder (N=23; 74% male, mean age=34.70 (SD=8.95)) were recruited for a randomized, placebo controlled, within-subject design and underwent a visual methamphetamine cue-reactivity task during two blood-oxygen-level dependent (BOLD) fMRI sessions following 3 days of naltrexone (50 mg) and matched time for placebo. fMRI analyses tested naltrexone-induced differences in BOLD activation and functional connectivity during cue processing. The results showed that naltrexone administration reduced cue-reactivity in sensorimotor regions and related to altered functional connectivity of dorsal striatum, ventral tegmental area, and precuneus with frontal, visual, sensory, and motor-related regions. Naltrexone also weakened the associations between subjective craving and precuneus functional connectivity with sensorimotor regions and strengthened the associations between subjective craving and dorsal striatum and precuneus connectivity with frontal regions. In conclusion, this study provides the first evidence that opioidergic blockade alters neural responses to drug cues in humans with methamphetamine addiction and suggests that naltrexone may be reducing drug cue salience by decreasing the involvement of sensorimotor regions and by engaging greater frontal regulation over salience attribution.

  6. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study.

    PubMed

    Liang, Minglong; Xie, Bing; Yang, Hong; Yin, Xuntao; Wang, Hao; Yu, Longhua; He, Sheng; Wang, Jian

    2017-05-01

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia.

  7. Modulation of Brain Resting-State Networks by Sad Mood Induction

    PubMed Central

    Harrison, Ben J.; Pujol, Jesus; Ortiz, Hector; Fornito, Alex; Pantelis, Christos; Yücel, Murat

    2008-01-01

    Background There is growing interest in the nature of slow variations of the blood oxygen level-dependent (BOLD) signal observed in functional MRI resting-state studies. In humans, these slow BOLD variations are thought to reflect an underlying or intrinsic form of brain functional connectivity in discrete neuroanatomical systems. While these ‘resting-state networks’ may be relatively enduring phenomena, other evidence suggest that dynamic changes in their functional connectivity may also emerge depending on the brain state of subjects during scanning. Methodology/Principal Findings In this study, we examined healthy subjects (n = 24) with a mood induction paradigm during two continuous fMRI recordings to assess the effects of a change in self-generated mood state (neutral to sad) on the functional connectivity of these resting-state networks (n = 24). Using independent component analysis, we identified five networks that were common to both experimental states, each showing dominant signal fluctuations in the very low frequency domain (∼0.04 Hz). Between the two states, we observed apparent increases and decreases in the overall functional connectivity of these networks. Primary findings included increased connectivity strength of a paralimbic network involving the dorsal anterior cingulate and anterior insula cortices with subjects' increasing sadness and decreased functional connectivity of the ‘default mode network’. Conclusions/Significance These findings support recent studies that suggest the functional connectivity of certain resting-state networks may, in part, reflect a dynamic image of the current brain state. In our study, this was linked to changes in subjective mood. PMID:18350136

  8. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism

    PubMed Central

    Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561

  9. Non-Inferential Multi-Subject Study of Functional Connectivity during Visual Stimulation.

    PubMed

    Esposito, F; Cirillo, M; Aragri, A; Caranci, F; Cirillo, L; Di Salle, F; Cirillo, S

    2007-01-31

    Independent component analysis (ICA) is a powerful technique for the multivariate, non-inferential, data-driven analysis of functional magnetic resonance imaging (fMRI) data-sets. The non-inferential nature of ICA makes this a suitable technique for the study of complex mental states whose temporal evolution would be difficult to describe analytically in terms of classical statistical regressors. Taking advantage of this feature, ICA can extract a number of functional connectivity patterns regardless of the task executed by the subject. The technique is so powerful that functional connectivity patterns can be derived even when the subject is just resting in the scanner, opening the opportunity for functional investigation of the human mind at its basal "default" state, which has been proposed to be altered in several brain disorders. However, one major drawback of ICA consists in the difficulty of managing its results, which are not represented by a single functional image as in inferential studies. This produces the need for a classification of ICA results and exacerbates the difficulty of obtaining group "averaged" functional connectivity patterns, while preserving the interpretation of individual differences. Addressing the subject-level variability in the very same framework of "grouping" appears to be a favourable approach towards the clinical evaluation and application of ICA-based methodologies. Here we present a novel strategy for group-level ICA analyses, namely the self-organizing group-level ICA (sog-ICA), which is used on visual activation fMRI data from a block-design experiment repeated on six subjects. We propose the sog-ICA as a multi-subject analysis tool for grouping ICA data while assessing the similarity and variability of the fMRI results of individual subject decompositions.

  10. Reorganization of Functional and Effective Connectivity during Real-Time fMRI-BCI Modulation of Prosody Processing

    ERIC Educational Resources Information Center

    Rota, Giuseppina; Handjaras, Giacomo; Sitaram, Ranganatha; Birbaumer, Niels; Dogil, Grzegorz

    2011-01-01

    Mechanisms of cortical reorganization underlying the enhancement of speech processing have been poorly investigated. In the present study, we addressed changes in functional and effective connectivity induced in subjects who learned to deliberately increase activation in the right inferior frontal gyrus (rIFG), and improved their ability to…

  11. Changes in Resting State Effective Connectivity in the Motor Network Following Rehabilitation of Upper Extremity Poststroke Paresis

    PubMed Central

    James, G. Andrew; Lu, Zhong-Lin; VanMeter, John W.; Sathian, K.; Hu, Xiaoping P.; Butler, Andrew J.

    2013-01-01

    Background A promising paradigm in human neuroimaging is the study of slow (<0.1 Hz) spontaneous fluctuations in the hemodynamic response measured by functional magnetic resonance imaging (fMRI). Spontaneous activity (i.e., resting state) refers to activity that cannot be attributed to specific inputs or outputs, that is, activity intrinsically generated by the brain. Method This article presents pilot data examining neural connectivity in patients with poststroke hemiparesis before and after 3 weeks of upper extremity rehabilitation in the Accelerated Skill Acquisition Program (ASAP). Resting-state fMRI data acquired pre and post therapy were analyzed using an exploratory adaptation of structural equation modeling (SEM) to evaluate therapy-related changes in motor network effective connectivity. Results Each ASAP patient showed behavioral improvement. ASAP patients also showed increased influence of the affected hemisphere premotor cortex (a-PM) upon the unaffected hemisphere premotor cortex (u-PM) following therapy. The influence of a-PM on affected hemisphere primary motor cortex (a-M1) also increased with therapy for 3 of 5 patients, including those with greatest behavioral improvement. Conclusions Our findings suggest that network analyses of resting-state fMRI constitute promising tools for functional characterization of functional brain disorders, for intergroup comparisons, and potentially for assessing effective connectivity within single subjects; all of which have important implications for stroke rehabilitation. PMID:19740732

  12. Semi-supervised clustering for parcellating brain regions based on resting state fMRI data

    NASA Astrophysics Data System (ADS)

    Cheng, Hewei; Fan, Yong

    2014-03-01

    Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.

  13. How Visual Is the Visual Cortex? Comparing Connectional and Functional Fingerprints between Congenitally Blind and Sighted Individuals.

    PubMed

    Wang, Xiaoying; Peelen, Marius V; Han, Zaizhu; He, Chenxi; Caramazza, Alfonso; Bi, Yanchao

    2015-09-09

    Classical animal visual deprivation studies and human neuroimaging studies have shown that visual experience plays a critical role in shaping the functionality and connectivity of the visual cortex. Interestingly, recent studies have additionally reported circumscribed regions in the visual cortex in which functional selectivity was remarkably similar in individuals with and without visual experience. Here, by directly comparing resting-state and task-based fMRI data in congenitally blind and sighted human subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. We found a close agreement between connectional and functional maps, pointing to a strong interdependence of connectivity and function. Visual experience (or the absence thereof) had a pronounced effect on the resting-state connectivity and functional response profile of occipital cortex and the posterior lateral fusiform gyrus. By contrast, connectional and functional fingerprints in the anterior medial and posterior lateral parts of the ventral visual cortex were statistically indistinguishable between blind and sighted individuals. These results provide a large-scale mapping of the influence of visual experience on the development of both functional and connectivity properties of visual cortex, which serves as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions. Significance statement: How is the functionality and connectivity of the visual cortex shaped by visual experience? By directly comparing resting-state and task-based fMRI data in congenitally blind and sighted subjects, we obtained large-scale continuous maps of the degree to which connectional and functional "fingerprints" of ventral visual cortex depend on visual experience. In addition to revealing regions that are strongly dependent on visual experience (early visual cortex and posterior fusiform gyrus), our results showed regions in which connectional and functional patterns are highly similar in blind and sighted individuals (anterior medial and posterior lateral ventral occipital temporal cortex). These results serve as a basis for the formulation of new hypotheses regarding the functionality and plasticity of specific subregions of the visual cortex. Copyright © 2015 the authors 0270-6474/15/3512545-15$15.00/0.

  14. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    PubMed Central

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M.; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26–29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity. PMID:25374531

  15. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    PubMed

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  16. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks

    PubMed Central

    Ruiz-Rizzo, Adriana L.; Neitzel, Julia; Müller, Hermann J.; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's “theory of visual attention” (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity. PMID:29662444

  17. Distinctive Correspondence Between Separable Visual Attention Functions and Intrinsic Brain Networks.

    PubMed

    Ruiz-Rizzo, Adriana L; Neitzel, Julia; Müller, Hermann J; Sorg, Christian; Finke, Kathrin

    2018-01-01

    Separable visual attention functions are assumed to rely on distinct but interacting neural mechanisms. Bundesen's "theory of visual attention" (TVA) allows the mathematical estimation of independent parameters that characterize individuals' visual attentional capacity (i.e., visual processing speed and visual short-term memory storage capacity) and selectivity functions (i.e., top-down control and spatial laterality). However, it is unclear whether these parameters distinctively map onto different brain networks obtained from intrinsic functional connectivity, which organizes slowly fluctuating ongoing brain activity. In our study, 31 demographically homogeneous healthy young participants performed whole- and partial-report tasks and underwent resting-state functional magnetic resonance imaging (rs-fMRI). Report accuracy was modeled using TVA to estimate, individually, the four TVA parameters. Networks encompassing cortical areas relevant for visual attention were derived from independent component analysis of rs-fMRI data: visual, executive control, right and left frontoparietal, and ventral and dorsal attention networks. Two TVA parameters were mapped on particular functional networks. First, participants with higher (vs. lower) visual processing speed showed lower functional connectivity within the ventral attention network. Second, participants with more (vs. less) efficient top-down control showed higher functional connectivity within the dorsal attention network and lower functional connectivity within the visual network. Additionally, higher performance was associated with higher functional connectivity between networks: specifically, between the ventral attention and right frontoparietal networks for visual processing speed, and between the visual and executive control networks for top-down control. The higher inter-network functional connectivity was related to lower intra-network connectivity. These results demonstrate that separable visual attention parameters that are assumed to constitute relatively stable traits correspond distinctly to the functional connectivity both within and between particular functional networks. This implies that individual differences in basic attention functions are represented by differences in the coherence of slowly fluctuating brain activity.

  18. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    PubMed

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Identification of neural connectivity signatures of autism using machine learning

    PubMed Central

    Deshpande, Gopikrishna; Libero, Lauren E.; Sreenivasan, Karthik R.; Deshpande, Hrishikesh D.; Kana, Rajesh K.

    2013-01-01

    Alterations in interregional neural connectivity have been suggested as a signature of the pathobiology of autism. There have been many reports of functional and anatomical connectivity being altered while individuals with autism are engaged in complex cognitive and social tasks. Although disrupted instantaneous correlation between cortical regions observed from functional MRI is considered to be an explanatory model for autism, the causal influence of a brain area on another (effective connectivity) is a vital link missing in these studies. The current study focuses on addressing this in an fMRI study of Theory-of-Mind (ToM) in 15 high-functioning adolescents and adults with autism and 15 typically developing control participants. Participants viewed a series of comic strip vignettes in the MRI scanner and were asked to choose the most logical end to the story from three alternatives, separately for trials involving physical and intentional causality. The mean time series, extracted from 18 activated regions of interest, were processed using a multivariate autoregressive model (MVAR) to obtain the causality matrices for each of the 30 participants. These causal connectivity weights, along with assessment scores, functional connectivity values, and fractional anisotropy obtained from DTI data for each participant, were submitted to a recursive cluster elimination based support vector machine classifier to determine the accuracy with which the classifier can predict a novel participant's group membership (autism or control). We found a maximum classification accuracy of 95.9% with 19 features which had the highest discriminative ability between the groups. All of the 19 features were effective connectivity paths, indicating that causal information may be critical in discriminating between autism and control groups. These effective connectivity paths were also found to be significantly greater in controls as compared to ASD participants and consisted predominantly of outputs from the fusiform face area and middle temporal gyrus indicating impaired connectivity in ASD participants, particularly in the social brain areas. These findings collectively point toward the fact that alterations in causal connectivity in the brain in ASD could serve as a potential non-invasive neuroimaging signature for autism. PMID:24151458

  20. Connectivity-based parcellation reveals distinct cortico-striatal connectivity fingerprints in Autism Spectrum Disorder.

