Sample records for functional connectomes project

  1. Functional connectomics from resting-state fMRI

    PubMed Central

    Smith, Stephen M; Vidaurre, Diego; Beckmann, Christian F; Glasser, Matthew F; Jenkinson, Mark; Miller, Karla L; Nichols, Thomas E; Robinson, Emma; Salimi-Khorshidi, Gholamreza; Woolrich, Mark W; Barch, Deanna M; Uğurbil, Kamil; Van Essen, David C

    2014-01-01

    Spontaneous fluctuations in activity in different parts of the brain can be used to study functional brain networks. We review the use of resting-state functional MRI for the purpose of mapping the macroscopic functional connectome. After describing MRI acquisition and image processing methods commonly used to generate data in a form amenable to connectomics network analysis, we discuss different approaches for estimating network structure from that data. Finally, we describe new possibilities resulting from the high-quality rfMRI data being generated by the Human Connectome Project, and highlight some upcoming challenges in functional connectomics. PMID:24238796

  2. Resting-State Functional Connectivity in the Human Connectome Project: Current Status and Relevance to Understanding Psychopathology.

    PubMed

    Barch, Deanna M

    A key tenet of modern psychiatry is that psychiatric disorders arise from abnormalities in brain circuits that support human behavior. Our ability to examine hypotheses around circuit-level abnormalities in psychiatric disorders has been made possible by advances in human neuroimaging technologies. These advances have provided the basis for recent efforts to develop a more complex understanding of the function of brain circuits in health and of their relationship to behavior-providing, in turn, a foundation for our understanding of how disruptions in such circuits contribute to the development of psychiatric disorders. This review focuses on the use of resting-state functional connectivity MRI to assess brain circuits, on the advances generated by the Human Connectome Project, and on how these advances potentially contribute to understanding neural circuit dysfunction in psychopathology. The review gives particular attention to the methods developed by the Human Connectome Project that may be especially relevant to studies of psychopathology; it outlines some of the key findings about what constitutes a brain region; and it highlights new information about the nature and stability of brain circuits. Some of the Human Connectome Project's new findings particularly relevant to psychopathology-about neural circuits and their relationships to behavior-are also presented. The review ends by discussing the extension of Human Connectome Project methods across the lifespan and into manifest illness. Potential treatment implications are also considered.

  3. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.

    PubMed

    Makropoulos, Antonios; Robinson, Emma C; Schuh, Andreas; Wright, Robert; Fitzgibbon, Sean; Bozek, Jelena; Counsell, Serena J; Steinweg, Johannes; Vecchiato, Katy; Passerat-Palmbach, Jonathan; Lenz, Gregor; Mortari, Filippo; Tenev, Tencho; Duff, Eugene P; Bastiani, Matteo; Cordero-Grande, Lucilio; Hughes, Emer; Tusor, Nora; Tournier, Jacques-Donald; Hutter, Jana; Price, Anthony N; Teixeira, Rui Pedro A G; Murgasova, Maria; Victor, Suresh; Kelly, Christopher; Rutherford, Mary A; Smith, Stephen M; Edwards, A David; Hajnal, Joseph V; Jenkinson, Mark; Rueckert, Daniel

    2018-06-01

    The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Clinical applications of the functional connectome

    PubMed Central

    Castellanos, F. Xavier; Di Martino, Adriana; Craddock, R. Cameron; Mehta, Ashesh D.; Milham, Michael P.

    2013-01-01

    Central to the development of clinical applications of functional connectomics for neurology and psychiatry is the discovery and validation of biomarkers. Resting state fMRI (R-fMRI) is emerging as a mainstream approach for imaging-based biomarker identification, detecting variations in the functional connectome that can be attributed to clinical variables (e.g., diagnostic status). Despite growing enthusiasm, many challenges remain. Here, we assess evidence of the readiness of R-fMRI based functional connectomics to lead to clinically meaningful biomarker identification through the lens of the criteria used to evaluate clinical tests (i.e., validity, reliability, sensitivity, specificity, and applicability). We focus on current R-fMRI-based prediction efforts, and survey R-fMRI used for neurosurgical planning. We identify gaps and needs for R-fMRI-based biomarker identification, highlighting the potential of emerging conceptual, analytical and cultural innovations (e.g., the Research Domain Criteria Project (RDoC), open science initiatives, and Big Data) to address them. Additionally, we note the need to expand future efforts beyond identification of biomarkers for disease status alone to include clinical variables related to risk, expected treatment response and prognosis. PMID:23631991

  5. MGH-USC Human Connectome Project datasets with ultra-high b-value diffusion MRI.

    PubMed

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R A; Van Horn, John D; Drews, Michelle K; Somerville, Leah H; Sheridan, Margaret A; Santillana, Rosario M; Snyder, Jenna; Hedden, Trey; Shaw, Emily E; Hollinshead, Marisa O; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Buckner, Randy L; Wedeen, Van J; Wald, Lawrence L; Toga, Arthur W; Rosen, Bruce R

    2016-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing a magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnectomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Thresholding functional connectomes by means of mixture modeling.

    PubMed

    Bielczyk, Natalia Z; Walocha, Fabian; Ebel, Patrick W; Haak, Koen V; Llera, Alberto; Buitelaar, Jan K; Glennon, Jeffrey C; Beckmann, Christian F

    2018-05-01

    Functional connectivity has been shown to be a very promising tool for studying the large-scale functional architecture of the human brain. In network research in fMRI, functional connectivity is considered as a set of pair-wise interactions between the nodes of the network. These interactions are typically operationalized through the full or partial correlation between all pairs of regional time series. Estimating the structure of the latent underlying functional connectome from the set of pair-wise partial correlations remains an open research problem though. Typically, this thresholding problem is approached by proportional thresholding, or by means of parametric or non-parametric permutation testing across a cohort of subjects at each possible connection. As an alternative, we propose a data-driven thresholding approach for network matrices on the basis of mixture modeling. This approach allows for creating subject-specific sparse connectomes by modeling the full set of partial correlations as a mixture of low correlation values associated with weak or unreliable edges in the connectome and a sparse set of reliable connections. Consequently, we propose to use alternative thresholding strategy based on the model fit using pseudo-False Discovery Rates derived on the basis of the empirical null estimated as part of the mixture distribution. We evaluate the method on synthetic benchmark fMRI datasets where the underlying network structure is known, and demonstrate that it gives improved performance with respect to the alternative methods for thresholding connectomes, given the canonical thresholding levels. We also demonstrate that mixture modeling gives highly reproducible results when applied to the functional connectomes of the visual system derived from the n-back Working Memory task in the Human Connectome Project. The sparse connectomes obtained from mixture modeling are further discussed in the light of the previous knowledge of the functional architecture of the visual system in humans. We also demonstrate that with use of our method, we are able to extract similar information on the group level as can be achieved with permutation testing even though these two methods are not equivalent. We demonstrate that with both of these methods, we obtain functional decoupling between the two hemispheres in the higher order areas of the visual cortex during visual stimulation as compared to the resting state, which is in line with previous studies suggesting lateralization in the visual processing. However, as opposed to permutation testing, our approach does not require inference at the cohort level and can be used for creating sparse connectomes at the level of a single subject. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  7. MGH-USC Human Connectome Project Datasets with Ultra-High b-Value Diffusion MRI

    PubMed Central

    Fan, Qiuyun; Witzel, Thomas; Nummenmaa, Aapo; Van Dijk, Koene R.A.; Van Horn, John D.; Drews, Michelle K.; Somerville, Leah H.; Sheridan, Margaret A.; Santillana, Rosario M.; Snyder, Jenna; Hedden, Trey; Shaw, Emily E.; Hollinshead, Marisa O.; Renvall, Ville; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R.; Tisdall, Dylan; Buckner, Randy L.; Wedeen, Van J.; Wald, Lawrence L.; Toga, Arthur W.; Rosen, Bruce R.

    2015-01-01

    The MGH-USC CONNECTOM MRI scanner housed at the Massachusetts General Hospital (MGH) is a major hardware innovation of the Human Connectome Project (HCP). The 3T CONNECTOM scanner is capable of producing magnetic field gradient of up to 300 mT/m strength for in vivo human brain imaging, which greatly shortens the time spent on diffusion encoding, and decreases the signal loss due to T2 decay. To demonstrate the capability of the novel gradient system, data of healthy adult participants were acquired for this MGH-USC Adult Diffusion Dataset (N=35), minimally preprocessed, and shared through the Laboratory of Neuro Imaging Image Data Archive (LONI IDA) and the WU-Minn Connectome Database (ConnecomeDB). Another purpose of sharing the data is to facilitate methodological studies of diffusion MRI (dMRI) analyses utilizing high diffusion contrast, which perhaps is not easily feasible with standard MR gradient system. In addition, acquisition of the MGH-Harvard-USC Lifespan Dataset is currently underway to include 120 healthy participants ranging from 8 to 90 years old, which will also be shared through LONI IDA and ConnectomeDB. Here we describe the efforts of the MGH-USC HCP consortium in acquiring and sharing the ultra-high b-value diffusion MRI data and provide a report on data preprocessing and access. We conclude with a demonstration of the example data, along with results of standard diffusion analyses, including q-ball Orientation Distribution Function (ODF) reconstruction and tractography. PMID:26364861

  8. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.

    PubMed

    Howell, Brittany R; Styner, Martin A; Gao, Wei; Yap, Pew-Thian; Wang, Li; Baluyot, Kristine; Yacoub, Essa; Chen, Geng; Potts, Taylor; Salzwedel, Andrew; Li, Gang; Gilmore, John H; Piven, Joseph; Smith, J Keith; Shen, Dinggang; Ugurbil, Kamil; Zhu, Hongtu; Lin, Weili; Elison, Jed T

    2018-03-22

    The human brain undergoes extensive and dynamic growth during the first years of life. The UNC/UMN Baby Connectome Project (BCP), one of the Lifespan Connectome Projects funded by NIH, is an ongoing study jointly conducted by investigators at the University of North Carolina at Chapel Hill and the University of Minnesota. The primary objective of the BCP is to characterize brain and behavioral development in typically developing infants across the first 5 years of life. The ultimate goals are to chart emerging patterns of structural and functional connectivity during this period, map brain-behavior associations, and establish a foundation from which to further explore trajectories of health and disease. To accomplish these goals, we are combining state of the art MRI acquisition and analysis techniques, including high-resolution structural MRI (T1-and T2-weighted images), diffusion imaging (dMRI), and resting state functional connectivity MRI (rfMRI). While the overall design of the BCP largely is built on the protocol developed by the Lifespan Human Connectome Project (HCP), given the unique age range of the BCP cohort, additional optimization of imaging parameters and consideration of an age appropriate battery of behavioral assessments were needed. Here we provide the overall study protocol, including approaches for subject recruitment, strategies for imaging typically developing children 0-5 years of age without sedation, imaging protocol and optimization, a description of the battery of behavioral assessments, and QA/QC procedures. Combining HCP inspired neuroimaging data with well-established behavioral assessments during this time period will yield an invaluable resource for the scientific community. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The connectome of the basal ganglia.

    PubMed

    Schmitt, Oliver; Eipert, Peter; Kettlitz, Richard; Leßmann, Felix; Wree, Andreas

    2016-03-01

    The basal ganglia of the laboratory rat consist of a few core regions that are specifically interconnected by efferents and afferents of the central nervous system. In nearly 800 reports of tract-tracing investigations the connectivity of the basal ganglia is documented. The readout of connectivity data and the collation of all the connections of these reports in a database allows to generate a connectome. The collation, curation and analysis of such a huge amount of connectivity data is a great challenge and has not been performed before (Bohland et al. PloS One 4:e7200, 2009) in large connectomics projects based on meta-analysis of tract-tracing studies. Here, the basal ganglia connectome of the rat has been generated and analyzed using the consistent cross-platform and generic framework neuroVIISAS. Several advances of this connectome meta-study have been made: the collation of laterality data, the network-analysis of connectivity strengths and the assignment of regions to a hierarchically organized terminology. The basal ganglia connectome offers differences in contralateral connectivity of motoric regions in contrast to other regions. A modularity analysis of the weighted and directed connectome produced a specific grouping of regions. This result indicates a correlation of structural and functional subsystems. As a new finding, significant reciprocal connections of specific network motifs in this connectome were detected. All three principal basal ganglia pathways (direct, indirect, hyperdirect) could be determined in the connectome. By identifying these pathways it was found that there exist many further equivalent pathways possessing the same length and mean connectivity weight as the principal pathways. Based on the connectome data it is unknown why an excitation pattern may prefer principal rather than other equivalent pathways. In addition to these new findings the local graph-theoretical features of regions of the connectome have been determined. By performing graph theoretical analyses it turns out that beside the caudate putamen further regions like the mesencephalic reticular formation, amygdaloid complex and ventral tegmental area are important nodes in the basal ganglia connectome. The connectome data of this meta-study of tract-tracing reports of the basal ganglia are available for further network studies, the integration into neocortical connectomes and further extensive investigations of the basal ganglia dynamics in population simulations.

  10. Connectomic constraints on computation in feedforward networks of spiking neurons.

    PubMed

    Ramaswamy, Venkatakrishnan; Banerjee, Arunava

    2014-10-01

    Several efforts are currently underway to decipher the connectome or parts thereof in a variety of organisms. Ascertaining the detailed physiological properties of all the neurons in these connectomes, however, is out of the scope of such projects. It is therefore unclear to what extent knowledge of the connectome alone will advance a mechanistic understanding of computation occurring in these neural circuits, especially when the high-level function of the said circuit is unknown. We consider, here, the question of how the wiring diagram of neurons imposes constraints on what neural circuits can compute, when we cannot assume detailed information on the physiological response properties of the neurons. We call such constraints-that arise by virtue of the connectome-connectomic constraints on computation. For feedforward networks equipped with neurons that obey a deterministic spiking neuron model which satisfies a small number of properties, we ask if just by knowing the architecture of a network, we can rule out computations that it could be doing, no matter what response properties each of its neurons may have. We show results of this form, for certain classes of network architectures. On the other hand, we also prove that with the limited set of properties assumed for our model neurons, there are fundamental limits to the constraints imposed by network structure. Thus, our theory suggests that while connectomic constraints might restrict the computational ability of certain classes of network architectures, we may require more elaborate information on the properties of neurons in the network, before we can discern such results for other classes of networks.

  11. 'The genetic analysis of functional connectomics in Drosophila'

    PubMed Central

    Meinertzhagen, Ian A.; Lee, Chi-Hon

    2014-01-01

    Fly and vertebrate nervous systems share many organization characteristics, such as layers, columns and glomeruli, and utilize similar synaptic components, such ion channels and receptors. Both also exhibit similar network features. Recent technological advances, especially in electron microscopy, now allow us to determine synaptic circuits and identify pathways cell-by-cell, as part of the fly’s connectome. Genetic tools provide the means to identify synaptic components, as well as to record and manipulate neuronal activity, adding function to the connectome. This review discusses technical advances in these emerging areas of functional connectomics, offering prognoses in each and identifying the challenges in bridging structural connectomics to molecular biology and synaptic physiology, thereby determining fundamental computation mechanisms that underlie behaviour. PMID:23084874

  12. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity.

    PubMed

    Finn, Emily S; Shen, Xilin; Scheinost, Dustin; Rosenberg, Monica D; Huang, Jessica; Chun, Marvin M; Papademetris, Xenophon; Constable, R Todd

    2015-11-01

    Functional magnetic resonance imaging (fMRI) studies typically collapse data from many subjects, but brain functional organization varies between individuals. Here we establish that this individual variability is both robust and reliable, using data from the Human Connectome Project to demonstrate that functional connectivity profiles act as a 'fingerprint' that can accurately identify subjects from a large group. Identification was successful across scan sessions and even between task and rest conditions, indicating that an individual's connectivity profile is intrinsic, and can be used to distinguish that individual regardless of how the brain is engaged during imaging. Characteristic connectivity patterns were distributed throughout the brain, but the frontoparietal network emerged as most distinctive. Furthermore, we show that connectivity profiles predict levels of fluid intelligence: the same networks that were most discriminating of individuals were also most predictive of cognitive behavior. Results indicate the potential to draw inferences about single subjects on the basis of functional connectivity fMRI.

  13. Graph theory analysis of complex brain networks: new concepts in brain mapping applied to neurosurgery.

    PubMed

    Hart, Michael G; Ypma, Rolf J F; Romero-Garcia, Rafael; Price, Stephen J; Suckling, John

    2016-06-01

    Neuroanatomy has entered a new era, culminating in the search for the connectome, otherwise known as the brain's wiring diagram. While this approach has led to landmark discoveries in neuroscience, potential neurosurgical applications and collaborations have been lagging. In this article, the authors describe the ideas and concepts behind the connectome and its analysis with graph theory. Following this they then describe how to form a connectome using resting state functional MRI data as an example. Next they highlight selected insights into healthy brain function that have been derived from connectome analysis and illustrate how studies into normal development, cognitive function, and the effects of synthetic lesioning can be relevant to neurosurgery. Finally, they provide a précis of early applications of the connectome and related techniques to traumatic brain injury, functional neurosurgery, and neurooncology.

  14. Mapping population-based structural connectomes.

    PubMed

    Zhang, Zhengwu; Descoteaux, Maxime; Zhang, Jingwen; Girard, Gabriel; Chamberland, Maxime; Dunson, David; Srivastava, Anuj; Zhu, Hongtu

    2018-05-15

    Advances in understanding the structural connectomes of human brain require improved approaches for the construction, comparison and integration of high-dimensional whole-brain tractography data from a large number of individuals. This article develops a population-based structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and across different subjects by registering different subjects' brains based on coarse cortical parcellations, compressing the bundles of each connection, and extracting novel connection weights. A robust tractography algorithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The developed PSC framework can be used to reproducibly extract binary networks, weighted networks and streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its application in characterizing normal variations and heritability of structural connectomes in healthy subjects. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The connectomics challenge

    PubMed Central

    Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    Summary One of the most fascinating challenges in neuroscience is the reconstruction of the connectivity map of the brain. Recent years have seen a rapid expansion in the field of connectomics, whose aim is to trace this map and understand its relationship with neural computation. Many different approaches, ranging from electron and optical microscopy to magnetic resonance imaging, have been proposed to address the connectomics challenge on various spatial scales and in different species. Here, we review the main technological advances in the microscopy techniques applied to connectomics, highlighting the potential and limitations of the different methods. Finally, we briefly discuss the role of connectomics in the Human Brain Project, the Future and Emerging Technologies (FET) Flagship recently approved by the European Commission. PMID:24139653

  16. The braingraph.org database of high resolution structural connectomes and the brain graph tools.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2017-10-01

    Based on the data of the NIH-funded Human Connectome Project, we have computed structural connectomes of 426 human subjects in five different resolutions of 83, 129, 234, 463 and 1015 nodes and several edge weights. The graphs are given in anatomically annotated GraphML format that facilitates better further processing and visualization. For 96 subjects, the anatomically classified sub-graphs can also be accessed, formed from the vertices corresponding to distinct lobes or even smaller regions of interests of the brain. For example, one can easily download and study the connectomes, restricted to the frontal lobes or just to the left precuneus of 96 subjects using the data. Partially directed connectomes of 423 subjects are also available for download. We also present a GitHub-deposited set of tools, called the Brain Graph Tools, for several processing tasks of the connectomes on the site http://braingraph.org.

  17. Human brain networks function in connectome-specific harmonic waves.

    PubMed

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  18. Functional connectomics from a "big data" perspective.

    PubMed

    Xia, Mingrui; He, Yong

    2017-10-15

    In the last decade, explosive growth regarding functional connectome studies has been observed. Accumulating knowledge has significantly contributed to our understanding of the brain's functional network architectures in health and disease. With the development of innovative neuroimaging techniques, the establishment of large brain datasets and the increasing accumulation of published findings, functional connectomic research has begun to move into the era of "big data", which generates unprecedented opportunities for discovery in brain science and simultaneously encounters various challenging issues, such as data acquisition, management and analyses. Big data on the functional connectome exhibits several critical features: high spatial and/or temporal precision, large sample sizes, long-term recording of brain activity, multidimensional biological variables (e.g., imaging, genetic, demographic, cognitive and clinic) and/or vast quantities of existing findings. We review studies regarding functional connectomics from a big data perspective, with a focus on recent methodological advances in state-of-the-art image acquisition (e.g., multiband imaging), analysis approaches and statistical strategies (e.g., graph theoretical analysis, dynamic network analysis, independent component analysis, multivariate pattern analysis and machine learning), as well as reliability and reproducibility validations. We highlight the novel findings in the application of functional connectomic big data to the exploration of the biological mechanisms of cognitive functions, normal development and aging and of neurological and psychiatric disorders. We advocate the urgent need to expand efforts directed at the methodological challenges and discuss the direction of applications in this field. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Stochastic Geometric Network Models for Groups of Functional and Structural Connectomes

    PubMed Central

    Friedman, Eric J.; Landsberg, Adam S.; Owen, Julia P.; Li, Yi-Ou; Mukherjee, Pratik

    2014-01-01

    Structural and functional connectomes are emerging as important instruments in the study of normal brain function and in the development of new biomarkers for a variety of brain disorders. In contrast to single-network studies that presently dominate the (non-connectome) network literature, connectome analyses typically examine groups of empirical networks and then compare these against standard (stochastic) network models. Current practice in connectome studies is to employ stochastic network models derived from social science and engineering contexts as the basis for the comparison. However, these are not necessarily best suited for the analysis of connectomes, which often contain groups of very closely related networks, such as occurs with a set of controls or a set of patients with a specific disorder. This paper studies important extensions of standard stochastic models that make them better adapted for analysis of connectomes, and develops new statistical fitting methodologies that account for inter-subject variations. The extensions explicitly incorporate geometric information about a network based on distances and inter/intra hemispherical asymmetries (to supplement ordinary degree-distribution information), and utilize a stochastic choice of networks' density levels (for fixed threshold networks) to better capture the variance in average connectivity among subjects. The new statistical tools introduced here allow one to compare groups of networks by matching both their average characteristics and the variations among them. A notable finding is that connectomes have high “smallworldness” beyond that arising from geometric and degree considerations alone. PMID:25067815

  20. The Human Connectome Project: A data acquisition perspective

    PubMed Central

    Van Essen, D.C.; Ugurbil, K.; Auerbach, E.; Barch, D.; Behrens, T.E.J.; Bucholz, R.; Chang, A.; Chen, L.; Corbetta, M.; Curtiss, S.W.; Della Penna, S.; Feinberg, D.; Glasser, M.F.; Harel, N.; Heath, A.C.; Larson-Prior, L.; Marcus, D.; Michalareas, G.; Moeller, S.; Oostenveld, R.; Petersen, S.E.; Prior, F.; Schlaggar, B.L.; Smith, S.M.; Snyder, A.Z.; Xu, J.; Yacoub, E.

    2012-01-01

    The Human Connectome Project (HCP) is an ambitious 5-year effort to characterize brain connectivity and function and their variability in healthy adults. This review summarizes the data acquisition plans being implemented by a consortium of HCP investigators who will study a population of 1200 subjects (twins and their non-twin siblings) using multiple imaging modalities along with extensive behavioral and genetic data. The imaging modalities will include diffusion imaging (dMRI), resting-state fMRI (R-fMRI), task-evoked fMRI (T-fMRI), T1- and T2-weighted MRI for structural and myelin mapping, plus combined magnetoencephalography and electroencephalography (MEG/EEG). Given the importance of obtaining the best possible data quality, we discuss the efforts underway during the first two years of the grant (Phase I) to refine and optimize many aspects of HCP data acquisition, including a new 7T scanner, a customized 3T scanner, and improved MR pulse sequences. PMID:22366334

  1. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency

    PubMed Central

    Chen, Yuhan; Wang, Shengjun

    2017-01-01

    The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases. PMID:28961235

  2. Features of spatial and functional segregation and integration of the primate connectome revealed by trade-off between wiring cost and efficiency.

    PubMed

    Chen, Yuhan; Wang, Shengjun; Hilgetag, Claus C; Zhou, Changsong

    2017-09-01

    The primate connectome, possessing a characteristic global topology and specific regional connectivity profiles, is well organized to support both segregated and integrated brain function. However, the organization mechanisms shaping the characteristic connectivity and its relationship to functional requirements remain unclear. The primate brain connectome is shaped by metabolic economy as well as functional values. Here, we explored the influence of two competing factors and additional advanced functional requirements on the primate connectome employing an optimal trade-off model between neural wiring cost and the representative functional requirement of processing efficiency. Moreover, we compared this model with a generative model combining spatial distance and topological similarity, with the objective of statistically reproducing multiple topological features of the network. The primate connectome indeed displays a cost-efficiency trade-off and that up to 67% of the connections were recovered by optimal combination of the two basic factors of wiring economy and processing efficiency, clearly higher than the proportion of connections (56%) explained by the generative model. While not explicitly aimed for, the trade-off model captured several key topological features of the real connectome as the generative model, yet better explained the connectivity of most regions. The majority of the remaining 33% of connections unexplained by the best trade-off model were long-distance links, which are concentrated on few cortical areas, termed long-distance connectors (LDCs). The LDCs are mainly non-hubs, but form a densely connected group overlapping on spatially segregated functional modalities. LDCs are crucial for both functional segregation and integration across different scales. These organization features revealed by the optimization analysis provide evidence that the demands of advanced functional segregation and integration among spatially distributed regions may play a significant role in shaping the cortical connectome, in addition to the basic cost-efficiency trade-off. These findings also shed light on inherent vulnerabilities of brain networks in diseases.

  3. Memory-Efficient Analysis of Dense Functional Connectomes.

    PubMed

    Loewe, Kristian; Donohue, Sarah E; Schoenfeld, Mircea A; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download.

  4. Memory-Efficient Analysis of Dense Functional Connectomes

    PubMed Central

    Loewe, Kristian; Donohue, Sarah E.; Schoenfeld, Mircea A.; Kruse, Rudolf; Borgelt, Christian

    2016-01-01

    The functioning of the human brain relies on the interplay and integration of numerous individual units within a complex network. To identify network configurations characteristic of specific cognitive tasks or mental illnesses, functional connectomes can be constructed based on the assessment of synchronous fMRI activity at separate brain sites, and then analyzed using graph-theoretical concepts. In most previous studies, relatively coarse parcellations of the brain were used to define regions as graphical nodes. Such parcellated connectomes are highly dependent on parcellation quality because regional and functional boundaries need to be relatively consistent for the results to be interpretable. In contrast, dense connectomes are not subject to this limitation, since the parcellation inherent to the data is used to define graphical nodes, also allowing for a more detailed spatial mapping of connectivity patterns. However, dense connectomes are associated with considerable computational demands in terms of both time and memory requirements. The memory required to explicitly store dense connectomes in main memory can render their analysis infeasible, especially when considering high-resolution data or analyses across multiple subjects or conditions. Here, we present an object-based matrix representation that achieves a very low memory footprint by computing matrix elements on demand instead of explicitly storing them. In doing so, memory required for a dense connectome is reduced to the amount needed to store the underlying time series data. Based on theoretical considerations and benchmarks, different matrix object implementations and additional programs (based on available Matlab functions and Matlab-based third-party software) are compared with regard to their computational efficiency. The matrix implementation based on on-demand computations has very low memory requirements, thus enabling analyses that would be otherwise infeasible to conduct due to insufficient memory. An open source software package containing the created programs is available for download. PMID:27965565

  5. BrainNet Viewer: a network visualization tool for human brain connectomics.

    PubMed

    Xia, Mingrui; Wang, Jinhui; He, Yong

    2013-01-01

    The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

  6. Toward a standardized structural-functional group connectome in MNI space.

    PubMed

    Horn, Andreas; Blankenburg, Felix

    2016-01-01

    The analysis of the structural architecture of the human brain in terms of connectivity between its subregions has provided profound insights into its underlying functional organization and has coined the concept of the "connectome", a structural description of the elements forming the human brain and the connections among them. Here, as a proof of concept, we introduce a novel group connectome in standard space based on a large sample of 169 subjects from the Enhanced Nathan Kline Institute-Rockland Sample (eNKI-RS). Whole brain structural connectomes of each subject were estimated with a global tracking approach, and the resulting fiber tracts were warped into standard stereotactic (MNI) space using DARTEL. Employing this group connectome, the results of published tracking studies (i.e., the JHU white matter and Oxford thalamic connectivity atlas) could be largely reproduced directly within MNI space. In a second analysis, a study that examined structural connectivity between regions of a functional network, namely the default mode network, was reproduced. Voxel-wise structural centrality was then calculated and compared to others' findings. Furthermore, including additional resting-state fMRI data from the same subjects, structural and functional connectivity matrices between approximately forty thousand nodes of the brain were calculated. This was done to estimate structure-function agreement indices of voxel-wise whole brain connectivity. Taken together, the combination of a novel whole brain fiber tracking approach and an advanced normalization method led to a group connectome that allowed (at least heuristically) performing fiber tracking directly within MNI space. Such an approach may be used for various purposes like the analysis of structural connectivity and modeling experiments that aim at studying the structure-function relationship of the human connectome. Moreover, it may even represent a first step toward a standard DTI template of the human brain in stereotactic space. The standardized group connectome might thus be a promising new resource to better understand and further analyze the anatomical architecture of the human brain on a population level. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Local connectome phenotypes predict social, health, and cognitive factors

    PubMed Central

    Powell, Michael A.; Garcia, Javier O.; Yeh, Fang-Cheng; Vettel, Jean M.

    2018-01-01

    The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample (N = 841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health, and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions. PMID:29911679

  8. Local connectome phenotypes predict social, health, and cognitive factors.

    PubMed

    Powell, Michael A; Garcia, Javier O; Yeh, Fang-Cheng; Vettel, Jean M; Verstynen, Timothy

    2018-01-01

    The unique architecture of the human connectome is defined initially by genetics and subsequently sculpted over time with experience. Thus, similarities in predisposition and experience that lead to similarities in social, biological, and cognitive attributes should also be reflected in the local architecture of white matter fascicles. Here we employ a method known as local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics of macroscopic white matter pathways throughout the brain. This fingerprinting approach was applied to a large sample ( N = 841) of subjects from the Human Connectome Project, revealing a reliable degree of between-subject correlation in the local connectome fingerprints, with a relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional regression analysis approach, we derived local connectome phenotype (LCP) maps that could reliably predict a subset of subject attributes measured, including demographic, health, and cognitive measures. These LCP maps were highly specific to the attribute being predicted but also sensitive to correlations between attributes. Collectively, these results indicate that the local architecture of white matter fascicles reflects a meaningful portion of the variability shared between subjects along several dimensions.

  9. Connectome imaging for mapping human brain pathways

    PubMed Central

    Shi, Y; Toga, A W

    2017-01-01

    With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. PMID:28461700

  10. The Neonatal Connectome During Preterm Brain Development

    PubMed Central

    van den Heuvel, Martijn P.; Kersbergen, Karina J.; de Reus, Marcel A.; Keunen, Kristin; Kahn, René S.; Groenendaal, Floris; de Vries, Linda S.; Benders, Manon J.N.L.

    2015-01-01

    The human connectome is the result of an elaborate developmental trajectory. Acquiring diffusion-weighted imaging and resting-state fMRI, we studied connectome formation during the preterm phase of macroscopic connectome genesis. In total, 27 neonates were scanned at week 30 and/or week 40 gestational age (GA). Examining the architecture of the neonatal anatomical brain network revealed a clear presence of a small-world modular organization before term birth. Analysis of neonatal functional connectivity (FC) showed the early formation of resting-state networks, suggesting that functional networks are present in the preterm brain, albeit being in an immature state. Moreover, structural and FC patterns of the neonatal brain network showed strong overlap with connectome architecture of the adult brain (85 and 81%, respectively). Analysis of brain development between week 30 and week 40 GA revealed clear developmental effects in neonatal connectome architecture, including a significant increase in white matter microstructure (P < 0.01), small-world topology (P < 0.01) and interhemispheric FC (P < 0.01). Computational analysis further showed that developmental changes involved an increase in integration capacity of the connectivity network as a whole. Taken together, we conclude that hallmark organizational structures of the human connectome are present before term birth and subject to early development. PMID:24833018

  11. Human Connectome Project Informatics: quality control, database services, and data visualization

    PubMed Central

    Marcus, Daniel S.; Harms, Michael P.; Snyder, Abraham Z.; Jenkinson, Mark; Wilson, J Anthony; Glasser, Matthew F.; Barch, Deanna M.; Archie, Kevin A.; Burgess, Gregory C.; Ramaratnam, Mohana; Hodge, Michael; Horton, William; Herrick, Rick; Olsen, Timothy; McKay, Michael; House, Matthew; Hileman, Michael; Reid, Erin; Harwell, John; Coalson, Timothy; Schindler, Jon; Elam, Jennifer S.; Curtiss, Sandra W.; Van Essen, David C.

    2013-01-01

    The Human Connectome Project (HCP) has developed protocols, standard operating and quality control procedures, and a suite of informatics tools to enable high throughput data collection, data sharing, automated data processing and analysis, and data mining and visualization. Quality control procedures include methods to maintain data collection consistency over time, to measure head motion, and to establish quantitative modality-specific overall quality assessments. Database services developed as customizations of the XNAT imaging informatics platform support both internal daily operations and open access data sharing. The Connectome Workbench visualization environment enables user interaction with HCP data and is increasingly integrated with the HCP's database services. Here we describe the current state of these procedures and tools and their application in the ongoing HCP study. PMID:23707591

  12. Cerebral cartography and connectomics

    PubMed Central

    Sporns, Olaf

    2015-01-01

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. PMID:25823870

  13. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  14. Changes in functional organization and white matter integrity in the connectome in Parkinson's disease.

    PubMed

    Tinaz, Sule; Lauro, Peter M; Ghosh, Pritha; Lungu, Codrin; Horovitz, Silvina G

    2017-01-01

    Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional "disconnection" in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome.

  15. Disease Prediction based on Functional Connectomes using a Scalable and Spatially-Informed Support Vector Machine

    PubMed Central

    Watanabe, Takanori; Kessler, Daniel; Scott, Clayton; Angstadt, Michael; Sripada, Chandra

    2014-01-01

    Substantial evidence indicates that major psychiatric disorders are associated with distributed neural dysconnectivity, leading to strong interest in using neuroimaging methods to accurately predict disorder status. In this work, we are specifically interested in a multivariate approach that uses features derived from whole-brain resting state functional connectomes. However, functional connectomes reside in a high dimensional space, which complicates model interpretation and introduces numerous statistical and computational challenges. Traditional feature selection techniques are used to reduce data dimensionality, but are blind to the spatial structure of the connectomes. We propose a regularization framework where the 6-D structure of the functional connectome (defined by pairs of points in 3-D space) is explicitly taken into account via the fused Lasso or the GraphNet regularizer. Our method only restricts the loss function to be convex and margin-based, allowing non-differentiable loss functions such as the hinge-loss to be used. Using the fused Lasso or GraphNet regularizer with the hinge-loss leads to a structured sparse support vector machine (SVM) with embedded feature selection. We introduce a novel efficient optimization algorithm based on the augmented Lagrangian and the classical alternating direction method, which can solve both fused Lasso and GraphNet regularized SVM with very little modification. We also demonstrate that the inner subproblems of the algorithm can be solved efficiently in analytic form by coupling the variable splitting strategy with a data augmentation scheme. Experiments on simulated data and resting state scans from a large schizophrenia dataset show that our proposed approach can identify predictive regions that are spatially contiguous in the 6-D “connectome space,” offering an additional layer of interpretability that could provide new insights about various disease processes. PMID:24704268

  16. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture

    PubMed Central

    Meszlényi, Regina J.; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. PMID:29089883

  17. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    PubMed

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  18. Mapping higher-order relations between brain structure and function with embedded vector representations of connectomes.

    PubMed

    Rosenthal, Gideon; Váša, František; Griffa, Alessandra; Hagmann, Patric; Amico, Enrico; Goñi, Joaquín; Avidan, Galia; Sporns, Olaf

    2018-06-05

    Connectomics generates comprehensive maps of brain networks, represented as nodes and their pairwise connections. The functional roles of nodes are defined by their direct and indirect connectivity with the rest of the network. However, the network context is not directly accessible at the level of individual nodes. Similar problems in language processing have been addressed with algorithms such as word2vec that create embeddings of words and their relations in a meaningful low-dimensional vector space. Here we apply this approach to create embedded vector representations of brain networks or connectome embeddings (CE). CE can characterize correspondence relations among brain regions, and can be used to infer links that are lacking from the original structural diffusion imaging, e.g., inter-hemispheric homotopic connections. Moreover, we construct predictive deep models of functional and structural connectivity, and simulate network-wide lesion effects using the face processing system as our application domain. We suggest that CE offers a novel approach to revealing relations between connectome structure and function.

  19. Investigating the capability to resolve complex white matter structures with high b-value diffusion magnetic resonance imaging on the MGH-USC Connectom scanner.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Witzel, Thomas; Zanzonico, Roberta; Keil, Boris; Cauley, Stephen; Polimeni, Jonathan R; Tisdall, Dylan; Van Dijk, Koene R A; Buckner, Randy L; Wedeen, Van J; Rosen, Bruce R; Wald, Lawrence L

    2014-11-01

    One of the major goals of the NIH Blueprint Human Connectome Project was to map and quantify the white matter connections in the brain using diffusion tractography. Given the prevalence of complex white matter structures, the capability of resolving local white matter geometries with multiple crossings in the diffusion magnetic resonance imaging (dMRI) data is critical. Increasing b-value has been suggested for delineation of the finer details of the orientation distribution function (ODF). Although increased gradient strength and duration increase sensitivity to highly restricted intra-axonal water, gradient strength limitations require longer echo times (TE) to accommodate the increased diffusion encoding times needed to achieve a higher b-value, exponentially lowering the signal-to-noise ratio of the acquisition. To mitigate this effect, the MGH-USC Connectom scanner was built with 300 mT/m gradients, which can significantly reduce the TE of high b-value diffusion imaging. Here we report comparisons performed across b-values based on q-ball ODF metrics to investigate whether high b-value diffusion imaging on the Connectom scanner can improve resolving complex white matter structures. The q-ball ODF features became sharper as the b-value increased, with increased power fraction in higher order spherical harmonic series of the ODF and increased peak heights relative to the overall size of the ODF. Crossing structures were detected in an increasingly larger fraction of white matter voxels and the spatial distribution of two-way and three-way crossing structures was largely consistent with known anatomy. Results indicate that dMRI with high diffusion encoding on the Connectom system is a promising tool to better characterize, and ultimately understand, the underlying structural organization and motifs in the human brain.

  20. Evaluating structural connectomics in relation to different Q-space sampling techniques.

    PubMed

    Rodrigues, Paulo; Prats-Galino, Alberto; Gallardo-Pujol, David; Villoslada, Pablo; Falcon, Carles; Prckovska, Vesna

    2013-01-01

    Brain networks are becoming forefront research in neuroscience. Network-based analysis on the functional and structural connectomes can lead to powerful imaging markers for brain diseases. However, constructing the structural connectome can be based upon different acquisition and reconstruction techniques whose information content and mutual differences has not yet been properly studied in a unified framework. The variations of the structural connectome if not properly understood can lead to dangerous conclusions when performing these type of studies. In this work we present evaluation of the structural connectome by analysing and comparing graph-based measures on real data acquired by the three most important Diffusion Weighted Imaging techniques: DTI, HARDI and DSI. We thus come to several important conclusions demonstrating that even though the different techniques demonstrate differences in the anatomy of the reconstructed fibers the respective connectomes show variations of 20%.

  1. Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain

    NASA Astrophysics Data System (ADS)

    Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.

    2017-04-01

    Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.

  2. Cerebral cartography and connectomics.

    PubMed

    Sporns, Olaf

    2015-05-19

    Cerebral cartography and connectomics pursue similar goals in attempting to create maps that can inform our understanding of the structural and functional organization of the cortex. Connectome maps explicitly aim at representing the brain as a complex network, a collection of nodes and their interconnecting edges. This article reflects on some of the challenges that currently arise in the intersection of cerebral cartography and connectomics. Principal challenges concern the temporal dynamics of functional brain connectivity, the definition of areal parcellations and their hierarchical organization into large-scale networks, the extension of whole-brain connectivity to cellular-scale networks, and the mapping of structure/function relations in empirical recordings and computational models. Successfully addressing these challenges will require extensions of methods and tools from network science to the mapping and analysis of human brain connectivity data. The emerging view that the brain is more than a collection of areas, but is fundamentally operating as a complex networked system, will continue to drive the creation of ever more detailed and multi-modal network maps as tools for on-going exploration and discovery in human connectomics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Aberrant brain functional connectome in patients with obstructive sleep apnea.

    PubMed

    Chen, Li-Ting; Fan, Xiao-Le; Li, Hai-Jun; Ye, Cheng-Long; Yu, Hong-Hui; Xin, Hui-Zhen; Gong, Hong-Han; Peng, De-Chang; Yan, Li-Ping

    2018-01-01

    Obstructive sleep apnea (OSA) is accompanied by widespread abnormal spontaneous regional activity related to cognitive deficits. However, little is known about the topological properties of the functional brain connectome of patients with OSA. This study aimed to use the graph theory approaches to investigate the topological properties and functional connectivity (FC) of the functional connectome in patients with OSA, based on resting-state functional magnetic resonance imaging (rs-fMRI). Forty-five male patients with newly diagnosed untreated severe OSA and 45 male good sleepers (GSs) underwent a polysomnography (PSG), clinical evaluations, and rs-fMRI scans. The automated anatomical labeling (AAL) atlas was used to construct the functional brain connectome. The topological organization and FC of brain functional networks in patients with OSA were characterized using graph theory methods and investigated the relationship between functional network topology and clinical variables. Both the patients with OSA and the GSs exhibited high-efficiency "small-world" network attributes. However, the patients with OSA exhibited decreased σ, γ, E glob ; increased Lp, λ; and abnormal nodal centralities in several default-mode network (DMN), salience network (SN), and central executive network (CEN) regions. However, the patients with OSA exhibited abnormal functional connections between the DMN, SN, and CEN. The disrupted FC was significantly positive correlations with the global network metrics γ and σ. The global network metrics were significantly correlated with the Epworth Sleepiness Scale (ESS) score, Montreal Cognitive Assessment (MoCA) score, and oxygen desaturation index. The findings suggest that the functional connectome of patients with OSA exhibited disrupted functional integration and segregation, and functional disconnections of the DMN, SN, and CEN. The aberrant topological attributes may be associated with disrupted FC and cognitive functions. These topological abnormalities and disconnections might be potential biomarkers of cognitive impairments in patients with OSA.

  4. Connectomics and graph theory analyses: Novel insights into network abnormalities in epilepsy.

    PubMed

    Gleichgerrcht, Ezequiel; Kocher, Madison; Bonilha, Leonardo

    2015-11-01

    The assessment of neural networks in epilepsy has become increasingly relevant in the context of translational research, given that localized forms of epilepsy are more likely to be related to abnormal function within specific brain networks, as opposed to isolated focal brain pathology. It is notable that variability in clinical outcomes from epilepsy treatment may be a reflection of individual patterns of network abnormalities. As such, network endophenotypes may be important biomarkers for the diagnosis and treatment of epilepsy. Despite its exceptional potential, measuring abnormal networks in translational research has been thus far constrained by methodologic limitations. Fortunately, recent advancements in neuroscience, particularly in the field of connectomics, permit a detailed assessment of network organization, dynamics, and function at an individual level. Data from the personal connectome can be assessed using principled forms of network analyses based on graph theory, which may disclose patterns of organization that are prone to abnormal dynamics and epileptogenesis. Although the field of connectomics is relatively new, there is already a rapidly growing body of evidence to suggest that it can elucidate several important and fundamental aspects of abnormal networks to epilepsy. In this article, we provide a review of the emerging evidence from connectomics research regarding neural network architecture, dynamics, and function related to epilepsy. We discuss how connectomics may bring together pathophysiologic hypotheses from conceptual and basic models of epilepsy and in vivo biomarkers for clinical translational research. By providing neural network information unique to each individual, the field of connectomics may help to elucidate variability in clinical outcomes and open opportunities for personalized medicine approaches to epilepsy. Connectomics involves complex and rich data from each subject, thus collaborative efforts to enable the systematic and rigorous evaluation of this form of "big data" are paramount to leverage the full potential of this new approach. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  5. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project

    PubMed Central

    Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.

    2016-01-01

    Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276

  6. Meta-connectomics: human brain network and connectivity meta-analyses.

    PubMed

    Crossley, N A; Fox, P T; Bullmore, E T

    2016-04-01

    Abnormal brain connectivity or network dysfunction has been suggested as a paradigm to understand several psychiatric disorders. We here review the use of novel meta-analytic approaches in neuroscience that go beyond a summary description of existing results by applying network analysis methods to previously published studies and/or publicly accessible databases. We define this strategy of combining connectivity with other brain characteristics as 'meta-connectomics'. For example, we show how network analysis of task-based neuroimaging studies has been used to infer functional co-activation from primary data on regional activations. This approach has been able to relate cognition to functional network topology, demonstrating that the brain is composed of cognitively specialized functional subnetworks or modules, linked by a rich club of cognitively generalized regions that mediate many inter-modular connections. Another major application of meta-connectomics has been efforts to link meta-analytic maps of disorder-related abnormalities or MRI 'lesions' to the complex topology of the normative connectome. This work has highlighted the general importance of network hubs as hotspots for concentration of cortical grey-matter deficits in schizophrenia, Alzheimer's disease and other disorders. Finally, we show how by incorporating cellular and transcriptional data on individual nodes with network models of the connectome, studies have begun to elucidate the microscopic mechanisms underpinning the macroscopic organization of whole-brain networks. We argue that meta-connectomics is an exciting field, providing robust and integrative insights into brain organization that will likely play an important future role in consolidating network models of psychiatric disorders.

  7. A mesoscale connectome of the mouse brain

    PubMed Central

    Oh, Seung Wook; Harris, Julie A.; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M.; Mortrud, Marty T.; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A.; Slaughterbeck, Clifford R.; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E.; Bohn, Phillip; Joines, Kevin M.; Peng, Hanchuan; Hawrylycz, Michael J.; Phillips, John W.; Hohmann, John G.; Wohnoutka, Paul; Gerfen, Charles R.; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R.; Zeng, Hongkui

    2016-01-01

    Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228

  8. Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project.

    PubMed

    Bastiani, Matteo; Andersson, Jesper L R; Cordero-Grande, Lucilio; Murgasova, Maria; Hutter, Jana; Price, Anthony N; Makropoulos, Antonios; Fitzgibbon, Sean P; Hughes, Emer; Rueckert, Daniel; Victor, Suresh; Rutherford, Mary; Edwards, A David; Smith, Stephen M; Tournier, Jacques-Donald; Hajnal, Joseph V; Jbabdi, Saad; Sotiropoulos, Stamatios N

    2018-05-28

    The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. From cosmos to connectomes: the evolution of data-intensive science.

    PubMed

    Burns, Randal; Vogelstein, Joshua T; Szalay, Alexander S

    2014-09-17

    The analysis of data requires computation: originally by hand and more recently by computers. Different models of computing are designed and optimized for different kinds of data. In data-intensive science, the scale and complexity of data exceeds the comfort zone of local data stores on scientific workstations. Thus, cloud computing emerges as the preeminent model, utilizing data centers and high-performance clusters, enabling remote users to access and query subsets of the data efficiently. We examine how data-intensive computational systems originally built for cosmology, the Sloan Digital Sky Survey (SDSS), are now being used in connectomics, at the Open Connectome Project. We list lessons learned and outline the top challenges we expect to face. Success in computational connectomics would drastically reduce the time between idea and discovery, as SDSS did in cosmology. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  11. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  12. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury

    PubMed Central

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D.; O'Neil, Brian J.; Haacke, E. Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4–6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that “Action” and “Cognition” are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances. PMID:26819765

  13. Compensation through Functional Hyperconnectivity: A Longitudinal Connectome Assessment of Mild Traumatic Brain Injury.

    PubMed

    Iraji, Armin; Chen, Hanbo; Wiseman, Natalie; Welch, Robert D; O'Neil, Brian J; Haacke, E Mark; Liu, Tianming; Kou, Zhifeng

    2016-01-01

    Mild traumatic brain injury (mTBI) is a major public health concern. Functional MRI has reported alterations in several brain networks following mTBI. However, the connectome-scale brain network changes are still unknown. In this study, sixteen mTBI patients were prospectively recruited from an emergency department and followed up at 4-6 weeks after injury. Twenty-four healthy controls were also scanned twice with the same time interval. Three hundred fifty-eight brain landmarks that preserve structural and functional correspondence of brain networks across individuals were used to investigate longitudinal brain connectivity. Network-based statistic (NBS) analysis did not find significant difference in the group-by-time interaction and time effects. However, 258 functional pairs show group differences in which mTBI patients have higher functional connectivity. Meta-analysis showed that "Action" and "Cognition" are the most affected functional domains. Categorization of connectomic signatures using multiview group-wise cluster analysis identified two patterns of functional hyperconnectivity among mTBI patients: (I) between the posterior cingulate cortex and the association areas of the brain and (II) between the occipital and the frontal lobes of the brain. Our results demonstrate that brain concussion renders connectome-scale brain network connectivity changes, and the brain tends to be hyperactivated to compensate the pathophysiological disturbances.

  14. A multiscale cerebral neurochemical connectome of the rat brain

    PubMed Central

    Schöttler, Judith; Ercsey-Ravasz, Maria; Cosa-Linan, Alejandro; Varga, Melinda; Toroczkai, Zoltan; Spanagel, Rainer

    2017-01-01

    Understanding the rat neurochemical connectome is fundamental for exploring neuronal information processing. By using advanced data mining, supervised machine learning, and network analysis, this study integrates over 5 decades of neuroanatomical investigations into a multiscale, multilayer neurochemical connectome of the rat brain. This neurochemical connectivity database (ChemNetDB) is supported by comprehensive systematically-determined receptor distribution maps. The rat connectome has an onion-type structural organization and shares a number of structural features with mesoscale connectomes of mouse and macaque. Furthermore, we demonstrate that extremal values of graph theoretical measures (e.g., degree and betweenness) are associated with evolutionary-conserved deep brain structures such as amygdala, bed nucleus of the stria terminalis, dorsal raphe, and lateral hypothalamus, which regulate primitive, yet fundamental functions, such as circadian rhythms, reward, aggression, anxiety, and fear. The ChemNetDB is a freely available resource for systems analysis of motor, sensory, emotional, and cognitive information processing. PMID:28671956

  15. Rewiring the connectome: Evidence and effects.

    PubMed

    Bennett, Sophie H; Kirby, Alastair J; Finnerty, Gerald T

    2018-05-01

    Neuronal connections form the physical basis for communication in the brain. Recently, there has been much interest in mapping the "connectome" to understand how brain structure gives rise to brain function, and ultimately, to behaviour. These attempts to map the connectome have largely assumed that connections are stable once formed. Recent studies, however, indicate that connections in mammalian brains may undergo rewiring during learning and experience-dependent plasticity. This suggests that the connectome is more dynamic than previously thought. To what extent can neural circuitry be rewired in the healthy adult brain? The connectome has been subdivided into multiple levels of scale, from synapses and microcircuits through to long-range tracts. Here, we examine the evidence for rewiring at each level. We then consider the role played by rewiring during learning. We conclude that harnessing rewiring offers new avenues to treat brain diseases. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Multi-scale integration and predictability in resting state brain activity

    PubMed Central

    Kolchinsky, Artemy; van den Heuvel, Martijn P.; Griffa, Alessandra; Hagmann, Patric; Rocha, Luis M.; Sporns, Olaf; Goñi, Joaquín

    2014-01-01

    The human brain displays heterogeneous organization in both structure and function. Here we develop a method to characterize brain regions and networks in terms of information-theoretic measures. We look at how these measures scale when larger spatial regions as well as larger connectome sub-networks are considered. This framework is applied to human brain fMRI recordings of resting-state activity and DSI-inferred structural connectivity. We find that strong functional coupling across large spatial distances distinguishes functional hubs from unimodal low-level areas, and that this long-range functional coupling correlates with structural long-range efficiency on the connectome. We also find a set of connectome regions that are both internally integrated and coupled to the rest of the brain, and which resemble previously reported resting-state networks. Finally, we argue that information-theoretic measures are useful for characterizing the functional organization of the brain at multiple scales. PMID:25104933

  17. The CONNECT project: Combining macro- and micro-structure.

    PubMed

    Assaf, Yaniv; Alexander, Daniel C; Jones, Derek K; Bizzi, Albero; Behrens, Tim E J; Clark, Chris A; Cohen, Yoram; Dyrby, Tim B; Huppi, Petra S; Knoesche, Thomas R; Lebihan, Denis; Parker, Geoff J M; Poupon, Cyril; Anaby, Debbie; Anwander, Alfred; Bar, Leah; Barazany, Daniel; Blumenfeld-Katzir, Tamar; De-Santis, Silvia; Duclap, Delphine; Figini, Matteo; Fischi, Elda; Guevara, Pamela; Hubbard, Penny; Hofstetter, Shir; Jbabdi, Saad; Kunz, Nicolas; Lazeyras, Francois; Lebois, Alice; Liptrot, Matthew G; Lundell, Henrik; Mangin, Jean-François; Dominguez, David Moreno; Morozov, Darya; Schreiber, Jan; Seunarine, Kiran; Nava, Simone; Poupon, Cyril; Riffert, Till; Sasson, Efrat; Schmitt, Benoit; Shemesh, Noam; Sotiropoulos, Stam N; Tavor, Ido; Zhang, Hui Gary; Zhou, Feng-Lei

    2013-10-15

    In recent years, diffusion MRI has become an extremely important tool for studying the morphology of living brain tissue, as it provides unique insights into both its macrostructure and microstructure. Recent applications of diffusion MRI aimed to characterize the structural connectome using tractography to infer connectivity between brain regions. In parallel to the development of tractography, additional diffusion MRI based frameworks (CHARMED, AxCaliber, ActiveAx) were developed enabling the extraction of a multitude of micro-structural parameters (axon diameter distribution, mean axonal diameter and axonal density). This unique insight into both tissue microstructure and connectivity has enormous potential value in understanding the structure and organization of the brain as well as providing unique insights to abnormalities that underpin disease states. The CONNECT (Consortium Of Neuroimagers for the Non-invasive Exploration of brain Connectivity and Tracts) project aimed to combine tractography and micro-structural measures of the living human brain in order to obtain a better estimate of the connectome, while also striving to extend validation of these measurements. This paper summarizes the project and describes the perspective of using micro-structural measures to study the connectome. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Functional Brain Connectome and Its Relation to Hoehn and Yahr Stage in Parkinson Disease.

    PubMed

    Suo, Xueling; Lei, Du; Li, Nannan; Cheng, Lan; Chen, Fuqin; Wang, Meiyun; Kemp, Graham J; Peng, Rong; Gong, Qiyong

    2017-12-01

    Purpose To use resting-state functional magnetic resonance (MR) imaging and graph theory approaches to investigate the brain functional connectome and its potential relation to disease severity in Parkinson disease (PD). Materials and Methods This case-control study was approved by the local research ethics committee, and all participants provided informed consent. There were 153 right-handed patients with PD and 81 healthy control participants recruited who were matched for age, sex, and handedness to undergo a 3-T resting-state functional MR examination. The whole-brain functional connectome was constructed by thresholding the Pearson correlation matrices of 90 brain regions, and the topologic properties were analyzed by using graph theory approaches. Nonparametric permutation tests were used to compare topologic properties, and their relationship to disease severity was assessed. Results The functional connectome in PD showed abnormalities at the global level (ie, decrease in clustering coefficient, global efficiency, and local efficiency, and increase in characteristic path length) and at the nodal level (decreased nodal centralities in the sensorimotor cortex, default mode, and temporal-occipital regions; P < .001, false discovery rate corrected). Further, the nodal centralities in left postcentral gyrus and left superior temporal gyrus correlated negatively with Unified Parkinson's Disease Rating Scale III score (P = .038, false discovery rate corrected, r = -0.198; and P = .009, false discovery rate corrected, r = -0.270, respectively) and decreased with increasing Hoehn and Yahr stage in patients with PD. Conclusion The configurations of brain functional connectome in patients with PD were perturbed and correlated with disease severity, notably with those responsible for motor functions. These results provide topologic insights into understanding the neural functional changes in relation to disease severity of PD. © RSNA, 2017 Online supplemental material is available for this article. An earlier incorrect version of this article appeared online. This article was corrected on September 11, 2017.

  19. Connectome analysis for pre-operative brain mapping in neurosurgery

    PubMed Central

    Hart, Michael G.; Price, Stephen J.; Suckling, John

    2016-01-01

    Abstract Object: Brain mapping has entered a new era focusing on complex network connectivity. Central to this is the search for the connectome or the brains ‘wiring diagram’. Graph theory analysis of the connectome allows understanding of the importance of regions to network function, and the consequences of their impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to characterise overall network topology and individual patterns of connectivity alterations. Methods: Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-operatively from five participants each with a right temporal–parietal–occipital glioblastoma. Complex networks analysis was initiated by parcellating the brain into anatomically regions amongst which connections were identified by retaining the most significant correlations between the respective wavelet decomposed time-series. Results: Key characteristics of complex networks described in healthy controls were preserved in these patients, including ubiquitous small world organization. An exponentially truncated power law fit to the degree distribution predicted findings of general network robustness to injury but with a core of hubs exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range connectivity with distinct patterns of connection loss depending on lesion location. Conclusions: Connectome analysis is a feasible and novel approach to brain mapping in individual patients with brain tumours. Applications to pre-surgical planning include identifying regions critical to network function that should be preserved and visualising connections at risk from tumour resection. In the future one could use such data to model functional plasticity and recovery of cognitive deficits. PMID:27447756

  20. General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set.

    PubMed

    Kruschwitz, J D; Waller, L; Daedelow, L S; Walter, H; Veer, I M

    2018-05-01

    One hallmark example of a link between global topological network properties of complex functional brain connectivity and cognitive performance is the finding that general intelligence may depend on the efficiency of the brain's intrinsic functional network architecture. However, although this association has been featured prominently over the course of the last decade, the empirical basis for this broad association of general intelligence and global functional network efficiency is quite limited. In the current study, we set out to replicate the previously reported association between general intelligence and global functional network efficiency using the large sample size and high quality data of the Human Connectome Project, and extended the original study by testing for separate association of crystallized and fluid intelligence with global efficiency, characteristic path length, and global clustering coefficient. We were unable to provide evidence for the proposed association between general intelligence and functional brain network efficiency, as was demonstrated by van den Heuvel et al. (2009), or for any other association with the global network measures employed. More specifically, across multiple network definition schemes, ranging from voxel-level networks to networks of only 100 nodes, no robust associations and only very weak non-significant effects with a maximal R 2 of 0.01 could be observed. Notably, the strongest (non-significant) effects were observed in voxel-level networks. We discuss the possibility that the low power of previous studies and publication bias may have led to false positive results fostering the widely accepted notion of general intelligence being associated to functional global network efficiency. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

    NASA Astrophysics Data System (ADS)

    Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong

    2016-12-01

    The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks.

  2. Functional complexity emerging from anatomical constraints in the brain: the significance of network modularity and rich-clubs

    PubMed Central

    Zamora-López, Gorka; Chen, Yuhan; Deco, Gustavo; Kringelbach, Morten L.; Zhou, Changsong

    2016-01-01

    The large-scale structural ingredients of the brain and neural connectomes have been identified in recent years. These are, similar to the features found in many other real networks: the arrangement of brain regions into modules and the presence of highly connected regions (hubs) forming rich-clubs. Here, we examine how modules and hubs shape the collective dynamics on networks and we find that both ingredients lead to the emergence of complex dynamics. Comparing the connectomes of C. elegans, cats, macaques and humans to surrogate networks in which either modules or hubs are destroyed, we find that functional complexity always decreases in the perturbed networks. A comparison between simulated and empirically obtained resting-state functional connectivity indicates that the human brain, at rest, lies in a dynamical state that reflects the largest complexity its anatomical connectome can host. Last, we generalise the topology of neural connectomes into a new hierarchical network model that successfully combines modular organisation with rich-club forming hubs. This is achieved by centralising the cross-modular connections through a preferential attachment rule. Our network model hosts more complex dynamics than other hierarchical models widely used as benchmarks. PMID:27917958

  3. CoCoMac 2.0 and the future of tract-tracing databases

    PubMed Central

    Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus

    2012-01-01

    The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy. PMID:23293600

  4. CoCoMac 2.0 and the future of tract-tracing databases.

    PubMed

    Bakker, Rembrandt; Wachtler, Thomas; Diesmann, Markus

    2012-01-01

    The CoCoMac database contains the results of several hundred published axonal tract-tracing studies in the macaque monkey brain. The combined results are used for constructing the macaque macro-connectome. Here we discuss the redevelopment of CoCoMac and compare it to six connectome-related projects: two online resources that provide full access to raw tracing data in rodents, a connectome viewer for advanced 3D graphics, a partial but highly detailed rat connectome, a brain data management system that generates custom connectivity matrices, and a software package that covers the complete pipeline from connectivity data to large-scale brain simulations. The second edition of CoCoMac features many enhancements over the original. For example, a search wizard is provided for full access to all tables and their nested dependencies. Connectivity matrices can be computed on demand in a user-selected nomenclature. A new data entry system is available as a preview, and is to become a generic solution for community-driven data entry in manually collated databases. We conclude with the question whether neuronal tracing will remain the gold standard to uncover the wiring of brains, thereby highlighting developments in human connectome construction, tracer substances, polarized light imaging, and serial block-face scanning electron microscopy.

  5. Connectome Signatures of Neurocognitive Abnormalities in Euthymic Bipolar I Disorder

    PubMed Central

    Ajilore, Olusola; Vizueta, Nathalie; Walshaw, Patricia; Zhan, Liang; Leow, Alex; Altshuler, Lori L.

