Science.gov

Sample records for functional diffusion maps

  1. Mapping distributed brain function and networks with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Eggebrecht, Adam T.; Ferradal, Silvina L.; Robichaux-Viehoever, Amy; Hassanpour, Mahlega S.; Dehghani, Hamid; Snyder, Abraham Z.; Hershey, Tamara; Culver, Joseph P.

    2014-06-01

    Mapping of human brain function has revolutionized systems neuroscience. However, traditional functional neuroimaging by positron emission tomography or functional magnetic resonance imaging cannot be used when applications require portability, or are contraindicated because of ionizing radiation (positron emission tomography) or implanted metal (functional magnetic resonance imaging). Optical neuroimaging offers a non-invasive alternative that is radiation free and compatible with implanted metal and electronic devices (for example, pacemakers). However, optical imaging technology has heretofore lacked the combination of spatial resolution and wide field of view sufficient to map distributed brain functions. Here, we present a high-density diffuse optical tomography imaging array that can map higher-order, distributed brain function. The system was tested by imaging four hierarchical language tasks and multiple resting-state networks including the dorsal attention and default mode networks. Finally, we imaged brain function in patients with Parkinson's disease and implanted deep brain stimulators that preclude functional magnetic resonance imaging.

  2. Challenges for the functional diffusion map in pediatric brain tumors

    PubMed Central

    Grech-Sollars, Matthew; Saunders, Dawn E.; Phipps, Kim P.; Kaur, Ramneek; Paine, Simon M.L.; Jacques, Thomas S.; Clayden, Jonathan D.; Clark, Chris A.

    2014-01-01

    Background The functional diffusion map (fDM) has been suggested as a tool for early detection of tumor treatment efficacy. We aim to study 3 factors that could act as potential confounders in the fDM: areas of necrosis, tumor grade, and change in tumor size. Methods Thirty-four pediatric patients with brain tumors were enrolled in a retrospective study, approved by the local ethics committee, to examine the fDM. Tumors were selected to encompass a range of types and grades. A qualitative analysis was carried out to compare how fDM findings may be affected by each of the 3 confounders by comparing fDM findings to clinical image reports. Results Results show that the fDM in areas of necrosis do not discriminate between treatment response and tumor progression. Furthermore, tumor grade alters the behavior of the fDM: a decrease in apparent diffusion coefficient (ADC) is a sign of tumor progression in high-grade tumors and treatment response in low-grade tumors. Our results also suggest using only tumor area overlap between the 2 time points analyzed for the fDM in tumors of varying size. Conclusions Interpretation of fDM results needs to take into account the underlying biology of both tumor and healthy tissue. Careful interpretation of the results is required with due consideration to areas of necrosis, tumor grade, and change in tumor size. PMID:24305721

  3. Factorized Diffusion Map Approximation.

    PubMed

    Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos

    2012-01-01

    Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework.

  4. Factorized Diffusion Map Approximation

    PubMed Central

    Amizadeh, Saeed; Valizadegan, Hamed; Hauskrecht, Milos

    2013-01-01

    Diffusion maps are among the most powerful Machine Learning tools to analyze and work with complex high-dimensional datasets. Unfortunately, the estimation of these maps from a finite sample is known to suffer from the curse of dimensionality. Motivated by other machine learning models for which the existence of structure in the underlying distribution of data can reduce the complexity of estimation, we study and show how the factorization of the underlying distribution into independent subspaces can help us to estimate diffusion maps more accurately. Building upon this result, we propose and develop an algorithm that can automatically factorize a high dimensional data space in order to minimize the error of estimation of its diffusion map, even in the case when the underlying distribution is not decomposable. Experiments on both the synthetic and real-world datasets demonstrate improved estimation performance of our method over the standard diffusion-map framework. PMID:25309676

  5. Graded functional diffusion map-defined characteristics of apparent diffusion coefficients predict overall survival in recurrent glioblastoma treated with bevacizumab.

    PubMed

    Ellingson, Benjamin M; Cloughesy, Timothy F; Lai, Albert; Mischel, Paul S; Nghiemphu, Phioanh L; Lalezari, Shadi; Schmainda, Kathleen M; Pope, Whitney B

    2011-10-01

    Diffusion imaging has shown promise as a predictive and prognostic biomarker in glioma. We assessed the ability of graded functional diffusion maps (fDMs) and apparent diffusion coefficient (ADC) characteristics to predict overall survival (OS) in recurrent glioblastoma multiforme (GBM) patients treated with bevacizumab. Seventy-seven patients with recurrent GBMs were retrospectively examined. MRI scans were obtained before and approximately 6 weeks after treatment with bevacizumab. Graded fDMs were created by registering datasets to each patient's pretreatment scan and then performing voxel-wise subtraction between post- and pretreatment ADC maps. Voxels were categorized according to the degree of change in ADC within pretreatment fluid-attenuated inversion recovery (FLAIR) and contrast-enhancing regions of interest (ROIs). We found that the volume of tissue showing decreased ADC within both FLAIR and contrast-enhancing regions stratified OS (log-rank, P < .05). fDMs applied to contrast-enhancing ROIs more accurately predicted OS compared with fDMs applied to FLAIR ROIs. Graded fDMs (showing voxels with decreased ADC between 0.25 and 0.4 µm(2)/ms) were more predictive of OS than traditional (single threshold) fDMs, and the predictive ability of graded fDMs could be enhanced even further by adding the ADC characteristics from the fDM-classified voxels to the analysis (log-rank, P < .001). These results demonstrate that spatially resolved diffusion-based tumor metrics are a powerful imaging biomarker of survival in patients with recurrent GBM treated with bevacizumab.

  6. Functional mapping of flow and back-diffusion rate of N-isopropyl-p-iodoamphetamine in human brain.

    PubMed

    Yonekura, Y; Nishizawa, S; Mukai, T; Iwasaki, Y; Fukuyama, H; Ishikawa, M; Tamaki, N; Konishil, J

    1993-05-01

    Iodine-123-labeled N-isopropyl-p-iodoamphetamine (IMP) has been reported to be an excellent tracer for mapping cerebral blood flow with single-photon emission computed tomography (SPECT). Clinical interpretation of these SPECT images, however, requires further understanding of the kinetics of IMP in the human brain. In order to evaluate the kinetic behavior of IMP in normal and diseased areas, we measured flow and back-diffusion rates with serial dynamic SPECT scans following an intravenous bolus injection of IMP using a multi-detector SPECT scanner. Arterial input function was determined by octanol extracted radioactivity of serial arterial blood samples. Average values for influx rate (K1) and back-diffusion rate (k2) were 0.43 ml/g/min and 0.014 min-1 in the normal cerebral cortex, 0.43 and 0.013 in the basal ganglia, 0.28 and 0.012 in the white matter and 0.48 and 0.016 in the cerebellar hemisphere. The partition coefficient (K1/k2 ratio) was 32.4 ml/g in the cerebral cortex, 35.3 in the basal ganglia, 24.7 in the white matter and 30.4 in the cerebellum. The K1-to-k2 ratio in the infarcted and ischemic regions as well as in the tumor was smaller than that of the normal cortex. Accurate measurement of local cerebral blood flow (LCBF) based on the microsphere model was possible only on the early SPECT images, but a relative pattern of LCBF can be assessed with SPECT images obtained within 1 hr after injection except for tumors.

  7. Vector Diffusion Maps and the Connection Laplacian

    PubMed Central

    Singer, A.; Wu, H.-T.

    2013-01-01

    We introduce vector diffusion maps (VDM), a new mathematical framework for organizing and analyzing massive high-dimensional data sets, images, and shapes. VDM is a mathematical and algorithmic generalization of diffusion maps and other nonlinear dimensionality reduction methods, such as LLE, ISOMAP, and Laplacian eigenmaps. While existing methods are either directly or indirectly related to the heat kernel for functions over the data, VDM is based on the heat kernel for vector fields. VDM provides tools for organizing complex data sets, embedding them in a low-dimensional space, and interpolating and regressing vector fields over the data. In particular, it equips the data with a metric, which we refer to as the vector diffusion distance. In the manifold learning setup, where the data set is distributed on a low-dimensional manifold ℳd embedded in ℝp, we prove the relation between VDM and the connection Laplacian operator for vector fields over the manifold. PMID:24415793

  8. On genetic map functions

    SciTech Connect

    Zhao, Hongyu; Speed, T.P.

    1996-04-01

    Various genetic map functions have been proposed to infer the unobservable genetic distance between two loci from the observable recombination fraction between them. Some map functions were found to fit data better than others. When there are more than three markers, multilocus recombination probabilities cannot be uniquely determined by the defining property of map functions, and different methods have been proposed to permit the use of map functions to analyze multilocus data. If for a given map function, there is a probability model for recombination that can give rise to it, then joint recombination probabilities can be deduced from this model. This provides another way to use map functions in multilocus analysis. In this paper we show that stationary renewal processes give rise to most of the map functions in the literature. Furthermore, we show that the interevent distributions of these renewal processes can all be approximated quite well by gamma distributions. 43 refs., 4 figs.

  9. Earthquake-explosion discrimination using diffusion maps

    NASA Astrophysics Data System (ADS)

    Rabin, N.; Bregman, Y.; Lindenbaum, O.; Ben-Horin, Y.; Averbuch, A.

    2016-12-01

    Discrimination between earthquakes and explosions is an essential component of nuclear test monitoring and it is also important for maintaining the quality of earthquake catalogues. Currently used discrimination methods provide a partial solution to the problem. In this work, we apply advanced machine learning methods and in particular diffusion maps for modelling and discriminating between seismic signals. Diffusion maps enable us to construct a geometric representation that capture the intrinsic structure of the seismograms. The diffusion maps are applied after a pre-processing step, in which seismograms are converted to normalized sonograms. The constructed low-dimensional model is used for automatic earthquake-explosion discrimination of data that are collected in single seismic stations. We demonstrate our approach on a data set comprising seismic events from the Dead Sea area. The diffusion-based algorithm provides correct discrimination rate that is higher than 90 per cent.

  10. Diffusion in membranes: Toward a two-dimensional diffusion map

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Garcia-Sakai, Victoria; Bewley, Robert; Dalgliesh, Robert; Perring, Toby; Rheinstädter, Maikel C.

    2015-01-01

    For decades, quasi-elastic neutron scattering has been the prime tool for studying molecular diffusion in membranes over relevant nanometer distances. These experiments are essential to our current understanding of molecular dynamics of lipids, proteins and membrane-active molecules. Recently, we presented experimental evidence from X-ray diffraction and quasi-elastic neutron scattering demonstrating that ethanol enhances the permeability of membranes. At the QENS 2014/WINS 2014 conference we presented a novel technique to measure diffusion across membranes employing 2-dimensional quasi-elastic neutron scattering. We present results from our preliminary analysis of an experiment on the cold neutron multi-chopper spectrometer LET at ISIS, where we studied the self-diffusion of water molecules along lipid membranes and have the possibility of studying the diffusion in membranes. By preparing highly oriented membrane stacks and aligning them horizontally in the spectrometer, our aim is to distinguish between lateral and transmembrane diffusion. Diffusion may also be measured at different locations in the membranes, such as the water layer and the hydrocarbon membrane core. With a complete analysis of the data, 2-dimensional mapping will enable us to determine diffusion channels of water and ethanol molecules to quantitatively determine nanoscale membrane permeability.

  11. Mapping the human brain at rest with diffuse optical tomography

    PubMed Central

    White, Brian R.; Snyder, Abraham Z.; Cohen, Alexander L.; Petersen, Steven E.; Raichle, Marcus E.; Schlaggar, Bradley L.; Culver, Joseph P.