    PubMed

    Balsters, Joshua H; Mantini, Dante; Wenderoth, Nicole

    2018-04-15

    Autism Spectrum Disorder (ASD) has been associated with abnormal synaptic development causing a breakdown in functional connectivity. However, when measured at the macro scale using resting state fMRI, these alterations are subtle and often difficult to detect due to the large heterogeneity of the pathology. Recently, we outlined a novel approach for generating robust biomarkers of resting state functional magnetic resonance imaging (RS-fMRI) using connectivity based parcellation of gross morphological structures to improve single-subject reproducibility and generate more robust connectivity fingerprints. Here we apply this novel approach to investigating the organization and connectivity strength of the cortico-striatal system in a large sample of ASD individuals and typically developed (TD) controls (N=130 per group). Our results showed differences in the parcellation of the striatum in ASD. Specifically, the putamen was found to be one single structure in ASD, whereas this was split into anterior and posterior segments in an age, IQ, and head movement matched TD group. An analysis of the connectivity fingerprints revealed that the group differences in clustering were driven by differential connectivity between striatum and the supplementary motor area, posterior cingulate cortex, and posterior insula. Our approach for analysing RS-fMRI in clinical populations has provided clear evidence that cortico-striatal circuits are organized differently in ASD. Based on previous task-based segmentations of the striatum, we believe that the anterior putamen cluster present in TD, but not in ASD, likely contributes to social and language processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Diffusion MRI at 25: Exploring brain tissue structure and function

    PubMed Central

    Bihan, Denis Le; Johansen-Berg, Heidi

    2013-01-01

    Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012

  2. The development of Human Functional Brain Networks

    PubMed Central

    Power, Jonathan D; Fair, Damien A; Schlaggar, Bradley L

    2010-01-01

    Recent advances in MRI technology have enabled precise measurements of correlated activity throughout the brain, leading to the first comprehensive descriptions of functional brain networks in humans. This article reviews the growing literature on the development of functional networks, from infancy through adolescence, as measured by resting state functional connectivity MRI. We note several limitations of traditional approaches to describing brain networks, and describe a powerful framework for analyzing networks, called graph theory. We argue that characterization of the development of brain systems (e.g. the default mode network) should be comprehensive, considering not only relationships within a given system, but also how these relationships are situated within wider network contexts. We note that, despite substantial reorganization of functional connectivity, several large-scale network properties appear to be preserved across development, suggesting that functional brain networks, even in children, are organized in manners similar to other complex systems. PMID:20826306

  3. Reliability Correction for Functional Connectivity: Theory and Implementation

    PubMed Central

    Mueller, Sophia; Wang, Danhong; Fox, Michael D.; Pan, Ruiqi; Lu, Jie; Li, Kuncheng; Sun, Wei; Buckner, Randy L.; Liu, Hesheng

    2016-01-01

    Network properties can be estimated using functional connectivity MRI (fcMRI). However, regional variation of the fMRI signal causes systematic biases in network estimates including correlation attenuation in regions of low measurement reliability. Here we computed the spatial distribution of fcMRI reliability using longitudinal fcMRI datasets and demonstrated how pre-estimated reliability maps can correct for correlation attenuation. As a test case of reliability-based attenuation correction we estimated properties of the default network, where reliability was significantly lower than average in the medial temporal lobe and higher in the posterior medial cortex, heterogeneity that impacts estimation of the network. Accounting for this bias using attenuation correction revealed that the medial temporal lobe’s contribution to the default network is typically underestimated. To render this approach useful to a greater number of datasets, we demonstrate that test-retest reliability maps derived from repeated runs within a single scanning session can be used as a surrogate for multi-session reliability mapping. Using data segments with different scan lengths between 1 and 30 min, we found that test-retest reliability of connectivity estimates increases with scan length while the spatial distribution of reliability is relatively stable even at short scan lengths. Finally, analyses of tertiary data revealed that reliability distribution is influenced by age, neuropsychiatric status and scanner type, suggesting that reliability correction may be especially important when studying between-group differences. Collectively, these results illustrate that reliability-based attenuation correction is an easily implemented strategy that mitigates certain features of fMRI signal nonuniformity. PMID:26493163

  4. Characterization of the resting-state brain network topology in the 6-hydroxydopamine rat model of Parkinson’s disease

    PubMed Central

    Simmons, Camilla; Mesquita, Michel B.; Wood, Tobias C.; Williams, Steve C. R.; Vernon, Anthony C.; Cash, Diana

    2017-01-01

    Resting-state functional MRI (rsfMRI) is an imaging technology that has recently gained attention for its ability to detect disruptions in functional brain networks in humans, including in patients with Parkinson’s disease (PD), revealing early and widespread brain network abnormalities. This methodology is now readily applicable to experimental animals offering new possibilities for cross-species translational imaging. In this context, we herein describe the application of rsfMRI to the unilaterally-lesioned 6-hydroxydopamine (6-OHDA) rat, a robust experimental model of the dopamine depletion implicated in PD. Using graph theory to analyse the rsfMRI data, we were able to provide meaningful and translatable measures of integrity, influence and segregation of the underlying functional brain architecture. Specifically, we confirm that rats share a similar functional brain network topology as observed in humans, characterised by small-worldness and modularity. Interestingly, we observed significantly reduced functional connectivity in the 6-OHDA rats, primarily in the ipsilateral (lesioned) hemisphere as evidenced by significantly lower node degree, local efficiency and clustering coefficient in the motor, orbital and sensorimotor cortices. In contrast, we found significantly, and bilaterally, increased thalamic functional connectivity in the lesioned rats. The unilateral deficits in the cortex are consistent with the unilateral nature of this model and further support the validity of the rsfMRI technique in rodents. We thereby provide a methodological framework for the investigation of brain networks in other rodent experimental models of PD, as well as of animal models in general, for cross-comparison with human data. PMID:28249008

  5. Altered brain connectivity in sagittal craniosynostosis.

    PubMed

    Beckett, Joel S; Brooks, Eric D; Lacadie, Cheryl; Vander Wyk, Brent; Jou, Roger J; Steinbacher, Derek M; Constable, R Todd; Pelphrey, Kevin A; Persing, John A

    2014-06-01

    Sagittal nonsyndromic craniosynostosis (sNSC) is the most common form of NSC. The condition is associated with a high prevalence (> 50%) of deficits in executive function. The authors employed diffusion tensor imaging (DTI) and functional MRI to evaluate whether hypothesized structural and functional connectivity differences underlie the observed neurocognitive morbidity of sNSC. Using a 3-T Siemens Trio MRI system, the authors collected DTI and resting-state functional connectivity MRI data in 8 adolescent patients (mean age 12.3 years) with sNSC that had been previously corrected via total vault cranioplasty and 8 control children (mean age 12.3 years) without craniosynostosis. Data were analyzed using the FMRIB Software Library and BioImageSuite. Analyses of the DTI data revealed white matter alterations approaching statistical significance in all supratentorial lobes. Statistically significant group differences (sNSC < control group) in mean diffusivity were localized to the right supramarginal gyrus. Analysis of the resting-state seed in relation to whole-brain data revealed significant increases in negative connectivity (anticorrelations) of Brodmann area 8 to the prefrontal cortex (Montreal Neurological Institute [MNI] center of mass coordinates [x, y, z]: -6, 53, 6) and anterior cingulate cortex (MNI coordinates 6, 43, 14) in the sNSC group relative to controls. Furthermore, in the sNSC patients versus controls, the Brodmann area 7, 39, and 40 seed had decreased connectivity to left angular gyrus (MNI coordinates -31, -61, 34), posterior cingulate cortex (MNI coordinates 13, -52, 18), precuneus (MNI coordinates 10, -55, 54), left and right parahippocampus (MNI coordinates -13, -52, 2 and MNI coordinates 11, -50, 2, respectively), lingual (MNI coordinates -11, -86, -10), and fusiform gyri (MNI coordinates -30, -79, -18). Intrinsic connectivity analysis also revealed altered connectivity between central nodes in the default mode network in sNSC relative to controls; the left and right posterior cingulate cortices (MNI coordinates -5, -35, 34 and MNI coordinates 6, -42, 39, respectively) were negatively correlated to right hemisphere precuneus (MNI coordinates 6, -71, 46), while the left ventromedial prefrontal cortex (MNI coordinates 6, 34, -8) was negatively correlated to right middle frontal gyrus (MNI coordinates 40, 4, 33). All group comparisons (sNSC vs controls) were conducted at a whole brain-corrected threshold of p < 0.05. This study demonstrates altered neocortical structural and functional connectivity in sNSC that may, in part or substantially, underlie the neuropsychological deficits commonly reported in this population. Future studies combining analysis of multimodal MRI and clinical characterization data in larger samples of participants are warranted.

  6. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    NASA Technical Reports Server (NTRS)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from pre bed rest to the last day in bed rest. In contrast, connectivity within the default mode network remained stable over the course of bed rest. We also utilized a battery of behavioral measures including spatial working memory tasks and measures of functional mobility and balance. These behavioral measurements were collected before, during, and after bed rest. We will report the preliminary findings of correlations observed between brain functional connectivity and behavioral performance changes. Our results suggest that sensorimotor brain networks exhibit decoupling with extended periods of reduced usage. The findings from this study could aid in the understanding and future design of targeted countermeasures to alleviate the detrimental health and neurocognitive effects of long-duration spaceflight.

  7. Disruptions in Functional Network Connectivity during Alcohol Intoxicated Driving

    PubMed Central

    Rzepecki-Smith, Catherine I.; Meda, Shashwath A.; Calhoun, Vince D.; Stevens, Michael C.; Jafri, Madiha J.; Astur, Robert S.; Pearlson, Godfrey D.

    2009-01-01

    Background: Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published fMRI study (Meda et al, 2009), our group identified five, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods: In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following two alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results: At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these two circuits was found to be less correlated (p <0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions: Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. PMID:20028354

  8. Review of thalamocortical resting-state fMRI studies in schizophrenia

    PubMed Central

    Giraldo-Chica, Monica; Woodward, Neil D.

    2017-01-01

    Brain circuitry underlying cognition, emotion, and perception is abnormal in schizophrenia. There is considerable evidence that the neuropathology of schizophrenia includes the thalamus, a key hub of cortical-subcortical circuitry and an important regulator of cortical activity. However, the thalamus is a heterogeneous structure composed of several nuclei with distinct inputs and cortical connections. Limitations of conventional neuroimaging methods and conflicting findings from post-mortem investigations have made it difficult to determine if thalamic pathology in schizophrenia is widespread or limited to specific thalamocortical circuits. Resting-state fMRI has proven invaluable for understanding the large-scale functional organization of the brain and investigating neural circuitry relevant to psychiatric disorders. This article summarizes resting-state fMRI investigations of thalamocortical functional connectivity in schizophrenia. Particular attention is paid to the course, diagnostic specificity, and clinical correlates of thalamocortical network dysfunction. PMID:27531067

  9. Variability in Cumulative Habitual Sleep Duration Predicts Waking Functional Connectivity.

    PubMed

    Khalsa, Sakh; Mayhew, Stephen D; Przezdzik, Izabela; Wilson, Rebecca; Hale, Joanne; Goldstone, Aimee; Bagary, Manny; Bagshaw, Andrew P

    2016-01-01

    We examined whether interindividual differences in habitual sleep patterns, quantified as the cumulative habitual total sleep time (cTST) over a 2-w period, were reflected in waking measurements of intranetwork and internetwork functional connectivity (FC) between major nodes of three intrinsically connected networks (ICNs): default mode network (DMN), salience network (SN), and central executive network (CEN). Resting state functional magnetic resonance imaging (fMRI) study using seed-based FC analysis combined with 14-d wrist actigraphy, sleep diaries, and subjective questionnaires (N = 33 healthy adults, mean age 34.3, standard deviation ± 11.6 y). Data were statistically analyzed using multiple linear regression. Fourteen consecutive days of wrist actigraphy in participant's home environment and fMRI scanning on day 14 at the Birmingham University Imaging Centre. Seed-based FC analysis on ICNs from resting-state fMRI data and multiple linear regression analysis performed for each ICN seed and target. cTST was used to predict FC (controlling for age). cTST was specific predictor of intranetwork FC when the mesial prefrontal cortex (MPFC) region of the DMN was used as a seed for FC, with a positive correlation between FC and cTST observed. No significant relationship between FC and cTST was seen for any pair of nodes not including the MPFC. Internetwork FC between the DMN (MPFC) and SN (right anterior insula) was also predicted by cTST, with a negative correlation observed between FC and cTST. This study improves understanding of the relationship between intranetwork and internetwork functional connectivity of intrinsically connected networks (ICNs) in relation to habitual sleep quality and duration. The cumulative amount of sleep that participants achieved over a 14-d period was significantly predictive of intranetwork and inter-network functional connectivity of ICNs, an observation that may underlie the link between sleep status and cognitive performance. © 2016 Associated Professional Sleep Societies, LLC.