    2015-01-01

    Objectives Connectomics have allowed researchers to study integrative patterns of neural connectivity in humans. Yet, it is unclear how connectomics may elucidate structure-function relationships in bipolar I disorder (BPI). Expanding on our previous structural connectome study, here we used an overlapping sample with additional psychometric and fMRI data to relate structural connectome properties to both fMRI signals and cognitive performance. Methods 42 subjects completed a neuropsychological (NP) battery covering domains of processing speed, verbal memory, working memory, and cognitive flexibility. 32 subjects also had fMRI data performing a Go/NoGo task. Results Bipolar participants had lower NP performance across all domains, but only working memory reached statistical significance. In BPI participants, processing speed was significantly associated with both white matter integrity (WMI) in the corpus callosum and interhemispheric network integration. Mediation models further revealed that the relationship between interhemispheric integration and processing speed was mediated by WMI, and processing speed mediated the relationship between WMI and working memory. Bipolar subjects had significantly decreased BA47 activation during NoGo vs. Go. Significant predictors of BA47 fMRI activations during the Go/NoGo task were its nodal path length (left hemisphere) and its nodal clustering coefficient (right hemisphere). Conclusions This study suggests that structural connectome changes underlie abnormalities in fMRI activation and cognitive performance in euthymic BPI subjects. Results support that BA47 structural connectome changes may be a trait marker for BPI. Future studies are needed to determine if these “connectome signatures” may also confer a biological risk and/or serve as predictors of relapse. PMID:26228398

  6. The Minimal Preprocessing Pipelines for the Human Connectome Project

    PubMed Central

    Glasser, Matthew F.; Sotiropoulos, Stamatios N; Wilson, J Anthony; Coalson, Timothy S; Fischl, Bruce; Andersson, Jesper L; Xu, Junqian; Jbabdi, Saad; Webster, Matthew; Polimeni, Jonathan R; Van Essen, David C; Jenkinson, Mark

    2013-01-01

    The Human Connectome Project (HCP) faces the challenging task of bringing multiple magnetic resonance imaging (MRI) modalities together in a common automated preprocessing framework across a large cohort of subjects. The MRI data acquired by the HCP differ in many ways from data acquired on conventional 3 Tesla scanners and often require newly developed preprocessing methods. We describe the minimal preprocessing pipelines for structural, functional, and diffusion MRI that were developed by the HCP to accomplish many low level tasks, including spatial artifact/distortion removal, surface generation, cross-modal registration, and alignment to standard space. These pipelines are specially designed to capitalize on the high quality data offered by the HCP. The final standard space makes use of a recently introduced CIFTI file format and the associated grayordinates spatial coordinate system. This allows for combined cortical surface and subcortical volume analyses while reducing the storage and processing requirements for high spatial and temporal resolution data. Here, we provide the minimum image acquisition requirements for the HCP minimal preprocessing pipelines and additional advice for investigators interested in replicating the HCP’s acquisition protocols or using these pipelines. Finally, we discuss some potential future improvements for the pipelines. PMID:23668970

  7. Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project

    PubMed Central

    McDonough, Ian M.; Nashiro, Kaoru

    2014-01-01

    An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130

  8. Advances in diffusion MRI acquisition and processing in the Human Connectome Project

    PubMed Central

    Sotiropoulos, Stamatios N; Jbabdi, Saad; Xu, Junqian; Andersson, Jesper L; Moeller, Steen; Auerbach, Edward J; Glasser, Matthew F; Hernandez, Moises; Sapiro, Guillermo; Jenkinson, Mark; Feinberg, David A; Yacoub, Essa; Lenglet, Christophe; Ven Essen, David C; Ugurbil, Kamil; Behrens, Timothy EJ

    2013-01-01

    The Human Connectome Project (HCP) is a collaborative 5-year effort to map human brain connections and their variability in healthy adults. A consortium of HCP investigators will study a population of 1200 healthy adults using multiple imaging modalities, along with extensive behavioral and genetic data. In this overview, we focus on diffusion MRI (dMRI) and the structural connectivity aspect of the project. We present recent advances in acquisition and processing that allow us to obtain very high-quality in-vivo MRI data, while enabling scanning of a very large number of subjects. These advances result from 2 years of intensive efforts in optimising many aspects of data acquisition and processing during the piloting phase of the project. The data quality and methods described here are representative of the datasets and processing pipelines that will be made freely available to the community at quarterly intervals, beginning in 2013. PMID:23702418

  9. The heritability of the functional connectome is robust to common nonlinear registration methods

    NASA Astrophysics Data System (ADS)

    Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.

    2016-03-01

    Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.

  10. Correlated gene expression and anatomical communication support synchronized brain activity in the mouse functional connectome.

    PubMed

    Mills, Brian D; Grayson, David S; Shunmugavel, Anandakumar; Miranda-Dominguez, Oscar; Feczko, Eric; Earl, Eric; Neve, Kim; Fair, Damien A

    2018-05-22

    Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI. SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still largely unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be utilized to streamline preclinical animal studies of disease. Copyright © 2018 the authors.

  11. A Hybrid CPU-GPU Accelerated Framework for Fast Mapping of High-Resolution Human Brain Connectome

    PubMed Central

    Ren, Ling; Xu, Mo; Xie, Teng; Gong, Gaolang; Xu, Ningyi; Yang, Huazhong; He, Yong

    2013-01-01

    Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome). Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson’s Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based) brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states. PMID:23675425

  12. The structural connectome of children with traumatic brain injury.

    PubMed

    Königs, Marsh; van Heurn, L W Ernest; Bakx, Roel; Vermeulen, R Jeroen; Goslings, J Carel; Poll-The, Bwee Tien; van der Wees, Marleen; Catsman-Berrevoets, Coriene E; Oosterlaan, Jaap; Pouwels, Petra J W

    2017-04-21

    This study aimed to investigate the impact of mild to severe pediatric TBI on the structural connectome. Children aged 8-14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI and risk factors for complicated TBI (mild RF+ , n = 20) or moderate/severe TBI (n = 16) at 2.8 years post-injury. Probabilistic tractography on diffusion tensor imaging data was used in combination with graph theory to study structural connectivity. Functional outcome was measured using neurocognitive tests and parent and teacher questionnaires for behavioral functioning. The results revealed no evidence for an impact of mild RF+ TBI on the structural connectome. In contrast, the moderate/severe TBI group showed longer characteristic path length (P = 0.022, d = 0.82) than the TC group. Furthermore, longer characteristic path length was related to poorer intelligence and poorer working memory in children with TBI. In conclusion, children have abnormal organization of the structural connectome after moderate/severe TBI, which may be implicated in neurocognitive dysfunction associated with pediatric TBI. These findings should be interpreted in the context of our exploratory analyses, which indicate that the definition and weighting of connectivity (e.g., streamline density, fractional anisotropy) influence the properties of the reconstructed connectome and its sensitivity to the impact and outcome of pediatric TBI. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. The C. elegans Connectome Consists of Homogenous Circuits with Defined Functional Roles

    PubMed Central

    Azulay, Aharon; Zaslaver, Alon

    2016-01-01

    A major goal of systems neuroscience is to decipher the structure-function relationship in neural networks. Here we study network functionality in light of the common-neighbor-rule (CNR) in which a pair of neurons is more likely to be connected the more common neighbors it shares. Focusing on the fully-mapped neural network of C. elegans worms, we establish that the CNR is an emerging property in this connectome. Moreover, sets of common neighbors form homogenous structures that appear in defined layers of the network. Simulations of signal propagation reveal their potential functional roles: signal amplification and short-term memory at the sensory/inter-neuron layer, and synchronized activity at the motoneuron layer supporting coordinated movement. A coarse-grained view of the neural network based on homogenous connected sets alone reveals a simple modular network architecture that is intuitive to understand. These findings provide a novel framework for analyzing larger, more complex, connectomes once these become available. PMID:27606684

  14. The connectome viewer toolkit: an open source framework to manage, analyze, and visualize connectomes.

    PubMed

    Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric

    2011-01-01

    Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit - a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/

  15. The Connectome Viewer Toolkit: An Open Source Framework to Manage, Analyze, and Visualize Connectomes

    PubMed Central

    Gerhard, Stephan; Daducci, Alessandro; Lemkaddem, Alia; Meuli, Reto; Thiran, Jean-Philippe; Hagmann, Patric

    2011-01-01

    Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit – a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/ PMID:21713110

  16. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.

    PubMed

    Kerepesi, Csaba; Varga, Bálint; Szalkai, Balázs; Grolmusz, Vince

    2018-04-23

    In the applications of the graph theory, it is unusual that one considers numerous, pairwise different graphs on the very same set of vertices. In the case of human braingraphs or connectomes, however, this is the standard situation: the nodes correspond to anatomically identified cerebral regions, and two vertices are connected by an edge if a diffusion MRI-based workflow identifies a fiber of axons, running between the two regions, corresponding to the two vertices. Therefore, if we examine the braingraphs of n subjects, then we have n graphs on the very same, anatomically identified vertex set. It is a natural idea to describe the k-frequently appearing edges in these graphs: the edges that are present between the same two vertices in at least k out of the n graphs. Based on the NIH-funded large Human Connectome Project's public data release, we have reported the construction of the Budapest Reference Connectome Server http://www.connectome.pitgroup.org that generates and visualizes these k-frequently appearing edges. We call the graphs of the k-frequently appearing edges "k-consensus connectomes" since an edge could be included only if it is present in at least k graphs out of n. Considering the whole human brain, we have reported a surprising property of these consensus connectomes earlier. In the present work we are focusing on the frontal lobe of the brain, and we report here a similarly surprising dynamical property of the consensus connectomes when k is gradually changed from k = n to k = 1: the connections between the nodes of the frontal lobe are seemingly emanating from those nodes that were connected to sub-cortical structures of the dorsal striatum: the caudate nucleus, and the putamen. We hypothesize that this dynamic behavior copies the axonal fiber development of the frontal lobe. An animation of the phenomenon is presented at https://youtu.be/wBciB2eW6_8. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms.

    PubMed

    Cabral, Joana; Kringelbach, Morten L; Deco, Gustavo

    2017-10-15

    Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Automatic discovery of cell types and microcircuitry from neural connectomics

    PubMed Central

    Jonas, Eric; Kording, Konrad

    2015-01-01

    Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity, better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets. DOI: http://dx.doi.org/10.7554/eLife.04250.001 PMID:25928186

  19. Human connectome module pattern detection using a new multi-graph MinMax cut model.

    PubMed

    De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng

    2014-01-01

    Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.

  20. Automatic discovery of cell types and microcircuitry from neural connectomics

    DOE PAGES

    Jonas, Eric; Kording, Konrad

    2015-04-30

    Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity,more » better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets.« less

  1. Automatic discovery of cell types and microcircuitry from neural connectomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonas, Eric; Kording, Konrad

    Neural connectomics has begun producing massive amounts of data, necessitating new analysis methods to discover the biological and computational structure. It has long been assumed that discovering neuron types and their relation to microcircuitry is crucial to understanding neural function. Here we developed a non-parametric Bayesian technique that identifies neuron types and microcircuitry patterns in connectomics data. It combines the information traditionally used by biologists in a principled and probabilistically coherent manner, including connectivity, cell body location, and the spatial distribution of synapses. We show that the approach recovers known neuron types in the retina and enables predictions of connectivity,more » better than simpler algorithms. It also can reveal interesting structure in the nervous system of Caenorhabditis elegans and an old man-made microprocessor. Our approach extracts structural meaning from connectomics, enabling new approaches of automatically deriving anatomical insights from these emerging datasets.« less

  2. Korea Brain Initiative: Integration and Control of Brain Functions.

    PubMed

    Jeong, Sung-Jin; Lee, Haejin; Hur, Eun-Mi; Choe, Youngshik; Koo, Ja Wook; Rah, Jong-Cheol; Lee, Kea Joo; Lim, Hyun-Ho; Sun, Woong; Moon, Cheil; Kim, Kyungjin

    2016-11-02

    This article introduces the history and the long-term goals of the Korea Brain Initiative, which is centered on deciphering the brain functions and mechanisms that mediate the integration and control of brain functions that underlie decision-making. The goal of this initiative is the mapping of a functional connectome with searchable, multi-dimensional, and information-integrated features. The project also includes the development of novel technologies and neuro-tools for integrated brain mapping. Beyond the scientific goals this grand endeavor will ultimately have socioeconomic ramifications that not only facilitate global collaboration in the neuroscience community, but also develop various brain science-related industrial and medical innovations. Copyright © 2016. Published by Elsevier Inc.

  3. Function in the Human Connectome: Task-fMRI and Individual Differences in Behavior

    PubMed Central

    Barch, Deanna M.; Burgess, Gregory C.; Harms, Michael P.; Petersen, Steven E.; Schlaggar, Bradley L.; Corbetta, Maurizio; Glasser, Matthew F.; Curtiss, Sandra; Dixit, Sachin; Feldt, Cindy; Nolan, Dan; Bryant, Edward; Hartley, Tucker; Footer, Owen; Bjork, James M.; Poldrack, Russ; Smith, Steve; Johansen-Berg, Heidi; Snyder, Abraham Z.; Van Essen, David C.

    2014-01-01

    The primary goal of the Human Connectome Project (HCP) is to delineate the typical patterns of structural and functional connectivity in the healthy adult human brain. However, we know that there are important individual differences in such patterns of connectivity, with evidence that this variability is associated with alterations in important cognitive and behavioral variables that affect real world function. The HCP data will be a critical stepping-off point for future studies that will examine how variation in human structural and functional connectivity play a role in adult and pediatric neurological and psychiatric disorders that account for a huge amount of public health resources. Thus, the HCP is collecting behavioral measures of a range of motor, sensory, cognitive and emotional processes that will delineate a core set of functions relevant to understanding the relationship between brain connectivity and human behavior. In addition, the HCP is using task-fMRI (tfMRI) to help delineate the relationships between individual differences in the neurobiological substrates of mental processing and both functional and structural connectivity, as well as to help characterize and validate the connectivity analyses to be conducted on the structural and functional connectivity data. This paper describes the logic and rationale behind the development of the behavioral, individual difference, and tfMRI batteries and provides preliminary data on the patterns of activation associated with each of the fMRI tasks, at both a group and individual level. PMID:23684877

  4. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    PubMed

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  5. Introducing axonal myelination in connectomics: A preliminary analysis of g-ratio distribution in healthy subjects.

    PubMed

    Mancini, Matteo; Giulietti, Giovanni; Dowell, Nicholas; Spanò, Barbara; Harrison, Neil; Bozzali, Marco; Cercignani, Mara

    2017-09-14

    Microstructural imaging and connectomics are two research areas that hold great potential for investigating brain structure and function. Combining these two approaches can lead to a better and more complete characterization of the brain as a network. The aim of this work is characterizing the connectome from a novel perspective using the myelination measure given by the g-ratio. The g-ratio is the ratio of the inner to the outer diameters of a myelinated axon, whose aggregated value can now be estimated in vivo using MRI. In two different datasets of healthy subjects, we reconstructed the structural connectome and then used the g-ratio estimated from diffusion and magnetization transfer data to characterize the network structure. Significant characteristics of g-ratio weighted graphs emerged. First, the g-ratio distribution across the edges of the graph did not show the power-law distribution observed using the number of streamlines as a weight. Second, connections involving regions related to motor and sensory functions were the highest in myelin content. We also observed significant differences in terms of the hub structure and the rich-club organization suggesting that connections involving hub regions present higher myelination than peripheral connections. Taken together, these findings offer a characterization of g-ratio distribution across the connectome in healthy subjects and lay the foundations for further investigating plasticity and pathology using a similar approach. Copyright © 2017. Published by Elsevier Inc.

  6. Integrating neuroinformatics tools in TheVirtualBrain.

    PubMed

    Woodman, M Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor

    2014-01-01

    TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting.

  7. Integrating neuroinformatics tools in TheVirtualBrain

    PubMed Central

    Woodman, M. Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A.; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor

    2014-01-01

    TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting. PMID:24795617

  8. Flow-Based Network Analysis of the Caenorhabditis elegans Connectome

    PubMed Central

    Bacik, Karol A.; Schaub, Michael T.; Billeh, Yazan N.; Barahona, Mauricio

    2016-01-01

    We exploit flow propagation on the directed neuronal network of the nematode C. elegans to reveal dynamically relevant features of its connectome. We find flow-based groupings of neurons at different levels of granularity, which we relate to functional and anatomical constituents of its nervous system. A systematic in silico evaluation of the full set of single and double neuron ablations is used to identify deletions that induce the most severe disruptions of the multi-resolution flow structure. Such ablations are linked to functionally relevant neurons, and suggest potential candidates for further in vivo investigation. In addition, we use the directional patterns of incoming and outgoing network flows at all scales to identify flow profiles for the neurons in the connectome, without pre-imposing a priori categories. The four flow roles identified are linked to signal propagation motivated by biological input-response scenarios. PMID:27494178

  9. From a meso- to micro-scale connectome: array tomography and mGRASP

    PubMed Central

    Rah, Jong-Cheol; Feng, Linqing; Druckmann, Shaul; Lee, Hojin; Kim, Jinhyun

    2015-01-01

    Mapping mammalian synaptic connectivity has long been an important goal of neuroscience because knowing how neurons and brain areas are connected underpins an understanding of brain function. Meeting this goal requires advanced techniques with single synapse resolution and large-scale capacity, especially at multiple scales tethering the meso- and micro-scale connectome. Among several advanced LM-based connectome technologies, Array Tomography (AT) and mammalian GFP-Reconstitution Across Synaptic Partners (mGRASP) can provide relatively high-throughput mapping synaptic connectivity at multiple scales. AT- and mGRASP-assisted circuit mapping (ATing and mGRASPing), combined with techniques such as retrograde virus, brain clearing techniques, and activity indicators will help unlock the secrets of complex neural circuits. Here, we discuss these useful new tools to enable mapping of brain circuits at multiple scales, some functional implications of spatial synaptic distribution, and future challenges and directions of these endeavors. PMID:26089781

  10. Large-scale topology and the default mode network in the mouse connectome

    PubMed Central

    Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.

    2014-01-01

    Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496

  11. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    PubMed

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  12. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.

    PubMed

    Kerepesi, Csaba; Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2016-01-01

    The human braingraph or the connectome is the object of an intensive research today. The advantage of the graph-approach to brain science is that the rich structures, algorithms and definitions of graph theory can be applied to the anatomical networks of the connections of the human brain. In these graphs, the vertices correspond to the small (1-1.5 cm2) areas of the gray matter, and two vertices are connected by an edge, if a diffusion-MRI based workflow finds fibers of axons, running between those small gray matter areas in the white matter of the brain. One main question of the field today is discovering the directions of the connections between the small gray matter areas. In a previous work we have reported the construction of the Budapest Reference Connectome Server http://connectome.pitgroup.org from the data recorded in the Human Connectome Project of the NIH. The server generates the consensus braingraph of 96 subjects in Version 2, and of 418 subjects in Version 3, according to selectable parameters. After the Budapest Reference Connectome Server had been published, we recognized a surprising and unforeseen property of the server. The server can generate the braingraph of connections that are present in at least k graphs out of the 418, for any value of k = 1, 2, …, 418. When the value of k is changed from k = 418 through 1 by moving a slider at the webserver from right to left, certainly more and more edges appear in the consensus graph. The astonishing observation is that the appearance of the new edges is not random: it is similar to a growing shrub. We refer to this phenomenon as the Consensus Connectome Dynamics. We hypothesize that this movement of the slider in the webserver may copy the development of the connections in the human brain in the following sense: the connections that are present in all subjects are the oldest ones, and those that are present only in a decreasing fraction of the subjects are gradually the newer connections in the individual brain development. An animation on the phenomenon is available at https://youtu.be/yxlyudPaVUE. Based on this observation and the related hypothesis, we can assign directions to some of the edges of the connectome as follows: Let Gk + 1 denote the consensus connectome where each edge is present in at least k+1 graphs, and let Gk denote the consensus connectome where each edge is present in at least k graphs. Suppose that vertex v is not connected to any other vertices in Gk+1, and becomes connected to a vertex u in Gk, where u was connected to other vertices already in Gk+1. Then we direct this (v, u) edge from v to u.

  13. Large-scale automated histology in the pursuit of connectomes.

    PubMed

    Kleinfeld, David; Bharioke, Arjun; Blinder, Pablo; Bock, Davi D; Briggman, Kevin L; Chklovskii, Dmitri B; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P; Lee, Wei-Chung Allen; Meyer, Hanno S; Micheva, Kristina D; Oberlaender, Marcel; Prohaska, Steffen; Reid, R Clay; Smith, Stephen J; Takemura, Shinya; Tsai, Philbert S; Sakmann, Bert

    2011-11-09

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity.

  14. Large-Scale Automated Histology in the Pursuit of Connectomes

    PubMed Central

    Bharioke, Arjun; Blinder, Pablo; Bock, Davi D.; Briggman, Kevin L.; Chklovskii, Dmitri B.; Denk, Winfried; Helmstaedter, Moritz; Kaufhold, John P.; Lee, Wei-Chung Allen; Meyer, Hanno S.; Micheva, Kristina D.; Oberlaender, Marcel; Prohaska, Steffen; Reid, R. Clay; Smith, Stephen J.; Takemura, Shinya; Tsai, Philbert S.; Sakmann, Bert

    2011-01-01

    How does the brain compute? Answering this question necessitates neuronal connectomes, annotated graphs of all synaptic connections within defined brain areas. Further, understanding the energetics of the brain's computations requires vascular graphs. The assembly of a connectome requires sensitive hardware tools to measure neuronal and neurovascular features in all three dimensions, as well as software and machine learning for data analysis and visualization. We present the state of the art on the reconstruction of circuits and vasculature that link brain anatomy and function. Analysis at the scale of tens of nanometers yields connections between identified neurons, while analysis at the micrometer scale yields probabilistic rules of connection between neurons and exact vascular connectivity. PMID:22072665

  15. Toward Developmental Connectomics of the Human Brain

    PubMed Central

    Cao, Miao; Huang, Hao; Peng, Yun; Dong, Qi; He, Yong

    2016-01-01

    Imaging connectomics based on graph theory has become an effective and unique methodological framework for studying structural and functional connectivity patterns of the developing brain. Normal brain development is characterized by continuous and significant network evolution throughout infancy, childhood, and adolescence, following specific maturational patterns. Disruption of these normal changes is associated with neuropsychiatric developmental disorders, such as autism spectrum disorders or attention-deficit hyperactivity disorder. In this review, we focused on the recent progresses regarding typical and atypical development of human brain networks from birth to early adulthood, using a connectomic approach. Specifically, by the time of birth, structural networks already exhibit adult-like organization, with global efficient small-world and modular structures, as well as hub regions and rich-clubs acting as communication backbones. During development, the structure networks are fine-tuned, with increased global integration and robustness and decreased local segregation, as well as the strengthening of the hubs. In parallel, functional networks undergo more dramatic changes during maturation, with both increased integration and segregation during development, as brain hubs shift from primary regions to high order functioning regions, and the organization of modules transitions from a local anatomical emphasis to a more distributed architecture. These findings suggest that structural networks develop earlier than functional networks; meanwhile functional networks demonstrate more dramatic maturational changes with the evolution of structural networks serving as the anatomical backbone. In this review, we also highlighted topologically disorganized characteristics in structural and functional brain networks in several major developmental neuropsychiatric disorders (e.g., autism spectrum disorders, attention-deficit hyperactivity disorder and developmental dyslexia). Collectively, we showed that delineation of the brain network from a connectomics perspective offers a unique and refreshing view of both normal development and neuropsychiatric disorders. PMID:27064378

  16. The structural, connectomic and network covariance of the human brain.

    PubMed

    Irimia, Andrei; Van Horn, John D

    2013-02-01

    Though it is widely appreciated that complex structural, functional and morphological relationships exist between distinct areas of the human cerebral cortex, the extent to which such relationships coincide remains insufficiently appreciated. Here we determine the extent to which correlations between brain regions are modulated by either structural, connectomic or network-theoretic properties using a structural neuroimaging data set of magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) volumes acquired from N=110 healthy human adults. To identify the linear relationships between all available pairs of regions, we use canonical correlation analysis to test whether a statistically significant correlation exists between each pair of cortical parcels as quantified via structural, connectomic or network-theoretic measures. In addition to this, we investigate (1) how each group of canonical variables (whether structural, connectomic or network-theoretic) contributes to the overall correlation and, additionally, (2) whether each individual variable makes a significant contribution to the test of the omnibus null hypothesis according to which no correlation between regions exists across subjects. We find that, although region-to-region correlations are extensively modulated by structural and connectomic measures, there are appreciable differences in how these two groups of measures drive inter-regional correlation patterns. Additionally, our results indicate that the network-theoretic properties of the cortex are strong modulators of region-to-region covariance. Our findings are useful for understanding the structural and connectomic relationship between various parts of the brain, and can inform theoretical and computational models of cortical information processing. Published by Elsevier Inc.

  17. Regional Homogeneity

    PubMed Central

    Jiang, Lili; Zuo, Xi-Nian

    2015-01-01

    Much effort has been made to understand the organizational principles of human brain function using functional magnetic resonance imaging (fMRI) methods, among which resting-state fMRI (rfMRI) is an increasingly recognized technique for measuring the intrinsic dynamics of the human brain. Functional connectivity (FC) with rfMRI is the most widely used method to describe remote or long-distance relationships in studies of cerebral cortex parcellation, interindividual variability, and brain disorders. In contrast, local or short-distance functional interactions, especially at a scale of millimeters, have rarely been investigated or systematically reviewed like remote FC, although some local FC algorithms have been developed and applied to the discovery of brain-based changes under neuropsychiatric conditions. To fill this gap between remote and local FC studies, this review will (1) briefly survey the history of studies on organizational principles of human brain function; (2) propose local functional homogeneity as a network centrality to characterize multimodal local features of the brain connectome; (3) render a neurobiological perspective on local functional homogeneity by linking its temporal, spatial, and individual variability to information processing, anatomical morphology, and brain development; and (4) discuss its role in performing connectome-wide association studies and identify relevant challenges, and recommend its use in future brain connectomics studies. PMID:26170004

  18. An edge-centric perspective on the human connectome: link communities in the brain.

    PubMed

    de Reus, Marcel A; Saenger, Victor M; Kahn, René S; van den Heuvel, Martijn P

    2014-10-05

    Brain function depends on efficient processing and integration of information within a complex network of neural interactions, known as the connectome. An important aspect of connectome architecture is the existence of community structure, providing an anatomical basis for the occurrence of functional specialization. Typically, communities are defined as groups of densely connected network nodes, representing clusters of brain regions. Looking at the connectome from a different perspective, instead focusing on the interconnecting links or edges, we find that the white matter pathways between brain regions also exhibit community structure. Eleven link communities were identified: five spanning through the midline fissure, three through the left hemisphere and three through the right hemisphere. We show that these link communities are consistently identifiable and investigate the network characteristics of their underlying white matter pathways. Furthermore, examination of the relationship between link communities and brain regions revealed that the majority of brain regions participate in multiple link communities. In particular, the highly connected and central hub regions showed a rich level of community participation, supporting the notion that these hubs play a pivotal role as confluence zones in which neural information from different domains merges. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  19. Dopaminergic modulation of hemodynamic signal variability and the functional connectome during cognitive performance.

    PubMed

    Alavash, Mohsen; Lim, Sung-Joo; Thiel, Christiane; Sehm, Bernhard; Deserno, Lorenz; Obleser, Jonas

    2018-05-15

    Dopamine underlies important aspects of cognition, and has been suggested to boost cognitive performance. However, how dopamine modulates the large-scale cortical dynamics during cognitive performance has remained elusive. Using functional MRI during a working memory task in healthy young human listeners, we investigated the effect of levodopa (l-dopa) on two aspects of cortical dynamics, blood oxygen-level-dependent (BOLD) signal variability and the functional connectome of large-scale cortical networks. We here show that enhanced dopaminergic signaling modulates the two potentially interrelated aspects of large-scale cortical dynamics during cognitive performance, and the degree of these modulations is able to explain inter-individual differences in l-dopa-induced behavioral benefits. Relative to placebo, l-dopa increased BOLD signal variability in task-relevant temporal, inferior frontal, parietal and cingulate regions. On the connectome level, however, l-dopa diminished functional integration across temporal and cingulo-opercular regions. This hypo-integration was expressed as a reduction in network efficiency and modularity in more than two thirds of the participants and to different degrees. Hypo-integration co-occurred with relative hyper-connectivity in paracentral lobule and precuneus, as well as posterior putamen. Both, l-dopa-induced BOLD signal variability modulation and functional connectome modulations proved predictive of an individual's l-dopa-induced benefits in behavioral performance, namely response speed and perceptual sensitivity. Lastly, l-dopa-induced modulations of BOLD signal variability were correlated with l-dopa-induced modulation of nodal connectivity and network efficiency. Our findings underline the role of dopamine in maintaining the dynamic range of, and communication between, cortical systems, and their explanatory power for inter-individual differences in benefits from dopamine during cognitive performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Neuroscience thinks big (and collaboratively).

    PubMed

    Kandel, Eric R; Markram, Henry; Matthews, Paul M; Yuste, Rafael; Koch, Christof

    2013-09-01

    Despite cash-strapped times for research, several ambitious collaborative neuroscience projects have attracted large amounts of funding and media attention. In Europe, the Human Brain Project aims to develop a large-scale computer simulation of the brain, whereas in the United States, the Brain Activity Map is working towards establishing a functional connectome of the entire brain, and the Allen Institute for Brain Science has embarked upon a 10-year project to understand the mouse visual cortex (the MindScope project). US President Barack Obama's announcement of the BRAIN Initiative (Brain Research through Advancing Innovative Neurotechnologies Initiative) in April 2013 highlights the political commitment to neuroscience and is expected to further foster interdisciplinary collaborations, accelerate the development of new technologies and thus fuel much needed medical advances. In this Viewpoint article, five prominent neuroscientists explain the aims of the projects and how they are addressing some of the questions (and criticisms) that have arisen.

  1. Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's.

    PubMed

    Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2015-01-01

    Deep graph-theoretic ideas in the context with the graph of the World Wide Web led to the definition of Google's PageRank and the subsequent rise of the most popular search engine to date. Brain graphs, or connectomes, are being widely explored today. We believe that non-trivial graph theoretic concepts, similarly as it happened in the case of the World Wide Web, will lead to discoveries enlightening the structural and also the functional details of the animal and human brains. When scientists examine large networks of tens or hundreds of millions of vertices, only fast algorithms can be applied because of the size constraints. In the case of diffusion MRI-based structural human brain imaging, the effective vertex number of the connectomes, or brain graphs derived from the data is on the scale of several hundred today. That size facilitates applying strict mathematical graph algorithms even for some hard-to-compute (or NP-hard) quantities like vertex cover or balanced minimum cut. In the present work we have examined brain graphs, computed from the data of the Human Connectome Project, recorded from male and female subjects between ages 22 and 35. Significant differences were found between the male and female structural brain graphs: we show that the average female connectome has more edges, is a better expander graph, has larger minimal bisection width, and has more spanning trees than the average male connectome. Since the average female brain weighs less than the brain of males, these properties show that the female brain has better graph theoretical properties, in a sense, than the brain of males. It is known that the female brain has a smaller gray matter/white matter ratio than males, that is, a larger white matter/gray matter ratio than the brain of males; this observation is in line with our findings concerning the number of edges, since the white matter consists of myelinated axons, which, in turn, roughly correspond to the connections in the brain graph. We have also found that the minimum bisection width, normalized with the edge number, is also significantly larger in the right and the left hemispheres in females: therefore, the differing bisection widths are independent from the difference in the number of edges.

  2. Graph Theoretical Analysis Reveals: Women’s Brains Are Better Connected than Men’s

    PubMed Central

    Szalkai, Balázs; Varga, Bálint; Grolmusz, Vince

    2015-01-01

    Deep graph-theoretic ideas in the context with the graph of the World Wide Web led to the definition of Google’s PageRank and the subsequent rise of the most popular search engine to date. Brain graphs, or connectomes, are being widely explored today. We believe that non-trivial graph theoretic concepts, similarly as it happened in the case of the World Wide Web, will lead to discoveries enlightening the structural and also the functional details of the animal and human brains. When scientists examine large networks of tens or hundreds of millions of vertices, only fast algorithms can be applied because of the size constraints. In the case of diffusion MRI-based structural human brain imaging, the effective vertex number of the connectomes, or brain graphs derived from the data is on the scale of several hundred today. That size facilitates applying strict mathematical graph algorithms even for some hard-to-compute (or NP-hard) quantities like vertex cover or balanced minimum cut. In the present work we have examined brain graphs, computed from the data of the Human Connectome Project, recorded from male and female subjects between ages 22 and 35. Significant differences were found between the male and female structural brain graphs: we show that the average female connectome has more edges, is a better expander graph, has larger minimal bisection width, and has more spanning trees than the average male connectome. Since the average female brain weighs less than the brain of males, these properties show that the female brain has better graph theoretical properties, in a sense, than the brain of males. It is known that the female brain has a smaller gray matter/white matter ratio than males, that is, a larger white matter/gray matter ratio than the brain of males; this observation is in line with our findings concerning the number of edges, since the white matter consists of myelinated axons, which, in turn, roughly correspond to the connections in the brain graph. We have also found that the minimum bisection width, normalized with the edge number, is also significantly larger in the right and the left hemispheres in females: therefore, the differing bisection widths are independent from the difference in the number of edges. PMID:26132764

  3. In vivo functional connectome of human brainstem nuclei of the ascending arousal, autonomic, and motor systems by high spatial resolution 7-Tesla fMRI.

    PubMed

    Bianciardi, Marta; Toschi, Nicola; Eichner, Cornelius; Polimeni, Jonathan R; Setsompop, Kawin; Brown, Emery N; Hämäläinen, Matti S; Rosen, Bruce R; Wald, Lawrence L

    2016-06-01

    Our aim was to map the in vivo human functional connectivity of several brainstem nuclei with the rest of the brain by using seed-based correlation of ultra-high magnetic field functional magnetic resonance imaging (fMRI) data. We used the recently developed template of 11 brainstem nuclei derived from multi-contrast structural MRI at 7 Tesla as seed regions to determine their connectivity to the rest of the brain. To achieve this, we used the increased contrast-to-noise ratio of 7-Tesla fMRI compared with 3 Tesla and time-efficient simultaneous multi-slice imaging to cover the brain with high spatial resolution (1.1-mm isotropic nominal resolution) while maintaining a short repetition time (2.5 s). The delineated Pearson's correlation-based functional connectivity diagrams (connectomes) of 11 brainstem nuclei of the ascending arousal, motor, and autonomic systems from 12 controls are presented and discussed in the context of existing histology and animal work. Considering that the investigated brainstem nuclei play a crucial role in several vital functions, the delineated preliminary connectomes might prove useful for future in vivo research and clinical studies of human brainstem function and pathology, including disorders of consciousness, sleep disorders, autonomic disorders, Parkinson's disease, and other motor disorders.

  4. The topology of large Open Connectome networks for the human brain.

    PubMed

    Gastner, Michael T; Ódor, Géza

    2016-06-07

    The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made available by the Open Connectome Project. We apply statistical model selection to characterize the degree distributions of graphs containing up to nodes and edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a good fit to most of the observed degree distributions. For almost all networks, simple power laws cannot fit the data, but in some cases there is statistical support for power laws with an exponential cutoff. We also calculate the topological (graph) dimension D and the small-world coefficient σ of these networks. While σ suggests a small-world topology, we found that D < 4 showing that long-distance connections provide only a small correction to the topology of the embedding three-dimensional space.

  5. The topology of large Open Connectome networks for the human brain

    NASA Astrophysics Data System (ADS)

    Gastner, Michael T.; Ódor, Géza

    2016-06-01

    The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made available by the Open Connectome Project. We apply statistical model selection to characterize the degree distributions of graphs containing up to nodes and edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a good fit to most of the observed degree distributions. For almost all networks, simple power laws cannot fit the data, but in some cases there is statistical support for power laws with an exponential cutoff. We also calculate the topological (graph) dimension D and the small-world coefficient σ of these networks. While σ suggests a small-world topology, we found that D < 4 showing that long-distance connections provide only a small correction to the topology of the embedding three-dimensional space.

  6. Brain enhancement through cognitive training: a new insight from brain connectome.

    PubMed

    Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios

    2015-01-01

    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions.

  7. Brain enhancement through cognitive training: a new insight from brain connectome

    PubMed Central

    Taya, Fumihiko; Sun, Yu; Babiloni, Fabio; Thakor, Nitish; Bezerianos, Anastasios

    2015-01-01

    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners’ learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals’ cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive functions. PMID:25883555

  8. Retinal Connectomics: Towards Complete, Accurate Networks

    PubMed Central

    Marc, Robert E.; Jones, Bryan W.; Watt, Carl B.; Anderson, James R.; Sigulinsky, Crystal; Lauritzen, Scott

    2013-01-01

    Connectomics is a strategy for mapping complex neural networks based on high-speed automated electron optical imaging, computational assembly of neural data volumes, web-based navigational tools to explore 1012–1015 byte (terabyte to petabyte) image volumes, and annotation and markup tools to convert images into rich networks with cellular metadata. These collections of network data and associated metadata, analyzed using tools from graph theory and classification theory, can be merged with classical systems theory, giving a more completely parameterized view of how biologic information processing systems are implemented in retina and brain. Networks have two separable features: topology and connection attributes. The first findings from connectomics strongly validate the idea that the topologies complete retinal networks are far more complex than the simple schematics that emerged from classical anatomy. In particular, connectomics has permitted an aggressive refactoring of the retinal inner plexiform layer, demonstrating that network function cannot be simply inferred from stratification; exposing the complex geometric rules for inserting different cells into a shared network; revealing unexpected bidirectional signaling pathways between mammalian rod and cone systems; documenting selective feedforward systems, novel candidate signaling architectures, new coupling motifs, and the highly complex architecture of the mammalian AII amacrine cell. This is but the beginning, as the underlying principles of connectomics are readily transferrable to non-neural cell complexes and provide new contexts for assessing intercellular communication. PMID:24016532

  9. Data dictionary services in XNAT and the Human Connectome Project.

    PubMed

    Herrick, Rick; McKay, Michael; Olsen, Timothy; Horton, William; Florida, Mark; Moore, Charles J; Marcus, Daniel S

    2014-01-01

    The XNAT informatics platform is an open source data management tool used by biomedical imaging researchers around the world. An important feature of XNAT is its highly extensible architecture: users of XNAT can add new data types to the system to capture the imaging and phenotypic data generated in their studies. Until recently, XNAT has had limited capacity to broadcast the meaning of these data extensions to users, other XNAT installations, and other software. We have implemented a data dictionary service for XNAT, which is currently being used on ConnectomeDB, the Human Connectome Project (HCP) public data sharing website. The data dictionary service provides a framework to define key relationships between data elements and structures across the XNAT installation. This includes not just core data representing medical imaging data or subject or patient evaluations, but also taxonomical structures, security relationships, subject groups, and research protocols. The data dictionary allows users to define metadata for data structures and their properties, such as value types (e.g., textual, integers, floats) and valid value templates, ranges, or field lists. The service provides compatibility and integration with other research data management services by enabling easy migration of XNAT data to standards-based formats such as the Resource Description Framework (RDF), JavaScript Object Notation (JSON), and Extensible Markup Language (XML). It also facilitates the conversion of XNAT's native data schema into standard neuroimaging vocabularies and structures.

  10. Data dictionary services in XNAT and the Human Connectome Project

    PubMed Central

    Herrick, Rick; McKay, Michael; Olsen, Timothy; Horton, William; Florida, Mark; Moore, Charles J.; Marcus, Daniel S.

    2014-01-01

    The XNAT informatics platform is an open source data management tool used by biomedical imaging researchers around the world. An important feature of XNAT is its highly extensible architecture: users of XNAT can add new data types to the system to capture the imaging and phenotypic data generated in their studies. Until recently, XNAT has had limited capacity to broadcast the meaning of these data extensions to users, other XNAT installations, and other software. We have implemented a data dictionary service for XNAT, which is currently being used on ConnectomeDB, the Human Connectome Project (HCP) public data sharing website. The data dictionary service provides a framework to define key relationships between data elements and structures across the XNAT installation. This includes not just core data representing medical imaging data or subject or patient evaluations, but also taxonomical structures, security relationships, subject groups, and research protocols. The data dictionary allows users to define metadata for data structures and their properties, such as value types (e.g., textual, integers, floats) and valid value templates, ranges, or field lists. The service provides compatibility and integration with other research data management services by enabling easy migration of XNAT data to standards-based formats such as the Resource Description Framework (RDF), JavaScript Object Notation (JSON), and Extensible Markup Language (XML). It also facilitates the conversion of XNAT's native data schema into standard neuroimaging vocabularies and structures. PMID:25071542

  11. Predicting human age using regional morphometry and inter-regional morphological similarity

    NASA Astrophysics Data System (ADS)

    Wang, Xun-Heng; Li, Lihua

    2016-03-01

    The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p < 0.00001, evaluated by Pearson correlation coefficient between predicted ages and actual ages. Moreover, the LASSO linear regression also found certain predictive features, most of which were inter-regional features. The turning-point of the developmental trajectories in human brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.

  12. Disrupted brain network functional dynamics and hyper-correlation of structural and functional connectome topology in patients with breast cancer prior to treatment.

    PubMed

    Kesler, Shelli R; Adams, Marjorie; Packer, Melissa; Rao, Vikram; Henneghan, Ashley M; Blayney, Douglas W; Palesh, Oxana

    2017-03-01

    Several previous studies have demonstrated that cancer chemotherapy is associated with brain injury and cognitive dysfunction. However, evidence suggests that cancer pathogenesis alone may play a role, even in non-CNS cancers. Using a multimodal neuroimaging approach, we measured structural and functional connectome topology as well as functional network dynamics in newly diagnosed patients with breast cancer. Our study involved a novel, pretreatment assessment that occurred prior to the initiation of any cancer therapies, including surgery with anesthesia. We enrolled 74 patients with breast cancer age 29-65 and 50 frequency-matched healthy female controls who underwent anatomic and resting-state functional MRI as well as cognitive testing. Compared to controls, patients with breast cancer demonstrated significantly lower functional network dynamics ( p  = .046) and cognitive functioning ( p  < .02, corrected). The breast cancer group also showed subtle alterations in structural local clustering and functional local clustering ( p  < .05, uncorrected) as well as significantly increased correlation between structural global clustering and functional global clustering compared to controls ( p  = .03). This hyper-correlation between structural and functional topologies was significantly associated with cognitive dysfunction ( p  = .005). Our findings could not be accounted for by psychological distress and suggest that non-CNS cancer may directly and/or indirectly affect the brain via mechanisms such as tumor-induced neurogenesis, inflammation, and/or vascular changes, for example. Our results also have broader implications concerning the importance of the balance between structural and functional connectome properties as a potential biomarker of general neurologic deficit.

  13. Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes

    PubMed Central

    Yan, Chao-Gan; Craddock, R. Cameron; Zuo, Xi-Nian; Zang, Yu-Feng; Milham, Michael P.

    2014-01-01

    As researchers increase their efforts to characterize variations in the functional connectome across studies and individuals, concerns about the many sources of nuisance variation present and their impact on resting state fMRI (R-fMRI) measures continue to grow. Although substantial within-site variation can exist, efforts to aggregate data across multiple sites such as the 1000 Functional Connectomes Project (FCP) and International Neuroimaging Data-sharing Initiative (INDI) datasets amplify these concerns. The present work draws upon standardization approaches commonly used in the microarray gene expression literature, and to a lesser extent recent imaging studies, and compares them with respect to their impact on relationships between common R-fMRI measures and nuisance variables (e.g., imaging site, motion), as well as phenotypic variables of interest (age, sex). Standardization approaches differed with regard to whether they were applied post-hoc vs. during pre-processing, and at the individual vs. group level; additionally they varied in whether they addressed additive effects vs. additive + multiplicative effects, and were parametric vs. non-parametric. While all standardization approaches were effective at reducing undesirable relationships with nuisance variables, post-hoc approaches were generally more effective than global signal regression (GSR). Across approaches, correction for additive effects (global mean) appeared to be more important than for multiplicative effects (global SD) for all R-fMRI measures, with the exception of amplitude of low frequency fluctuations (ALFF). Group-level post-hoc standardizations for mean-centering and variance-standardization were found to be advantageous in their ability to avoid the introduction of artifactual relationships with standardization parameters; though results between individual and group-level post-hoc approaches were highly similar overall. While post-hoc standardization procedures drastically increased test–retest (TRT) reliability for ALFF, modest reductions were observed for other measures after post-hoc standardizations—a phenomena likely attributable to the separation of voxel-wise from global differences among subjects (global mean and SD demonstrated moderate TRT reliability for these measures). Finally, the present work calls into question previous observations of increased anatomical specificity for GSR over mean centering, and draws attention to the near equivalence of global and gray matter signal regression. PMID:23631983

  14. Stimulation Mapping of Myelinated Tracts in Awake Patients

    PubMed Central

    Duffau, Hugues

    2016-01-01

    For a long time, although the functional anatomy of human cortex has extensively been studied, subcortical white matter tracts have received little consideration. Recent advances in tractography have opened the door to a non-invasive investigation of the subcortical fibers in vivo. However, this method cannot study directly the function of the bundles. Interestingly, for the first time in the history of cognitive neurosciences, direct axonal electrostimulation (DES) mapping of the neural pathways offers the unique opportunity to investigate the function of the connectomal anatomy. Indeed, this technique is able to perform real-time anatomo-functional correlations in awake patients who undergo brain surgery, especially at the level of the subcortical fibers. Here, the aim is to review original data issued from DES of myelinated tracts in adults, with regard to the functional connectivity mediating the sensorimotor, visuo-spatial, language, cognitive and emotional functions, as well as the interactions between these different sub-networks, leading ultimately to explore consciousness. Therefore, axonal stimulation is a valuable tool in the field of connectomics, that is, the map of neural connections, in order to switch from the traditional localizationist view of brain processing to a networking model in which cerebral functions are underpinned by the dynamic interactions of large-scale distributed and parallel sub-circuits. Such connectomal account should integrate the anatomic constraint represented by the subcortical fascicles. Indeed, post-lesional neuroplasticity is possible only on the condition that the white matter fibers are preserved, to allow communication and temporal synchronization among delocalized inter-connected networks. PMID:29765851

  15. Network control principles predict neuron function in the Caenorhabditis elegans connectome

    PubMed Central

    Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László

    2017-01-01

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social and technological networks1–3. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode C. elegans4–6, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires twelve neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation7–13, as well as one previously uncharacterised neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed, with single-cell ablations of DD04 or DD05, but not DD02 or DD03, specifically affecting posterior body movements. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterised connectomes. PMID:29045391

  16. Cognitive Flexibility through Metastable Neural Dynamics Is Disrupted by Damage to the Structural Connectome.

    PubMed

    Hellyer, Peter J; Scott, Gregory; Shanahan, Murray; Sharp, David J; Leech, Robert

    2015-06-17

    Current theory proposes that healthy neural dynamics operate in a metastable regime, where brain regions interact to simultaneously maximize integration and segregation. Metastability may confer important behavioral properties, such as cognitive flexibility. It is increasingly recognized that neural dynamics are constrained by the underlying structural connections between brain regions. An important challenge is, therefore, to relate structural connectivity, neural dynamics, and behavior. Traumatic brain injury (TBI) is a pre-eminent structural disconnection disorder whereby traumatic axonal injury damages large-scale connectivity, producing characteristic cognitive impairments, including slowed information processing speed and reduced cognitive flexibility, that may be a result of disrupted metastable dynamics. Therefore, TBI provides an experimental and theoretical model to examine how metastable dynamics relate to structural connectivity and cognition. Here, we use complementary empirical and computational approaches to investigate how metastability arises from the healthy structural connectome and relates to cognitive performance. We found reduced metastability in large-scale neural dynamics after TBI, measured with resting-state functional MRI. This reduction in metastability was associated with damage to the connectome, measured using diffusion MRI. Furthermore, decreased metastability was associated with reduced cognitive flexibility and information processing. A computational model, defined by empirically derived connectivity data, demonstrates how behaviorally relevant changes in neural dynamics result from structural disconnection. Our findings suggest how metastable dynamics are important for normal brain function and contingent on the structure of the human connectome. Copyright © 2015 the authors 0270-6474/15/359050-14$15.00/0.

  17. Network control principles predict neuron function in the Caenorhabditis elegans connectome

    NASA Astrophysics Data System (ADS)

    Yan, Gang; Vértes, Petra E.; Towlson, Emma K.; Chew, Yee Lian; Walker, Denise S.; Schafer, William R.; Barabási, Albert-László

    2017-10-01

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.

  18. Network control principles predict neuron function in the Caenorhabditis elegans connectome.

    PubMed

    Yan, Gang; Vértes, Petra E; Towlson, Emma K; Chew, Yee Lian; Walker, Denise S; Schafer, William R; Barabási, Albert-László

    2017-10-26

    Recent studies on the controllability of complex systems offer a powerful mathematical framework to systematically explore the structure-function relationship in biological, social, and technological networks. Despite theoretical advances, we lack direct experimental proof of the validity of these widely used control principles. Here we fill this gap by applying a control framework to the connectome of the nematode Caenorhabditis elegans, allowing us to predict the involvement of each C. elegans neuron in locomotor behaviours. We predict that control of the muscles or motor neurons requires 12 neuronal classes, which include neuronal groups previously implicated in locomotion by laser ablation, as well as one previously uncharacterized neuron, PDB. We validate this prediction experimentally, finding that the ablation of PDB leads to a significant loss of dorsoventral polarity in large body bends. Importantly, control principles also allow us to investigate the involvement of individual neurons within each neuronal class. For example, we predict that, within the class of DD motor neurons, only three (DD04, DD05, or DD06) should affect locomotion when ablated individually. This prediction is also confirmed; single cell ablations of DD04 or DD05 specifically affect posterior body movements, whereas ablations of DD02 or DD03 do not. Our predictions are robust to deletions of weak connections, missing connections, and rewired connections in the current connectome, indicating the potential applicability of this analytical framework to larger and less well-characterized connectomes.

  19. Meeting the memory challenges of brain-scale network simulation.

    PubMed

    Kunkel, Susanne; Potjans, Tobias C; Eppler, Jochen M; Plesser, Hans Ekkehard; Morrison, Abigail; Diesmann, Markus

    2011-01-01

    The development of high-performance simulation software is crucial for studying the brain connectome. Using connectome data to generate neurocomputational models requires software capable of coping with models on a variety of scales: from the microscale, investigating plasticity, and dynamics of circuits in local networks, to the macroscale, investigating the interactions between distinct brain regions. Prior to any serious dynamical investigation, the first task of network simulations is to check the consistency of data integrated in the connectome and constrain ranges for yet unknown parameters. Thanks to distributed computing techniques, it is possible today to routinely simulate local cortical networks of around 10(5) neurons with up to 10(9) synapses on clusters and multi-processor shared-memory machines. However, brain-scale networks are orders of magnitude larger than such local networks, in terms of numbers of neurons and synapses as well as in terms of computational load. Such networks have been investigated in individual studies, but the underlying simulation technologies have neither been described in sufficient detail to be reproducible nor made publicly available. Here, we discover that as the network model sizes approach the regime of meso- and macroscale simulations, memory consumption on individual compute nodes becomes a critical bottleneck. This is especially relevant on modern supercomputers such as the Blue Gene/P architecture where the available working memory per CPU core is rather limited. We develop a simple linear model to analyze the memory consumption of the constituent components of neuronal simulators as a function of network size and the number of cores used. This approach has multiple benefits. The model enables identification of key contributing components to memory saturation and prediction of the effects of potential improvements to code before any implementation takes place. As a consequence, development cycles can be shorter and less expensive. Applying the model to our freely available Neural Simulation Tool (NEST), we identify the software components dominant at different scales, and develop general strategies for reducing the memory consumption, in particular by using data structures that exploit the sparseness of the local representation of the network. We show that these adaptations enable our simulation software to scale up to the order of 10,000 processors and beyond. As memory consumption issues are likely to be relevant for any software dealing with complex connectome data on such architectures, our approach and our findings should be useful for researchers developing novel neuroinformatics solutions to the challenges posed by the connectome project.

  20. Constraints and spandrels of interareal connectomes

    PubMed Central

    Rubinov, Mikail

    2016-01-01

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls. PMID:27924867

  1. Constraints and spandrels of interareal connectomes.

    PubMed

    Rubinov, Mikail

    2016-12-07

    Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.

  2. Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex.

    PubMed

    Ulloa, Antonio; Horwitz, Barry

    2016-01-01

    A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were "non-task-specific" (NS) neurons that served as noise generators to "task-specific" neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors.

  3. PAGANI Toolkit: Parallel graph-theoretical analysis package for brain network big data.

    PubMed

    Du, Haixiao; Xia, Mingrui; Zhao, Kang; Liao, Xuhong; Yang, Huazhong; Wang, Yu; He, Yong

    2018-05-01

    The recent collection of unprecedented quantities of neuroimaging data with high spatial resolution has led to brain network big data. However, a toolkit for fast and scalable computational solutions is still lacking. Here, we developed the PArallel Graph-theoretical ANalysIs (PAGANI) Toolkit based on a hybrid central processing unit-graphics processing unit (CPU-GPU) framework with a graphical user interface to facilitate the mapping and characterization of high-resolution brain networks. Specifically, the toolkit provides flexible parameters for users to customize computations of graph metrics in brain network analyses. As an empirical example, the PAGANI Toolkit was applied to individual voxel-based brain networks with ∼200,000 nodes that were derived from a resting-state fMRI dataset of 624 healthy young adults from the Human Connectome Project. Using a personal computer, this toolbox completed all computations in ∼27 h for one subject, which is markedly less than the 118 h required with a single-thread implementation. The voxel-based functional brain networks exhibited prominent small-world characteristics and densely connected hubs, which were mainly located in the medial and lateral fronto-parietal cortices. Moreover, the female group had significantly higher modularity and nodal betweenness centrality mainly in the medial/lateral fronto-parietal and occipital cortices than the male group. Significant correlations between the intelligence quotient and nodal metrics were also observed in several frontal regions. Collectively, the PAGANI Toolkit shows high computational performance and good scalability for analyzing connectome big data and provides a friendly interface without the complicated configuration of computing environments, thereby facilitating high-resolution connectomics research in health and disease. © 2018 Wiley Periodicals, Inc.

  4. SLEEP AND THE FUNCTIONAL CONNECTOME

    PubMed Central

    Picchioni, Dante; Duyn, Jeff H.; Horovitz, Silvina G.

    2013-01-01

    Sleep and the functional connectome are research areas with considerable overlap. Neuroimaging studies of sleep based on EEG-PET and EEG-fMRI are revealing the brain networks that support sleep, as well as networks that may support the roles and processes attributed to sleep. For example, phenomena such as arousal and consciousness are substantially modulated during sleep, and one would expect this modulation to be reflected in altered network activity. In addition, recent work suggests that sleep also has a number of adaptive functions that support waking activity. Thus the study of sleep may elucidate the circuits and processes that support waking function and complement information obtained from fMRI during waking conditions. In this review, we will discuss examples of this for memory, arousal, and consciousness after providing a brief background on sleep and on studying it with fMRI. PMID:23707592

  5. Mapping remodeling of thalamocortical projections in the living reeler mouse brain by diffusion tractography

    PubMed Central

    Harsan, Laura-Adela; Dávid, Csaba; Reisert, Marco; Schnell, Susanne; Hennig, Jürgen; von Elverfeldt, Dominik; Staiger, Jochen F.

    2013-01-01

    A major challenge in neuroscience is to accurately decipher in vivo the entire brain circuitry (connectome) at a microscopic level. Currently, the only methodology providing a global noninvasive window into structural brain connectivity is diffusion tractography. The extent to which the reconstructed pathways reflect realistic neuronal networks depends, however, on data acquisition and postprocessing factors. Through a unique combination of approaches, we designed and evaluated herein a framework for reliable fiber tracking and mapping of the living mouse brain connectome. One important wiring scheme, connecting gray matter regions and passing fiber-crossing areas, was closely examined: the lemniscal thalamocortical (TC) pathway. We quantitatively validated the TC projections inferred from in vivo tractography with correlative histological axonal tracing in the same wild-type and reeler mutant mice. We demonstrated noninvasively that changes in patterning of the cortical sheet, such as highly disorganized cortical lamination in reeler, led to spectacular compensatory remodeling of the TC pathway. PMID:23610438

  6. Age-related changes in the topological organization of the white matter structural connectome across the human lifespan.

    PubMed

    Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni

    2015-10-01

    Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age. © 2015 Wiley Periodicals, Inc.

  7. The Delta Connectome: A network-based framework for studying connectivity in river deltas

    NASA Astrophysics Data System (ADS)

    Passalacqua, Paola

    2017-01-01

    Many deltas, including the Mississippi River Delta, have been losing land at fast rates compromising the safety and sustainability of their ecosystems. Knowledge of delta vulnerability has raised global concern and stimulated active interdisciplinary research as deltas are densely populated landscapes, rich in agriculture, fisheries, oil and gas, and important means for navigation. There are many ways of looking at this problem which all contribute to a deeper understanding of the functioning of coastal systems. One aspect that has been overlooked thus far, yet fundamental for advancing delta science is connectivity, both physical (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). In this paper, I propose a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. After analyzing the classic network representation as a set of nodes (e.g., bifurcations and junctions or regions with distinct physical or statistical behavior) and links (e.g., channels), I show that from connectivity considerations the delta emerges as a leaky network that continuously exchanges fluxes of matter, energy, and information with its surroundings and evolves over time. I explore each network representation and show through several examples how quantifying connectivity can bring to light aspects of deltaic systems so far unexplored and yet fundamental to understanding system functioning and informing coastal management and restoration. This paper serves both as an introduction to the Delta Connectome framework as well as a review of recent applications of the concepts of network and connectivity to deltaic systems within the Connectome framework.

  8. Distributed effects of methylphenidate on the network structure of the resting brain: a connectomic pattern classification analysis.

    PubMed

    Sripada, Chandra Sekhar; Kessler, Daniel; Welsh, Robert; Angstadt, Michael; Liberzon, Israel; Phan, K Luan; Scott, Clayton

    2013-11-01

    Methylphenidate is a psychostimulant medication that produces improvements in functions associated with multiple neurocognitive systems. To investigate the potentially distributed effects of methylphenidate on the brain's intrinsic network architecture, we coupled resting state imaging with multivariate pattern classification. In a within-subject, double-blind, placebo-controlled, randomized, counterbalanced, cross-over design, 32 healthy human volunteers received either methylphenidate or placebo prior to two fMRI resting state scans separated by approximately one week. Resting state connectomes were generated by placing regions of interest at regular intervals throughout the brain, and these connectomes were submitted for support vector machine analysis. We found that methylphenidate produces a distributed, reliably detected, multivariate neural signature. Methylphenidate effects were evident across multiple resting state networks, especially visual, somatomotor, and default networks. Methylphenidate reduced coupling within visual and somatomotor networks. In addition, default network exhibited decoupling with several task positive networks, consistent with methylphenidate modulation of the competitive relationship between these networks. These results suggest that connectivity changes within and between large-scale networks are potentially involved in the mechanisms by which methylphenidate improves attention functioning. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The organisation of the elderly connectome.

    PubMed

    Perry, Alistair; Wen, Wei; Lord, Anton; Thalamuthu, Anbupalam; Roberts, Gloria; Mitchell, Philip B; Sachdev, Perminder S; Breakspear, Michael

    2015-07-01

    Investigations of the human connectome have elucidated core features of adult structural networks, particularly the crucial role of hub-regions. However, little is known regarding network organisation of the healthy elderly connectome, a crucial prelude to the systematic study of neurodegenerative disorders. Here, whole-brain probabilistic tractography was performed on high-angular diffusion-weighted images acquired from 115 healthy elderly subjects (age 76-94 years; 65 females). Structural networks were reconstructed between 512 cortical and subcortical brain regions. We sought to investigate the architectural features of hub-regions, as well as left-right asymmetries, and sexual dimorphisms. We observed that the topology of hub-regions is consistent with a young adult population, and previously published adult connectomic data. More importantly, the architectural features of hub connections reflect their ongoing vital role in network communication. We also found substantial sexual dimorphisms, with females exhibiting stronger inter-hemispheric connections between cingulate and prefrontal cortices. Lastly, we demonstrate intriguing left-lateralized subnetworks consistent with the neural circuitry specialised for language and executive functions, whilst rightward subnetworks were dominant in visual and visuospatial streams. These findings provide insights into healthy brain ageing and provide a benchmark for the study of neurodegenerative disorders such as Alzheimer's disease (AD) and frontotemporal dementia (FTD). Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Evaluation and statistical inference for human connectomes.

    PubMed

    Pestilli, Franco; Yeatman, Jason D; Rokem, Ariel; Kay, Kendrick N; Wandell, Brian A

    2014-10-01

    Diffusion-weighted imaging coupled with tractography is currently the only method for in vivo mapping of human white-matter fascicles. Tractography takes diffusion measurements as input and produces the connectome, a large collection of white-matter fascicles, as output. We introduce a method to evaluate the evidence supporting connectomes. Linear fascicle evaluation (LiFE) takes any connectome as input and predicts diffusion measurements as output, using the difference between the measured and predicted diffusion signals to quantify the prediction error. We use the prediction error to evaluate the evidence that supports the properties of the connectome, to compare tractography algorithms and to test hypotheses about tracts and connections.

  11. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.

    PubMed

    Arslan, Salim; Ktena, Sofia Ira; Makropoulos, Antonios; Robinson, Emma C; Rueckert, Daniel; Parisot, Sarah

    2018-04-15

    The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Connectomics-based analysis of information flow in the Drosophila brain.

    PubMed

    Shih, Chi-Tin; Sporns, Olaf; Yuan, Shou-Li; Su, Ta-Shun; Lin, Yen-Jen; Chuang, Chao-Chun; Wang, Ting-Yuan; Lo, Chung-Chuang; Greenspan, Ralph J; Chiang, Ann-Shyn

    2015-05-18

    Understanding the overall patterns of information flow within the brain has become a major goal of neuroscience. In the current study, we produced a first draft of the Drosophila connectome at the mesoscopic scale, reconstructed from 12,995 images of neuron projections collected in FlyCircuit (version 1.1). Neuron polarities were predicted according to morphological criteria, with nodes of the network corresponding to brain regions designated as local processing units (LPUs). The weight of each directed edge linking a pair of LPUs was determined by the number of neuron terminals that connected one LPU to the other. The resulting network showed hierarchical structure and small-world characteristics and consisted of five functional modules that corresponded to sensory modalities (olfactory, mechanoauditory, and two visual) and the pre-motor center. Rich-club organization was present in this network and involved LPUs in all sensory centers, and rich-club members formed a putative motor center of the brain. Major intra- and inter-modular loops were also identified that could play important roles for recurrent and reverberant information flow. The present analysis revealed whole-brain patterns of network structure and information flow. Additionally, we propose that the overall organizational scheme showed fundamental similarities to the network structure of the mammalian brain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Characterization of task-free and task-performance brain states via functional connectome patterns.

    PubMed

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns

    PubMed Central

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2014-01-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590

  15. A comprehensive diffusion MRI dataset acquired on the MGH Connectome scanner in a biomimetic brain phantom.

    PubMed

    Fan, Qiuyun; Nummenmaa, Aapo; Wichtmann, Barbara; Witzel, Thomas; Mekkaoui, Choukri; Schneider, Walter; Wald, Lawrence L; Huang, Susie Y

    2018-06-01

    We provide a comprehensive diffusion MRI dataset acquired with a novel biomimetic phantom mimicking human white matter. The fiber substrates in the diffusion phantom were constructed from hollow textile axons ("taxons") with an inner diameter of 11.8±1.2 µm and outer diameter of 33.5±2.3 µm. Data were acquired on the 3 T CONNECTOM MRI scanner with multiple diffusion times and multiple q-values per diffusion time, which is a dedicated acquisition for validation of microstructural imaging methods, such as compartment size and volume fraction mapping. Minimal preprocessing was performed to correct for susceptibility and eddy current distortions. Data were deposited in the XNAT Central database (project ID: dMRI_Phant_MGH).

  16. Connectomes as constitutively epistemic objects: Critical perspectives on modeling in current neuroanatomy.

    PubMed

    Haueis, Philipp; Slaby, Jan

    2017-01-01

    The term "connectome" is commonly taken to describe a complete map of neural connections in a nervous system of a given species. This chapter provides a critical perspective on the role of connectomes in neuroscientific practice and asks how the connectomic approach fits into a larger context in which network thinking permeates technology, infrastructure, social life, and the economy. In the first part of this chapter, we argue that, seen from the perspective of ongoing research, the notion of connectomes as "complete descriptions" is misguided. Our argument combines Rachel Ankeny's analysis of neuroanatomical wiring diagrams as "descriptive models" with Hans-Jörg Rheinberger's notion of "epistemic objects," i.e., targets of research that are still partially unknown. Combining these aspects we conclude that connectomes are constitutively epistemic objects: there just is no way to turn them into permanent and complete technical standards because the possibilities to map connection properties under different modeling assumptions are potentially inexhaustible. In the second part of the chapter, we use this understanding of connectomes as constitutively epistemic objects in order to critically assess the historical and political dimensions of current neuroscientific research. We argue that connectomics shows how the notion of the "brain as a network" has become the dominant metaphor of contemporary brain research. We further point out that this metaphor shares (potentially problematic) affinities to the form of contemporary "network societies." We close by pointing out how the relation between connectomes and networks in society could be used in a more fruitful manner. © 2017 Elsevier B.V. All rights reserved.

  17. Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex

    PubMed Central

    Ulloa, Antonio; Horwitz, Barry

    2016-01-01

    A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were “non-task-specific” (NS) neurons that served as noise generators to “task-specific” neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors. PMID:27536235

  18. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome.

    PubMed

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the "connectome". Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/.