    2014-01-01

    Diffuse optical tomography (DOT) is a portable functional neuroimaging technique that is able to simultaneously measure both oxy- and deoxyhemoglobin responses to brain activity. Herein, we demonstrate a technique for mapping functional connections in the brain by measuring the spatial distribution of temporal correlations in resting brain activity. Simultaneous DOT imaging over the motor and visual cortices yielded robust correlation maps reproducing the expected functional neural architecture. These functional connectivity methods will have utility in certain populations, such as those who are unconscious or very young, who have difficulty performing the behaviors required in traditional task-based functional neuroimaging paradigms. PMID:19964102

  12. A Mapping method for mixing with diffusion

    NASA Astrophysics Data System (ADS)

    Schlick, Conor P.; Christov, Ivan C.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2012-11-01

    We present an accurate and efficient computational method for solving the advection-diffusion equation in time-periodic chaotic flows. The method uses operator splitting which allows advection and diffusion steps to be treated independently. Taking advantage of flow periodicity, the advection step is solved with a mapping method, and diffusion is added discretely after each iteration of the advection map. This approach allows for a ``composite'' mapping matrix to be constructed for an entire period of a chaotic advection-diffusion process, which provides a natural approach to the spectral analysis of mixing. To test the approach, we consider the two-dimensional time-periodic sine flow. When compared to the exact solution for this simple velocity field, the operator splitting method exhibits qualitative agreement (overall concentration structure) for large time steps and is quantitatively accurate (average and maximum error) for small time steps. We extend the operator splitting approach to three-dimensional chaotic flows. Funded by NSF Grant CMMI-1000469. Present affiliation: Princeton University. Supported by NSF Grant DMS-1104047.

  13. Thermal Diffusivity Mapping of Solids by Scanning Photoacoustic Piezoelectric Technique

    NASA Astrophysics Data System (ADS)

    Zhao, Binxing; Gao, Chunming; Yan, Laijun; Wang, Yafei

    2016-12-01

    Quantitative thermal diffusivity mapping of solid samples was achieved using the scanning photoacoustic piezoelectric (PAPE) technique. Based on the frequency-domain PAPE theoretical model, the methodology of the scanning PAPE thermal diffusivity mapping is introduced. An experimental setup capable of spatial and frequency scanning was established. Thermal diffusivity mapping of homogeneous and inhomogeneous samples was carried out. The obtained thermal diffusivity images are consistent with the optical images in image contrast and consistent with the reference values in thermal diffusivity. Results show that the scanning PAPE technique is able to determine the thermal diffusivity distribution of solids, hence providing an effective method for thermal diffusivity mapping.

  14. Clinical applications and characteristics of apparent diffusion coefficient maps for the brain of two dogs

    PubMed Central

    Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol

    2014-01-01

    Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level. PMID:24675836

  15. Clinical applications and characteristics of apparent diffusion coefficient maps for the brain of two dogs.

    PubMed

    Kim, Boeun; Yi, Kangjae; Jung, Sunyoung; Ji, Seoyeon; Choi, Mincheol; Yoon, Junghee

    2014-01-01

    Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level.

  16. Mapping cognitive function.

    PubMed

    Stufflebeam, Steven M; Rosen, Bruce R

    2007-11-01

    Cognitive functions are fundamental to being human. Although tremendous progress has been made in the science of cognition using neuroimaging, the clinical applications of neuroimaging are just beginning to be realized. This article focuses on selected technologies, analysis techniques, and applications that have, or will soon have, direct clinical impact. The authors discuss how cognition can be imaged using MR imaging, functional MR imaging, positron emission tomography, magnetoencephalography and electroencephalography, and MR imaging diffusion tensor imaging. A unifying theme of this article is the concept that a more complete understanding of cognition only comes through integration of multimodal structural and functional imaging technologies.

  17. Apparent exchange rate mapping with diffusion MRI.

    PubMed

    Lasič, Samo; Nilsson, Markus; Lätt, Jimmy; Ståhlberg, Freddy; Topgaard, Daniel

    2011-08-01

    Water exchange through the cell membranes is an important feature of cells and tissues. The rate of exchange is determined by factors such as membrane lipid composition and organization, as well as the type and activity of aquaporins. A method for noninvasively estimating the rate of water exchange would be useful for characterizing pathological conditions, e.g., tumors, multiple sclerosis, and ischemic stroke, expected to be associated with a change of the membrane barrier properties. This study describes the filter exchange imaging method for determining the rate of water exchange between sites having different apparent diffusion coefficients. The method is based on the filter-exchange pulsed gradient spin-echo NMR spectroscopy experiment, which is here modified to be compatible with the constraints of clinical MR scanners. The data is analyzed using a model-free approach yielding maps of the apparent exchange rate, here being introduced in analogy with the concept of the apparent diffusion coefficient. Proof-of-principle experiments are performed on microimaging and whole-body clinical scanners using yeast suspension phantoms. The limitations and appropriate experimental conditions are examined. The results demonstrate that filter exchange imaging is a fast and reliable method for characterizing exchange, and that it has the potential to become a powerful diagnostic tool.

  18. A framework to analyze cerebral mean diffusivity using surface guided diffusion mapping in diffusion tensor imaging

    PubMed Central

    Kwon, Oh-Hun; Park, Hyunjin; Seo, Sang-Won; Na, Duk L.; Lee, Jong-Min

    2015-01-01

    The mean diffusivity (MD) value has been used to describe microstructural properties in Diffusion Tensor Imaging (DTI) in cortical gray matter (GM). Recently, researchers have applied a cortical surface generated from the T1-weighted volume. When the DTI data are analyzed using the cortical surface, it is important to assign an accurate MD value from the volume space to the vertex of the cortical surface, considering the anatomical correspondence between the DTI and the T1-weighted image. Previous studies usually sampled the MD value using the nearest-neighbor (NN) method or Linear method, even though there are geometric distortions in diffusion-weighted volumes. Here we introduce a Surface Guided Diffusion Mapping (SGDM) method to compensate for such geometric distortions. We compared our SGDM method with results using NN and Linear methods by investigating differences in the sampled MD value. We also projected the tissue classification results of non-diffusion-weighted volumes to the cortical midsurface. The CSF probability values provided by the SGDM method were lower than those produced by the NN and Linear methods. The MD values provided by the NN and Linear methods were significantly greater than those of the SGDM method in regions suffering from geometric distortion. These results indicate that the NN and Linear methods assigned the MD value in the CSF region to the cortical midsurface (GM region). Our results suggest that the SGDM method is an effective way to correct such mapping errors. PMID:26236180

  19. Spatiotemporal mapping of diffusion dynamics and organization in plasma membranes

    NASA Astrophysics Data System (ADS)

    Bag, Nirmalya; Ng, Xue Wen; Sankaran, Jagadish; Wohland, Thorsten

    2016-09-01

    Imaging fluorescence correlation spectroscopy (FCS) and the related FCS diffusion law have been applied in recent years to investigate the diffusion modes of lipids and proteins in membranes. These efforts have provided new insights into the membrane structure below the optical diffraction limit, new information on the existence of lipid domains, and on the influence of the cytoskeleton on membrane dynamics. However, there has been no systematic study to evaluate how domain size, domain density, and the probe partition coefficient affect the resulting imaging FCS diffusion law parameters. Here, we characterize the effects of these factors on the FCS diffusion law through simulations and experiments on lipid bilayers and live cells. By segmenting images into smaller 7  ×  7 pixel areas, we can evaluate the FCS diffusion law on areas smaller than 2 µm and thus provide detailed maps of information on the membrane structure and heterogeneity at this length scale. We support and extend this analysis by deriving a mathematical expression to calculate the mean squared displacement (MSDACF) from the autocorrelation function of imaging FCS, and demonstrate that the MSDACF plots depend on the existence of nanoscopic domains. Based on the results, we derive limits for the detection of domains depending on their size, density, and relative viscosity in comparison to the surroundings. Finally, we apply these measurements to bilayers and live cells using imaging total internal reflection FCS and single plane illumination microscopy FCS.

  20. Mapping Diffusion in a Living Cell via the Phasor Approach

    PubMed Central

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-01-01

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145

  1. Mapping diffusion in a living cell via the phasor approach.

    PubMed

    Ranjit, Suman; Lanzano, Luca; Gratton, Enrico

    2014-12-16

    Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created.

  2. Diffusion-based population statistics using tract probability maps.

    PubMed

    Wassermann, Demian; Kanterakis, Efstathios; Gur, Ruben C; Deriche, Rachid; Verma, Ragini

    2010-01-01

    We present a novel technique for the tract-based statistical analysis of diffusion imaging data. In our technique, we represent each white matter (WM) tract as a tract probability map (TPM): a function mapping a point to its probability of belonging to the tract. We start by automatically clustering the tracts identified in the brain via tractography into TPMs using a novel Gaussian process framework. Then, each tract is modeled by the skeleton of its TPM, a medial representation with a tubular or sheet-like geometry. The appropriate geometry for each tract is implicitly inferred from the data instead of being selected a priori, as is done by current tract-specific approaches. The TPM representation makes it possible to average diffusion imaging based features along directions locally perpendicular to the skeleton of each WM tract, increasing the sensitivity and specificity of statistical analyses on the WM. Our framework therefore facilitates the automated analysis of WM tract bundles, and enables the quantification and visualization of tract-based statistical differences between groups. We have demonstrated the applicability of our framework by studying WM differences between 34 schizophrenia patients and 24 healthy controls.

  3. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description

    PubMed Central

    SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY

    2016-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031

  4. Hash function based on chaotic map lattices

    NASA Astrophysics Data System (ADS)

    Wang, Shihong; Hu, Gang

    2007-06-01

    A new hash function system, based on coupled chaotic map dynamics, is suggested. By combining floating point computation of chaos and some simple algebraic operations, the system reaches very high bit confusion and diffusion rates, and this enables the system to have desired statistical properties and strong collision resistance. The chaos-based hash function has its advantages for high security and fast performance, and it serves as one of the most highly competitive candidates for practical applications of hash function for software realization and secure information communications in computer networks.

  5. Investigating Molecular Kinetics by Variationally Optimized Diffusion Maps.

    PubMed

    Boninsegna, Lorenzo; Gobbo, Gianpaolo; Noé, Frank; Clementi, Cecilia

    2015-12-08

    Identification of the collective coordinates that describe rare events in complex molecular transitions such as protein folding has been a key challenge in the theoretical molecular sciences. In the Diffusion Map approach, one assumes that the molecular configurations sampled have been generated by a diffusion process, and one uses the eigenfunctions of the corresponding diffusion operator as reaction coordinates. While diffusion coordinates (DCs) appear to provide a good approximation to the true dynamical reaction coordinates, they are not parametrized using dynamical information. Thus, their approximation quality could not, as yet, be validated, nor could the diffusion map eigenvalues be used to compute relaxation rate constants of the system. Here we combine the Diffusion Map approach with the recently proposed Variational Approach for Conformation Dynamics (VAC). Diffusion Map coordinates are used as a basis set, and their optimal linear combination is sought using the VAC, which employs time-correlation information on the molecular dynamics (MD) trajectories. We have applied this approach to ultra-long MD simulations of the Fip35 WW domain and found that the first DCs are indeed a good approximation to the true reaction coordinates of the system, but they could be further improved using the VAC. Using the Diffusion Map basis, excellent approximations to the relaxation rates of the system are obtained. Finally, we evaluate the quality of different metric spaces and find that pairwise minimal root-mean-square deviation performs poorly, while operating in the recently introduced kinetic maps based on the time-lagged independent component analysis gives the best performance.

  6. Mapping Cognitive Function

    PubMed Central

    Stufflebeam, Steven M.; Rosen, Bruce

    2009-01-01

    Synopsis Cognitive functions are fundamental to being human. Although tremendous progress has been made in the science of cognition using neuroimaging, the clinical applications of neuroimaging are just beginning to be realized. A unifying theme of this chapter is the concept that a more complete understanding of cognition only comes through integration of multimodal structural and functional imaging technologies. PMID:17983964

  7. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum.