  10. Differences on Brain Connectivity in Adulthood Are Present in Subjects with Iron Deficiency Anemia in Infancy

    PubMed Central

    Algarin, Cecilia; Karunakaran, Keerthana Deepti; Reyes, Sussanne; Morales, Cristian; Lozoff, Betsy; Peirano, Patricio; Biswal, Bharat

    2017-01-01

    Iron deficiency continues to be the most prevalent micronutrient deficit worldwide. Since iron is involved in several processes including myelination, dopamine neurotransmission and neuronal metabolism, the presence of iron deficiency anemia (IDA) in infancy relates to long-lasting neurofunctional effects. There is scarce data regarding whether these effects would extend to former iron deficient anemic human adults. Resting state functional magnetic resonance imaging (fMRI) is a novel technique to explore patterns of functional connectivity. Default Mode Network (DMN), one of the resting state networks, is deeply involved in memory, social cognition and self-referential processes. The four core regions consistently identified in the DMN are the medial prefrontal cortex, posterior cingulate/retrosplenial cortex and left and right inferior parietal cortex. Therefore to investigate the DMN in former iron deficient anemic adults is a particularly useful approach to elucidate de long term effects on functional brain. We conducted this research to explore the connection between IDA in infancy and altered patterns of resting state brain functional networks in young adults. Resting-state fMRI studies were performed to 31 participants that belong to a follow-up study since infancy. Of them, 14 participants were former iron deficient anemic in infancy and 17 were controls, with mean age of 21.5 years (±1.5) and 54.8% were males. Resting-state fMRI protocol was used and the data was analyzed using the seed based connectivity statistical analysis to assess the DMN. We found that compared to controls, former iron deficient anemic subjects showed posterior DMN decreased connectivity to the left posterior cingulate cortex (PCC), whereas they exhibited increased anterior DMN connectivity to the right PCC. Differences between groups were also apparent in the left medial frontal gyrus, with former iron deficient anemic participants having increased connectivity with areas included in DMN and dorsal attention networks. These preliminary results suggest different patterns of functional connectivity between former iron deficient anemic and control young adults. Indeed, IDA in infancy, a common nutritional problem among human infants, may turn out to be important for understanding the mechanisms of cognitive alterations, common in adulthood. PMID:28326037

  11. IMAGING OF BRAIN FUNCTION BASED ON THE ANALYSIS OF FUNCTIONAL CONNECTIVITY - IMAGING ANALYSIS OF BRAIN FUNCTION BY FMRI AFTER ACUPUNCTURE AT LR3 IN HEALTHY INDIVIDUALS.

    PubMed

    Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong

    2016-01-01

    This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.

  12. The putative visual word form area is functionally connected to the dorsal attention network.

    PubMed

    Vogel, Alecia C; Miezin, Fran M; Petersen, Steven E; Schlaggar, Bradley L

    2012-03-01

    The putative visual word form area (pVWFA) is the most consistently activated region in single word reading studies (i.e., Vigneau et al. 2006), yet its function remains a matter of debate. The pVWFA may be predominantly used in reading or it could be a more general visual processor used in reading but also in other visual tasks. Here, resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is used to characterize the functional relationships of the pVWFA to help adjudicate between these possibilities. rs-fcMRI defines relationships based on correlations in slow fluctuations of blood oxygen level-dependent activity occurring at rest. In this study, rs-fcMRI correlations show little relationship between the pVWFA and reading-related regions but a strong relationship between the pVWFA and dorsal attention regions thought to be related to spatial and feature attention. The rs-fcMRI correlations between the pVWFA and regions of the dorsal attention network increase with age and reading skill, while the correlations between the pVWFA and reading-related regions do not. These results argue the pVWFA is not used predominantly in reading but is a more general visual processor used in other visual tasks, as well as reading.

  13. The Putative Visual Word Form Area Is Functionally Connected to the Dorsal Attention Network

    PubMed Central

    Miezin, Fran M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2012-01-01

    The putative visual word form area (pVWFA) is the most consistently activated region in single word reading studies (i.e., Vigneau et al. 2006), yet its function remains a matter of debate. The pVWFA may be predominantly used in reading or it could be a more general visual processor used in reading but also in other visual tasks. Here, resting-state functional connectivity magnetic resonance imaging (rs-fcMRI) is used to characterize the functional relationships of the pVWFA to help adjudicate between these possibilities. rs-fcMRI defines relationships based on correlations in slow fluctuations of blood oxygen level–dependent activity occurring at rest. In this study, rs-fcMRI correlations show little relationship between the pVWFA and reading-related regions but a strong relationship between the pVWFA and dorsal attention regions thought to be related to spatial and feature attention. The rs-fcMRI correlations between the pVWFA and regions of the dorsal attention network increase with age and reading skill, while the correlations between the pVWFA and reading-related regions do not. These results argue the pVWFA is not used predominantly in reading but is a more general visual processor used in other visual tasks, as well as reading. PMID:21690259

  14. Environmental factors linked to depression vulnerability are associated with altered cerebellar resting-state synchronization.

    PubMed

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Brambilla, Paolo; Crespo-Facorro, Benedicto; Deco, Gustavo; Fañanás, Lourdes

    2016-11-28

    Hosting nearly eighty percent of all human neurons, the cerebellum is functionally connected to large regions of the brain. Accumulating data suggest that some cerebellar resting-state alterations may constitute a key candidate mechanism for depressive psychopathology. While there is some evidence linking cerebellar function and depression, two topics remain largely unexplored. First, the genetic or environmental roots of this putative association have not been elicited. Secondly, while different mathematical representations of resting-state fMRI patterns can embed diverse information of relevance for health and disease, many of them have not been studied in detail regarding the cerebellum and depression. Here, high-resolution fMRI scans were examined to estimate functional connectivity patterns across twenty-six cerebellar regions in a sample of 48 identical twins (24 pairs) informative for depression liability. A network-based statistic approach was employed to analyze cerebellar functional networks built using three methods: the conventional approach of filtered BOLD fMRI time-series, and two analytic components of this oscillatory activity (amplitude envelope and instantaneous phase). The findings indicate that some environmental factors may lead to depression vulnerability through alterations of the neural oscillatory activity of the cerebellum during resting-state. These effects may be observed particularly when exploring the amplitude envelope of fMRI oscillations.

  15. Cerebro-cerebellar connectivity is increased in primary lateral sclerosis.

    PubMed

    Meoded, Avner; Morrissette, Arthur E; Katipally, Rohan; Schanz, Olivia; Gotts, Stephen J; Floeter, Mary Kay

    2015-01-01

    Increased functional connectivity in resting state networks was found in several studies of patients with motor neuron disorders, although diffusion tensor imaging studies consistently show loss of white matter integrity. To understand the relationship between structural connectivity and functional connectivity, we examined the structural connections between regions with altered functional connectivity in patients with primary lateral sclerosis (PLS), a long-lived motor neuron disease. Connectivity matrices were constructed from resting state fMRI in 16 PLS patients to identify areas of differing connectivity between patients and healthy controls. Probabilistic fiber tracking was used to examine structural connections between regions of differing connectivity. PLS patients had 12 regions with increased functional connectivity compared to controls, with a predominance of cerebro-cerebellar connections. Increased functional connectivity was strongest between the cerebellum and cortical motor areas and between the cerebellum and frontal and temporal cortex. Fiber tracking detected no difference in connections between regions with increased functional connectivity. We conclude that functional connectivity changes are not strongly based in structural connectivity. Increased functional connectivity may be caused by common inputs, or by reduced selectivity of cortical activation, which could result from loss of intracortical inhibition when cortical afferents are intact.

  16. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis

    PubMed Central

    Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter

    2016-01-01

    Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038

  17. Co-activation patterns in resting-state fMRI signals.

    PubMed

    Liu, Xiao; Zhang, Nanyin; Chang, Catie; Duyn, Jeff H

    2018-02-08

    The brain is a complex system that integrates and processes information across multiple time scales by dynamically coordinating activities over brain regions and circuits. Correlations in resting-state functional magnetic resonance imaging (rsfMRI) signals have been widely used to infer functional connectivity of the brain, providing a metric of functional associations that reflects a temporal average over an entire scan (typically several minutes or longer). Not until recently was the study of dynamic brain interactions at much shorter time scales (seconds to minutes) considered for inference of functional connectivity. One method proposed for this objective seeks to identify and extract recurring co-activation patterns (CAPs) that represent instantaneous brain configurations at single time points. Here, we review the development and recent advancement of CAP methodology and other closely related approaches, as well as their applications and associated findings. We also discuss the potential neural origins and behavioral relevance of CAPs, along with methodological issues and future research directions in the analysis of fMRI co-activation patterns. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Template based rotation: A method for functional connectivity analysis with a priori templates☆

    PubMed Central

    Schultz, Aaron P.; Chhatwal, Jasmeer P.; Huijbers, Willem; Hedden, Trey; van Dijk, Koene R.A.; McLaren, Donald G.; Ward, Andrew M.; Wigman, Sarah; Sperling, Reisa A.

    2014-01-01

    Functional connectivity magnetic resonance imaging (fcMRI) is a powerful tool for understanding the network level organization of the brain in research settings and is increasingly being used to study large-scale neuronal network degeneration in clinical trial settings. Presently, a variety of techniques, including seed-based correlation analysis and group independent components analysis (with either dual regression or back projection) are commonly employed to compute functional connectivity metrics. In the present report, we introduce template based rotation,1 a novel analytic approach optimized for use with a priori network parcellations, which may be particularly useful in clinical trial settings. Template based rotation was designed to leverage the stable spatial patterns of intrinsic connectivity derived from out-of-sample datasets by mapping data from novel sessions onto the previously defined a priori templates. We first demonstrate the feasibility of using previously defined a priori templates in connectivity analyses, and then compare the performance of template based rotation to seed based and dual regression methods by applying these analytic approaches to an fMRI dataset of normal young and elderly subjects. We observed that template based rotation and dual regression are approximately equivalent in detecting fcMRI differences between young and old subjects, demonstrating similar effect sizes for group differences and similar reliability metrics across 12 cortical networks. Both template based rotation and dual-regression demonstrated larger effect sizes and comparable reliabilities as compared to seed based correlation analysis, though all three methods yielded similar patterns of network differences. When performing inter-network and sub-network connectivity analyses, we observed that template based rotation offered greater flexibility, larger group differences, and more stable connectivity estimates as compared to dual regression and seed based analyses. This flexibility owes to the reduced spatial and temporal orthogonality constraints of template based rotation as compared to dual regression. These results suggest that template based rotation can provide a useful alternative to existing fcMRI analytic methods, particularly in clinical trial settings where predefined outcome measures and conserved network descriptions across groups are at a premium. PMID:25150630

  19. Functional brain imaging across development.

    PubMed

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to a more mature and controlled cognition.

  20. Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data.

    PubMed

    Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria

    2015-01-01

    A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.

  1. An Improved Framework for Confound Regression and Filtering for Control of Motion Artifact in the Preprocessing of Resting-State Functional Connectivity Data

    PubMed Central

    Satterthwaite, Theodore D.; Elliott, Mark A.; Gerraty, Raphael T.; Ruparel, Kosha; Loughead, James; Calkins, Monica E.; Eickhoff, Simon B.; Hakonarson, Hakon; Gur, Ruben C.; Gur, Raquel E.; Wolf, Daniel H.

    2013-01-01

    Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. PMID:22926292

  2. Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder

    PubMed Central

    Miller, Danielle R.; Hayes, Scott M.; Hayes, Jasmeet P.; Spielberg, Jeffrey M.; Lafleche, Ginette; Verfaellie, Mieke

    2017-01-01

    Background Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Methods Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Results Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Conclusions Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology. PMID:28435932

  3. Attention bias in older women with remitted depression is associated with enhanced amygdala activity and functional connectivity.