  19. Quantifying Differences and Similarities in Whole-Brain White Matter Architecture Using Local Connectome Fingerprints

    PubMed Central

    Singh, Aarti; Poczos, Barnabas; Erickson, Kirk I.; Tseng, Wen-Yih I.; Verstynen, Timothy D.

    2016-01-01

    Quantifying differences or similarities in connectomes has been a challenge due to the immense complexity of global brain networks. Here we introduce a noninvasive method that uses diffusion MRI to characterize whole-brain white matter architecture as a single local connectome fingerprint that allows for a direct comparison between structural connectomes. In four independently acquired data sets with repeated scans (total N = 213), we show that the local connectome fingerprint is highly specific to an individual, allowing for an accurate self-versus-others classification that achieved 100% accuracy across 17,398 identification tests. The estimated classification error was approximately one thousand times smaller than fingerprints derived from diffusivity-based measures or region-to-region connectivity patterns for repeat scans acquired within 3 months. The local connectome fingerprint also revealed neuroplasticity within an individual reflected as a decreasing trend in self-similarity across time, whereas this change was not observed in the diffusivity measures. Moreover, the local connectome fingerprint can be used as a phenotypic marker, revealing 12.51% similarity between monozygotic twins, 5.14% between dizygotic twins, and 4.51% between none-twin siblings, relative to differences between unrelated subjects. This novel approach opens a new door for probing the influence of pathological, genetic, social, or environmental factors on the unique configuration of the human connectome. PMID:27846212

  20. Communication and wiring in the cortical connectome

    PubMed Central

    Budd, Julian M. L.; Kisvárday, Zoltán F.

    2012-01-01

    In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns. PMID:23087619

  1. Connectomics and other novel methods for examining neural systems.

    PubMed

    Wurtman, Richard J

    2017-04-01

    Novel approaches for studying the brain and relating its activities to mental phenomena have come into use during the past decade (Bargmann, 2015). These include both new laboratory methods - involving, among others, generation of isolated cells which retain neuronal characteristics in vivo; the selective stimulation of neurons by light in vivo; and direct electrical stimulation of specific brain regions to restore a system's balance of excitation and inhibition - and a new organizing principle, "connectomics", which recognizes that networks, and not simply a key nucleus or region, underlie most brain functions and malfunctions. Its application has already improved our comprehension of how the brain normally functions and our ability to help patients with such poorly treated neurologic and psychiatric diseases as Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  3. Graph theoretical model of a sensorimotor connectome in zebrafish.

    PubMed

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  4. A case study in connectomics: the history, mapping, and connectivity of the claustrum

    PubMed Central

    Torgerson, Carinna M.; Van Horn, John D.

    2014-01-01

    The claustrum seems to have been waiting for the science of connectomics. Due to its tiny size, the structure has remained remarkably difficult to study until modern technological and mathematical advancements like graph theory, connectomics, diffusion tensor imaging, HARDI, and excitotoxic lesioning. That does not mean, however, that early methods allowed researchers to assess micro-connectomics. In fact, the claustrum is such an enigma that the only things known for certain about it are its histology, and that it is extraordinarily well connected. In this literature review, we provide background details on the claustrum and the history of its study in the human and in other animal species. By providing an explanation of the neuroimaging and histology methods have been undertaken to study the claustrum thus far—and the conclusions these studies have drawn—we illustrate this example of how the shift from micro-connectomics to macro-connectomics advances the field of neuroscience and improves our capacity to understand the brain. PMID:25426062

  5. Connectome sensitivity or specificity: which is more important?

    PubMed

    Zalesky, Andrew; Fornito, Alex; Cocchi, Luca; Gollo, Leonardo L; van den Heuvel, Martijn P; Breakspear, Michael

    2016-11-15

    Connectomes with high sensitivity and high specificity are unattainable with current axonal fiber reconstruction methods, particularly at the macro-scale afforded by magnetic resonance imaging. Tensor-guided deterministic tractography yields sparse connectomes that are incomplete and contain false negatives (FNs), whereas probabilistic methods steered by crossing-fiber models yield dense connectomes, often with low specificity due to false positives (FPs). Densely reconstructed probabilistic connectomes are typically thresholded to improve specificity at the cost of a reduction in sensitivity. What is the optimal tradeoff between connectome sensitivity and specificity? We show empirically and theoretically that specificity is paramount. Our evaluations of the impact of FPs and FNs on empirical connectomes indicate that specificity is at least twice as important as sensitivity when estimating key properties of brain networks, including topological measures of network clustering, network efficiency and network modularity. Our asymptotic analysis of small-world networks with idealized modular structure reveals that as the number of nodes grows, specificity becomes exactly twice as important as sensitivity to the estimation of the clustering coefficient. For the estimation of network efficiency, the relative importance of specificity grows linearly with the number of nodes. The greater importance of specificity is due to FPs occurring more prevalently between network modules rather than within them. These spurious inter-modular connections have a dramatic impact on network topology. We argue that efforts to maximize the sensitivity of connectome reconstruction should be realigned with the need to map brain networks with high specificity. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Changes in functional and structural brain connectome along the Alzheimer's disease continuum.

    PubMed

    Filippi, Massimo; Basaia, Silvia; Canu, Elisa; Imperiale, Francesca; Magnani, Giuseppe; Falautano, Monica; Comi, Giancarlo; Falini, Andrea; Agosta, Federica

    2018-05-09

    The aim of this study was two-fold: (i) to investigate structural and functional brain network architecture in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI), stratified in converters (c-aMCI) and non-converters (nc-aMCI) to AD; and to assess the relationship between healthy brain network functional connectivity and the topography of brain atrophy in patients along the AD continuum. Ninety-four AD patients, 47 aMCI patients (25 c-aMCI within 36 months) and 53 age- and sex-matched healthy controls were studied. Graph analysis and connectomics assessed global and local, structural and functional topological network properties and regional connectivity. Healthy topological features of brain regions were assessed based on their connectivity with the point of maximal atrophy (epicenter) in AD and aMCI patients. Brain network graph analysis properties were severely altered in AD patients. Structural brain network was already altered in c-aMCI patients relative to healthy controls in particular in the temporal and parietal brain regions, while functional connectivity did not change. Structural connectivity alterations distinguished c-aMCI from nc-aMCI cases. In both AD and c-aMCI, the point of maximal atrophy was located in left hippocampus (disease-epicenter). Brain regions most strongly connected with the disease-epicenter in the healthy functional connectome were also the most atrophic in both AD and c-aMCI patients. Progressive degeneration in the AD continuum is associated with an early breakdown of anatomical brain connections and follows the strongest connections with the disease-epicenter. These findings support the hypothesis that the topography of brain connectional architecture can modulate the spread of AD through the brain.

  7. How to Build a Functional Connectomic Biomarker for Mild Cognitive Impairment From Source Reconstructed MEG Resting-State Activity: The Combination of ROI Representation and Connectivity Estimator Matters.

    PubMed

    Dimitriadis, Stavros I; López, María E; Bruña, Ricardo; Cuesta, Pablo; Marcos, Alberto; Maestú, Fernando; Pereda, Ernesto

    2018-01-01

    Our work aimed to demonstrate the combination of machine learning and graph theory for the designing of a connectomic biomarker for mild cognitive impairment (MCI) subjects using eyes-closed neuromagnetic recordings. The whole analysis based on source-reconstructed neuromagnetic activity. As ROI representation, we employed the principal component analysis (PCA) and centroid approaches. As representative bi-variate connectivity estimators for the estimation of intra and cross-frequency interactions, we adopted the phase locking value (PLV), the imaginary part (iPLV) and the correlation of the envelope (CorrEnv). Both intra and cross-frequency interactions (CFC) have been estimated with the three connectivity estimators within the seven frequency bands (intra-frequency) and in pairs (CFC), correspondingly. We demonstrated how different versions of functional connectivity graphs single-layer (SL-FCG) and multi-layer (ML-FCG) can give us a different view of the functional interactions across the brain areas. Finally, we applied machine learning techniques with main scope to build a reliable connectomic biomarker by analyzing both SL-FCG and ML-FCG in two different options: as a whole unit using a tensorial extraction algorithm and as single pair-wise coupling estimations. We concluded that edge-weighed feature selection strategy outperformed the tensorial treatment of SL-FCG and ML-FCG. The highest classification performance was obtained with the centroid ROI representation and edge-weighted analysis of the SL-FCG reaching the 98% for the CorrEnv in α 1 :α 2 and 94% for the iPLV in α 2 . Classification performance based on the multi-layer participation coefficient, a multiplexity index reached 52% for iPLV and 52% for CorrEnv. Selected functional connections that build the multivariate connectomic biomarker in the edge-weighted scenario are located in default-mode, fronto-parietal, and cingulo-opercular network. Our analysis supports the notion of analyzing FCG simultaneously in intra and cross-frequency whole brain interactions with various connectivity estimators in beamformed recordings.

  8. Critical dynamics on a large human Open Connectome network

    NASA Astrophysics Data System (ADS)

    Ódor, Géza

    2016-12-01

    Extended numerical simulations of threshold models have been performed on a human brain network with N =836 733 connected nodes available from the Open Connectome Project. While in the case of simple threshold models a sharp discontinuous phase transition without any critical dynamics arises, variable threshold models exhibit extended power-law scaling regions. This is attributed to fact that Griffiths effects, stemming from the topological or interaction heterogeneity of the network, can become relevant if the input sensitivity of nodes is equalized. I have studied the effects of link directness, as well as the consequence of inhibitory connections. Nonuniversal power-law avalanche size and time distributions have been found with exponents agreeing with the values obtained in electrode experiments of the human brain. The dynamical critical region occurs in an extended control parameter space without the assumption of self-organized criticality.

  9. Long-term neural and physiological phenotyping of a single human

    PubMed Central

    Poldrack, Russell A.; Laumann, Timothy O.; Koyejo, Oluwasanmi; Gregory, Brenda; Hover, Ashleigh; Chen, Mei-Yen; Gorgolewski, Krzysztof J.; Luci, Jeffrey; Joo, Sung Jun; Boyd, Ryan L.; Hunicke-Smith, Scott; Simpson, Zack Booth; Caven, Thomas; Sochat, Vanessa; Shine, James M.; Gordon, Evan; Snyder, Abraham Z.; Adeyemo, Babatunde; Petersen, Steven E.; Glahn, David C.; Reese Mckay, D.; Curran, Joanne E.; Göring, Harald H. H.; Carless, Melanie A.; Blangero, John; Dougherty, Robert; Leemans, Alexander; Handwerker, Daniel A.; Frick, Laurie; Marcotte, Edward M.; Mumford, Jeanette A.

    2015-01-01

    Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders. PMID:26648521

  10. Segmentation of the mouse fourth deep lumbrical muscle connectome reveals concentric organisation of motor units

    PubMed Central

    Hirst, Theodore C; Ribchester, Richard R

    2013-01-01

    Connectomic analysis of the nervous system aims to discover and establish principles that underpin normal and abnormal neural connectivity and function. Here we performed image analysis of motor unit connectivity in the fourth deep lumbrical muscle (4DL) of mice, using transgenic expression of fluorescent protein in motor neurones as a morphological reporter. We developed a method that accelerated segmentation of confocal image projections of 4DL motor units, by applying high resolution (63×, 1.4 NA objective) imaging or deconvolution only where either proved necessary, in order to resolve axon crossings that produced ambiguities in the correct assignment of axon terminals to identified motor units imaged at lower optical resolution (40×, 1.3 NA). The 4DL muscles contained between 4 and 9 motor units and motor unit sizes ranged in distribution from 3 to 111 motor nerve terminals per unit. Several structural properties of the motor units were consistent with those reported in other muscles, including suboptimal wiring length and distribution of motor unit size. Surprisingly, however, small motor units were confined to a region of the muscle near the nerve entry point, whereas their larger counterparts were progressively more widely dispersed, suggesting a previously unrecognised form of segregated motor innervation in this muscle. We also found small but significant differences in variance of motor endplate length in motor units, which correlated weakly with their motor unit size. Thus, our connectomic analysis has revealed a pattern of concentric innervation that may perhaps also exist in other, cylindrical muscles that have not previously been thought to show segregated motor unit organisation. This organisation may be the outcome of competition during postnatal development based on intrinsic neuronal differences in synaptic size or synaptic strength that generates a territorial hierarchy in motor unit size and disposition. PMID:23940381

  11. Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease

    PubMed Central

    Horn, Andreas; Reich, Martin; Vorwerk, Johannes; Li, Ningfei; Wenzel, Gregor; Fang, Qianqian; Schmitz-Hübsch, Tanja; Nickl, Robert; Kupsch, Andreas; Volkmann, Jens; Kühn, Andrea A.; Fox, Michael D.

    2018-01-01

    Objective The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort. Methods A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of the Unified Parkinson Disease Rating Scale [UPDRS]). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center. Results In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p<0.001). This same connectivity profile predicted response in an independent patient cohort (p<0.01). Structural and functional connectivity were independent predictors of clinical improvement (p<0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease matched to our DBS patients. Interpretation Effective STN DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. PMID:28586141

  12. A probabilistic atlas of human brainstem pathways based on connectome imaging data.

    PubMed

    Tang, Yuchun; Sun, Wei; Toga, Arthur W; Ringman, John M; Shi, Yonggang

    2018-04-01

    The brainstem is a critical structure that regulates vital autonomic functions, houses the cranial nerves and their nuclei, relays motor and sensory information between the brain and spinal cord, and modulates cognition, mood, and emotions. As a primary relay center, the fiber pathways of the brainstem include efferent and afferent connections among the cerebral cortex, spinal cord, and cerebellum. While diffusion MRI has been successfully applied to map various brain pathways, its application for the in vivo imaging of the brainstem pathways has been limited due to inadequate resolution and large susceptibility-induced distortion artifacts. With the release of high-resolution data from the Human Connectome Project (HCP), there is increasing interest in mapping human brainstem pathways. Previous works relying on HCP data to study brainstem pathways, however, did not consider the prevalence (>80%) of large distortions in the brainstem even after the application of correction procedures from the HCP-Pipeline. They were also limited in the lack of adequate consideration of subject variability in either fiber pathways or region of interests (ROIs) used for bundle reconstruction. To overcome these limitations, we develop in this work a probabilistic atlas of 23 major brainstem bundles using high-quality HCP data passing rigorous quality control. For the large-scale data from the 500-Subject release of HCP, we conducted extensive quality controls to exclude subjects with severe distortions in the brainstem area. After that, we developed a systematic protocol to manually delineate 1300 ROIs on 20 HCP subjects (10 males; 10 females) for the reconstruction of fiber bundles using tractography techniques. Finally, we leveraged our novel connectome modeling techniques including high order fiber orientation distribution (FOD) reconstruction from multi-shell diffusion imaging and topography-preserving tract filtering algorithms to successfully reconstruct the 23 fiber bundles for each subject, which were then used to calculate the probabilistic atlases in the MNI152 space for public release. In our experimental results, we demonstrate that our method yielded anatomically faithful reconstruction of the brainstem pathways and achieved improved performance in comparison with an existing atlas of cerebellar peduncles based on HCP data. These atlases have been publicly released on NITRIC (https://www.nitrc.org/projects/brainstem_atlas/) and can be readily used by brain imaging researchers interested in studying brainstem pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Mapping the Alzheimer’s Brain with Connectomics

    PubMed Central

    Xie, Teng; He, Yong

    2012-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. As an incurable, progressive, and neurodegenerative disease, it causes cognitive and memory deficits. However, the biological mechanisms underlying the disease are not thoroughly understood. In recent years, non-invasive neuroimaging and neurophysiological techniques [e.g., structural magnetic resonance imaging (MRI), diffusion MRI, functional MRI, and EEG/MEG] and graph theory based network analysis have provided a new perspective on structural and functional connectivity patterns of the human brain (i.e., the human connectome) in health and disease. Using these powerful approaches, several recent studies of patients with AD exhibited abnormal topological organization in both global and regional properties of neuronal networks, indicating that AD not only affects specific brain regions, but also alters the structural and functional associations between distinct brain regions. Specifically, disruptive organization in the whole-brain networks in AD is involved in the loss of small-world characters and the re-organization of hub distributions. These aberrant neuronal connectivity patterns were associated with cognitive deficits in patients with AD, even with genetic factors in healthy aging. These studies provide empirical evidence to support the existence of an aberrant connectome of AD. In this review we will summarize recent advances discovered in large-scale brain network studies of AD, mainly focusing on graph theoretical analysis of brain connectivity abnormalities. These studies provide novel insights into the pathophysiological mechanisms of AD and could be helpful in developing imaging biomarkers for disease diagnosis and monitoring. PMID:22291664

  14. Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder.

    PubMed

    Zhao, Yu; Dong, Qinglin; Chen, Hanbo; Iraji, Armin; Li, Yujie; Makkie, Milad; Kou, Zhifeng; Liu, Tianming

    2017-12-01

    State-of-the-art functional brain network reconstruction methods such as independent component analysis (ICA) or sparse coding of whole-brain fMRI data can effectively infer many thousands of volumetric brain network maps from a large number of human brains. However, due to the variability of individual brain networks and the large scale of such networks needed for statistically meaningful group-level analysis, it is still a challenging and open problem to derive group-wise common networks as network atlases. Inspired by the superior spatial pattern description ability of the deep convolutional neural networks (CNNs), a novel deep 3D convolutional autoencoder (CAE) network is designed here to extract spatial brain network features effectively, based on which an Apache Spark enabled computational framework is developed for fast clustering of larger number of network maps into fine-granularity atlases. To evaluate this framework, 10 resting state networks (RSNs) were manually labeled from the sparsely decomposed networks of Human Connectome Project (HCP) fMRI data and 5275 network training samples were obtained, in total. Then the deep CAE models are trained by these functional networks' spatial maps, and the learned features are used to refine the original 10 RSNs into 17 network atlases that possess fine-granularity functional network patterns. Interestingly, it turned out that some manually mislabeled outliers in training networks can be corrected by the deep CAE derived features. More importantly, fine granularities of networks can be identified and they reveal unique network patterns specific to different brain task states. By further applying this method to a dataset of mild traumatic brain injury study, it shows that the technique can effectively identify abnormal small networks in brain injury patients in comparison with controls. In general, our work presents a promising deep learning and big data analysis solution for modeling functional connectomes, with fine granularities, based on fMRI data. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Using high-throughput barcode sequencing to efficiently map connectomes.

    PubMed

    Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M

    2017-07-07

    The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline.

    PubMed

    Adhikari, Bhim M; Jahanshad, Neda; Shukla, Dinesh; Glahn, David C; Blangero, John; Reynolds, Richard C; Cox, Robert W; Fieremans, Els; Veraart, Jelle; Novikov, Dmitry S; Nichols, Thomas E; Hong, L Elliot; Thompson, Paul M; Kochunov, Peter

    2018-01-01

    Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.

  17. Anatomical and functional organization of the human substantia nigra and its connections

    PubMed Central

    Zhang, Yu; Larcher, Kevin Michel-Herve; Misic, Bratislav

    2017-01-01

    We investigated the anatomical and functional organization of the human substantia nigra (SN) using diffusion and functional MRI data from the Human Connectome Project. We identified a tripartite connectivity-based parcellation of SN with a limbic, cognitive, motor arrangement. The medial SN connects with limbic striatal and cortical regions and encodes value (greater response to monetary wins than losses during fMRI), while the ventral SN connects with associative regions of cortex and striatum and encodes salience (equal response to wins and losses). The lateral SN connects with somatomotor regions of striatum and cortex and also encodes salience. Behavioral measures from delay discounting and flanker tasks supported a role for the value-coding medial SN network in decisional impulsivity, while the salience-coding ventral SN network was associated with motor impulsivity. In sum, there is anatomical and functional heterogeneity of human SN, which underpins value versus salience coding, and impulsive choice versus impulsive action. PMID:28826495

  18. Multivariate Heteroscedasticity Models for Functional Brain Connectivity.

    PubMed

    Seiler, Christof; Holmes, Susan

    2017-01-01

    Functional brain connectivity is the co-occurrence of brain activity in different areas during resting and while doing tasks. The data of interest are multivariate timeseries measured simultaneously across brain parcels using resting-state fMRI (rfMRI). We analyze functional connectivity using two heteroscedasticity models. Our first model is low-dimensional and scales linearly in the number of brain parcels. Our second model scales quadratically. We apply both models to data from the Human Connectome Project (HCP) comparing connectivity between short and conventional sleepers. We find stronger functional connectivity in short than conventional sleepers in brain areas consistent with previous findings. This might be due to subjects falling asleep in the scanner. Consequently, we recommend the inclusion of average sleep duration as a covariate to remove unwanted variation in rfMRI studies. A power analysis using the HCP data shows that a sample size of 40 detects 50% of the connectivity at a false discovery rate of 20%. We provide implementations using R and the probabilistic programming language Stan.

  19. Functional Connectome Analysis of Dopamine Neuron Glutamatergic Connections in Forebrain Regions.

    PubMed

    Mingote, Susana; Chuhma, Nao; Kusnoor, Sheila V; Field, Bianca; Deutch, Ariel Y; Rayport, Stephen

    2015-12-09

    In the ventral tegmental area (VTA), a subpopulation of dopamine neurons express vesicular glutamate transporter 2 and make glutamatergic connections to nucleus accumbens (NAc) and olfactory tubercle (OT) neurons. However, their glutamatergic connections across the forebrain have not been explored systematically. To visualize dopamine neuron forebrain projections and to enable photostimulation of their axons independent of transmitter status, we virally transfected VTA neurons with channelrhodopsin-2 fused to enhanced yellow fluorescent protein (ChR2-EYFP) and used DAT(IREScre) mice to restrict expression to dopamine neurons. ChR2-EYFP-expressing neurons almost invariably stained for tyrosine hydroxylase, identifying them as dopaminergic. Dopamine neuron axons visualized by ChR2-EYFP fluorescence projected most densely to the striatum, moderately to the amygdala and entorhinal cortex (ERC), sparsely to prefrontal and cingulate cortices, and rarely to the hippocampus. Guided by ChR2-EYFP fluorescence, we recorded systematically from putative principal neurons in target areas and determined the incidence and strength of glutamatergic connections by activating all dopamine neuron terminals impinging on recorded neurons with wide-field photostimulation. This revealed strong glutamatergic connections in the NAc, OT, and ERC; moderate strength connections in the central amygdala; and weak connections in the cingulate cortex. No glutamatergic connections were found in the dorsal striatum, hippocampus, basolateral amygdala, or prefrontal cortex. These results indicate that VTA dopamine neurons elicit widespread, but regionally distinct, glutamatergic signals in the forebrain and begin to define the dopamine neuron excitatory functional connectome. Dopamine neurons are important for the control of motivated behavior and are involved in the pathophysiology of several major neuropsychiatric disorders. Recent studies have shown that some ventral midbrain dopamine neurons are capable of glutamate cotransmission. With conditional expression of channelrhodopsin in dopamine neurons, we systematically explored dopamine neuron connections in the forebrain and identified regionally specific dopamine neuron excitatory connections. Establishing that only a subset of forebrain regions receive excitatory connections from dopamine neurons will help to determine the function of dopamine neuron glutamate cotransmission, which likely involves transmission of precise temporal signals and enhancement of the dynamic range of dopamine neuron signals. Copyright © 2015 the authors 0270-6474/15/3516259-13$15.00/0.

  20. Association Between Reward Reactivity and Drug Use Severity is Substance Dependent: Preliminary Evidence From the Human Connectome Project.

    PubMed

    Peechatka, Alyssa L; Janes, Amy C

    2017-06-01

    Blunted nucleus accumbens (NAc) reactivity to reward is common across drug users. One theory is that individuals abuse substances due to this reward deficit. However, whether there is a relationship between the amount an individual uses and the severity of NAc dysfunction is unclear. It also is possible that such a relationship is substance specific, as nicotine transiently increases reward system sensitivity while alcohol, another commonly used substance, does not. As smokers may use nicotine to bolster NAc reward function, we hypothesize that NAc reactivity to reward will be related to volume of cigarette use, but not volume of alcohol use. A functional magnetic resonance imaging incentive-processing task collected by the Human Connectome Project was assessed in a cohort of tobacco smokers who reported smoking between 5-20 cigarettes/day and a cohort of alcohol users who reported drinking 7-25 drinks/wk. Number of cigarettes/day and drinks/wk were correlated with right and left NAc reactivity to the receipt of a monetary reward relative to baseline. Individuals who smoke greater numbers of cigarettes/day showed lower right NAc reactivity to reward (r = 0.853, p ≤ .001). Left NAc reactivity was not correlated with cigarettes/day. No association was found with drinks/wk. A negative association was found between NAc reactivity to reward and cigarettes/day, but not alcohol drinks/wk. Given nicotine's unique ability to increase sensitivity to rewards, these findings suggest that individuals who smoke more cigarettes/day may be compensating for more dysfunctional NAc reward reactivity. The present study demonstrates that a relationship between NAc reactivity to nondrug reward and volume of substance use is present in nicotine but not alcohol use. While prior work has implicated dysfunctional reward processing in addictions, these findings clarify a substance-specific role that blunted reward function has in determining patterns of use among chronic users. © The Author 2017. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Characterizing and Differentiating Brain State Dynamics via Hidden Markov Models

    PubMed Central

    Ou, Jinli; Xie, Li; Jin, Changfeng; Li, Xiang; Zhu, Dajiang; Jiang, Rongxin; Chen, Yaowu

    2014-01-01

    Functional connectivity measured from resting state fMRI (R-fMRI) data has been widely used to examine the brain’s functional activities and has been recently used to characterize and differentiate brain conditions. However, the dynamical transition patterns of the brain’s functional states have been less explored. In this work, we propose a novel computational framework to quantitatively characterize the brain state dynamics via hidden Markov models (HMMs) learned from the observations of temporally dynamic functional connectomics, denoted as functional connectome states. The framework has been applied to the R-fMRI dataset including 44 post-traumatic stress disorder (PTSD) patients and 51 normal control (NC) subjects. Experimental results show that both PTSD and NC brains were undergoing remarkable changes in resting state and mainly transiting amongst a few brain states. Interestingly, further prediction with the best-matched HMM demonstrates that PTSD would enter into, but could not disengage from, a negative mood state. Importantly, 84 % of PTSD patients and 86 % of NC subjects are successfully classified via multiple HMMs using majority voting. PMID:25331991

  2. Atypical Structural Connectome Organization and Cognitive Impairment in Young Survivors of Acute Lymphoblastic Leukemia.

    PubMed

    Kesler, Shelli R; Gugel, Meike; Huston-Warren, Emily; Watson, Christa

    2016-05-01

    Survivors of pediatric acute lymphoblastic leukemia (ALL) are at increased risk for cognitive impairments that disrupt everyday functioning and decrease quality of life. The specific biological mechanisms underlying cognitive impairment following ALL remain largely unclear, but previous studies consistently demonstrate significant white matter pathology. We aimed to extend this literature by examining the organization of the white matter connectome in young patients with a history of ALL treated with chemotherapy only. We applied graph theoretical analysis to diffusion tensor imaging obtained from 31 survivors of ALL age 5-19 years and 39 matched healthy controls. Results indicated significantly lower small-worldness (p = 0.007) and network clustering coefficient (p = 0.019), as well as greater cognitive impairment (p = 0.027) in the ALL group. Regional analysis indicated that clustered connectivity in parietal, frontal, hippocampal, amygdalar, thalamic, and occipital regions was altered in the ALL group. Random forest analysis revealed a model of connectome and demographic variables that could automatically classify survivors of ALL as having cognitive impairment or not (accuracy = 0.89, p < 0.0001). These findings provide further evidence of brain injury in young survivors of ALL, even those without a history of central nervous system (CNS) disease or cranial radiation. Efficiency of local information processing, reorganization of hub connectivity, and cognitive reserve may contribute to cognitive outcome in these children. Certain connectome properties showed U-shaped relationships with cognitive impairment suggesting an optimal range of regional connectivity.

  3. Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical Models of C. elegans Klinotaxis

    PubMed Central

    Izquierdo, Eduardo J.; Beer, Randall D.

    2013-01-01

    Increased efforts in the assembly and analysis of connectome data are providing new insights into the principles underlying the connectivity of neural circuits. However, despite these considerable advances in connectomics, neuroanatomical data must be integrated with neurophysiological and behavioral data in order to obtain a complete picture of neural function. Due to its nearly complete wiring diagram and large behavioral repertoire, the nematode worm Caenorhaditis elegans is an ideal organism in which to explore in detail this link between neural connectivity and behavior. In this paper, we develop a neuroanatomically-grounded model of salt klinotaxis, a form of chemotaxis in which changes in orientation are directed towards the source through gradual continual adjustments. We identify a minimal klinotaxis circuit by systematically searching the C. elegans connectome for pathways linking chemosensory neurons to neck motor neurons, and prune the resulting network based on both experimental considerations and several simplifying assumptions. We then use an evolutionary algorithm to find possible values for the unknown electrophsyiological parameters in the network such that the behavioral performance of the entire model is optimized to match that of the animal. Multiple runs of the evolutionary algorithm produce an ensemble of such models. We analyze in some detail the mechanisms by which one of the best evolved circuits operates and characterize the similarities and differences between this mechanism and other solutions in the ensemble. Finally, we propose a series of experiments to determine which of these alternatives the worm may be using. PMID:23408877

  4. Extracting Intrinsic Functional Networks with Feature-Based Group Independent Component Analysis

    ERIC Educational Resources Information Center

    Calhoun, Vince D.; Allen, Elena

    2013-01-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in…

  5. Learning from connectomics on the fly.

    PubMed

    Schlegel, Philipp; Costa, Marta; Jefferis, Gregory Sxe

    2017-12-01

    Parallels between invertebrates and vertebrates in nervous system development, organisation and circuits are powerful reasons to use insects to study the mechanistic basis of behaviour. The last few years have seen the generation in Drosophila melanogaster of very large light microscopy data sets, genetic driver lines and tools to report or manipulate neural activity. These resources in conjunction with computational tools are enabling large scale characterisation of neuronal types and their functional properties. These are complemented by 3D electron microscopy, providing synaptic resolution data. A whole brain connectome of the fly larva is approaching completion based on manual reconstruction of electron-microscopy data. An adult whole brain dataset is already publicly available and focussed reconstruction is under way, but its 40× greater volume would require ∼500-5000 person-years of manual labour. Nevertheless rapid technical improvements in imaging and especially automated segmentation will likely deliver a complete adult connectome in the next 5 years. To enhance our understanding of the circuit basis of behaviour, light and electron microscopy outputs must be integrated with functional and physiological information into comprehensive databases. We review presently available data, tools and opportunities in Drosophila. We then consider the limits and potential of future progress and how this may impact neuroscience in rich model systems provided by larger insects and vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Connectomic correlates of response to treatment in first-episode psychosis

    PubMed Central

    Crossley, Nicolas A; Marques, Tiago Reis; Taylor, Heather; Chaddock, Chris; Dell’Acqua, Flavio; Reinders, Antje A T S; Mondelli, Valeria; DiForti, Marta; Simmons, Andrew; David, Anthony S; Kapur, Shitij; Pariante, Carmine M; Murray, Robin M; Dazzan, Paola

    2017-01-01

    Abstract Connectomic approaches using diffusion tensor imaging have contributed to our understanding of brain changes in psychosis, and could provide further insights into the neural mechanisms underlying response to antipsychotic treatment. We here studied the brain network organization in patients at their first episode of psychosis, evaluating whether connectome-based descriptions of brain networks predict response to treatment, and whether they change after treatment. Seventy-six patients with a first episode of psychosis and 74 healthy controls were included. Thirty-three patients were classified as responders after 12 weeks of antipsychotic treatment. Baseline brain structural networks were built using whole-brain diffusion tensor imaging tractography, and analysed using graph analysis and network-based statistics to explore baseline characteristics of patients who subsequently responded to treatment. A subgroup of 43 patients was rescanned at the 12-week follow-up, to study connectomic changes over time in relation to treatment response. At baseline, those subjects who subsequently responded to treatment, compared to those that did not, showed higher global efficiency in their structural connectomes, a network configuration that theoretically facilitates the flow of information. We did not find specific connectomic changes related to treatment response after 12 weeks of treatment. Our data suggest that patients who have an efficiently-wired connectome at first onset of psychosis show a better subsequent response to antipsychotics. However, response is not accompanied by specific structural changes over time detectable with this method. PMID:28007987

  7. The hubs of the human connectome are generally implicated in the anatomy of brain disorders.

    PubMed

    Crossley, Nicolas A; Mechelli, Andrea; Scott, Jessica; Carletti, Francesco; Fox, Peter T; McGuire, Philip; Bullmore, Edward T

    2014-08-01

    Brain networks or 'connectomes' include a minority of highly connected hub nodes that are functionally valuable, because their topological centrality supports integrative processing and adaptive behaviours. Recent studies also suggest that hubs have higher metabolic demands and longer-distance connections than other brain regions, and therefore could be considered biologically costly. Assuming that hubs thus normally combine both high topological value and high biological cost, we predicted that pathological brain lesions would be concentrated in hub regions. To test this general hypothesis, we first identified the hubs of brain anatomical networks estimated from diffusion tensor imaging data on healthy volunteers (n = 56), and showed that computational attacks targeted on hubs disproportionally degraded the efficiency of brain networks compared to random attacks. We then prepared grey matter lesion maps, based on meta-analyses of published magnetic resonance imaging data on more than 20 000 subjects and 26 different brain disorders. Magnetic resonance imaging lesions that were common across all brain disorders were more likely to be located in hubs of the normal brain connectome (P < 10(-4), permutation test). Specifically, nine brain disorders had lesions that were significantly more likely to be located in hubs (P < 0.05, permutation test), including schizophrenia and Alzheimer's disease. Both these disorders had significantly hub-concentrated lesion distributions, although (almost completely) distinct subsets of cortical hubs were lesioned in each disorder: temporal lobe hubs specifically were associated with higher lesion probability in Alzheimer's disease, whereas in schizophrenia lesions were concentrated in both frontal and temporal cortical hubs. These results linking pathological lesions to the topological centrality of nodes in the normal diffusion tensor imaging connectome were generally replicated when hubs were defined instead by the meta-analysis of more than 1500 task-related functional neuroimaging studies of healthy volunteers to create a normative functional co-activation network. We conclude that the high cost/high value hubs of human brain networks are more likely to be anatomically abnormal than non-hubs in many (if not all) brain disorders. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. Common Dimensional Reward Deficits Across Mood and Psychotic Disorders: A Connectome-Wide Association Study.

    PubMed

    Sharma, Anup; Wolf, Daniel H; Ciric, Rastko; Kable, Joseph W; Moore, Tyler M; Vandekar, Simon N; Katchmar, Natalie; Daldal, Aylin; Ruparel, Kosha; Davatzikos, Christos; Elliott, Mark A; Calkins, Monica E; Shinohara, Russell T; Bassett, Danielle S; Satterthwaite, Theodore D

    2017-07-01

    Anhedonia is central to multiple psychiatric disorders and causes substantial disability. A dimensional conceptualization posits that anhedonia severity is related to a transdiagnostic continuum of reward deficits in specific neural networks. Previous functional connectivity studies related to anhedonia have focused on case-control comparisons in specific disorders, using region-specific seed-based analyses. Here, the authors explore the entire functional connectome in relation to reward responsivity across a population of adults with heterogeneous psychopathology. In a sample of 225 adults from five diagnostic groups (major depressive disorder, N=32; bipolar disorder, N=50; schizophrenia, N=51; psychosis risk, N=39; and healthy control subjects, N=53), the authors conducted a connectome-wide analysis examining the relationship between a dimensional measure of reward responsivity (the reward sensitivity subscale of the Behavioral Activation Scale) and resting-state functional connectivity using multivariate distance-based matrix regression. The authors identified foci of dysconnectivity associated with reward responsivity in the nucleus accumbens, the default mode network, and the cingulo-opercular network. Follow-up analyses revealed dysconnectivity among specific large-scale functional networks and their connectivity with the nucleus accumbens. Reward deficits were associated with decreased connectivity between the nucleus accumbens and the default mode network and increased connectivity between the nucleus accumbens and the cingulo-opercular network. In addition, impaired reward responsivity was associated with default mode network hyperconnectivity and diminished connectivity between the default mode network and the cingulo-opercular network. These results emphasize the centrality of the nucleus accumbens in the pathophysiology of reward deficits and suggest that dissociable patterns of connectivity among large-scale networks are critical to the neurobiology of reward dysfunction across clinical diagnostic categories.

  9. Investigating the Temporal Patterns within and between Intrinsic Connectivity Networks under Eyes-Open and Eyes-Closed Resting States: A Dynamical Functional Connectivity Study Based on Phase Synchronization

    PubMed Central

    Wang, Xun-Heng; Li, Lihua; Xu, Tao; Ding, Zhongxiang

    2015-01-01

    The brain active patterns were organized differently under resting states of eyes open (EO) and eyes closed (EC). The altered voxel-wise and regional-wise resting state active patterns under EO/EC were found by static analysis. More importantly, dynamical spontaneous functional connectivity has been observed in the resting brain. To the best of our knowledge, the dynamical mechanisms of intrinsic connectivity networks (ICNs) under EO/EC remain largely unexplored. The goals of this paper were twofold: 1) investigating the dynamical intra-ICN and inter-ICN temporal patterns during resting state; 2) analyzing the altered dynamical temporal patterns of ICNs under EO/EC. To this end, a cohort of healthy subjects with scan conditions of EO/EC were recruited from 1000 Functional Connectomes Project. Through Hilbert transform, time-varying phase synchronization (PS) was applied to evaluate the inter-ICN synchrony. Meanwhile, time-varying amplitude was analyzed as dynamical intra-ICN temporal patterns. The results found six micro-states of inter-ICN synchrony. The medial visual network (MVN) showed decreased intra-ICN amplitude during EC relative to EO. The sensory-motor network (SMN) and auditory network (AN) exhibited enhanced intra-ICN amplitude during EC relative to EO. Altered inter-ICN PS was found between certain ICNs. Particularly, the SMN and AN exhibited enhanced PS to other ICNs during EC relative to EO. In addition, the intra-ICN amplitude might influence the inter-ICN synchrony. Moreover, default mode network (DMN) might play an important role in information processing during EO/EC. Together, the dynamical temporal patterns within and between ICNs were altered during different scan conditions of EO/EC. Overall, the dynamical intra-ICN and inter-ICN temporal patterns could benefit resting state fMRI-related research, and could be potential biomarkers for human functional connectome. PMID:26469182

  10. Unraveling the Miswired Connectome: A Developmental Perspective

    PubMed Central

    Di Martino, Adriana; Fair, Damien A.; Kelly, Clare; Satterthwaite, Theodore D.; Castellanos, F. Xavier; Thomason, Moriah E.; Craddock, R. Cameron; Luna, Beatriz; Leventhal, Bennett L.; Zuo, Xi-Nian; Milham, Michael P.

    2014-01-01

    Summary The vast majority of mental illnesses can be conceptualized as developmental disorders of neural interactions within the connectome, or developmental miswiring. The recent maturation of pediatric in vivo brain imaging is bringing within reach the identification of clinically meaningful brain-based biomarkers of developmental disorders. Even more auspicious, is the ability to study the evolving connectome throughout life, beginning in utero, which promises to move the field from topological phenomenology to etiological nosology. Here, we scope advances in pediatric imaging of the brain connectome as the field faces the challenge of unraveling developmental miswiring. We highlight promises while also providing a pragmatic review of the many obstacles ahead that must be overcome to significantly impact public health. PMID:25233316

  11. Cognition and connectomes in nondementia idiopathic Parkinson’s disease

    PubMed Central

    Tanner, Jared J.; Couret, Michelle; Goicochea, Shelby; Mareci, Thomas H.; Price, Catherine C.

    2018-01-01

    In this study, we investigate the organization of the structural connectome in cognitively well participants with Parkinson’s disease (PD-Well; n = 31) and a subgroup of participants with Parkinson’s disease who have amnestic disturbances (PD-MI; n = 9). We explore correlations between connectome topology and vulnerable cognitive domains in Parkinson’s disease relative to non-Parkinson’s disease peers (control, n = 40). Diffusion-weighted MRI data and deterministic tractography were used to generate connectomes. Connectome topological indices under study included weighted indices of node strength, path length, clustering coefficient, and small-worldness. Relative to controls, node strength was reduced 4.99% for PD-Well (p = 0.041) and 13.2% for PD-MI (p = 0.004). We found bilateral differences in the node strength between PD-MI and controls for inferior parietal, caudal middle frontal, posterior cingulate, precentral, and rostral middle frontal. Correlations between connectome and cognitive domains of interest showed that topological indices of global connectivity negatively associated with working memory and displayed more and larger negative correlations with neuropsychological indices of memory in PD-MI than in PD-Well and controls. These findings suggest that indices of network connectivity are reduced in PD-MI relative to PD-Well and control participants. PMID:29911667

  12. The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy.

    PubMed

    Bonilha, Leonardo; Jensen, Jens H; Baker, Nathaniel; Breedlove, Jesse; Nesland, Travis; Lin, Jack J; Drane, Daniel L; Saindane, Amit M; Binder, Jeffrey R; Kuzniecky, Ruben I

    2015-05-05

    We examined whether individual neuronal architecture obtained from the brain connectome can be used to estimate the surgical success of anterior temporal lobectomy (ATL) in patients with temporal lobe epilepsy (TLE). We retrospectively studied 35 consecutive patients with TLE who underwent ATL. The structural brain connectome was reconstructed from all patients using presurgical diffusion MRI. Network links in patients were standardized as Z scores based on connectomes reconstructed from healthy controls. The topography of abnormalities in linkwise elements of the connectome was assessed on subnetworks linking ipsilateral temporal with extratemporal regions. Predictive models were constructed based on the individual prevalence of linkwise Z scores >2 and based on presurgical clinical data. Patients were more likely to achieve postsurgical seizure freedom if they exhibited fewer abnormalities within a subnetwork composed of the ipsilateral hippocampus, amygdala, thalamus, superior frontal region, lateral temporal gyri, insula, orbitofrontal cortex, cingulate, and lateral occipital gyrus. Seizure-free surgical outcome was predicted by neural architecture alone with 90% specificity (83% accuracy), and by neural architecture combined with clinical data with 94% specificity (88% accuracy). Individual variations in connectome topography, combined with presurgical clinical data, may be used as biomarkers to better estimate surgical outcomes in patients with TLE. © 2015 American Academy of Neurology.

  13. Driving and driven architectures of directed small-world human brain functional networks.

    PubMed

    Yan, Chaogan; He, Yong

    2011-01-01

    Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA) and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86) to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus) and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule). Further split-half analyses indicated that our results were highly reproducible between two independent subgroups. The current study demonstrated the directions of spontaneous information flow and causal influences in the directed brain networks, thus providing new insights into our understanding of human brain functional connectome.

  14. Connectome-Wide Phenotypical and Genotypical Associations in Focal Dystonia

    PubMed Central

    Fuertinger, Stefan

    2017-01-01

    Isolated focal dystonia is a debilitating movement disorder of unknown pathophysiology. Early studies in focal dystonias have pointed to segregated changes in brain activity and connectivity. Only recently has the notion that dystonia pathophysiology may lie in abnormalities of large-scale brain networks appeared in the literature. Here, we outline a novel concept of functional connectome-wide alterations that are linked to dystonia phenotype and genotype. Using a neural community detection strategy and graph theoretical analysis of functional MRI data in human patients with the laryngeal form of dystonia (LD) and healthy controls (both males and females), we identified an abnormally widespread hub formation in LD, which particularly affected the primary sensorimotor and parietal cortices and thalamus. Left thalamic regions formed a delineated functional community that highlighted differences in network topology between LD patients with and without family history of dystonia. Conversely, marked differences in the topological organization of parietal regions were found between phenotypically different forms of LD. The interface between sporadic genotype and adductor phenotype of LD yielded four functional communities that were primarily governed by intramodular hub regions. Conversely, the interface between familial genotype and abductor phenotype was associated with numerous long-range hub nodes and an abnormal integration of left thalamus and basal ganglia. Our findings provide the first comprehensive atlas of functional topology across different phenotypes and genotypes of focal dystonia. As such, this study constitutes an important step toward defining dystonia as a large-scale network disorder, understanding its causative pathophysiology, and identifying disorder-specific markers. SIGNIFICANCE STATEMENT The architecture of the functional connectome in focal dystonia was analyzed in a large population of patients with laryngeal dystonia. Breaking with the empirical concept of dystonia as a basal ganglia disorder, we discovered large-scale alterations of neural communities that are significantly influenced by the disorder's clinical phenotype and genotype. PMID:28674168

  15. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics

    PubMed Central

    Kraft, Reuben H.; Mckee, Phillip Justin; Dagro, Amy M.; Grafton, Scott T.

    2012-01-01

    This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the “damaged” network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times () network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight. PMID:22915997

  16. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    PubMed

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p < .05, family-wise error-corrected). Moreover, fractional anisotropy in some of these fiber bundles correlated with attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p < .05, family-wise error-corrected) predominantly linking frontal, cingulate, and supplementary motor areas. Fractional anisotropy in this network was also correlated with continuous performance test scores. Using an unbiased, whole-brain, data-driven approach, we demonstrated abnormal white matter connectivity in ADHD. The correlations observed with measures of attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. The Rich Club of the C. elegans Neuronal Connectome

    PubMed Central

    Vértes, Petra E.; Ahnert, Sebastian E.; Schafer, William R.; Bullmore, Edward T.

    2013-01-01

    There is increasing interest in topological analysis of brain networks as complex systems, with researchers often using neuroimaging to represent the large-scale organization of nervous systems without precise cellular resolution. Here we used graph theory to investigate the neuronal connectome of the nematode worm Caenorhabditis elegans, which is defined anatomically at a cellular scale as 2287 synaptic connections between 279 neurons. We identified a small number of highly connected neurons as a rich club (N = 11) interconnected with high efficiency and high connection distance. Rich club neurons comprise almost exclusively the interneurons of the locomotor circuits, with known functional importance for coordinated movement. The rich club neurons are connector hubs, with high betweenness centrality, and many intermodular connections to nodes in different modules. On identifying the shortest topological paths (motifs) between pairs of peripheral neurons, the motifs that are found most frequently traverse the rich club. The rich club neurons are born early in development, before visible movement of the animal and before the main phase of developmental elongation of its body. We conclude that the high wiring cost of the globally integrative rich club of neurons in the C. elegans connectome is justified by the adaptive value of coordinated movement of the animal. The economical trade-off between physical cost and behavioral value of rich club organization in a cellular connectome confirms theoretical expectations and recapitulates comparable results from human neuroimaging on much larger scale networks, suggesting that this may be a general and scale-invariant principle of brain network organization. PMID:23575836

  18. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    PubMed

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  19. High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level

    PubMed Central

    Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming

    2016-01-01

    The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071

  20. STRUCTURAL AND CONNECTOMIC NEUROIMAGING FOR THE PERSONALIZED STUDY OF LONGITUDINAL ALTERATIONS IN CORTICAL SHAPE, THICKNESS AND CONNECTIVITY AFTER TRAUMATIC BRAIN INJURY

    PubMed Central

    Irimia, A.; Goh, S.-Y. M.; Torgerson, C. M.; Vespa, P. M.; Van Horn, J. D.

    2014-01-01

    The integration of longitudinal brain structure analysis with neurointensive care strategies continues to be a substantial difficulty facing the traumatic brain injury (TBI) research community. For patient-tailored case analysis, it remains challenging to establish how lesion profile modulates longitudinal changes in cortical structure and connectivity, as well as how these changes lead to behavioral, cognitive and neural dysfunction. Additionally, despite the clinical potential of morphometric and connectomic studies, few analytic tools are available for their study in TBI. Here we review the state of the art in structural and connectomic neuroimaging for the study of TBI and illustrate a set of recently-developed, patient-tailored approaches for the study of TBI-related brain atrophy and alterations in morphometry as well as inter-regional connectivity. The ability of such techniques to quantify how injury modulates longitudinal changes in cortical shape, structure and circuitry is highlighted. Quantitative approaches such as these can be used to assess and monitor the clinical condition and evolution of TBI victims, and can have substantial translational impact, especially when used in conjunction with measures of neuropsychological function. PMID:24844173

  1. Aberrant functional brain connectome in people with antisocial personality disorder

    PubMed Central

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-01-01

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016–0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD. PMID:27257047

  2. Aberrant functional brain connectome in people with antisocial personality disorder.

    PubMed

    Tang, Yan; Long, Jun; Wang, Wei; Liao, Jian; Xie, Hua; Zhao, Guihu; Zhang, Hao

    2016-06-03

    Antisocial personality disorder (ASPD) is characterised by a disregard for social obligations and callous unconcern for the feelings of others. Studies have demonstrated that ASPD is associated with abnormalities in brain regions and aberrant functional connectivity. In this paper, topological organisation was examined in resting-state fMRI data obtained from 32 ASPD patients and 32 non-ASPD controls. The frequency-dependent functional networks were constructed using wavelet-based correlations over 90 brain regions. The topology of the functional networks of ASPD subjects was analysed via graph theoretical analysis. Furthermore, the abnormal functional connectivity was determined with a network-based statistic (NBS) approach. Our results revealed that, compared with the controls, the ASPD patients exhibited altered topological configuration of the functional connectome in the frequency interval of 0.016-0.031 Hz, as indicated by the increased clustering coefficient and decreased betweenness centrality in the medial superior frontal gyrus, precentral gyrus, Rolandic operculum, superior parietal gyrus, angular gyrus, and middle temporal pole. In addition, the ASPD patients showed increased functional connectivity mainly located in the default-mode network. The present study reveals an aberrant topological organisation of the functional brain network in individuals with ASPD. Our findings provide novel insight into the neuropathological mechanisms of ASPD.

  3. Spontaneous cortical activity alternates between motifs defined by regional axonal projections

    PubMed Central

    Mohajerani, Majid H.; Chan, Allen W.; Mohsenvand, Mostafa; LeDue, Jeffrey; Liu, Rui; McVea, David A.; Boyd, Jamie D.; Wang, Yu Tian; Reimers, Mark; Murphy, Timothy H.

    2014-01-01

    In lightly anaesthetized or awake adult mice using millisecond timescale voltage sensitive dye imaging, we show that a palette of sensory-evoked and hemisphere-wide activity motifs are represented in spontaneous activity. These motifs can reflect multiple modes of sensory processing including vision, audition, and touch. Similar cortical networks were found with direct cortical activation using channelrhodopsin-2. Regional analysis of activity spread indicated modality specific sources such as primary sensory areas, and a common posterior-medial cortical sink where sensory activity was extinguished within the parietal association area, and a secondary anterior medial sink within the cingulate/secondary motor cortices for visual stimuli. Correlation analysis between functional circuits and intracortical axonal projections indicated a common framework corresponding to long-range mono-synaptic connections between cortical regions. Maps of intracortical mono-synaptic structural connections predicted hemisphere-wide patterns of spontaneous and sensory-evoked depolarization. We suggest that an intracortical monosynaptic connectome shapes the ebb and flow of spontaneous cortical activity. PMID:23974708

  4. An extensive assessment of network alignment algorithms for comparison of brain connectomes.

    PubMed

    Milano, Marianna; Guzzi, Pietro Hiram; Tymofieva, Olga; Xu, Duan; Hess, Christofer; Veltri, Pierangelo; Cannataro, Mario

    2017-06-06

    Recently the study of the complex system of connections in neural systems, i.e. the connectome, has gained a central role in neurosciences. The modeling and analysis of connectomes are therefore a growing area. Here we focus on the representation of connectomes by using graph theory formalisms. Macroscopic human brain connectomes are usually derived from neuroimages; the analyzed brains are co-registered in the image domain and brought to a common anatomical space. An atlas is then applied in order to define anatomically meaningful regions that will serve as the nodes of the network - this process is referred to as parcellation. The atlas-based parcellations present some known limitations in cases of early brain development and abnormal anatomy. Consequently, it has been recently proposed to perform atlas-free random brain parcellation into nodes and align brains in the network space instead of the anatomical image space, as a way to deal with the unknown correspondences of the parcels. Such process requires modeling of the brain using graph theory and the subsequent comparison of the structure of graphs. The latter step may be modeled as a network alignment (NA) problem. In this work, we first define the problem formally, then we test six existing state of the art of network aligners on diffusion MRI-derived brain networks. We compare the performances of algorithms by assessing six topological measures. We also evaluated the robustness of algorithms to alterations of the dataset. The results confirm that NA algorithms may be applied in cases of atlas-free parcellation for a fully network-driven comparison of connectomes. The analysis shows MAGNA++ is the best global alignment algorithm. The paper presented a new analysis methodology that uses network alignment for validating atlas-free parcellation brain connectomes. The methodology has been experimented on several brain datasets.

  5. Anatomical connectivity influences both intra- and inter-brain synchronizations.

    PubMed

    Dumas, Guillaume; Chavez, Mario; Nadel, Jacqueline; Martinerie, Jacques

    2012-01-01

    Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.

  6. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience.

    PubMed

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.

  7. Multimodal neural correlates of cognitive control in the Human Connectome Project.

    PubMed

    Lerman-Sinkoff, Dov B; Sui, Jing; Rachakonda, Srinivas; Kandala, Sridhar; Calhoun, Vince D; Barch, Deanna M

    2017-12-01

    Cognitive control is a construct that refers to the set of functions that enable decision-making and task performance through the representation of task states, goals, and rules. The neural correlates of cognitive control have been studied in humans using a wide variety of neuroimaging modalities, including structural MRI, resting-state fMRI, and task-based fMRI. The results from each of these modalities independently have implicated the involvement of a number of brain regions in cognitive control, including dorsal prefrontal cortex, and frontal parietal and cingulo-opercular brain networks. However, it is not clear how the results from a single modality relate to results in other modalities. Recent developments in multimodal image analysis methods provide an avenue for answering such questions and could yield more integrated models of the neural correlates of cognitive control. In this study, we used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) to identify multimodal patterns of variation related to cognitive control. We used two independent cohorts of participants from the Human Connectome Project, each of which had data from four imaging modalities. We replicated the findings from the first cohort in the second cohort using both independent and predictive analyses. The independent analyses identified a component in each cohort that was highly similar to the other and significantly correlated with cognitive control performance. The replication by prediction analyses identified two independent components that were significantly correlated with cognitive control performance in the first cohort and significantly predictive of performance in the second cohort. These components identified positive relationships across the modalities in neural regions related to both dynamic and stable aspects of task control, including regions in both the frontal-parietal and cingulo-opercular networks, as well as regions hypothesized to be modulated by cognitive control signaling, such as visual cortex. Taken together, these results illustrate the potential utility of multi-modal analyses in identifying the neural correlates of cognitive control across different indicators of brain structure and function. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Blockmodels for connectome analysis

    NASA Astrophysics Data System (ADS)

    Moyer, Daniel; Gutman, Boris; Prasad, Gautam; Faskowitz, Joshua; Ver Steeg, Greg; Thompson, Paul

    2015-12-01

    In the present work we study a family of generative network model and its applications for modeling the human connectome. We introduce a minor but novel variant of the Mixed Membership Stochastic Blockmodel and apply it and two other related model to two human connectome datasets (ADNI and a Bipolar Disorder dataset) with both control and diseased subjects. We further provide a simple generative classifier that, alongside more discriminating methods, provides evidence that blockmodels accurately summarize tractography count networks with respect to a disease classification task.

  9. Ultrastructurally-smooth thick partitioning and volume stitching for larger-scale connectomics

    PubMed Central

    Hayworth, Kenneth J.; Xu, C. Shan; Lu, Zhiyuan; Knott, Graham W.; Fetter, Richard D.; Tapia, Juan Carlos; Lichtman, Jeff W.; Hess, Harald F.

    2015-01-01

    FIB-SEM has become an essential tool for studying neural tissue at resolutions below 10×10×10 nm, producing datasets superior for automatic connectome tracing. We present a technical advance, ultrathick sectioning, which reliably subdivides embedded tissue samples into chunks (20 µm thick) optimally sized and mounted for efficient, parallel FIB-SEM imaging. These chunks are imaged separately and then ‘volume stitched’ back together, producing a final 3D dataset suitable for connectome tracing. PMID:25686390

  10. Semi-Metric Topology of the Human Connectome: Sensitivity and Specificity to Autism and Major Depressive Disorder.

    PubMed

    Simas, Tiago; Chattopadhyay, Shayanti; Hagan, Cindy; Kundu, Prantik; Patel, Ameera; Holt, Rosemary; Floris, Dorothea; Graham, Julia; Ooi, Cinly; Tait, Roger; Spencer, Michael; Baron-Cohen, Simon; Sahakian, Barbara; Bullmore, Ed; Goodyer, Ian; Suckling, John

    2015-01-01

    The human functional connectome is a graphical representation, consisting of nodes connected by edges, of the inter-relationships of blood oxygenation-level dependent (BOLD) time-series measured by MRI from regions encompassing the cerebral cortices and, often, the cerebellum. Semi-metric analysis of the weighted, undirected connectome distinguishes an edge as either direct (metric), such that there is no alternative path that is accumulatively stronger, or indirect (semi-metric), where one or more alternative paths exist that have greater strength than the direct edge. The sensitivity and specificity of this method of analysis is illustrated by two case-control analyses with independent, matched groups of adolescents with autism spectrum conditions (ASC) and major depressive disorder (MDD). Significance differences in the global percentage of semi-metric edges was observed in both groups, with increases in ASC and decreases in MDD relative to controls. Furthermore, MDD was associated with regional differences in left frontal and temporal lobes, the right limbic system and cerebellum. In contrast, ASC had a broadly increased percentage of semi-metric edges with a more generalised distribution of effects and some areas of reduction. In summary, MDD was characterised by localised, large reductions in the percentage of semi-metric edges, whilst ASC is characterised by more generalised, subtle increases. These differences were corroborated in greater detail by inspection of the semi-metric backbone for each group; that is, the sub-graph of semi-metric edges present in >90% of participants, and by nodal degree differences in the semi-metric connectome. These encouraging results, in what we believe is the first application of semi-metric analysis to neuroimaging data, raise confidence in the methodology as potentially capable of detection and characterisation of a range of neurodevelopmental and psychiatric disorders.

  11. Semi-Metric Topology of the Human Connectome: Sensitivity and Specificity to Autism and Major Depressive Disorder

    PubMed Central

    Simas, Tiago; Chattopadhyay, Shayanti; Hagan, Cindy; Kundu, Prantik; Patel, Ameera; Holt, Rosemary; Floris, Dorothea; Graham, Julia; Ooi, Cinly; Tait, Roger; Spencer, Michael; Baron-Cohen, Simon; Sahakian, Barbara; Bullmore, Ed; Goodyer, Ian; Suckling, John

    2015-01-01

    Introduction The human functional connectome is a graphical representation, consisting of nodes connected by edges, of the inter-relationships of blood oxygenation-level dependent (BOLD) time-series measured by MRI from regions encompassing the cerebral cortices and, often, the cerebellum. Semi-metric analysis of the weighted, undirected connectome distinguishes an edge as either direct (metric), such that there is no alternative path that is accumulatively stronger, or indirect (semi-metric), where one or more alternative paths exist that have greater strength than the direct edge. The sensitivity and specificity of this method of analysis is illustrated by two case-control analyses with independent, matched groups of adolescents with autism spectrum conditions (ASC) and major depressive disorder (MDD). Results Significance differences in the global percentage of semi-metric edges was observed in both groups, with increases in ASC and decreases in MDD relative to controls. Furthermore, MDD was associated with regional differences in left frontal and temporal lobes, the right limbic system and cerebellum. In contrast, ASC had a broadly increased percentage of semi-metric edges with a more generalised distribution of effects and some areas of reduction. In summary, MDD was characterised by localised, large reductions in the percentage of semi-metric edges, whilst ASC is characterised by more generalised, subtle increases. These differences were corroborated in greater detail by inspection of the semi-metric backbone for each group; that is, the sub-graph of semi-metric edges present in >90% of participants, and by nodal degree differences in the semi-metric connectome. Conclusion These encouraging results, in what we believe is the first application of semi-metric analysis to neuroimaging data, raise confidence in the methodology as potentially capable of detection and characterisation of a range of neurodevelopmental and psychiatric disorders. PMID:26308854

  12. Schizophrenia‐like topological changes in the structural connectome of individuals with subclinical psychotic experiences

    PubMed Central

    Caeyenberghs, Karen; Dutt, Anirban; Zammit, Stanley; Evans, C. John; Reichenberg, Abraham; Lewis, Glyn; David, Anthony S.; Jones, Derek K.

    2015-01-01

    Abstract Schizophrenia is often regarded as a “dysconnectivity” disorder and recent work using graph theory has been used to better characterize dysconnectivity of the structural connectome in schizophrenia. However, there are still little data on the topology of connectomes in less severe forms of the condition. Such analysis will identify topological markers of less severe disease states and provide potential predictors of further disease development. Individuals with psychotic experiences (PEs) were identified from a population‐based cohort without relying on participants presenting to clinical services. Such individuals have an increased risk of developing clinically significant psychosis. 123 individuals with PEs and 125 controls were scanned with diffusion‐weighted MRI. Whole‐brain structural connectomes were derived and a range of global and local GT‐metrics were computed. Global efficiency and density were significantly reduced in individuals with PEs. Local efficiency was reduced in a number of regions, including critical network hubs. Further analysis of functional subnetworks showed differential impairment of the default mode network. An additional analysis of pair‐wise connections showed no evidence of differences in individuals with PEs. These results are consistent with previous findings in schizophrenia. Reduced efficiency in critical core hubs suggests the brains of individuals with PEs may be particularly predisposed to dysfunction. The absence of any detectable effects in pair‐wise connections illustrates that, at less severe stages of psychosis, white‐matter alterations are subtle and only manifest when examining network topology. This study indicates that topology could be a sensitive biomarker for early stages of psychotic illness. Hum Brain Mapp 36:2629–2643, 2015.© 2015 TheAuthors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:25832856

  13. Association Between Brain Activation and Functional Connectivity.

    PubMed

    Tomasi, Dardo; Volkow, Nora D

    2018-04-13

    The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.

  14. On the Reliability of Individual Brain Activity Networks.

    PubMed

    Cassidy, Ben; Bowman, F DuBois; Rae, Caroline; Solo, Victor

    2018-02-01

    There is intense interest in fMRI research on whole-brain functional connectivity, and however, two fundamental issues are still unresolved: the impact of spatiotemporal data resolution (spatial parcellation and temporal sampling) and the impact of the network construction method on the reliability of functional brain networks. In particular, the impact of spatiotemporal data resolution on the resulting connectivity findings has not been sufficiently investigated. In fact, a number of studies have already observed that functional networks often give different conclusions across different parcellation scales. If the interpretations from functional networks are inconsistent across spatiotemporal scales, then the whole validity of the functional network paradigm is called into question. This paper investigates the consistency of resting state network structure when using different temporal sampling or spatial parcellation, or different methods for constructing the networks. To pursue this, we develop a novel network comparison framework based on persistent homology from a topological data analysis. We use the new network comparison tools to characterize the spatial and temporal scales under which consistent functional networks can be constructed. The methods are illustrated on Human Connectome Project data, showing that the DISCOH 2 network construction method outperforms other approaches at most data spatiotemporal resolutions.

  15. Investigating the Intersession Reliability of Dynamic Brain-State Properties.

    PubMed

    Smith, Derek M; Zhao, Yrian; Keilholz, Shella D; Schumacher, Eric H

    2018-06-01

    Dynamic functional connectivity metrics have much to offer to the neuroscience of individual differences of cognition. Yet, despite the recent expansion in dynamic connectivity research, limited resources have been devoted to the study of the reliability of these connectivity measures. To address this, resting-state functional magnetic resonance imaging data from 100 Human Connectome Project subjects were compared across 2 scan days. Brain states (i.e., patterns of coactivity across regions) were identified by classifying each time frame using k means clustering. This was done with and without global signal regression (GSR). Multiple gauges of reliability indicated consistency in the brain-state properties across days and GSR attenuated the reliability of the brain states. Changes in the brain-state properties across the course of the scan were investigated as well. The results demonstrate that summary metrics describing the clustering of individual time frames have adequate test/retest reliability, and thus, these patterns of brain activation may hold promise for individual-difference research.