    PubMed

    Li, Hui; Dou, Shuo-Xing; Liu, Yu-Ru; Li, Wei; Xie, Ping; Wang, Wei-Chi; Wang, Peng-Ye

    2015-01-14

    The crowded intracellular environment influences the diffusion-mediated cellular processes, such as metabolism, signaling, and transport. The hindered diffusion of macromolecules in heterogeneous cytoplasm has been studied over years, but the detailed diffusion distribution and its origin still remain unclear. Here, we introduce a novel method to map rapidly the diffusion distribution in single cells based on single-particle tracking (SPT) of quantum dots (QDs). The diffusion map reveals the heterogeneous intracellular environment and, more importantly, an unreported compartmentalization of QD diffusions in cytoplasm. Simultaneous observations of QD motion and green fluorescent protein-tagged endoplasmic reticulum (ER) dynamics provide direct evidence that the compartmentalization results from micron-scale domains defined by ER tubules, and ER cisternae form perinuclear areas that restrict QDs to enter. The same phenomenon was observed using fluorescein isothiocyanate-dextrans, further confirming the compartmentalized diffusion. These results shed new light on the diffusive movements of macromolecules in the cell, and the mapping of intracellular diffusion distribution may be used to develop strategies for nanoparticle-based drug deliveries and therapeutics.

  8. Granger-causality maps of diffusion processes

    NASA Astrophysics Data System (ADS)

    Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A.

    2016-02-01

    Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.

  9. Granger-causality maps of diffusion processes.

    PubMed

    Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A

    2016-02-01

    Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.

  10. Polymer reversal rate calculated via locally scaled diffusion map.

    PubMed

    Zheng, Wenwei; Rohrdanz, Mary A; Maggioni, Mauro; Clementi, Cecilia

    2011-04-14

    A recent study on the dynamics of polymer reversal inside a nanopore by Huang and Makarov [J. Chem. Phys. 128, 114903 (2008)] demonstrated that the reaction rate cannot be reproduced by projecting the dynamics onto a single empirical reaction coordinate, a result suggesting the dynamics of this system cannot be correctly described by using a single collective coordinate. To further investigate this possibility we have applied our recently developed multiscale framework, locally scaled diffusion map (LSDMap), to obtain collective reaction coordinates for this system. Using a single diffusion coordinate, we obtain a reversal rate via Kramers expression that is in good agreement with the exact rate obtained from the simulations. Our mathematically rigorous approach accounts for the local heterogeneity of molecular configuration space in constructing a diffusion map, from which collective coordinates emerge. We believe this approach can be applied in general to characterize complex macromolecular dynamics by providing an accurate definition of the collective coordinates associated with processes at different time scales.

  11. Influence Function Learning in Information Diffusion Networks

    PubMed Central

    Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le

    2015-01-01

    Can we learn the influence of a set of people in a social network from cascades of information diffusion? This question is often addressed by a two-stage approach: first learn a diffusion model, and then calculate the influence based on the learned model. Thus, the success of this approach relies heavily on the correctness of the diffusion model which is hard to verify for real world data. In this paper, we exploit the insight that the influence functions in many diffusion models are coverage functions, and propose a novel parameterization of such functions using a convex combination of random basis functions. Moreover, we propose an efficient maximum likelihood based algorithm to learn such functions directly from cascade data, and hence bypass the need to specify a particular diffusion model in advance. We provide both theoretical and empirical analysis for our approach, showing that the proposed approach can provably learn the influence function with low sample complexity, be robust to the unknown diffusion models, and significantly outperform existing approaches in both synthetic and real world data. PMID:25973445

  12. Enhancing scattering images for orientation recovery with diffusion map

    SciTech Connect

    Winter, Martin; Saalmann, Ulf; Rost, Jan M.

    2016-02-12

    We explore the possibility for orientation recovery in single-molecule coherent diffractive imaging with diffusion map. This algorithm approximates the Laplace-Beltrami operator, which we diagonalize with a metric that corresponds to the mapping of Euler angles onto scattering images. While suitable for images of objects with specific properties we show why this approach fails for realistic molecules. Here, we introduce a modification of the form factor in the scattering images which facilitates the orientation recovery and should be suitable for all recovery algorithms based on the distance of individual images. (C) 2016 Optical Society of America

  13. Diffusion-convection function of cosmic rays

    NASA Technical Reports Server (NTRS)

    Zhang, G.; Yang, G.

    1985-01-01

    The fundamental properties and some numerical results of the solution of the diffusion equation of an impulsive cosmic-ray point source in an uniform, unbounded and spherically symmetrical moving medium is presented. The diffusion-convection(D-C) function is an elementary composite function of the solution of the D-C equation for the particles injected impulsively from a diffusive point source into the medium. It is the analytic solution derived by the dimensional method for the propagation equation of solar cosmic rays in the heliosphere, i.e. the interplanetary space. Because of the introduction of convection effect of solar wind, a nonhomogeneous term appears in the propagation equation, it is difficult to express its solution in terms of the ordinary special functions. The research made so far has led to a solution containing only the first order approximation of the convection effect.

  14. Reflectance Diffuse Optical Tomography: Its Application to Human Brain Mapping

    NASA Astrophysics Data System (ADS)

    Ueda, Yukio; Yamanaka, Takeshi; Yamashita, Daisuke; Suzuki, Toshihiko; Ohmae, Etsuko; Oda, Motoki; Yamashita, Yutaka

    2005-09-01

    We report the successful application of reflectance diffuse optical tomography (DOT) using near-infrared light with the new reconstruction algorithm that we developed to the observation of regional hemodynamic changes in the brain under specific mental tasks. Our results reveal the heterogeneous distribution of oxyhemoglobin and deoxyhemoglobin in the brain, showing complementary images of oxyhemoglobin and deoxyhemoglobin changes in certain regions. We conclude that our reflectance DOT has practical potential for human brain mapping, as well as in the diagnostic imaging of brain diseases.

  15. FAST Mapping of Diffuse HI Gas in the Local Universe

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Pisano, D. J.; Ai, M.; Jiao, Q.

    2016-02-01

    We propose to use the Five hundred meter Aperture Spherical radio Telescope (FAST) to map the diffuse intergalactic HI gas in the local universe at column densities of NHI=1018 cm-2 and below. The major science goal is to study gas accretion during galaxy evolution, and trace cosmic web features in the local universe. We disuss the technical feasibilty of such a deep survey, and have conducted test observations with the Arecibo 305 m telescope. Our preliminary results shows that, with about a few thousand hours of observing time, FAST will be able to map several hundred square degree regions at 1 σ of NHI=2×1017 cm-2 level out to a distance of 5-10 Mpc, and with a volume 1000 larger than that of the Local Group.

  16. LETTER TO THE EDITOR: Fractal diffusion coefficient from dynamical zeta functions

    NASA Astrophysics Data System (ADS)

    Cristadoro, Giampaolo

    2006-03-01

    Dynamical zeta functions provide a powerful method to analyse low-dimensional dynamical systems when the underlying symbolic dynamics is under control. On the other hand, even simple one-dimensional maps can show an intricate structure of the grammar rules that may lead to a non-smooth dependence of global observables on parameters changes. A paradigmatic example is the fractal diffusion coefficient arising in a simple piecewise linear one-dimensional map of the real line. Using the Baladi-Ruelle generalization of the Milnor-Thurnston kneading determinant, we provide the exact dynamical zeta function for such a map and compute the diffusion coefficient from its smallest zero.

  17. A Mapping Between Structural and Functional Brain Networks.

    PubMed

    Meier, Jil; Tewarie, Prejaas; Hillebrand, Arjan; Douw, Linda; van Dijk, Bob W; Stufflebeam, Steven M; Van Mieghem, Piet

    2016-05-01

    The relationship between structural and functional brain networks is still highly debated. Most previous studies have used a single functional imaging modality to analyze this relationship. In this work, we use multimodal data, from functional MRI, magnetoencephalography, and diffusion tensor imaging, and assume that there exists a mapping between the connectivity matrices of the resting-state functional and structural networks. We investigate this mapping employing group averaged as well as individual data. We indeed find a significantly high goodness of fit level for this structure-function mapping. Our analysis suggests that a functional connection is shaped by all walks up to the diameter in the structural network in both modality cases. When analyzing the inverse mapping, from function to structure, longer walks in the functional network also seem to possess minor influence on the structural connection strengths. Even though similar overall properties for the structure-function mapping are found for different functional modalities, our results indicate that the structure-function relationship is modality dependent.

  18. Planck 2015 results. X. Diffuse component separation: Foreground maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature

  19. Special surgical considerations for functional brain mapping.

    PubMed

    Kekhia, Hussein; Rigolo, Laura; Norton, Isaiah; Golby, Alexandra J

    2011-04-01

    The development of functional mapping techniques gives neurosurgeons many options for preoperative planning. Integrating functional and anatomic data can inform patient selection and surgical planning and makes functional mapping more accessible than when only invasive studies were available. However, the applications of functional mapping to neurosurgical patients are still evolving. Functional imaging remains complex and requires an understanding of the underlying physiologic and imaging characteristics. Neurosurgeons must be accustomed to interpreting highly processed data. Successful implementation of functional image-guided procedures requires efficient interactions between neurosurgeon, neurologist, radiologist, neuropsychologist, and others, but promises to enhance the care of patients.

  20. Determination of reaction coordinates via locally scaled diffusion map

    NASA Astrophysics Data System (ADS)

    Rohrdanz, Mary A.; Zheng, Wenwei; Maggioni, Mauro; Clementi, Cecilia

    2011-03-01

    We present a multiscale method for the determination of collective reaction coordinates for macromolecular dynamics based on two recently developed mathematical techniques: diffusion map and the determination of local intrinsic dimensionality of large datasets. Our method accounts for the local variation of molecular configuration space, and the resulting global coordinates are correlated with the time scales of the molecular motion. To illustrate the approach, we present results for two model systems: all-atom alanine dipeptide and coarse-grained src homology 3 protein domain. We provide clear physical interpretation for the emerging coordinates and use them to calculate transition rates. The technique is general enough to be applied to any system for which a Boltzmann-sampled set of molecular configurations is available.

  1. Mapping High-Frequency Waves in the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Viberg, H.; Khotyaintsev, Y. V.; Vaivads, A.; Andre, M.

    2012-12-01

    We study the occurrence of high frequency waves, between the electron cyclotron and plasma frequency, in a reconnection diffusion region in the Earth's magnetotail at a distance of about 19 RE from the Earth. Most of the wave activity is concentrated in the separatrix regions, with no significant activity observed in the inflow and outflow regions. Different types of waves are observed at the outer part of the separatrix region depending on the plasma characteristics in the inflow region. For the cold ~100 eV lobe plasma in the inflow we observe Langmuir waves which are generated by the bump-on-tail instability of a several keV electron beam propagating in the cold background plasma. For the hotter ~1 keV inflow plasma, which is similar to the plasmasheet population, electron cyclotron waves are observed in this region, most probably generated by low energy (several tens of eV) electron beams. Deeper into the separatrix region (closer to the current sheet), we observe mostly electrostatic solitary waves (ESWs) in association with two counter-streaming electron beams: low energy beam towards the X-line, and high energy beam away from the X-line. Observations of HF waves provide important information about electron dynamics in the diffusion region, and allow for precise mapping of kinetic boundaries.

  2. Critical properties of lattices of diffusively coupled quadratic maps.

    PubMed

    Van De Water, Willem; Bohr, Tomas

    1993-10-01

    We study the critical properties of lattices of coupled logistic maps in the regime where the individual maps are closely above the onset of chaos. We discuss both spatial and temporal characteristics and especially the link between them. We show that the mutual information function between two points on the lattice decays exponentially with distance. In this way we find support for the relation xi approximately lambda(-1/2) between the coherence length xi and the largest Lyapunov exponent lambda which is further corroborated by a detailed study of the spreading of small perturbations. Finally we study the structure function of the lattice field variable. It shows that at the onset of chaos the lattice remains smooth.

  3. Discrete mappings with an explicit discrete Lyapunov function related to integrable mappings

    NASA Astrophysics Data System (ADS)

    Inoue, Hironori; Takahashi, Daisuke; Matsukidaira, Junta

    2006-05-01

    We propose discrete mappings of second order that have a discrete analogue of Lyapunov function. The mappings are extensions of the integrable Quispel-Roberts-Thompson (QRT) mapping, and a discrete Lyapunov function of the mappings is identical to an explicit conserved quantity of the QRT mapping. Moreover we can obtain a differential and an ultradiscrete limit of the mappings preserving the existence of Lyapunov function. We also give applications of a mapping with an adjusted parameter, a probabilistic mapping and coupled mappings.