    PubMed

    Albert, Kimberly; Gau, Violet; Taylor, Warren D; Newhouse, Paul A

    2017-03-01

    Cognitive bias is a common characteristic of major depressive disorder (MDD) and is posited to remain during remission and contribute to recurrence risk. Attention bias may be related to enhanced amygdala activity or altered amygdala functional connectivity in depression. The current study examined attention bias, brain activity for emotional images, and functional connectivity in post-menopausal women with and without a history of major depression. Attention bias for emotionally valenced images was examined in 33 postmenopausal women with (n=12) and without (n=21) a history of major depression using an emotion dot probe task during fMRI. Group differences in amygdala activity and functional connectivity were assessed using fMRI and examined for correlations to attention performance. Women with a history of MDD showed greater attentional bias for negative images and greater activity in brain areas including the amygdala for both positive and negative images (pcorr <0.001) than women without a history of MDD. In all participants, amygdala activity for negative images was correlated with attention facilitation for emotional images. Women with a history of MDD had significantly greater functional connectivity between the amygdala and hippocampal complex. In all participants amygdala-hippocampal connectivity was positively correlated with attention facilitation for negative images. Small sample with unbalanced groups. These findings provide evidence for negative attentional bias in euthymic, remitted depressed individuals. Activity and functional connectivity in limbic and attention networks may provide a neurobiological basis for continued cognitive bias in remitted depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Default Mode Network Subsystems are Differentially Disrupted in Posttraumatic Stress Disorder.

    PubMed

    Miller, Danielle R; Hayes, Scott M; Hayes, Jasmeet P; Spielberg, Jeffrey M; Lafleche, Ginette; Verfaellie, Mieke

    2017-05-01

    Posttraumatic stress disorder (PTSD) is a psychiatric disorder characterized by debilitating re-experiencing, avoidance, and hyperarousal symptoms following trauma exposure. Recent evidence suggests that individuals with PTSD show disrupted functional connectivity in the default mode network, an intrinsic network that consists of a midline core, a medial temporal lobe (MTL) subsystem, and a dorsomedial prefrontal cortex (dMPFC) subsystem. The present study examined whether functional connectivity in these subsystems is differentially disrupted in PTSD. Sixty-nine returning war Veterans with PTSD and 44 trauma-exposed Veterans without PTSD underwent resting state functional MRI (rs-fMRI). To examine functional connectivity, seeds were placed in the core hubs of the default mode network, namely the posterior cingulate cortex (PCC) and anterior medial PFC (aMPFC), and in each subsystem. Compared to controls, individuals with PTSD had reduced functional connectivity between the PCC and the hippocampus, a region of the MTL subsystem. Groups did not differ in connectivity between the PCC and dMPFC subsystem or between the aMPFC and any region within either subsystem. In the PTSD group, connectivity between the PCC and hippocampus was negatively associated with avoidance/numbing symptoms. Examination of the MTL and dMPFC subsystems revealed reduced anticorrelation between the ventromedial PFC (vMPFC) seed of the MTL subsystem and the dorsal anterior cingulate cortex in the PTSD group. Our results suggest that selective alterations in functional connectivity in the MTL subsystem of the default mode network in PTSD may be an important factor in PTSD pathology and symptomatology.

  5. Structural and functional network connectivity breakdown in Alzheimer’s disease studied with magnetic resonance imaging techniques.

    PubMed

    Filippi, Massimo; Agosta, Federica

    2011-01-01

    Patients with Alzheimer’s disease (AD) experience a brain network breakdown, reflecting disconnection at both the structural and functional system level. Resting-state (RS) functional MRI (fMRI) studies demonstrated that the regional coherence of the fMRI signal is significantly altered in patients with AD and amnestic mild cognitive impairment. Diffusion tensor (DT) MRI has made it possible to track fiber bundle projections across the brain, revealing a substantially abnormal interplay of “critical” white matter tracts in these conditions. The observed agreement between the results of RS fMRI and DT MRI tractography studies in healthy individuals is encouraging and offers interesting hypotheses to be tested in patients with AD, a MCI, and other dementias in order to improve our understanding of their pathobiology in vivo. In this review,we describe the major findings obtained in AD using RS fMRI and DT MRI tractography, and discuss how the relationship between structure and function of the brain networks in AD may be better understood through the application of MR-based technology. This research endeavor holds a great promise in clarifying the mechanisms of cognitive decline in complex chronic neurodegenerative disorders.

  6. Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction.

    PubMed

    Chengyang, Li; Daqing, Huang; Jianlin, Qi; Haisheng, Chang; Qingqing, Meng; Jin, Wang; Jiajia, Liu; Enmao, Ye; Yongcong, Shao; Xi, Zhang

    2017-08-01

    Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18-24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal-cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.

  7. Emotional processing and brain activity in youth at high risk for alcoholism.

    PubMed

    Cservenka, Anita; Fair, Damien A; Nagel, Bonnie J

    2014-07-01

    Even in the absence of heavy alcohol use, youth with familial alcoholism (family history positive [FHP]) exhibit atypical brain functioning and behavior. Although emotional and cognitive systems are affected in alcohol use disorders (AUDs), little attention has focused on whether brain and behavior phenotypes related to the interplay between affective and executive functioning may be a premorbid risk factor for the development of AUDs in FHP youth. Twenty-four FHP and 22 family history negative (FHN) 12- to 16-year-old adolescents completed study procedures. After exclusion of participants with clinically significant depressive symptoms and those who did not meet performance criteria during an Emotional Go-NoGo task, 19 FHP and 17 FHN youth were included in functional magnetic resonance imaging (fMRI) analyses. Resting state functional connectivity MRI, using amygdalar seed regions, was analyzed in 16 FHP and 18 FHN youth, after exclusion of participants with excessive head movement. fMRI showed that brain activity in FHP youth, compared with FHN peers, was reduced during emotional processing in the superior temporal cortex, as well as during cognitive control within emotional contexts in frontal and striatal regions. Group differences in resting state amygdalar connectivity were seen bilaterally between FHP and FHN youth. In FHP youth, reduced resting state synchrony between the left amygdala and left superior frontal gyrus was related to poorer response inhibition, as measured during the fMRI task. To our knowledge, this is the first study to examine emotion-cognition interactions and resting state functional connectivity in FHP youth. Findings from this research provide insight into neural and behavioral phenotypes associated with emotional processing in familial alcoholism, which may relate to increased risk of developing AUDs. Copyright © 2014 by the Research Society on Alcoholism.

  8. Neuroticism modulates brain visuo-vestibular and anxiety systems during a virtual rollercoaster task.

    PubMed

    Riccelli, Roberta; Indovina, Iole; Staab, Jeffrey P; Nigro, Salvatore; Augimeri, Antonio; Lacquaniti, Francesco; Passamonti, Luca

    2017-02-01

    Different lines of research suggest that anxiety-related personality traits may influence the visual and vestibular control of balance, although the brain mechanisms underlying this effect remain unclear. To our knowledge, this is the first functional magnetic resonance imaging (fMRI) study that investigates how individual differences in neuroticism and introversion, two key personality traits linked to anxiety, modulate brain regional responses and functional connectivity patterns during a fMRI task simulating self-motion. Twenty-four healthy individuals with variable levels of neuroticism and introversion underwent fMRI while performing a virtual reality rollercoaster task that included two main types of trials: (1) trials simulating downward or upward self-motion (vertical motion), and (2) trials simulating self-motion in horizontal planes (horizontal motion). Regional brain activity and functional connectivity patterns when comparing vertical versus horizontal motion trials were correlated with personality traits of the Five Factor Model (i.e., neuroticism, extraversion-introversion, openness, agreeableness, and conscientiousness). When comparing vertical to horizontal motion trials, we found a positive correlation between neuroticism scores and regional activity in the left parieto-insular vestibular cortex (PIVC). For the same contrast, increased functional connectivity between the left PIVC and right amygdala was also detected as a function of higher neuroticism scores. Together, these findings provide new evidence that individual differences in personality traits linked to anxiety are significantly associated with changes in the activity and functional connectivity patterns within visuo-vestibular and anxiety-related systems during simulated vertical self-motion. Hum Brain Mapp 38:715-726, 2017. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  9. Functional connectivity increase in the default-mode network of patients with Alzheimer's disease after long-term treatment with Galantamine.

    PubMed

    Blautzik, Janusch; Keeser, Daniel; Paolini, Marco; Kirsch, Valerie; Berman, Albert; Coates, Ute; Reiser, Maximilian; Teipel, Stefan J; Meindl, Thomas

    2016-03-01

    Acetylcholinesterase inhibitors (AChEIs) are efficacious for the treatment of mild to moderate forms of Alzheimer's dementia (AD). Default-mode network (DMN) connectivity is considered to be early impaired in AD. Long-term effects of AChEIs on the DMN in AD have not yet been investigated. Twenty-eight AD patients and 11 age-matched healthy volunteers (HC) participated in the prospective study. AD patients were randomly assigned to either a pharmacotherapy arm (Galantamine, AD G) or to a placebo arm (AD P+G) for the period of 6 months followed by open-label Galantamine therapy from month 7-12. All subjects underwent neuropsychological testing, resting-state functional and structural MRI at baseline and after 12 months, AD patients additionally in between after 6 months. Thirteen AD patients completed the treatment trial and underwent all functional MRI follow-up sequences of good quality. Functional connectivity significantly increased within the AD G group in the posterior cingulate cortex and in the Precuneus between baseline and 12 months follow-up (pcorr<0.05). Between-group analyses demonstrated that functional connectivity in the AD G group significantly increased in the posterior cingulate cortex as well as in the Precuneus compared to the HC group and in the anteromedial aspect of the temporal lobes compared to the AD P+G group, respectively, at 12 months follow-up (pcorr<0.05). Cognitive performance remained stable within groups over time indicating that resting-state fMRI may be sensitive for the detection of pharmacologically induced effects on brain function of AD patients. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  10. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    PubMed

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (p<0.05) reduced measures of resting-state BOLD connectivity in the motor cortex. Baseline cerebral blood flow and spectral energy in the low-frequency BOLD fluctuations were also significantly decreased by caffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  11. Altered structure and function in the hippocampus and medial prefrontal cortex in patients with burning mouth syndrome.

    PubMed

    Khan, Shariq A; Keaser, Michael L; Meiller, Timothy F; Seminowicz, David A

    2014-08-01

    Burning mouth syndrome (BMS) is a debilitating, idiopathic chronic pain condition. For many BMS patients, burning oral pain begins in late morning and becomes more intense throughout the day, peaking by late afternoon or evening. We investigated brain gray matter volume (GMV) with voxel-based morphometry (VBM), white matter fractional anisotropy (FA) with diffusion tensor imaging (DTI), and functional connectivity in resting state functional MRI (rsfMRI) in a tightly screened, homogeneous sample of 9 female, postmenopausal/perimenopausal BMS patients and 9 matched healthy control subjects. Patients underwent 2 scanning sessions in the same day: in the morning, when ongoing pain/burning was low, and in the afternoon, when pain/burning was significantly higher. Patients had increased GMV and lower FA in the hippocampus (Hc), and decreased GMV in the medial prefrontal cortex (mPFC). rsfMRI revealed altered connectivity patterns in different states of pain/burning, with increased connectivity between mPFC (a node in the default mode network) and anterior cingulate cortex, occipital cortex, ventromedial PFC, and bilateral Hc/amygdala in the afternoon compared with the morning session. Furthermore, mPFC-Hc connectivity was higher in BMS patients than control subjects for the afternoon but not the morning session. mPFC-Hc connectivity was related to Beck depression inventory scores both between groups and between burning states within patients, suggesting that depression and anxiety partially explain pain-related brain dysfunction in BMS. Overall, we provide multiple lines of evidence supporting aberrant structure and function in the mPFC and Hc, and implicate a circuit involving the mPFC and Hc in regulating mood and depressive symptoms in BMS. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Altered Resting Brain Function and Structure in Professional Badminton Players

    PubMed Central

    Di, Xin; Zhu, Senhua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan

    2012-01-01

    Abstract Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills. PMID:22840241

  13. Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions

    PubMed Central

    Hu, Xintao; Zhu, Dajiang; Lv, Peili; Li, Kaiming; Han, Junwei; Wang, Lihong; Shen, Dinggang; Guo, Lei; Liu, Tianming

    2014-01-01

    In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity subnetwork scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rsfMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures. PMID:23319242

  14. Convergent and divergent functional connectivity patterns in patients with long-term left-sided and right-sided deafness.