  16. White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset.

    PubMed

    De Witte, Nele A J; Mueller, Sven C

    2017-12-01

    Anxiety and depression are associated with altered communication within global brain networks and between these networks and the amygdala. Functional connectivity studies demonstrate an effect of anxiety and depression on four critical brain networks involved in top-down attentional control (fronto-parietal network; FPN), salience detection and error monitoring (cingulo-opercular network; CON), bottom-up stimulus-driven attention (ventral attention network; VAN), and default mode (default mode network; DMN). However, structural evidence on the white matter (WM) connections within these networks and between these networks and the amygdala is lacking. The current study in a large healthy sample (n = 483) observed that higher trait anxiety-depression predicted lower WM integrity in the connections between amygdala and specific regions of the FPN, CON, VAN, and DMN. We discuss the possible consequences of these anatomical alterations for cognitive-affective functioning and underscore the need for further theory-driven research on individual differences in anxiety and depression on brain structure.

  17. The brain functional connectome is robustly altered by lack of sleep.

    PubMed

    Kaufmann, Tobias; Elvsåshagen, Torbjørn; Alnæs, Dag; Zak, Nathalia; Pedersen, Per Ø; Norbom, Linn B; Quraishi, Sophia H; Tagliazucchi, Enzo; Laufs, Helmut; Bjørnerud, Atle; Malt, Ulrik F; Andreassen, Ole A; Roussos, Evangelos; Duff, Eugene P; Smith, Stephen M; Groote, Inge R; Westlye, Lars T

    2016-02-15

    Sleep is a universal phenomenon necessary for maintaining homeostasis and function across a range of organs. Lack of sleep has severe health-related consequences affecting whole-body functioning, yet no other organ is as severely affected as the brain. The neurophysiological mechanisms underlying these deficits are poorly understood. Here, we characterize the dynamic changes in brain connectivity profiles inflicted by sleep deprivation and how they deviate from regular daily variability. To this end, we obtained functional magnetic resonance imaging data from 60 young, adult male participants, scanned in the morning and evening of the same day and again the following morning. 41 participants underwent total sleep deprivation before the third scan, whereas the remainder had another night of regular sleep. Sleep deprivation strongly altered the connectivity of several resting-state networks, including dorsal attention, default mode, and hippocampal networks. Multivariate classification based on connectivity profiles predicted deprivation state with high accuracy, corroborating the robustness of the findings on an individual level. Finally, correlation analysis suggested that morning-to-evening connectivity changes were reverted by sleep (control group)-a pattern which did not occur after deprivation. We conclude that both, a day of waking and a night of sleep deprivation dynamically alter the brain functional connectome. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads

    PubMed Central

    Lee, Tae-Ho; Miernicki, Michelle E.; Telzer, Eva H.

    2017-01-01

    Despite emerging evidence suggesting a biological basis to our social tiles, our understanding of the neural processes which link two minds is unknown. We implemented a novel approach, which included connectome similarity analysis using resting state intrinsic networks of parent-child dyads as well as daily diaries measured across 14 days. Intrinsic resting-state networks for both parents and their adolescent child were identified using independent component analysis (ICA). Results indicate that parents and children who had more similar RSN connectome also had more similar day-to-day emotional synchrony. Furthermore, dyadic RSN connectome similarity was associated with children’s emotional competence, suggesting that being neurally in-tune with their parents confers emotional benefits. We provide the first evidence that dyadic RSN similarity is associated with emotional synchrony in what is often our first and most essential social bond, the parent-child relationship. PMID:28254510

  19. MR connectomics: a conceptual framework for studying the developing brain

    PubMed Central

    Hagmann, Patric; Grant, Patricia E.; Fair, Damien A.

    2012-01-01

    The combination of advanced neuroimaging techniques and major developments in complex network science, have given birth to a new framework for studying the brain: “connectomics.” This framework provides the ability to describe and study the brain as a dynamic network and to explore how the coordination and integration of information processing may occur. In recent years this framework has been used to investigate the developing brain and has shed light on many dynamic changes occurring from infancy through adulthood. The aim of this article is to review this work and to discuss what we have learned from it. We will also use this body of work to highlight key technical aspects that are necessary in general for successful connectome analysis using today's advanced neuroimaging techniques. We look to identify current limitations of such approaches, what can be improved, and how these points generalize to other topics in connectome research. PMID:22707934

  20. Connectomic Reconstruction of the Inner Plexiform Layer in the Mouse Retina

    DTIC Science & Technology

    2013-08-08

    PROGRAM ELEMENT NUMBER 611103 6.AUTHORS Sd. PROJECT NUMBER Moritz Helmstaedter, Kevin L. Briggman, Srinivas C . Tw-aga, Viren Jain, H. Sebastian...LIMITATION OF a. REPORT b . ABSTRACT c . THIS PAGE ABSTRACT uu uu uu uu Models, Biological* New-opillphysiology 1S . NUMBER OF PAGES .. 19a. NAME...mouse retina Moritz Helmstaedter1{, Kevin L. Briggman1{, Srinivas C . Turaga2{, Viren Jain2{, H. Sebastian Seung2 & Winfried Denk1 Comprehensivehigh

  1. A symmetric multivariate leakage correction for MEG connectomes

    PubMed Central

    Colclough, G.L.; Brookes, M.J.; Smith, S.M.; Woolrich, M.W.

    2015-01-01

    Ambiguities in the source reconstruction of magnetoencephalographic (MEG) measurements can cause spurious correlations between estimated source time-courses. In this paper, we propose a symmetric orthogonalisation method to correct for these artificial correlations between a set of multiple regions of interest (ROIs). This process enables the straightforward application of network modelling methods, including partial correlation or multivariate autoregressive modelling, to infer connectomes, or functional networks, from the corrected ROIs. Here, we apply the correction to simulated MEG recordings of simple networks and to a resting-state dataset collected from eight subjects, before computing the partial correlations between power envelopes of the corrected ROItime-courses. We show accurate reconstruction of our simulated networks, and in the analysis of real MEGresting-state connectivity, we find dense bilateral connections within the motor and visual networks, together with longer-range direct fronto-parietal connections. PMID:25862259

  2. An Multivariate Distance-Based Analytic Framework for Connectome-Wide Association Studies

    PubMed Central

    Shehzad, Zarrar; Kelly, Clare; Reiss, Philip T.; Craddock, R. Cameron; Emerson, John W.; McMahon, Katie; Copland, David A.; Castellanos, F. Xavier; Milham, Michael P.

    2014-01-01

    The identification of phenotypic associations in high-dimensional brain connectivity data represents the next frontier in the neuroimaging connectomics era. Exploration of brain-phenotype relationships remains limited by statistical approaches that are computationally intensive, depend on a priori hypotheses, or require stringent correction for multiple comparisons. Here, we propose a computationally efficient, data-driven technique for connectome-wide association studies (CWAS) that provides a comprehensive voxel-wise survey of brain-behavior relationships across the connectome; the approach identifies voxels whose whole-brain connectivity patterns vary significantly with a phenotypic variable. Using resting state fMRI data, we demonstrate the utility of our analytic framework by identifying significant connectivity-phenotype relationships for full-scale IQ and assessing their overlap with existent neuroimaging findings, as synthesized by openly available automated meta-analysis (www.neurosynth.org). The results appeared to be robust to the removal of nuisance covariates (i.e., mean connectivity, global signal, and motion) and varying brain resolution (i.e., voxelwise results are highly similar to results using 800 parcellations). We show that CWAS findings can be used to guide subsequent seed-based correlation analyses. Finally, we demonstrate the applicability of the approach by examining CWAS for three additional datasets, each encompassing a distinct phenotypic variable: neurotypical development, Attention-Deficit/Hyperactivity Disorder diagnostic status, and L-dopa pharmacological manipulation. For each phenotype, our approach to CWAS identified distinct connectome-wide association profiles, not previously attainable in a single study utilizing traditional univariate approaches. As a computationally efficient, extensible, and scalable method, our CWAS framework can accelerate the discovery of brain-behavior relationships in the connectome. PMID:24583255

  3. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI.

    PubMed

    Churchill, Nathan W; Hutchison, Michael G; Graham, Simon J; Schweizer, Tom A

    2018-01-01

    Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70) university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1) a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings); and (2) a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks.

  4. Human Fetal Brain Connectome: Structural Network Development from Middle Fetal Stage to Birth

    PubMed Central

    Song, Limei; Mishra, Virendra; Ouyang, Minhui; Peng, Qinmu; Slinger, Michelle; Liu, Shuwei; Huang, Hao

    2017-01-01

    Complicated molecular and cellular processes take place in a spatiotemporally heterogeneous and precisely regulated pattern in the human fetal brain, yielding not only dramatic morphological and microstructural changes, but also macroscale connectomic transitions. As the underlying substrate of the fetal brain structural network, both dynamic neuronal migration pathways and rapid developing fetal white matter (WM) fibers could fundamentally reshape early fetal brain connectome. Quantifying structural connectome development can not only shed light on the brain reconfiguration in this critical yet rarely studied developmental period, but also reveal alterations of the connectome under neuropathological conditions. However, transition of the structural connectome from the mid-fetal stage to birth is not yet known. The contribution of different types of neural fibers to the structural network in the mid-fetal brain is not known, either. In this study, diffusion tensor magnetic resonance imaging (DT-MRI or DTI) of 10 fetal brain specimens at the age of 20 postmenstrual weeks (PMW), 12 in vivo brains at 35 PMW, and 12 in vivo brains at term (40 PMW) were acquired. The structural connectome of each brain was established with evenly parcellated cortical regions as network nodes and traced fiber pathways based on DTI tractography as network edges. Two groups of fibers were categorized based on the fiber terminal locations in the cerebral wall in the 20 PMW fetal brains. We found that fetal brain networks become stronger and more efficient during 20–40 PMW. Furthermore, network strength and global efficiency increase more rapidly during 20–35 PMW than during 35–40 PMW. Visualization of the whole brain fiber distribution by the lengths suggested that the network reconfiguration in this developmental period could be associated with a significant increase of major long association WM fibers. In addition, non-WM neural fibers could be a major contributor to the structural network configuration at 20 PMW and small-world network organization could exist as early as 20 PMW. These findings offer a preliminary record of the fetal brain structural connectome maturation from the middle fetal stage to birth and reveal the critical role of non-WM neural fibers in structural network configuration in the middle fetal stage. PMID:29081731

  5. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    PubMed

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  6. Whole-brain analytic measures of network communication reveal increased structure-function correlation in right temporal lobe epilepsy.

    PubMed

    Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime

    2016-01-01

    The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.

  7. Disrupted functional connectome in antisocial personality disorder.

    PubMed

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen; Wang, Wei; Shen, Dinggang

    2017-08-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.

  8. Disrupted functional connectome in antisocial personality disorder

    PubMed Central

    Jiang, Weixiong; Shi, Feng; Liao, Jian; Liu, Huasheng; Wang, Tao; Shen, Celina; Shen, Hui; Hu, Dewen

    2017-01-01

    Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD. PMID:27541949

  9. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer's disease.

    PubMed

    Muñoz-Moreno, Emma; Tudela, Raúl; López-Gil, Xavier; Soria, Guadalupe

    2018-02-07

    Animal models of Alzheimer's disease (AD) are essential to understanding the disease progression and to development of early biomarkers. Because AD has been described as a disconnection syndrome, magnetic resonance imaging (MRI)-based connectomics provides a highly translational approach to characterizing the disruption in connectivity associated with the disease. In this study, a transgenic rat model of AD (TgF344-AD) was analyzed to describe both cognitive performance and brain connectivity at an early stage (5 months of age) before a significant concentration of β-amyloid plaques is present. Cognitive abilities were assessed by a delayed nonmatch-to-sample (DNMS) task preceded by a training phase where the animals learned the task. The number of training sessions required to achieve a learning criterion was recorded and evaluated. After DNMS, MRI acquisition was performed, including diffusion-weighted MRI and resting-state functional MRI, which were processed to obtain the structural and functional connectomes, respectively. Global and regional graph metrics were computed to evaluate network organization in both transgenic and control rats. The results pointed to a delay in learning the working memory-related task in the AD rats, which also completed a lower number of trials in the DNMS task. Regarding connectivity properties, less efficient organization of the structural brain networks of the transgenic rats with respect to controls was observed. Specific regional differences in connectivity were identified in both structural and functional networks. In addition, a strong correlation was observed between cognitive performance and brain networks, including whole-brain structural connectivity as well as functional and structural network metrics of regions related to memory and reward processes. In this study, connectivity and neurocognitive impairments were identified in TgF344-AD rats at a very early stage of the disease when most of the pathological hallmarks have not yet been detected. Structural and functional network metrics of regions related to reward, memory, and sensory performance were strongly correlated with the cognitive outcome. The use of animal models is essential for the early identification of these alterations and can contribute to the development of early biomarkers of the disease based on MRI connectomics.

  10. Families that fire together smile together: Resting state connectome similarity and daily emotional synchrony in parent-child dyads.

    PubMed

    Lee, Tae-Ho; Miernicki, Michelle E; Telzer, Eva H

    2017-05-15

    Despite emerging evidence suggesting a biological basis to our social tiles, our understanding of the neural processes which link two minds is unknown. We implemented a novel approach, which included connectome similarity analysis using resting state intrinsic networks of parent-child dyads as well as daily diaries measured across 14 days. Intrinsic resting-state networks for both parents and their adolescent child were identified using independent component analysis (ICA). Results indicate that parents and children who had more similar RSN connectome also had more similar day-to-day emotional synchrony. Furthermore, dyadic RSN connectome similarity was associated with children's emotional competence, suggesting that being neurally in-tune with their parents confers emotional benefits. We provide the first evidence that dyadic RSN similarity is associated with emotional synchrony in what is often our first and most essential social bond, the parent-child relationship. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    PubMed Central

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  12. The center for causal discovery of biomedical knowledge from big data

    PubMed Central

    Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-01-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. PMID:26138794

  13. Medial Demons Registration Localizes The Degree of Genetic Influence Over Subcortical Shape Variability: An N= 1480 Meta-Analysis

    PubMed Central

    Gutman, Boris A.; Jahanshad, Neda; Ching, Christopher R.K.; Wang, Yalin; Kochunov, Peter V.; Nichols, Thomas E.; Thompson, Paul M.

    2015-01-01

    We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens. Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies. PMID:26413211

  14. Medial Demons Registration Localizes The Degree of Genetic Influence Over Subcortical Shape Variability: An N= 1480 Meta-Analysis.

    PubMed

    Gutman, Boris A; Jahanshad, Neda; Ching, Christopher R K; Wang, Yalin; Kochunov, Peter V; Nichols, Thomas E; Thompson, Paul M

    2015-04-01

    We present a multi-cohort shape heritability study, extending the fast spherical demons registration to subcortical shapes via medial modeling. A multi-channel demons registration based on vector spherical harmonics is applied to medial and curvature features, while controlling for metric distortion. We registered and compared seven subcortical structures of 1480 twins and siblings from the Queensland Twin Imaging Study and Human Connectome Project: Thalamus, Caudate, Putamen, Pallidum, Hippocampus, Amygdala, and Nucleus Accumbens . Radial distance and tensor-based morphometry (TBM) features were found to be highly heritable throughout the entire basal ganglia and limbic system. Surface maps reveal subtle variation in heritability across functionally distinct parts of each structure. Medial Demons reveals more significantly heritable regions than two previously described surface registration methods. This approach may help to prioritize features and measures for genome-wide association studies.

  15. Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning.

    PubMed

    Zhou, Yongxia; Yu, Fang; Duong, Timothy

    2014-01-01

    This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) were selected from the multi-center Functional Connectome Project. Regional gray matter volume and cortical thickness increased, whereas white matter volume decreased in ASD compared to controls. Small-world network analysis of quantitative MRI data demonstrated decreased global efficiency based on gray matter cortical thickness but not with functional connectivity MRI (fcMRI) or volumetry. An integrative model of 22 quantitative imaging features was used for classification and prediction of phenotypic features that included the autism diagnostic observation schedule, the revised autism diagnostic interview, and intelligence quotient scores. Among the 22 imaging features, four (caudate volume, caudate-cortical functional connectivity and inferior frontal gyrus functional connectivity) were found to be highly informative, markedly improving classification and prediction accuracy when compared with the single imaging features. This approach could potentially serve as a biomarker in prognosis, diagnosis, and monitoring disease progression.

  16. Asymmetry of Hemispheric Network Topology Reveals Dissociable Processes between Functional and Structural Brain Connectome in Community-Living Elders

    PubMed Central

    Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei

    2017-01-01

    Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197

  17. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex.

    PubMed

    Yeo, B T Thomas; Krienen, Fenna M; Chee, Michael W L; Buckner, Randy L

    2014-03-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. © 2013.

  18. Estimates of Segregation and Overlap of Functional Connectivity Networks in the Human Cerebral Cortex

    PubMed Central

    Yeo, BT Thomas; Krienen, Fenna M; Chee, Michael WL; Buckner, Randy L

    2014-01-01

    The organization of the human cerebral cortex has recently been explored using techniques for parcellating the cortex into distinct functionally coupled networks. The divergent and convergent nature of cortico-cortical anatomic connections suggests the need to consider the possibility of regions belonging to multiple networks and hierarchies among networks. Here we applied the Latent Dirichlet Allocation (LDA) model and spatial independent component analysis (ICA) to solve for functionally coupled cerebral networks without assuming that cortical regions belong to a single network. Data analyzed included 1,000 subjects from the Brain Genomics Superstruct Project (GSP) and 12 high quality individual subjects from the Human Connectome Project (HCP). The organization of the cerebral cortex was similar regardless of whether a winner-take-all approach or the more relaxed constraints of LDA (or ICA) were imposed. This suggests that large-scale networks may function as partially isolated modules. Several notable interactions among networks were uncovered by the LDA analysis. Many association regions belong to at least two networks, while somatomotor and early visual cortices are especially isolated. As examples of interaction, the precuneus, lateral temporal cortex, medial prefrontal cortex and posterior parietal cortex participate in multiple paralimbic networks that together comprise subsystems of the default network. In addition, regions at or near the frontal eye field and human lateral intraparietal area homologue participate in multiple hierarchically organized networks. These observations were replicated in both datasets and could be detected (and replicated) in individual subjects from the HCP. PMID:24185018

  19. A multisample study of longitudinal changes in brain network architecture in 4-13-year-old children.

    PubMed

    Wierenga, Lara M; van den Heuvel, Martijn P; Oranje, Bob; Giedd, Jay N; Durston, Sarah; Peper, Jiska S; Brown, Timothy T; Crone, Eveline A

    2018-01-01

    Recent advances in human neuroimaging research have revealed that white-matter connectivity can be described in terms of an integrated network, which is the basis of the human connectome. However, the developmental changes of this connectome in childhood are not well understood. This study made use of two independent longitudinal diffusion-weighted imaging data sets to characterize developmental changes in the connectome by estimating age-related changes in fractional anisotropy (FA) for reconstructed fibers (edges) between 68 cortical regions. The first sample included 237 diffusion-weighted scans of 146 typically developing children (4-13 years old, 74 females) derived from the Pediatric Longitudinal Imaging, Neurocognition, and Genetics (PLING) study. The second sample included 141 scans of 97 individuals (8-13 years old, 62 females) derived from the BrainTime project. In both data sets, we compared edges that had the most substantial age-related change in FA to edges that showed little change in FA. This allowed us to investigate if developmental changes in white matter reorganize network topology. We observed substantial increases in edges connecting peripheral and a set of highly connected hub regions, referred to as the rich club. Together with the observed topological differences between regions connecting to edges showing the smallest and largest changes in FA, this indicates that changes in white matter affect network organization, such that highly connected regions become even more strongly imbedded in the network. These findings suggest that an important process in brain development involves organizing patterns of inter-regional interactions. Hum Brain Mapp 39:157-170, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas

    PubMed Central

    Dempsey, Bowen; Le, Sheng; Turner, Anita; Bokiniec, Phil; Ramadas, Radhika; Bjaalie, Jan G.; Menuet, Clement; Neve, Rachael; Allen, Andrew M.; Goodchild, Ann K.; McMullan, Simon

    2017-01-01

    Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data. PMID:28298886

  1. Function-specific and Enhanced Brain Structural Connectivity Mapping via Joint Modeling of Diffusion and Functional MRI.

    PubMed

    Chu, Shu-Hsien; Parhi, Keshab K; Lenglet, Christophe

    2018-03-16

    A joint structural-functional brain network model is presented, which enables the discovery of function-specific brain circuits, and recovers structural connections that are under-estimated by diffusion MRI (dMRI). Incorporating information from functional MRI (fMRI) into diffusion MRI to estimate brain circuits is a challenging task. Usually, seed regions for tractography are selected from fMRI activation maps to extract the white matter pathways of interest. The proposed method jointly analyzes whole brain dMRI and fMRI data, allowing the estimation of complete function-specific structural networks instead of interactively investigating the connectivity of individual cortical/sub-cortical areas. Additionally, tractography techniques are prone to limitations, which can result in erroneous pathways. The proposed framework explicitly models the interactions between structural and functional connectivity measures thereby improving anatomical circuit estimation. Results on Human Connectome Project (HCP) data demonstrate the benefits of the approach by successfully identifying function-specific anatomical circuits, such as the language and resting-state networks. In contrast to correlation-based or independent component analysis (ICA) functional connectivity mapping, detailed anatomical connectivity patterns are revealed for each functional module. Results on a phantom (Fibercup) also indicate improvements in structural connectivity mapping by rejecting false-positive connections with insufficient support from fMRI, and enhancing under-estimated connectivity with strong functional correlation.

  2. Golgi: Interactive Online Brain Mapping

    PubMed Central

    Brown, Ramsay A.; Swanson, Larry W.

    2015-01-01

    Golgi (http://www.usegolgi.com) is a prototype interactive brain map of the rat brain that helps researchers intuitively interact with neuroanatomy, connectomics, and cellular and chemical architecture. The flood of “-omic” data urges new ways to help researchers connect discrete findings to the larger context of the nervous system. Here we explore Golgi’s underlying reasoning and techniques and how our design decisions balance the constraints of building both a scientifically useful and usable tool. We demonstrate how Golgi can enhance connectomic literature searches with a case study investigating a thalamocortical circuit involving the Nucleus Accumbens and we explore Golgi’s potential and future directions for growth in systems neuroscience and connectomics. PMID:26635596

  3. Structural and functional hyperconnectivity within the sensorimotor system in xenomelia.

    PubMed

    Hänggi, Jürgen; Vitacco, Deborah A; Hilti, Leonie M; Luechinger, Roger; Kraemer, Bernd; Brugger, Peter

    2017-03-01

    Xenomelia is a rare condition characterized by the persistent and compulsive desire for the amputation of one or more physically healthy limbs. We highlight the neurological underpinnings of xenomelia by assessing structural and functional connectivity by means of whole-brain connectome and network analyses of regions previously implicated in empirical research in this condition. We compared structural and functional connectivity between 13 xenomelic men with matched controls using diffusion tensor imaging combined with fiber tractography and resting state functional magnetic resonance imaging. Altered connectivity in xenomelia within the sensorimotor system has been predicted. We found subnetworks showing structural and functional hyperconnectivity in xenomelia compared with controls. These subnetworks were lateralized to the right hemisphere and mainly comprised by nodes belonging to the sensorimotor system. In the connectome analyses, the paracentral lobule, supplementary motor area, postcentral gyrus, basal ganglia, and the cerebellum were hyperconnected to each other, whereas in the xenomelia-specific network analyses, hyperconnected nodes have been found in the superior parietal lobule, primary and secondary somatosensory cortex, premotor cortex, basal ganglia, thalamus, and insula. Our study provides empirical evidence of structural and functional hyperconnectivity within the sensorimotor system including those regions that are core for the reconstruction of a coherent body image. Aberrant connectivity is a common response to focal neurological damage. As exemplified here, it may affect different brain regions differentially. Due to the small sample size, our findings must be interpreted cautiously and future studies are needed to elucidate potential associations between hyperconnectivity and limb disownership reported in xenomelia.

  4. Functional brain networks related to individual differences in human intelligence at rest.

    PubMed

    Hearne, Luke J; Mattingley, Jason B; Cocchi, Luca

    2016-08-26

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics.

  5. Ontology-based approach for in vivo human connectomics: the medial Brodmann area 6 case study

    PubMed Central

    Moreau, Tristan; Gibaud, Bernard

    2015-01-01

    Different non-invasive neuroimaging modalities and multi-level analysis of human connectomics datasets yield a great amount of heterogeneous data which are hard to integrate into an unified representation. Biomedical ontologies can provide a suitable integrative framework for domain knowledge as well as a tool to facilitate information retrieval, data sharing and data comparisons across scales, modalities and species. Especially, it is urgently needed to fill the gap between neurobiology and in vivo human connectomics in order to better take into account the reality highlighted in Magnetic Resonance Imaging (MRI) and relate it to existing brain knowledge. The aim of this study was to create a neuroanatomical ontology, called “Human Connectomics Ontology” (HCO), in order to represent macroscopic gray matter regions connected with fiber bundles assessed by diffusion tractography and to annotate MRI connectomics datasets acquired in the living human brain. First a neuroanatomical “view” called NEURO-DL-FMA was extracted from the reference ontology Foundational Model of Anatomy (FMA) in order to construct a gross anatomy ontology of the brain. HCO extends NEURO-DL-FMA by introducing entities (such as “MR_Node” and “MR_Route”) and object properties (such as “tracto_connects”) pertaining to MR connectivity. The Web Ontology Language Description Logics (OWL DL) formalism was used in order to enable reasoning with common reasoning engines. Moreover, an experimental work was achieved in order to demonstrate how the HCO could be effectively used to address complex queries concerning in vivo MRI connectomics datasets. Indeed, neuroimaging datasets of five healthy subjects were annotated with terms of the HCO and a multi-level analysis of the connectivity patterns assessed by diffusion tractography of the right medial Brodmann Area 6 was achieved using a set of queries. This approach can facilitate comparison of data across scales, modalities and species. PMID:25914640

  6. Frequency dependent hub role of the dorsal and ventral right anterior insula.

    PubMed

    Wang, Yifeng; Zhu, Lixia; Zou, Qijun; Cui, Qian; Liao, Wei; Duan, Xujun; Biswal, Bharat; Chen, Huafu

    2018-01-15

    The right anterior insula (rAI) plays a crucial role in generating adaptive behavior by orchestrating multiple brain networks. Based on functional separation findings of the insula and spectral fingerprints theory of cognitive functions, we hypothesize that the hub role of the rAI is region and frequency dependent. Using the Human Connectome Project dataset and backtracking approach, we segregate the rAI into dorsal and ventral parts at frequency bands from slow 6 to slow 3, indicating the frequency dependent functional separation of the rAI. Functional connectivity analysis shows that, within lower than 0.198 Hz frequency range, the dorsal and ventral parts of rAI form a complementary system to synchronize with externally and internally-oriented networks. Moreover, the relationship between the dorsal and ventral rAIs predicts the relationship between anti-correlated networks associated with the dorsal rAI at slow 6 and slow 5, suggesting a frequency dependent regulation of the rAI to brain networks. These findings could improve our understanding of the rAI by supporting the region and frequency dependent function of rAI and its essential role in coordinating brain systems relevant to internal and external environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Fast computation of voxel-level brain connectivity maps from resting-state functional MRI using l₁-norm as approximation of Pearson's temporal correlation: proof-of-concept and example vector hardware implementation.

    PubMed

    Minati, Ludovico; Zacà, Domenico; D'Incerti, Ludovico; Jovicich, Jorge

    2014-09-01

    An outstanding issue in graph-based analysis of resting-state functional MRI is choice of network nodes. Individual consideration of entire brain voxels may represent a less biased approach than parcellating the cortex according to pre-determined atlases, but entails establishing connectedness for 1(9)-1(11) links, with often prohibitive computational cost. Using a representative Human Connectome Project dataset, we show that, following appropriate time-series normalization, it may be possible to accelerate connectivity determination replacing Pearson correlation with l1-norm. Even though the adjacency matrices derived from correlation coefficients and l1-norms are not identical, their similarity is high. Further, we describe and provide in full an example vector hardware implementation of l1-norm on an array of 4096 zero instruction-set processors. Calculation times <1000 s are attainable, removing the major deterrent to voxel-based resting-sate network mapping and revealing fine-grained node degree heterogeneity. L1-norm should be given consideration as a substitute for correlation in very high-density resting-state functional connectivity analyses. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  8. The connectome mapper: an open-source processing pipeline to map connectomes with MRI.

    PubMed

    Daducci, Alessandro; Gerhard, Stephan; Griffa, Alessandra; Lemkaddem, Alia; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Hagmann, Patric; Thiran, Jean-Philippe

    2012-01-01

    Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.

  9. Exploring the Associations Between Intrinsic Brain Connectivity and Creative Ability Using Functional Connectivity Strength and Connectome Analysis.

    PubMed

    Gao, Zhenni; Zhang, Delong; Liang, Aiying; Liang, Bishan; Wang, Zengjian; Cai, Yuxuan; Li, Junchao; Gao, Mengxia; Liu, Xiaojin; Chang, Song; Jiao, Bingqing; Huang, Ruiwang; Liu, Ming

    2017-11-01

    The present study aimed to explore the association between resting-state functional connectivity and creativity ability. Toward this end, the figural Torrance Tests of Creative Thinking (TTCT) scores were collected from 180 participants. Based on the figural TTCT measures, we collected resting-state functional magnetic resonance imaging data for participants with two different levels of creativity ability (a high-creativity group [HG, n = 22] and a low-creativity group [LG, n = 20]). For the aspect of group difference, this study combined voxel-wise functional connectivity strength (FCS) and seed-based functional connectivity to identify brain regions with group-change functional connectivity. Furthermore, the connectome properties of the identified regions and their associations with creativity were investigated using the permutation test, discriminative analysis, and brain-behavior correlation analysis. The results indicated that there were 4 regions with group differences in FCS, and these regions were linked to 30 other regions, demonstrating different functional connectivity between the groups. Together, these regions form a creativity-related network, and we observed higher network efficiency in the HG compared with the LG. The regions involved in the creativity network were widely distributed across the modality-specific/supramodality cerebral cortex, subcortex, and cerebellum. Notably, properties of regions in the supramodality networks (i.e., the default mode network and attention network) carried creativity-level discriminative information and were significantly correlated with the creativity performance. Together, these findings demonstrate a link between intrinsic brain connectivity and creative ability, which should provide new insights into the neural basis of creativity.

  10. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data

    PubMed Central

    James, G. Andrew; Hazaroglu, Onder; Bush, Keith A.

    2015-01-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI’s translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants’ functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group’s mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI= 0.72–0.85) than with the Random atlases (JI=0.59–0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75–0.80) than the Random atlases (r=0.64–0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. PMID:26523655

  11. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

    PubMed

    James, George Andrew; Hazaroglu, Onder; Bush, Keith A

    2016-02-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75-0.80) than the Random atlases (r=0.64-0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Using high-throughput barcode sequencing to efficiently map connectomes

    PubMed Central

    Peikon, Ian D.; Kebschull, Justus M.; Vagin, Vasily V.; Ravens, Diana I.; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R.; Bressan, Dario

    2017-01-01

    Abstract The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision—a ‘connectome’—is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence—an RNA ‘barcode’—which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. PMID:28449067

  13. Functional brain networks reconstruction using group sparsity-regularized learning.

    PubMed

    Zhao, Qinghua; Li, Will X Y; Jiang, Xi; Lv, Jinglei; Lu, Jianfeng; Liu, Tianming

    2018-06-01

    Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.

  14. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma: Connectome Neurotrauma Mechanics

    DTIC Science & Technology

    2012-08-16

    threshold of 18% strain, 161 edges were removed. Watts and Strogatz [66] define the small-world network based on the clustering coefficient of the network and...NeuroImage 52: 1059–1069. 65. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701. 66. Watts DJ, Strogatz SH

  15. Combining the Finite Element Method with Structural Connectome-based Analysis for Modeling Neurotrauma:Connectome Neurotrauma Mechanics

    DTIC Science & Technology

    2012-08-16

    death threshold. Using an injury threshold of 18% strain, 161 edges were removed. Watts and Strogatz [66] define the small-world network based on the...NeuroImage 52: 1059–1069. 65. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys Rev Lett 87: 198701. 66. Watts DJ, Strogatz SH

  16. Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns.

    PubMed

    Liu, Jin; Liao, Xuhong; Xia, Mingrui; He, Yong

    2018-02-01

    The human brain is a large, interacting dynamic network, and its architecture of coupling among brain regions varies across time (termed the "chronnectome"). However, very little is known about whether and how the dynamic properties of the chronnectome can characterize individual uniqueness, such as identifying individuals as a "fingerprint" of the brain. Here, we employed multiband resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 105) and a sliding time-window dynamic network analysis approach to systematically examine individual time-varying properties of the chronnectome. We revealed stable and remarkable individual variability in three dynamic characteristics of brain connectivity (i.e., strength, stability, and variability), which was mainly distributed in three higher order cognitive systems (i.e., default mode, dorsal attention, and fronto-parietal) and in two primary systems (i.e., visual and sensorimotor). Intriguingly, the spatial patterns of these dynamic characteristics of brain connectivity could successfully identify individuals with high accuracy and could further significantly predict individual higher cognitive performance (e.g., fluid intelligence and executive function), which was primarily contributed by the higher order cognitive systems. Together, our findings highlight that the chronnectome captures inherent functional dynamics of individual brain networks and provides implications for individualized characterization of health and disease. © 2017 Wiley Periodicals, Inc.

  17. The big data challenges of connectomics.

    PubMed

    Lichtman, Jeff W; Pfister, Hanspeter; Shavit, Nir

    2014-11-01

    The structure of the nervous system is extraordinarily complicated because individual neurons are interconnected to hundreds or even thousands of other cells in networks that can extend over large volumes. Mapping such networks at the level of synaptic connections, a field called connectomics, began in the 1970s with a the study of the small nervous system of a worm and has recently garnered general interest thanks to technical and computational advances that automate the collection of electron-microscopy data and offer the possibility of mapping even large mammalian brains. However, modern connectomics produces 'big data', unprecedented quantities of digital information at unprecedented rates, and will require, as with genomics at the time, breakthrough algorithmic and computational solutions. Here we describe some of the key difficulties that may arise and provide suggestions for managing them.

  18. Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space

    PubMed Central

    Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F. Xavier; Milham, Michael P.

    2013-01-01

    While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test–retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo’s TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). PMID:23085497

  19. A Comprehensive Assessment of Regional Variation in the Impact of Head Micromovements on Functional Connectomics

    PubMed Central

    Yan, Chao-Gan; Cheung, Brian; Kelly, Clare; Colcombe, Stan; Craddock, R. Cameron; Di Martino, Adriana; Li, Qingyang; Zuo, Xi-Nian; Castellanos, F. Xavier; Milham, Michael P.

    2014-01-01

    Functional connectomics is one of the most rapidly expanding areas of neuroimaging research. Yet, concerns remain regarding the use of resting-state fMRI (R-fMRI) to characterize inter-individual variation in the functional connectome. In particular, recent findings that “micro” head movements can introduce artifactual inter-individual and group-related differences in R-fMRI metrics have raised concerns. Here, we first build on prior demonstrations of regional variation in the magnitude of framewise displacements associated with a given head movement, by providing a comprehensive voxel-based examination of the impact of motion on the BOLD signal (i.e., motion-BOLD relationships). Positive motion-BOLD relationships were detected in primary and supplementary motor areas, particularly in low motion datasets. Negative motion-BOLD relationships were most prominent in prefrontal regions, and expanded throughout the brain in high motion datasets (e.g., children). Scrubbing of volumes with FD > 0.2 effectively removed negative but not positive correlations; these findings suggest that positive relationships may reflect neural origins of motion while negative relationships are likely to originate from motion artifact. We also examined the ability of motion correction strategies to eliminate artifactual differences related to motion among individuals and between groups for a broad array of voxel-wise R-fMRI metrics. Residual relationships between motion and the examined R-fMRI metrics remained for all correction approaches, underscoring the need to covary motion effects at the group-level. Notably, global signal regression reduced relationships between motion and inter-individual differences in correlation-based R-fMRI metrics; Z-standardization (mean-centering and variance normalization) of subject-level maps for R-fMRI metrics prior to group-level analyses demonstrated similar advantages. Finally, our test-retest (TRT) analyses revealed significant motion effects on TRT reliability for R-fMRI metrics. Generally, motion compromised reliability of R-fMRI metrics, with the exception of those based on frequency characteristics – particularly, amplitude of low frequency fluctuations (ALFF). The implications of our findings for decision-making regarding the assessment and correction of motion are discussed, as are insights into potential differences among volume-based metrics of motion. PMID:23499792

  20. Functional connectivity density mapping: comparing multiband and conventional EPI protocols.

    PubMed

    Cohen, Alexander D; Tomasi, Dardo; Shokri-Kojori, Ehsan; Nencka, Andrew S; Wang, Yang

    2018-06-01

    Functional connectivity density mapping (FCDM) is a newly developed data-driven technique that quantifies the number of local and global functional connections for each voxel in the brain. In this study, we evaluated reproducibility, sensitivity, and specificity of both local functional connectivity density (lFCD) and global functional connectivity density (gFCD). We compared these metrics using the human connectome project (HCP) compatible high-resolution (2 mm isotropic, TR = 0.8 s) multiband (MB), and more typical, lower resolution (3.5 mm isotropic, TR = 2.0 s) single-band (SB) resting state functional MRI (rs-fMRI) acquisitions. Furthermore, in order to be more clinically feasible, only rs-fMRI scans that lasted seven minutes were tested. Subjects were scanned twice within a two-week span. We found sensitivity and specificity increased and reproducibility either increased or did not change for the MB compared to the SB acquisitions. The MB scans also showed improved gray matter/white matter contrast compared to the SB scans. The lFCD and gFCD patterns were similar across MB and SB scans and confined predominantly to gray matter. We also observed a strong spatial correlation of FCD between MB and SB scans indicating the two acquisitions provide similar information. These findings indicate high-resolution MB acquisitions improve the quality of FCD data, and seven minute rs-fMRI scan can provide robust FCD measurements.

  1. Bridging the Gap between the Human and Macaque Connectome: A Quantitative Comparison of Global Interspecies Structure-Function Relationships and Network Topology

    PubMed Central

    Miranda-Dominguez, Oscar; Mills, Brian D.; Grayson, David; Woodall, Andrew; Grant, Kathleen A.; Kroenke, Christopher D.

    2014-01-01

    Resting state functional connectivity MRI (rs-fcMRI) may provide a powerful and noninvasive “bridge” for comparing brain function between patients and experimental animal models; however, the relationship between human and macaque rs-fcMRI remains poorly understood. Here, using a novel surface deformation process for species comparisons in the same anatomical space (Van Essen, 2004, 2005), we found high correspondence, but also unique hub topology, between human and macaque functional connectomes. The global functional connectivity match between species was moderate to strong (r = 0.41) and increased when considering the top 15% strongest connections (r = 0.54). Analysis of the match between functional connectivity and the underlying anatomical connectivity, derived from a previous retrograde tracer study done in macaques (Markov et al., 2012), showed impressive structure–function correspondence in both the macaque and human. When examining the strongest structural connections, we found a 70–80% match between structural and functional connectivity matrices in both species. Finally, we compare species on two widely used metrics for studying hub topology: degree and betweenness centrality. The data showed topological agreement across the species, with nodes of the posterior cingulate showing high degree and betweenness centrality. In contrast, nodes in medial frontal and parietal cortices were identified as having high degree and betweenness in the human as opposed to the macaque. Our results provide: (1) a thorough examination and validation for a surface-based interspecies deformation process, (2) a strong theoretical foundation for making interspecies comparisons of rs-fcMRI, and (3) a unique look at topological distinctions between the species. PMID:24741045

  2. Modelling information flow along the human connectome using maximum flow.

    PubMed

    Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung

    2018-01-01

    The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cognitive and connectome properties detectable through individual differences in graphomotor organization.

    PubMed

    Lamar, Melissa; Ajilore, Olusola; Leow, Alex; Charlton, Rebecca; Cohen, Jamie; GadElkarim, Johnson; Yang, Shaolin; Zhang, Aifeng; Davis, Randall; Penney, Dana; Libon, David J; Kumar, Anand

    2016-05-01

    We investigated whether graphomotor organization during a digitized Clock Drawing Test (dCDT) would be associated with cognitive and/or brain structural differences detected with a tractography-derived structural connectome of the brain. 72 non-demented/non-depressed adults were categorized based on whether or not they used 'anchor' digits (i.e., 12, 3, 6, 9) before any other digits while completing dCDT instructions to "draw the face of a clock with all the numbers and set the hands to 10 after 11". 'Anchorers' were compared to 'non-anchorers' across dCDT, additional cognitive measures and connectome-based metrics. In the context of grossly intact clock drawings, anchorers required fewer strokes to complete the dCDT and outperformed non-anchorers on executive functioning and learning/memory/recognition tasks. Anchorers had higher local efficiency for the left medial orbitofrontal and transverse temporal cortices as well as the right rostral anterior cingulate and superior frontal gyrus versus non-anchorers suggesting better regional integration within local networks involving these regions; select aspects of which correlated with cognition. Results also revealed that anchorers' exhibited a higher degree of modular integration among heteromodal regions of the ventral visual processing stream versus non-anchorers. Thus, an easily observable graphomotor distinction was associated with 1) better performance in specific cognitive domains, 2) higher local efficiency suggesting better regional integration, and 3) more sophisticated modular integration involving the ventral ('what') visuospatial processing stream. Taken together, these results enhance our knowledge of the brain-behavior relationships underlying unprompted graphomotor organization during dCDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. EEGNET: An Open Source Tool for Analyzing and Visualizing M/EEG Connectome

    PubMed Central

    Hassan, Mahmoud; Shamas, Mohamad; Khalil, Mohamad; El Falou, Wassim; Wendling, Fabrice

    2015-01-01

    The brain is a large-scale complex network often referred to as the “connectome”. Exploring the dynamic behavior of the connectome is a challenging issue as both excellent time and space resolution is required. In this context Magneto/Electroencephalography (M/EEG) are effective neuroimaging techniques allowing for analysis of the dynamics of functional brain networks at scalp level and/or at reconstructed sources. However, a tool that can cover all the processing steps of identifying brain networks from M/EEG data is still missing. In this paper, we report a novel software package, called EEGNET, running under MATLAB (Math works, inc), and allowing for analysis and visualization of functional brain networks from M/EEG recordings. EEGNET is developed to analyze networks either at the level of scalp electrodes or at the level of reconstructed cortical sources. It includes i) Basic steps in preprocessing M/EEG signals, ii) the solution of the inverse problem to localize / reconstruct the cortical sources, iii) the computation of functional connectivity among signals collected at surface electrodes or/and time courses of reconstructed sources and iv) the computation of the network measures based on graph theory analysis. EEGNET is the unique tool that combines the M/EEG functional connectivity analysis and the computation of network measures derived from the graph theory. The first version of EEGNET is easy to use, flexible and user friendly. EEGNET is an open source tool and can be freely downloaded from this webpage: https://sites.google.com/site/eegnetworks/. PMID:26379232

  5. Temporal Dynamics Assessment of Spatial Overlap Pattern of Functional Brain Networks Reveals Novel Functional Architecture of Cerebral Cortex.

    PubMed

    Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhao, Shijie; Zhang, Shu; Zhang, Wei; Zhang, Tuo; Han, Junwei; Guo, Lei; Liu, Tianming

    2018-06-01

    Various studies in the brain mapping field have demonstrated that there exist multiple concurrent functional networks that are spatially overlapped and interacting with each other during specific task performance to jointly realize the total brain function. Assessing such spatial overlap patterns of functional networks (SOPFNs) based on functional magnetic resonance imaging (fMRI) has thus received increasing interest for brain function studies. However, there are still two crucial issues to be addressed. First, the SOPFNs are assessed over the entire fMRI scan assuming the temporal stationarity, while possibly time-dependent dynamics of the SOPFNs is not sufficiently explored. Second, the SOPFNs are assessed within individual subjects, while group-wise consistency of the SOPFNs is largely unknown. To address the two issues, we propose a novel computational framework of group-wise sparse representation of whole-brain fMRI temporal segments to assess the temporal dynamic spatial patterns of SOPFNs that are consistent across different subjects. Experimental results based on the recently publicly released Human Connectome Project grayordinate task fMRI data demonstrate that meaningful SOPFNs exhibiting dynamic spatial patterns across different time periods are effectively and robustly identified based on the reconstructed concurrent functional networks via the proposed framework. Specifically, those SOPFNs locate significantly more on gyral regions than on sulcal regions across different time periods. These results reveal novel functional architecture of cortical gyri and sulci. Moreover, these results help better understand functional dynamics mechanisms of cerebral cortex in the future.

  6. The preprocessed connectomes project repository of manually corrected skull-stripped T1-weighted anatomical MRI data.

    PubMed

    Puccio, Benjamin; Pooley, James P; Pellman, John S; Taverna, Elise C; Craddock, R Cameron

    2016-10-25

    Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125 T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study. Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40 were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for automatically skull-stripping other data. Skull-stripped anatomical images from the Neurofeedback sample are available for download from the Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a reference for comparing various automatic methods and evaluated the performance of the newly created library on independent data.

  7. A Multiscale Parallel Computing Architecture for Automated Segmentation of the Brain Connectome

    PubMed Central

    Knobe, Kathleen; Newton, Ryan R.; Schlimbach, Frank; Blower, Melanie; Reid, R. Clay

    2015-01-01

    Several groups in neurobiology have embarked into deciphering the brain circuitry using large-scale imaging of a mouse brain and manual tracing of the connections between neurons. Creating a graph of the brain circuitry, also called a connectome, could have a huge impact on the understanding of neurodegenerative diseases such as Alzheimer’s disease. Although considerably smaller than a human brain, a mouse brain already exhibits one billion connections and manually tracing the connectome of a mouse brain can only be achieved partially. This paper proposes to scale up the tracing by using automated image segmentation and a parallel computing approach designed for domain experts. We explain the design decisions behind our parallel approach and we present our results for the segmentation of the vasculature and the cell nuclei, which have been obtained without any manual intervention. PMID:21926011

  8. The big data challenges of connectomics

    PubMed Central

    Lichtman, Jeff W; Pfister, Hanspeter; Shavit, Nir

    2015-01-01

    The structure of the nervous system is extraordinarily complicated because individual neurons are interconnected to hundreds or even thousands of other cells in networks that can extend over large volumes. Mapping such networks at the level of synaptic connections, a field called connectomics, began in the 1970s with a the study of the small nervous system of a worm and has recently garnered general interest thanks to technical and computational advances that automate the collection of electron-microscopy data and offer the possibility of mapping even large mammalian brains. However, modern connectomics produces ‘big data’, unprecedented quantities of digital information at unprecedented rates, and will require, as with genomics at the time, breakthrough algorithmic and computational solutions. Here we describe some of the key difficulties that may arise and provide suggestions for managing them. PMID:25349911

  9. The big data challenges of connectomics

    DOE PAGES

    Lichtman, Jeff W.; Pfister, Hanspeter; Shavit, Nir

    2014-10-28

    The structure of the nervous system is extraordinarily complicated because individual neurons are interconnected to hundreds or even thousands of other cells in networks that can extend over large volumes. Mapping such networks at the level of synaptic connections, a field called connectomics, began in the 1970s with a the study of the small nervous system of a worm and has recently garnered general interest thanks to technical and computational advances that automate the collection of electron-microscopy data and offer the possibility of mapping even large mammalian brains. However, modern connectomics produces ‘big data’, unprecedented quantities of digital information atmore » unprecedented rates, and will require, as with genomics at the time, breakthrough algorithmic and computational solutions. Here in this paper we describe some of the key difficulties that may arise and provide suggestions for managing them.« less

  10. The big data challenges of connectomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtman, Jeff W.; Pfister, Hanspeter; Shavit, Nir

    The structure of the nervous system is extraordinarily complicated because individual neurons are interconnected to hundreds or even thousands of other cells in networks that can extend over large volumes. Mapping such networks at the level of synaptic connections, a field called connectomics, began in the 1970s with a the study of the small nervous system of a worm and has recently garnered general interest thanks to technical and computational advances that automate the collection of electron-microscopy data and offer the possibility of mapping even large mammalian brains. However, modern connectomics produces ‘big data’, unprecedented quantities of digital information atmore » unprecedented rates, and will require, as with genomics at the time, breakthrough algorithmic and computational solutions. Here in this paper we describe some of the key difficulties that may arise and provide suggestions for managing them.« less

  11. An unbiased Bayesian approach to functional connectomics implicates social-communication networks in autism

    PubMed Central

    Venkataraman, Archana; Duncan, James S.; Yang, Daniel Y.-J.; Pelphrey, Kevin A.

    2015-01-01

    Resting-state functional magnetic resonance imaging (rsfMRI) studies reveal a complex pattern of hyper- and hypo-connectivity in children with autism spectrum disorder (ASD). Whereas rsfMRI findings tend to implicate the default mode network and subcortical areas in ASD, task fMRI and behavioral experiments point to social dysfunction as a unifying impairment of the disorder. Here, we leverage a novel Bayesian framework for whole-brain functional connectomics that aggregates population differences in connectivity to localize a subset of foci that are most affected by ASD. Our approach is entirely data-driven and does not impose spatial constraints on the region foci or dictate the trajectory of altered functional pathways. We apply our method to data from the openly shared Autism Brain Imaging Data Exchange (ABIDE) and pinpoint two intrinsic functional networks that distinguish ASD patients from typically developing controls. One network involves foci in the right temporal pole, left posterior cingulate cortex, left supramarginal gyrus, and left middle temporal gyrus. Automated decoding of this network by the Neurosynth meta-analytic database suggests high-level concepts of “language” and “comprehension” as the likely functional correlates. The second network consists of the left banks of the superior temporal sulcus, right posterior superior temporal sulcus extending into temporo-parietal junction, and right middle temporal gyrus. Associated functionality of these regions includes “social” and “person”. The abnormal pathways emanating from the above foci indicate that ASD patients simultaneously exhibit reduced long-range or inter-hemispheric connectivity and increased short-range or intra-hemispheric connectivity. Our findings reveal new insights into ASD and highlight possible neural mechanisms of the disorder. PMID:26106561

  12. Mapping the functional connectome traits of levels of consciousness.

    PubMed

    Amico, Enrico; Marinazzo, Daniele; Di Perri, Carol; Heine, Lizette; Annen, Jitka; Martial, Charlotte; Dzemidzic, Mario; Kirsch, Murielle; Bonhomme, Vincent; Laureys, Steven; Goñi, Joaquín

    2017-03-01

    Examining task-free functional connectivity (FC) in the human brain offers insights on how spontaneous integration and segregation of information relate to human cognition, and how this organization may be altered in different conditions, and neurological disorders. This is particularly relevant for patients in disorders of consciousness (DOC) following severe acquired brain damage and coma, one of the most devastating conditions in modern medical care. We present a novel data-driven methodology, connICA, which implements Independent Component Analysis (ICA) for the extraction of robust independent FC patterns (FC-traits) from a set of individual functional connectomes, without imposing any a priori data stratification into groups. We here apply connICA to investigate associations between network traits derived from task-free FC and cognitive/clinical features that define levels of consciousness. Three main independent FC-traits were identified and linked to consciousness-related clinical features. The first one represents the functional configuration of a "resting" human brain, and it is associated to a sedative (sevoflurane), the overall effect of the pathology and the level of arousal. The second FC-trait reflects the disconnection of the visual and sensory-motor connectivity patterns. It also relates to the time since the insult and to the ability of communicating with the external environment. The third FC-trait isolates the connectivity pattern encompassing the fronto-parietal and the default-mode network areas as well as the interaction between left and right hemispheres, which are also associated to the awareness of the self and its surroundings. Each FC-trait represents a distinct functional process with a role in the degradation of conscious states of functional brain networks, shedding further light on the functional sub-circuits that get disrupted in severe brain-damage. Copyright © 2017. Published by Elsevier Inc.

  13. Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.

    PubMed

    Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide

    2017-01-01

    Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.

  14. Similarities and differences in neuroplasticity mechanisms between brain gliomas and nonlesional epilepsy.

    PubMed

    Bourdillon, Pierre; Apra, Caroline; Guénot, Marc; Duffau, Hugues

    2017-12-01

    To analyze the conceptual and practical implications of a hodotopic approach in neurosurgery, and to compare the similarities and the differences in neuroplasticity mechanisms between low-grade gliomas and nonlesional epilepsy. We review the recent data about the hodotopic organization of the brain connectome, alongside the organization of epileptic networks, and analyze how these two structures interact, suggesting therapeutic prospects. Then we focus on the mechanisms of neuroplasticity involved in glioma natural course and after glioma surgery. Comparing these mechanisms with those in action in an epileptic brain highlights their differences, but more importantly, gives an original perspective to the consequences of surgery on an epileptic brain and what could be expected after pathologic white matter removal. The organization of the brain connectome and the neuroplasticity is the same in all humans, but different pathologic mechanisms are involved, and specific therapeutic approaches have been developed in epilepsy and glioma surgery. We demonstrate that the "connectome" point of view can enrich epilepsy care. We also underscore how theoretical and practical tools commonly used in epilepsy investigations, such as invasive electroencephalography, can be of great help in awake surgery in general. Putting together advances in understanding of connectomics and neuroplasticity, leads to significant conceptual improvements in epilepsy surgery. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  15. Mindfulness training induces structural connectome changes in insula networks.

    PubMed

    Sharp, Paul B; Sutton, Bradley P; Paul, Erick J; Sherepa, Nikolai; Hillman, Charles H; Cohen, Neal J; Kramer, Arthur F; Prakash, Ruchika Shaurya; Heller, Wendy; Telzer, Eva H; Barbey, Aron K

    2018-05-21

    Although mindfulness meditation is known to provide a wealth of psychological benefits, the neural mechanisms involved in these effects remain to be well characterized. A central question is whether the observed benefits of mindfulness training derive from specific changes in the structural brain connectome that do not result from alternative forms of experimental intervention. Measures of whole-brain and node-level structural connectome changes induced by mindfulness training were compared with those induced by cognitive and physical fitness training within a large, multi-group intervention protocol (n = 86). Whole-brain analyses examined global graph-theoretical changes in structural network topology. A hypothesis-driven approach was taken to investigate connectivity changes within the insula, which was predicted here to mediate interoceptive awareness skills that have been shown to improve through mindfulness training. No global changes were observed in whole-brain network topology. However, node-level results confirmed a priori hypotheses, demonstrating significant increases in mean connection strength in right insula across all of its connections. Present findings suggest that mindfulness strengthens interoception, operationalized here as the mean insula connection strength within the overall connectome. This finding further elucidates the neural mechanisms of mindfulness meditation and motivates new perspectives about the unique benefits of mindfulness training compared to contemporary cognitive and physical fitness interventions.

  16. Functional brain networks related to individual differences in human intelligence at rest

    PubMed Central

    Hearne, Luke J.; Mattingley, Jason B.; Cocchi, Luca

    2016-01-01

    Intelligence is a fundamental ability that sets humans apart from other animal species. Despite its importance in defining human behaviour, the neural networks responsible for intelligence are not well understood. The dominant view from neuroimaging work suggests that intelligent performance on a range of tasks is underpinned by segregated interactions in a fronto-parietal network of brain regions. Here we asked whether fronto-parietal interactions associated with intelligence are ubiquitous, or emerge from more widespread associations in a task-free context. First we undertook an exploratory mapping of the existing literature on functional connectivity associated with intelligence. Next, to empirically test hypotheses derived from the exploratory mapping, we performed network analyses in a cohort of 317 unrelated participants from the Human Connectome Project. Our results revealed a novel contribution of across-network interactions between default-mode and fronto-parietal networks to individual differences in intelligence at rest. Specifically, we found that greater connectivity in the resting state was associated with higher intelligence scores. Our findings highlight the need to broaden the dominant fronto-parietal conceptualisation of intelligence to encompass more complex and context-specific network dynamics. PMID:27561736

  17. A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data

    PubMed Central

    Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming

    2018-01-01

    The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks. PMID:29706880

  18. A Dictionary Learning Approach for Signal Sampling in Task-Based fMRI for Reduction of Big Data.

    PubMed

    Ge, Bao; Li, Xiang; Jiang, Xi; Sun, Yifei; Liu, Tianming

    2018-01-01

    The exponential growth of fMRI big data offers researchers an unprecedented opportunity to explore functional brain networks. However, this opportunity has not been fully explored yet due to the lack of effective and efficient tools for handling such fMRI big data. One major challenge is that computing capabilities still lag behind the growth of large-scale fMRI databases, e.g., it takes many days to perform dictionary learning and sparse coding of whole-brain fMRI data for an fMRI database of average size. Therefore, how to reduce the data size but without losing important information becomes a more and more pressing issue. To address this problem, we propose a signal sampling approach for significant fMRI data reduction before performing structurally-guided dictionary learning and sparse coding of whole brain's fMRI data. We compared the proposed structurally guided sampling method with no sampling, random sampling and uniform sampling schemes, and experiments on the Human Connectome Project (HCP) task fMRI data demonstrated that the proposed method can achieve more than 15 times speed-up without sacrificing the accuracy in identifying task-evoked functional brain networks.

  19. Supervised dictionary learning for inferring concurrent brain networks.

    PubMed

    Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming

    2015-10-01

    Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.

  20. Extracellular space preservation aids the connectomic analysis of neural circuits.

    PubMed

    Pallotto, Marta; Watkins, Paul V; Fubara, Boma; Singer, Joshua H; Briggman, Kevin L

    2015-12-09

    Dense connectomic mapping of neuronal circuits is limited by the time and effort required to analyze 3D electron microscopy (EM) datasets. Algorithms designed to automate image segmentation suffer from substantial error rates and require significant manual error correction. Any improvement in segmentation error rates would therefore directly reduce the time required to analyze 3D EM data. We explored preserving extracellular space (ECS) during chemical tissue fixation to improve the ability to segment neurites and to identify synaptic contacts. ECS preserved tissue is easier to segment using machine learning algorithms, leading to significantly reduced error rates. In addition, we observed that electrical synapses are readily identified in ECS preserved tissue. Finally, we determined that antibodies penetrate deep into ECS preserved tissue with only minimal permeabilization, thereby enabling correlated light microscopy (LM) and EM studies. We conclude that preservation of ECS benefits multiple aspects of the connectomic analysis of neural circuits.

  1. Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space.

    PubMed

    Zuo, Xi-Nian; Xu, Ting; Jiang, Lili; Yang, Zhi; Cao, Xiao-Yan; He, Yong; Zang, Yu-Feng; Castellanos, F Xavier; Milham, Michael P

    2013-01-15

    While researchers have extensively characterized functional connectivity between brain regions, the characterization of functional homogeneity within a region of the brain connectome is in early stages of development. Several functional homogeneity measures were proposed previously, among which regional homogeneity (ReHo) was most widely used as a measure to characterize functional homogeneity of resting state fMRI (R-fMRI) signals within a small region (Zang et al., 2004). Despite a burgeoning literature on ReHo in the field of neuroimaging brain disorders, its test-retest (TRT) reliability remains unestablished. Using two sets of public R-fMRI TRT data, we systematically evaluated the ReHo's TRT reliability and further investigated the various factors influencing its reliability and found: 1) nuisance (head motion, white matter, and cerebrospinal fluid) correction of R-fMRI time series can significantly improve the TRT reliability of ReHo while additional removal of global brain signal reduces its reliability, 2) spatial smoothing of R-fMRI time series artificially enhances ReHo intensity and influences its reliability, 3) surface-based R-fMRI computation largely improves the TRT reliability of ReHo, 4) a scan duration of 5 min can achieve reliable estimates of ReHo, and 5) fast sampling rates of R-fMRI dramatically increase the reliability of ReHo. Inspired by these findings and seeking a highly reliable approach to exploratory analysis of the human functional connectome, we established an R-fMRI pipeline to conduct ReHo computations in both 3-dimensions (volume) and 2-dimensions (surface). Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Enhancing studies of the connectome in autism using the autism brain imaging data exchange II

    PubMed Central

    Di Martino, Adriana; O’Connor, David; Chen, Bosi; Alaerts, Kaat; Anderson, Jeffrey S.; Assaf, Michal; Balsters, Joshua H.; Baxter, Leslie; Beggiato, Anita; Bernaerts, Sylvie; Blanken, Laura M. E.; Bookheimer, Susan Y.; Braden, B. Blair; Byrge, Lisa; Castellanos, F. Xavier; Dapretto, Mirella; Delorme, Richard; Fair, Damien A.; Fishman, Inna; Fitzgerald, Jacqueline; Gallagher, Louise; Keehn, R. Joanne Jao; Kennedy, Daniel P.; Lainhart, Janet E.; Luna, Beatriz; Mostofsky, Stewart H.; Müller, Ralph-Axel; Nebel, Mary Beth; Nigg, Joel T.; O’Hearn, Kirsten; Solomon, Marjorie; Toro, Roberto; Vaidya, Chandan J.; Wenderoth, Nicole; White, Tonya; Craddock, R. Cameron; Lord, Catherine; Leventhal, Bennett; Milham, Michael P.

    2017-01-01

    The second iteration of the Autism Brain Imaging Data Exchange (ABIDE II) aims to enhance the scope of brain connectomics research in Autism Spectrum Disorder (ASD). Consistent with the initial ABIDE effort (ABIDE I), that released 1112 datasets in 2012, this new multisite open-data resource is an aggregate of resting state functional magnetic resonance imaging (MRI) and corresponding structural MRI and phenotypic datasets. ABIDE II includes datasets from an additional 487 individuals with ASD and 557 controls previously collected across 16 international institutions. The combination of ABIDE I and ABIDE II provides investigators with 2156 unique cross-sectional datasets allowing selection of samples for discovery and/or replication. This sample size can also facilitate the identification of neurobiological subgroups, as well as preliminary examinations of sex differences in ASD. Additionally, ABIDE II includes a range of psychiatric variables to inform our understanding of the neural correlates of co-occurring psychopathology; 284 diffusion imaging datasets are also included. It is anticipated that these enhancements will contribute to unraveling key sources of ASD heterogeneity. PMID:28291247

  3. Connectome-based predictive modeling of attention: Comparing different functional connectivity features and prediction methods across datasets.

    PubMed

    Yoo, Kwangsun; Rosenberg, Monica D; Hsu, Wei-Ting; Zhang, Sheng; Li, Chiang-Shan R; Scheinost, Dustin; Constable, R Todd; Chun, Marvin M

    2018-02-15

    Connectome-based predictive modeling (CPM; Finn et al., 2015; Shen et al., 2017) was recently developed to predict individual differences in traits and behaviors, including fluid intelligence (Finn et al., 2015) and sustained attention (Rosenberg et al., 2016a), from functional brain connectivity (FC) measured with fMRI. Here, using the CPM framework, we compared the predictive power of three different measures of FC (Pearson's correlation, accordance, and discordance) and two different prediction algorithms (linear and partial least square [PLS] regression) for attention function. Accordance and discordance are recently proposed FC measures that respectively track in-phase synchronization and out-of-phase anti-correlation (Meskaldji et al., 2015). We defined connectome-based models using task-based or resting-state FC data, and tested the effects of (1) functional connectivity measure and (2) feature-selection/prediction algorithm on individualized attention predictions. Models were internally validated in a training dataset using leave-one-subject-out cross-validation, and externally validated with three independent datasets. The training dataset included fMRI data collected while participants performed a sustained attention task and rested (N = 25; Rosenberg et al., 2016a). The validation datasets included: 1) data collected during performance of a stop-signal task and at rest (N = 83, including 19 participants who were administered methylphenidate prior to scanning; Farr et al., 2014a; Rosenberg et al., 2016b), 2) data collected during Attention Network Task performance and rest (N = 41, Rosenberg et al., in press), and 3) resting-state data and ADHD symptom severity from the ADHD-200 Consortium (N = 113; Rosenberg et al., 2016a). Models defined using all combinations of functional connectivity measure (Pearson's correlation, accordance, and discordance) and prediction algorithm (linear and PLS regression) predicted attentional abilities, with correlations between predicted and observed measures of attention as high as 0.9 for internal validation, and 0.6 for external validation (all p's < 0.05). Models trained on task data outperformed models trained on rest data. Pearson's correlation and accordance features generally showed a small numerical advantage over discordance features, while PLS regression models were usually better than linear regression models. Overall, in addition to correlation features combined with linear models (Rosenberg et al., 2016a), it is useful to consider accordance features and PLS regression for CPM. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Stochastic blockmodeling of the modules and core of the Caenorhabditis elegans connectome.