  4. Soot Volume Fraction Maps for Normal and Reduced Gravity Laminar Acetylene Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1997-01-01

    The study of soot particulate distribution inside gas jet diffusion flames is important to the understanding of fundamental soot particle and thermal radiative transport processes, as well as providing findings relevant to spacecraft fire safety, soot emissions, and radiant heat loads for combustors used in air-breathing propulsion systems. Compared to those under normal gravity (1-g) conditions, the elimination of buoyancy-induced flows is expected to significantly change the flow field in microgravity (O g) flames, resulting in taller and wider flames with longer particle residence times. Work by Bahadori and Edelman demonstrate many previously unreported qualitative and semi-quantitative results, including flame shape and radiation, for sooting laminar zas jet diffusion flames. Work by Ku et al. report soot aggregate size and morphology analyses and data and model predictions of soot volume fraction maps for various gas jet diffusion flames. In this study, we present the first 1-g and 0-g comparisons of soot volume fraction maps for laminar acetylene and nitrogen-diluted acetylene jet diffusion flames. Volume fraction is one of the most useful properties in the study of sooting diffusion flames. The amount of radiation heat transfer depends directly on the volume fraction and this parameter can be measured from line-of-sight extinction measurements. Although most Soot aggregates are submicron in size, the primary particles (20 to 50 nm in diameter) are in the Rayleigh limit, so the extinction absorption) cross section of aggregates can be accurately approximated by the Rayleigh solution as a function of incident wavelength, particles' complex refractive index, and particles' volume fraction.

  5. Mapping Prefrontal Cortex Functions in Human Infancy

    ERIC Educational Resources Information Center

    Grossmann, Tobias

    2013-01-01

    It has long been thought that the prefrontal cortex, as the seat of most higher brain functions, is functionally silent during most of infancy. This review highlights recent work concerned with the precise mapping (localization) of brain activation in human infants, providing evidence that prefrontal cortex exhibits functional activation much…

  6. Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI

    PubMed Central

    Wang, Sijia; Peterson, Daniel J.; Gatenby, J. C.; Li, Wenbin; Grabowski, Thomas J.; Madhyastha, Tara M.

    2017-01-01

    Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”) improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired structural image. In this study, we compared reliability using two methods of unwarping: (1) nonlinear registration to a structural image using symmetric normalization (SyN) implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an acquired field map. We performed this comparison in two different test-retest data sets acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration provided higher test-retest reliability of the output fractional anisotropy (FA) maps than field map-based unwarping, even when accounting for the effect of interpolation on the smoothness of the images. In general, field map-based unwarping was preferable if and only if the field maps were acquired optimally. PMID:28270762

  7. Imaging diffuse clouds: bright and dark gas mapped in CO

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Pety, J.

    2012-05-01

    Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of

  8. A mapping method for distributive mixing with diffusion: Interplay between chaos and diffusion in time-periodic sine flow

    NASA Astrophysics Data System (ADS)

    Schlick, Conor P.; Christov, Ivan C.; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2013-05-01

    We present an accurate and efficient computational method for solving the advection-diffusion equation in time-periodic chaotic flows. The method uses operator splitting, which allows the advection and diffusion steps to be treated independently. Taking advantage of flow periodicity, the advection step is solved using a mapping method, and diffusion is "added" discretely after each iteration of the advection map. This approach results in the construction of a composite mapping matrix over an entire period of the chaotic advection-diffusion process and provides a natural framework for the analysis of mixing. To test the approach, we consider two-dimensional time-periodic sine flow. By comparing the numerical solutions obtained by our method to reference solutions, we find qualitative agreement for large time steps (structure of concentration profile) and quantitative agreement for small time steps (low error). Further, we study the interplay between mixing through chaotic advection and mixing through diffusion leading to an analytical model for the evolution of the intensity of segregation with time. Additionally, we demonstrate that our operator splitting mapping approach can be readily extended to three dimensions.

  9. What is a genetic map function?

    SciTech Connect

    Speed, T.P.

    1996-12-31

    We review the reasons that genetic map functions are studied and the way they are used. The connections between chiasma point processes on four-stranded bivalents, crossover point processes on the single strand products of meiosis, multilocus recombination probabilities and map functions are discussed in detail, mainly, but not exclusively under the assumption of no chromatid interference. As a result of this discussion we obtain a number of inequalities constraining map functions which lead to both bound and smoothness constraints. We show that most of the functions proposed as map functions in the literature do in fact arise in association with a stationary renewal chiasma process, and we clarify the relation between their doing so, while failing to be multilocus feasible in the sense of Liberman & Karlin. We emphasize the fact that map functions can in general neither define chiasma nor crossover processes nor multilocus recombination probabilities, nor can they fully reflect the nature of the interference present in a chiasma or crossover process. Our attempt to answer the question in the title of this paper is not wholly successful, but we present some simple necessary conditions which become sufficient when supplemented by two further simple conditions. The paper closes with the statement of several open problems. 64 refs.

  10. Investigating the tradeoffs between spatial resolution and diffusion sampling for brain mapping with diffusion tractography: time well spent?

    PubMed

    Calabrese, Evan; Badea, Alexandra; Coe, Christopher L; Lubach, Gabriele R; Styner, Martin A; Johnson, G Allan

    2014-11-01

    Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results.

  11. Pyramidal tract mapping by diffusion tensor magnetic resonance imaging in multiple sclerosis: improving correlations with disability

    PubMed Central

    Wilson, M; Tench, C; Morgan, P; Blumhardt, L

    2003-01-01

    Background: Current magnetic resonance imaging (MRI) outcome measures such as T2 lesion load correlate poorly with disability in multiple sclerosis. Diffusion tensor imaging (DTI) of the brain can provide unique information regarding the orientation and integrity of white matter tracts in vivo. Objective: To use this information to map the pyramidal tracts of patients with multiple sclerosis, investigate the relation between burden of disease in the tracts and disability, and compare this with more global magnetic resonance estimates of disease burden. Methods: 25 patients with relapsing-remitting multiple sclerosis and 17 healthy volunteers were studied with DTI. An algorithm was used that automatically produced anatomically plausible maps of white matter tracts. The integrity of the pyramidal tracts was assessed using relative anisotropy and a novel measure (Lt) derived from the compounded relative anisotropy along the tracts. The methods were compared with both traditional and more recent techniques for measuring disease burden in multiple sclerosis (T2 lesion load and "whole brain" diffusion histograms). Results: Relative anisotropy and Lt were significantly lower in patients than controls (p < 0.05). Pyramidal tract Lt in the patients correlated significantly with both expanded disability status scale (r = -0.48, p < 0.05), and to a greater degree, the pyramidal Kurtzke functional system score (KFS-p) (r = -0.75, p < 0.0001). T2 lesion load and diffusion histogram parameters did not correlate with disability. Conclusions: Tract mapping using DTI is feasible and may increase the specificity of MRI in multiple sclerosis by matching appropriate tracts with specific clinical scoring systems. These techniques may be applicable to a wide range of neurological conditions. PMID:12531950

  12. Function representation with circle inversion map systems

    NASA Astrophysics Data System (ADS)

    Boreland, Bryson; Kunze, Herb

    2017-01-01

    The fractals literature develops the now well-known concept of local iterated function systems (using affine maps) with grey-level maps (LIFSM) as an approach to function representation in terms of the associated fixed point of the so-called fractal transform. While originally explored as a method to achieve signal (and 2-D image) compression, more recent work has explored various aspects of signal and image processing using this machinery. In this paper, we develop a similar framework for function representation using circle inversion map systems. Given a circle C with centre õ and radius r, inversion with respect to C transforms the point p˜ to the point p˜', such that p˜ and p˜' lie on the same radial half-line from õ and d(õ, p˜)d(õ, p˜') = r2, where d is Euclidean distance. We demonstrate the results with an example.

  13. Mapping specific soil functions based on digital soil property maps

    NASA Astrophysics Data System (ADS)

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor

    2016-04-01

    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" (DOSoReMI.hu) numerous soil property maps have been compiled so far with proper DSM techniques partly according to GSM.net specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even DOSoReMI.hu was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in

  14. The importance of diffuse f functions for transition metals

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    The importance of a diffuse f function for determining the dissociation energy (De) of Cu2 and the 3F-3D energy separation in Ni atom is investigated. It is found that the diffuse f contributes at most 0.05 eV to the De of Cu2 when added to a basis containing tight f functions and a flexibly contracted d basis. The diffuse f function is found to decrease the 3F-3D separation in Ni, but by substantially less than the tight f functions.

  15. Sub-diffuse structured light imaging provides macroscopic maps of microscopic tissue structure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kanick, Stephen C.

    2016-03-01

    The onset and progression of cancer introduces changes to the intra-cellular ultrastructural components and to the morphology of the extracellular matrix. While previous work has shown that localized scatter imaging is sensitive to pathology-induced differences in these aspects of tissue microstructure, wide adaptation this knowledge for surgical guidance is limited by two factors. First, the time required to image with confocal-level localization of the remission signal can be substantial. Second, localized (i.e. sub-diffuse) scatter remission intensity is influenced interchangeably by parameters that define scattering frequency and anisotropy. This similarity relationship must be carefully considered in order to obtain unique estimates of biomarkers that define either the scatter density or features that describe the distribution (e.g. shape, size, and orientation) of scatterers. This study presents a novel approach that uses structured light imaging to address both of these limitations. Monte Carlo data were used to model the reflectance intensity over a wide range of spatial frequencies, reduced scattering coefficients, absorption coefficients, and a metric of the scattering phase function that directly maps to the fractal dimension of scatter sizes. The approach is validated in tissue-simulating phantoms constructed with user-tuned scattering phase functions. The validation analysis shows that the phase function can be described in the presence of different scatter densities or background absorptions. Preliminary data from clinical tissue specimens show quantitative images of both the scatter density and the tissue fractal dimension for various tissue types and pathologies. These data represent a novel wide-field quantitative approach to mapping microscopic structural biomarkers that cannot be obtained with standard diffuse imaging. Implications for the use of this approach to assess surgical margins will be discussed.

  16. Functional mapping of ontogeny in flowering plants.

    PubMed

    Zhao, Xiyang; Tong, Chunfa; Pang, Xiaoming; Wang, Zhong; Guo, Yunqian; Du, Fang; Wu, Rongling

    2012-05-01

    All organisms face the problem of how to perform a sequence of developmental changes and transitions during ontogeny. We revise functional mapping, a statistical model originally derived to map genes that determine developmental dynamics, to take into account the entire process of ontogenetic growth from embryo to adult and from the vegetative to reproductive phase. The revised model provides a framework that reconciles the genetic architecture of development at different stages and elucidates a comprehensive picture of the genetic control mechanisms of growth that change gradually from a simple to a more complex level. We use an annual flowering plant, as an example, to demonstrate our model by which to map genes and their interactions involved in embryo and postembryonic growth. The model provides a useful tool to study the genetic control of ontogenetic growth in flowering plants and any other organisms through proper modifications based on their biological characteristics.

  17. Quantitative analysis of diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) for brain disorders

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Seung; Im, In-Chul; Kang, Su-Man; Goo, Eun-Hoe; Kwak, Byung-Joon

    2013-07-01

    This study aimed to quantitatively analyze data from diffusion tensor imaging (DTI) using statistical parametric mapping (SPM) in patients with brain disorders and to assess its potential utility for analyzing brain function. DTI was obtained by performing 3.0-T magnetic resonance imaging for patients with Alzheimer's disease (AD) and vascular dementia (VD), and the data were analyzed using Matlab-based SPM software. The two-sample t-test was used for error analysis of the location of the activated pixels. We compared regions of white matter where the fractional anisotropy (FA) values were low and the apparent diffusion coefficients (ADCs) were increased. In the AD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right sub-lobar insula, and right occipital lingual gyrus whereas the ADCs were significantly increased in the right inferior frontal gyrus and right middle frontal gyrus. In the VD group, the FA values were low in the right superior temporal gyrus, right inferior temporal gyrus, right limbic cingulate gyrus, and right sub-lobar caudate tail whereas the ADCs were significantly increased in the left lateral globus pallidus and left medial globus pallidus. In conclusion by using DTI and SPM analysis, we were able to not only determine the structural state of the regions affected by brain disorders but also quantitatively analyze and assess brain function.