    PubMed

    Zhang, Yanyang; Mao, Zhiqi; Feng, Shiyu; Wang, Wenxin; Zhang, Jun; Yu, Xinguang

    2018-02-05

    Cortical reorganization may be induced in long-term single-sided deafness (SD); however, the influence of the deafness side on the functional changes remains poorly understood. Here, we investigated whole-brain functional connectivity patterns in long-term SD patients. The normalized voxel-based functional connectivity strength (FCS) was determined using resting-state fMRI (rs-fMRI) in 17 left-sided deafness (LD) patients, 21 right-sided deafness (RD) patients and 21 healthy controls (HCs). Relative to the HCs, both the LD and RD patients exhibited a reduction in the FCS in the ipsilateral visual cortex. However, compared to that in the HCs, a significantly higher FCS was observed in some regions in the salience and default-mode networks in the RD patients, but this FCS alternation pattern was not observed in the LD patients. A direct comparison of the two patient groups revealed a significantly increased FCS in the supplemental motor area in the LD group. Altogether, the long-term SD groups with LD and RD exhibited convergent and divergent functional connectivity patterns in whole-brain networks, providing promising evidence that the functional changes in long-term SD are highly deafness-side-dependent. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    PubMed Central

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  16. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study.

    PubMed

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-24

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed.

  17. Cerebellum and Integration of Neural Networks in Dual-Task Processing

    PubMed Central

    Wu, Tao; Liu, Jun; Hallett, Mark; Zheng, Zheng; Chan, Piu

    2014-01-01

    Performing two tasks simultaneously (dual-task) is common in human daily life. The neural correlates of dual-task processing remain unclear. In the current study, we used a dual motor and counting task with functional MRI (fMRI) to determine whether there are any areas additionally activated for dual-task performance. Moreover, we investigated the functional connectivity of these added activated areas, as well as the training effect on brain activity and connectivity. We found that the right cerebellar vermis, left lobule V of the cerebellar anterior lobe and precuneus are additionally activated for this type of dual-tasking. These cerebellar regions had functional connectivity with extensive motor- and cognitive-related regions. Dual-task training induced less activation in several areas, but increased the functional connectivity between these cerebellar regions and numbers of motor- and cognitive-related areas. Our findings demonstrate that some regions within the cerebellum can be additionally activated with dual-task performance. Their role in dual motor and cognitive task processes is likely to integrate motor and cognitive networks, and may be involved in adjusting these networks to be more efficient in order to perform dual-tasking properly. The connectivity of the precuneus differs from the cerebellar regions. A possible role of the precuneus in dual-task may be monitoring the operation of active brain networks. PMID:23063842

  18. Dynamic functional connectivity: Promise, issues, and interpretations

    PubMed Central

    Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie

    2013-01-01

    The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587

  19. Findings in resting-state fMRI by differences from K-means clustering.

    PubMed

    Chyzhyk, Darya; Graña, Manuel

    2014-01-01

    Resting state fMRI has growing number of studies with diverse aims, always centered on some kind of functional connectivity biomarker obtained from correlation regarding seed regions, or by analytical decomposition of the signal towards the localization of the spatial distribution of functional connectivity patterns. In general, studies are computationally costly and very sensitive to noise and preprocessing of data. In this paper we consider clustering by K-means as a exploratory procedure which can provide some results with little computational effort, due to efficient implementations that are readily available. We demonstrate the approach on a dataset of schizophrenia patients, finding differences between patients with and without auditory hallucinations.

  20. Non-Stationarity in the “Resting Brain’s” Modular Architecture

    PubMed Central

    Jones, David T.; Vemuri, Prashanthi; Murphy, Matthew C.; Gunter, Jeffrey L.; Senjem, Matthew L.; Machulda, Mary M.; Przybelski, Scott A.; Gregg, Brian E.; Kantarci, Kejal; Knopman, David S.; Boeve, Bradley F.; Petersen, Ronald C.; Jack, Clifford R.

    2012-01-01

    Task-free functional magnetic resonance imaging (TF-fMRI) has great potential for advancing the understanding and treatment of neurologic illness. However, as with all measures of neural activity, variability is a hallmark of intrinsic connectivity networks (ICNs) identified by TF-fMRI. This variability has hampered efforts to define a robust metric of connectivity suitable as a biomarker for neurologic illness. We hypothesized that some of this variability rather than representing noise in the measurement process, is related to a fundamental feature of connectivity within ICNs, which is their non-stationary nature. To test this hypothesis, we used a large (n = 892) population-based sample of older subjects to construct a well characterized atlas of 68 functional regions, which were categorized based on independent component analysis network of origin, anatomical locations, and a functional meta-analysis. These regions were then used to construct dynamic graphical representations of brain connectivity within a sliding time window for each subject. This allowed us to demonstrate the non-stationary nature of the brain’s modular organization and assign each region to a “meta-modular” group. Using this grouping, we then compared dwell time in strong sub-network configurations of the default mode network (DMN) between 28 subjects with Alzheimer’s dementia and 56 cognitively normal elderly subjects matched 1∶2 on age, gender, and education. We found that differences in connectivity we and others have previously observed in Alzheimer’s disease can be explained by differences in dwell time in DMN sub-network configurations, rather than steady state connectivity magnitude. DMN dwell time in specific modular configurations may also underlie the TF-fMRI findings that have been described in mild cognitive impairment and cognitively normal subjects who are at risk for Alzheimer’s dementia. PMID:22761880

  1. Enhanced limbic/impaired cortical-loop connection onto the hippocampus of NHE rats: Application of resting-state functional connectivity in a preclinical ADHD model.

    PubMed

    Zoratto, F; Palombelli, G M; Ruocco, L A; Carboni, E; Laviola, G; Sadile, A G; Adriani, W; Canese, R

    2017-08-30

    Due to a hyperfunctioning mesocorticolimbic system, Naples-High-Excitability (NHE) rats have been proposed to model for the meso-cortical variant of attention deficit/hyperactivity disorder (ADHD). Compared to Naples Random-Bred (NRB) controls, NHE rats show hyperactivity, impaired non-selective attention (Aspide et al., 1998), and impaired selective spatial attention (Ruocco et al., 2009a, 2014). Alteration in limbic functions has been proposed; however, resulting unbalance among forebrain areas has not been assessed yet. By resting-state functional Magnetic-Resonance Imaging (fMRI) in vivo, we investigated the connectivity of neuronal networks belonging to limbic vs. cortical loops in NHE and NRB rats (n=10 each). Notably, resting-state fMRI was applied using a multi-slice sagittal, gradient-echo sequence. Voxel-wise connectivity maps at rest, based on temporal correlation among fMRI time-series, were computed by seeding the hippocampus (Hip), nucleus accumbens (NAcc), dorsal striatum (dStr), amygdala (Amy) and dorsal/medial prefrontal cortex (PFC), both hemispheres. To summarize patterns of altered connection, clearly directional connectivity was evident within the cortical loop: bilaterally and specularly, from orbital and dorsal PFCs through dStr and hence towards Hip. Such network communication was reduced in NHE rats (also, with less mesencephalic/pontine innervation). Conversely, enhanced network activity emerged within the limbic loop of NHE rats: from left PFC, both through the NAcc and directly, to the Hip (all of which received greater ventral tegmental innervation, likely dopamine). Together with tuned-down cortical loop, this potentiated limbic loop may serve a major role in controlling ADHD-like behavioral symptoms in NHE rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Dynamic connectivity regression: Determining state-related changes in brain connectivity

    PubMed Central

    Cribben, Ivor; Haraldsdottir, Ragnheidur; Atlas, Lauren Y.; Wager, Tor D.; Lindquist, Martin A.

    2014-01-01

    Most statistical analyses of fMRI data assume that the nature, timing and duration of the psychological processes being studied are known. However, often it is hard to specify this information a priori. In this work we introduce a data-driven technique for partitioning the experimental time course into distinct temporal intervals with different multivariate functional connectivity patterns between a set of regions of interest (ROIs). The technique, called Dynamic Connectivity Regression (DCR), detects temporal change points in functional connectivity and estimates a graph, or set of relationships between ROIs, for data in the temporal partition that falls between pairs of change points. Hence, DCR allows for estimation of both the time of change in connectivity and the connectivity graph for each partition, without requiring prior knowledge of the nature of the experimental design. Permutation and bootstrapping methods are used to perform inference on the change points. The method is applied to various simulated data sets as well as to an fMRI data set from a study (N=26) of a state anxiety induction using a socially evaluative threat challenge. The results illustrate the method’s ability to observe how the networks between different brain regions changed with subjects’ emotional state. PMID:22484408

  3. Network discovery with DCM

    PubMed Central

    Friston, Karl J.; Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E.

    2011-01-01

    This paper is about inferring or discovering the functional architecture of distributed systems using Dynamic Causal Modelling (DCM). We describe a scheme that recovers the (dynamic) Bayesian dependency graph (connections in a network) using observed network activity. This network discovery uses Bayesian model selection to identify the sparsity structure (absence of edges or connections) in a graph that best explains observed time-series. The implicit adjacency matrix specifies the form of the network (e.g., cyclic or acyclic) and its graph-theoretical attributes (e.g., degree distribution). The scheme is illustrated using functional magnetic resonance imaging (fMRI) time series to discover functional brain networks. Crucially, it can be applied to experimentally evoked responses (activation studies) or endogenous activity in task-free (resting state) fMRI studies. Unlike conventional approaches to network discovery, DCM permits the analysis of directed and cyclic graphs. Furthermore, it eschews (implausible) Markovian assumptions about the serial independence of random fluctuations. The scheme furnishes a network description of distributed activity in the brain that is optimal in the sense of having the greatest conditional probability, relative to other networks. The networks are characterised in terms of their connectivity or adjacency matrices and conditional distributions over the directed (and reciprocal) effective connectivity between connected nodes or regions. We envisage that this approach will provide a useful complement to current analyses of functional connectivity for both activation and resting-state studies. PMID:21182971

  4. Increased Functional MEG Connectivity as a Hallmark of MRI-Negative Focal and Generalized Epilepsy.

    PubMed

    Li Hegner, Yiwen; Marquetand, Justus; Elshahabi, Adham; Klamer, Silke; Lerche, Holger; Braun, Christoph; Focke, Niels K

    2018-05-15

    Epilepsy is one of the most prevalent neurological diseases with a high morbidity. Accumulating evidence has shown that epilepsy is an archetypical neural network disorder. Here we developed a non-invasive cortical functional connectivity analysis based on magnetoencephalography (MEG) to assess commonalities and differences in the network phenotype in different epilepsy syndromes (non-lesional/cryptogenic focal and idiopathic/genetic generalized epilepsy). Thirty-seven epilepsy patients with normal structural brain anatomy underwent a 30-min resting state MEG measurement with eyes closed. We only analyzed interictal epochs without epileptiform discharges. The imaginary part of coherency was calculated as an indicator of cortical functional connectivity in five classical frequency bands. This connectivity measure was computed between all sources on individually reconstructed cortical surfaces that were surface-aligned to a common template. In comparison to healthy controls, both focal and generalized epilepsy patients showed widespread increased functional connectivity in several frequency bands, demonstrating the potential of elevated functional connectivity as a common pathophysiological hallmark in different epilepsy types. Furthermore, the comparison between focal and generalized epilepsies revealed increased network connectivity in bilateral mesio-frontal and motor regions specifically for the generalized epilepsy patients. Our study indicated that the surface-based normalization of MEG sources of individual brains enables the comparison of imaging findings across subjects and groups on a united platform, which leads to a straightforward and effective disclosure of pathological network characteristics in epilepsy. This approach may allow for the definition of more specific markers of different epilepsy syndromes, and increased MEG-based resting-state functional connectivity seems to be a common feature in MRI-negative epilepsy syndromes.

  5. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.

    PubMed

    Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J

    2017-02-15

    Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed higher interhemispheric connectivity in Heschl's gyri in rs-ISSS compared with rs-STD, with lower variability across days. The present findings suggest that rs-ISSS may be advantageous for detecting network connectivity in a less noisy environment, and that resting-state studies carried out with standard scanning protocols should consider the potential effects of loud noise on the measured networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Leistritz, Lutz; Wismüller, Axel

    2016-03-01

    We demonstrate an approach to measure the information flow between each pair of time series in resting-state functional MRI (fMRI) data of the human brain and subsequently recover its underlying network structure. By integrating dimensionality reduction into predictive time series modeling, large-scale Granger Causality (lsGC) analysis method can reveal directed information flow suggestive of causal influence at an individual voxel level, unlike other multivariate approaches. This method quantifies the influence each voxel time series has on every other voxel time series in a multivariate sense and hence contains information about the underlying dynamics of the whole system, which can be used to reveal functionally connected networks within the brain. To identify such networks, we perform non-metric network clustering, such as accomplished by the Louvain method. We demonstrate the effectiveness of our approach to recover the motor and visual cortex from resting state human brain fMRI data and compare it with the network recovered from a visuomotor stimulation experiment, where the similarity is measured by the Dice Coefficient (DC). The best DC obtained was 0.59 implying a strong agreement between the two networks. In addition, we thoroughly study the effect of dimensionality reduction in lsGC analysis on network recovery. We conclude that our approach is capable of detecting causal influence between time series in a multivariate sense, which can be used to segment functionally connected networks in the resting-state fMRI.