    PubMed

    Pavlovic, Dragana M; Vértes, Petra E; Bullmore, Edward T; Schafer, William R; Nichols, Thomas E

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4-5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the "core-in-modules" decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems.

  5. Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex.

    PubMed

    Romero-Garcia, Rafael; Whitaker, Kirstie J; Váša, František; Seidlitz, Jakob; Shinn, Maxwell; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T; Vértes, Petra E

    2018-05-01

    Complex network topology is characteristic of many biological systems, including anatomical and functional brain networks (connectomes). Here, we first constructed a structural covariance network from MRI measures of cortical thickness on 296 healthy volunteers, aged 14-24 years. Next, we designed a new algorithm for matching sample locations from the Allen Brain Atlas to the nodes of the SCN. Subsequently we used this to define, transcriptomic brain networks by estimating gene co-expression between pairs of cortical regions. Finally, we explored the hypothesis that transcriptional networks and structural MRI connectomes are coupled. A transcriptional brain network (TBN) and a structural covariance network (SCN) were correlated across connection weights and showed qualitatively similar complex topological properties: assortativity, small-worldness, modularity, and a rich-club. In both networks, the weight of an edge was inversely related to the anatomical (Euclidean) distance between regions. There were differences between networks in degree and distance distributions: the transcriptional network had a less fat-tailed degree distribution and a less positively skewed distance distribution than the SCN. However, cortical areas connected to each other within modules of the SCN had significantly higher levels of whole genome co-expression than expected by chance. Nodes connected in the SCN had especially high levels of expression and co-expression of a human supragranular enriched (HSE) gene set that has been specifically located to supragranular layers of human cerebral cortex and is known to be important for large-scale, long-distance cortico-cortical connectivity. This coupling of brain transcriptome and connectome topologies was largely but not entirely accounted for by the common constraint of physical distance on both networks. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Multiscale Exploration of Mouse Brain Microstructures Using the Knife-Edge Scanning Microscope Brain Atlas

    PubMed Central

    Chung, Ji Ryang; Sung, Chul; Mayerich, David; Kwon, Jaerock; Miller, Daniel E.; Huffman, Todd; Keyser, John; Abbott, Louise C.; Choe, Yoonsuck

    2011-01-01

    Connectomics is the study of the full connection matrix of the brain. Recent advances in high-throughput, high-resolution 3D microscopy methods have enabled the imaging of whole small animal brains at a sub-micrometer resolution, potentially opening the road to full-blown connectomics research. One of the first such instruments to achieve whole-brain-scale imaging at sub-micrometer resolution is the Knife-Edge Scanning Microscope (KESM). KESM whole-brain data sets now include Golgi (neuronal circuits), Nissl (soma distribution), and India ink (vascular networks). KESM data can contribute greatly to connectomics research, since they fill the gap between lower resolution, large volume imaging methods (such as diffusion MRI) and higher resolution, small volume methods (e.g., serial sectioning electron microscopy). Furthermore, KESM data are by their nature multiscale, ranging from the subcellular to the whole organ scale. Due to this, visualization alone is a huge challenge, before we even start worrying about quantitative connectivity analysis. To solve this issue, we developed a web-based neuroinformatics framework for efficient visualization and analysis of the multiscale KESM data sets. In this paper, we will first provide an overview of KESM, then discuss in detail the KESM data sets and the web-based neuroinformatics framework, which is called the KESM brain atlas (KESMBA). Finally, we will discuss the relevance of the KESMBA to connectomics research, and identify challenges and future directions. PMID:22275895

  7. Influences on the Test-Retest Reliability of Functional Connectivity MRI and its Relationship with Behavioral Utility.

    PubMed

    Noble, Stephanie; Spann, Marisa N; Tokoglu, Fuyuze; Shen, Xilin; Constable, R Todd; Scheinost, Dustin

    2017-11-01

    Best practices are currently being developed for the acquisition and processing of resting-state magnetic resonance imaging data used to estimate brain functional organization-or "functional connectivity." Standards have been proposed based on test-retest reliability, but open questions remain. These include how amount of data per subject influences whole-brain reliability, the influence of increasing runs versus sessions, the spatial distribution of reliability, the reliability of multivariate methods, and, crucially, how reliability maps onto prediction of behavior. We collected a dataset of 12 extensively sampled individuals (144 min data each across 2 identically configured scanners) to assess test-retest reliability of whole-brain connectivity within the generalizability theory framework. We used Human Connectome Project data to replicate these analyses and relate reliability to behavioral prediction. Overall, the historical 5-min scan produced poor reliability averaged across connections. Increasing the number of sessions was more beneficial than increasing runs. Reliability was lowest for subcortical connections and highest for within-network cortical connections. Multivariate reliability was greater than univariate. Finally, reliability could not be used to improve prediction; these findings are among the first to underscore this distinction for functional connectivity. A comprehensive understanding of test-retest reliability, including its limitations, supports the development of best practices in the field. © The Author 2017. Published by Oxford University Press.

  8. Topodynamics of metastable brains

    NASA Astrophysics Data System (ADS)

    Tozzi, Arturo; Peters, James F.; Fingelkurts, Andrew A.; Fingelkurts, Alexander A.; Marijuán, Pedro C.

    2017-07-01

    The brain displays both the anatomical features of a vast amount of interconnected topological mappings as well as the functional features of a nonlinear, metastable system at the edge of chaos, equipped with a phase space where mental random walks tend towards lower energetic basins. Nevertheless, with the exception of some advanced neuro-anatomic descriptions and present-day connectomic research, very few studies have been addressing the topological path of a brain embedded or embodied in its external and internal environment. Herein, by using new formal tools derived from algebraic topology, we provide an account of the metastable brain, based on the neuro-scientific model of Operational Architectonics of brain-mind functioning. We introduce a ;topodynamic; description that shows how the relationships among the countless intertwined spatio-temporal levels of brain functioning can be assessed in terms of projections and mappings that take place on abstract structures, equipped with different dimensions, curvatures and energetic constraints. Such a topodynamical approach, apart from providing a biologically plausible model of brain function that can be operationalized, is also able to tackle the issue of a long-standing dichotomy: it throws indeed a bridge between the subjective, immediate datum of the naïve complex of sensations and mentations and the objective, quantitative, data extracted from experimental neuro-scientific procedures. Importantly, it opens the door to a series of new predictions and future directions of advancement for neuroscientific research.

  9. Time‐efficient and flexible design of optimized multishell HARDI diffusion

    PubMed Central

    Tournier, J. Donald; Price, Anthony N.; Cordero‐Grande, Lucilio; Hughes, Emer J.; Malik, Shaihan; Steinweg, Johannes; Bastiani, Matteo; Sotiropoulos, Stamatios N.; Jbabdi, Saad; Andersson, Jesper; Edwards, A. David; Hajnal, Joseph V.

    2017-01-01

    Purpose Advanced diffusion magnetic resonance imaging benefits from collecting as much data as is feasible but is highly sensitive to subject motion and the risk of data loss increases with longer acquisition times. Our purpose was to create a maximally time‐efficient and flexible diffusion acquisition capability with built‐in robustness to partially acquired or interrupted scans. Our framework has been developed for the developing Human Connectome Project, but different application domains are equally possible. Methods Complete flexibility in the sampling of diffusion space combined with free choice of phase‐encode‐direction and the temporal ordering of the sampling scheme was developed taking into account motion robustness, internal consistency, and hardware limits. A split‐diffusion‐gradient preparation, multiband acceleration, and a restart capacity were added. Results The framework was used to explore different parameters choices for the desired high angular resolution diffusion imaging diffusion sampling. For the developing Human Connectome Project, a high‐angular resolution, maximally time‐efficient (20 min) multishell protocol with 300 diffusion‐weighted volumes was acquired in >400 neonates. An optimal design of a high‐resolution (1.2 × 1.2 mm2) two‐shell acquisition with 54 diffusion weighted volumes was obtained using a split‐gradient design. Conclusion The presented framework provides flexibility to generate time‐efficient and motion‐robust diffusion magnetic resonance imaging acquisitions taking into account hardware constraints that might otherwise result in sub‐optimal choices. Magn Reson Med 79:1276–1292, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28557055

  10. Support vector machine classification and characterization of age-related reorganization of functional brain networks

    PubMed Central

    Meier, Timothy B.; Desphande, Alok S.; Vergun, Svyatoslav; Nair, Veena A.; Song, Jie; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Prabhakaran, Vivek

    2012-01-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5 mm3 radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual’s three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. PMID:22227886

  11. Support vector machine classification and characterization of age-related reorganization of functional brain networks.

    PubMed

    Meier, Timothy B; Desphande, Alok S; Vergun, Svyatoslav; Nair, Veena A; Song, Jie; Biswal, Bharat B; Meyerand, Mary E; Birn, Rasmus M; Prabhakaran, Vivek

    2012-03-01

    Most of what is known about the reorganization of functional brain networks that accompanies normal aging is based on neuroimaging studies in which participants perform specific tasks. In these studies, reorganization is defined by the differences in task activation between young and old adults. However, task activation differences could be the result of differences in task performance, strategy, or motivation, and not necessarily reflect reorganization. Resting-state fMRI provides a method of investigating functional brain networks without such confounds. Here, a support vector machine (SVM) classifier was used in an attempt to differentiate older adults from younger adults based on their resting-state functional connectivity. In addition, the information used by the SVM was investigated to see what functional connections best differentiated younger adult brains from older adult brains. Three separate resting-state scans from 26 younger adults (18-35 yrs) and 26 older adults (55-85) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available in the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 100 seed-regions from four functional networks with 5mm(3) radius were defined based on a recent study using machine learning classifiers on adolescent brains. Time-series for every seed-region were averaged and three matrices of z-transformed correlation coefficients were created for each subject corresponding to each individual's three resting-state scans. SVM was then applied using leave-one-out cross-validation. The SVM classifier was 84% accurate in classifying older and younger adult brains. The majority of the connections used by the classifier to distinguish subjects by age came from seed-regions belonging to the sensorimotor and cingulo-opercular networks. These results suggest that age-related decreases in positive correlations within the cingulo-opercular and default networks, and decreases in negative correlations between the default and sensorimotor networks, are the distinguishing characteristics of age-related reorganization. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Cortical parcellation based on structural connectivity: A case for generative models.

    PubMed

    Tittgemeyer, Marc; Rigoux, Lionel; Knösche, Thomas R

    2018-06-01

    One of the major challenges in systems neuroscience is to identify brain networks and unravel their significance for brain function -this has led to the concept of the 'connectome'. Connectomes are currently extensively studied in large-scale international efforts at multiple scales, and follow different definitions with respect to their connections as well as their elements. Perhaps the most promising avenue for defining the elements of connectomes originates from the notion that individual brain areas maintain distinct (long-range) connection profiles. These connectivity patterns determine the areas' functional properties and also allow for their anatomical delineation and mapping. This rationale has motivated the concept of connectivity-based cortex parcellation. In the past ten years, non-invasive mapping of human brain connectivity has led to immense advances in the development of parcellation techniques and their applications. Unfortunately, many of these approaches primarily aim for confirmation of well-known, existing architectonic maps and, to that end, unsuitably incorporate prior knowledge and frequently build on circular argumentation. Often, current approaches also tend to disregard the specific apertures of connectivity measurements, as well as the anatomical specificities of cortical areas, such as spatial compactness, regional heterogeneity, inter-subject variability, the multi-scaling nature of connectivity information, and potential hierarchical organisation. From a methodological perspective, however, a useful framework that regards all of these aspects in an unbiased way is technically demanding. In this commentary, we first outline the concept of connectivity-based cortex parcellation and discuss its prospects and limitations in particular with respect to structural connectivity. To improve reliability and efficiency, we then strongly advocate for connectivity-based cortex parcellation as a modelling approach; that is, an approximation of the data based on (model) parameter inference. As such, a parcellation algorithm can be formally tested for robustness -the precision of its predictions can be quantified and statistics about potential generalization of the results can be derived. Such a framework also allows the question of model constraints to be reformulated in terms of hypothesis testing through model selection and offers a formative way to integrate anatomical knowledge in terms of prior distributions. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. ConnectViz: Accelerated Approach for Brain Structural Connectivity Using Delaunay Triangulation.

    PubMed

    Adeshina, A M; Hashim, R

    2016-03-01

    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using compute unified device architecture, extending the previously proposed SurLens Visualization and computer aided hepatocellular carcinoma frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, USA. Significantly, our proposed framework is able to generate and extract points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the nodes and the edges. The framework is very efficient in providing greater interactivity as a way of representing the nodes and the edges intuitively, all achieved at a considerably interactive speed for instantaneous mapping of the datasets' features. Uniquely, the connectomic algorithm performed remarkably fast with normal hardware requirement specifications.

  14. ConnectViz: Accelerated approach for brain structural connectivity using Delaunay triangulation.

    PubMed

    Adeshina, A M; Hashim, R

    2015-02-06

    Stroke is a cardiovascular disease with high mortality and long-term disability in the world. Normal functioning of the brain is dependent on the adequate supply of oxygen and nutrients to the brain complex network through the blood vessels. Stroke, occasionally a hemorrhagic stroke, ischemia or other blood vessel dysfunctions can affect patients during a cerebrovascular incident. Structurally, the left and the right carotid arteries, and the right and the left vertebral arteries are responsible for supplying blood to the brain, scalp and the face. However, a number of impairment in the function of the frontal lobes may occur as a result of any decrease in the flow of the blood through one of the internal carotid arteries. Such impairment commonly results in numbness, weakness or paralysis. Recently, the concepts of brain's wiring representation, the connectome, was introduced. However, construction and visualization of such brain network requires tremendous computation. Consequently, previously proposed approaches have been identified with common problems of high memory consumption and slow execution. Furthermore, interactivity in the previously proposed frameworks for brain network is also an outstanding issue. This study proposes an accelerated approach for brain connectomic visualization based on graph theory paradigm using Compute Unified Device Architecture (CUDA), extending the previously proposed SurLens Visualization and Computer Aided Hepatocellular Carcinoma (CAHECA) frameworks. The accelerated brain structural connectivity framework was evaluated with stripped brain datasets from the Department of Surgery, University of North Carolina, Chapel Hill, United States. Significantly, our proposed framework is able to generates and extracts points and edges of datasets, displays nodes and edges in the datasets in form of a network and clearly maps data volume to the corresponding brain surface. Moreover, with the framework, surfaces of the dataset were simultaneously displayed with the nodes and the edges. The framework is very efficient in providing greater interactivity as a way of representing the nodes and the edges intuitively, all achieved at a considerably interactive speed for instantaneous mapping of the datasets' features. Uniquely, the connectomic algorithm performed remarkably fast with normal hardware requirement specifications.

  15. Extracellular space preservation aids the connectomic analysis of neural circuits

    PubMed Central

    Pallotto, Marta; Watkins, Paul V; Fubara, Boma; Singer, Joshua H; Briggman, Kevin L

    2015-01-01

    Dense connectomic mapping of neuronal circuits is limited by the time and effort required to analyze 3D electron microscopy (EM) datasets. Algorithms designed to automate image segmentation suffer from substantial error rates and require significant manual error correction. Any improvement in segmentation error rates would therefore directly reduce the time required to analyze 3D EM data. We explored preserving extracellular space (ECS) during chemical tissue fixation to improve the ability to segment neurites and to identify synaptic contacts. ECS preserved tissue is easier to segment using machine learning algorithms, leading to significantly reduced error rates. In addition, we observed that electrical synapses are readily identified in ECS preserved tissue. Finally, we determined that antibodies penetrate deep into ECS preserved tissue with only minimal permeabilization, thereby enabling correlated light microscopy (LM) and EM studies. We conclude that preservation of ECS benefits multiple aspects of the connectomic analysis of neural circuits. DOI: http://dx.doi.org/10.7554/eLife.08206.001 PMID:26650352

  16. Image Segmentation for Connectomics Using Machine Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tasdizen, Tolga; Seyedhosseini, Mojtaba; Liu, TIng

    Reconstruction of neural circuits at the microscopic scale of individual neurons and synapses, also known as connectomics, is an important challenge for neuroscience. While an important motivation of connectomics is providing anatomical ground truth for neural circuit models, the ability to decipher neural wiring maps at the individual cell level is also important in studies of many neurodegenerative diseases. Reconstruction of a neural circuit at the individual neuron level requires the use of electron microscopy images due to their extremely high resolution. Computational challenges include pixel-by-pixel annotation of these images into classes such as cell membrane, mitochondria and synaptic vesiclesmore » and the segmentation of individual neurons. State-of-the-art image analysis solutions are still far from the accuracy and robustness of human vision and biologists are still limited to studying small neural circuits using mostly manual analysis. In this chapter, we describe our image analysis pipeline that makes use of novel supervised machine learning techniques to tackle this problem.« less

  17. Effects of EPI distortion correction pipelines on the connectome in Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Galvis, Justin; Mezher, Adam F.; Ragothaman, Anjanibhargavi; Villalon-Reina, Julio E.; Fletcher, P. Thomas; Thompson, Paul M.; Prasad, Gautam

    2016-03-01

    Echo-planar imaging (EPI) is commonly used for diffusion-weighted imaging (DWI) but is susceptible to nonlinear geometric distortions arising from inhomogeneities in the static magnetic field. These inhomogeneities can be measured and corrected using a fieldmap image acquired during the scanning process. In studies where the fieldmap image is not collected, these distortions can be corrected, to some extent, by nonlinearly registering the diffusion image to a corresponding anatomical image, either a T1- or T2-weighted image. Here we compared two EPI distortion correction pipelines, both based on nonlinear registration, which were optimized for the particular weighting of the structural image registration target. The first pipeline used a 3D nonlinear registration to a T1-weighted target, while the second pipeline used a 1D nonlinear registration to a T2-weighted target. We assessed each pipeline in its ability to characterize high-level measures of brain connectivity in Parkinson's disease (PD) in 189 individuals (58 healthy controls, 131 people with PD) from the Parkinson's Progression Markers Initiative (PPMI) dataset. We computed a structural connectome (connectivity map) for each participant using regions of interest from a cortical parcellation combined with DWI-based whole-brain tractography. We evaluated test-retest reliability of the connectome for each EPI distortion correction pipeline using a second diffusion scan acquired directly after the participants' first. Finally, we used support vector machine (SVM) classification to assess how accurately each pipeline classified PD versus healthy controls using each participants' structural connectome.

  18. Instantaneous brain dynamics mapped to a continuous state space.

    PubMed

    Billings, Jacob C W; Medda, Alessio; Shakil, Sadia; Shen, Xiaohong; Kashyap, Amrit; Chen, Shiyang; Abbas, Anzar; Zhang, Xiaodi; Nezafati, Maysam; Pan, Wen-Ju; Berman, Gordon J; Keilholz, Shella D

    2017-11-15

    Measures of whole-brain activity, from techniques such as functional Magnetic Resonance Imaging, provide a means to observe the brain's dynamical operations. However, interpretation of whole-brain dynamics has been stymied by the inherently high-dimensional structure of brain activity. The present research addresses this challenge through a series of scale transformations in the spectral, spatial, and relational domains. Instantaneous multispectral dynamics are first developed from input data via a wavelet filter bank. Voxel-level signals are then projected onto a representative set of spatially independent components. The correlation distance over the instantaneous wavelet-ICA state vectors is a graph that may be embedded onto a lower-dimensional space to assist the interpretation of state-space dynamics. Applying this procedure to a large sample of resting-state and task-active data (acquired through the Human Connectome Project), we segment the empirical state space into a continuum of stimulus-dependent brain states. Upon observing the local neighborhood of brain-states adopted subsequent to each stimulus, we may conclude that resting brain activity includes brain states that are, at times, similar to those adopted during tasks, but that are at other times distinct from task-active brain states. As task-active brain states often populate a local neighborhood, back-projection of segments of the dynamical state space onto the brain's surface reveals the patterns of brain activity that support many experimentally-defined states. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The center for causal discovery of biomedical knowledge from big data.

    PubMed

    Cooper, Gregory F; Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-11-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Disrupted topology of the resting state structural connectome in middle-aged APOE ε4 carriers.

    PubMed

    Korthauer, L E; Zhan, L; Ajilore, O; Leow, A; Driscoll, I

    2018-05-24

    The apolipoprotein E (APOE) ε4 allele is the best characterized genetic risk factor for Alzheimer's disease to date. Older APOE ε4 carriers (aged 60 + years) are known to have disrupted structural and functional connectivity, but less is known about APOE-associated network integrity in middle age. The goal of this study was to characterize APOE-related differences in network topology in middle age, as disentangling the early effects of healthy versus pathological aging may aid early detection of Alzheimer's disease and inform treatments. We performed resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) in healthy, cognitively normal, middle-aged adults (age 40-60; N = 76, 38 APOE ε4 carriers). Graph theoretical analysis was used to calculate local and global efficiency of 1) a whole brain rs-fMRI network; 2) a whole brain DTI network; and 3) the resting state structural connectome (rsSC), an integrated functional-structural network derived using functional-by-structural hierarchical (FSH) mapping. Our results indicated no APOE ε4-associated differences in network topology of the rs-fMRI or DTI networks alone. However, ε4 carriers had significantly lower global and local efficiency of the integrated rsSC compared to non-carriers. Furthermore, ε4 carriers were less resilient to targeted node failure of the rsSC, which mimics the neuropathological process of Alzheimer's disease. Collectively, these findings suggest that integrating multiple neuroimaging modalities and employing graph theoretical analysis may reveal network-level vulnerabilities that may serve as biomarkers of age-related cognitive decline in middle age, decades before the onset of overt cognitive impairment. Copyright © 2018. Published by Elsevier Inc.

  1. Cluster size statistic and cluster mass statistic: two novel methods for identifying changes in functional connectivity between groups or conditions.

    PubMed

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods--the cluster size statistic (CSS) and cluster mass statistic (CMS)--are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity.

  2. Cluster Size Statistic and Cluster Mass Statistic: Two Novel Methods for Identifying Changes in Functional Connectivity Between Groups or Conditions

    PubMed Central

    Ing, Alex; Schwarzbauer, Christian

    2014-01-01

    Functional connectivity has become an increasingly important area of research in recent years. At a typical spatial resolution, approximately 300 million connections link each voxel in the brain with every other. This pattern of connectivity is known as the functional connectome. Connectivity is often compared between experimental groups and conditions. Standard methods used to control the type 1 error rate are likely to be insensitive when comparisons are carried out across the whole connectome, due to the huge number of statistical tests involved. To address this problem, two new cluster based methods – the cluster size statistic (CSS) and cluster mass statistic (CMS) – are introduced to control the family wise error rate across all connectivity values. These methods operate within a statistical framework similar to the cluster based methods used in conventional task based fMRI. Both methods are data driven, permutation based and require minimal statistical assumptions. Here, the performance of each procedure is evaluated in a receiver operator characteristic (ROC) analysis, utilising a simulated dataset. The relative sensitivity of each method is also tested on real data: BOLD (blood oxygen level dependent) fMRI scans were carried out on twelve subjects under normal conditions and during the hypercapnic state (induced through the inhalation of 6% CO2 in 21% O2 and 73%N2). Both CSS and CMS detected significant changes in connectivity between normal and hypercapnic states. A family wise error correction carried out at the individual connection level exhibited no significant changes in connectivity. PMID:24906136

  3. Integrative Understanding of Emergent Brain Properties, Quantum Brain Hypotheses, and Connectome Alterations in Dementia are Key Challenges to Conquer Alzheimer's Disease.

    PubMed

    Kuljiš, Rodrigo O

    2010-01-01

    The biological substrate for cognition remains a challenge as much as defining this function of living beings. Here, we examine some of the difficulties to understand normal and disordered cognition in humans. We use aspects of Alzheimer's disease and related disorders to illustrate how the wealth of information at many conceptually separate, even intellectually decoupled, physical scales - in particular at the Molecular Neuroscience versus Systems Neuroscience/Neuropsychology levels - presents a challenge in terms of true interdisciplinary integration towards a coherent understanding. These unresolved dilemmas include critically the as yet untested quantum brain hypothesis, and the embryonic attempts to develop and define the so-called connectome in humans and in non-human models of disease. To mitigate these challenges, we propose a scheme incorporating the vast array of scales of the space and time (space-time) manifold from at least the subatomic through cognitive-behavioral dimensions of inquiry, to achieve a new understanding of both normal and disordered cognition, that is essential for a new era of progress in the Generative Sciences and its application to translational efforts for disease prevention and treatment.

  4. Neuropsychology and cognitive neuroscience in the fMRI era: A recapitulation of localizationist and connectionist views.

    PubMed

    Sutterer, Matthew J; Tranel, Daniel

    2017-11-01

    We highlight the past 25 years of cognitive neuroscience and neuropsychology, focusing on the impact to the field of the introduction in 1992 of functional MRI (fMRI). We reviewed the past 25 years of literature in cognitive neuroscience and neuropsychology, focusing on the relation and interplay of fMRI studies and studies utilizing the "lesion method" in human participants with focal brain damage. Our review highlights the state of localist/connectionist research debates in cognitive neuroscience and neuropsychology circa 1992, and details how the introduction of fMRI into the field at that time catalyzed a new wave of efforts to map complex human behavior to specific brain regions. This, in turn, eventually evolved into many studies that focused on networks and connections between brain areas, culminating in recent years with large-scale investigations such as the Human Connectome Project. We argue that throughout the past 25 years, neuropsychology-and more precisely, the "lesion method" in humans-has continued to play a critical role in arbitrating conclusions and theories derived from inferred patterns of local brain activity or wide-spread connectivity from functional imaging approaches. We conclude by highlighting the future for neuropsychology in the context of an increasingly complex methodological armamentarium. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis.

    PubMed

    Kumar, Kuldeep; Desrosiers, Christian; Siddiqi, Kaleem; Colliot, Olivier; Toews, Matthew

    2017-09-01

    White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject's white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dynamic Functional Connectivity States Reflecting Psychotic-like Experiences.

    PubMed

    Barber, Anita D; Lindquist, Martin A; DeRosse, Pamela; Karlsgodt, Katherine H

    2018-05-01

    Psychotic-like experiences (PLEs) are associated with lower social and occupational functioning, and lower executive function. Emerging evidence also suggests that PLEs reflect neural dysfunction resembling that of psychotic disorders. The present study examined dynamic connectivity related to a measure of PLEs derived from the Achenbach Adult Self-Report, in an otherwise-healthy sample of adults from the Human Connectome Project. A total of 76 PLE-endorsing and 153 control participants were included in the final sample. To characterize network dysfunction, dynamic connectivity states were examined across large-scale resting-state networks using dynamic conditional correlation and k-means clustering. Three dynamic states were identified. The PLE-endorsing group spent more time than the control group in state 1, a state reflecting hyperconnectivity within visual regions and hypoconnectivity within the default mode network, and less time in state 2, a state characterized by robust within-network connectivity for all networks and strong default mode network anticorrelations. Within the PLE-endorsing group, worse executive function was associated with more time spent in and more transitions into state 1 and less time spent in and fewer transitions into state 3. PLEs are associated with altered large-scale brain dynamics, which tip the system away from spending more time in states reflecting more "typical" connectivity patterns toward more time in states reflecting visual hyperconnectivity and default mode hypoconnectivity. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Age-Related Differences in Test-Retest Reliability in Resting-State Brain Functional Connectivity

    PubMed Central

    Song, Jie; Desphande, Alok S.; Meier, Timothy B.; Tudorascu, Dana L.; Vergun, Svyatoslav; Nair, Veena A.; Biswal, Bharat B.; Meyerand, Mary E.; Birn, Rasmus M.; Bellec, Pierre; Prabhakaran, Vivek

    2012-01-01

    Resting-state functional MRI (rs-fMRI) has emerged as a powerful tool for investigating brain functional connectivity (FC). Research in recent years has focused on assessing the reliability of FC across younger subjects within and between scan-sessions. Test-retest reliability in resting-state functional connectivity (RSFC) has not yet been examined in older adults. In this study, we investigated age-related differences in reliability and stability of RSFC across scans. In addition, we examined how global signal regression (GSR) affects RSFC reliability and stability. Three separate resting-state scans from 29 younger adults (18–35 yrs) and 26 older adults (55–85 yrs) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available as part of the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 92 regions of interest (ROIs) with 5 cubic mm radius, derived from the default, cingulo-opercular, fronto-parietal and sensorimotor networks, were previously defined based on a recent study. Mean time series were extracted from each of the 92 ROIs from each scan and three matrices of z-transformed correlation coefficients were created for each subject, which were then used for evaluation of multi-scan reliability and stability. The young group showed higher reliability of RSFC than the old group with GSR (p-value = 0.028) and without GSR (p-value <0.001). Both groups showed a high degree of multi-scan stability of RSFC and no significant differences were found between groups. By comparing the test-retest reliability of RSFC with and without GSR across scans, we found significantly higher proportion of reliable connections in both groups without GSR, but decreased stability. Our results suggest that aging is associated with reduced reliability of RSFC which itself is highly stable within-subject across scans for both groups, and that GSR reduces the overall reliability but increases the stability in both age groups and could potentially alter group differences of RSFC. PMID:23227153

  8. Individual differences and time-varying features of modular brain architecture.

    PubMed

    Liao, Xuhong; Cao, Miao; Xia, Mingrui; He, Yong

    2017-05-15

    Recent studies have suggested that human brain functional networks are topologically organized into functionally specialized but inter-connected modules to facilitate efficient information processing and highly flexible cognitive function. However, these studies have mainly focused on group-level network modularity analyses using "static" functional connectivity approaches. How these extraordinary modular brain structures vary across individuals and spontaneously reconfigure over time remain largely unknown. Here, we employed multiband resting-state functional MRI data (N=105) from the Human Connectome Project and a graph-based modularity analysis to systematically investigate individual variability and dynamic properties in modular brain networks. We showed that the modular structures of brain networks dramatically vary across individuals, with higher modular variability primarily in the association cortex (e.g., fronto-parietal and attention systems) and lower variability in the primary systems. Moreover, brain regions spontaneously changed their module affiliations on a temporal scale of seconds, which cannot be simply attributable to head motion and sampling error. Interestingly, the spatial pattern of intra-subject dynamic modular variability largely overlapped with that of inter-subject modular variability, both of which were highly reproducible across repeated scanning sessions. Finally, the regions with remarkable individual/temporal modular variability were closely associated with network connectors and the number of cognitive components, suggesting a potential contribution to information integration and flexible cognitive function. Collectively, our findings highlight individual modular variability and the notable dynamic characteristics in large-scale brain networks, which enhance our understanding of the neural substrates underlying individual differences in a variety of cognition and behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dynamical graph theory networks techniques for the analysis of sparse connectivity networks in dementia

    NASA Astrophysics Data System (ADS)

    Tahmassebi, Amirhessam; Pinker-Domenig, Katja; Wengert, Georg; Lobbes, Marc; Stadlbauer, Andreas; Romero, Francisco J.; Morales, Diego P.; Castillo, Encarnacion; Garcia, Antonio; Botella, Guillermo; Meyer-Bäse, Anke

    2017-05-01

    Graph network models in dementia have become an important computational technique in neuroscience to study fundamental organizational principles of brain structure and function of neurodegenerative diseases such as dementia. The graph connectivity is reflected in the connectome, the complete set of structural and functional connections of the graph network, which is mostly based on simple Pearson correlation links. In contrast to simple Pearson correlation networks, the partial correlations (PC) only identify direct correlations while indirect associations are eliminated. In addition to this, the state-of-the-art techniques in brain research are based on static graph theory, which is unable to capture the dynamic behavior of the brain connectivity, as it alters with disease evolution. We propose a new research avenue in neuroimaging connectomics based on combining dynamic graph network theory and modeling strategies at different time scales. We present the theoretical framework for area aggregation and time-scale modeling in brain networks as they pertain to disease evolution in dementia. This novel paradigm is extremely powerful, since we can derive both static parameters pertaining to node and area parameters, as well as dynamic parameters, such as system's eigenvalues. By implementing and analyzing dynamically both disease driven PC-networks and regular concentration networks, we reveal differences in the structure of these network that play an important role in the temporal evolution of this disease. The described research is key to advance biomedical research on novel disease prediction trajectories and dementia therapies.

  10. Stochastic Blockmodeling of the Modules and Core of the Caenorhabditis elegans Connectome

    PubMed Central

    Pavlovic, Dragana M.; Vértes, Petra E.; Bullmore, Edward T.; Schafer, William R.; Nichols, Thomas E.

    2014-01-01

    Recently, there has been much interest in the community structure or mesoscale organization of complex networks. This structure is characterised either as a set of sparsely inter-connected modules or as a highly connected core with a sparsely connected periphery. However, it is often difficult to disambiguate these two types of mesoscale structure or, indeed, to summarise the full network in terms of the relationships between its mesoscale constituents. Here, we estimate a community structure with a stochastic blockmodel approach, the Erdős-Rényi Mixture Model, and compare it to the much more widely used deterministic methods, such as the Louvain and Spectral algorithms. We used the Caenorhabditis elegans (C. elegans) nervous system (connectome) as a model system in which biological knowledge about each node or neuron can be used to validate the functional relevance of the communities obtained. The deterministic algorithms derived communities with 4–5 modules, defined by sparse inter-connectivity between all modules. In contrast, the stochastic Erdős-Rényi Mixture Model estimated a community with 9 blocks or groups which comprised a similar set of modules but also included a clearly defined core, made of 2 small groups. We show that the “core-in-modules” decomposition of the worm brain network, estimated by the Erdős-Rényi Mixture Model, is more compatible with prior biological knowledge about the C. elegans nervous system than the purely modular decomposition defined deterministically. We also show that the blockmodel can be used both to generate stochastic realisations (simulations) of the biological connectome, and to compress network into a small number of super-nodes and their connectivity. We expect that the Erdős-Rényi Mixture Model may be useful for investigating the complex community structures in other (nervous) systems. PMID:24988196

  11. Brain and Cognitive Reserve: Translation via Network Control Theory

    PubMed Central

    Medaglia, John Dominic; Pasqualetti, Fabio; Hamilton, Roy H.; Thompson-Schill, Sharon L.; Bassett, Danielle S.

    2017-01-01

    Traditional approaches to understanding the brain’s resilience to neuropathology have identified neurophysiological variables, often described as brain or cognitive “reserve,” associated with better outcomes. However, mechanisms of function and resilience in large-scale brain networks remain poorly understood. Dynamic network theory may provide a basis for substantive advances in understanding functional resilience in the human brain. In this perspective, we describe recent theoretical approaches from network control theory as a framework for investigating network level mechanisms underlying cognitive function and the dynamics of neuroplasticity in the human brain. We describe the theoretical opportunities offered by the application of network control theory at the level of the human connectome to understand cognitive resilience and inform translational intervention. PMID:28104411

  12. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort.

    PubMed

    Guell, Xavier; Gabrieli, John D E; Schmahmann, Jeremy D

    2018-05-15

    Delineation of functional topography is critical to the evolving understanding of the cerebellum's role in a wide range of nervous system functions. We used data from the Human Connectome Project (n = 787) to analyze cerebellar fMRI task activation (motor, working memory, language, social and emotion processing) and resting-state functional connectivity calculated from cerebral cortical seeds corresponding to the peak Cohen's d of each task contrast. The combination of exceptional statistical power, activation from both motor and multiple non-motor tasks in the same participants, and convergent resting-state networks in the same participants revealed novel aspects of the functional topography of the human cerebellum. Consistent with prior studies there were two distinct representations of motor activation. Newly revealed were three distinct representations each for working memory, language, social, and emotional task processing that were largely separate for these four cognitive and affective domains. In most cases, the task-based activations and the corresponding resting-network correlations were congruent in identifying the two motor representations and the three non-motor representations that were unique to working memory, language, social cognition, and emotion. The definitive localization and characterization of distinct triple representations for cognition and emotion task processing in the cerebellum opens up new basic science questions as to why there are triple representations (what different functions are enabled by the different representations?) and new clinical questions (what are the differing consequences of lesions to the different representations?). Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task

    PubMed Central

    Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel

    2017-01-01

    Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n-back condition and group (p = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect (p = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task. PMID:29312020

  14. Functional Connectivity of Cognitive Brain Networks in Schizophrenia during a Working Memory Task.

    PubMed

    Godwin, Douglass; Ji, Andrew; Kandala, Sridhar; Mamah, Daniel

    2017-01-01

    Task-based connectivity studies facilitate the understanding of how the brain functions during cognition, which is commonly impaired in schizophrenia (SZ). Our aim was to investigate functional connectivity during a working memory task in SZ. We hypothesized that the task-negative (default mode) network and the cognitive control (frontoparietal) network would show dysconnectivity. Twenty-five SZ patient and 31 healthy control scans were collected using the customized 3T Siemens Skyra MRI scanner, previously used to collect data for the Human Connectome Project. Blood oxygen level dependent signal during the 0-back and 2-back conditions were extracted within a network-based parcelation scheme. Average functional connectivity was assessed within five brain networks: frontoparietal (FPN), default mode (DMN), cingulo-opercular (CON), dorsal attention (DAN), and ventral attention network; as well as between the DMN or FPN and other networks. For within-FPN connectivity, there was a significant interaction between n -back condition and group ( p  = 0.015), with decreased connectivity at 0-back in SZ subjects compared to controls. FPN-to-DMN connectivity also showed a significant condition × group effect ( p  = 0.003), with decreased connectivity at 0-back in SZ. Across groups, connectivity within the CON and DAN were increased during the 2-back condition, while DMN connectivity with either CON or DAN were decreased during the 2-back condition. Our findings support the role of the FPN, CON, and DAN in working memory and indicate that the pattern of FPN functional connectivity differs between SZ patients and control subjects during the course of a working memory task.

  15. Subcortical Local Functional Hyperconnectivity in Cannabis Dependence.

    PubMed

    Manza, Peter; Tomasi, Dardo; Volkow, Nora D

    2018-03-01

    Cannabis abuse (CA) has been associated with psychopathology, including negative emotionality and higher risk of psychosis, particularly with early age of initiation. However, the mechanisms underlying this association are poorly understood. Because aberrant dopamine signaling is implicated in cannabis-associated psychopathology, we hypothesized that regular CA would be associated with altered resting-state functional connectivity in dopamine midbrain-striatal circuits. We examined resting-state brain activity of subcortical regions in 441 young adults from the Human Connectome Project, including 30 subjects with CA meeting DSM-IV criteria for dependence and 30 control subjects matched on age, sex, education, body mass index, anxiety, depression, and alcohol and tobacco usage. Across all subjects, local functional connectivity density hubs in subcortical regions were most prominent in ventral striatum, hippocampus, amygdala, dorsal midbrain, and posterior-ventral brainstem. As hypothesized, subjects with CA showed markedly increased local functional connectivity density relative to control subjects, not only in ventral striatum (where nucleus accumbens is located) and midbrain (where substantia nigra and ventral tegmental nuclei are located) but also in brainstem and lateral thalamus. These effects were observed in the absence of significant differences in subcortical volumes and were most pronounced in individuals who began cannabis use earliest in life and who reported high levels of negative emotionality. Together, these findings suggest that chronic CA is associated with changes in resting-state brain function, particularly in dopaminergic nuclei implicated in psychosis but that are also critical for habit formation and reward processing. These results shed light on neurobiological differences that may be relevant to psychopathology associated with cannabis use. Published by Elsevier Inc.

  16. Alignment of Tractograms As Graph Matching.

    PubMed

    Olivetti, Emanuele; Sharmin, Nusrat; Avesani, Paolo

    2016-01-01

    The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.

  17. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain

    PubMed Central

    Xia, Mingrui; Lin, Qixiang; Bi, Yanchao; He, Yong

    2016-01-01

    White matter (WM) tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption) and topological contributions to the brain's network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus) and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity) and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain's hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes. PMID:27148015

  18. Connectomic Insights into Topologically Centralized Network Edges and Relevant Motifs in the Human Brain.

    PubMed

    Xia, Mingrui; Lin, Qixiang; Bi, Yanchao; He, Yong

    2016-01-01

    White matter (WM) tracts serve as important material substrates for information transfer across brain regions. However, the topological roles of WM tracts in global brain communications and their underlying microstructural basis remain poorly understood. Here, we employed diffusion magnetic resonance imaging and graph-theoretical approaches to identify the pivotal WM connections in human whole-brain networks and further investigated their wiring substrates (including WM microstructural organization and physical consumption) and topological contributions to the brain's network backbone. We found that the pivotal WM connections with highly topological-edge centrality were primarily distributed in several long-range cortico-cortical connections (including the corpus callosum, cingulum and inferior fronto-occipital fasciculus) and some projection tracts linking subcortical regions. These pivotal WM connections exhibited high levels of microstructural organization indicated by diffusion measures (the fractional anisotropy, the mean diffusivity and the axial diffusivity) and greater physical consumption indicated by streamline lengths, and contributed significantly to the brain's hubs and the rich-club structure. Network motif analysis further revealed their heavy participations in the organization of communication blocks, especially in routes involving inter-hemispheric heterotopic and extremely remote intra-hemispheric systems. Computational simulation models indicated the sharp decrease of global network integrity when attacking these highly centralized edges. Together, our results demonstrated high building-cost consumption and substantial communication capacity contributions for pivotal WM connections, which deepens our understanding of the topological mechanisms that govern the organization of human connectomes.

  19. Whole-brain structural connectivity in dyskinetic cerebral palsy and its association with motor and cognitive function.

    PubMed

    Ballester-Plané, Júlia; Schmidt, Ruben; Laporta-Hoyos, Olga; Junqué, Carme; Vázquez, Élida; Delgado, Ignacio; Zubiaurre-Elorza, Leire; Macaya, Alfons; Póo, Pilar; Toro, Esther; de Reus, Marcel A; van den Heuvel, Martijn P; Pueyo, Roser

    2017-09-01

    Dyskinetic cerebral palsy (CP) has long been associated with basal ganglia and thalamus lesions. Recent evidence further points at white matter (WM) damage. This study aims to identify altered WM pathways in dyskinetic CP from a standardized, connectome-based approach, and to assess structure-function relationship in WM pathways for clinical outcomes. Individual connectome maps of 25 subjects with dyskinetic CP and 24 healthy controls were obtained combining a structural parcellation scheme with whole-brain deterministic tractography. Graph theoretical metrics and the network-based statistic were applied to compare groups and to correlate WM state with motor and cognitive performance. Results showed a widespread reduction of WM volume in CP subjects compared to controls and a more localized decrease in degree (number of links per node) and fractional anisotropy (FA), comprising parieto-occipital regions and the hippocampus. However, supramarginal gyrus showed a significantly higher degree. At the network level, CP subjects showed a bilateral pathway with reduced FA, comprising sensorimotor, intraparietal and fronto-parietal connections. Gross and fine motor functions correlated with FA in a pathway comprising the sensorimotor system, but gross motor also correlated with prefrontal, temporal and occipital connections. Intelligence correlated with FA in a network with fronto-striatal and parieto-frontal connections, and visuoperception was related to right occipital connections. These findings demonstrate a disruption in structural brain connectivity in dyskinetic CP, revealing general involvement of posterior brain regions with relative preservation of prefrontal areas. We identified pathways in which WM integrity is related to clinical features, including but not limited to the sensorimotor system. Hum Brain Mapp 38:4594-4612, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Combined DTI Tractography and Functional MRI Study of the Language Connectome in Healthy Volunteers: Extensive Mapping of White Matter Fascicles and Cortical Activations.

    PubMed

    Vassal, François; Schneider, Fabien; Boutet, Claire; Jean, Betty; Sontheimer, Anna; Lemaire, Jean-Jacques

    2016-01-01

    Despite a better understanding of brain language organization into large-scale cortical networks, the underlying white matter (WM) connectivity is still not mastered. Here we combined diffusion tensor imaging (DTI) fiber tracking (FT) and language functional magnetic resonance imaging (fMRI) in twenty healthy subjects to gain new insights into the macroscopic structural connectivity of language. Eight putative WM fascicles for language were probed using a deterministic DTI-FT technique: the arcuate fascicle (AF), superior longitudinal fascicle (SLF), uncinate fascicle (UF), temporo-occipital fascicle, inferior fronto-occipital fascicle (IFOF), middle longitudinal fascicle (MdLF), frontal aslant fascicle and operculopremotor fascicle. Specific measurements (i.e. volume, length, fractional anisotropy) and precise cortical terminations were derived for each WM fascicle within both hemispheres. Connections between these WM fascicles and fMRI activations were studied to determine which WM fascicles are related to language. WM fascicle volumes showed asymmetries: leftward for the AF, temporoparietal segment of SLF and UF, and rightward for the frontoparietal segment of the SLF. The lateralization of the AF, IFOF and MdLF extended to differences in patterns of anatomical connections, which may relate to specific hemispheric abilities. The leftward asymmetry of the AF was correlated to the leftward asymmetry of fMRI activations, suggesting that the lateralization of the AF is a structural substrate of hemispheric language dominance. We found consistent connections between fMRI activations and terminations of the eight WM fascicles, providing a detailed description of the language connectome. WM fascicle terminations were also observed beyond fMRI-confirmed language areas and reached numerous cortical areas involved in different functional brain networks. These findings suggest that the reported WM fascicles are not exclusively involved in language and might be related to other cognitive functions such as visual recognition, spatial attention, executive functions, memory, and processing of emotional and behavioral aspects.

  1. Extracting intrinsic functional networks with feature-based group independent component analysis.

    PubMed

    Calhoun, Vince D; Allen, Elena

    2013-04-01

    There is increasing use of functional imaging data to understand the macro-connectome of the human brain. Of particular interest is the structure and function of intrinsic networks (regions exhibiting temporally coherent activity both at rest and while a task is being performed), which account for a significant portion of the variance in functional MRI data. While networks are typically estimated based on the temporal similarity between regions (based on temporal correlation, clustering methods, or independent component analysis [ICA]), some recent work has suggested that these intrinsic networks can be extracted from the inter-subject covariation among highly distilled features, such as amplitude maps reflecting regions modulated by a task or even coordinates extracted from large meta analytic studies. In this paper our goal was to explicitly compare the networks obtained from a first-level ICA (ICA on the spatio-temporal functional magnetic resonance imaging (fMRI) data) to those from a second-level ICA (i.e., ICA on computed features rather than on the first-level fMRI data). Convergent results from simulations, task-fMRI data, and rest-fMRI data show that the second-level analysis is slightly noisier than the first-level analysis but yields strikingly similar patterns of intrinsic networks (spatial correlations as high as 0.85 for task data and 0.65 for rest data, well above the empirical null) and also preserves the relationship of these networks with other variables such as age (for example, default mode network regions tended to show decreased low frequency power for first-level analyses and decreased loading parameters for second-level analyses). In addition, the best-estimated second-level results are those which are the most strongly reflected in the input feature. In summary, the use of feature-based ICA appears to be a valid tool for extracting intrinsic networks. We believe it will become a useful and important approach in the study of the macro-connectome, particularly in the context of data fusion.

  2. The missing link: Predicting connectomes from noisy and partially observed tract tracing data

    PubMed Central

    Hinne, Max; Meijers, Annet; Tiesinga, Paul H. E.; Mørup, Morten

    2017-01-01

    Our understanding of the wiring map of the brain, known as the connectome, has increased greatly in the last decade, mostly due to technological advancements in neuroimaging techniques and improvements in computational tools to interpret the vast amount of available data. Despite this, with the exception of the C. elegans roundworm, no definitive connectome has been established for any species. In order to obtain this, tracer studies are particularly appealing, as these have proven highly reliable. The downside of tract tracing is that it is costly to perform, and can only be applied ex vivo. In this paper, we suggest that instead of probing all possible connections, hitherto unknown connections may be predicted from the data that is already available. Our approach uses a ‘latent space model’ that embeds the connectivity in an abstract physical space. Regions that are close in the latent space have a high chance of being connected, while regions far apart are most likely disconnected in the connectome. After learning the latent embedding from the connections that we did observe, the latent space allows us to predict connections that have not been probed previously. We apply the methodology to two connectivity data sets of the macaque, where we demonstrate that the latent space model is successful in predicting unobserved connectivity, outperforming two baselines and an alternative model in nearly all cases. Furthermore, we show how the latent spatial embedding may be used to integrate multimodal observations (i.e. anterograde and retrograde tracers) for the mouse neocortex. Finally, our probabilistic approach enables us to make explicit which connections are easy to predict and which prove difficult, allowing for informed follow-up studies. PMID:28141820

  3. Age-related differences in the topological efficiency of the brain structural connectome in amnestic mild cognitive impairment.

    PubMed

    Zhao, Tengda; Sheng, Can; Bi, Qiuhui; Niu, Weili; Shu, Ni; Han, Ying

    2017-11-01

    Amnestic mild cognitive impairment (aMCI) is accompanied by the accelerated cognitive decline and rapid brain degeneration with aging. However, the age-related alterations of the topological organization of the brain connectome in aMCI patients remained largely unknown. In this study, we constructed the brain structural connectome in 51 aMCI patients and 51 healthy controls by diffusion magnetic resonance imaging and deterministic tractography. The different age-related alteration patterns of the global and regional network metrics between aMCI patients and healthy controls were assessed by a linear regression model. Compared with healthy controls, significantly decreased global and local network efficiency in aMCI patients were found. When correlating network efficiency with age, we observed a significant decline in network efficiency with aging in the aMCI patients, while not in the healthy controls. The age-related decreases of nodal efficiency in aMCI patients were mainly distributed in the key regions of the default-mode network, such as precuneus, anterior cingulate gyrus, and parahippocampal gyrus. In addition, age-related decreases in the connection strength of the edges between peripheral nodes were observed in aMCI patients. Moreover, the decreased regional efficiency of the parahippocampal gyrus was correlated with impaired memory performances in patients. The present study suggests an age-related disruption of the topological organization of the brain structural connectome in aMCI patients, which may provide evidence for different neural mechanisms underlying aging in aMCI and may serve as a potential imaging marker for the early diagnosis of Alzheimer's disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A probabilistic atlas of the cerebellar white matter.

    PubMed

    van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M

    2016-01-01

    Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Longitudinal connectome-based predictive modeling for REM sleep behavior disorder from structural brain connectivity

    NASA Astrophysics Data System (ADS)

    Giancardo, Luca; Ellmore, Timothy M.; Suescun, Jessika; Ocasio, Laura; Kamali, Arash; Riascos-Castaneda, Roy; Schiess, Mya C.

    2018-02-01

    Methods to identify neuroplasticity patterns in human brains are of the utmost importance in understanding and potentially treating neurodegenerative diseases. Parkinson disease (PD) research will greatly benefit and advance from the discovery of biomarkers to quantify brain changes in the early stages of the disease, a prodromal period when subjects show no obvious clinical symptoms. Diffusion tensor imaging (DTI) allows for an in-vivo estimation of the structural connectome inside the brain and may serve to quantify the degenerative process before the appearance of clinical symptoms. In this work, we introduce a novel strategy to compute longitudinal structural connectomes in the context of a whole-brain data-driven pipeline. In these initial tests, we show that our predictive models are able to distinguish controls from asymptomatic subjects at high risk of developing PD (REM sleep behavior disorder, RBD) with an area under the receiving operating characteristic curve of 0.90 (p<0.001) and a longitudinal dataset of 46 subjects part of the Parkinson's Progression Markers Initiative. By analyzing the brain connections most relevant for the predictive ability of the best performing model, we find connections that are biologically relevant to the disease.

  6. Detection of neuron membranes in electron microscopy images using a serial neural network architecture.

    PubMed

    Jurrus, Elizabeth; Paiva, Antonio R C; Watanabe, Shigeki; Anderson, James R; Jones, Bryan W; Whitaker, Ross T; Jorgensen, Erik M; Marc, Robert E; Tasdizen, Tolga

    2010-12-01

    Study of nervous systems via the connectome, the map of connectivities of all neurons in that system, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large electron microscopy datasets. However, the shear volume of these datasets renders manual analysis infeasible. Hence, automated image analysis methods are required for reconstructing the connectome from these very large image collections. Segmentation of neurons in these images, an essential step of the reconstruction pipeline, is challenging because of noise, anisotropic shapes and brightness, and the presence of confounding structures. The method described in this paper uses a series of artificial neural networks (ANNs) in a framework combined with a feature vector that is composed of image intensities sampled over a stencil neighborhood. Several ANNs are applied in series allowing each ANN to use the classification context provided by the previous network to improve detection accuracy. We develop the method of serial ANNs and show that the learned context does improve detection over traditional ANNs. We also demonstrate advantages over previous membrane detection methods. The results are a significant step towards an automated system for the reconstruction of the connectome. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Signal Sampling for Efficient Sparse Representation of Resting State FMRI Data

    PubMed Central

    Ge, Bao; Makkie, Milad; Wang, Jin; Zhao, Shijie; Jiang, Xi; Li, Xiang; Lv, Jinglei; Zhang, Shu; Zhang, Wei; Han, Junwei; Guo, Lei; Liu, Tianming

    2015-01-01

    As the size of brain imaging data such as fMRI grows explosively, it provides us with unprecedented and abundant information about the brain. How to reduce the size of fMRI data but not lose much information becomes a more and more pressing issue. Recent literature studies tried to deal with it by dictionary learning and sparse representation methods, however, their computation complexities are still high, which hampers the wider application of sparse representation method to large scale fMRI datasets. To effectively address this problem, this work proposes to represent resting state fMRI (rs-fMRI) signals of a whole brain via a statistical sampling based sparse representation. First we sampled the whole brain’s signals via different sampling methods, then the sampled signals were aggregate into an input data matrix to learn a dictionary, finally this dictionary was used to sparsely represent the whole brain’s signals and identify the resting state networks. Comparative experiments demonstrate that the proposed signal sampling framework can speed-up by ten times in reconstructing concurrent brain networks without losing much information. The experiments on the 1000 Functional Connectomes Project further demonstrate its effectiveness and superiority. PMID:26646924

  8. The macro-structural variability of the human neocortex.

    PubMed

    Kruggel, Frithjof

    2018-05-15

    The human neocortex shows a considerable individual structural variability. While primary gyri and sulci are found in all normally developed brains and bear clear-cut gross structural descriptions, secondary structures are highly variable and not present in all brains. The blend of common and individual structures poses challenges when comparing structural and functional results from quantitative neuroimaging studies across individuals, and sets limits on the precision of location information much above the spatial resolution of current neuroimaging methods. This work aimed at quantifying structural variability on the neocortex, and at assessing the spatial relationship between regions common to all brains and their individual structural variants. Based on structural MRI data provided as the "900 Subjects Release" of the Human Connectome Project, a data-driven analytic approach was employed here from which the definition of seven cortical "communities" emerged. Apparently, these communities comprise common regions of structural features, while the individual variability is confined within a community. Similarities between the community structure and the state of the brain development at gestation week 32 lead suggest that communities are segregated early. Subdividing the neocortex into communities is suggested as anatomically more meaningful than the traditional lobar structure. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. MEG-SIM: a web portal for testing MEG analysis methods using realistic simulated and empirical data.

    PubMed

    Aine, C J; Sanfratello, L; Ranken, D; Best, E; MacArthur, J A; Wallace, T; Gilliam, K; Donahue, C H; Montaño, R; Bryant, J E; Scott, A; Stephen, J M

    2012-04-01

    MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes ( http://cobre.mrn.org/megsim/ ). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis.

  10. MEG-SIM: A Web Portal for Testing MEG Analysis Methods using Realistic Simulated and Empirical Data

    PubMed Central

    Aine, C. J.; Sanfratello, L.; Ranken, D.; Best, E.; MacArthur, J. A.; Wallace, T.; Gilliam, K.; Donahue, C. H.; Montaño, R.; Bryant, J. E.; Scott, A.; Stephen, J. M.

    2012-01-01

    MEG and EEG measure electrophysiological activity in the brain with exquisite temporal resolution. Because of this unique strength relative to noninvasive hemodynamic-based measures (fMRI, PET), the complementary nature of hemodynamic and electrophysiological techniques is becoming more widely recognized (e.g., Human Connectome Project). However, the available analysis methods for solving the inverse problem for MEG and EEG have not been compared and standardized to the extent that they have for fMRI/PET. A number of factors, including the non-uniqueness of the solution to the inverse problem for MEG/EEG, have led to multiple analysis techniques which have not been tested on consistent datasets, making direct comparisons of techniques challenging (or impossible). Since each of the methods is known to have their own set of strengths and weaknesses, it would be beneficial to quantify them. Toward this end, we are announcing the establishment of a website containing an extensive series of realistic simulated data for testing purposes (http://cobre.mrn.org/megsim/). Here, we present: 1) a brief overview of the basic types of inverse procedures; 2) the rationale and description of the testbed created; and 3) cases emphasizing functional connectivity (e.g., oscillatory activity) suitable for a wide assortment of analyses including independent component analysis (ICA), Granger Causality/Directed transfer function, and single-trial analysis. PMID:22068921

  11. Using connectome-based predictive modeling to predict individual behavior from brain connectivity

    PubMed Central

    Shen, Xilin; Finn, Emily S.; Scheinost, Dustin; Rosenberg, Monica D.; Chun, Marvin M.; Papademetris, Xenophon; Constable, R Todd

    2017-01-01

    Neuroimaging is a fast developing research area where anatomical and functional images of human brains are collected using techniques such as functional magnetic resonance imaging (fMRI), diffusion tensor imaging (DTI), and electroencephalography (EEG). Technical advances and large-scale datasets have allowed for the development of models capable of predicting individual differences in traits and behavior using brain connectivity measures derived from neuroimaging data. Here, we present connectome-based predictive modeling (CPM), a data-driven protocol for developing predictive models of brain-behavior relationships from connectivity data using cross-validation. This protocol includes the following steps: 1) feature selection, 2) feature summarization, 3) model building, and 4) assessment of prediction significance. We also include suggestions for visualizing the most predictive features (i.e., brain connections). The final result should be a generalizable model that takes brain connectivity data as input and generates predictions of behavioral measures in novel subjects, accounting for a significant amount of the variance in these measures. It has been demonstrated that the CPM protocol performs equivalently or better than most of the existing approaches in brain-behavior prediction. However, because CPM focuses on linear modeling and a purely data-driven driven approach, neuroscientists with limited or no experience in machine learning or optimization would find it easy to implement the protocols. Depending on the volume of data to be processed, the protocol can take 10–100 minutes for model building, 1–48 hours for permutation testing, and 10–20 minutes for visualization of results. PMID:28182017

  12. Establishing a link between sex-related differences in the structural connectome and behaviour.

    PubMed

    Tunç, Birkan; Solmaz, Berkan; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Calkins, Monica E; Ruparel, Kosha; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2016-02-19

    Recent years have witnessed an increased attention to studies of sex differences, partly because such differences offer important considerations for personalized medicine. While the presence of sex differences in human behaviour is well documented, our knowledge of their anatomical foundations in the brain is still relatively limited. As a natural gateway to fathom the human mind and behaviour, studies concentrating on the human brain network constitute an important segment of the research effort to investigate sex differences. Using a large sample of healthy young individuals, each assessed with diffusion MRI and a computerized neurocognitive battery, we conducted a comprehensive set of experiments examining sex-related differences in the meso-scale structures of the human connectome and elucidated how these differences may relate to sex differences at the level of behaviour. Our results suggest that behavioural sex differences, which indicate complementarity of males and females, are accompanied by related differences in brain structure across development. When using subnetworks that are defined over functional and behavioural domains, we observed increased structural connectivity related to the motor, sensory and executive function subnetworks in males. In females, subnetworks associated with social motivation, attention and memory tasks had higher connectivity. Males showed higher modularity compared to females, with females having higher inter-modular connectivity. Applying multivariate analysis, we showed an increasing separation between males and females in the course of development, not only in behavioural patterns but also in brain structure. We also showed that these behavioural and structural patterns correlate with each other, establishing a reliable link between brain and behaviour. © 2016 The Author(s).

  13. Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome

    PubMed Central

    Kim, Seongkyun; Kim, Hyoungkyu; Kralik, Jerald D.; Jeong, Jaeseung

    2016-01-01

    Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism’s goals. To determine this, the nematode roundworm Caenorhabditis elegans is an attractive model system. Progress has been made in delineating the behavioral circuits of the C. elegans, however, many details are unclear, including the specific functions of every neuron and synapse, as well as the extent the behavioral circuits are separate and parallel versus integrative and serial. Network analysis provides a normative approach to help specify the network design. We investigated the vulnerability of the Caenorhabditis elegans connectome by performing computational experiments that (a) “attacked” 279 individual neurons and 2,990 weighted synaptic connections (composed of 6,393 chemical synapses and 890 electrical junctions) and (b) quantified the effects of each removal on global network properties that influence information processing. The analysis identified 12 critical neurons and 29 critical synapses for establishing fundamental network properties. These critical constituents were found to be control elements—i.e., those with the most influence over multiple underlying pathways. Additionally, the critical synapses formed into circuit-level pathways. These emergent pathways provide evidence for (a) the importance of backward locomotion, avoidance behavior, and social feeding behavior to the organism; (b) the potential roles of specific neurons whose functions have been unclear; and (c) both parallel and serial design elements in the connectome—i.e., specific evidence for a mixed architectural design. PMID:27540747

  14. Cingulo-opercular network efficiency mediates the association between psychotic-like experiences and cognitive ability in the general population.

    PubMed

    Sheffield, Julia M; Kandala, Sridhar; Burgess, Gregory C; Harms, Michael P; Barch, Deanna M

    2016-11-01

    Psychosis is hypothesized to occur on a spectrum between psychotic disorders and healthy individuals. In the middle of the spectrum are individuals who endorse psychotic-like experiences (PLEs) that may not impact daily functioning or cause distress. Individuals with PLEs show alterations in both cognitive ability and functional connectivity of several brain networks, but the relationship between PLEs, cognition, and functional networks remains poorly understood. We analyzed resting-state fMRI data, a range of neuropsychological tasks, and questions from the Achenbach Adult Self Report (ASR) in 468 individuals from the Human Connectome Project. We aimed to determine whether global efficiency of specific functional brain networks supporting higher-order cognition (the fronto-parietal network (FPN), cingulo-opercular network (CON), and default mode network (DMN)) was associated with PLEs and cognitive ability in a non-psychiatric sample. 21.6% of individuals in our sample endorsed at least one PLE. PLEs were significantly negatively associated with higher-order cognitive ability, CON global efficiency, and DMN global efficiency, but not crystallized knowledge. Higher-order cognition was significantly positively associated with CON and DMN global efficiency. Interestingly, the association between PLEs and cognitive ability was partially mediated by CON global efficiency and, in a subset of individuals who tested negative for drugs (N=405), the participation coefficient of the right anterior insula (a hub within the CON). These findings suggest that CON integrity may represent a shared mechanism that confers risk for psychotic experiences and the cognitive deficits observed across the psychosis spectrum.