  18. Planck 2015 results. IX. Diffuse component separation: CMB maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales ℓ ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with ℓ< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55' pixels, and between 4.5 and 6.1μK averaged over 3.4 parcm pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum

  19. Function Based Risk Assessment: Mapping Function to Likelihood

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Grantham, Katie; Stone, Robert

    2005-01-01

    The concept of function offers a high potential for thinking and reasoning about designs as well as providing a common thread for relating together other design information. This paper focuses specifically on the relation between function and risk by presenting a mathematical mapping from product function to risk likelihood. This risk information is composed of design parameters, failure modes, and likelihood values. A spacecraft orientation subsystem, subsystem used to guide science instruments, and a Bell 206 rotorcraft are used to test the mapping which continues research on these products relating function to failure. Finally, a case study is presented in which the risk element likelihood is calculated for a fuel cell which is in the conceptual design phase at NASA JPL.

  20. Resting-state functional connectivity in the human brain revealed with diffuse optical tomography

    PubMed Central

    White, Brian R.; Snyder, Abraham Z.; Cohen, Alexander L.; Petersen, Steven E.; Raich-le, Marcus E.; Schlaggar, Bradley L.; Culver, Joseph P.

    2009-01-01

    Mapping resting-state networks allows insight into the brain's functional architecture and physiology and has rapidly become important in contemporary neuroscience research. Diffuse optical tomography (DOT) is an emerging functional neuroimaging technique with the advantages, relative to functional magnetic resonance imaging (fMRI), of portability and the ability to simultaneously measure both oxy- and deoxy-hemoglobin. Previous optical studies have evaluated the temporal features of spontaneous resting brain signals. Herein, we develop techniques for spatially mapping functional connectivity with DOT (fc-DOT). Simultaneous imaging over the motor and visual cortices yielded robust correlation maps reproducing the expected functional neural architecture. The localization of the maps was confirmed with task-response studies and with subject-matched fc-MRI. These fc-DOT methods provide a task-less approach to mapping brain function in populations that were previously difficult to research. Our advances may permit new studies of early childhood development and of unconscious patients. In addition, the comprehensive hemoglobin contrasts of fc-DOT enable innovative studies of the biophysical origin of the functional connectivity signal. PMID:19344773

  1. Analytical correlation functions for motion through diffusivity landscapes.

    PubMed

    Roosen-Runge, Felix; Bicout, Dominique J; Barrat, Jean-Louis

    2016-05-28

    Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states.

  2. A photometric function for diffuse reflection by particulate materials

    NASA Technical Reports Server (NTRS)

    Meador, W. E.; Weaver, W. R.

    1975-01-01

    A photometric function is proposed to describe the diffuse reflection of radiation by particulate materials. Both multiple scattering and the dominant effects of particle shadowing are included and the function is verified by comparisons with the photometries of laboratory surfaces. Brightness measurements of planetary and other diffusely scattering surfaces can be used to calculate the brightness for geometries other than those used in the measurements and for which the Minnaert function does not apply. The measurements also can be directly related to such surface characteristics as particle size, single-particle albedo, and compactness.

  3. Modeling of GPS tropospheric delay wet Neill mapping function (NMF)

    NASA Astrophysics Data System (ADS)

    Sakidin, Hamzah; Ahmad, Asmala; Bugis, Ismadi

    2014-10-01

    The modeling of the GPS tropospheric delay mapping function should be revised by modifying or simplify its mathematical model. Some current mapping functions models are separated into hydrostatic and the wet part. The current tropospheric delay models use mapping functions in the form of continued fractions. This model is quite complex and need to be simplified. By using regression method, the wet mapping function models has been selected to be simplified. There are eleven operations for wet mapping function component of Neill Mapping Function (NMF), to be carried out before getting the mapping function scale factor. So, there is a need to simplify the mapping function models to allow faster calculation and also better understanding of the models.

  4. Diffusion MRI at 25: Exploring brain tissue structure and function

    PubMed Central

    Bihan, Denis Le; Johansen-Berg, Heidi

    2013-01-01

    Diffusion MRI (or dMRI) came into existence in the mid-1980s. During the last 25 years, diffusion MRI has been extraordinarily successful (with more than 300,000 entries on Google Scholar for diffusion MRI). Its main clinical domain of application has been neurological disorders, especially for the management of patients with acute stroke. It is also rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fiber structure and provide outstanding maps of brain connectivity. The ability to visualize anatomical connections between different parts of the brain, non-invasively and on an individual basis, has emerged as a major breakthrough for neurosciences. The driving force of dMRI is to monitor microscopic, natural displacements of water molecules that occur in brain tissues as part of the physical diffusion process. Water molecules are thus used as a probe that can reveal microscopic details about tissue architecture, either normal or in a diseased state. PMID:22120012

  5. Integrating Concept Mapping and the Learning Cycle To Teach Diffusion and Osmosis Concepts to High School Biology Students.

    ERIC Educational Resources Information Center

    Odom, Arthur L.; Kelly, Paul V.

    2001-01-01

    Explores the effectiveness of concept mapping, the learning cycle, expository instruction, and a combination of concept mapping/learning cycle in promoting conceptual understanding of diffusion and osmosis. Concludes that the concept mapping/learning cycle and concept mapping treatment groups significantly outperformed the expository treatment…

  6. Remediating High School Students' Misconceptions Concerning Diffusion and Osmosis through Concept Mapping and Conceptual Change Text.

    ERIC Educational Resources Information Center

    Tekkaya, Ceren

    2003-01-01

    Investigates the effectiveness of combining conceptual change text and concept mapping strategies on students' understanding of diffusion and osmosis. Results indicate that while the average percentage of students in the experimental group holding a scientifically correct view rose, the percentage of correct responses in the control group…

  7. Mapping Functional Connectivity in Patients with Brain Lesions

    PubMed Central

    Guggisberg, Adrian G.; Honma, Susanne M.; Findlay, Anne M.; Dalal, Sarang S.; Kirsch, Heidi E.; Berger, Mitchel S.; Nagarajan, Srikantan S.

    2013-01-01

    OBJECTIVE Although electrophysiological measures of functional connectivity between brain areas are widely used, the spatial distribution of functional interactions as well as the disturbance introduced by focal brain lesions remains poorly understood. Based on the rationale that damaged brain tissue can be expected to be disconnected from the physiological interactions among healthy areas, this study aimed to map the functionality of brain areas according to their connectivity with other areas. METHODS Magnetoencephalographic (MEG) recordings of spontaneous cortical activity during resting state were obtained from 15 consecutive patients with focal brain lesions and from 14 healthy controls. Neural activity at each volume element (voxel) in the brain was estimated using an adaptive spatial filtering technique. For each brain voxel, the mean imaginary coherence of all its connections with other brain voxels was then caluculated as an index of functional connectivity, and the results compared across brain regions and between subjects. RESULTS The magnitude of the mean imaginary coherence of all voxels and subjects was greatest in the alpha frequency range corresponding to the human cortical idling rhythm. In healthy subjects, functionally critical brain areas such as the somatosensory and language cortices had the highest alpha coherence. When compared to healthy controls, all lesion patients had diffuse or scattered brain areas with decreased coherence. Patients with lesion-induced neurological deficits displayed decreased connectivity estimates in the corresponding brain area compared to intact contralateral regions. In tumor patients without preoperative neurological deficits, brain areas showing decreased coherence could be surgically resected without the occurrence of post-surgical deficits. CONCLUSION Resting state coherence measured with MEG is capable of mapping the functional connectivity of the brain, and can therefore offer valuable information for use in

  8. Mapping turbulent diffusivity associated with oceanic internal lee waves offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.; Holbrook, W. Steven; Schmitt, Raymond W.

    2016-04-01

    Breaking internal waves play a primary role in maintaining the meridional overturning circulation. Oceanic lee waves are known to be a significant contributor to diapycnal mixing associated with internal wave dissipation, but direct measurement is difficult with standard oceanographic sampling methods due to the limited spatial extent of standing lee waves. Here, we present an analysis of oceanic internal lee waves observed offshore eastern Costa Rica using seismic imaging and estimate the turbulent diffusivity via a new seismic slope spectrum method that extracts diffusivities directly from seismic images, using tracked reflections only to scale diffusivity values. The result provides estimates of turbulent diffusivities throughout the water column at scales of a few hundred meters laterally and 10 m vertically. Synthetic tests demonstrate the method's ability to resolve turbulent structures and reproduce accurate diffusivities. A turbulence map of our seismic section in the western Caribbean shows elevated turbulent diffusivities near rough seafloor topography as well as in the mid-water column where observed lee wave propagation terminates. Mid-water column hotspots of turbulent diffusivity show levels 5 times higher than surrounding waters and 50 times greater than typical open-ocean diffusivities. This site has steady currents that make it an exceptionally accessible laboratory for the study of lee-wave generation, propagation, and decay.

  9. Mapping cortical responses to speech using high-density diffuse optical tomography

    PubMed Central

    Hassanpour, Mahlega S.; Eggebrecht, Adam T.; Culver, Joseph P.; Peelle, Jonathan E.

    2015-01-01

    The functional neuroanatomy of speech processing has been investigated using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) for more than 20 years. However, these approaches have relatively poor temporal resolution and/or challenges of acoustic contamination due to the constraints of echoplanar fMRI. Furthermore, these methods are contraindicated because of safety concerns in longitudinal studies and research with children (PET) or in studies of patients with metal implants (fMRI). High-density diffuse optical tomography (HD-DOT) permits presenting speech in a quiet acoustic environment, has excellent temporal resolution relative to the hemodynamic response, and provides noninvasive and metal-compatible imaging. However, the performance of HD-DOT in imaging the brain regions involved in speech processing is not fully established. In the current study, we use an auditory sentence comprehension task to evaluate the ability of HD-DOT to map the cortical networks supporting speech processes. Using sentences with two levels of linguistic complexity, along with a control condition consisting of unintelligible noise-vocoded speech, we recovered a hierarchical organization of the speech network that matches the results of previous fMRI studies. Specifically, hearing intelligible speech resulted in increased activity in bilateral temporal cortex and left frontal cortex, with syntactically complex speech leading to additional activity in left posterior temporal cortex and left inferior frontal gyrus. These results demonstrate the feasibility of using HD-DOT to map spatially distributed brain networks supporting higher-order cognitive faculties such as spoken language. PMID:26026816

  10. Functional materials discovery using energy-structure-function maps.

    PubMed

    Pulido, Angeles; Chen, Linjiang; Kaczorowski, Tomasz; Holden, Daniel; Little, Marc A; Chong, Samantha Y; Slater, Benjamin J; McMahon, David P; Bonillo, Baltasar; Stackhouse, Chloe J; Stephenson, Andrew; Kane, Christopher M; Clowes, Rob; Hasell, Tom; Cooper, Andrew I; Day, Graeme M

    2017-03-30

    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal-organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy-structure-function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy-structure-function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties.

  11. Efficient Diffuse Basis Sets for Density Functional Theory.

    PubMed

    Papajak, Ewa; Truhlar, Donald G

    2010-03-09

    Eliminating all but the s and p diffuse functions on the non-hydrogenic atoms and all diffuse functions on the hydrogen atoms from the aug-cc-pV(x+d)Z basis sets of Dunning and co-workers, where x = D, T, Q, ..., yields the previously proposed "minimally augmented" basis sets, called maug-cc-pV(x+d)Z. Here, we present extensive and systematic tests of these basis sets for density functional calculations of chemical reaction barrier heights, hydrogen bond energies, electron affinities, ionization potentials, and atomization energies. The tests show that the maug-cc-pV(x+d)Z basis sets are as accurate as the aug-cc-pV(x+d)Z ones for density functional calculations, but the computational cost savings are a factor of about two to seven.