  7. Multi-modal neuroimaging of adolescents with non-suicidal self-injury: Amygdala functional connectivity.

    PubMed

    Westlund Schreiner, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A; Eberly, Lynn E; Reigstad, Kristina M; Carstedt, Patricia A; Thomas, Kathleen M; Hunt, Ruskin H; Lim, Kelvin O; Cullen, Kathryn R

    2017-10-15

    Non-suicidal self-injury (NSSI) is a significant mental health problem among adolescents. Research is needed to clarify the neurobiology of NSSI and identify candidate neurobiological targets for interventions. Based on prior research implicating heightened negative affect and amygdala hyperactivity in NSSI, we pursued a systems approach to characterize amygdala functional connectivity networks during rest (resting-state functional connectivity [RSFC)]) and a task (task functional connectivity [TFC]) in adolescents with NSSI. We examined amygdala networks in female adolescents with NSSI and healthy controls (n = 45) using resting-state fMRI and a negative emotion face-matching fMRI task designed to activate the amygdala. Connectivity analyses included amygdala RSFC, amygdala TFC, and psychophysiological interactions (PPI) between amygdala connectivity and task conditions. Compared to healthy controls, adolescents with NSSI showed atypical amygdala-frontal connectivity during rest and task; greater amygdala RSFC in supplementary motor area (SMA) and dorsal anterior cingulate; and differential amygdala-occipital connectivity between rest and task. After correcting for depression symptoms, amygdala-SMA RSFC abnormalities, among others, remained significant. This study's limitations include its cross-sectional design and its absence of a psychiatric control group. Using a multi-modal approach, we identified widespread amygdala circuitry anomalies in adolescents with NSSI. While deficits in amygdala-frontal connectivity (driven by depression symptoms) replicates prior work in depression, hyperconnectivity between amygdala and SMA (independent of depression symptoms) has not been previously reported. This circuit may represent an important mechanism underlying the link between negative affect and habitual behaviors. These abnormalities may represent intervention targets for adolescents with NSSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs

    PubMed Central

    Siegle, Greg

    2009-01-01

    Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927

  9. Reduced Functional Connectivity within the Mesocorticolimbic System in Substance Use Disorders: An fMRI Study of Puerto Rican Young Adults

    PubMed Central

    Posner, Jonathan; Amira, Leora; Algaze, Antonio; Canino, Glorisa; Duarte, Cristiane S.

    2016-01-01

    Studies of the mesocorticolimbic reward system (MCLS) and its relationship with impulsivity and substance use disorders (SUD) have largely focused on individuals from non-minority backgrounds. This represents a significant gap in the literature particularly for minority populations who are disproportionately affected by the consequences of SUD. Using resting-state functional MRI (fMRI), we examined the coherence of neural activity, or functional connectivity, within the brain’s MCLS in 28 young adult Puerto Ricans (ages 25–27) who were part of a population-based cohort study. Half of the sample lived in San Juan, Puerto Rico; the other half lived in the South Bronx, New York. At each of the two sites, half of the sample had a history of a SUD. Relative to those without SUD, individuals with SUD had decreased connectivity between the nucleus accumbens (NAcc) and several regions within the MCLS. This finding was true irrespective of study site (i.e., San Juan or South Bronx). Reduced connectivity within the MCLS was also associated with higher self-reported levels of impulsivity. Path analysis suggested a potential mechanism linking impulsivity, the MCLS, and SUD: impulsivity, potentially by chronically promoting reward seeking behaviors, may contribute to decreased MCLS connectivity, which in turn, may confer vulnerability for SUD. Expanding upon prior studies suggesting that alterations within the MCLS underlie SUD, our findings suggest that such alterations are also related to impulsivity and are present in a high-risk young minority population. PMID:27252633

  10. The Influence of Work-Related Chronic Stress on the Regulation of Emotion and on Functional Connectivity in the Brain

    PubMed Central

    Golkar, Armita; Johansson, Emilia; Kasahara, Maki; Osika, Walter; Perski, Aleksander; Savic, Ivanka

    2014-01-01

    Despite mounting reports about the negative effects of chronic occupational stress on cognitive and emotional functions, the underlying mechanisms are unknown. Recent findings from structural MRI raise the question whether this condition could be associated with a functional uncoupling of the limbic networks and an impaired modulation of emotional stress. To address this, 40 subjects suffering from burnout symptoms attributed to chronic occupational stress and 70 controls were investigated using resting state functional MRI. The participants' ability to up- regulate, down-regulate, and maintain emotion was evaluated by recording their acoustic startle response while viewing neutral and negatively loaded images. Functional connectivity was calculated from amygdala seed regions, using explorative linear correlation analysis. Stressed subjects were less capable of down-regulating negative emotion, but had normal acoustic startle responses when asked to up-regulate or maintain emotion and when no regulation was required. The functional connectivity between the amygdala and the anterior cingulate cortex correlated with the ability to down-regulate negative emotion. This connectivity was significantly weaker in the burnout group, as was the amygdala connectivity with the dorsolateral prefrontal cortex and the motor cortex, whereas connectivity from the amygdala to the cerebellum and the insular cortex were stronger. In subjects suffering from chronic occupational stress, the functional couplings within the emotion- and stress-processing limbic networks seem to be altered, and associated with a reduced ability to down-regulate the response to emotional stress, providing a biological substrate for a further facilitation of the stress condition. PMID:25184294

  11. Plastic modulation of PTSD resting-state networks by EEG neurofeedback

    PubMed Central

    Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.

    2015-01-01

    Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644

  12. Probabilistic fiber tracking of the language and motor white matter pathways of the supplementary motor area (SMA) in patients with brain tumors.

    PubMed

    Jenabi, Mehrnaz; Peck, Kyung K; Young, Robert J; Brennan, Nicole; Holodny, Andrei I

    2014-12-01

    Accurate localization of anatomically and functionally separate SMA tracts is important to improve planning prior to neurosurgery. Using fMRI and probabilistic DTI techniques, we assessed the connectivity between the frontal language area (Broca's area) and the rostral pre-SMA (language SMA) and caudal SMA proper (motor SMA). Twenty brain tumor patients completed motor and language fMRI paradigms and DTI. Peaks of functional activity in the language SMA, motor SMA and Broca's area were used to define seed regions for probabilistic tractography. fMRI and probabilistic tractography identified separate and unique pathways connecting the SMA to Broca's area - the language SMA pathway and the motor SMA pathway. For all subjects, the language SMA pathway had a larger number of voxels (P<0.0001) and higher connectivity (P<0.0001) to Broca's area than did the motor SMA pathway. In each patient, the number of voxels was greater in the language and motor SMA pathways than in background pathways (P<0.0001). No differences were found between patients with ipsilateral and those with contralateral tumors for either the language SMA pathway (degree of connectivity: P<0.36; number of voxels: 0.35) or the motor SMA pathway (degree of connectivity, P<0.28; number of voxels, P<0.74). Probabilistic tractography can identify unique white matter tracts that connect language SMA and motor SMA to Broca's area. The language SMA is more significantly connected to Broca's area than is the motor subdivision of the SMA proper. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  13. The Effects of Music Intervention on Functional Connectivity Strength of the Brain in Schizophrenia.

    PubMed

    Yang, Mi; He, Hui; Duan, Mingjun; Chen, Xi; Chang, Xin; Lai, Yongxiu; Li, Jianfu; Liu, Tiejun; Luo, Cheng; Yao, Dezhong

    2018-01-01

    Schizophrenia is often associated with behavior abnormality in the cognitive and affective domain. Music intervention is used as a complementary treatment for improving symptoms in patients with schizophrenia. However, the neurophysiological correlates of these remissions remain poorly understood. Here, we investigated the effects of music intervention in neural circuits through functional magnetic resonance imaging (fMRI) study in schizophrenic subjects. Under the standard care, patients were randomly assigned to music and non-music interventions (MTSZ, UMTSZ) for 1 month. Resting-state fMRI were acquired over three time points (baseline, 1 month, and 6 months later) in patients and analyzed using functional connectivity strength (FCS) and seed-based functional connection (FC) approaches. At baseline, compared with healthy controls, decreased FCS in the right middle temporal gyrus (MTG) was observed in patients. However, after music intervention, the functional circuitry of the right MTG, which was related with the function of emotion and sensorimotor, was improved in MTSZ. Furthermore, the FC increments were significantly correlated with the improvement of symptoms, while vanishing 6 months later. Together, these findings provided evidence that music intervention might positively modulate the functional connectivity of MTG in patients with schizophrenia; such changes might be associated with the observed therapeutic effects of music intervention on neurocognitive function. This trial is registered with ChiCTR-OPC-14005339.

  14. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    PubMed

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  15. Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.

    PubMed

    Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C

    2015-11-04

    Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition and global functional outcome. This study evaluated neural substrates of impaired AER in schizophrenia using a combined event-related potential/resting-state fMRI approach. Patients showed impaired mismatch negativity response to emotionally relevant frequency modulated tones along with impaired functional connectivity between auditory and medial temporal (anterior insula) cortex. These deficits contributed in parallel to impaired AER and accounted for ∼50% of variance in AER performance. Overall, these findings demonstrate the importance of both auditory-level dysfunction and impaired auditory/insula connectivity in the pathophysiology of social cognitive dysfunction in schizophrenia. Copyright © 2015 the authors 0270-6474/15/3514910-13$15.00/0.

  16. Music Listening modulates Functional Connectivity and Information Flow in the Human Brain.

    PubMed

    Karmonik, Christof; Brandt, Anthony; Anderson, Jeff; Brooks, Forrest; Lytle, Julie; Silverman, Elliott; Frazier, Jeff T

    2016-07-27

    Listening to familiar music has recently been reported to be beneficial during recovery from stroke. A better understanding of changes in functional connectivity and information flow is warranted in order to further optimize and target this approach through music therapy. Twelve healthy volunteers listened to seven different auditory samples during an fMRI scanning session: a musical piece chosen by the volunteer that evokes a strong emotional response (referred to as: "self-selected emotional"), two unfamiliar music pieces (Invention #1 by J. S. Bach* and Gagaku - Japanese classical opera, referred to as "unfamiliar"), the Bach piece repeated with visual guidance (DML: Directed Music Listening) and three spoken language pieces (unfamiliar African click language, an excerpt of emotionally charged language, and an unemotional reading of a news bulletin). Functional connectivity and betweenness (BTW) maps, a measure for information flow, were created with a graph-theoretical approach. Distinct variation in functional connectivity was found for different music pieces consistently for all subjects. Largest brain areas were recruited for processing self-selected music with emotional attachment or culturally unfamiliar music. Maps of information flow correlated significantly with fMRI BOLD activation maps (p<0.05). Observed differences in BOLD activation and functional connectivity may help explain previously observed beneficial effects in stroke recovery, as increased blood flow to damaged brain areas stimulated by active engagement through music listening may have supported a state more conducive to therapy.

  17. Brain Functional Connectivity in MS: An EEG-NIRS Study

    DTIC Science & Technology

    2015-10-01

    electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling

  18. Differences in interregional brain connectivity in children with unilateral hearing loss.

    PubMed

    Jung, Matthew E; Colletta, Miranda; Coalson, Rebecca; Schlaggar, Bradley L; Lieu, Judith E C

    2017-11-01

    To identify functional network architecture differences in the brains of children with unilateral hearing loss (UHL) using resting-state functional-connectivity magnetic resonance imaging (rs-fcMRI). Prospective observational study. Children (7 to 17 years of age) with severe to profound hearing loss in one ear, along with their normal hearing (NH) siblings, were recruited and imaged using rs-fcMRI. Eleven children had right UHL; nine had left UHL; and 13 had normal hearing. Forty-one brain regions of interest culled from established brain networks such as the default mode (DMN); cingulo-opercular (CON); and frontoparietal networks (FPN); as well as regions for language, phonological, and visual processing, were analyzed using regionwise correlations and conjunction analysis to determine differences in functional connectivity between the UHL and normal hearing children. When compared to the NH group, children with UHL showed increased connectivity patterns between multiple networks, such as between the CON and visual processing centers. However, there were decreased, as well as aberrant connectivity patterns with the coactivation of the DMN and FPN, a relationship that usually is negatively correlated. Children with UHL demonstrate multiple functional connectivity differences between brain networks involved with executive function, cognition, and language comprehension that may represent adaptive as well as maladaptive changes. These findings suggest that possible interventions or habilitation, beyond amplification, might be able to affect some children's requirement for additional help at school. 3b. Laryngoscope, 127:2636-2645, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Resting state fMRI reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing.