  15. From functional architecture to functional connectomics.

    PubMed

    Reid, R Clay

    2012-07-26

    "Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex" by Hubel and Wiesel (1962) reported several important discoveries: orientation columns, the distinct structures of simple and complex receptive fields, and binocular integration. But perhaps the paper's greatest influence came from the concept of functional architecture (the complex relationship between in vivo physiology and the spatial arrangement of neurons) and several models of functionally specific connectivity. They thus identified two distinct concepts, topographic specificity and functional specificity, which together with cell-type specificity constitute the major determinants of nonrandom cortical connectivity. Orientation columns are iconic examples of topographic specificity, whereby axons within a column connect with cells of a single orientation preference. Hubel and Wiesel also saw the need for functional specificity at a finer scale in their model of thalamic inputs to simple cells, verified in the 1990s. The difficult but potentially more important question of functional specificity between cortical neurons is only now becoming tractable with new experimental techniques. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. An algorithm to predict the connectome of neural microcircuits

    PubMed Central

    Reimann, Michael W.; King, James G.; Muller, Eilif B.; Ramaswamy, Srikanth; Markram, Henry

    2015-01-01

    Experimentally mapping synaptic connections, in terms of the numbers and locations of their synapses and estimating connection probabilities, is still not a tractable task, even for small volumes of tissue. In fact, the six layers of the neocortex contain thousands of unique types of synaptic connections between the many different types of neurons, of which only a handful have been characterized experimentally. Here we present a theoretical framework and a data-driven algorithmic strategy to digitally reconstruct the complete synaptic connectivity between the different types of neurons in a small well-defined volume of tissue—the micro-scale connectome of a neural microcircuit. By enforcing a set of established principles of synaptic connectivity, and leveraging interdependencies between fundamental properties of neural microcircuits to constrain the reconstructed connectivity, the algorithm yields three parameters per connection type that predict the anatomy of all types of biologically viable synaptic connections. The predictions reproduce a spectrum of experimental data on synaptic connectivity not used by the algorithm. We conclude that an algorithmic approach to the connectome can serve as a tool to accelerate experimental mapping, indicating the minimal dataset required to make useful predictions, identifying the datasets required to improve their accuracy, testing the feasibility of experimental measurements, and making it possible to test hypotheses of synaptic connectivity. PMID:26500529

  17. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    PubMed

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-06-01

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity matrix integrity, studies may seek to clarify how measurement variability, post-processing techniques and biological variability impact mouse brain connectomics. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Exploring the retinal connectome

    PubMed Central

    Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Shaw, Margaret V.; Yang, Jia-Hui; DeMill, David; Lauritzen, James S.; Lin, Yanhua; Rapp, Kevin D.; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross

    2011-01-01

    Purpose A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. Methods We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Results Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive axonal veto synapses. (3) Chains of conventional synapses were very common, with intercalated glycinergic-GABAergic chains and very long chains associated with starburst amacrine cells. Glycinergic amacrine cells clearly play a major role in ON-OFF crossover inhibition. (4) Molecular and excitation mapping clearly segregates ultrastructurally defined bipolar cell groups into different response clusters. (5) Finally, low-resolution electron or optical imaging cannot reliably map synaptic connections by process geometry, as adjacency without synaptic contact is abundant in the retina. Only direct visualization of synapses and gap junctions suffices. Conclusions Connectome assembly and analysis using conventional transmission electron microscopy is now practical for network discovery. Our surveys of volume RC1 demonstrate that previously studied systems such as the AII amacrine cell network involve more network motifs than previously known. The AII network, primarily considered a scotopic pathway, clearly derives ribbon synapse input from photopic ON and OFF cone bipolar cell networks and extensive photopic GABAergic amacrine cell inputs. Further, bipolar cells show extensive inputs and outputs along their axons, similar to multistratified nonmammalian bipolar cells. Physiologic evidence of significant ON-OFF channel crossover is strongly supported by our anatomic data, showing alternating glycine-to-GABA paths. Long chains of amacrine cell networks likely arise from homocellular GABAergic synapses between starburst amacrine cells. Deeper analysis of RC1 offers the opportunity for more complete descriptions of specific networks. PMID:21311605

  19. Exploring the retinal connectome.

    PubMed

    Anderson, James R; Jones, Bryan W; Watt, Carl B; Shaw, Margaret V; Yang, Jia-Hui; Demill, David; Lauritzen, James S; Lin, Yanhua; Rapp, Kevin D; Mastronarde, David; Koshevoy, Pavel; Grimm, Bradley; Tasdizen, Tolga; Whitaker, Ross; Marc, Robert E

    2011-02-03

    A connectome is a comprehensive description of synaptic connectivity for a neural domain. Our goal was to produce a connectome data set for the inner plexiform layer of the mammalian retina. This paper describes our first retinal connectome, validates the method, and provides key initial findings. We acquired and assembled a 16.5 terabyte connectome data set RC1 for the rabbit retina at ≈ 2 nm resolution using automated transmission electron microscope imaging, automated mosaicking, and automated volume registration. RC1 represents a column of tissue 0.25 mm in diameter, spanning the inner nuclear, inner plexiform, and ganglion cell layers. To enhance ultrastructural tracing, we included molecular markers for 4-aminobutyrate (GABA), glutamate, glycine, taurine, glutamine, and the in vivo activity marker, 1-amino-4-guanidobutane. This enabled us to distinguish GABAergic and glycinergic amacrine cells; to identify ON bipolar cells coupled to glycinergic cells; and to discriminate different kinds of bipolar, amacrine, and ganglion cells based on their molecular signatures and activity. The data set was explored and annotated with Viking, our multiuser navigation tool. Annotations were exported to additional applications to render cells, visualize network graphs, and query the database. Exploration of RC1 showed that the 2 nm resolution readily recapitulated well known connections and revealed several new features of retinal organization: (1) The well known AII amacrine cell pathway displayed more complexity than previously reported, with no less than 17 distinct signaling modes, including ribbon synapse inputs from OFF bipolar cells, wide-field ON cone bipolar cells and rod bipolar cells, and extensive input from cone-pathway amacrine cells. (2) The axons of most cone bipolar cells formed a distinct signal integration compartment, with ON cone bipolar cell axonal synapses targeting diverse cell types. Both ON and OFF bipolar cells receive axonal veto synapses. (3) Chains of conventional synapses were very common, with intercalated glycinergic-GABAergic chains and very long chains associated with starburst amacrine cells. Glycinergic amacrine cells clearly play a major role in ON-OFF crossover inhibition. (4) Molecular and excitation mapping clearly segregates ultrastructurally defined bipolar cell groups into different response clusters. (5) Finally, low-resolution electron or optical imaging cannot reliably map synaptic connections by process geometry, as adjacency without synaptic contact is abundant in the retina. Only direct visualization of synapses and gap junctions suffices. Connectome assembly and analysis using conventional transmission electron microscopy is now practical for network discovery. Our surveys of volume RC1 demonstrate that previously studied systems such as the AII amacrine cell network involve more network motifs than previously known. The AII network, primarily considered a scotopic pathway, clearly derives ribbon synapse input from photopic ON and OFF cone bipolar cell networks and extensive photopic GABAergic amacrine cell inputs. Further, bipolar cells show extensive inputs and outputs along their axons, similar to multistratified nonmammalian bipolar cells. Physiologic evidence of significant ON-OFF channel crossover is strongly supported by our anatomic data, showing alternating glycine-to-GABA paths. Long chains of amacrine cell networks likely arise from homocellular GABAergic synapses between starburst amacrine cells. Deeper analysis of RC1 offers the opportunity for more complete descriptions of specific networks.

  20. From the connectome to the synaptome: an epic love story.

    PubMed

    DeFelipe, Javier

    2010-11-26

    A major challenge in neuroscience is to decipher the structural layout of the brain. The term "connectome" has recently been proposed to refer to the highly organized connection matrix of the human brain. However, defining how information flows through such a complex system represents so difficult a task that it seems unlikely it could be achieved in the near future or, for the most pessimistic, perhaps ever. Circuit diagrams of the nervous system can be considered at different levels, although they are surely impossible to complete at the synaptic level. Nevertheless, advances in our capacity to marry macro- and microscopic data may help establish a realistic statistical model that could describe connectivity at the ultrastructural level, the "synaptome," giving us cause for optimism.

  1. A Sparse Bayesian Learning Algorithm for White Matter Parameter Estimation from Compressed Multi-shell Diffusion MRI.

    PubMed

    Pisharady, Pramod Kumar; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe

    2017-09-01

    We propose a sparse Bayesian learning algorithm for improved estimation of white matter fiber parameters from compressed (under-sampled q-space) multi-shell diffusion MRI data. The multi-shell data is represented in a dictionary form using a non-monoexponential decay model of diffusion, based on continuous gamma distribution of diffusivities. The fiber volume fractions with predefined orientations, which are the unknown parameters, form the dictionary weights. These unknown parameters are estimated with a linear un-mixing framework, using a sparse Bayesian learning algorithm. A localized learning of hyperparameters at each voxel and for each possible fiber orientations improves the parameter estimation. Our experiments using synthetic data from the ISBI 2012 HARDI reconstruction challenge and in-vivo data from the Human Connectome Project demonstrate the improvements.

  2. Strength of Structural and Functional Frontostriatal Connectivity Predicts Self-Control in the Healthy Elderly

    PubMed Central

    Hänggi, Jürgen; Lohrey, Corinna; Drobetz, Reinhard; Baetschmann, Hansruedi; Forstmeier, Simon; Maercker, Andreas; Jäncke, Lutz

    2016-01-01

    Self-regulation refers to the successful use of executive functions and initiation of top-down processes to control one's thoughts, behavior, and emotions, and it is crucial to perform self-control. Self-control is needed to overcome impulses and can be assessed by delay of gratification (DoG) and delay discounting (DD) paradigms. In children/adolescents, good DoG/DD ability depends on the maturity of frontostriatal connectivity, and its decline in strength with advancing age might adversely affect self-control because prefrontal brain regions are more prone to normal age-related atrophy than other regions. Here, we aimed at highlighting the relationship between frontostriatal connectivity strength and DoG performance in advanced age. We recruited 40 healthy elderly individuals (mean age 74.0 ± 7.7 years) and assessed the DoG ability using the German version of the DoG test for adults in addition to the delay discounting (DD) paradigm. Based on diffusion-weighted and resting-state functional magnetic resonance imaging data, respectively, the structural and functional whole-brain connectome were reconstructed based on 90 different brain regions of interest in addition to a 12-node frontostriatal DoG-specific network and the resulting connectivity matrices were subjected to network-based statistics. The 90-nodes whole-brain connectome analyses revealed subnetworks significantly associated with DoG and DD with a preponderance of frontostriatal nodes involved suggesting a high specificity of the findings. Structural and functional connectivity strengths between the putamen, caudate nucleus, and nucleus accumbens on the one hand and orbitofrontal, dorsal, and ventral lateral prefrontal cortices on the other hand showed strong positive correlations with DoG and negative correlations with DD corrected for age, sex, intracranial volume, and head motion parameters. These associations cannot be explained by differences in impulsivity and executive functioning. This pattern of correlations between structural or functional frontostriatal connectivity strength and self-control suggests that, in addition to the importance of the frontostriatal nodes itself, the structural and functional properties of different connections within the frontostriatal network are crucial for self-controlled behaviors in the healthy elderly. Because high DoG/low DD is a significant predictor of willpower and wellbeing in the elderly population, interventions aiming at strengthening frontostriatal connectivity to strengthen self-controlled behavior are needed in the future. PMID:28105013

  3. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template

    PubMed Central

    Tyszka, J. Michael; Pauli, Wolfgang M.

    2016-01-01

    The nuclei of the human amygdala remain difficult to distinguish in individual subject structural magnetic resonance images. However, interpretation of the amygdala’s role in whole brain networks requires accurate localization of functional activity to a particular nucleus or subgroup of nuclei. To address this, we constructed high spatial resolution, three-dimensional templates, using joint high accuracy diffeomorphic registration of T1- and T2-weighted structural images from 168 typical adults between 22 and 35 years old released by the Human Connectome Project. Several internuclear boundaries are clearly visible in these templates, which would otherwise be impossible to delineate in individual subject data. A probabilistic atlas of major nuclei and nuclear groups was constructed in this template space and mapped back to individual spaces by inversion of the individual diffeomorphisms. Group level analyses revealed a slight (approximately 2%) bias towards larger total amygdala and nuclear volumes in the right hemisphere. No substantial sex or age differences were found in amygdala volumes normalized to total intracranial volume, or subdivision volumes normalized to amygdala volume. The current delineation provides a finer parcellation of the amygdala with more accurate external boundary definition than current histology-based atlases when used in conjunction with high accuracy registration methods, such as diffeomorphic warping. These templates and delineation are intended to be an open and evolving resource for future functional and structural imaging studies of the human amygdala. PMID:27354150

  4. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality

    PubMed Central

    Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio

    2017-01-01

    Abstract The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project. Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal–temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal–parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. PMID:28122961

  5. Dual Anterograde and Retrograde Viral Tracing of Reciprocal Connectivity.

    PubMed

    Haberl, Matthias G; Ginger, Melanie; Frick, Andreas

    2017-01-01

    Current large-scale approaches in neuroscience aim to unravel the complete connectivity map of specific neuronal circuits, or even the entire brain. This emerging research discipline has been termed connectomics. Recombinant glycoprotein-deleted rabies virus (RABV ∆G) has become an important tool for the investigation of neuronal connectivity in the brains of a variety of species. Neuronal infection with even a single RABV ∆G particle results in high-level transgene expression, revealing the fine-detailed morphology of all neuronal features-including dendritic spines, axonal processes, and boutons-on a brain-wide scale. This labeling is eminently suitable for subsequent post-hoc morphological analysis, such as semiautomated reconstruction in 3D. Here we describe the use of a recently developed anterograde RABV ∆G variant together with a retrograde RABV ∆G for the investigation of projections both to, and from, a particular brain region. In addition to the automated reconstruction of a dendritic tree, we also give as an example the volume measurements of axonal boutons following RABV ∆G-mediated fluorescent marker expression. In conclusion RABV ∆G variants expressing a combination of markers and/or tools for stimulating/monitoring neuronal activity, used together with genetic or behavioral animal models, promise important insights in the structure-function relationship of neural circuits.

  6. Altered Brain Network Segregation in Fragile X Syndrome Revealed by Structural Connectomics.

    PubMed

    Bruno, Jennifer Lynn; Hosseini, S M Hadi; Saggar, Manish; Quintin, Eve-Marie; Raman, Mira Michelle; Reiss, Allan L

    2017-03-01

    Fragile X syndrome (FXS), the most common inherited cause of intellectual disability and autism spectrum disorder, is associated with significant behavioral, social, and neurocognitive deficits. Understanding structural brain network topology in FXS provides an important link between neurobiological and behavioral/cognitive symptoms of this disorder. We investigated the connectome via whole-brain structural networks created from group-level morphological correlations. Participants included 100 individuals: 50 with FXS and 50 with typical development, age 11-23 years. Results indicated alterations in topological properties of structural brain networks in individuals with FXS. Significantly reduced small-world index indicates a shift in the balance between network segregation and integration and significantly reduced clustering coefficient suggests that reduced local segregation shifted this balance. Caudate and amygdala were less interactive in the FXS network further highlighting the importance of subcortical region alterations in the neurobiological signature of FXS. Modularity analysis indicates that FXS and typically developing groups' networks decompose into different sets of interconnected sub networks, potentially indicative of aberrant local interconnectivity in individuals with FXS. These findings advance our understanding of the effects of fragile X mental retardation protein on large-scale brain networks and could be used to develop a connectome-level biological signature for FXS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Causal influence in neural systems: Reconciling mechanistic-reductionist and statistical perspectives. Comment on "Foundational perspectives on causality in large-scale brain networks" by M. Mannino & S.L. Bressler

    NASA Astrophysics Data System (ADS)

    Griffiths, John D.

    2015-12-01

    The modern understanding of the brain as a large, complex network of interacting elements is a natural consequence of the Neuron Doctrine [1,2] that has been bolstered in recent years by the tools and concepts of connectomics. In this abstracted, network-centric view, the essence of neural and cognitive function derives from the flows between network elements of activity and information - or, more generally, causal influence. The appropriate characterization of causality in neural systems, therefore, is a question at the very heart of systems neuroscience.

  8. Automatic Denoising of Functional MRI Data: Combining Independent Component Analysis and Hierarchical Fusion of Classifiers

    PubMed Central

    Salimi-Khorshidi, Gholamreza; Douaud, Gwenaëlle; Beckmann, Christian F; Glasser, Matthew F; Griffanti, Ludovica; Smith, Stephen M

    2014-01-01

    Many sources of fluctuation contribute to the fMRI signal, and this makes identifying the effects that are truly related to the underlying neuronal activity difficult. Independent component analysis (ICA) - one of the most widely used techniques for the exploratory analysis of fMRI data - has shown to be a powerful technique in identifying various sources of neuronally-related and artefactual fluctuation in fMRI data (both with the application of external stimuli and with the subject “at rest”). ICA decomposes fMRI data into patterns of activity (a set of spatial maps and their corresponding time series) that are statistically independent and add linearly to explain voxel-wise time series. Given the set of ICA components, if the components representing “signal” (brain activity) can be distinguished form the “noise” components (effects of motion, non-neuronal physiology, scanner artefacts and other nuisance sources), the latter can then be removed from the data, providing an effective cleanup of structured noise. Manual classification of components is labour intensive and requires expertise; hence, a fully automatic noise detection algorithm that can reliably detect various types of noise sources (in both task and resting fMRI) is desirable. In this paper, we introduce FIX (“FMRIB’s ICA-based X-noiseifier”), which provides an automatic solution for denoising fMRI data via accurate classification of ICA components. For each ICA component FIX generates a large number of distinct spatial and temporal features, each describing a different aspect of the data (e.g., what proportion of temporal fluctuations are at high frequencies). The set of features is then fed into a multi-level classifier (built around several different Classifiers). Once trained through the hand-classification of a sufficient number of training datasets, the classifier can then automatically classify new datasets. The noise components can then be subtracted from (or regressed out of) the original data, to provide automated cleanup. On conventional resting-state fMRI (rfMRI) single-run datasets, FIX achieved about 95% overall accuracy. On high-quality rfMRI data from the Human Connectome Project, FIX achieves over 99% classification accuracy, and as a result is being used in the default rfMRI processing pipeline for generating HCP connectomes. FIX is publicly available as a plugin for FSL. PMID:24389422

  9. Neural Elements for Predictive Coding.

    PubMed

    Shipp, Stewart

    2016-01-01

    Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many 'illusory' instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry - that neurons with extrinsically bifurcating axons do not project in both directions - has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic 'canonical microcircuit' and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural engineering in the mouse. The exercise highlights a number of recurring themes, amongst them the consideration of interneuron diversity as a spur to theoretical development and the potential for specifying a pyramidal neuron's function by its individual 'connectome,' combining its extrinsic projection (forward, backward or subcortical) with evaluation of its intrinsic network (e.g., unidirectional versus bidirectional connections with other pyramidal neurons).

  10. Neural Elements for Predictive Coding

    PubMed Central

    Shipp, Stewart

    2016-01-01

    Predictive coding theories of sensory brain function interpret the hierarchical construction of the cerebral cortex as a Bayesian, generative model capable of predicting the sensory data consistent with any given percept. Predictions are fed backward in the hierarchy and reciprocated by prediction error in the forward direction, acting to modify the representation of the outside world at increasing levels of abstraction, and so to optimize the nature of perception over a series of iterations. This accounts for many ‘illusory’ instances of perception where what is seen (heard, etc.) is unduly influenced by what is expected, based on past experience. This simple conception, the hierarchical exchange of prediction and prediction error, confronts a rich cortical microcircuitry that is yet to be fully documented. This article presents the view that, in the current state of theory and practice, it is profitable to begin a two-way exchange: that predictive coding theory can support an understanding of cortical microcircuit function, and prompt particular aspects of future investigation, whilst existing knowledge of microcircuitry can, in return, influence theoretical development. As an example, a neural inference arising from the earliest formulations of predictive coding is that the source populations of forward and backward pathways should be completely separate, given their functional distinction; this aspect of circuitry – that neurons with extrinsically bifurcating axons do not project in both directions – has only recently been confirmed. Here, the computational architecture prescribed by a generalized (free-energy) formulation of predictive coding is combined with the classic ‘canonical microcircuit’ and the laminar architecture of hierarchical extrinsic connectivity to produce a template schematic, that is further examined in the light of (a) updates in the microcircuitry of primate visual cortex, and (b) rapid technical advances made possible by transgenic neural engineering in the mouse. The exercise highlights a number of recurring themes, amongst them the consideration of interneuron diversity as a spur to theoretical development and the potential for specifying a pyramidal neuron’s function by its individual ‘connectome,’ combining its extrinsic projection (forward, backward or subcortical) with evaluation of its intrinsic network (e.g., unidirectional versus bidirectional connections with other pyramidal neurons). PMID:27917138

  11. The contributions of resting state and task-based functional connectivity studies to our understanding of adolescent brain network maturation.

    PubMed

    Stevens, Michael C

    2016-11-01

    This review summarizes functional magnetic resonance imaging (fMRI) research done over the past decade that examined changes in the function and organization of brain networks across human adolescence. Its over-arching goal is to highlight how both resting state functional connectivity (rs-fcMRI) and task-based functional connectivity (t-fcMRI) have jointly contributed - albeit in different ways - to our understanding of the scope and types of network organization changes that occur from puberty until young adulthood. These two approaches generally have tested different types of hypotheses using different analysis techniques. This has hampered the convergence of findings. Although much has been learned about system-wide changes to adolescents' neural network organization, if both rs-fcMRI and t-fcMRI approaches draw upon each other's methodology and ask broader questions, it will produce a more detailed connectome-informed theory of adolescent neurodevelopment to guide physiological, clinical, and other lines of research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    PubMed Central

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients. PMID:29186356

  13. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.

    PubMed

    Taghia, Jalil; Ryali, Srikanth; Chen, Tianwen; Supekar, Kaustubh; Cai, Weidong; Menon, Vinod

    2017-07-15

    There is growing interest in understanding the dynamical properties of functional interactions between distributed brain regions. However, robust estimation of temporal dynamics from functional magnetic resonance imaging (fMRI) data remains challenging due to limitations in extant multivariate methods for modeling time-varying functional interactions between multiple brain areas. Here, we develop a Bayesian generative model for fMRI time-series within the framework of hidden Markov models (HMMs). The model is a dynamic variant of the static factor analysis model (Ghahramani and Beal, 2000). We refer to this model as Bayesian switching factor analysis (BSFA) as it integrates factor analysis into a generative HMM in a unified Bayesian framework. In BSFA, brain dynamic functional networks are represented by latent states which are learnt from the data. Crucially, BSFA is a generative model which estimates the temporal evolution of brain states and transition probabilities between states as a function of time. An attractive feature of BSFA is the automatic determination of the number of latent states via Bayesian model selection arising from penalization of excessively complex models. Key features of BSFA are validated using extensive simulations on carefully designed synthetic data. We further validate BSFA using fingerprint analysis of multisession resting-state fMRI data from the Human Connectome Project (HCP). Our results show that modeling temporal dependencies in the generative model of BSFA results in improved fingerprinting of individual participants. Finally, we apply BSFA to elucidate the dynamic functional organization of the salience, central-executive, and default mode networks-three core neurocognitive systems with central role in cognitive and affective information processing (Menon, 2011). Across two HCP sessions, we demonstrate a high level of dynamic interactions between these networks and determine that the salience network has the highest temporal flexibility among the three networks. Our proposed methods provide a novel and powerful generative model for investigating dynamic brain connectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults

    PubMed Central

    Flodin, Pär; Jonasson, Lars S.; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C. J.

    2017-01-01

    Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64–78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO2-peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas. PMID:28848424

  15. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults.

    PubMed

    Flodin, Pär; Jonasson, Lars S; Riklund, Katrin; Nyberg, Lars; Boraxbekk, C J

    2017-01-01

    Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64-78 years) were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI) and arterial spin labeling (ASL). Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO 2 -peak) over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO 2 -peak was negativly related to BOLD-signal fluctuations (BOLD STD ) in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO 2 -related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA), as well as ASL, did not reveal any relationships between aerobic fitness and intrinsic brain activity. Moreover, fitness-predicted changes in functional connectivity did not relate to changes in cognition, which is likely due to absent cross-sectional or longitudinal relationships between VO 2 -peak and cognition. We conclude that the aerobic exercise intervention had limited influence on patterns of intrinsic brain activity, although post hoc analyses indicated that individual changes in aerobic capacity preferentially influenced mid-temporal brain areas.

  16. Reduced rich-club connectivity is related to disability in primary progressive MS

    PubMed Central

    Hodecker, Sibylle; Cheng, Bastian; Wanke, Nadine; Young, Kim Lea; Hilgetag, Claus; Gerloff, Christian; Heesen, Christoph; Thomalla, Götz; Siemonsen, Susanne

    2017-01-01

    Objective: To investigate whether the structural connectivity of the brain's rich-club organization is altered in patients with primary progressive MS and whether such changes to this fundamental network feature are associated with disability measures. Methods: We recruited 37 patients with primary progressive MS and 21 healthy controls for an observational cohort study. Structural connectomes were reconstructed based on diffusion-weighted imaging data using probabilistic tractography and analyzed with graph theory. Results: We observed the same topological organization of brain networks in patients and controls. Consistent with the originally defined rich-club regions, we identified superior frontal, precuneus, superior parietal, and insular cortex in both hemispheres as rich-club nodes. Connectivity within the rich club was significantly reduced in patients with MS (p = 0.039). The extent of reduced rich-club connectivity correlated with clinical measurements of mobility (Kendall rank correlation coefficient τ = −0.20, p = 0.047), hand function (τ = −0.26, p = 0.014), and information processing speed (τ = −0.20, p = 0.049). Conclusions: In patients with primary progressive MS, the fundamental organization of the structural connectome in rich-club and peripheral nodes was preserved and did not differ from healthy controls. The proportion of rich-club connections was altered and correlated with disability measures. Thus, the rich-club organization of the brain may be a promising network phenotype for understanding the patterns and mechanisms of neurodegeneration in MS. PMID:28804744

  17. Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development

    PubMed Central

    Vértes, Petra E; Bullmore, Edward T

    2015-01-01

    Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756

  18. Edge Density Imaging: Mapping the Anatomic Embedding of the Structural Connectome Within the White Matter of the Human Brain

    PubMed Central

    Owen, Julia P.; Chang, Yi-Shin; Mukherjee, Pratik

    2015-01-01

    The structural connectome has emerged as a powerful tool to characterize the network architecture of the human brain and shows great potential for generating important new biomarkers for neurologic and psychiatric disorders. The edges of the cerebral graph traverse white matter to interconnect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Mapping the paths of the connectome edges could elucidate the relative importance of individual white matter tracts to the overall network topology of the brain and also lead to a better understanding of the effect of regionally-specific white matter pathology on cognition and behavior. In this work, we introduce edge density imaging (EDI), which maps the number of network edges that pass through every white matter voxel. Test-retest analysis shows good to excellent reliability for edge density (ED) measurements, with consistent results using different cortical and subcortical parcellation schemes and different diffusion MR imaging acquisition parameters. We also demonstrate that ED yields complementary information to both traditional and emerging voxel-wise metrics of white matter microstructure and connectivity, including fractional anisotropy, track density, fiber orientation dispersion and neurite density. Our results demonstrate spatially ordered variations of ED throughout the white matter, notably including greater ED in posterior than anterior cerebral white matter. The EDI framework is employed to map the white matter regions that are enriched with pathways connecting rich club nodes and also those with high densities of intra-modular and inter-modular edges. We show that periventricular white matter has particularly high ED and high densities of rich club edges, which is significant for diseases in which these areas are selectively affected, ranging from white matter injury of prematurity in infants to leukoaraiosis in the elderly. Using edge betweenness centrality, we identify specific white matter regions involved in a large number of shortest paths, some containing highly connected rich club edges while others are relatively isolated within individual modules. Overall, these findings reveal an intricate relationship between white matter anatomy and the structural connectome, motivating further exploration of EDI for biomarkers of cognition and behavior. PMID:25592996

  19. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography

    PubMed Central

    Weiler, Nicholas C; Collman, Forrest; Vogelstein, Joshua T; Burns, Randal; Smith, Stephen J

    2014-01-01

    A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces. PMID:25977797

  20. Synaptic molecular imaging in spared and deprived columns of mouse barrel cortex with array tomography.

    PubMed

    Weiler, Nicholas C; Collman, Forrest; Vogelstein, Joshua T; Burns, Randal; Smith, Stephen J

    2014-01-01

    A major question in neuroscience is how diverse subsets of synaptic connections in neural circuits are affected by experience dependent plasticity to form the basis for behavioral learning and memory. Differences in protein expression patterns at individual synapses could constitute a key to understanding both synaptic diversity and the effects of plasticity at different synapse populations. Our approach to this question leverages the immunohistochemical multiplexing capability of array tomography (ATomo) and the columnar organization of mouse barrel cortex to create a dataset comprising high resolution volumetric images of spared and deprived cortical whisker barrels stained for over a dozen synaptic molecules each. These dataset has been made available through the Open Connectome Project for interactive online viewing, and may also be downloaded for offline analysis using web, Matlab, and other interfaces.

  1. Tai Chi Chuan optimizes the functional organization of the intrinsic human brain architecture in older adults

    PubMed Central

    Wei, Gao-Xia; Dong, Hao-Ming; Yang, Zhi; Luo, Jing; Zuo, Xi-Nian

    2014-01-01

    Whether Tai Chi Chuan (TCC) can influence the intrinsic functional architecture of the human brain remains unclear. To examine TCC-associated changes in functional connectomes, resting-state functional magnetic resonance images were acquired from 40 older individuals including 22 experienced TCC practitioners (experts) and 18 demographically matched TCC-naïve healthy controls, and their local functional homogeneities across the cortical mantle were compared. Compared to the controls, the TCC experts had significantly greater and more experience-dependent functional homogeneity in the right post-central gyrus (PosCG) and less functional homogeneity in the left anterior cingulate cortex (ACC) and the right dorsal lateral prefrontal cortex. Increased functional homogeneity in the PosCG was correlated with TCC experience. Intriguingly, decreases in functional homogeneity (improved functional specialization) in the left ACC and increases in functional homogeneity (improved functional integration) in the right PosCG both predicted performance gains on attention network behavior tests. These findings provide evidence for the functional plasticity of the brain’s intrinsic architecture toward optimizing locally functional organization, with great implications for understanding the effects of TCC on cognition, behavior and health in aging population. PMID:24860494

  2. Converging models of schizophrenia - Network alterations of prefrontal cortex underlying cognitive impairments

    PubMed Central

    Sakurai, Takeshi; Gamo, Nao J; Hikida, Takatoshi; Kim, Sun-Hong; Murai, Toshiya; Tomoda, Toshifumi; Sawa, Akira

    2015-01-01

    The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal. PMID:26408506

  3. Structure and function of complex brain networks

    PubMed Central

    Sporns, Olaf

    2013-01-01

    An increasing number of theoretical and empirical studies approach the function of the human brain from a network perspective. The analysis of brain networks is made feasible by the development of new imaging acquisition methods as well as new tools from graph theory and dynamical systems. This review surveys some of these methodological advances and summarizes recent findings on the architecture of structural and functional brain networks. Studies of the structural connectome reveal several modules or network communities that are interlinked by hub regions mediating communication processes between modules. Recent network analyses have shown that network hubs form a densely linked collective called a “rich club,” centrally positioned for attracting and dispersing signal traffic. In parallel, recordings of resting and task-evoked neural activity have revealed distinct resting-state networks that contribute to functions in distinct cognitive domains. Network methods are increasingly applied in a clinical context, and their promise for elucidating neural substrates of brain and mental disorders is discussed. PMID:24174898

  4. The Structural Connectome of the Human Central Homeostatic Network.

    PubMed

    Edlow, Brian L; McNab, Jennifer A; Witzel, Thomas; Kinney, Hannah C

    2016-04-01

    Homeostatic adaptations to stress are regulated by interactions between the brainstem and regions of the forebrain, including limbic sites related to respiratory, autonomic, affective, and cognitive processing. Neuroanatomic connections between these homeostatic regions, however, have not been thoroughly identified in the human brain. In this study, we perform diffusion spectrum imaging tractography using the MGH-USC Connectome MRI scanner to visualize structural connections in the human brain linking autonomic and cardiorespiratory nuclei in the midbrain, pons, and medulla oblongata with forebrain sites critical to homeostatic control. Probabilistic tractography analyses in six healthy adults revealed connections between six brainstem nuclei and seven forebrain regions, several over long distances between the caudal medulla and cerebral cortex. The strongest evidence for brainstem-homeostatic forebrain connectivity in this study was between the brainstem midline raphe and the medial temporal lobe. The subiculum and amygdala were the sampled forebrain nodes with the most extensive brainstem connections. Within the human brainstem-homeostatic forebrain connectome, we observed that a lateral forebrain bundle, whose connectivity is distinct from that of rodents and nonhuman primates, is the primary conduit for connections between the brainstem and medial temporal lobe. This study supports the concept that interconnected brainstem and forebrain nodes form an integrated central homeostatic network (CHN) in the human brain. Our findings provide an initial foundation for elucidating the neuroanatomic basis of homeostasis in the normal human brain, as well as for mapping CHN disconnections in patients with disorders of homeostasis, including sudden and unexpected death, and epilepsy.

  5. Assessing the clinical effect of residual cortical disconnection after ischemic strokes.

    PubMed

    Bonilha, Leonardo; Rorden, Chris; Fridriksson, Julius

    2014-04-01

    Studies assessing the relationship between chronic poststroke language impairment (aphasia) and ischemic brain damage usually rely on measuring the extent of brain necrosis observed on MRI. Nonetheless, clinical observation suggests that patients can exhibit deficits that are more severe than what would be expected based on lesion location and size. This phenomenon is commonly explained as being the result of cortical disconnection. To understand whether disconnection contributes to clinical symptoms, we assessed the relationship between language impairments and structural brain connectivity (the connectome) in patients with chronic aphasia after a stroke. Thirty-nine patients with chronic aphasia underwent language assessment and MRI scanning. Relying on MRI data, we reconstructed the individual connectome from T1-weighted and diffusion tensor imaging. Deterministic fiber tractography was used to assess connectivity between each possible pair of cortical Brodmann areas. Multiple linear regression analyses were performed to evaluate the relationship between language performance and cortical necrosis and cortical disconnection. We observed that structural disconnection of Brodmann area 45 (spared by the necrotic tissue) was independently associated with naming performance, controlling for the extent of Brodmann area 45 necrosis (F=4.62; P<0.01; necrosis: β=0.43; P=0.03; disconnection β=1.21; P<0.001). We suggest that cortical disconnection, as measured by the structural connectome, is an independent predictor of naming impairment in patients with chronic aphasia. The full extent of clinically relevant brain damage after an ischemic stroke may be underappreciated by visual inspection of cortical necrosis alone.

  6. Artifact removal in the context of group ICA: a comparison of single-subject and group approaches

    PubMed Central

    Du, Yuhui; Allen, Elena A.; He, Hao; Sui, Jing; Wu, Lei; Calhoun, Vince D.

    2018-01-01

    Independent component analysis (ICA) has been widely applied to identify intrinsic brain networks from fMRI data. Group ICA computes group-level components from all data and subsequently estimates individual-level components to recapture inter-subject variability. However, the best approach to handle artifacts, which may vary widely among subjects, is not yet clear. In this work, we study and compare two ICA approaches for artifacts removal. One approach, recommended in recent work by the Human Connectome Project, first performs ICA on individual subject data to remove artifacts, and then applies a group ICA on the cleaned data from all subjects. We refer to this approach as Individual ICA based artifacts Removal Plus Group ICA (IRPG). A second proposed approach, called Group Information Guided ICA (GIG-ICA), performs ICA on group data, then removes the group-level artifact components, and finally performs subject-specific ICAs using the group-level non-artifact components as spatial references. We used simulations to evaluate the two approaches with respect to the effects of data quality, data quantity, variable number of sources among subjects, and spatially unique artifacts. Resting-state test-retest datasets were also employed to investigate the reliability of functional networks. Results from simulations demonstrate GIG-ICA has greater performance compared to IRPG, even in the case when single-subject artifacts removal is perfect and when individual subjects have spatially unique artifacts. Experiments using test-retest data suggest that GIG-ICA provides more reliable functional networks. Based on high estimation accuracy, ease of implementation, and high reliability of functional networks, we find GIG-ICA to be a promising approach. PMID:26859308

  7. Learning neural connectivity from firing activity: efficient algorithms with provable guarantees on topology.

    PubMed

    Karbasi, Amin; Salavati, Amir Hesam; Vetterli, Martin

    2018-04-01

    The connectivity of a neuronal network has a major effect on its functionality and role. It is generally believed that the complex network structure of the brain provides a physiological basis for information processing. Therefore, identifying the network's topology has received a lot of attentions in neuroscience and has been the center of many research initiatives such as Human Connectome Project. Nevertheless, direct and invasive approaches that slice and observe the neural tissue have proven to be time consuming, complex and costly. As a result, the inverse methods that utilize firing activity of neurons in order to identify the (functional) connections have gained momentum recently, especially in light of rapid advances in recording technologies; It will soon be possible to simultaneously monitor the activities of tens of thousands of neurons in real time. While there are a number of excellent approaches that aim to identify the functional connections from firing activities, the scalability of the proposed techniques plays a major challenge in applying them on large-scale datasets of recorded firing activities. In exceptional cases where scalability has not been an issue, the theoretical performance guarantees are usually limited to a specific family of neurons or the type of firing activities. In this paper, we formulate the neural network reconstruction as an instance of a graph learning problem, where we observe the behavior of nodes/neurons (i.e., firing activities) and aim to find the links/connections. We develop a scalable learning mechanism and derive the conditions under which the estimated graph for a network of Leaky Integrate and Fire (LIf) neurons matches the true underlying synaptic connections. We then validate the performance of the algorithm using artificially generated data (for benchmarking) and real data recorded from multiple hippocampal areas in rats.

  8. Sequencing the Connectome

    PubMed Central

    Zador, Anthony M.; Dubnau, Joshua; Oyibo, Hassana K.; Zhan, Huiqing; Cao, Gang; Peikon, Ian D.

    2012-01-01

    Connectivity determines the function of neural circuits. Historically, circuit mapping has usually been viewed as a problem of microscopy, but no current method can achieve high-throughput mapping of entire circuits with single neuron precision. Here we describe a novel approach to determining connectivity. We propose BOINC (“barcoding of individual neuronal connections”), a method for converting the problem of connectivity into a form that can be read out by high-throughput DNA sequencing. The appeal of using sequencing is that its scale—sequencing billions of nucleotides per day is now routine—is a natural match to the complexity of neural circuits. An inexpensive high-throughput technique for establishing circuit connectivity at single neuron resolution could transform neuroscience research. PMID:23109909

  9. Similarity in functional brain architecture between rest and specific task modes: A model of genetic and environmental contributions to episodic memory.

    PubMed

    Petrican, Raluca; Levine, Brian T

    2018-06-21

    The ability to keep a mental record of specific past events, dubbed episodic memory (EM), is key to lifespan adaptation. Nonetheless, the neural mechanisms underlying its typical inter-individual variability remain poorly understood. To address this issue, we tested whether individual differences in EM could be predicted from levels of functional brain re-organization between rest and task modes relevant to the transformation of perceptual information into mental representations (relational processing, meaning extraction, online maintenance versus updating of bound perceptual features). To probe the trait specificity of our model, we included three additional core mental functions, processing speed, abstract reasoning, and cognitive control. Finally, we investigated the extent to which our proposed model reflected genetic versus environmental contributions to EM variability. Hypotheses were tested by applying graph theoretical analysis and structural equation modeling to resting state and task fMRI data from two samples of participants in the Human Connectome Project (Sample 1: N = 338 unrelated individuals; Sample 2: N = 268 monozygotic vs. dizygotic twins [134 same-sex pairs]). Levels of functional brain reorganization between rest and the scrutinized task modes, particularly relational processing and online maintenance of bound perceptual features, contributed substantially to variations in both EM and abstract reasoning (but not in cognitive control or processing speed) among the younger adults in our sample, implying a substantial neurofunctional overlap, at least during this life stage. Similarity in functional organization between rest and each of the scrutinized task modes drew on distinguishable neural resources and showed differential susceptibility to genetic versus environmental influences. Our results suggest that variability on complex traits, such as EM, is supported by neural mechanisms comprising multiple components, each reflecting a distinct pattern of genetic versus environmental contributions and whose relative importance may vary across typical versus psychopathological development. Copyright © 2018. Published by Elsevier Inc.

  10. Measuring electrophysiological connectivity by power envelope correlation: a technical review on MEG methods

    NASA Astrophysics Data System (ADS)

    O'Neill, George C.; Barratt, Eleanor L.; Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Brookes, Matthew J.

    2015-11-01

    The human brain can be divided into multiple areas, each responsible for different aspects of behaviour. Healthy brain function relies upon efficient connectivity between these areas and, in recent years, neuroimaging has been revolutionised by an ability to estimate this connectivity. In this paper we discuss measurement of network connectivity using magnetoencephalography (MEG), a technique capable of imaging electrophysiological brain activity with good (~5 mm) spatial resolution and excellent (~1 ms) temporal resolution. The rich information content of MEG facilitates many disparate measures of connectivity between spatially separate regions and in this paper we discuss a single metric known as power envelope correlation. We review in detail the methodology required to measure power envelope correlation including (i) projection of MEG data into source space, (ii) removing confounds introduced by the MEG inverse problem and (iii) estimation of connectivity itself. In this way, we aim to provide researchers with a description of the key steps required to assess envelope based functional networks, which are thought to represent an intrinsic mode of coupling in the human brain. We highlight the principal findings of the techniques discussed, and furthermore, we show evidence that this method can probe how the brain forms and dissolves multiple transient networks on a rapid timescale in order to support current processing demand. Overall, power envelope correlation offers a unique and verifiable means to gain novel insights into network coordination and is proving to be of significant value in elucidating the neural dynamics of the human connectome in health and disease.

  11. Neurophysiological Basis of Multi-Scale Entropy of Brain Complexity and Its Relationship With Functional Connectivity.

    PubMed

    Wang, Danny J J; Jann, Kay; Fan, Chang; Qiao, Yang; Zang, Yu-Feng; Lu, Hanbing; Yang, Yihong

    2018-01-01

    Recently, non-linear statistical measures such as multi-scale entropy (MSE) have been introduced as indices of the complexity of electrophysiology and fMRI time-series across multiple time scales. In this work, we investigated the neurophysiological underpinnings of complexity (MSE) of electrophysiology and fMRI signals and their relations to functional connectivity (FC). MSE and FC analyses were performed on simulated data using neural mass model based brain network model with the Brain Dynamics Toolbox, on animal models with concurrent recording of fMRI and electrophysiology in conjunction with pharmacological manipulations, and on resting-state fMRI data from the Human Connectome Project. Our results show that the complexity of regional electrophysiology and fMRI signals is positively correlated with network FC. The associations between MSE and FC are dependent on the temporal scales or frequencies, with higher associations between MSE and FC at lower temporal frequencies. Our results from theoretical modeling, animal experiment and human fMRI indicate that (1) Regional neural complexity and network FC may be two related aspects of brain's information processing: the more complex regional neural activity, the higher FC this region has with other brain regions; (2) MSE at high and low frequencies may represent local and distributed information processing across brain regions. Based on literature and our data, we propose that the complexity of regional neural signals may serve as an index of the brain's capacity of information processing-increased complexity may indicate greater transition or exploration between different states of brain networks, thereby a greater propensity for information processing.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, C. Shan; Hayworth, Kenneth J.; Lu, Zhiyuan

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 ?m 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processesmore » and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.« less

  13. Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD.

    PubMed

    Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L

    2017-12-15

    Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.

  14. Enhanced FIB-SEM systems for large-volume 3D imaging.

    PubMed

    Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F

    2017-05-13

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 µm 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.

  15. Hand classification of fMRI ICA noise components.

    PubMed

    Griffanti, Ludovica; Douaud, Gwenaëlle; Bijsterbosch, Janine; Evangelisti, Stefania; Alfaro-Almagro, Fidel; Glasser, Matthew F; Duff, Eugene P; Fitzgibbon, Sean; Westphal, Robert; Carone, Davide; Beckmann, Christian F; Smith, Stephen M

    2017-07-01

    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Measuring Symmetry, Asymmetry and Randomness in Neural Network Connectivity

    PubMed Central

    Esposito, Umberto; Giugliano, Michele; van Rossum, Mark; Vasilaki, Eleni

    2014-01-01

    Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity. PMID:25006663

  17. Measuring symmetry, asymmetry and randomness in neural network connectivity.

    PubMed

    Esposito, Umberto; Giugliano, Michele; van Rossum, Mark; Vasilaki, Eleni

    2014-01-01

    Cognitive functions are stored in the connectome, the wiring diagram of the brain, which exhibits non-random features, so-called motifs. In this work, we focus on bidirectional, symmetric motifs, i.e. two neurons that project to each other via connections of equal strength, and unidirectional, non-symmetric motifs, i.e. within a pair of neurons only one neuron projects to the other. We hypothesise that such motifs have been shaped via activity dependent synaptic plasticity processes. As a consequence, learning moves the distribution of the synaptic connections away from randomness. Our aim is to provide a global, macroscopic, single parameter characterisation of the statistical occurrence of bidirectional and unidirectional motifs. To this end we define a symmetry measure that does not require any a priori thresholding of the weights or knowledge of their maximal value. We calculate its mean and variance for random uniform or Gaussian distributions, which allows us to introduce a confidence measure of how significantly symmetric or asymmetric a specific configuration is, i.e. how likely it is that the configuration is the result of chance. We demonstrate the discriminatory power of our symmetry measure by inspecting the eigenvalues of different types of connectivity matrices. We show that a Gaussian weight distribution biases the connectivity motifs to more symmetric configurations than a uniform distribution and that introducing a random synaptic pruning, mimicking developmental regulation in synaptogenesis, biases the connectivity motifs to more asymmetric configurations, regardless of the distribution. We expect that our work will benefit the computational modelling community, by providing a systematic way to characterise symmetry and asymmetry in network structures. Further, our symmetry measure will be of use to electrophysiologists that investigate symmetry of network connectivity.

  18. Cross-population myelination covariance of human cerebral cortex.

    PubMed

    Ma, Zhiwei; Zhang, Nanyin

    2017-09-01

    Cross-population covariance of brain morphometric quantities provides a measure of interareal connectivity, as it is believed to be determined by the coordinated neurodevelopment of connected brain regions. Although useful, structural covariance analysis predominantly employed bulky morphological measures with mixed compartments, whereas studies of the structural covariance of any specific subdivisions such as myelin are rare. Characterizing myelination covariance is of interest, as it will reveal connectivity patterns determined by coordinated development of myeloarchitecture between brain regions. Using myelin content MRI maps from the Human Connectome Project, here we showed that the cortical myelination covariance was highly reproducible, and exhibited a brain organization similar to that previously revealed by other connectivity measures. Additionally, the myelination covariance network shared common topological features of human brain networks such as small-worldness. Furthermore, we found that the correlation between myelination covariance and resting-state functional connectivity (RSFC) was uniform within each resting-state network (RSN), but could considerably vary across RSNs. Interestingly, this myelination covariance-RSFC correlation was appreciably stronger in sensory and motor networks than cognitive and polymodal association networks, possibly due to their different circuitry structures. This study has established a new brain connectivity measure specifically related to axons, and this measure can be valuable to investigating coordinated myeloarchitecture development. Hum Brain Mapp 38:4730-4743, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Extendable supervised dictionary learning for exploring diverse and concurrent brain activities in task-based fMRI.

    PubMed

    Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming

    2018-06-01

    Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.

  20. Synergetic and Redundant Information Flow Detected by Unnormalized Granger Causality: Application to Resting State fMRI.

    PubMed

    Stramaglia, Sebastiano; Angelini, Leonardo; Wu, Guorong; Cortes, Jesus M; Faes, Luca; Marinazzo, Daniele

    2016-12-01

    We develop a framework for the analysis of synergy and redundancy in the pattern of information flow between subsystems of a complex network. The presence of redundancy and/or synergy in multivariate time series data renders difficulty to estimate the neat flow of information from each driver variable to a given target. We show that adopting an unnormalized definition of Granger causality, one may put in evidence redundant multiplets of variables influencing the target by maximizing the total Granger causality to a given target, over all the possible partitions of the set of driving variables. Consequently, we introduce a pairwise index of synergy which is zero when two independent sources additively influence the future state of the system, differently from previous definitions of synergy. We report the application of the proposed approach to resting state functional magnetic resonance imaging data from the Human Connectome Project showing that redundant pairs of regions arise mainly due to space contiguity and interhemispheric symmetry, while synergy occurs mainly between nonhomologous pairs of regions in opposite hemispheres. Redundancy and synergy, in healthy resting brains, display characteristic patterns, revealed by the proposed approach. The pairwise synergy index, here introduced, maps the informational character of the system at hand into a weighted complex network: the same approach can be applied to other complex systems whose normal state corresponds to a balance between redundant and synergetic circuits.

  1. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    PubMed

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation.

  2. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    PubMed Central

    Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features identify central complex circuitry, and especially the ellipsoid body, as a key neural correlate involved in spatial navigation. PMID:28824390

  3. Neuroimaging biomarkers of preterm brain injury: toward developing the preterm connectome

    PubMed Central

    Panigrahy, Ashok; Wisnowski, Jessica L.; Furtado, Andre; Lepore, Natasha; Paquette, Lisa; Bluml, Stefan

    2013-01-01

    For typically developing infants, the last trimester of fetal development extending into the first post-natal months is a period of rapid brain development. Infants who are born premature face significant risk of brain injury (e.g., intraventricular or germinal matrix hemorrhage and periventricular leukomalacia) from complications in the perinatal period and also potential long-term neurodevelopmental disabilities because these early injuries can interrupt normal brain maturation. Neuroimaging has played an important role in the diagnosis and management of the preterm infant. Both cranial US and conventional MRI techniques are useful in diagnostic and prognostic evaluation of preterm brain development and injury. Cranial US is highly sensitive for intraventricular hemorrhage IVH and provides prognostic information regarding cerebral palsy. Data are limited regarding the utility of MRI as a routine screening instrument for brain injury for all preterm infants. However, MRI might provide diagnostic or prognostic information regarding PVL and other types of preterm brain injury in the setting of specific clinical indications and risk factors. Further development of advanced MR techniques like volumetric MR imaging, diffusion tensor imaging, metabolic imaging (MR spectroscopy) and functional connectivity are necessary to provide additional insight into the molecular, cellular and systems processes that underlie brain development and outcome in the preterm infant. The adult concept of the “connectome” is also relevant in understanding brain networks that underlie the preterm brain. Knowledge of the preterm connectome will provide a framework for understanding preterm brain function and dysfunction, and potentially even a roadmap for brain plasticity. By combining conventional imaging techniques with more advanced techniques, neuroimaging findings will likely be used not only as diagnostic and prognostic tools, but also as biomarkers for long-term neurodevelopmental outcomes, instruments to assess the efficacy of neuroprotective agents and maneuvers in the NICU, and as screening instruments to appropriately select infants for longitudinal developmental interventions. PMID:22395719

  4. Progressive gender differences of structural brain networks in healthy adults: a longitudinal, diffusion tensor imaging study.

    PubMed

    Sun, Yu; Lee, Renick; Chen, Yu; Collinson, Simon; Thakor, Nitish; Bezerianos, Anastasios; Sim, Kang

    2015-01-01

    Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.

  5. Dynamic Network Communication in the Human Functional Connectome Predicts Perceptual Variability in Visual Illusion.

    PubMed

    Wang, Zhiwei; Zeljic, Kristina; Jiang, Qinying; Gu, Yong; Wang, Wei; Wang, Zheng

    2018-01-01

    Ubiquitous variability between individuals in visual perception is difficult to standardize and has thus essentially been ignored. Here we construct a quantitative psychophysical measure of illusory rotary motion based on the Pinna-Brelstaff figure (PBF) in 73 healthy volunteers and investigate the neural circuit mechanisms underlying perceptual variation using functional magnetic resonance imaging (fMRI). We acquired fMRI data from a subset of 42 subjects during spontaneous and 3 stimulus conditions: expanding PBF, expanding modified-PBF (illusion-free) and expanding modified-PBF with physical rotation. Brain-wide graph analysis of stimulus-evoked functional connectivity patterns yielded a functionally segregated architecture containing 3 discrete hierarchical networks, commonly shared between rest and stimulation conditions. Strikingly, communication efficiency and strength between 2 networks predominantly located in visual areas robustly predicted individual perceptual differences solely in the illusory stimulus condition. These unprecedented findings demonstrate that stimulus-dependent, not spontaneous, dynamic functional integration between distributed brain networks contributes to perceptual variability in humans. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions.

    PubMed

    Pannek, Kerstin; Boyd, Roslyn N; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E

    2014-01-01

    Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Data of 50 children with unilateral CP caused by periventricular white matter lesions (5-17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7-16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm(2)) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment-AHA) was assessed in connections that showed significant differences in FA compared to CTD. FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r(2) = 0.16-0.44; p < 0.05). This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention.

  7. The effect of IDH1 mutation on the structural connectome in malignant astrocytoma.

    PubMed

    Kesler, Shelli R; Noll, Kyle; Cahill, Daniel P; Rao, Ganesh; Wefel, Jeffrey S

    2017-02-01

    Mutation of the IDH1 gene is associated with differences in malignant astrocytoma growth characteristics that impact phenotypic severity, including cognitive impairment. We previously demonstrated greater cognitive impairment in patients with IDH1 wild type tumor compared to those with IDH1 mutant, and therefore we hypothesized that brain network organization would be lower in patients with wild type tumors. Volumetric, T1-weighted MRI scans were obtained retrospectively from 35 patients with IDH1 mutant and 32 patients with wild type malignant astrocytoma (mean age = 45 ± 14 years) and used to extract individual level, gray matter connectomes. Graph theoretical analysis was then applied to measure efficiency and other connectome properties for each patient. Cognitive performance was categorized as impaired or not and random forest classification was used to explore factors associated with cognitive impairment. Patients with wild type tumor demonstrated significantly lower network efficiency in several medial frontal, posterior parietal and subcortical regions (p < 0.05, corrected for multiple comparisons). Patients with wild type tumor also demonstrated significantly higher incidence of cognitive impairment (p = 0.03). Random forest analysis indicated that network efficiency was inversely, though nonlinearly associated with cognitive impairment in both groups (p < 0.0001). Cognitive reserve appeared to mediate this relationship in patients with mutant tumor suggesting greater neuroplasticity and/or benefit from neuroprotective factors. Tumor volume was the greatest contributor to cognitive impairment in patients with wild type tumor, supporting our hypothesis that greater lesion momentum between grades may cause more disconnection of core neurocircuitry and consequently lower efficiency of information processing.

  8. Conserved neural circuit structure across Drosophila larval development revealed by comparative connectomics.

    PubMed

    Gerhard, Stephan; Andrade, Ingrid; Fetter, Richard D; Cardona, Albert; Schneider-Mizell, Casey M

    2017-10-23

    During postembryonic development, the nervous system must adapt to a growing body. How changes in neuronal structure and connectivity contribute to the maintenance of appropriate circuit function remains unclear. Previously , we measured the cellular neuroanatomy underlying synaptic connectivity in Drosophila (Schneider-Mizell et al., 2016). Here, we examined how neuronal morphology and connectivity change between first instar and third instar larval stages using serial section electron microscopy. We reconstructed nociceptive circuits in a larva of each stage and found consistent topographically arranged connectivity between identified neurons. Five-fold increases in each size, number of terminal dendritic branches, and total number of synaptic inputs were accompanied by cell type-specific connectivity changes that preserved the fraction of total synaptic input associated with each pre-synaptic partner. We propose that precise patterns of structural growth act to conserve the computational function of a circuit, for example determining the location of a dangerous stimulus.

  9. Stepwise Connectivity of the Modal Cortex Reveals the Multimodal Organization of the Human Brain

    PubMed Central

    Sepulcre, Jorge; Sabuncu, Mert R.; Yeo, Thomas B.; Liu, Hesheng; Johnson, Keith A.

    2012-01-01

    How human beings integrate information from external sources and internal cognition to produce a coherent experience is still not well understood. During the past decades, anatomical, neurophysiological and neuroimaging research in multimodal integration have stood out in the effort to understand the perceptual binding properties of the brain. Areas in the human lateral occipito-temporal, prefrontal and posterior parietal cortices have been associated with sensory multimodal processing. Even though this, rather patchy, organization of brain regions gives us a glimpse of the perceptual convergence, the articulation of the flow of information from modality-related to the more parallel cognitive processing systems remains elusive. Using a method called Stepwise Functional Connectivity analysis, the present study analyzes the functional connectome and transitions from primary sensory cortices to higher-order brain systems. We identify the large-scale multimodal integration network and essential connectivity axes for perceptual integration in the human brain. PMID:22855814

  10. Inferring multi-scale neural mechanisms with brain network modelling

    PubMed Central

    Schirner, Michael; McIntosh, Anthony Randal; Jirsa, Viktor; Deco, Gustavo

    2018-01-01

    The neurophysiological processes underlying non-invasive brain activity measurements are incompletely understood. Here, we developed a connectome-based brain network model that integrates individual structural and functional data with neural population dynamics to support multi-scale neurophysiological inference. Simulated populations were linked by structural connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations not only predicted subjects' individual resting-state functional magnetic resonance imaging (fMRI) time series and spatial network topologies over 20 minutes of activity, but more importantly, they also revealed precise neurophysiological mechanisms that underlie and link six empirical observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between α-rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These findings underscore the potential of this new modelling framework for general inference and integration of neurophysiological knowledge to complement empirical studies. PMID:29308767

  11. Consciousness, cognition and brain networks: New perspectives.

    PubMed

    Aldana, E M; Valverde, J L; Fábregas, N

    2016-10-01

    A detailed analysis of the literature on consciousness and cognition mechanisms based on the neural networks theory is presented. The immune and inflammatory response to the anesthetic-surgical procedure induces modulation of neuronal plasticity by influencing higher cognitive functions. Anesthetic drugs can cause unconsciousness, producing a functional disruption of cortical and thalamic cortical integration complex. The external and internal perceptions are processed through an intricate network of neural connections, involving the higher nervous activity centers, especially the cerebral cortex. This requires an integrated model, formed by neural networks and their interactions with highly specialized regions, through large-scale networks, which are distributed throughout the brain collecting information flow of these perceptions. Functional and effective connectivity between large-scale networks, are essential for consciousness, unconsciousness and cognition. It is what is called the "human connectome" or map neural networks. Copyright © 2014 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. From Structure to Circuits: The Contribution of MEG Connectivity Studies to Functional Neurosurgery.

    PubMed

    Pang, Elizabeth W; Snead Iii, O C

    2016-01-01

    New advances in structural neuroimaging have revealed the intricate and extensive connections within the brain, data which have informed a number of ambitious projects such as the mapping of the human connectome. Elucidation of the structural connections of the brain, at both the macro and micro levels, promises new perspectives on brain structure and function that could translate into improved outcomes in functional neurosurgery. The understanding of neuronal structural connectivity afforded by these data now offers a vista on the brain, in both healthy and diseased states, that could not be seen with traditional neuroimaging. Concurrent with these developments in structural imaging, a complementary modality called magnetoencephalography (MEG) has been garnering great attention because it too holds promise for being able to shed light on the intricacies of functional brain connectivity. MEG is based upon the elemental principle of physics that an electrical current generates a magnetic field. Hence, MEG uses highly sensitive biomagnetometers to measure extracranial magnetic fields produced by intracellular neuronal currents. Put simply then, MEG is a measure of neurophysiological activity, which captures the magnetic fields generated by synchronized intraneuronal electrical activity. As such, MEG recordings offer exquisite resolution in the time and oscillatory domain and, as well, when co-registered with magnetic resonance imaging (MRI), offer excellent resolution in the spatial domain. Recent advances in MEG computational and graph theoretical methods have led to studies of connectivity in the time-frequency domain. As such, MEG can elucidate a neurophysiological-based functional circuitry that may enhance what is seen with MRI connectivity studies. In particular, MEG may offer additional insight not possible by MRI when used to study complex eloquent function, where the precise timing and coordination of brain areas is critical. This article will review the traditional use of MEG for functional neurosurgery, describe recent advances in MEG connectivity analyses, and consider the additional benefits that could be gained with the inclusion of MEG connectivity studies. Since MEG has been most widely applied to the study of epilepsy, we will frame this article within the context of epilepsy surgery and functional neurosurgery for epilepsy.

  13. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic studies.

  14. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission

    NASA Astrophysics Data System (ADS)

    Garwood, Michael; Uğurbil, Kamil

    2018-06-01

    The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.

  15. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe

    PubMed Central

    Shlizerman, Eli; Riffell, Jeffrey A.; Kutz, J. Nathan

    2014-01-01

    The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns. PMID:25165442

  16. Ising model with conserved magnetization on the human connectome: Implications on the relation structure-function in wakefulness and anesthesia

    NASA Astrophysics Data System (ADS)

    Stramaglia, S.; Pellicoro, M.; Angelini, L.; Amico, E.; Aerts, H.; Cortés, J. M.; Laureys, S.; Marinazzo, D.

    2017-04-01

    Dynamical models implemented on the large scale architecture of the human brain may shed light on how a function arises from the underlying structure. This is the case notably for simple abstract models, such as the Ising model. We compare the spin correlations of the Ising model and the empirical functional brain correlations, both at the single link level and at the modular level, and show that their match increases at the modular level in anesthesia, in line with recent results and theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin correlations are minimally shaped by the underlying structural network, explaining how the best match between the structure and function is obtained at the onset of criticality, as previously observed. These findings confirm that brain dynamics under anesthesia shows a departure from criticality and could open the way to novel perspectives when the conserved magnetization is interpreted in terms of a homeostatic principle imposed to neural activity.

  17. Joint representation of consistent structural and functional profiles for identification of common cortical landmarks.

    PubMed

    Zhang, Shu; Zhao, Yu; Jiang, Xi; Shen, Dinggang; Liu, Tianming

    2018-06-01

    In the brain mapping field, there have been significant interests in representation of structural/functional profiles to establish structural/functional landmark correspondences across individuals and populations. For example, from the structural perspective, our previous studies have identified hundreds of consistent DICCCOL (dense individualized and common connectivity-based cortical landmarks) landmarks across individuals and populations, each of which possess consistent DTI-derived fiber connection patterns. From the functional perspective, a large collection of well-characterized HAFNI (holistic atlases of functional networks and interactions) networks based on sparse representation of whole-brain fMRI signals have been identified in our prior studies. However, due to the remarkable variability of structural and functional architectures in the human brain, it is challenging for earlier studies to jointly represent the connectome-scale structural and functional profiles for establishing a common cortical architecture which can comprehensively encode both structural and functional characteristics across individuals. To address this challenge, we propose an effective computational framework to jointly represent the structural and functional profiles for identification of consistent and common cortical landmarks with both structural and functional correspondences across different brains based on DTI and fMRI data. Experimental results demonstrate that 55 structurally and functionally common cortical landmarks can be successfully identified.

  18. Disrupted rich club network in behavioral variant frontotemporal dementia and early-onset Alzheimer's disease

    PubMed Central

    Daianu, Madelaine; Mezher, Adam; Mendez, Mario F.; Jahanshad, Neda; Jimenez, Elvira E.; Thompson, Paul M.