  12. Fast and simplified mapping of mean axon diameter using temporal diffusion spectroscopy.

    PubMed

    Xu, Junzhong; Li, Hua; Li, Ke; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Dortch, Richard D; Anderson, Adam W; Does, Mark D; Gore, John C

    2016-04-01

    Mapping axon diameter is of interest for the potential diagnosis and monitoring of various neuronal pathologies. Advanced diffusion-weighted MRI methods have been developed to measure mean axon diameters non-invasively, but suffer major drawbacks that prevent their direct translation into clinical practice, such as complex non-linear data fitting and, more importantly, long scanning times that are usually not tolerable for most human subjects. In the current study, temporal diffusion spectroscopy using oscillating diffusion gradients was used to measure mean axon diameters with high sensitivity to small axons in the central nervous system. Axon diameters have been found to be correlated with a novel metric, DDR⊥ (the rate of dispersion of the perpendicular diffusion coefficient with gradient frequency), which is a model-free quantity that does not require complex data analyses and can be obtained from two diffusion coefficient measurements in clinically relevant times with conventional MRI machines. A comprehensive investigation including computer simulations and animal experiments ex vivo showed that measurements of DDR⊥ agree closely with histological data. In humans in vivo, DDR⊥ was also found to correlate well with reported mean axon diameters in human corpus callosum, and the total scan time was only about 8 min. In conclusion, DDR⊥ may have potential to serve as a fast, simple and model-free approach to map the mean axon diameter of white matter in clinics for assessing axon diameter changes.

  13. Eulerian Mapping Closure Approach for Probability Density Function of Concentration in Shear Flows

    NASA Technical Reports Server (NTRS)

    He, Guowei; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The Eulerian mapping closure approach is developed for uncertainty propagation in computational fluid mechanics. The approach is used to study the Probability Density Function (PDF) for the concentration of species advected by a random shear flow. An analytical argument shows that fluctuation of the concentration field at one point in space is non-Gaussian and exhibits stretched exponential form. An Eulerian mapping approach provides an appropriate approximation to both convection and diffusion terms and leads to a closed mapping equation. The results obtained describe the evolution of the initial Gaussian field, which is in agreement with direct numerical simulations.

  14. A Stable Finite-Difference Scheme for Population Growth and Diffusion on a Map

    PubMed Central

    Callegari, S.; Lake, G. R.; Tkachenko, N.; Weissmann, J. D.; Zollikofer, Ch. P. E.

    2017-01-01

    We describe a general Godunov-type splitting for numerical simulations of the Fisher–Kolmogorov–Petrovski–Piskunov growth and diffusion equation on a world map with Neumann boundary conditions. The procedure is semi-implicit, hence quite stable. Our principal application for this solver is modeling human population dispersal over geographical maps with changing paleovegetation and paleoclimate in the late Pleistocene. As a proxy for carrying capacity we use Net Primary Productivity (NPP) to predict times for human arrival in the Americas. PMID:28085882

  15. Electron distribution function formation in regions of diffuse aurora

    NASA Astrophysics Data System (ADS)

    Khazanov, G. V.; Tripathi, A. K.; Sibeck, D.; Himwich, E.; Glocer, A.; Singhal, R. P.

    2015-11-01

    The precipitation of high-energy magnetospheric electrons (E ˜ 600 eV-10 KeV) in the diffuse aurora contributes significant energy flux into the Earth's ionosphere. To fully understand the formation of this flux at the upper ionospheric boundary, ˜700-800 km, it is important to consider the coupled ionosphere-magnetosphere system. In the diffuse aurora, precipitating electrons initially injected from the plasma sheet via wave-particle interaction processes degrade in the atmosphere toward lower energies and produce secondary electrons via impact ionization of the neutral atmosphere. These precipitating electrons can be additionally reflected upward from the two conjugate ionospheres, leading to a series of multiple reflections through the magnetosphere. These reflections greatly influence the initially precipitating flux at the upper ionospheric boundary (700-800 km) and the resultant population of secondary electrons and electrons cascading toward lower energies. In this paper, we present the solution of the Boltzman-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora, including the affiliated production of secondary electrons (E < 600 eV) and its energy interplay in the magnetosphere and two conjugated ionospheres. This solution takes into account, for the first time, the formation of the electron distribution function in the diffuse auroral region, beginning with the primary injection of plasma sheet electrons via both electrostatic electron cyclotron harmonic waves and whistler mode chorus waves to the loss cone, and including their subsequent multiple atmospheric reflections in the two magnetically conjugated ionospheres. It is demonstrated that magnetosphere-ionosphere coupling is key in forming the electron distribution function in the diffuse auroral region.

  16. A radial basis function Galerkin method for inhomogeneous nonlocal diffusion

    DOE PAGES

    Lehoucq, Richard B.; Rowe, Stephen T.

    2016-02-01

    We introduce a discretization for a nonlocal diffusion problem using a localized basis of radial basis functions. The stiffness matrix entries are assembled by a special quadrature routine unique to the localized basis. Combining the quadrature method with the localized basis produces a well-conditioned, sparse, symmetric positive definite stiffness matrix. We demonstrate that both the continuum and discrete problems are well-posed and present numerical results for the convergence behavior of the radial basis function method. As a result, we explore approximating the solution to anisotropic differential equations by solving anisotropic nonlocal integral equations using the radial basis function method.

  17. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.

    PubMed

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-12-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively.

  18. Diffusion Maps and Geometric Harmonics for Automatic Target Recognition (ATR). Volume 2. Appendices

    DTIC Science & Technology

    2007-11-01

    visual stimuli could be considered similar if they excite a visual receptor in a very similar way. Discovering large-scale structures and extracting...spike train analysis to olfaction and the electroencephalogram (EEG). But perhaps more exciting is the possibility that emergent structure across levels...will open a theoretical door into cognitive neuroscience and memory organization. Matlab scripts for the computations involved in diffusion maps

  19. Shape-Based Image Matching Using Heat Kernels and Diffusion Maps

    NASA Astrophysics Data System (ADS)

    Vizilter, Yu. V.; Gorbatsevich, V. S.; Rubis, A. Yu.; Zheltov, S. Yu.

    2014-08-01

    2D image matching problem is often stated as an image-to-shape or shape-to-shape matching problem. Such shape-based matching techniques should provide the matching of scene image fragments registered in various lighting, weather and season conditions or in different spectral bands. Most popular shape-to-shape matching technique is based on mutual information approach. Another wellknown approach is a morphological image-to-shape matching proposed by Pytiev. In this paper we propose the new image-to-shape matching technique based on heat kernels and diffusion maps. The corresponding Diffusion Morphology is proposed as a new generalization of Pytiev morphological scheme. The fast implementation of morphological diffusion filtering is described. Experimental comparison of new and aforementioned shape-based matching techniques is reported applying to the TV and IR image matching problem.

  20. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy.

    PubMed

    Xu, Junzhong; Li, Hua; Harkins, Kevin D; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Does, Mark D; Gore, John C

    2014-12-01

    Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. >20ms, the sensitivity to small axons (diameter<2μm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1-5ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter of ~1.27-5.54μm). The estimated values were in good agreement with histology, including the small axon diameters (<2.5μm). This study establishes a framework for the quantification of nerve morphology using the OGSE method with high sensitivity to small axons.

  1. Mapping mean axon diameter and axonal volume fraction by MRI using temporal diffusion spectroscopy

    PubMed Central

    Xu, Junzhong; Li, Hua; Harkins, Kevin D.; Jiang, Xiaoyu; Xie, Jingping; Kang, Hakmook; Does, Mark D.; Gore, John C.

    2014-01-01

    Mapping mean axon diameter and intra-axonal volume fraction may have significant clinical potential because nerve conduction velocity is directly dependent on axon diameter, and several neurodegenerative diseases affect axons of specific sizes and alter axon counts. Diffusion-weighted MRI methods based on the pulsed gradient spin echo (PGSE) sequence have been reported to be able to assess axon diameter and volume fraction non-invasively. However, due to the relatively long diffusion times used, e.g. > 20 ms, the sensitivity to small axons (diameter < 2 µm) is low, and the derived mean axon diameter has been reported to be overestimated. In the current study, oscillating gradient spin echo (OGSE) diffusion sequences with variable frequency gradients were used to assess rat spinal white matter tracts with relatively short effective diffusion times (1 – 5 ms). In contrast to previous PGSE-based methods, the extra-axonal diffusion cannot be modeled as hindered (Gaussian) diffusion when short diffusion times are used. Appropriate frequency-dependent rates are therefore incorporated into our analysis and validated by histology-based computer simulation of water diffusion. OGSE data were analyzed to derive mean axon diameters and intra-axonal volume fractions of rat spinal white matter tracts (mean axon diameter ~ 1.27 – 5.54 µm). The estimated values were in good agreement with histology, including the small axon diameters (< 2.5 µm). This study establishes a framework for quantification of nerve morphology using the OGSE method with high sensitivity to small axons. PMID:25225002

  2. A new substitution-diffusion based image cipher using chaotic standard and logistic maps

    NASA Astrophysics Data System (ADS)

    Patidar, Vinod; Pareek, N. K.; Sud, K. K.

    2009-07-01

    In this paper, we propose a new loss-less symmetric image cipher based on the widely used substitution-diffusion architecture which utilizes chaotic standard and logistic maps. It is specifically designed for the coloured images, which are 3D arrays of data streams. The initial condition, system parameter of the chaotic standard map and number of iterations together constitute the secret key of the algorithm. The first round of substitution/confusion is achieved with the help of intermediate XORing keys calculated from the secret key. Then two rounds of diffusion namely the horizontal and vertical diffusions are completed by mixing the properties of horizontally and vertically adjacent pixels, respectively. In the fourth round, a robust substitution/confusion is accomplished by generating an intermediate chaotic key stream (CKS) image in a novel manner with the help of chaotic standard and logistic maps. The security and performance of the proposed image encryption technique has been analyzed thoroughly using various statistical analysis, key sensitivity analysis, differential analysis, key space analysis, speed analysis, etc. Results of the various types of analysis are encouraging and suggest that the proposed image encryption technique is able to manage the trade offs between the security and speed and hence suitable for the real-time secure image and video communication applications.

  3. Systematic characterization of protein folding pathways using diffusion maps: Application to Trp-cage miniprotein

    SciTech Connect

    Kim, Sang Beom; Dsilva, Carmeline J.; Debenedetti, Pablo G.; Kevrekidis, Ioannis G.

    2015-02-28

    Understanding the mechanisms by which proteins fold from disordered amino-acid chains to spatially ordered structures remains an area of active inquiry. Molecular simulations can provide atomistic details of the folding dynamics which complement experimental findings. Conventional order parameters, such as root-mean-square deviation and radius of gyration, provide structural information but fail to capture the underlying dynamics of the protein folding process. It is therefore advantageous to adopt a method that can systematically analyze simulation data to extract relevant structural as well as dynamical information. The nonlinear dimensionality reduction technique known as diffusion maps automatically embeds the high-dimensional folding trajectories in a lower-dimensional space from which one can more easily visualize folding pathways, assuming the data lie approximately on a lower-dimensional manifold. The eigenvectors that parametrize the low-dimensional space, furthermore, are determined systematically, rather than chosen heuristically, as is done with phenomenological order parameters. We demonstrate that diffusion maps can effectively characterize the folding process of a Trp-cage miniprotein. By embedding molecular dynamics simulation trajectories of Trp-cage folding in diffusion maps space, we identify two folding pathways and intermediate structures that are consistent with the previous studies, demonstrating that this technique can be employed as an effective way of analyzing and constructing protein folding pathways from molecular simulations.