    PubMed

    Starck, Tuomo; Nikkinen, Juha; Rahko, Jukka; Remes, Jukka; Hurtig, Tuula; Haapsamo, Helena; Jussila, Katja; Kuusikko-Gauffin, Sanna; Mattila, Marja-Leena; Jansson-Verkasalo, Eira; Pauls, David L; Ebeling, Hanna; Moilanen, Irma; Tervonen, Osmo; Kiviniemi, Vesa J

    2013-01-01

    In resting state functional magnetic resonance imaging (fMRI) studies of autism spectrum disorders (ASDs) decreased frontal-posterior functional connectivity is a persistent finding. However, the picture of the default mode network (DMN) hypoconnectivity remains incomplete. In addition, the functional connectivity analyses have been shown to be susceptible even to subtle motion. DMN hypoconnectivity in ASD has been specifically called for re-evaluation with stringent motion correction, which we aimed to conduct by so-called scrubbing. A rich set of default mode subnetworks can be obtained with high dimensional group independent component analysis (ICA) which can potentially provide more detailed view of the connectivity alterations. We compared the DMN connectivity in high-functioning adolescents with ASDs to typically developing controls using ICA dual-regression with decompositions from typical to high dimensionality. Dual-regression analysis within DMN subnetworks did not reveal alterations but connectivity between anterior and posterior DMN subnetworks was decreased in ASD. The results were very similar with and without motion scrubbing thus indicating the efficacy of the conventional motion correction methods combined with ICA dual-regression. Specific dissociation between DMN subnetworks was revealed on high ICA dimensionality, where networks centered at the medial prefrontal cortex and retrosplenial cortex showed weakened coupling in adolescents with ASDs compared to typically developing control participants. Generally the results speak for disruption in the anterior-posterior DMN interplay on the network level whereas local functional connectivity in DMN seems relatively unaltered.

  20. Intrinsic spontaneous brain activity predicts individual variability in associative memory in older adults.

    PubMed

    Zheng, Zhiwei; Li, Rui; Xiao, Fengqiu; He, Rongqiao; Zhang, Shouzi; Li, Juan

    2018-06-01

    Older adults demonstrate notable individual differences in associative memory. Here, resting-state functional magnetic resonance imaging (rsfMRI) was used to investigate whether intrinsic brain activity at rest could predict individual differences in associative memory among cognitively healthy older adults. Regional amplitude of low-frequency fluctuations (ALFF) analysis and a correlation-based resting-state functional connectivity (RSFC) approach were used to analyze data acquired from 102 cognitively normal elderly who completed the paired-associative learning test (PALT) and underwent fMRI scans. Participants were divided into two groups based on the retrospective self-reports on whether or not they utilized encoding strategies during the PALT. The behavioral results revealed better associative memory performance in the participants who reported utilizing memory strategies compared with participants who reported not doing so. The fMRI results showed that higher associative memory performance was associated with greater functional connectivity between the right superior frontal gyrus and the right posterior cerebellum lobe in the strategy group. The regional ALFF values in the right superior frontal gyrus were linked to associative memory performance in the no-strategy group. These findings suggest that the regional spontaneous fluctuations and functional connectivity during rest may subserve the individual differences in the associative memory in older adults, and that this is modulated by self-initiated memory strategy use. © 2018 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  1. FMRI connectivity analysis of acupuncture effects on an amygdala-associated brain network

    PubMed Central

    Qin, Wei; Tian, Jie; Bai, Lijun; Pan, Xiaohong; Yang, Lin; Chen, Peng; Dai, Jianping; Ai, Lin; Zhao, Baixiao; Gong, Qiyong; Wang, Wei; von Deneen, Karen M; Liu, Yijun

    2008-01-01

    Background Recently, increasing evidence has indicated that the primary acupuncture effects are mediated by the central nervous system. However, specific brain networks underpinning these effects remain unclear. Results In the present study using fMRI, we employed a within-condition interregional covariance analysis method to investigate functional connectivity of brain networks involved in acupuncture. The fMRI experiment was performed before, during and after acupuncture manipulations on healthy volunteers at an acupuncture point, which was previously implicated in a neural pathway for pain modulation. We first identified significant fMRI signal changes during acupuncture stimulation in the left amygdala, which was subsequently selected as a functional reference for connectivity analyses. Our results have demonstrated that there is a brain network associated with the amygdala during a resting condition. This network encompasses the brain structures that are implicated in both pain sensation and pain modulation. We also found that such a pain-related network could be modulated by both verum acupuncture and sham acupuncture. Furthermore, compared with a sham acupuncture, the verum acupuncture induced a higher level of correlations among the amygdala-associated network. Conclusion Our findings indicate that acupuncture may change this amygdala-specific brain network into a functional state that underlies pain perception and pain modulation. PMID:19014532

  2. On nodes and modes in resting state fMRI

    PubMed Central

    Friston, Karl J.; Kahan, Joshua; Razi, Adeel; Stephan, Klaas Enno; Sporns, Olaf

    2014-01-01

    This paper examines intrinsic brain networks in light of recent developments in the characterisation of resting state fMRI timeseries — and simulations of neuronal fluctuations based upon the connectome. Its particular focus is on patterns or modes of distributed activity that underlie functional connectivity. We first demonstrate that the eigenmodes of functional connectivity – or covariance among regions or nodes – are the same as the eigenmodes of the underlying effective connectivity, provided we limit ourselves to symmetrical connections. This symmetry constraint is motivated by appealing to proximity graphs based upon multidimensional scaling. Crucially, the principal modes of functional connectivity correspond to the dynamically unstable modes of effective connectivity that decay slowly and show long term memory. Technically, these modes have small negative Lyapunov exponents that approach zero from below. Interestingly, the superposition of modes – whose exponents are sampled from a power law distribution – produces classical 1/f (scale free) spectra. We conjecture that the emergence of dynamical instability – that underlies intrinsic brain networks – is inevitable in any system that is separated from external states by a Markov blanket. This conjecture appeals to a free energy formulation of nonequilibrium steady-state dynamics. The common theme that emerges from these theoretical considerations is that endogenous fluctuations are dominated by a small number of dynamically unstable modes. We use this as the basis of a dynamic causal model (DCM) of resting state fluctuations — as measured in terms of their complex cross spectra. In this model, effective connectivity is parameterised in terms of eigenmodes and their Lyapunov exponents — that can also be interpreted as locations in a multidimensional scaling space. Model inversion provides not only estimates of edges or connectivity but also the topography and dimensionality of the underlying scaling space. Here, we focus on conceptual issues with simulated fMRI data and provide an illustrative application using an empirical multi-region timeseries. PMID:24862075

  3. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series

    PubMed Central

    Fransson, Peter

    2016-01-01

    Abstract Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box–Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed. PMID:27784176

  4. On Stabilizing the Variance of Dynamic Functional Brain Connectivity Time Series.

    PubMed

    Thompson, William Hedley; Fransson, Peter

    2016-12-01

    Assessment of dynamic functional brain connectivity based on functional magnetic resonance imaging (fMRI) data is an increasingly popular strategy to investigate temporal dynamics of the brain's large-scale network architecture. Current practice when deriving connectivity estimates over time is to use the Fisher transformation, which aims to stabilize the variance of correlation values that fluctuate around varying true correlation values. It is, however, unclear how well the stabilization of signal variance performed by the Fisher transformation works for each connectivity time series, when the true correlation is assumed to be fluctuating. This is of importance because many subsequent analyses either assume or perform better when the time series have stable variance or adheres to an approximate Gaussian distribution. In this article, using simulations and analysis of resting-state fMRI data, we analyze the effect of applying different variance stabilization strategies on connectivity time series. We focus our investigation on the Fisher transformation, the Box-Cox (BC) transformation and an approach that combines both transformations. Our results show that, if the intention of stabilizing the variance is to use metrics on the time series, where stable variance or a Gaussian distribution is desired (e.g., clustering), the Fisher transformation is not optimal and may even skew connectivity time series away from being Gaussian. Furthermore, we show that the suboptimal performance of the Fisher transformation can be substantially improved by including an additional BC transformation after the dynamic functional connectivity time series has been Fisher transformed.

  5. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.

    PubMed

    Chao-Gan, Yan; Yu-Feng, Zang

    2010-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.

  6. The Effects of Pharmacological Opioid Blockade on Neural Measures of Drug Cue-Reactivity in Humans

    PubMed Central

    Courtney, Kelly E; Ghahremani, Dara G; Ray, Lara A

    2016-01-01

    Interactions between dopaminergic and opioidergic systems have been implicated in the reinforcing properties of drugs of abuse. The present study investigated the effects of opioid blockade, via naltrexone, on functional magnetic resonance imaging (fMRI) measures during methamphetamine cue-reactivity to elucidate the role of endogenous opioids in the neural systems underlying drug craving. To investigate this question, non-treatment seeking individuals with methamphetamine use disorder (N=23; 74% male, mean age=34.70 (SD=8.95)) were recruited for a randomized, placebo controlled, within-subject design and underwent a visual methamphetamine cue-reactivity task during two blood-oxygen-level dependent (BOLD) fMRI sessions following 3 days of naltrexone (50 mg) and matched time for placebo. fMRI analyses tested naltrexone-induced differences in BOLD activation and functional connectivity during cue processing. The results showed that naltrexone administration reduced cue-reactivity in sensorimotor regions and related to altered functional connectivity of dorsal striatum, ventral tegmental area, and precuneus with frontal, visual, sensory, and motor-related regions. Naltrexone also weakened the associations between subjective craving and precuneus functional connectivity with sensorimotor regions and strengthened the associations between subjective craving and dorsal striatum and precuneus connectivity with frontal regions. In conclusion, this study provides the first evidence that opioidergic blockade alters neural responses to drug cues in humans with methamphetamine addiction and suggests that naltrexone may be reducing drug cue salience by decreasing the involvement of sensorimotor regions and by engaging greater frontal regulation over salience attribution. PMID:27312405

  7. Gray Matter Loss and Related Functional Connectivity Alterations in A Chinese Family With Benign Adult Familial Myoclonic Epilepsy.

    PubMed

    Zeng, Ling-Li; Long, Lili; Shen, Hui; Fang, Peng; Song, Yanmin; Zhang, Linlin; Xu, Lin; Gong, Jian; Zhang, Yunci; Zhang, Yong; Xiao, Bo; Hu, Dewen

    2015-10-01

    Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI).Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions.The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients.The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the BAFME.

  8. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness.

    PubMed

    Soddu, Andrea; Gómez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athena; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin; Salmon, Eric; Tshibanda, Jean-Flory Luaba; Schiff, Nicholas D; Laureys, Steven

    2016-01-01

    The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.

  9. A Selective Review of Simulated Driving Studies: Combining Naturalistic and Hybrid Paradigms, Analysis Approaches, and Future Directions

    PubMed Central

    Calhoun, V. D.; Pearlson, G. D.

    2011-01-01

    Naturalistic paradigms such as movie watching or simulated driving that mimic closely real-world complex activities are becoming more widely used in functional magnetic resonance imaging (fMRI) studies both because of their ability to robustly stimulate brain connectivity and the availability of analysis methods which are able to capitalize on connectivity within and among intrinsic brain networks identified both during a task and in resting fMRI data. In this paper we review over a decade of work from our group and others on the use of simulated driving paradigms to study both the healthy brain as well as the effects of acute alcohol administration on functional connectivity during such paradigms. We briefly review our initial work focused on the configuration of the driving simulator and the analysis strategies. We then describe in more detail several recent studies from our group including a hybrid study examining distracted driving and compare resulting data with those from a separate visual oddball task. The analysis of these data were performed primarily using a combination of group independent component analysis (ICA) and the general linear model (GLM) and in the various studies we highlight novel findings which result from an analysis of either 1) within-network connectivity, 2) inter-network connectivity, also called functional network connectivity, or 3) the degree to which the modulation of the various intrinsic networks were associated with the alcohol administration and the task context. Despite the fact that the behavioral effects of alcohol intoxication are relatively well known, there is still much to discover on how acute alcohol exposure modulates brain function in a selective manner, associated with behavioral alterations. Through the above studies, we have learned more regarding the impact of acute alcohol intoxication on organization of the brain’s intrinsic connectivity networks during performance of a complex, real-world cognitive operation. Lessons learned from the above studies have broader applicability to designing ecologically valid, complex, functional MRI cognitive paradigms and incorporating pharmacologic challenges into such studies. Overall, the use of hybrid driving studies is a particularly promising area of neuroscience investigation. PMID:21718791

  10. Monkey cortex through fMRI glasses

    PubMed Central

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A.