    2016-01-01

    In network analysis, the so-called ‘rich club’ describes the core areas of the brain that are more densely interconnected among themselves than expected by chance, and has been identified as a fundamental aspect of the human brain connectome. This is the first in-depth diffusion imaging study to investigate the rich club along with other organizational changes in the brain's anatomical network in behavioral frontotemporal dementia (bvFTD), and a matched cohort with early-onset Alzheimer's disease (EOAD). Our study sheds light on how bvFTD and EOAD affect connectivity of white matter fiber pathways in the brain, revealing differences and commonalities in the connectome among the dementias. To analyze the breakdown in connectivity, we studied 3 groups: 20 bvFTD, 23 EOAD and 37 healthy elderly controls. All participants were scanned with diffusion-weighted MRI, and based on whole-brain probabilistic tractography and cortical parcellations, we analyzed the rich club of the brain's connectivity network. This revealed distinct patterns of disruption in both forms of dementia. In the connectome, we detected less disruption overall in EOAD than in bvFTD (False Discovery Rate (FDR) critical Pperm=5.7×10−3, 10,000 permutations), with more involvement of richly interconnected areas of the brain (chi-squared PΧ2=1.4×10−4) – predominantly posterior cognitive alterations. In bvFTD, we found a greater spread of disruption including the rich club (FDR critical Pperm=6×10−4), but especially more peripheral alterations (PΧ2=6.5×10−3), particularly in medial frontal areas of the brain, in line with the known behavioral socioemotional deficits seen in these patients. PMID:26678225

  19. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity

    PubMed Central

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P.; Nir, Talia M.; Toga, Arthur W.; Jack, Clifford R.; Saykin, Andrew J.; Green, Robert C.; Weiner, Michael W.; Medland, Sarah E.; Montgomery, Grant W.; Hansell, Narelle K.; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Wright, Margaret J.; Thompson, Paul M.; Weiner, Michael; Aisen, Paul; Weiner, Michael; Aisen, Paul; Petersen, Ronald; Jack, Clifford R.; Jagust, William; Trojanowski, John Q.; Toga, Arthur W.; Beckett, Laurel; Green, Robert C.; Saykin, Andrew J.; Morris, John; Liu, Enchi; Green, Robert C.; Montine, Tom; Petersen, Ronald; Aisen, Paul; Gamst, Anthony; Thomas, Ronald G.; Donohue, Michael; Walter, Sarah; Gessert, Devon; Sather, Tamie; Beckett, Laurel; Harvey, Danielle; Gamst, Anthony; Donohue, Michael; Kornak, John; Jack, Clifford R.; Dale, Anders; Bernstein, Matthew; Felmlee, Joel; Fox, Nick; Thompson, Paul; Schuff, Norbert; Alexander, Gene; DeCarli, Charles; Jagust, William; Bandy, Dan; Koeppe, Robert A.; Foster, Norm; Reiman, Eric M.; Chen, Kewei; Mathis, Chet; Morris, John; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Trojanowki, J.Q.; Shaw, Les; Lee, Virginia M.Y.; Korecka, Magdalena; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Saykin, Andrew J.; Foroud, Tatiana M.; Potkin, Steven; Shen, Li; Khachaturian, Zaven; Frank, Richard; Snyder, Peter J.; Molchan, Susan; Kaye, Jeffrey; Quinn, Joseph; Lind, Betty; Dolen, Sara; Schneider, Lon S.; Pawluczyk, Sonia; Spann, Bryan M.; Brewer, James; Vanderswag, Helen; Heidebrink, Judith L.; Lord, Joanne L.; Petersen, Ronald; Johnson, Kris; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Morris, John C.; Ances, Beau; Carroll, Maria; Leon, Sue; Mintun, Mark A.; Schneider, Stacy; Marson, Daniel; Griffith, Randall; Clark, David; Grossman, Hillel; Mitsis, Effie; Romirowsky, Aliza; deToledo-Morrell, Leyla; Shah, Raj C.; Duara, Ranjan; Varon, Daniel; Roberts, Peggy; Albert, Marilyn; Onyike, Chiadi; Kielb, Stephanie; Rusinek, Henry; de Leon, Mony J.; Glodzik, Lidia; De Santi, Susan; Doraiswamy, P. Murali; Petrella, Jeffrey R.; Coleman, R. Edward; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Smith, Charles D.; Jicha, Greg; Hardy, Peter; Lopez, Oscar L.; Oakley, MaryAnn; Simpson, Donna M.; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Mulnard, Ruth A.; Thai, Gaby; Mc-Adams-Ortiz, Catherine; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Diaz-Arrastia, Ramon; King, Richard; Weiner, Myron; Martin-Cook, Kristen; DeVous, Michael; Levey, Allan I.; Lah, James J.; Cellar, Janet S.; Burns, Jeffrey M.; Anderson, Heather S.; Swerdlow, Russell H.; Apostolova, Liana; Lu, Po H.; Bartzokis, George; Silverman, Daniel H.S.; Graff-Radford, Neill R.; Parfitt, Francine; Johnson, Heather; Farlow, Martin R.; Hake, Ann Marie; Matthews, Brandy R.; Herring, Scott; van Dyck, Christopher H.; Carson, Richard E.; MacAvoy, Martha G.; Chertkow, Howard; Bergman, Howard; Hosein, Chris; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Hsiung, Ging-Yuek Robin; Feldman, Howard; Mudge, Benita; Assaly, Michele; Kertesz, Andrew; Rogers, John; Trost, Dick; Bernick, Charles; Munic, Donna; Kerwin, Diana; Mesulam, Marek-Marsel; Lipowski, Kristina; Wu, Chuang-Kuo; Johnson, Nancy; Sadowsky, Carl; Martinez, Walter; Villena, Teresa; Turner, Raymond Scott; Johnson, Kathleen; Reynolds, Brigid; Sperling, Reisa A.; Johnson, Keith A.; Marshall, Gad; Frey, Meghan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Sabbagh, Marwan; Belden, Christine; Jacobson, Sandra; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Obisesan, Thomas O.; Wolday, Saba; Bwayo, Salome K.; Lerner, Alan; Hudson, Leon; Ogrocki, Paula; Fletcher, Evan; Carmichael, Owen; Olichney, John; DeCarli, Charles; Kittur, Smita; Borrie, Michael; Lee, T.-Y.; Bartha, Rob; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Potkin, Steven G.; Preda, Adrian; Nguyen, Dana; Tariot, Pierre; Fleisher, Adam; Reeder, Stephanie; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Scharre, Douglas W.; Kataki, Maria; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Saykin, Andrew J.; Santulli, Robert B.; Schwartz, Eben S.; Sink, Kaycee M.; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Rosen, Howard J.; Miller, Bruce L.; Mintzer, Jacobo; Longmire, Crystal Flynn; Spicer, Kenneth; Finger, Elizabeth; Rachinsky, Irina; Rogers, John; Kertesz, Andrew; Drost, Dick

    2013-01-01

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer’s disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain’s connectivity pattern, allowing us to discover genetic variants that affect the human brain’s wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer’s disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases. PMID:23471985

  20. Relationship between neuronal network architecture and naming performance in temporal lobe epilepsy: A connectome based approach using machine learning.

    PubMed

    Munsell, B C; Wu, G; Fridriksson, J; Thayer, K; Mofrad, N; Desisto, N; Shen, D; Bonilha, L

    2017-09-09

    Impaired confrontation naming is a common symptom of temporal lobe epilepsy (TLE). The neurobiological mechanisms underlying this impairment are poorly understood but may indicate a structural disorganization of broadly distributed neuronal networks that support naming ability. Importantly, naming is frequently impaired in other neurological disorders and by contrasting the neuronal structures supporting naming in TLE with other diseases, it will become possible to elucidate the common systems supporting naming. We aimed to evaluate the neuronal networks that support naming in TLE by using a machine learning algorithm intended to predict naming performance in subjects with medication refractory TLE using only the structural brain connectome reconstructed from diffusion tensor imaging. A connectome-based prediction framework was developed using network properties from anatomically defined brain regions across the entire brain, which were used in a multi-task machine learning algorithm followed by support vector regression. Nodal eigenvector centrality, a measure of regional network integration, predicted approximately 60% of the variance in naming. The nodes with the highest regression weight were bilaterally distributed among perilimbic sub-networks involving mainly the medial and lateral temporal lobe regions. In the context of emerging evidence regarding the role of large structural networks that support language processing, our results suggest intact naming relies on the integration of sub-networks, as opposed to being dependent on isolated brain areas. In the case of TLE, these sub-networks may be disproportionately indicative naming processes that are dependent semantic integration from memory and lexical retrieval, as opposed to multi-modal perception or motor speech production. Copyright © 2017. Published by Elsevier Inc.

  1. Gender differences in the structural connectome of the teenage brain revealed by generalized q-sampling MRI.

    PubMed

    Tyan, Yeu-Sheng; Liao, Jan-Ray; Shen, Chao-Yu; Lin, Yu-Chieh; Weng, Jun-Cheng

    2017-01-01

    The question of whether there are biological differences between male and female brains is a fraught one, and political positions and prior expectations seem to have a strong influence on the interpretation of scientific data in this field. This question is relevant to issues of gender differences in the prevalence of psychiatric conditions, including autism, attention deficit hyperactivity disorder (ADHD), Tourette's syndrome, schizophrenia, dyslexia, depression, and eating disorders. Understanding how gender influences vulnerability to these conditions is significant. Diffusion magnetic resonance imaging (dMRI) provides a non-invasive method to investigate brain microstructure and the integrity of anatomical connectivity. Generalized q-sampling imaging (GQI) has been proposed to characterize complicated fiber patterns and distinguish fiber orientations, providing an opportunity for more accurate, higher-order descriptions through the water diffusion process. Therefore, we aimed to investigate differences in the brain's structural network between teenage males and females using GQI. This study included 59 (i.e., 33 males and 26 females) age- and education-matched subjects (age range: 13 to 14 years). The structural connectome was obtained by graph theoretical and network-based statistical (NBS) analyses. Our findings show that teenage male brains exhibit better intrahemispheric communication, and teenage female brains exhibit better interhemispheric communication. Our results also suggest that the network organization of teenage male brains is more local, more segregated, and more similar to small-world networks than teenage female brains. We conclude that the use of an MRI study with a GQI-based structural connectomic approach like ours presents novel insights into network-based systems of the brain and provides a new piece of the puzzle regarding gender differences.

  2. Differentiation of Speech Delay and Global Developmental Delay in Children Using DTI Tractography-Based Connectome.

    PubMed

    Jeong, J-W; Sundaram, S; Behen, M E; Chugani, H T

    2016-06-01

    Pure speech delay is a common developmental disorder which, according to some estimates, affects 5%-8% of the population. Speech delay may not only be an isolated condition but also can be part of a broader condition such as global developmental delay. The present study investigated whether diffusion tensor imaging tractography-based connectome can differentiate global developmental delay from speech delay in young children. Twelve children with pure speech delay (39.1 ± 20.9 months of age, 9 boys), 14 children with global developmental delay (39.3 ± 18.2 months of age, 12 boys), and 10 children with typical development (38.5 ± 20.5 months of age, 7 boys) underwent 3T DTI. For each subject, whole-brain connectome analysis was performed by using 116 cortical ROIs. The following network metrics were measured at individual regions: strength (number of the shortest paths), efficiency (measures of global and local integration), cluster coefficient (a measure of local aggregation), and betweeness (a measure of centrality). Compared with typical development, global and local efficiency were significantly reduced in both global developmental delay and speech delay (P < .0001). The nodal strength of the cognitive network is reduced in global developmental delay, whereas the nodal strength of the language network is reduced in speech delay. This finding resulted in a high accuracy of >83% ± 4% to discriminate global developmental delay from speech delay. The network abnormalities identified in the present study may underlie the neurocognitive and behavioral consequences commonly identified in children with global developmental delay and speech delay. Further validation studies in larger samples are required. © 2016 by American Journal of Neuroradiology.

  3. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity.

    PubMed

    Jahanshad, Neda; Rajagopalan, Priya; Hua, Xue; Hibar, Derrek P; Nir, Talia M; Toga, Arthur W; Jack, Clifford R; Saykin, Andrew J; Green, Robert C; Weiner, Michael W; Medland, Sarah E; Montgomery, Grant W; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

    2013-03-19

    Aberrant connectivity is implicated in many neurological and psychiatric disorders, including Alzheimer's disease and schizophrenia. However, other than a few disease-associated candidate genes, we know little about the degree to which genetics play a role in the brain networks; we know even less about specific genes that influence brain connections. Twin and family-based studies can generate estimates of overall genetic influences on a trait, but genome-wide association scans (GWASs) can screen the genome for specific variants influencing the brain or risk for disease. To identify the heritability of various brain connections, we scanned healthy young adult twins with high-field, high-angular resolution diffusion MRI. We adapted GWASs to screen the brain's connectivity pattern, allowing us to discover genetic variants that affect the human brain's wiring. The association of connectivity with the SPON1 variant at rs2618516 on chromosome 11 (11p15.2) reached connectome-wide, genome-wide significance after stringent statistical corrections were enforced, and it was replicated in an independent subsample. rs2618516 was shown to affect brain structure in an elderly population with varying degrees of dementia. Older people who carried the connectivity variant had significantly milder clinical dementia scores and lower risk of Alzheimer's disease. As a posthoc analysis, we conducted GWASs on several organizational and topological network measures derived from the matrices to discover variants in and around genes associated with autism (MACROD2), development (NEDD4), and mental retardation (UBE2A) significantly associated with connectivity. Connectome-wide, genome-wide screening offers substantial promise to discover genes affecting brain connectivity and risk for brain diseases.

  4. Dynamical Signatures of Structural Connectivity Damage to a Model of the Brain Posed at Criticality.

    PubMed

    Haimovici, Ariel; Balenzuela, Pablo; Tagliazucchi, Enzo

    2016-12-01

    Synchronization of brain activity fluctuations is believed to represent communication between spatially distant neural processes. These interareal functional interactions develop in the background of a complex network of axonal connections linking cortical and subcortical neurons, termed the human "structural connectome." Theoretical considerations and experimental evidence support the view that the human brain can be modeled as a system operating at a critical point between ordered (subcritical) and disordered (supercritical) phases. Here, we explore the hypothesis that pathologies resulting from brain injury of different etiologies are related to this model of a critical brain. For this purpose, we investigate how damage to the integrity of the structural connectome impacts on the signatures of critical dynamics. Adopting a hybrid modeling approach combining an empirical weighted network of human structural connections with a conceptual model of critical dynamics, we show that lesions located at highly transited connections progressively displace the model toward the subcritical regime. The topological properties of the nodes and links are of less importance when considered independently of their weight in the network. We observe that damage to midline hubs such as the middle and posterior cingulate cortex is most crucial for the disruption of criticality in the model. However, a similar effect can be achieved by targeting less transited nodes and links whose connection weights add up to an equivalent amount. This implies that brain pathology does not necessarily arise due to insult targeted at well-connected areas and that intersubject variability could obscure lesions located at nonhub regions. Finally, we discuss the predictions of our model in the context of clinical studies of traumatic brain injury and neurodegenerative disorders.

  5. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach

    PubMed Central

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A.; Zhang, Wenbo

    2016-01-01

    Objective Combined source imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a non-invasive fashion. Source imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source imaging algorithms to both find the network nodes (regions of interest) and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Methods Source imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from inter-ictal and ictal signals recorded by EEG and/or MEG. Results Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ~20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Conclusion Our study indicates that combined source imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). Significance The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions. PMID:27740473

  6. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach.

    PubMed

    Sohrabpour, Abbas; Ye, Shuai; Worrell, Gregory A; Zhang, Wenbo; He, Bin

    2016-12-01

    Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.

  7. Quantification of changes in language-related brain areas in autism spectrum disorders using large-scale network analysis.

    PubMed

    Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H

    2014-05-01

    Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.

  8. General features of the retinal connectome determine the computation of motion anticipation

    PubMed Central

    Johnston, Jamie; Lagnado, Leon

    2015-01-01

    Motion anticipation allows the visual system to compensate for the slow speed of phototransduction so that a moving object can be accurately located. This correction is already present in the signal that ganglion cells send from the retina but the biophysical mechanisms underlying this computation are not known. Here we demonstrate that motion anticipation is computed autonomously within the dendritic tree of each ganglion cell and relies on feedforward inhibition. The passive and non-linear interaction of excitatory and inhibitory synapses enables the somatic voltage to encode the actual position of a moving object instead of its delayed representation. General rather than specific features of the retinal connectome govern this computation: an excess of inhibitory inputs over excitatory, with both being randomly distributed, allows tracking of all directions of motion, while the average distance between inputs determines the object velocities that can be compensated for. DOI: http://dx.doi.org/10.7554/eLife.06250.001 PMID:25786068

  9. Enhanced FIB-SEM systems for large-volume 3D imaging

    PubMed Central

    Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F

    2017-01-01

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 106 µm3. These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology. DOI: http://dx.doi.org/10.7554/eLife.25916.001 PMID:28500755

  10. Enhanced FIB-SEM systems for large-volume 3D imaging

    DOE PAGES

    Xu, C. Shan; Hayworth, Kenneth J.; Lu, Zhiyuan; ...

    2017-05-13

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 ?m 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processesmore » and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.« less

  11. Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.

    PubMed

    Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W

    2015-08-01

    Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling.

    PubMed

    Ryan, Kerrianne; Lu, Zhiyuan; Meinertzhagen, Ian A

    2016-12-06

    Left-right asymmetries in brains are usually minor or cryptic. We report brain asymmetries in the tiny, dorsal tubular nervous system of the ascidian tadpole larva, Ciona intestinalis . Chordate in body plan and development, the larva provides an outstanding example of brain asymmetry. Although early neural development is well studied, detailed cellular organization of the swimming larva's CNS remains unreported. Using serial-section EM we document the synaptic connectome of the larva's 177 CNS neurons. These formed 6618 synapses including 1772 neuromuscular junctions, augmented by 1206 gap junctions. Neurons are unipolar with at most a single dendrite, and few synapses. Some synapses are unpolarised, others form reciprocal or serial motifs; 922 were polyadic. Axo-axonal synapses predominate. Most neurons have ciliary organelles, and many features lack structural specialization. Despite equal cell numbers on both sides, neuron identities and pathways differ left/right. Brain vesicle asymmetries include a right ocellus and left coronet cells.

  13. Neuronal connectome of a sensory-motor circuit for visual navigation

    PubMed Central

    Randel, Nadine; Asadulina, Albina; Bezares-Calderón, Luis A; Verasztó, Csaba; Williams, Elizabeth A; Conzelmann, Markus; Shahidi, Réza; Jékely, Gáspár

    2014-01-01

    Animals use spatial differences in environmental light levels for visual navigation; however, how light inputs are translated into coordinated motor outputs remains poorly understood. Here we reconstruct the neuronal connectome of a four-eye visual circuit in the larva of the annelid Platynereis using serial-section transmission electron microscopy. In this 71-neuron circuit, photoreceptors connect via three layers of interneurons to motorneurons, which innervate trunk muscles. By combining eye ablations with behavioral experiments, we show that the circuit compares light on either side of the body and stimulates body bending upon left-right light imbalance during visual phototaxis. We also identified an interneuron motif that enhances sensitivity to different light intensity contrasts. The Platynereis eye circuit has the hallmarks of a visual system, including spatial light detection and contrast modulation, illustrating how image-forming eyes may have evolved via intermediate stages contrasting only a light and a dark field during a simple visual task. DOI: http://dx.doi.org/10.7554/eLife.02730.001 PMID:24867217

  14. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.

    PubMed

    Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M

    2018-06-02

    Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Task-Related Edge Density (TED)—A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain

    PubMed Central

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach “Task-related Edge Density” (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function. PMID:27341204

  16. Task-Related Edge Density (TED)-A New Method for Revealing Dynamic Network Formation in fMRI Data of the Human Brain.

    PubMed

    Lohmann, Gabriele; Stelzer, Johannes; Zuber, Verena; Buschmann, Tilo; Margulies, Daniel; Bartels, Andreas; Scheffler, Klaus

    2016-01-01

    The formation of transient networks in response to external stimuli or as a reflection of internal cognitive processes is a hallmark of human brain function. However, its identification in fMRI data of the human brain is notoriously difficult. Here we propose a new method of fMRI data analysis that tackles this problem by considering large-scale, task-related synchronisation networks. Networks consist of nodes and edges connecting them, where nodes correspond to voxels in fMRI data, and the weight of an edge is determined via task-related changes in dynamic synchronisation between their respective times series. Based on these definitions, we developed a new data analysis algorithm that identifies edges that show differing levels of synchrony between two distinct task conditions and that occur in dense packs with similar characteristics. Hence, we call this approach "Task-related Edge Density" (TED). TED proved to be a very strong marker for dynamic network formation that easily lends itself to statistical analysis using large scale statistical inference. A major advantage of TED compared to other methods is that it does not depend on any specific hemodynamic response model, and it also does not require a presegmentation of the data for dimensionality reduction as it can handle large networks consisting of tens of thousands of voxels. We applied TED to fMRI data of a fingertapping and an emotion processing task provided by the Human Connectome Project. TED revealed network-based involvement of a large number of brain areas that evaded detection using traditional GLM-based analysis. We show that our proposed method provides an entirely new window into the immense complexity of human brain function.

  17. Perceived stress is associated with increased rostral middle frontal gyrus cortical thickness: a family-based and discordant-sibling investigation.

    PubMed

    Michalski, L J; Demers, C H; Baranger, D A A; Barch, D M; Harms, M P; Burgess, G C; Bogdan, R

    2017-11-01

    Elevated stress perception and depression commonly co-occur, suggesting that they share a common neurobiology. Cortical thickness of the rostral middle frontal gyrus (RMFG), a region critical for executive function, has been associated with depression- and stress-related phenotypes. Here, we examined whether RMFG cortical thickness is associated with these phenotypes in a large family-based community sample. RMFG cortical thickness was estimated using FreeSurfer among participants (n = 879) who completed the ongoing Human Connectome Project. Depression-related phenotypes (i.e. sadness, positive affect) and perceived stress were assessed via self-report. After accounting for sex, age, ethnicity, average whole-brain cortical thickness, twin status and familial structure, RMFG thickness was positively associated with perceived stress and sadness and negatively associated with positive affect at small effect sizes (accounting for 0.2-2.4% of variance; p-fdr: 0.0051-0.1900). Perceived stress was uniquely associated with RMFG thickness after accounting for depression-related phenotypes. Further, among siblings discordant for perceived stress, those reporting higher perceived stress had increased RMFG thickness (P = 4 × 10 -7 ). Lastly, RMFG thickness, perceived stress, depressive symptoms, and positive affect were all significantly heritable, with evidence of shared genetic and environmental contributions between self-report measures. Stress perception and depression share common genetic, environmental, and neural correlates. Variability in RMFG cortical thickness may play a role in stress-related depression, although effects may be small in magnitude. Prospective studies are required to examine whether variability in RMFG thickness may function as a risk factor for stress exposure and/or perception, and/or arises as a consequence of these phenotypes. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  18. A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs.

    PubMed

    Patel, Ameera X; Bullmore, Edward T

    2016-11-15

    Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Connectotyping: Model Based Fingerprinting of the Functional Connectome

    PubMed Central

    Miranda-Dominguez, Oscar; Mills, Brian D.; Carpenter, Samuel D.; Grant, Kathleen A.; Kroenke, Christopher D.; Nigg, Joel T.; Fair, Damien A.

    2014-01-01

    A better characterization of how an individual’s brain is functionally organized will likely bring dramatic advances to many fields of study. Here we show a model-based approach toward characterizing resting state functional connectivity MRI (rs-fcMRI) that is capable of identifying a so-called “connectotype”, or functional fingerprint in individual participants. The approach rests on a simple linear model that proposes the activity of a given brain region can be described by the weighted sum of its functional neighboring regions. The resulting coefficients correspond to a personalized model-based connectivity matrix that is capable of predicting the timeseries of each subject. Importantly, the model itself is subject specific and has the ability to predict an individual at a later date using a limited number of non-sequential frames. While we show that there is a significant amount of shared variance between models across subjects, the model’s ability to discriminate an individual is driven by unique connections in higher order control regions in frontal and parietal cortices. Furthermore, we show that the connectotype is present in non-human primates as well, highlighting the translational potential of the approach. PMID:25386919

  20. Segmentation of the Cingulum Bundle in the Human Brain: A New Perspective Based on DSI Tractography and Fiber Dissection Study.

    PubMed

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yibao; Ou, Shaowu

    2016-01-01

    The cingulum bundle (CB) is a critical white matter fiber tract in the brain, which forms connections between the frontal lobe, parietal lobe and temporal lobe. In non-human primates, the CB is actually divided into distinct subcomponents on the basis of corticocortical connections. However, at present, no study has verified similar distinct subdivisions in the human brain. In this study, we reconstructed these distinct subdivisions in the human brain, and determined their exact cortical connections using high definition fiber tracking (HDFT) technique on 10 healthy adults and a 488-subject template from the Human Connectome Project (HCP-488). Fiber dissections were performed to verify tractography results. Five CB segments were identified. CB-I ran from the subrostral areas to the precuneus and splenium, encircling the corpus callosum (CC). CB-II arched around the splenium and extended anteriorly above the CC to the medial aspect of the superior frontal gyrus (SFG). CB-III connected the superior parietal lobule (SPL) and precuneus with the medial aspect of the SFG. CB-IV was a relatively minor subcomponent from the SPL and precuneus to the frontal region. CB-V, the para-hippocampal cingulum, stemmed from the medial temporal lobe and fanned out to the occipital lobes. Our findings not only provide a more accurate and detailed description on the associated architecture of the subcomponents within the CB, but also offer new insights into the functional role of the CB in the human brain.

  1. An integrated brain-behavior model for working memory.

    PubMed

    Moser, D A; Doucet, G E; Ing, A; Dima, D; Schumann, G; Bilder, R M; Frangou, S

    2017-12-05

    Working memory (WM) is a central construct in cognitive neuroscience because it comprises mechanisms of active information maintenance and cognitive control that underpin most complex cognitive behavior. Individual variation in WM has been associated with multiple behavioral and health features including demographic characteristics, cognitive and physical traits and lifestyle choices. In this context, we used sparse canonical correlation analyses (sCCAs) to determine the covariation between brain imaging metrics of WM-network activation and connectivity and nonimaging measures relating to sensorimotor processing, affective and nonaffective cognition, mental health and personality, physical health and lifestyle choices derived from 823 healthy participants derived from the Human Connectome Project. We conducted sCCAs at two levels: a global level, testing the overall association between the entire imaging and behavioral-health data sets; and a modular level, testing associations between subsets of the two data sets. The behavioral-health and neuroimaging data sets showed significant interdependency. Variables with positive correlation to the neuroimaging variate represented higher physical endurance and fluid intelligence as well as better function in multiple higher-order cognitive domains. Negatively correlated variables represented indicators of suboptimal cardiovascular and metabolic control and lifestyle choices such as alcohol and nicotine use. These results underscore the importance of accounting for behavioral-health factors in neuroimaging studies of WM and provide a neuroscience-informed framework for personalized and public health interventions to promote and maintain the integrity of the WM network.Molecular Psychiatry advance online publication, 5 December 2017; doi:10.1038/mp.2017.247.

  2. An ANOVA approach for statistical comparisons of brain networks.

    PubMed

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  3. The Open Connectome Project Data Cluster: Scalable Analysis and Vision for High-Throughput Neuroscience

    PubMed Central

    Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob

    2013-01-01

    We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992

  4. Co-clustering directed graphs to discover asymmetries and directional communities

    PubMed Central

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-01-01

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim. To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction. PMID:27791058

  5. Co-clustering directed graphs to discover asymmetries and directional communities.

    PubMed

    Rohe, Karl; Qin, Tai; Yu, Bin

    2016-10-21

    In directed graphs, relationships are asymmetric and these asymmetries contain essential structural information about the graph. Directed relationships lead to a new type of clustering that is not feasible in undirected graphs. We propose a spectral co-clustering algorithm called di-sim for asymmetry discovery and directional clustering. A Stochastic co-Blockmodel is introduced to show favorable properties of di-sim To account for the sparse and highly heterogeneous nature of directed networks, di-sim uses the regularized graph Laplacian and projects the rows of the eigenvector matrix onto the sphere. A nodewise asymmetry score and di-sim are used to analyze the clustering asymmetries in the networks of Enron emails, political blogs, and the Caenorhabditis elegans chemical connectome. In each example, a subset of nodes have clustering asymmetries; these nodes send edges to one cluster, but receive edges from another cluster. Such nodes yield insightful information (e.g., communication bottlenecks) about directed networks, but are missed if the analysis ignores edge direction.

  6. Disrupted Cerebro-cerebellar Intrinsic Functional Connectivity in Young Adults with High-functioning Autism Spectrum Disorder: A Data-driven, Whole-brain, High Temporal Resolution fMRI Study.

    PubMed

    Arnold Anteraper, Sheeba; Guell, Xavier; D'Mello, Anila; Joshi, Neha; Whitfield-Gabrieli, Susan; Joshi, Gagan

    2018-06-13

    To examine the resting-state functional-connectivity (RsFc) in young adults with high-functioning autism spectrum disorder (HF-ASD) using state-of-the-art fMRI data acquisition and analysis techniques. Simultaneous multi-slice, high temporal resolution fMRI acquisition; unbiased whole-brain connectome-wide multivariate pattern analysis (MVPA) techniques for assessing RsFc; and post-hoc whole-brain seed-to-voxel analyses using MVPA results as seeds. MVPA revealed two clusters of abnormal connectivity in the cerebellum. Whole-brain seed-based functional connectivity analyses informed by MVPA-derived clusters showed significant under connectivity between the cerebellum and social, emotional, and language brain regions in the HF-ASD group compared to healthy controls. The results we report are coherent with existing structural, functional, and RsFc literature in autism, extend previous literature reporting cerebellar abnormalities in the neuropathology of autism, and highlight the cerebellum as a potential target for therapeutic, diagnostic, predictive, and prognostic developments in ASD. The description of functional connectivity abnormalities using whole-brain, data-driven analyses as reported in the present study may crucially advance the development of ASD biomarkers, targets for therapeutic interventions, and neural predictors for measuring treatment response.

  7. The effect of machine learning regression algorithms and sample size on individualized behavioral prediction with functional connectivity features.

    PubMed

    Cui, Zaixu; Gong, Gaolang

    2018-06-02

    Individualized behavioral/cognitive prediction using machine learning (ML) regression approaches is becoming increasingly applied. The specific ML regression algorithm and sample size are two key factors that non-trivially influence prediction accuracies. However, the effects of the ML regression algorithm and sample size on individualized behavioral/cognitive prediction performance have not been comprehensively assessed. To address this issue, the present study included six commonly used ML regression algorithms: ordinary least squares (OLS) regression, least absolute shrinkage and selection operator (LASSO) regression, ridge regression, elastic-net regression, linear support vector regression (LSVR), and relevance vector regression (RVR), to perform specific behavioral/cognitive predictions based on different sample sizes. Specifically, the publicly available resting-state functional MRI (rs-fMRI) dataset from the Human Connectome Project (HCP) was used, and whole-brain resting-state functional connectivity (rsFC) or rsFC strength (rsFCS) were extracted as prediction features. Twenty-five sample sizes (ranged from 20 to 700) were studied by sub-sampling from the entire HCP cohort. The analyses showed that rsFC-based LASSO regression performed remarkably worse than the other algorithms, and rsFCS-based OLS regression performed markedly worse than the other algorithms. Regardless of the algorithm and feature type, both the prediction accuracy and its stability exponentially increased with increasing sample size. The specific patterns of the observed algorithm and sample size effects were well replicated in the prediction using re-testing fMRI data, data processed by different imaging preprocessing schemes, and different behavioral/cognitive scores, thus indicating excellent robustness/generalization of the effects. The current findings provide critical insight into how the selected ML regression algorithm and sample size influence individualized predictions of behavior/cognition and offer important guidance for choosing the ML regression algorithm or sample size in relevant investigations. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex

    PubMed Central

    Coppola, David; White, Leonard E.; Wolf, Fred

    2015-01-01

    The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1’s intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models. PMID:26575467

  9. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation.

    PubMed

    Weiner, Kevin S; Barnett, Michael A; Witthoft, Nathan; Golarai, Golijeh; Stigliani, Anthony; Kay, Kendrick N; Gomez, Jesse; Natu, Vaidehi S; Amunts, Katrin; Zilles, Karl; Grill-Spector, Kalanit

    2018-04-15

    The parahippocampal place area (PPA) is a widely studied high-level visual region in the human brain involved in place and scene processing. The goal of the present study was to identify the most probable location of place-selective voxels in medial ventral temporal cortex. To achieve this goal, we first used cortex-based alignment (CBA) to create a probabilistic place-selective region of interest (ROI) from one group of 12 participants. We then tested how well this ROI could predict place selectivity in each hemisphere within a new group of 12 participants. Our results reveal that a probabilistic ROI (pROI) generated from one group of 12 participants accurately predicts the location and functional selectivity in individual brains from a new group of 12 participants, despite between subject variability in the exact location of place-selective voxels relative to the folding of parahippocampal cortex. Additionally, the prediction accuracy of our pROI is significantly higher than that achieved by volume-based Talairach alignment. Comparing the location of the pROI of the PPA relative to published data from over 500 participants, including data from the Human Connectome Project, shows a striking convergence of the predicted location of the PPA and the cortical location of voxels exhibiting the highest place selectivity across studies using various methods and stimuli. Specifically, the most predictive anatomical location of voxels exhibiting the highest place selectivity in medial ventral temporal cortex is the junction of the collateral and anterior lingual sulci. Methodologically, we make this pROI freely available (vpnl.stanford.edu/PlaceSelectivity), which provides a means to accurately identify a functional region from anatomical MRI data when fMRI data are not available (for example, in patient populations). Theoretically, we consider different anatomical and functional factors that may contribute to the consistent anatomical location of place selectivity relative to the folding of high-level visual cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Unraveling the mechanisms of synapse formation and axon regeneration: the awesome power of C. elegans genetics.

    PubMed

    Jin, YiShi

    2015-11-01

    Since Caenorhabditis elegans was chosen as a model organism by Sydney Brenner in 1960's, genetic studies in this organism have been instrumental in discovering the function of genes and in deciphering molecular signaling network. The small size of the organism and the simple nervous system enable the complete reconstruction of the first connectome. The stereotypic developmental program and the anatomical reproducibility of synaptic connections provide a blueprint to dissect the mechanisms underlying synapse formation. Recent technological innovation using laser surgery of single axons and in vivo imaging has also made C. elegans a new model for axon regeneration. Importantly, genes regulating synaptogenesis and axon regeneration are highly conserved in function across animal phyla. This mini-review will summarize the main approaches and the key findings in understanding the mechanisms underlying the development and maintenance of the nervous system. The impact of such findings underscores the awesome power of C. elegans genetics.

  11. Assessment of the structural brain network reveals altered connectivity in children with unilateral cerebral palsy due to periventricular white matter lesions

    PubMed Central

    Pannek, Kerstin; Boyd, Roslyn N.; Fiori, Simona; Guzzetta, Andrea; Rose, Stephen E.

    2014-01-01

    Background Cerebral palsy (CP) is a term to describe the spectrum of disorders of impaired motor and sensory function caused by a brain lesion occurring early during development. Diffusion MRI and tractography have been shown to be useful in the study of white matter (WM) microstructure in tracts likely to be impacted by the static brain lesion. Aim The purpose of this study was to identify WM pathways with altered connectivity in children with unilateral CP caused by periventricular white matter lesions using a whole-brain connectivity approach. Methods Data of 50 children with unilateral CP caused by periventricular white matter lesions (5–17 years; manual ability classification system [MACS] I = 25/II = 25) and 17 children with typical development (CTD; 7–16 years) were analysed. Structural and High Angular Resolution Diffusion weighted Images (HARDI; 64 directions, b = 3000 s/mm2) were acquired at 3 T. Connectomes were calculated using whole-brain probabilistic tractography in combination with structural parcellation of the cortex and subcortical structures. Connections with altered fractional anisotropy (FA) in children with unilateral CP compared to CTD were identified using network-based statistics (NBS). The relationship between FA and performance of the impaired hand in bimanual tasks (Assisting Hand Assessment—AHA) was assessed in connections that showed significant differences in FA compared to CTD. Results FA was reduced in children with unilateral CP compared to CTD. Seven pathways, including the corticospinal, thalamocortical, and fronto-parietal association pathways were identified simultaneously in children with left and right unilateral CP. There was a positive relationship between performance of the impaired hand in bimanual tasks and FA within the cortico-spinal and thalamo-cortical pathways (r2 = 0.16–0.44; p < 0.05). Conclusion This study shows that network-based analysis of structural connectivity can identify alterations in FA in unilateral CP, and that these alterations in FA are related to clinical function. Application of this connectome-based analysis to investigate alterations in connectivity following treatment may elucidate the neurological correlates of improved functioning due to intervention. PMID:25003031

  12. Network localization of neurological symptoms from focal brain lesions

    PubMed Central

    Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S.; Fox, Michael D.

    2015-01-01

    A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10−5) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10−4). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. PMID:26264514

  13. DICCCOL: Dense Individualized and Common Connectivity-Based Cortical Landmarks

    PubMed Central

    Zhu, Dajiang; Guo, Lei; Jiang, Xi; Zhang, Tuo; Zhang, Degang; Chen, Hanbo; Deng, Fan; Faraco, Carlos; Jin, Changfeng; Wee, Chong-Yaw; Yuan, Yixuan; Lv, Peili; Yin, Yan; Hu, Xiaolei; Duan, Lian; Hu, Xintao; Han, Junwei; Wang, Lihong; Shen, Dinggang; Miller, L Stephen

    2013-01-01

    Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity–based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work. PMID:22490548

  14. Default network connectivity decodes brain states with simulated microgravity.

    PubMed

    Zeng, Ling-Li; Liao, Yang; Zhou, Zongtan; Shen, Hui; Liu, Yadong; Liu, Xufeng; Hu, Dewen

    2016-04-01

    With great progress of space navigation technology, it becomes possible to travel beyond Earth's gravity. So far, it remains unclear whether the human brain can function normally within an environment of microgravity and confinement. Particularly, it is a challenge to figure out some neuroimaging-based markers for rapid screening diagnosis of disrupted brain function in microgravity environment. In this study, a 7-day -6° head down tilt bed rest experiment was used to simulate the microgravity, and twenty healthy male participants underwent resting-state functional magnetic resonance imaging scans at baseline and after the simulated microgravity experiment. We used a multivariate pattern analysis approach to distinguish the brain states with simulated microgravity from normal gravity based on the functional connectivity within the default network, resulting in an accuracy of no less than 85 % via cross-validation. Moreover, most discriminative functional connections were mainly located between the limbic system and cortical areas and were enhanced after simulated microgravity, implying a self-adaption or compensatory enhancement to fulfill the need of complex demand in spatial navigation and motor control functions in microgravity environment. Overall, the findings suggest that the brain states in microgravity are likely different from those in normal gravity and that brain connectome could act as a biomarker to indicate the brain state in microgravity.

  15. Resting-State Functional Connectivity Predicts Cognitive Impairment Related to Alzheimer's Disease.

    PubMed

    Lin, Qi; Rosenberg, Monica D; Yoo, Kwangsun; Hsu, Tiffany W; O'Connell, Thomas P; Chun, Marvin M

    2018-01-01

    Resting-state functional connectivity (rs-FC) is a promising neuromarker for cognitive decline in aging population, based on its ability to reveal functional differences associated with cognitive impairment across individuals, and because rs-fMRI may be less taxing for participants than task-based fMRI or neuropsychological tests. Here, we employ an approach that uses rs-FC to predict the Alzheimer's Disease Assessment Scale (11 items; ADAS11) scores, which measure overall cognitive functioning, in novel individuals. We applied this technique, connectome-based predictive modeling, to a heterogeneous sample of 59 subjects from the Alzheimer's Disease Neuroimaging Initiative, including normal aging, mild cognitive impairment, and AD subjects. First, we built linear regression models to predict ADAS11 scores from rs-FC measured with Pearson's r correlation. The positive network model tested with leave-one-out cross validation (LOOCV) significantly predicted individual differences in cognitive function from rs-FC. In a second analysis, we considered other functional connectivity features, accordance and discordance, which disentangle the correlation and anticorrelation components of activity timecourses between brain areas. Using partial least square regression and LOOCV, we again built models to successfully predict ADAS11 scores in novel individuals. Our study provides promising evidence that rs-FC can reveal cognitive impairment in an aging population, although more development is needed for clinical application.

  16. A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data

    PubMed Central

    Calabrese, Evan; Badea, Alexandra; Cofer, Gary; Qi, Yi; Johnson, G. Allan

    2015-01-01

    Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data. PMID:26048951

  17. A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation

    PubMed Central

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-01-01

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  18. Sex differences in the structural connectome of the human brain.

    PubMed

    Ingalhalikar, Madhura; Smith, Alex; Parker, Drew; Satterthwaite, Theodore D; Elliott, Mark A; Ruparel, Kosha; Hakonarson, Hakon; Gur, Raquel E; Gur, Ruben C; Verma, Ragini

    2014-01-14

    Sex differences in human behavior show adaptive complementarity: Males have better motor and spatial abilities, whereas females have superior memory and social cognition skills. Studies also show sex differences in human brains but do not explain this complementarity. In this work, we modeled the structural connectome using diffusion tensor imaging in a sample of 949 youths (aged 8-22 y, 428 males and 521 females) and discovered unique sex differences in brain connectivity during the course of development. Connection-wise statistical analysis, as well as analysis of regional and global network measures, presented a comprehensive description of network characteristics. In all supratentorial regions, males had greater within-hemispheric connectivity, as well as enhanced modularity and transitivity, whereas between-hemispheric connectivity and cross-module participation predominated in females. However, this effect was reversed in the cerebellar connections. Analysis of these changes developmentally demonstrated differences in trajectory between males and females mainly in adolescence and in adulthood. Overall, the results suggest that male brains are structured to facilitate connectivity between perception and coordinated action, whereas female brains are designed to facilitate communication between analytical and intuitive processing modes.

  19. The CNS connectome of a tadpole larva of Ciona intestinalis (L.) highlights sidedness in the brain of a chordate sibling

    PubMed Central

    Ryan, Kerrianne; Lu, Zhiyuan; Meinertzhagen, Ian A

    2016-01-01

    Left-right asymmetries in brains are usually minor or cryptic. We report brain asymmetries in the tiny, dorsal tubular nervous system of the ascidian tadpole larva, Ciona intestinalis. Chordate in body plan and development, the larva provides an outstanding example of brain asymmetry. Although early neural development is well studied, detailed cellular organization of the swimming larva’s CNS remains unreported. Using serial-section EM we document the synaptic connectome of the larva’s 177 CNS neurons. These formed 6618 synapses including 1772 neuromuscular junctions, augmented by 1206 gap junctions. Neurons are unipolar with at most a single dendrite, and few synapses. Some synapses are unpolarised, others form reciprocal or serial motifs; 922 were polyadic. Axo-axonal synapses predominate. Most neurons have ciliary organelles, and many features lack structural specialization. Despite equal cell numbers on both sides, neuron identities and pathways differ left/right. Brain vesicle asymmetries include a right ocellus and left coronet cells. DOI: http://dx.doi.org/10.7554/eLife.16962.001 PMID:27921996

  20. Filling the gap: adding super-resolution to array tomography for correlated ultrastructural and molecular identification of electrical synapses at the C. elegans connectome.

    PubMed

    Markert, Sebastian Matthias; Britz, Sebastian; Proppert, Sven; Lang, Marietta; Witvliet, Daniel; Mulcahy, Ben; Sauer, Markus; Zhen, Mei; Bessereau, Jean-Louis; Stigloher, Christian

    2016-10-01

    Correlating molecular labeling at the ultrastructural level with high confidence remains challenging. Array tomography (AT) allows for a combination of fluorescence and electron microscopy (EM) to visualize subcellular protein localization on serial EM sections. Here, we describe an application for AT that combines near-native tissue preservation via high-pressure freezing and freeze substitution with super-resolution light microscopy and high-resolution scanning electron microscopy (SEM) analysis on the same section. We established protocols that combine SEM with structured illumination microscopy (SIM) and direct stochastic optical reconstruction microscopy (dSTORM). We devised a method for easy, precise, and unbiased correlation of EM images and super-resolution imaging data using endogenous cellular landmarks and freely available image processing software. We demonstrate that these methods allow us to identify and label gap junctions in Caenorhabditis elegans with precision and confidence, and imaging of even smaller structures is feasible. With the emergence of connectomics, these methods will allow us to fill in the gap-acquiring the correlated ultrastructural and molecular identity of electrical synapses.

  1. Identifying behavioral circuits in Drosophila melanogaster: moving targets in a flying insect.

    PubMed

    Griffith, Leslie C

    2012-08-01

    Drosophila melanogaster has historically been the premier model system for understanding the molecular and genetic bases of complex behaviors. In the last decade technical advances, in the form of new genetic tools and electrophysiological and optical methods, have allowed investigators to begin to dissect the neuronal circuits that generate behavior in the adult. The blossoming of circuit analysis in this organism has also reinforced our appreciation of the inadequacy of wiring diagrams for specifying complex behavior. Neuromodulation and neuronal plasticity act to reconfigure circuits on both short and long time scales. These processes act on the connectome, providing context by integrating external and internal cues that are relevant for behavioral choices. New approaches in the fly are providing insight into these basic principles of circuit function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Individual differences in the dominance of interhemispheric connections predict cognitive ability beyond sex and brain size.

    PubMed

    Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto

    2017-07-15

    Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T 1 -weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and women. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Degree centrality and fractional amplitude of low-frequency oscillations associated with Stroop interference.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Hashizume, Hiroshi; Sassa, Yuko; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yokoyama, Ryoichi; Iizuka, Kunio; Nakagawa, Seishu; Nagase, Tomomi; Kunitoki, Keiko; Kawashima, Ryuta

    2015-10-01

    Stroop paradigms are commonly used as an index of attention deficits and a tool for investigating functions of the frontal lobes and other associated structures. Here we investigated the correlation between resting-state functional magnetic imaging (fMRI) measures [degree centrality (DC)/fractional amplitude of low frequency fluctuations (fALFFs)] and Stroop interference. We examined this relationship in the brains of 958 healthy young adults. DC reflects the number of instantaneous functional connections between a region and the rest of the brain within the entire connectivity matrix of the brain (connectome), and thus how much of the node influences the entire brain areas, while fALFF is an indicator of the intensity of regional brain spontaneous activity. Reduced Stroop interference was associated with larger DC in the left lateral prefrontal cortex, left IFJ, and left inferior parietal lobule as well as larger fALFF in the areas of the dorsal attention network and the precuneus. These findings suggest that Stroop performance is reflected in resting state functional properties of these areas and the network. In addition, default brain activity of the dorsal attention network and precuneus as well as higher cognitive processes represented there, and default stronger global influence of the areas critical in executive functioning underlie better Stroop performance. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Functional Connectivity Mapping in the Animal Model: Principles and Applications of Resting-State fMRI

    PubMed Central

    Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan

    2017-01-01

    “Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914

  5. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.

    PubMed

    Lee, Kangjoo; Lina, Jean-Marc; Gotman, Jean; Grova, Christophe

    2016-07-01

    Functional hubs are defined as the specific brain regions with dense connections to other regions in a functional brain network. Among them, connector hubs are of great interests, as they are assumed to promote global and hierarchical communications between functionally specialized networks. Damage to connector hubs may have a more crucial effect on the system than does damage to other hubs. Hubs in graph theory are often identified from a correlation matrix, and classified as connector hubs when the hubs are more connected to regions in other networks than within the networks to which they belong. However, the identification of hubs from functional data is more complex than that from structural data, notably because of the inherent problem of multicollinearity between temporal dynamics within a functional network. In this context, we developed and validated a method to reliably identify connectors and corresponding overlapping network structure from resting-state fMRI. This new method is actually handling the multicollinearity issue, since it does not rely on counting the number of connections from a thresholded correlation matrix. The novelty of the proposed method is that besides counting the number of networks involved in each voxel, it allows us to identify which networks are actually involved in each voxel, using a data-driven sparse general linear model in order to identify brain regions involved in more than one network. Moreover, we added a bootstrap resampling strategy to assess statistically the reproducibility of our results at the single subject level. The unified framework is called SPARK, i.e. SParsity-based Analysis of Reliable k-hubness, where k-hubness denotes the number of networks overlapping in each voxel. The accuracy and robustness of SPARK were evaluated using two dimensional box simulations and realistic simulations that examined detection of artificial hubs generated on real data. Then, test/retest reliability of the method was assessed using the 1000 Functional Connectome Project database, which includes data obtained from 25 healthy subjects at three different occasions with long and short intervals between sessions. We demonstrated that SPARK provides an accurate and reliable estimation of k-hubness, suggesting a promising tool for understanding hub organization in resting-state fMRI. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Diverse in- and output polarities and high complexity of local synaptic and nonsynaptic signalling within a chemically defined class of peptidergic Drosophila neurons

    USDA-ARS?s Scientific Manuscript database

    Peptidergic neurons are not easily integrated into current connectomics concepts, since their peptide messages can be distributed via non-synaptic paracrine signaling or even via volume transmission. Moreover, and especially in insects, the polarity of peptidergic interneurons in terms of in- and o...

  7. Objective Cognitive Functioning in Self-reported Habitual Short Sleepers not Reporting Daytime Dysfunction: Examination of Impulsivity via Delay Discounting.

    PubMed

    Curtis, Brian J; Williams, Paula G; Anderson, Jeffrey S

    2018-05-30

    1) Examine performance on an objective measure of reward-related cognitive impulsivity (delay discounting) among self-reported habitual short sleepers and medium (i.e., recommended 7-9 hours) length sleepers either reporting or not reporting daytime dysfunction; 2) Inform the debate regarding what type and duration of short sleep (e.g., 21 to 24 hours of total sleep deprivation, self-reported habitual short sleep duration) meaningfully influences cognitive impulsivity; 3) Compare the predictive utility of sleep duration and perceived dysfunction to other factors previously shown to influence cognitive impulsivity via delay discounting performance (age, income, education, and fluid intelligence). We analyzed data from 1,190 adults from the Human Connectome Project database. Participants were grouped on whether they reported habitual short (≤ 6 hours) vs. medium length (7-9 hours) sleep duration and whether they perceived daytime dysfunction using the Pittsburgh Sleep Quality Index. All short sleepers exhibited increased delay discounting compared to all medium length sleepers, regardless of perceived dysfunction. Of the variables examined, self-reported sleep duration was the strongest predictor of delay discounting behavior between groups and across all 1,190 participants. Individuals who report habitual short sleep are likely to exhibit increased reward-related cognitive impulsivity regardless of perceived sleep-related daytime impairment. Therefore, there is reason to suspect that these individuals exhibit more daytime dysfunction, in the form of reward-related cognitive impulsivity, than they may assume. Current findings suggest that assessment of sleep duration over the prior month has meaningful predictive utility for human reward-related impulsivity.

  8. Top-down control of serotonin systems by the prefrontal cortex: a path towards restored socioemotional function in depression

    PubMed Central

    Challis, Collin; Berton, Olivier

    2015-01-01

    Social withdrawal, increased threat perception and exaggerated reassurance seeking behaviors are prominent interpersonal symptoms in major depressive disorder (MDD). Altered serotonin (5-HT) systems and corticolimbic dysconnectivity have long been suspected to contribute to these symptomatic facets, however, the underlying circuits and intrinsic cellular mechanisms that control 5-HT output during socioemotional interactions remain poorly understood. We review literature that implicates a direct pathway between the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN) in the adaptive and pathological control of social approach-avoidance behaviors. Imaging and neuromodulation during approach-avoidance tasks in humans point to the cortical control of brainstem circuits as an essential regulator of socioemotional decisions and actions. Parallel rodent studies using viral-based connectomics and optogenetics are beginning to provide a cellular blueprint of the underlying circuitry. In these studies, manipulations of vmPFC synaptic inputs to the DRN have revealed bidirectional influences on socioaffective behaviors via direct monosynaptic excitation and indirect disynaptic inhibition of 5-HT neurons. Additionally, adverse social experiences that result in permanent avoidance biases, such as social defeat, drive long-lasting plasticity in this microcircuit, potentiating the indirect inhibition of 5-HT output. Conversely, neuromodulation of the vmPFC via deep brain stimulation (DBS) attenuates avoidance biases by restoring the direct excitatory drive of 5-HT neurons and strengthening a key subset of forebrain 5-HT projections. Better understanding the cellular organization of the vmPFC-DRN pathway and identifying molecular determinants of its neuroplasticity can open fundamentally novel avenues for the treatment of affective disorders. PMID:25706226

  9. Mindcontrol: A web application for brain segmentation quality control.

    PubMed

    Keshavan, Anisha; Datta, Esha; M McDonough, Ian; Madan, Christopher R; Jordan, Kesshi; Henry, Roland G

    2018-04-15

    Tissue classification plays a crucial role in the investigation of normal neural development, brain-behavior relationships, and the disease mechanisms of many psychiatric and neurological illnesses. Ensuring the accuracy of tissue classification is important for quality research and, in particular, the translation of imaging biomarkers to clinical practice. Assessment with the human eye is vital to correct various errors inherent to all currently available segmentation algorithms. Manual quality assurance becomes methodologically difficult at a large scale - a problem of increasing importance as the number of data sets is on the rise. To make this process more efficient, we have developed Mindcontrol, an open-source web application for the collaborative quality control of neuroimaging processing outputs. The Mindcontrol platform consists of a dashboard to organize data, descriptive visualizations to explore the data, an imaging viewer, and an in-browser annotation and editing toolbox for data curation and quality control. Mindcontrol is flexible and can be configured for the outputs of any software package in any data organization structure. Example configurations for three large, open-source datasets are presented: the 1000 Functional Connectomes Project (FCP), the Consortium for Reliability and Reproducibility (CoRR), and the Autism Brain Imaging Data Exchange (ABIDE) Collection. These demo applications link descriptive quality control metrics, regional brain volumes, and thickness scalars to a 3D imaging viewer and editing module, resulting in an easy-to-implement quality control protocol that can be scaled for any size and complexity of study. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Optogenetic Functional MRI

    PubMed Central

    Lin, Peter; Fang, Zhongnan; Liu, Jia; Lee, Jin Hyung

    2016-01-01

    The investigation of the functional connectivity of precise neural circuits across the entire intact brain can be achieved through optogenetic functional magnetic resonance imaging (ofMRI), which is a novel technique that combines the relatively high spatial resolution of high-field fMRI with the precision of optogenetic stimulation. Fiber optics that enable delivery of specific wavelengths of light deep into the brain in vivo are implanted into regions of interest in order to specifically stimulate targeted cell types that have been genetically induced to express light-sensitive trans-membrane conductance channels, called opsins. fMRI is used to provide a non-invasive method of determining the brain's global dynamic response to optogenetic stimulation of specific neural circuits through measurement of the blood-oxygen-level-dependent (BOLD) signal, which provides an indirect measurement of neuronal activity. This protocol describes the construction of fiber optic implants, the implantation surgeries, the imaging with photostimulation and the data analysis required to successfully perform ofMRI. In summary, the precise stimulation and whole-brain monitoring ability of ofMRI are crucial factors in making ofMRI a powerful tool for the study of the connectomics of the brain in both healthy and diseased states. PMID:27167840

  11. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    PubMed

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  12. Multichannel activity propagation across an engineered axon network

    NASA Astrophysics Data System (ADS)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers. These results provide insight into how the brain potentially processes information and generates the neural code and could guide the development of clinical therapies based on multichannel brain stimulation.

  13. A network engineering perspective on probing and perturbing cognition with neurofeedback

    PubMed Central

    Khambhati, Ankit N.

    2017-01-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. PMID:28445589

  14. A revised limbic system model for memory, emotion and behaviour.

    PubMed

    Catani, Marco; Dell'acqua, Flavio; Thiebaut de Schotten, Michel

    2013-09-01

    Emotion, memories and behaviour emerge from the coordinated activities of regions connected by the limbic system. Here, we propose an update of the limbic model based on the seminal work of Papez, Yakovlev and MacLean. In the revised model we identify three distinct but partially overlapping networks: (i) the Hippocampal-diencephalic and parahippocampal-retrosplenial network dedicated to memory and spatial orientation; (ii) The temporo-amygdala-orbitofrontal network for the integration of visceral sensation and emotion with semantic memory and behaviour; (iii) the default-mode network involved in autobiographical memories and introspective self-directed thinking. The three networks share cortical nodes that are emerging as principal hubs in connectomic analysis. This revised network model of the limbic system reconciles recent functional imaging findings with anatomical accounts of clinical disorders commonly associated with limbic pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting‐state functional connectivity

    PubMed Central

    Scholtens, Lianne H.; Turk, Elise; Mantini, Dante; Vanduffel, Wim; Feldman Barrett, Lisa

    2016-01-01

    Abstract The cerebral cortex is well known to display a large variation in excitatory and inhibitory chemoarchitecture, but the effect of this variation on global scale functional neural communication and synchronization patterns remains less well understood. Here, we provide evidence of the chemoarchitecture of cortical regions to be associated with large‐scale region‐to‐region resting‐state functional connectivity. We assessed the excitatory versus inhibitory chemoarchitecture of cortical areas as an ExIn ratio between receptor density mappings of excitatory (AMPA, M1) and inhibitory (GABAA, M2) receptors, computed on the basis of data collated from pioneering studies of autoradiography mappings as present in literature of the human (2 datasets) and macaque (1 dataset) cortex. Cortical variation in ExIn ratio significantly correlated with total level of functional connectivity as derived from resting‐state functional connectivity recordings of cortical areas across all three datasets (human I: P = 0.0004; human II: P = 0.0008; macaque: P = 0.0007), suggesting cortical areas with an overall more excitatory character to show higher levels of intrinsic functional connectivity during resting‐state. Our findings are indicative of the microscale chemoarchitecture of cortical regions to be related to resting‐state fMRI connectivity patterns at the global system's level of connectome organization. Hum Brain Mapp 37:3103–3113, 2016. © 2016 Wiley Periodicals, Inc. PMID:27207489

  16. Early Development of Functional Network Segregation Revealed by Connectomic Analysis of the Preterm Human Brain.

    PubMed

    Cao, Miao; He, Yong; Dai, Zhengjia; Liao, Xuhong; Jeon, Tina; Ouyang, Minhui; Chalak, Lina; Bi, Yanchao; Rollins, Nancy; Dong, Qi; Huang, Hao

    2017-03-01

    Human brain functional networks are topologically organized with nontrivial connectivity characteristics such as small-worldness and densely linked hubs to support highly segregated and integrated information processing. However, how they emerge and change at very early developmental phases remains poorly understood. Here, we used resting-state functional MRI and voxel-based graph theory analysis to systematically investigate the topological organization of whole-brain networks in 40 infants aged around 31 to 42 postmenstrual weeks. The functional connectivity strength and heterogeneity increased significantly in primary motor, somatosensory, visual, and auditory regions, but much less in high-order default-mode and executive-control regions. The hub and rich-club structures in primary regions were already present at around 31 postmenstrual weeks and exhibited remarkable expansions with age, accompanied by increased local clustering and shortest path length, indicating a transition from a relatively random to a more organized configuration. Moreover, multivariate pattern analysis using support vector regression revealed that individual brain maturity of preterm babies could be predicted by the network connectivity patterns. Collectively, we highlighted a gradually enhanced functional network segregation manner in the third trimester, which is primarily driven by the rapid increases of functional connectivity of the primary regions, providing crucial insights into the topological development patterns prior to birth. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Connectivity in river deltas

    NASA Astrophysics Data System (ADS)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  18. Identification of a Functional Connectome for Long-Term Fear Memory in Mice

    PubMed Central

    Wheeler, Anne L.; Teixeira, Cátia M.; Wang, Afra H.; Xiong, Xuejian; Kovacevic, Natasa; Lerch, Jason P.; McIntosh, Anthony R.; Parkinson, John; Frankland, Paul W.

    2013-01-01

    Long-term memories are thought to depend upon the coordinated activation of a broad network of cortical and subcortical brain regions. However, the distributed nature of this representation has made it challenging to define the neural elements of the memory trace, and lesion and electrophysiological approaches provide only a narrow window into what is appreciated a much more global network. Here we used a global mapping approach to identify networks of brain regions activated following recall of long-term fear memories in mice. Analysis of Fos expression across 84 brain regions allowed us to identify regions that were co-active following memory recall. These analyses revealed that the functional organization of long-term fear memories depends on memory age and is altered in mutant mice that exhibit premature forgetting. Most importantly, these analyses indicate that long-term memory recall engages a network that has a distinct thalamic-hippocampal-cortical signature. This network is concurrently integrated and segregated and therefore has small-world properties, and contains hub-like regions in the prefrontal cortex and thalamus that may play privileged roles in memory expression. PMID:23300432

  19. Small-world human brain networks: Perspectives and challenges.

    PubMed

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Computing the Social Brain Connectome Across Systems and States.

    PubMed

    Alcalá-López, Daniel; Smallwood, Jonathan; Jefferies, Elizabeth; Van Overwalle, Frank; Vogeley, Kai; Mars, Rogier B; Turetsky, Bruce I; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Bzdok, Danilo

    2017-05-18

    Social skills probably emerge from the interaction between different neural processing levels. However, social neuroscience is fragmented into highly specialized, rarely cross-referenced topics. The present study attempts a systematic reconciliation by deriving a social brain definition from neural activity meta-analyses on social-cognitive capacities. The social brain was characterized by meta-analytic connectivity modeling evaluating coactivation in task-focused brain states and physiological fluctuations evaluating correlations in task-free brain states. Network clustering proposed a functional segregation into (1) lower sensory, (2) limbic, (3) intermediate, and (4) high associative neural circuits that together mediate various social phenomena. Functional profiling suggested that no brain region or network is exclusively devoted to social processes. Finally, nodes of the putative mirror-neuron system were coherently cross-connected during tasks and more tightly coupled to embodied simulation systems rather than abstract emulation systems. These first steps may help reintegrate the specialized research agendas in the social and affective sciences. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.

  2. Functional network alterations and their structural substrate in drug-resistant epilepsy

    PubMed Central

    Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda

    2014-01-01

    The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942

  3. The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets

    PubMed Central

    ANDERSON, JR; MOHAMMED, S; GRIMM, B; JONES, BW; KOSHEVOY, P; TASDIZEN, T; WHITAKER, R; MARC, RE

    2011-01-01

    Modern microscope automation permits the collection of vast amounts of continuous anatomical imagery in both two and three dimensions. These large data sets present significant challenges for data storage, access, viewing, annotation and analysis. The cost and overhead of collecting and storing the data can be extremely high. Large data sets quickly exceed an individual's capability for timely analysis and present challenges in efficiently applying transforms, if needed. Finally annotated anatomical data sets can represent a significant investment of resources and should be easily accessible to the scientific community. The Viking application was our solution created to view and annotate a 16.5 TB ultrastructural retinal connectome volume and we demonstrate its utility in reconstructing neural networks for a distinctive retinal amacrine cell class. Viking has several key features. (1) It works over the internet using HTTP and supports many concurrent users limited only by hardware. (2) It supports a multi-user, collaborative annotation strategy. (3) It cleanly demarcates viewing and analysis from data collection and hosting. (4) It is capable of applying transformations in real-time. (5) It has an easily extensible user interface, allowing addition of specialized modules without rewriting the viewer. PMID:21118201

  4. Big Data Approaches for the Analysis of Large-Scale fMRI Data Using Apache Spark and GPU Processing: A Demonstration on Resting-State fMRI Data from the Human Connectome Project

    PubMed Central

    Boubela, Roland N.; Kalcher, Klaudius; Huf, Wolfgang; Našel, Christian; Moser, Ewald

    2016-01-01

    Technologies for scalable analysis of very large datasets have emerged in the domain of internet computing, but are still rarely used in neuroimaging despite the existence of data and research questions in need of efficient computation tools especially in fMRI. In this work, we present software tools for the application of Apache Spark and Graphics Processing Units (GPUs) to neuroimaging datasets, in particular providing distributed file input for 4D NIfTI fMRI datasets in Scala for use in an Apache Spark environment. Examples for using this Big Data platform in graph analysis of fMRI datasets are shown to illustrate how processing pipelines employing it can be developed. With more tools for the convenient integration of neuroimaging file formats and typical processing steps, big data technologies could find wider endorsement in the community, leading to a range of potentially useful applications especially in view of the current collaborative creation of a wealth of large data repositories including thousands of individual fMRI datasets. PMID:26778951

  5. Network localization of neurological symptoms from focal brain lesions.

    PubMed

    Boes, Aaron D; Prasad, Sashank; Liu, Hesheng; Liu, Qi; Pascual-Leone, Alvaro; Caviness, Verne S; Fox, Michael D

    2015-10-01

    A traditional and widely used approach for linking neurological symptoms to specific brain regions involves identifying overlap in lesion location across patients with similar symptoms, termed lesion mapping. This approach is powerful and broadly applicable, but has limitations when symptoms do not localize to a single region or stem from dysfunction in regions connected to the lesion site rather than the site itself. A newer approach sensitive to such network effects involves functional neuroimaging of patients, but this requires specialized brain scans beyond routine clinical data, making it less versatile and difficult to apply when symptoms are rare or transient. In this article we show that the traditional approach to lesion mapping can be expanded to incorporate network effects into symptom localization without the need for specialized neuroimaging of patients. Our approach involves three steps: (i) transferring the three-dimensional volume of a brain lesion onto a reference brain; (ii) assessing the intrinsic functional connectivity of the lesion volume with the rest of the brain using normative connectome data; and (iii) overlapping lesion-associated networks to identify regions common to a clinical syndrome. We first tested our approach in peduncular hallucinosis, a syndrome of visual hallucinations following subcortical lesions long hypothesized to be due to network effects on extrastriate visual cortex. While the lesions themselves were heterogeneously distributed with little overlap in lesion location, 22 of 23 lesions were negatively correlated with extrastriate visual cortex. This network overlap was specific compared to other subcortical lesions (P < 10(-5)) and relative to other cortical regions (P < 0.01). Next, we tested for generalizability of our technique by applying it to three additional lesion syndromes: central post-stroke pain, auditory hallucinosis, and subcortical aphasia. In each syndrome, heterogeneous lesions that themselves had little overlap showed significant network overlap in cortical areas previously implicated in symptom expression (P < 10(-4)). These results suggest that (i) heterogeneous lesions producing similar symptoms share functional connectivity to specific brain regions involved in symptom expression; and (ii) publically available human connectome data can be used to incorporate these network effects into traditional lesion mapping approaches. Because the current technique requires no specialized imaging of patients it may prove a versatile and broadly applicable approach for localizing neurological symptoms in the setting of brain lesions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. When tractography meets tracer injections: a systematic study of trends and variation sources of diffusion-based connectivity.