  4. Diffusion maps, clustering and fuzzy Markov modeling in peptide folding transitions

    SciTech Connect

    Nedialkova, Lilia V.; Amat, Miguel A.; Kevrekidis, Ioannis G. E-mail: gerhard.hummer@biophys.mpg.de; Hummer, Gerhard E-mail: gerhard.hummer@biophys.mpg.de

    2014-09-21

    Using the helix-coil transitions of alanine pentapeptide as an illustrative example, we demonstrate the use of diffusion maps in the analysis of molecular dynamics simulation trajectories. Diffusion maps and other nonlinear data-mining techniques provide powerful tools to visualize the distribution of structures in conformation space. The resulting low-dimensional representations help in partitioning conformation space, and in constructing Markov state models that capture the conformational dynamics. In an initial step, we use diffusion maps to reduce the dimensionality of the conformational dynamics of Ala5. The resulting pretreated data are then used in a clustering step. The identified clusters show excellent overlap with clusters obtained previously by using the backbone dihedral angles as input, with small—but nontrivial—differences reflecting torsional degrees of freedom ignored in the earlier approach. We then construct a Markov state model describing the conformational dynamics in terms of a discrete-time random walk between the clusters. We show that by combining fuzzy C-means clustering with a transition-based assignment of states, we can construct robust Markov state models. This state-assignment procedure suppresses short-time memory effects that result from the non-Markovianity of the dynamics projected onto the space of clusters. In a comparison with previous work, we demonstrate how manifold learning techniques may complement and enhance informed intuition commonly used to construct reduced descriptions of the dynamics in molecular conformation space.

  5. Functional Mapping with Simultaneous MEG and EEG.

    PubMed

    Liu, Hesheng; Tanaka, Naoaki; Stufflebeam, Steven; Ahlfors, Seppo; Hämäläinen, Matti

    2010-06-14

    We use magnetoencephalography (MEG) and electroencephalography (EEG) to locate and determine the temporal evolution in brain areas involved in the processing of simple sensory stimuli. We will use somatosensory stimuli to locate the hand somatosensory areas, auditory stimuli to locate the auditory cortices, visual stimuli in four quadrants of the visual field to locate the early visual areas. These type of experiments are used for functional mapping in epileptic and brain tumor patients to locate eloquent cortices. In basic neuroscience similar experimental protocols are used to study the orchestration of cortical activity. The acquisition protocol includes quality assurance procedures, subject preparation for the combined MEG/EEG study, and acquisition of evoked-response data with somatosensory, auditory, and visual stimuli. We also demonstrate analysis of the data using the equivalent current dipole model and cortically-constrained minimum-norm estimates. Anatomical MRI data are employed in the analysis for visualization and for deriving boundaries of tissue boundaries for forward modeling and cortical location and orientation constraints for the minimum-norm estimates.

  6. Functional Mapping with Simultaneous MEG and EEG

    PubMed Central

    Liu, Hesheng; Tanaka, Naoaki; Stufflebeam, Steven; Ahlfors, Seppo; Hämäläinen, Matti

    2010-01-01

    We use magnetoencephalography (MEG) and electroencephalography (EEG) to locate and determine the temporal evolution in brain areas involved in the processing of simple sensory stimuli. We will use somatosensory stimuli to locate the hand somatosensory areas, auditory stimuli to locate the auditory cortices, visual stimuli in four quadrants of the visual field to locate the early visual areas. These type of experiments are used for functional mapping in epileptic and brain tumor patients to locate eloquent cortices. In basic neuroscience similar experimental protocols are used to study the orchestration of cortical activity. The acquisition protocol includes quality assurance procedures, subject preparation for the combined MEG/EEG study, and acquisition of evoked-response data with somatosensory, auditory, and visual stimuli. We also demonstrate analysis of the data using the equivalent current dipole model and cortically-constrained minimum-norm estimates. Anatomical MRI data are employed in the analysis for visualization and for deriving boundaries of tissue boundaries for forward modeling and cortical location and orientation constraints for the minimum-norm estimates. PMID:20567210

  7. Structural and functional correlates of visual field asymmetry in the human brain by diffusion kurtosis MRI and functional MRI.

    PubMed

    O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C

    2016-11-09

    Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.

  8. Typical diffusion behaviour in packaging polymers - application to functional barriers.

    PubMed

    Dole, Patrice; Feigenbaum, Alexandre E; De La Cruz, Carlos; Pastorelli, Sara; Paseiro, Perfecto; Hankemeier, Thomas; Voulzatis, Yiannis; Aucejo, Susana; Saillard, Philippe; Papaspyrides, Costas

    2006-02-01

    When plastics are collected for recycling, possibly contaminated articles might be recycled into food packaging, and thus the contaminants might subsequently migrate into the food. Multilayer functional barriers may be used to delay and to reduce such migration. The contribution of the work reported here is to establish reference values (at 40 degrees C) of diffusion coefficients and of activation energies to predict the functional barrier efficiency of a broad range of polymers (polyolefins, polystyrene, polyamide, PVC, PET, PVDC, [ethylene vinyl alcohol copolymer], polyacrylonitrile and [ethylene vinyl acetate copolymer]). Diffusion coefficients (D) and activation energies (Ea) were measured and were compiled together with literature data. This allowed identification of new trends for the log D=f(molecular weight) relationships. The slopes were a function of the barrier efficiency of the polymer and temperature. The apparent activation energy of diffusion displayed two domains of variation with molecular weight (M). For low M (gases), there was little variation of Ea. Focusing on larger molecules, high barrier polymers displayed a larger dependence of Ea with M. The apparent activation energy decreased with T. These results suggest a discontinuity between rubbery and glassy polymers.

  9. Semiparametric Bayesian local functional models for diffusion tensor tract statistics☆

    PubMed Central

    Hua, Zhaowei; Dunson, David B.; Gilmore, John H.; Styner, Martin A.; Zhu, Hongtu

    2012-01-01

    We propose a semiparametric Bayesian local functional model (BFM) for the analysis of multiple diffusion properties (e.g., fractional anisotropy) along white matter fiber bundles with a set of covariates of interest, such as age and gender. BFM accounts for heterogeneity in the shape of the fiber bundle diffusion properties among subjects, while allowing the impact of the covariates to vary across subjects. A nonparametric Bayesian LPP2 prior facilitates global and local borrowings of information among subjects, while an infinite factor model flexibly represents low-dimensional structure. Local hypothesis testing and credible bands are developed to identify fiber segments, along which multiple diffusion properties are significantly associated with covariates of interest, while controlling for multiple comparisons. Moreover, BFM naturally group subjects into more homogeneous clusters. Posterior computation proceeds via an efficient Markov chain Monte Carlo algorithm. A simulation study is performed to evaluate the finite sample performance of BFM. We apply BFM to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment in new born infants. PMID:22732565

  10. Real space mapping of oxygen vacancy diffusion and electrochemical transformations by hysteretic current reversal curve measurements

    DOEpatents

    Kalinin, Sergei V.; Balke, Nina; Borisevich, Albina Y.; Jesse, Stephen; Maksymovych, Petro; Kim, Yunseok; Strelcov, Evgheni

    2014-06-10

    An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.

  11. The analysis of three typical tropospheric mapping functions

    NASA Astrophysics Data System (ADS)

    Xie, Shaofeng; Jin, Liyang; Zhang, Pengfei

    2015-12-01

    Processing the tropospheric data provided by IGS stations of china with the NMF function,VMF1 function and GMF function. comparing the baseline repetition rate. If the change of IGS station latitude and the cutoff elevation angles can make the height correction become more precision when using this three mapping function. And whether the dynamic mapping function can meet the accuracy requirement with the highly temporal.

  12. Stochastic Functional Data Analysis: A Diffusion Model-based Approach

    PubMed Central

    Zhu, Bin; Song, Peter X.-K.; Taylor, Jeremy M.G.

    2011-01-01

    Summary This paper presents a new modeling strategy in functional data analysis. We consider the problem of estimating an unknown smooth function given functional data with noise. The unknown function is treated as the realization of a stochastic process, which is incorporated into a diffusion model. The method of smoothing spline estimation is connected to a special case of this approach. The resulting models offer great flexibility to capture the dynamic features of functional data, and allow straightforward and meaningful interpretation. The likelihood of the models is derived with Euler approximation and data augmentation. A unified Bayesian inference method is carried out via a Markov Chain Monte Carlo algorithm including a simulation smoother. The proposed models and methods are illustrated on some prostate specific antigen data, where we also show how the models can be used for forecasting. PMID:21418053

  13. Benchmark calculations of excess electrons in water cluster cavities: balancing the addition of atom-centered diffuse functions versus floating diffuse functions.

    PubMed

    Zhang, Changzhe; Bu, Yuxiang

    2016-09-14

    Diffuse functions have been proved to be especially crucial for the accurate characterization of excess electrons which are usually bound weakly in intermolecular zones far away from the nuclei. To examine the effects of diffuse functions on the nature of the cavity-shaped excess electrons in water cluster surroundings, both the HOMO and LUMO distributions, vertical detachment energies (VDEs) and visible absorption spectra of two selected (H2O)24(-) isomers are investigated in the present work. Two main types of diffuse functions are considered in calculations including the Pople-style atom-centered diffuse functions and the ghost-atom-based floating diffuse functions. It is found that augmentation of atom-centered diffuse functions contributes to a better description of the HOMO (corresponding to the VDE convergence), in agreement with previous studies, but also leads to unreasonable diffuse characters of the LUMO with significant red-shifts in the visible spectra, which is against the conventional point of view that the more the diffuse functions, the better the results. The issue of designing extra floating functions for excess electrons has also been systematically discussed, which indicates that the floating diffuse functions are necessary not only for reducing the computational cost but also for improving both the HOMO and LUMO accuracy. Thus, the basis sets with a combination of partial atom-centered diffuse functions and floating diffuse functions are recommended for a reliable description of the weakly bound electrons. This work presents an efficient way for characterizing the electronic properties of weakly bound electrons accurately by balancing the addition of atom-centered diffuse functions and floating diffuse functions and also by balancing the computational cost and accuracy of the calculated results, and thus is very useful in the relevant calculations of various solvated electron systems and weakly bound anionic systems.

  14. Functional imaging of small tissue volumes with diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Klose, Alexander D.; Hielscher, Andreas H.

    2006-03-01

    Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.

  15. Characterizing the structure of diffuse emission in Hi-GAL maps

    SciTech Connect

    Elia, D.; Molinari, S.; Rygl, K. L. J.; Di Giorgio, A. M.; Pestalozzi, M.; Liu, S. J.; Strafella, F.; Maruccia, Y.; Schneider, N.; Paladini, R.; Vavrek, R.; Noriega-Crespo, A.; Pezzuto, S.; Schisano, E.; Traficante, A.; Calzoletti, L.; Natoli, P.; Martin, P.; Fukui, Y.; and others

    2014-06-10

    We present a study of the structure of the Galactic interstellar medium (ISM) through the Δ-variance technique, related to the power spectrum and the fractal properties of infrared/submillimeter maps. Through this method, it is possible to provide quantitative parameters, which are useful for characterizing different morphological and physical conditions, and better constraining the theoretical models. In this respect, the Herschel Infrared Galactic Plane Survey, carried out at five photometric bands from 70 to 500 μm, constitutes a unique database for applying statistical tools to a variety of regions across the Milky Way. In this paper, we derive a robust estimate of the power-law portion of the power spectrum of four contiguous 2° × 2° Hi-GAL tiles located in the third Galactic quadrant (217° ≲ ℓ ≲ 225°, –2° ≲ b ≲ 0°). The low level of confusion along the line of sight, testified by CO observations, makes this region an ideal case. We find very different values for the power spectrum slope from tile to tile but also from wavelength to wavelength (2 ≲ β ≲ 3), with similarities between fields attributable to components located at the same distance. Thanks to comparisons with models of turbulence, an explanation of the determined slopes in terms of the fractal geometry is also provided, and possible relations with the underlying physics are investigated. In particular, an anti-correlation between ISM fractal dimension and star formation efficiency is found for the two main distance components observed in these fields. A possible link between the fractal properties of the diffuse emission and the resulting clump mass function is discussed.