    2015-01-01

    In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559

  11. Functional network centrality in obesity: A resting-state and task fMRI study.

    PubMed

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Higher-order Brain Areas Associated with Real-time Functional MRI Neurofeedback Training of the Somato-motor Cortex.

    PubMed

    Auer, Tibor; Dewiputri, Wan Ilma; Frahm, Jens; Schweizer, Renate

    2018-05-15

    Neurofeedback (NFB) allows subjects to learn self-regulation of neuronal brain activation based on information about the ongoing activation. The implementation of real-time functional magnetic resonance imaging (rt-fMRI) for NFB training now facilitates the investigation into underlying processes. Our study involved 16 control and 16 training right-handed subjects, the latter performing an extensive rt-fMRI NFB training using motor imagery. A previous analysis focused on the targeted primary somato-motor cortex (SMC). The present study extends the analysis to the supplementary motor area (SMA), the next higher brain area within the hierarchy of the motor system. We also examined transfer-related functional connectivity using a whole-volume psycho-physiological interaction (PPI) analysis to reveal brain areas associated with learning. The ROI analysis of the pre- and post-training fMRI data for motor imagery without NFB (transfer) resulted in a significant training-specific increase in the SMA. It could also be shown that the contralateral SMA exhibited a larger increase than the ipsilateral SMA in the training and the transfer runs, and that the right-hand training elicited a larger increase in the transfer runs than the left-hand training. The PPI analysis revealed a training-specific increase in transfer-related functional connectivity between the left SMA and frontal areas as well as the anterior midcingulate cortex (aMCC) for right- and left-hand trainings. Moreover, the transfer success was related with training-specific increase in functional connectivity between the left SMA and the target area SMC. Our study demonstrates that NFB training increases functional connectivity with non-targeted brain areas. These are associated with the training strategy (i.e., SMA) as well as with learning the NFB skill (i.e., aMCC and frontal areas). This detailed description of both the system to be trained and the areas involved in learning can provide valuable information for further optimization of NFB trainings. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Altered functional connectivity architecture of the brain in medication overuse headache using resting state fMRI.

    PubMed

    Chen, Zhiye; Chen, Xiaoyan; Liu, Mengqi; Dong, Zhao; Ma, Lin; Yu, Shengyuan

    2017-12-01

    Functional connectivity density (FCD) could identify the abnormal intrinsic and spontaneous activity over the whole brain, and a seed-based resting-state functional connectivity (RSFC) could further reveal the altered functional network with the identified brain regions. This may be an effective assessment strategy for headache research. This study is to investigate the RSFC architecture changes of the brain in the patients with medication overuse headache (MOH) using FCD and RSFC methods. 3D structure images and resting-state functional MRI data were obtained from 37 MOH patients, 18 episodic migraine (EM) patients and 32 normal controls (NCs). FCD was calculated to detect the brain regions with abnormal functional activity over the whole brain, and the seed-based RSFC was performed to explore the functional network changes in MOH and EM. The decreased FCD located in right parahippocampal gyrus, and the increased FCD located in left inferior parietal gyrus and right supramarginal gyrus in MOH compared with NC, and in right caudate and left insula in MOH compared with EM. RSFC revealed that decreased functional connectivity of the brain regions with decreased FCD anchored in the right dorsal-lateral prefrontal cortex, right frontopolar cortex in MOH, and in left temporopolar cortex and bilateral visual cortices in EM compared with NC, and in frontal-temporal-parietal pattern in MOH compared with EM. These results provided evidence that MOH and EM suffered from altered intrinsic functional connectivity architecture, and the current study presented a new perspective for understanding the neuromechanism of MOH and EM pathogenesis.

  14. Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and the brain.

    PubMed

    Lichtner, Gregor; Auksztulewicz, Ryszard; Kirilina, Evgeniya; Velten, Helena; Mavrodis, Dionysios; Scheel, Michael; Blankenburg, Felix; von Dincklage, Falk

    2018-05-15

    Drug-induced unconsciousness is an essential component of general anesthesia, commonly attributed to attenuation of higher-order processing of external stimuli and a resulting loss of information integration capabilities of the brain. In this study, we investigated how the hypnotic drug propofol at doses comparable to those in clinical practice influences the processing of somatosensory stimuli in the spinal cord and in primary and higher-order cortices. Using nociceptive reflexes, somatosensory evoked potentials and functional magnet resonance imaging (fMRI), we found that propofol abolishes the processing of innocuous and moderate noxious stimuli at low to medium concentration levels, but that intense noxious stimuli evoked spinal and cerebral responses even during deep propofol anesthesia that caused profound electroencephalogram (EEG) burst suppression. While nociceptive reflexes and somatosensory potentials were affected only in a minor way by further increasing doses of propofol after the loss of consciousness, fMRI showed that increasing propofol concentration abolished processing of intense noxious stimuli in the insula and secondary somatosensory cortex and vastly increased processing in the frontal cortex. As the fMRI functional connectivity showed congruent changes with increasing doses of propofol - namely the temporal brain areas decreasing their connectivity with the bilateral pre-/postcentral gyri and the supplementary motor area, while connectivity of the latter with frontal areas is increased - we conclude that the changes in processing of noxious stimuli during propofol anesthesia might be related to changes in functional connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Robust prediction of individual creative ability from brain functional connectivity.

    PubMed

    Beaty, Roger E; Kenett, Yoed N; Christensen, Alexander P; Rosenberg, Monica D; Benedek, Mathias; Chen, Qunlin; Fink, Andreas; Qiu, Jiang; Kwapil, Thomas R; Kane, Michael J; Silvia, Paul J

    2018-01-30

    People's ability to think creatively is a primary means of technological and cultural progress, yet the neural architecture of the highly creative brain remains largely undefined. Here, we employed a recently developed method in functional brain imaging analysis-connectome-based predictive modeling-to identify a brain network associated with high-creative ability, using functional magnetic resonance imaging (fMRI) data acquired from 163 participants engaged in a classic divergent thinking task. At the behavioral level, we found a strong correlation between creative thinking ability and self-reported creative behavior and accomplishment in the arts and sciences ( r = 0.54). At the neural level, we found a pattern of functional brain connectivity related to high-creative thinking ability consisting of frontal and parietal regions within default, salience, and executive brain systems. In a leave-one-out cross-validation analysis, we show that this neural model can reliably predict the creative quality of ideas generated by novel participants within the sample. Furthermore, in a series of external validation analyses using data from two independent task fMRI samples and a large task-free resting-state fMRI sample, we demonstrate robust prediction of individual creative thinking ability from the same pattern of brain connectivity. The findings thus reveal a whole-brain network associated with high-creative ability comprised of cortical hubs within default, salience, and executive systems-intrinsic functional networks that tend to work in opposition-suggesting that highly creative people are characterized by the ability to simultaneously engage these large-scale brain networks.

  16. A new class of methods for functional connectivity estimation

    NASA Astrophysics Data System (ADS)

    Lin, Wutu

    Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.

  17. Brain Functional Connectivity Is Modified by a Hypocaloric Mediterranean Diet and Physical Activity in Obese Women.

    PubMed

    García-Casares, Natalia; Bernal-López, María R; Roé-Vellvé, Nuria; Gutiérrez-Bedmar, Mario; Fernández-García, Jose C; García-Arnés, Juan A; Ramos-Rodriguez, José R; Alfaro, Francisco; Santamaria-Fernández, Sonia; Steward, Trevor; Jiménez-Murcia, Susana; Garcia-Garcia, Isabel; Valdivielso, Pedro; Fernández-Aranda, Fernando; Tinahones, Francisco J; Gómez-Huelgas, Ricardo

    2017-07-01

    Functional magnetic resonance imaging (fMRI) in the resting state has shown altered brain connectivity networks in obese individuals. However, the impact of a Mediterranean diet on cerebral connectivity in obese patients when losing weight has not been previously explored. The aim of this study was to examine the connectivity between brain structures before and six months after following a hypocaloric Mediterranean diet and physical activity program in a group of sixteen obese women aged 46.31 ± 4.07 years. Before and after the intervention program, the body mass index (BMI) (kg/m²) was 38.15 ± 4.7 vs. 34.18 ± 4.5 ( p < 0.02), and body weight (kg) was 98.5 ± 13.1 vs. 88.28 ± 12.2 ( p < 0.03). All subjects underwent a pre- and post-intervention fMRI under fasting conditions. Functional connectivity was assessed using seed-based correlations. After the intervention, we found decreased connectivity between the left inferior parietal cortex and the right temporal cortex ( p < 0.001), left posterior cingulate ( p < 0.001), and right posterior cingulate ( p < 0.03); decreased connectivity between the left superior frontal gyrus and the right temporal cortex ( p < 0.01); decreased connectivity between the prefrontal cortex and the somatosensory cortex ( p < 0.025); and decreased connectivity between the left and right posterior cingulate ( p < 0.04). Results were considered significant at a voxel-wise threshold of p ≤ 0.05, and a cluster-level family-wise error correction for multiple comparisons of p ≤ 0.05. In conclusion, functional connectivity between brain structures involved in the pathophysiology of obesity (the inferior parietal lobe, posterior cingulate, temporo-insular cortex, prefrontal cortex) may be modified by a weight loss program including a Mediterranean diet and physical exercise.

  18. Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females

    PubMed Central

    Swinnen, Stephan P.; Wenderoth, Nicole

    2016-01-01

    Autism spectrum disorders (ASD) are far more prevalent in males than in females. Little is known however about the differential neural expression of ASD in males and females. We used a resting-state fMRI-dataset comprising 42 males/42 females with ASD and 75 male/75 female typical-controls to examine whether autism-related alterations in intrinsic functional connectivity are similar or different in males and females, and particularly whether alterations reflect ‘neural masculinization’, as predicted by the Extreme Male Brain theory. Males and females showed a differential neural expression of ASD, characterized by highly consistent patterns of hypo-connectivity in males with ASD (compared to typical males), and hyper-connectivity in females with ASD (compared to typical females). Interestingly, patterns of hyper-connectivity in females with ASD reflected a shift towards the (high) connectivity levels seen in typical males (neural masculinization), whereas patterns of hypo-connectivity observed in males with ASD reflected a shift towards the (low) typical feminine connectivity patterns (neural feminization). Our data support the notion that ASD is a disorder of sexual differentiation rather than a disorder characterized by masculinization in both genders. Future work is needed to identify underlying factors such as sex hormonal alterations that drive these sex-specific neural expressions of ASD. PMID:26989195

  19. Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics

    PubMed Central

    Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella

    2015-01-01

    Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468

  20. Auditory and visual connectivity gradients in frontoparietal cortex

    PubMed Central

    Hellyer, Peter J.; Wise, Richard J. S.; Leech, Robert

    2016-01-01

    Abstract A frontoparietal network of brain regions is often implicated in both auditory and visual information processing. Although it is possible that the same set of multimodal regions subserves both modalities, there is increasing evidence that there is a differentiation of sensory function within frontoparietal cortex. Magnetic resonance imaging (MRI) in humans was used to investigate whether different frontoparietal regions showed intrinsic biases in connectivity with visual or auditory modalities. Structural connectivity was assessed with diffusion tractography and functional connectivity was tested using functional MRI. A dorsal–ventral gradient of function was observed, where connectivity with visual cortex dominates dorsal frontal and parietal connections, while connectivity with auditory cortex dominates ventral frontal and parietal regions. A gradient was also observed along the posterior–anterior axis, although in opposite directions in prefrontal and parietal cortices. The results suggest that the location of neural activity within frontoparietal cortex may be influenced by these intrinsic biases toward visual and auditory processing. Thus, the location of activity in frontoparietal cortex may be influenced as much by stimulus modality as the cognitive demands of a task. It was concluded that stimulus modality was spatially encoded throughout frontal and parietal cortices, and was speculated that such an arrangement allows for top–down modulation of modality‐specific information to occur within higher‐order cortex. This could provide a potentially faster and more efficient pathway by which top–down selection between sensory modalities could occur, by constraining modulations to within frontal and parietal regions, rather than long‐range connections to sensory cortices. Hum Brain Mapp 38:255–270, 2017. © 2016 Wiley Periodicals, Inc. PMID:27571304

Top