    PubMed

    Aydogan, Dogu Baran; Jacobs, Russell; Dulawa, Stephanie; Thompson, Summer L; Francois, Maite Christi; Toga, Arthur W; Dong, Hongwei; Knowles, James A; Shi, Yonggang

    2018-04-16

    Tractography is a powerful technique capable of non-invasively reconstructing the structural connections in the brain using diffusion MRI images, but the validation of tractograms is challenging due to lack of ground truth. Owing to recent developments in mapping the mouse brain connectome, high-resolution tracer injection-based axonal projection maps have been created and quickly adopted for the validation of tractography. Previous studies using tracer injections mainly focused on investigating the match in projections and optimal tractography protocols. Being a complicated technique, however, tractography relies on multiple stages of operations and parameters. These factors introduce large variabilities in tractograms, hindering the optimization of protocols and making the interpretation of results difficult. Based on this observation, in contrast to previous studies, in this work we focused on quantifying and ranking the amount of performance variation introduced by these factors. For this purpose, we performed over a million tractography experiments and studied the variability across different subjects, injections, anatomical constraints and tractography parameters. By using N-way ANOVA analysis, we show that all tractography parameters are significant and importantly performance variations with respect to the differences in subjects are comparable to the variations due to tractography parameters, which strongly underlines the importance of fully documenting the tractography protocols in scientific experiments. We also quantitatively show that inclusion of anatomical constraints is the most significant factor for improving tractography performance. Although this critical factor helps reduce false positives, our analysis indicates that anatomy-informed tractography still fails to capture a large portion of axonal projections.

  7. A common brain network among state, trait, and pathological anxiety from whole-brain functional connectivity.

    PubMed

    Takagi, Yu; Sakai, Yuki; Abe, Yoshinari; Nishida, Seiji; Harrison, Ben J; Martínez-Zalacaín, Ignacio; Soriano-Mas, Carles; Narumoto, Jin; Tanaka, Saori C

    2018-05-15

    Anxiety is one of the most common mental states of humans. Although it drives us to avoid frightening situations and to achieve our goals, it may also impose significant suffering and burden if it becomes extreme. Because we experience anxiety in a variety of forms, previous studies investigated neural substrates of anxiety in a variety of ways. These studies revealed that individuals with high state, trait, or pathological anxiety showed altered neural substrates. However, no studies have directly investigated whether the different dimensions of anxiety share a common neural substrate, despite its theoretical and practical importance. Here, we investigated a brain network of anxiety shared by different dimensions of anxiety in a unified analytical framework using functional magnetic resonance imaging (fMRI). We analyzed different datasets in a single scale, which was defined by an anxiety-related brain network derived from whole brain. We first conducted the anxiety provocation task with healthy participants who tended to feel anxiety related to obsessive-compulsive disorder (OCD) in their daily life. We found a common state anxiety brain network across participants (1585 trials obtained from 10 participants). Then, using the resting-state fMRI in combination with the participants' behavioral trait anxiety scale scores (879 participants from the Human Connectome Project), we demonstrated that trait anxiety shared the same brain network as state anxiety. Furthermore, the brain network between common to state and trait anxiety could detect patients with OCD, which is characterized by pathological anxiety-driven behaviors (174 participants from multi-site datasets). Our findings provide direct evidence that different dimensions of anxiety have a substantial biological inter-relationship. Our results also provide a biologically defined dimension of anxiety, which may promote further investigation of various human characteristics, including psychiatric disorders, from the perspective of anxiety. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Gray-matter structural variability in the human cerebellum: Lobule-specific differences across sex and hemisphere.

    PubMed

    Steele, Christopher J; Chakravarty, M Mallar

    2018-04-15

    Though commonly thought of as a "motor structure", we now know that the cerebellum's reciprocal connections to the cerebral cortex underlie contributions to both motor and non-motor behavior. Further, recent research has shown that cerebellar dysfunction may contribute to a wide range of neuropsychiatric disorders. However, there has been little characterization of normative variability at the level of cerebellar structure that can facilitate and further our understanding of disease biomarkers. In this manuscript we examine normative variation of the cerebellum using data from the Human Connectome Project (HCP). The Multiple Automatically Generated Templates (MAGeT) segmentation tool was used to identify the cerebella and 33 anatomically-defined lobules from 327 individuals from the HCP. To characterize normative variation, we estimated population mean volume and variability, assessed differences in hemisphere and sex, and related lobular volume to motor and non-motor behavior. We found that the effects of hemisphere and sex were not homogeneous across all lobules of the cerebellum. Greater volume in the right hemisphere was primarily driven by lobules Crus I, II, and H VIIB, with H VIIIA exhibiting the greatest left>right asymmetry. Relative to total cerebellar gray-matter volume, females had larger Crus II (known to be connected with non-motor regions of the cerebral cortex) while males had larger motor-connected lobules including H V, and VIIIA/B. When relating lobular volume to memory, motor performance, and emotional behavior, we found some evidence for relationships that have previously been identified in the literature. Our observations of normative cerebellar structure and variability in young adults provide evidence for lobule-specific differences in volume and the relationship with sex and behavior - indicating that the cerebellum cannot be considered a single structure with uniform function, but as a set of regions with functions that are likely as diverse as their connectivity with the cerebral cortex. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage.

    PubMed

    Mejia, Amanda F; Nebel, Mary Beth; Barber, Anita D; Choe, Ann S; Pekar, James J; Caffo, Brian S; Lindquist, Martin A

    2018-05-15

    Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Copyright © 2018. Published by Elsevier Inc.

  10. Neural Mechanism Underling Comprehension of Narrative Speech and Its Heritability: Study in a Large Population.

    PubMed

    Babajani-Feremi, Abbas

    2017-09-01

    Comprehension of narratives constitutes a fundamental part of our everyday life experience. Although the neural mechanism of auditory narrative comprehension has been investigated in some studies, the neural correlates underlying this mechanism and its heritability remain poorly understood. We investigated comprehension of naturalistic speech in a large, healthy adult population (n = 429; 176/253 M/F; 22-36 years of age) consisting of 192 twin pairs (49 monozygotic and 47 dizygotic pairs) and 237 of their siblings. We used high quality functional MRI datasets from the Human Connectome Project (HCP) in which a story-based paradigm was utilized for the auditory narrative comprehension. Our results revealed that narrative comprehension was associated with activations of the classical language regions including superior temporal gyrus (STG), middle temporal gyrus (MTG), and inferior frontal gyrus (IFG) in both hemispheres, though STG and MTG were activated symmetrically and activation in IFG were left-lateralized. Our results further showed that the narrative comprehension was associated with activations in areas beyond the classical language regions, e.g. medial superior frontal gyrus (SFGmed), middle frontal gyrus (MFG), and supplementary motor area (SMA). Of subcortical structures, only the hippocampus was involved. The results of heritability analysis revealed that the oral reading recognition and picture vocabulary comprehension were significantly heritable (h 2  > 0.56, p < 10 - 13 ). In addition, the extent of activation of five areas in the left hemisphere, i.e. STG, IFG pars opercularis, SFGmed, SMA, and precuneus, and one area in the right hemisphere, i.e. MFG, were significantly heritable (h 2  > 0.33, p < 0.0004). The current study, to the best of our knowledge, is the first to investigate auditory narrative comprehension and its heritability in a large healthy population. Referring to the excellent quality of the HCP data, our results can clarify the functional contributions of linguistic and extra-linguistic cortices during narrative comprehension.

  11. Functional and Structural Signatures of the Anterior Insula are associated with Risk-taking Tendency of Analgesic Decision-making.

    PubMed

    Lin, Chia-Shu; Lin, Hsiao-Han; Wu, Shih-Yun

    2016-11-28

    In a medical context, decision-making is associated with complicated assessment of gains, losses and uncertainty of outcomes. We here provide novel evidence about the brain mechanisms underlying decision-making of analgesic treatment. Thirty-six healthy participants were recruited and completed the Analgesic Decision-making Task (ADT), which quantified individual tendency of risk-taking (RPI), as the frequency of choosing a riskier option to relieve pain. All the participants received resting-state (rs) functional magnetic resonance imaging (MRI) and structural MRI. On rs-functional connectome, degree centrality (DC) of the bilateral anterior insula (aINS) was positively correlated with the RPI. The functional connectivity between the aINS, the nucleus accumbens and multiple brain regions, predominantly the medial frontal cortex, was positively correlated with the RPI. On structural signatures, the RPI was positively correlated with grey matter volume at the right aINS, and such an association was mediated by DC of the left aINS. Regression analyses revealed that both DC of the left aINS and participants' imagined pain relief, as the utility of pain reduction, could predict the individual RPI. The findings suggest that the functional and structural brain signature of the aINS is associated with the individual differences of risk-taking tendency in the context of analgesic decision-making.

  12. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome.

    PubMed

    Batalle, Dafnis; Eixarch, Elisenda; Figueras, Francesc; Muñoz-Moreno, Emma; Bargallo, Nuria; Illa, Miriam; Acosta-Rojas, Ruthy; Amat-Roldan, Ivan; Gratacos, Eduard

    2012-04-02

    Intrauterine growth restriction (IUGR) due to placental insufficiency affects 5-10% of all pregnancies and it is associated with a wide range of short- and long-term neurodevelopmental disorders. Prediction of neurodevelopmental outcomes in IUGR is among the clinical challenges of modern fetal medicine and pediatrics. In recent years several studies have used magnetic resonance imaging (MRI) to demonstrate differences in brain structure in IUGR subjects, but the ability to use MRI for individual predictive purposes in IUGR is limited. Recent research suggests that MRI in vivo access to brain connectivity might have the potential to help understanding cognitive and neurodevelopment processes. Specifically, MRI based connectomics is an emerging approach to extract information from MRI data that exhaustively maps inter-regional connectivity within the brain to build a graph model of its neural circuitry known as brain network. In the present study we used diffusion MRI based connectomics to obtain structural brain networks of a prospective cohort of one year old infants (32 controls and 24 IUGR) and analyze the existence of quantifiable brain reorganization of white matter circuitry in IUGR group by means of global and regional graph theory features of brain networks. Based on global and regional analyses of the brain network topology we demonstrated brain reorganization in IUGR infants at one year of age. Specifically, IUGR infants presented decreased global and local weighted efficiency, and a pattern of altered regional graph theory features. By means of binomial logistic regression, we also demonstrated that connectivity measures were associated with abnormal performance in later neurodevelopmental outcome as measured by Bayley Scale for Infant and Toddler Development, Third edition (BSID-III) at two years of age. These findings show the potential of diffusion MRI based connectomics and graph theory based network characteristics for estimating differences in the architecture of neural circuitry and developing imaging biomarkers of poor neurodevelopment outcome in infants with prenatal diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Connectomics and neuroticism: an altered functional network organization.

    PubMed

    Servaas, Michelle N; Geerligs, Linda; Renken, Remco J; Marsman, Jan-Bernard C; Ormel, Johan; Riese, Harriëtte; Aleman, André

    2015-01-01

    The personality trait neuroticism is a potent risk marker for psychopathology. Although the neurobiological basis remains unclear, studies have suggested that alterations in connectivity may underlie it. Therefore, the aim of the current study was to shed more light on the functional network organization in neuroticism. To this end, we applied graph theory on resting-state functional magnetic resonance imaging (fMRI) data in 120 women selected based on their neuroticism score. Binary and weighted brain-wide graphs were constructed to examine changes in the functional network structure and functional connectivity strength. Furthermore, graphs were partitioned into modules to specifically investigate connectivity within and between functional subnetworks related to emotion processing and cognitive control. Subsequently, complex network measures (ie, efficiency and modularity) were calculated on the brain-wide graphs and modules, and correlated with neuroticism scores. Compared with low neurotic individuals, high neurotic individuals exhibited a whole-brain network structure resembling more that of a random network and had overall weaker functional connections. Furthermore, in these high neurotic individuals, functional subnetworks could be delineated less clearly and the majority of these subnetworks showed lower efficiency, while the affective subnetwork showed higher efficiency. In addition, the cingulo-operculum subnetwork demonstrated more ties with other functional subnetworks in association with neuroticism. In conclusion, the 'neurotic brain' has a less than optimal functional network organization and shows signs of functional disconnectivity. Moreover, in high compared with low neurotic individuals, emotion and salience subnetworks have a more prominent role in the information exchange, while sensory(-motor) and cognitive control subnetworks have a less prominent role.

  14. Rotationally invariant clustering of diffusion MRI data using spherical harmonics

    NASA Astrophysics Data System (ADS)

    Liptrot, Matthew; Lauze, François

    2016-03-01

    We present a simple approach to the voxelwise classification of brain tissue acquired with diffusion weighted MRI (DWI). The approach leverages the power of spherical harmonics to summarise the diffusion information, sampled at many points over a sphere, using only a handful of coefficients. We use simple features that are invariant to the rotation of the highly orientational diffusion data. This provides a way to directly classify voxels whose diffusion characteristics are similar yet whose primary diffusion orientations differ. Subsequent application of machine-learning to the spherical harmonic coefficients therefore may permit classification of DWI voxels according to their inferred underlying fibre properties, whilst ignoring the specifics of orientation. After smoothing apparent diffusion coefficients volumes, we apply a spherical harmonic transform, which models the multi-directional diffusion data as a collection of spherical basis functions. We use the derived coefficients as voxelwise feature vectors for classification. Using a simple Gaussian mixture model, we examined the classification performance for a range of sub-classes (3-20). The results were compared against existing alternatives for tissue classification e.g. fractional anisotropy (FA) or the standard model used by Camino.1 The approach was implemented on both two publicly-available datasets: an ex-vivo pig brain and in-vivo human brain from the Human Connectome Project (HCP). We have demonstrated how a robust classification of DWI data can be performed without the need for a model reconstruction step. This avoids the potential confounds and uncertainty that such models may impose, and has the benefit of being computable directly from the DWI volumes. As such, the method could prove useful in subsequent pre-processing stages, such as model fitting, where it could inform about individual voxel complexities and improve model parameter choice.

  15. The neural correlates of obsessive-compulsive disorder: a multimodal perspective.

    PubMed

    Moreira, P S; Marques, P; Soriano-Mas, C; Magalhães, R; Sousa, N; Soares, J M; Morgado, P

    2017-08-29

    Obsessive-compulsive disorder (OCD) is one of the most debilitating psychiatric conditions. An extensive body of the literature has described some of the neurobiological mechanisms underlying the core manifestations of the disorder. Nevertheless, most reports have focused on individual modalities of structural/functional brain alterations, mainly through targeted approaches, thus possibly precluding the power of unbiased exploratory approaches. Eighty subjects (40 OCD and 40 healthy controls) participated in a multimodal magnetic resonance imaging (MRI) investigation, integrating structural and functional data. Voxel-based morphometry analysis was conducted to compare between-group volumetric differences. The whole-brain functional connectome, derived from resting-state functional connectivity (FC), was analyzed with the network-based statistic methodology. Results from structural and functional analysis were integrated in mediation models. OCD patients revealed volumetric reductions in the right superior temporal sulcus. Patients had significantly decreased FC in two distinct subnetworks: the first, involving the orbitofrontal cortex, temporal poles and the subgenual anterior cingulate cortex; the second, comprising the lingual and postcentral gyri. On the opposite, a network formed by connections between thalamic and occipital regions had significantly increased FC in patients. Integrative models revealed direct and indirect associations between volumetric alterations and FC networks. This study suggests that OCD patients display alterations in brain structure and FC, involving complex networks of brain regions. Furthermore, we provided evidence for direct and indirect associations between structural and functional alterations representing complex patterns of interactions between separate brain regions, which may be of upmost relevance for explaining the pathophysiology of the disorder.

  16. Digital tissue and what it may reveal about the brain.

    PubMed

    Morgan, Josh L; Lichtman, Jeff W

    2017-10-30

    Imaging as a means of scientific data storage has evolved rapidly over the past century from hand drawings, to photography, to digital images. Only recently can sufficiently large datasets be acquired, stored, and processed such that tissue digitization can actually reveal more than direct observation of tissue. One field where this transformation is occurring is connectomics: the mapping of neural connections in large volumes of digitized brain tissue.

  17. The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets.

    PubMed

    Anderson, J R; Mohammed, S; Grimm, B; Jones, B W; Koshevoy, P; Tasdizen, T; Whitaker, R; Marc, R E

    2011-01-01

    Modern microscope automation permits the collection of vast amounts of continuous anatomical imagery in both two and three dimensions. These large data sets present significant challenges for data storage, access, viewing, annotation and analysis. The cost and overhead of collecting and storing the data can be extremely high. Large data sets quickly exceed an individual's capability for timely analysis and present challenges in efficiently applying transforms, if needed. Finally annotated anatomical data sets can represent a significant investment of resources and should be easily accessible to the scientific community. The Viking application was our solution created to view and annotate a 16.5 TB ultrastructural retinal connectome volume and we demonstrate its utility in reconstructing neural networks for a distinctive retinal amacrine cell class. Viking has several key features. (1) It works over the internet using HTTP and supports many concurrent users limited only by hardware. (2) It supports a multi-user, collaborative annotation strategy. (3) It cleanly demarcates viewing and analysis from data collection and hosting. (4) It is capable of applying transformations in real-time. (5) It has an easily extensible user interface, allowing addition of specialized modules without rewriting the viewer. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  18. Emergent Functional Network Effects in Parkinson Disease.

    PubMed

    Gratton, Caterina; Koller, Jonathan M; Shannon, William; Greene, Deanna J; Snyder, Abraham Z; Petersen, Steven E; Perlmutter, Joel S; Campbell, Meghan C

    2018-06-06

    The hallmark pathology underlying Parkinson disease (PD) is progressive synucleinopathy, beginning in caudal brainstem that later spreads rostrally. However, the primarily subcortical pathology fails to account for the wide spectrum of clinical manifestations in PD. To reconcile these observations, resting-state functional dysfunction across connectivity (FC) can be used to examine dysfunction across distributed brain networks. We measured FC in a large, single-site study of nondemented PD (N = 107; OFF medications) and healthy controls (N = 46) incorporating rigorous quality control measures and comprehensive sampling of cortical, subcortical and cerebellar regions. We employed novel statistical approaches to determine group differences across the entire connectome, at the network-level, and for select brain regions. Group differences respected well-characterized network delineations producing a striking "block-wise" pattern of network-to-network effects. Surprisingly, these results demonstrate that the greatest FC differences involve sensorimotor, thalamic, and cerebellar networks, with notably smaller striatal effects. Split-half replication demonstrates the robustness of these results. Finally, block-wise FC correlations with behavior suggest that FC disruptions may contribute to clinical manifestations in PD. Overall, these results indicate a concerted breakdown of functional network interactions, remote from primary pathophysiology, and suggest that FC deficits in PD are related to emergent network-level phenomena rather than focal pathology.

  19. Differentially categorized structural brain hubs are involved in different microstructural, functional, and cognitive characteristics and contribute to individual identification.

    PubMed

    Wang, Xindi; Lin, Qixiang; Xia, Mingrui; He, Yong

    2018-04-01

    Very little is known regarding whether structural hubs of human brain networks that enable efficient information communication may be classified into different categories. Using three multimodal neuroimaging data sets, we construct individual structural brain networks and further identify hub regions based on eight widely used graph-nodal metrics, followed by comprehensive characteristics and reproducibility analyses. We show the three categories of structural hubs in the brain network, namely, aggregated, distributed, and connector hubs. Spatially, these distinct categories of hubs are primarily located in the default-mode system and additionally in the visual and limbic systems for aggregated hubs, in the frontoparietal system for distributed hubs, and in the sensorimotor and ventral attention systems for connector hubs. These categorized hubs exhibit various distinct characteristics to support their differentiated roles, involving microstructural organization, wiring costs, topological vulnerability, functional modular integration, and cognitive flexibility; moreover, these characteristics are better in the hubs than nonhubs. Finally, all three categories of hubs display high across-session spatial similarities and act as structural fingerprints with high predictive rates (100%, 100%, and 84.2%) for individual identification. Collectively, we highlight three categories of brain hubs with differential microstructural, functional and, cognitive associations, which shed light on topological mechanisms of the human connectome. © 2018 Wiley Periodicals, Inc.

  20. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT.

    PubMed

    Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco

    2014-08-30

    Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting state perfusion was investigated by single photon emission computed tomography, and group differences were assessed by Statistical Parametric Mapping. Brain connectivity was explored through a voxel-wise interregional correlation analysis using as covariate of interest the normalized values of clusters of voxels in which perfusion differences were found in group analysis. Significantly increased regional brain perfusion distribution covering a large part of the cerebellum was observed in patients as compared with controls. Patients showed a significant negative functional connectivity between the cerebellar cluster and caudate, bilaterally. This study demonstrated inverse relative perfusion between the cerebellum and the caudate in PDD. Functional uncoupling may be associated with a dysregulation between the role of the cerebellum in action control and of the caudate in action selection, initiation and decision making in the patients. The potential impact of the resting state condition and the possibility of mitochondrial impairment are discussed. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Dynamic recruitment of resting state sub-networks

    PubMed Central

    O'Neill, George C.; Bauer, Markus; Woolrich, Mark W.; Morris, Peter G.; Barnes, Gareth R.; Brookes, Matthew J.

    2015-01-01

    Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease. PMID:25899137

  2. Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb

    PubMed Central

    Deshpande, Aditi; Bergami, Matteo; Ghanem, Alexander; Conzelmann, Karl-Klaus; Lepier, Alexandra; Götz, Magdalena; Berninger, Benedikt

    2013-01-01

    Identifying the connectome of adult-generated neurons is essential for understanding how the preexisting circuitry is refined by neurogenesis. Changes in the pattern of connectivity are likely to control the differentiation process of newly generated neurons and exert an important influence on their unique capacity to contribute to information processing. Using a monosynaptic rabies virus-based tracing technique, we studied the evolving presynaptic connectivity of adult-generated neurons in the dentate gyrus (DG) of the hippocampus and olfactory bulb (OB) during the first weeks of their life. In both neurogenic zones, adult-generated neurons first receive local connections from multiple types of GABAergic interneurons before long-range projections become established, such as those originating from cortical areas. Interestingly, despite fundamental similarities in the overall pattern of evolution of presynaptic connectivity, there were notable differences with regard to the development of cortical projections: although DG granule neuron input originating from the entorhinal cortex could be traced starting only from 3 to 5 wk on, newly generated neurons in the OB received input from the anterior olfactory nucleus and piriform cortex already by the second week. This early glutamatergic input onto newly generated interneurons in the OB was matched in time by the equally early innervations of DG granule neurons by glutamatergic mossy cells. The development of connectivity revealed by our study may suggest common principles for incorporating newly generated neurons into a preexisting circuit. PMID:23487772

  3. Individualized Prediction of Reading Comprehension Ability Using Gray Matter Volume.

    PubMed

    Cui, Zaixu; Su, Mengmeng; Li, Liangjie; Shu, Hua; Gong, Gaolang

    2018-05-01

    Reading comprehension is a crucial reading skill for learning and putatively contains 2 key components: reading decoding and linguistic comprehension. Current understanding of the neural mechanism underlying these reading comprehension components is lacking, and whether and how neuroanatomical features can be used to predict these 2 skills remain largely unexplored. In the present study, we analyzed a large sample from the Human Connectome Project (HCP) dataset and successfully built multivariate predictive models for these 2 skills using whole-brain gray matter volume features. The results showed that these models effectively captured individual differences in these 2 skills and were able to significantly predict these components of reading comprehension for unseen individuals. The strict cross-validation using the HCP cohort and another independent cohort of children demonstrated the model generalizability. The identified gray matter regions contributing to the skill prediction consisted of a wide range of regions covering the putative reading, cerebellum, and subcortical systems. Interestingly, there were gender differences in the predictive models, with the female-specific model overestimating the males' abilities. Moreover, the identified contributing gray matter regions for the female-specific and male-specific models exhibited considerable differences, supporting a gender-dependent neuroanatomical substrate for reading comprehension.

  4. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  5. Hierarchical multivariate covariance analysis of metabolic connectivity.

    PubMed

    Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J

    2014-12-01

    Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).

  6. A network engineering perspective on probing and perturbing cognition with neurofeedback.

    PubMed

    Bassett, Danielle S; Khambhati, Ankit N

    2017-05-01

    Network science and engineering provide a flexible and generalizable tool set to describe and manipulate complex systems characterized by heterogeneous interaction patterns among component parts. While classically applied to social systems, these tools have recently proven to be particularly useful in the study of the brain. In this review, we describe the nascent use of these tools to understand human cognition, and we discuss their utility in informing the meaningful and predictable perturbation of cognition in combination with the emerging capabilities of neurofeedback. To blend these disparate strands of research, we build on emerging conceptualizations of how the brain functions (as a complex network) and how we can develop and target interventions or modulations (as a form of network control). We close with an outline of current frontiers that bridge neurofeedback, connectomics, and network control theory to better understand human cognition. © 2017 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals Inc. on behalf of The New York Academy of Sciences.

  7. A connectome of a learning and memory center in the adult Drosophila brain

    PubMed Central

    Takemura, Shin-ya; Aso, Yoshinori; Hige, Toshihide; Wong, Allan; Lu, Zhiyuan; Xu, C Shan; Rivlin, Patricia K; Hess, Harald; Zhao, Ting; Parag, Toufiq; Berg, Stuart; Huang, Gary; Katz, William; Olbris, Donald J; Plaza, Stephen; Umayam, Lowell; Aniceto, Roxanne; Chang, Lei-Ann; Lauchie, Shirley; Ogundeyi, Omotara; Ordish, Christopher; Shinomiya, Aya; Sigmund, Christopher; Takemura, Satoko; Tran, Julie; Turner, Glenn C; Rubin, Gerald M; Scheffer, Louis K

    2017-01-01

    Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB’s α lobe, using a dataset of isotropic 8 nm voxels collected by focused ion-beam milling scanning electron microscopy. We found that Kenyon cells (KCs), whose sparse activity encodes sensory information, each make multiple en passant synapses to MB output neurons (MBONs) in each compartment. Some MBONs have inputs from all KCs, while others differentially sample sensory modalities. Only 6% of KC>MBON synapses receive a direct synapse from a dopaminergic neuron (DAN). We identified two unanticipated classes of synapses, KC>DAN and DAN>MBON. DAN activation produces a slow depolarization of the MBON in these DAN>MBON synapses and can weaken memory recall. DOI: http://dx.doi.org/10.7554/eLife.26975.001 PMID:28718765

  8. The Brain/MINDS 3D digital marmoset brain atlas

    PubMed Central

    Woodward, Alexander; Hashikawa, Tsutomu; Maeda, Masahide; Kaneko, Takaaki; Hikishima, Keigo; Iriki, Atsushi; Okano, Hideyuki; Yamaguchi, Yoko

    2018-01-01

    We present a new 3D digital brain atlas of the non-human primate, common marmoset monkey (Callithrix jacchus), with MRI and coregistered Nissl histology data. To the best of our knowledge this is the first comprehensive digital 3D brain atlas of the common marmoset having normalized multi-modal data, cortical and sub-cortical segmentation, and in a common file format (NIfTI). The atlas can be registered to new data, is useful for connectomics, functional studies, simulation and as a reference. The atlas was based on previously published work but we provide several critical improvements to make this release valuable for researchers. Nissl histology images were processed to remove illumination and shape artifacts and then normalized to the MRI data. Brain region segmentation is provided for both hemispheres. The data is in the NIfTI format making it easy to integrate into neuroscience pipelines, whereas the previous atlas was in an inaccessible file format. We also provide cortical, mid-cortical and white matter boundary segmentations useful for visualization and analysis. PMID:29437168

  9. Selective Activation of Resting-State Networks following Focal Stimulation in a Connectome-Based Network Model of the Human Brain

    PubMed Central

    2016-01-01

    Abstract When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear. Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive processing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in diagnostics and treatments with brain stimulation. PMID:27752540

  10. Robust prediction of individual creative ability from brain functional connectivity.

    PubMed

    Beaty, Roger E; Kenett, Yoed N; Christensen, Alexander P; Rosenberg, Monica D; Benedek, Mathias; Chen, Qunlin; Fink, Andreas; Qiu, Jiang; Kwapil, Thomas R; Kane, Michael J; Silvia, Paul J

    2018-01-30

    People's ability to think creatively is a primary means of technological and cultural progress, yet the neural architecture of the highly creative brain remains largely undefined. Here, we employed a recently developed method in functional brain imaging analysis-connectome-based predictive modeling-to identify a brain network associated with high-creative ability, using functional magnetic resonance imaging (fMRI) data acquired from 163 participants engaged in a classic divergent thinking task. At the behavioral level, we found a strong correlation between creative thinking ability and self-reported creative behavior and accomplishment in the arts and sciences ( r = 0.54). At the neural level, we found a pattern of functional brain connectivity related to high-creative thinking ability consisting of frontal and parietal regions within default, salience, and executive brain systems. In a leave-one-out cross-validation analysis, we show that this neural model can reliably predict the creative quality of ideas generated by novel participants within the sample. Furthermore, in a series of external validation analyses using data from two independent task fMRI samples and a large task-free resting-state fMRI sample, we demonstrate robust prediction of individual creative thinking ability from the same pattern of brain connectivity. The findings thus reveal a whole-brain network associated with high-creative ability comprised of cortical hubs within default, salience, and executive systems-intrinsic functional networks that tend to work in opposition-suggesting that highly creative people are characterized by the ability to simultaneously engage these large-scale brain networks.

  11. Altered Functional Subnetwork During Emotional Face Processing: A Potential Intermediate Phenotype for Schizophrenia.

    PubMed

    Cao, Hengyi; Bertolino, Alessandro; Walter, Henrik; Schneider, Michael; Schäfer, Axel; Taurisano, Paolo; Blasi, Giuseppe; Haddad, Leila; Grimm, Oliver; Otto, Kristina; Dixson, Luanna; Erk, Susanne; Mohnke, Sebastian; Heinz, Andreas; Romanczuk-Seiferth, Nina; Mühleisen, Thomas W; Mattheisen, Manuel; Witt, Stephanie H; Cichon, Sven; Noethen, Markus; Rietschel, Marcella; Tost, Heike; Meyer-Lindenberg, Andreas

    2016-06-01

    Although deficits in emotional processing are prominent in schizophrenia, it has been difficult to identify neural mechanisms related to the genetic risk for this highly heritable illness. Prior studies have not found consistent regional activation or connectivity alterations in first-degree relatives compared with healthy controls, suggesting that a more comprehensive search for connectomic biomarkers is warranted. To identify a potential systems-level intermediate phenotype linked to emotion processing in schizophrenia and to examine the psychological association, task specificity, test-retest reliability, and clinical validity of the identified phenotype. The study was performed in university research hospitals from June 1, 2008, through December 31, 2013. We examined 58 unaffected first-degree relatives of patients with schizophrenia and 94 healthy controls with an emotional face-matching functional magnetic resonance imaging paradigm. Test-retest reliability was analyzed with an independent sample of 26 healthy participants. A clinical association study was performed in 31 patients with schizophrenia and 45 healthy controls. Data analysis was performed from January 1 to September 30, 2014. Conventional amygdala activity and seeded connectivity measures, graph-based global and local network connectivity measures, Spearman rank correlation, intraclass correlation, and gray matter volumes. Among the 152 volunteers included in the relative-control sample, 58 were unaffected first-degree relatives of patients with schizophrenia (mean [SD] age, 33.29 [12.56]; 38 were women), and 94 were healthy controls without a first-degree relative with mental illness (mean [SD] age, 32.69 [10.09] years; 55 were women). A graph-theoretical connectivity approach identified significantly decreased connectivity in a subnetwork that primarily included the limbic cortex, visual cortex, and subcortex during emotional face processing (cluster-level P corrected for familywise error = .006) in relatives compared with controls. The connectivity of the same subnetwork was significantly decreased in patients with schizophrenia (F = 6.29, P = .01). Furthermore, we found that this subnetwork connectivity measure was negatively correlated with trait anxiety scores (P = .04), test-retest reliable (intraclass correlation coefficient = 0.57), specific to emotional face processing (F = 17.97, P < .001), and independent of gray matter volumes of the identified brain areas (F = 1.84, P = .18). Replicating previous results, no significant group differences were found in face-related amygdala activation and amygdala-anterior cingulate cortex connectivity (P corrected for familywise error =.37 and .11, respectively). Our results indicate that altered connectivity in a visual-limbic subnetwork during emotional face processing may be a functional connectomic intermediate phenotype for schizophrenia. The phenotype is reliable, task specific, related to trait anxiety, and associated with manifest illness. These data encourage the further investigation of this phenotype in clinical and pharmacologic studies.

  12. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabral, Joana; Department of Psychiatry, University of Oxford, Oxford OX3 7JX; Fernandes, Henrique M.

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the rolemore » of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.« less

  13. Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks

    NASA Astrophysics Data System (ADS)

    Cabral, Joana; Fernandes, Henrique M.; Van Hartevelt, Tim J.; James, Anthony C.; Kringelbach, Morten L.; Deco, Gustavo

    2013-12-01

    The neuropathology of schizophrenia remains unclear. Some insight has come from modern neuroimaging techniques, which offer an unparalleled opportunity to explore in vivo the structure and function of the brain. Using functional magnetic resonance imaging, it has been found that the large-scale resting-state functional connectivity (rsFC) in schizophrenia — measured as the temporal correlations of the blood-oxygen-level-dependent (BOLD) signal — exhibit altered network topology, with lower small-world index. The origin of these rsFC alterations and link with the underlying structural connectivity remain unclear. In this work, we used a computational model of spontaneous large-scale brain activity to explore the role of the structural connectivity in the large-scale dynamics of the brain in health and schizophrenia. The structural connectomes from 15 adolescent patients with early-onset schizophrenia and 15 age- and gender-matched controls were built from diffusion tensor imaging data to detect the white matter tracts between 90 brain areas. Brain areas, simulated using a reduced dynamic mean-field model, receive excitatory input from other areas in proportion to the number of fibre tracts between them. The simulated mean field activity was transformed into BOLD signal, and the properties of the simulated functional networks were analyzed. Our results suggest that the functional alterations observed in schizophrenia are not directly linked to alterations in the structural topology. Instead, subtly randomized and less small-world functional networks appear when the brain operates with lower global coupling, which shifts the dynamics from the optimal healthy regime.

  14. Sparse and optimal acquisition design for diffusion MRI and beyond

    PubMed Central

    Koay, Cheng Guan; Özarslan, Evren; Johnson, Kevin M.; Meyerand, M. Elizabeth

    2012-01-01

    Purpose: Diffusion magnetic resonance imaging (MRI) in combination with functional MRI promises a whole new vista for scientists to investigate noninvasively the structural and functional connectivity of the human brain—the human connectome, which had heretofore been out of reach. As with other imaging modalities, diffusion MRI data are inherently noisy and its acquisition time-consuming. Further, a faithful representation of the human connectome that can serve as a predictive model requires a robust and accurate data-analytic pipeline. The focus of this paper is on one of the key segments of this pipeline—in particular, the development of a sparse and optimal acquisition (SOA) design for diffusion MRI multiple-shell acquisition and beyond. Methods: The authors propose a novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and a novel and effective semistochastic and moderately greedy combinatorial search strategy with simulated annealing to locate the optimum design or configuration. The goal of the optimality criteria is threefold: first, to maximize uniformity of the diffusion measurements in each shell, which is equivalent to maximal incoherence in angular measurements; second, to maximize coverage of the diffusion measurements around each radial line to achieve maximal incoherence in radial measurements for multiple-shell acquisition; and finally, to ensure maximum uniformity of diffusion measurement directions in the limiting case when all the shells are coincidental as in the case of a single-shell acquisition. The approach taken in evaluating the stability of various acquisition designs is based on the condition number and the A-optimal measure of the design matrix. Results: Even though the number of distinct configurations for a given set of diffusion gradient directions is very large in general—e.g., in the order of 10232 for a set of 144 diffusion gradient directions, the proposed search strategy was found to be effective in finding the optimum configuration. It was found that the square design is the most robust (i.e., with stable condition numbers and A-optimal measures under varying experimental conditions) among many other possible designs of the same sample size. Under the same performance evaluation, the square design was found to be more robust than the widely used sampling schemes similar to that of 3D radial MRI and of diffusion spectrum imaging (DSI). Conclusions: A novel optimality criterion for sparse multiple-shell acquisition and quasimultiple-shell designs in diffusion MRI and an effective search strategy for finding the best configuration have been developed. The results are very promising, interesting, and practical for diffusion MRI acquisitions. PMID:22559620

  15. Using big data to map the network organization of the brain.

    PubMed

    Swain, James E; Sripada, Chandra; Swain, John D

    2014-02-01

    The past few years have shown a major rise in network analysis of "big data" sets in the social sciences, revealing non-obvious patterns of organization and dynamic principles. We speculate that the dependency dimension - individuality versus sociality - might offer important insights into the dynamics of neurons and neuronal ensembles. Connectomic neural analyses, informed by social network theory, may be helpful in understanding underlying fundamental principles of brain organization.

  16. Using big data to map the network organization of the brain

    PubMed Central

    Swain, James E.; Sripada, Chandra; Swain, John D.

    2015-01-01

    The past few years have shown a major rise in network analysis of “big data” sets in the social sciences, revealing non-obvious patterns of organization and dynamic principles. We speculate that the dependency dimension – individuality versus sociality – might offer important insights into the dynamics of neurons and neuronal ensembles. Connectomic neural analyses, informed by social network theory, may be helpful in understanding underlying fundamental principles of brain organization. PMID:24572243

  17. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder

    PubMed Central

    Dima, D; Roberts, R E; Frangou, S

    2016-01-01

    Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical—primarily emotional processing regions—and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies. PMID:26731443

  18. Connectomic markers of disease expression, genetic risk and resilience in bipolar disorder.

    PubMed

    Dima, D; Roberts, R E; Frangou, S

    2016-01-05

    Bipolar disorder (BD) is characterized by emotional dysregulation and cognitive deficits associated with abnormal connectivity between subcortical-primarily emotional processing regions-and prefrontal regulatory areas. Given the significant contribution of genetic factors to BD, studies in unaffected first-degree relatives can identify neural mechanisms of genetic risk but also resilience, thus paving the way for preventive interventions. Dynamic causal modeling (DCM) and random-effects Bayesian model selection were used to define and assess connectomic phenotypes linked to facial affect processing and working memory in a demographically matched sample of first-degree relatives carefully selected for resilience (n=25), euthymic patients with BD (n=41) and unrelated healthy controls (n=46). During facial affect processing, patients and relatives showed similarly increased frontolimbic connectivity; resilient relatives, however, evidenced additional adaptive hyperconnectivity within the ventral visual stream. During working memory processing, patients displayed widespread hypoconnectivity within the corresponding network. In contrast, working memory network connectivity in resilient relatives was comparable to that of controls. Our results indicate that frontolimbic dysfunction during affect processing could represent a marker of genetic risk to BD, and diffuse hypoconnectivity within the working memory network a marker of disease expression. The association of hyperconnectivity within the affect-processing network with resilience to BD suggests adaptive plasticity that allows for compensatory changes and encourages further investigation of this phenotype in genetic and early intervention studies.

  19. Effects of Orientation and Anisometry of Magnetic Resonance Imaging Acquisitions on Diffusion Tensor Imaging and Structural Connectomes.

    PubMed

    Tudela, Raúl; Muñoz-Moreno, Emma; López-Gil, Xavier; Soria, Guadalupe

    2017-01-01

    Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.

  20. Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders

    PubMed Central

    Lord, Louis-David; Stevner, Angus B.; Kringelbach, Morten L.

    2017-01-01

    To survive in an ever-changing environment, the brain must seamlessly integrate a rich stream of incoming information into coherent internal representations that can then be used to efficiently plan for action. The brain must, however, balance its ability to integrate information from various sources with a complementary capacity to segregate information into modules which perform specialized computations in local circuits. Importantly, evidence suggests that imbalances in the brain's ability to bind together and/or segregate information over both space and time is a common feature of several neuropsychiatric disorders. Most studies have, however, until recently strictly attempted to characterize the principles of integration and segregation in static (i.e. time-invariant) representations of human brain networks, hence disregarding the complex spatio-temporal nature of these processes. In the present Review, we describe how the emerging discipline of whole-brain computational connectomics may be used to study the causal mechanisms of the integration and segregation of information on behaviourally relevant timescales. We emphasize how novel methods from network science and whole-brain computational modelling can expand beyond traditional neuroimaging paradigms and help to uncover the neurobiological determinants of the abnormal integration and segregation of information in neuropsychiatric disorders. This article is part of the themed issue ‘Mathematical methods in medicine: neuroscience, cardiology and pathology’. PMID:28507228

  1. Brain structural connectivity increases concurrent with functional improvement: evidence from diffusion tensor MRI in children with cerebral palsy during therapy.

    PubMed

    Englander, Zoë A; Sun, Jessica; Laura Case; Mikati, Mohamad A; Kurtzberg, Joanne; Song, Allen W

    2015-01-01

    Cerebral Palsy (CP) refers to a heterogeneous group of permanent but non-progressive movement disorders caused by injury to the developing fetal or infant brain (Bax et al., 2005). Because of its serious long-term consequences, effective interventions that can help improve motor function, independence, and quality of life are critically needed. Our ongoing longitudinal clinical trial to treat children with CP is specifically designed to meet this challenge. To maximize the potential for functional improvement, all children in this trial received autologous cord blood transfusions (with order randomized with a placebo administration over 2 years) in conjunction with more standard physical and occupational therapies. As a part of this trial, magnetic resonance imaging (MRI) is used to improve our understanding of how these interventions affect brain development, and to develop biomarkers of treatment efficacy. In this report, diffusion tensor imaging (DTI) and subsequent brain connectome analyses were performed in a subset of children enrolled in the clinical trial (n = 17), who all exhibited positive but varying degrees of functional improvement over the first 2-year period of the study. Strong correlations between increases in white matter (WM) connectivity and functional improvement were demonstrated; however no significant relationships between either of these factors with the age of the child at time of enrollment were identified. Thus, our data indicate that increases in brain connectivity reflect improved functional abilities in children with CP. In future work, this potential biomarker can be used to help differentiate the underlying mechanisms of functional improvement, as well as to identify treatments that can best facilitate functional improvement upon un-blinding of the timing of autologous cord blood transfusions at the completion of this study.

  2. Neuroinformatics challenges to the structural, connectomic, functional and electrophysiological multimodal imaging of human traumatic brain injury

    PubMed Central

    Goh, S. Y. Matthew; Irimia, Andrei; Torgerson, Carinna M.; Horn, John D. Van

    2014-01-01

    Throughout the past few decades, the ability to treat and rehabilitate traumatic brain injury (TBI) patients has become critically reliant upon the use of neuroimaging to acquire adequate knowledge of injury-related effects upon brain function and recovery. As a result, the need for TBI neuroimaging analysis methods has increased in recent years due to the recognition that spatiotemporal computational analyses of TBI evolution are useful for capturing the effects of TBI dynamics. At the same time, however, the advent of such methods has brought about the need to analyze, manage, and integrate TBI neuroimaging data using informatically inspired approaches which can take full advantage of their large dimensionality and informational complexity. Given this perspective, we here discuss the neuroinformatics challenges for TBI neuroimaging analysis in the context of structural, connectivity, and functional paradigms. Within each of these, the availability of a wide range of neuroimaging modalities can be leveraged to fully understand the heterogeneity of TBI pathology; consequently, large-scale computer hardware resources and next-generation processing software are often required for efficient data storage, management, and analysis of TBI neuroimaging data. However, each of these paradigms poses challenges in the context of informatics such that the ability to address them is critical for augmenting current capabilities to perform neuroimaging analysis of TBI and to improve therapeutic efficacy. PMID:24616696

  3. Is non-awake surgery for supratentorial adult low-grade glioma treatment still feasible?

    PubMed

    Duffau, Hugues

    2018-01-01

    In this short review, the author performs a database search, summarizes, and discusses studies that provide information on the need to perform awake surgery to preserve quality of life/return to work of adult patients who undergo resection for a supratentorial low-grade glioma (LGG). Based upon the currently available data, the author concludes that in LGG, patients with no or only mild deficits at diagnosis, non-awake surgery can no longer be achieved. Indeed, awake craniotomy with intrasurgical electrical mapping has resulted in an increase of the extent of resection and overall survival in LGG. Furthermore, in order to resume a normal familial, social, and professional life, LGG patients with a prolonged survival expectancy have to benefit not only from language mapping when the tumor involves the left "dominant" hemisphere, but also from intraoperative mapping of sensorimotor, visuospatial, higher cognitive, and emotional functions under local anesthesia, even for gliomas situated within presumed "non-language" areas such as the right "non-dominant" hemisphere. In other words, the ultimate goal is to map the functional connectome for each patient in order to perform the resection up to the eloquent networks and then to optimize the onco-functional balance of LGG surgery. To this end, an objective neuropsychological assessment has to be achieved in a more systematic manner before and after resection. Early postoperative cognitive rehabilitation is also recommended, whenever needed.

  4. Evoked effective connectivity of the human neocortex.

    PubMed

    Entz, László; Tóth, Emília; Keller, Corey J; Bickel, Stephan; Groppe, David M; Fabó, Dániel; Kozák, Lajos R; Erőss, Loránd; Ulbert, István; Mehta, Ashesh D

    2014-12-01

    The role of cortical connectivity in brain function and pathology is increasingly being recognized. While in vivo magnetic resonance imaging studies have provided important insights into anatomical and functional connectivity, these methodologies are limited in their ability to detect electrophysiological activity and the causal relationships that underlie effective connectivity. Here, we describe results of cortico-cortical evoked potential (CCEP) mapping using single pulse electrical stimulation in 25 patients undergoing seizure monitoring with subdural electrode arrays. Mapping was performed by stimulating adjacent electrode pairs and recording CCEPs from the remainder of the electrode array. CCEPs reliably revealed functional networks and showed an inverse relationship to distance between sites. Coregistration to Brodmann areas (BA) permitted group analysis. Connections were frequently directional with 43% of early responses and 50% of late responses of connections reflecting relative dominance of incoming or outgoing connections. The most consistent connections were seen as outgoing from motor cortex, BA6-BA9, somatosensory (SS) cortex, anterior cingulate cortex, and Broca's area. Network topology revealed motor, SS, and premotor cortices along with BA9 and BA10 and language areas to serve as hubs for cortical connections. BA20 and BA39 demonstrated the most consistent dominance of outdegree connections, while BA5, BA7, auditory cortex, and anterior cingulum demonstrated relatively greater indegree. This multicenter, large-scale, directional study of local and long-range cortical connectivity using direct recordings from awake, humans will aid the interpretation of noninvasive functional connectome studies. © 2014 Wiley Periodicals, Inc.

  5. Topological Alterations of the Intrinsic Brain Network in Patients with Functional Dyspepsia.

    PubMed

    Nan, Jiaofen; Zhang, Li; Zhu, Fubao; Tian, Xiaorui; Zheng, Qian; Deneen, Karen M von; Liu, Jixin; Zhang, Ming

    2016-01-31

    Previous studies reported that integrated information in the brain ultimately determines the subjective experience of patients with chronic pain, but how the information is integrated in the brain connectome of functional dyspepsia (FD) patients remains largely unclear. The study aimed to quantify the topological changes of the brain network in FD patients. Small-world properties, network efficiency and nodal centrality were utilized to measure the changes in topological architecture in 25 FD patients and 25 healthy controls based on functional magnetic resonance imaging. Pearson's correlation assessed the relationship of each topological property with clinical symptoms. FD patients showed an increase of clustering coefficients and local efficiency relative to controls from the perspective of a whole network as well as elevated nodal centrality in the right orbital part of the inferior frontal gyrus, left anterior cingulate gyrus and left hippocampus, and decreased nodal centrality in the right posterior cingulate gyrus, left cuneus, right putamen, left middle occipital gyrus and right inferior occipital gyrus. Moreover, the centrality in the anterior cingulate gyrus was significantly associated with symptom severity and duration in FD patients. Nevertheless, the inclusion of anxiety and depression scores as covariates erased the group differences in nodal centralities in the orbital part of the inferior frontal gyrus and hippocampus. The results suggest topological disruption of the functional brain networks in FD patients, presumably in response to disturbances of sensory information integrated with emotion, memory, pain modulation, and selective attention in patients.

  6. Cartography and Connectomes Perspective article for Neuron 25th Anniversary Issue

    PubMed Central

    Van Essen, David C.

    2013-01-01

    The past 25 years have seen great progress in parcellating the cerebral cortex into a mosaic of many distinct areas in mice, monkeys, and humans. Quantitative studies of inter-areal connectivity have revealed unexpectedly many pathways and a wide range of connection strengths in mouse and macaque cortex. In humans, advances in analyzing ‘structural’ and ‘functional’ connectivity using powerful but indirect noninvasive neuroimaging methods are yielding intriguing insights about brain circuits, their variability across individuals, and their relationship to behavior. PMID:24183027

  7. Network feedback regulates motor output across a range of modulatory neuron activity

    PubMed Central

    Spencer, Robert M.

    2016-01-01

    Modulatory projection neurons alter network neuron synaptic and intrinsic properties to elicit multiple different outputs. Sensory and other inputs elicit a range of modulatory neuron activity that is further shaped by network feedback, yet little is known regarding how the impact of network feedback on modulatory neurons regulates network output across a physiological range of modulatory neuron activity. Identified network neurons, a fully described connectome, and a well-characterized, identified modulatory projection neuron enabled us to address this issue in the crab (Cancer borealis) stomatogastric nervous system. The modulatory neuron modulatory commissural neuron 1 (MCN1) activates and modulates two networks that generate rhythms via different cellular mechanisms and at distinct frequencies. MCN1 is activated at rates of 5–35 Hz in vivo and in vitro. Additionally, network feedback elicits MCN1 activity time-locked to motor activity. We asked how network activation, rhythm speed, and neuron activity levels are regulated by the presence or absence of network feedback across a physiological range of MCN1 activity rates. There were both similarities and differences in responses of the two networks to MCN1 activity. Many parameters in both networks were sensitive to network feedback effects on MCN1 activity. However, for most parameters, MCN1 activity rate did not determine the extent to which network output was altered by the addition of network feedback. These data demonstrate that the influence of network feedback on modulatory neuron activity is an important determinant of network output and feedback can be effective in shaping network output regardless of the extent of network modulation. PMID:27030739

  8. Time-dependence of graph theory metrics in functional connectivity analysis

    PubMed Central

    Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.

    2016-01-01

    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632

  9. Time-dependence of graph theory metrics in functional connectivity analysis.

    PubMed

    Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M

    2016-01-15

    Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI.

    PubMed

    Zeng, Ling-Li; Wang, Huaning; Hu, Panpan; Yang, Bo; Pu, Weidan; Shen, Hui; Chen, Xingui; Liu, Zhening; Yin, Hong; Tan, Qingrong; Wang, Kai; Hu, Dewen

    2018-04-01

    A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Advanced deep learning methods may be capable of learning subtle hidden patterns from high dimensional imaging data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep learning-based cross-site transfer classification, despite less imaging site-specificity and more generalizability of diagnostic models, has not been investigated in schizophrenia. A large multi-site functional MRI sample (n = 734, including 357 schizophrenic patients from seven imaging resources) was collected, and a deep discriminant autoencoder network, aimed at learning imaging site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from healthy controls. Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysregulation of the cortical-striatal-cerebellar circuit in schizophrenia, and the most discriminating functional connections were primarily located within and across the default, salience, and control networks. The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across the default, salience, and control networks may play an important role in the "disconnectivity" model underlying the pathophysiology of schizophrenia. The proposed discriminant deep learning method may be capable of learning reliable connectome patterns and help in understanding the pathophysiology and achieving accurate prediction of schizophrenia across multiple independent imaging sites. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  11. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    PubMed

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  12. Local functional connectivity alterations in schizophrenia, bipolar disorder, and major depressive disorder.

    PubMed

    Wei, Yange; Chang, Miao; Womer, Fay Y; Zhou, Qian; Yin, Zhiyang; Wei, Shengnan; Zhou, Yifang; Jiang, Xiaowei; Yao, Xudong; Duan, Jia; Xu, Ke; Zuo, Xi-Nian; Tang, Yanqing; Wang, Fei

    2018-08-15

    Local functional connectivity (FC) indicates local or short-distance functional interactions and may serve as a neuroimaging marker to investigate the human brain connectome. Local FC alterations suggest a disrupted balance in the local functionality of the whole brain network and are increasingly implicated in schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD). We aim to examine the similarities and differences in the local FC across SZ, BD, and MDD. In total, 537 participants (SZ, 126; BD, 97; MDD, 126; and healthy controls, 188) completed resting-state functional magnetic resonance imaging at a single site. The local FC at resting state was calculated and compared across SZ, BD, and MDD. The local FC increased across SZ, BD, and MDD within the bilateral orbital frontal cortex (OFC) and additional region in the left OFC extending to putamen and decreased in the primary visual, auditory, and motor cortices, right supplemental motor area, and bilateral thalami. There was a gradient in the extent of alterations such that SZ > BD > MDD. This cross-sectional study cannot consider medications and other clinical variables. These findings indicate a disrupted balance between network integration and segregation in SZ, BD, and MDD, including over-integration via increased local FC in the OFC and diminished segregation of neural processing with the weakening of the local FC in the primary sensory cortices and thalamus. The shared local FC abnormalities across SZ, BD, and MDD may shed new light on the potential biological mechanisms underlying these disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Modality-Spanning Deficits in Attention-Deficit/Hyperactivity Disorder in Functional Networks, Gray Matter, and White Matter

    PubMed Central

    Kessler, Daniel; Angstadt, Michael; Welsh, Robert C.

    2014-01-01

    Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309

  14. Cracking the barcode of fullerene-like cortical microcolumns.

    PubMed

    Tozzi, Arturo; Peters, James F; Ori, Ottorino

    2017-03-22

    Artificial neural systems and nervous graph theoretical analysis rely upon the stance that the neural code is embodied in logic circuits, e.g., spatio-temporal sequences of ON/OFF spiking neurons. Nevertheless, this assumption does not fully explain complex brain functions. Here we show how nervous activity, other than logic circuits, could instead depend on topological transformations and symmetry constraints occurring at the micro-level of the cortical microcolumn, i.e., the embryological, anatomical and functional basic unit of the brain. Tubular microcolumns can be flattened in fullerene-like two-dimensional lattices, equipped with about 80 nodes standing for pyramidal neurons where neural computations take place. We show how the countless possible combinations of activated neurons embedded in the lattice resemble a barcode. Despite the fact that further experimental verification is required in order to validate our claim, different assemblies of firing neurons might have the appearance of diverse codes, each one responsible for a single mental activity. A two-dimensional fullerene-like lattice, grounded on simple topological changes standing for pyramidal neurons' activation, not just displays analogies with the real microcolumn's microcircuitry and the neural connectome, but also the potential for the manufacture of plastic, robust and fast artificial networks in robotic forms of full-fledged neural systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Graph Theoretic and Motif Analyses of the Hippocampal Neuron Type Potential Connectome.

    PubMed

    Rees, Christopher L; Wheeler, Diek W; Hamilton, David J; White, Charise M; Komendantov, Alexander O; Ascoli, Giorgio A

    2016-01-01

    We computed the potential connectivity map of all known neuron types in the rodent hippocampal formation by supplementing scantly available synaptic data with spatial distributions of axons and dendrites from the open-access knowledge base Hippocampome.org. The network that results from this endeavor, the broadest and most complete for a mammalian cortical region at the neuron-type level to date, contains more than 3200 connections among 122 neuron types across six subregions. Analyses of these data using graph theory metrics unveil the fundamental architectural principles of the hippocampal circuit. Globally, we identify a highly specialized topology minimizing communication cost; a modular structure underscoring the prominence of the trisynaptic loop; a core set of neuron types serving as information-processing hubs as well as a distinct group of particular antihub neurons; a nested, two-tier rich club managing much of the network traffic; and an innate resilience to random perturbations. At the local level, we uncover the basic building blocks, or connectivity patterns, that combine to produce complex global functionality, and we benchmark their utilization in the circuit relative to random networks. Taken together, these results provide a comprehensive connectivity profile of the hippocampus, yielding novel insights on its functional operations at the computationally crucial level of neuron types.

  16. Individual differences in decision making competence revealed by multivariate fMRI.

    PubMed

    Talukdar, Tanveer; Román, Francisco J; Operskalski, Joachim T; Zwilling, Christopher E; Barbey, Aron K

    2018-06-01

    While an extensive literature in decision neuroscience has elucidated the neurobiological foundations of decision making, prior research has focused primarily on group-level effects in a sample population. Due to the presence of inherent differences between individuals' cognitive abilities, it is also important to examine the neural correlates of decision making that explain interindividual variability in cognitive performance. This study therefore investigated how individual differences in decision making competence, as measured by the Adult Decision Making Competence (A-DMC) battery, are related to functional brain connectivity patterns derived from resting-state fMRI data in a sample of 304 healthy participants. We examined connectome-wide associations, identifying regions within frontal, parietal, temporal, and occipital cortex that demonstrated significant associations with decision making competence. We then assessed whether the functional interactions between brain regions sensitive to decision making competence and seven intrinsic connectivity networks (ICNs) were predictive of specific facets of decision making assessed by subtests of the A-DMC battery. Our findings suggest that individual differences in specific facets of decision making competence are mediated by ICNs that support executive, social, and perceptual processes, and motivate an integrative framework for understanding the neural basis of individual differences in decision making competence. © 2018 Wiley Periodicals, Inc.

  17. Working Memory and Reasoning Benefit from Different Modes of Large-scale Brain Dynamics in Healthy Older Adults.

    PubMed

    Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin

    2018-07-01

    Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.

  18. Consciousness, Plasticity, and Connectomics: The Role of Intersubjectivity in Human Cognition

    PubMed Central

    Allen, Micah; Williams, Gary

    2011-01-01

    Consciousness is typically construed as being explainable purely in terms of either private, raw feels or higher-order, reflective representations. In contrast to this false dichotomy, we propose a new view of consciousness as an interactive, plastic phenomenon open to sociocultural influence. We take up our account of consciousness from the observation of radical cortical neuroplasticity in human development. Accordingly, we draw upon recent research on macroscopic neural networks, including the “default mode,” to illustrate cases in which an individual's particular “connectome” is shaped by encultured social practices that depend upon and influence phenomenal and reflective consciousness. On our account, the dynamically interacting connectivity of these networks bring about important individual differences in conscious experience and determine what is “present” in consciousness. Further, we argue that the organization of the brain into discrete anti-correlated networks supports the phenomenological distinction of prereflective and reflective consciousness, but we emphasize that this finding must be interpreted in light of the dynamic, category-resistant nature of consciousness. Our account motivates philosophical and empirical hypotheses regarding the appropriate time-scale and function of neuroplastic adaptation, the relation of high and low-frequency neural activity to consciousness and cognitive plasticity, and the role of ritual social practices in neural development and cognitive function. PMID:21687435

  19. Encoding the local connectivity patterns of fMRI for cognitive task and state classification.

    PubMed

    Onal Ertugrul, Itir; Ozay, Mete; Yarman Vural, Fatos T

    2018-06-15

    In this work, we propose a novel framework to encode the local connectivity patterns of brain, using Fisher vectors (FV), vector of locally aggregated descriptors (VLAD) and bag-of-words (BoW) methods. We first obtain local descriptors, called mesh arc descriptors (MADs) from fMRI data, by forming local meshes around anatomical regions, and estimating their relationship within a neighborhood. Then, we extract a dictionary of relationships, called brain connectivity dictionary by fitting a generative Gaussian mixture model (GMM) to a set of MADs, and selecting codewords at the mean of each component of the mixture. Codewords represent connectivity patterns among anatomical regions. We also encode MADs by VLAD and BoW methods using k-Means clustering. We classify cognitive tasks using the Human Connectome Project (HCP) task fMRI dataset and cognitive states using the Emotional Memory Retrieval (EMR). We train support vector machines (SVMs) using the encoded MADs. Results demonstrate that, FV encoding of MADs can be successfully employed for classification of cognitive tasks, and outperform VLAD and BoW representations. Moreover, we identify the significant Gaussians in mixture models by computing energy of their corresponding FV parts, and analyze their effect on classification accuracy. Finally, we suggest a new method to visualize the codewords of the learned brain connectivity dictionary.

  20. Multi-compartment microscopic diffusion imaging

    PubMed Central

    Kaden, Enrico; Kelm, Nathaniel D.; Carson, Robert P.; Does, Mark D.; Alexander, Daniel C.

    2017-01-01

    This paper introduces a multi-compartment model for microscopic diffusion anisotropy imaging. The aim is to estimate microscopic features specific to the intra- and extra-neurite compartments in nervous tissue unconfounded by the effects of fibre crossings and orientation dispersion, which are ubiquitous in the brain. The proposed MRI method is based on the Spherical Mean Technique (SMT), which factors out the neurite orientation distribution and thus provides direct estimates of the microscopic tissue structure. This technique can be immediately used in the clinic for the assessment of various neurological conditions, as it requires only a widely available off-the-shelf sequence with two b-shells and high-angular gradient resolution achievable within clinically feasible scan times. To demonstrate the developed method, we use high-quality diffusion data acquired with a bespoke scanner system from the Human Connectome Project. This study establishes the normative values of the new biomarkers for a large cohort of healthy young adults, which may then support clinical diagnostics in patients. Moreover, we show that the microscopic diffusion indices offer direct sensitivity to pathological tissue alterations, exemplified in a preclinical animal model of Tuberous Sclerosis Complex (TSC), a genetic multi-organ disorder which impacts brain microstructure and hence may lead to neurological manifestations such as autism, epilepsy and developmental delay. PMID:27282476

Top