  16. Remediating High School Students' Misconceptions Concerning Diffusion and Osmosis through Concept Mapping and Conceptual Change Text

    NASA Astrophysics Data System (ADS)

    Tekkaya, Ceren

    2003-01-01

    This study investigated the effectiveness of combining conceptual change text and concept mapping strategy on students' understanding of diffusion and osmosis. Students' conceptual understanding of diffusion and osmosis was measured using the Diffusion and Osmosis Diagnostic Test developed by Odom and Barrow (1995). The test was administered as pretest and post-test to a total of 44 ninth-grade students in two intact classes of the same high school located in an urban area. The experimental group was a class of 24 students who received concept mapping and conceptual change text instruction. A class of 20 students comprised the control group who received a traditional instruction. Group Assessment of Logical Thinking Test (GALT) and pretest scores were used as covariates in this study. A pretest-post-test control group design utilising the analysis of covariance (ANCOVA) showed a statistically significant difference between the experimental and control groups in the favour of the experimental group after treatment. The results indicated that while the average percentage of students in the experimental group holding a scientifically correct view had risen from 22.5% to 54.1%, a gain of 31.6%, the percentage of correct responses of the students in the control group had increased from 19.1% to 38.7%, a gain of 19.6% after treatment.

  17. Multislice diffusion mapping for 3-D evolution of cerebral ischemia in a rat stroke model.

    PubMed

    Reith, W; Hasegawa, Y; Latour, L L; Dardzinski, B J; Sotak, C H; Fisher, M

    1995-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) can quantitatively demonstrate cerebral ischemia within minutes after the onset of ischemia. The use of a DWI echo-planar multislice technique in this study and the mapping of the apparent diffusion coefficient (ADC) of water, a reliable indicator of ischemic regions, allow for the detection of the three-dimensional (3-D) evolution of ischemia in a rat stroke model. We evaluated 13 time points from 5 to 180 minutes after occlusion of the middle cerebral artery (MCA) and monitored the 3-D spread of ischemia. Within 5 minutes after the onset of ischemia, regions with reduced ADC values occurred. The core of the lesion, with the lowest absolute ADC values, first appeared in the lateral caudoputamen and frontoparietal cortex, then spread to adjacent areas. The volume of ischemic tissue was 224 +/- 48.5 mm3 (mean +/- SEM) after 180 minutes, ranging from 92 to 320 mm3, and this correlated well with the corrected infarct volume at postmortem (194 +/- 23.1 mm3, r = 0.72, p < 0.05). This experiment demonstrated that 3-D multislice diffusion mapping can detect ischemic regions noninvasively 5 minutes after MCA occlusion and follow the development of ischemia. The distribution of changes in absolute ADC values within the ischemic region can be followed over time, giving important information about the evolution of focal ischemia.

  18. Response variance in functional maps: neural darwinism revisited.

    PubMed

    Takahashi, Hirokazu; Yokota, Ryo; Kanzaki, Ryohei

    2013-01-01

    The mechanisms by which functional maps and map plasticity contribute to cortical computation remain controversial. Recent studies have revisited the theory of neural Darwinism to interpret the learning-induced map plasticity and neuronal heterogeneity observed in the cortex. Here, we hypothesize that the Darwinian principle provides a substrate to explain the relationship between neuron heterogeneity and cortical functional maps. We demonstrate in the rat auditory cortex that the degree of response variance is closely correlated with the size of its representational area. Further, we show that the response variance within a given population is altered through training. These results suggest that larger representational areas may help to accommodate heterogeneous populations of neurons. Thus, functional maps and map plasticity are likely to play essential roles in Darwinian computation, serving as effective, but not absolutely necessary, structures to generate diverse response properties within a neural population.

  19. Diffusion-Weighted Magnetic Resonance Imaging to Evaluate Major Salivary Gland Function Before and After Radiotherapy

    SciTech Connect

    Dirix, Piet Keyzer, Frederik de; Vandecaveye, Vincent; Stroobants, Sigrid; Hermans, Robert; Nuyts, Sandra

    2008-08-01

    Purpose: To evaluate diffusion-weighted (DW)-MRI as a noninvasive tool to investigate major salivary gland function before and after radiotherapy (RT) for head and neck cancer (HNC). Methods and Materials: DW-MRI was performed in 8 HNC patients before and after parotid-sparing RT (mean dose to the contralateral parotid gland <26 Gy). A DW sequence was performed once at rest and then repeated continuously during salivary stimulation. Apparent diffusion coefficient (ADC) maps for both parotid and submandibular glands were calculated. Findings were compared with salivary gland scintigraphy. Results: Before RT, the mean ADC value at rest was significantly lower in the parotid than in the submandibular glands. During the first 5 min of stimulation, the ADC value of the salivary glands showed a decrease, followed by a steady increase until a peak ADC, significantly higher than the baseline value, was reached after a median of 17 min. The baseline ADC value at rest was significantly higher after RT than before RT in the nonspared salivary glands but not in the spared parotid glands. In the contralateral parotid glands, the same response was seen as before RT. This pattern was completely lost in the nonspared glands. These results corresponded with remaining or loss of salivary function, respectively, as confirmed by salivary gland scintigraphy. Conclusions: Diffusion-weighted-MRI allows noninvasive evaluation of functional changes in the major salivary glands after RT and is a promising tool for investigating radiation-induced xerostomia.

  20. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium.

    PubMed

    Greening, Gage J; James, Haley M; Powless, Amy J; Hutcheson, Joshua A; Dierks, Mary K; Rajaram, Narasimhan; Muldoon, Timothy J

    2015-12-01

    Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive "optical biopsy" techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients.

  1. Fiber-bundle microendoscopy with sub-diffuse reflectance spectroscopy and intensity mapping for multimodal optical biopsy of stratified epithelium

    PubMed Central

    Greening, Gage J.; James, Haley M.; Powless, Amy J.; Hutcheson, Joshua A.; Dierks, Mary K.; Rajaram, Narasimhan; Muldoon, Timothy J.

    2015-01-01

    Early detection of structural or functional changes in dysplastic epithelia may be crucial for improving long-term patient care. Recent work has explored myriad non-invasive or minimally invasive “optical biopsy” techniques for diagnosing early dysplasia, such as high-resolution microendoscopy, a method to resolve sub-cellular features of apical epithelia, as well as broadband sub-diffuse reflectance spectroscopy, a method that evaluates bulk health of a small volume of tissue. We present a multimodal fiber-based microendoscopy technique that combines high-resolution microendoscopy, broadband (450-750 nm) sub-diffuse reflectance spectroscopy (sDRS) at two discrete source-detector separations (374 and 730 μm), and sub-diffuse reflectance intensity mapping (sDRIM) using a 635 nm laser. Spatial resolution, magnification, field-of-view, and sampling frequency were determined. Additionally, the ability of the sDRS modality to extract optical properties over a range of depths is reported. Following this, proof-of-concept experiments were performed on tissue-simulating phantoms made with poly(dimethysiloxane) as a substrate material with cultured MDA-MB-468 cells. Then, all modalities were demonstrated on a human melanocytic nevus from a healthy volunteer and on resected colonic tissue from a murine model. Qualitative in vivo image data is correlated with reduced scattering and absorption coefficients. PMID:26713207

  2. Mapping carrier diffusion in single silicon core-shell nanowires with ultrafast optical microscopy.

    PubMed

    Seo, M A; Yoo, J; Dayeh, S A; Picraux, S T; Taylor, A J; Prasankumar, R P

    2012-12-12

    Recent success in the fabrication of axial and radial core-shell heterostructures, composed of one or more layers with different properties, on semiconductor nanowires (NWs) has enabled greater control of NW-based device operation for various applications. (1-3) However, further progress toward significant performance enhancements in a given application is hindered by the limited knowledge of carrier dynamics in these structures. In particular, the strong influence of interfaces between different layers in NWs on transport makes it especially important to understand carrier dynamics in these quasi-one-dimensional systems. Here, we use ultrafast optical microscopy (4) to directly examine carrier relaxation and diffusion in single silicon core-only and Si/SiO(2) core-shell NWs with high temporal and spatial resolution in a noncontact manner. This enables us to reveal strong coherent phonon oscillations and experimentally map electron and hole diffusion currents in individual semiconductor NWs for the first time.

  3. Parametric Response Mapping of Apparent Diffusion Coefficient (ADC) as an Imaging Biomarker to Distinguish Pseudoprogression from True Tumor Progression In Peptide-Based Vaccine Therapy for Pediatric Diffuse Instrinsic Pontine Glioma

    PubMed Central

    Ceschin, Rafael; Kurland, Brenda F.; Abberbock, Shira R.; Ellingson, Benjamin M.; Okada, Hideho; Jakacki, Regina I.; Pollack, Ian F.; Panigrahy, Ashok

    2015-01-01

    Background and Purpose Immune response to cancer therapy may result in pseudoprogression, which can only be identified retrospectively and which may disrupt an effective therapy. This study assesses whether serial parametric response mapping (PRM, a voxel-by-voxel method of image analysis also known as functional diffusion mapping) analysis of ADC measurements following peptide-based vaccination may help prospectively distinguish progression from pseudoprogression in pediatric patients with diffuse intrinsic pontine gliomas. Materials and Methods From 2009–2012, 21 children age 4–18 with diffuse intrinsic pontine gliomas were enrolled in a serial peptide-based vaccination protocol following radiotherapy. DWI was acquired before immunotherapy and at six week intervals during vaccine treatment. Pseudoprogression was identified retrospectively based on clinical and radiographic findings, excluding DWI. Parametric response mapping was used to analyze 96 scans, comparing ADC measures at multiple time points (from first vaccine to up to 12 weeks after the vaccine was halted) to pre-vaccine baseline values. Log-transformed fractional increased ADC (fiADC), fractional decreased ADC (fdADC), and parametric response mapping ratio (fiADC/fdADC) were compared between patients with and without pseudoprogression, using generalized estimating equations with inverse weighting by cluster size. Results Median survival was 13.1 months from diagnosis (range 6.4–24.9 months). Four of 21 children (19%) were assessed as experiencing pseudoprogression. Patients with pseudoprogression had higher fitted average log-transformed parametric response mapping ratios (p=0.01) and fiADCs (p=0.0004), compared to patients without pseudoprogression. Conclusion Serial parametric response mapping of ADC, performed at multiple time points of therapy, may distinguish pseudoprogression from true progression in patients with diffuse intrinsic pontine gliomas treated with peptide-based vaccination

  4. Coarse-grained particle model for pedestrian flow using diffusion maps

    NASA Astrophysics Data System (ADS)

    Marschler, Christian; Starke, Jens; Liu, Ping; Kevrekidis, Ioannis G.

    2014-01-01

    Interacting particle systems constitute the dynamic model of choice in a variety of application areas. A prominent example is pedestrian dynamics, where good design of escape routes for large buildings and public areas can improve evacuation in emergency situations, avoiding exit blocking and the ensuing panic. Here we employ diffusion maps to study the coarse-grained dynamics of two pedestrian crowds trying to pass through a door from opposite sides. These macroscopic variables and the associated smooth embeddings lead to a better description and a clearer understanding of the nature of the transition to oscillatory dynamics. We also compare the results to those obtained through intuitively chosen macroscopic variables.

  5. Joint brain connectivity estimation from diffusion and functional MRI data

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Hsien; Lenglet, Christophe; Parhi, Keshab K.

    2015-03-01

    Estimating brain wiring patterns is critical to better understand the brain organization and function. Anatomical brain connectivity models axonal pathways, while the functional brain connectivity characterizes the statistical dependencies and correlation between the activities of various brain regions. The synchronization of brain activity can be inferred through the variation of blood-oxygen-level dependent (BOLD) signal from functional MRI (fMRI) and the neural connections can be estimated using tractography from diffusion MRI (dMRI). Functional connections between brain regions are supported by anatomical connections, and the synchronization of brain activities arises through sharing of information in the form of electro-chemical signals on axon pathways. Jointly modeling fMRI and dMRI data may improve the accuracy in constructing anatomical connectivity as well as functional connectivity. Such an approach may lead to novel multimodal biomarkers potentially able to better capture functional and anatomical connectivity variations. We present a novel brain network model which jointly models the dMRI and fMRI data to improve the anatomical connectivity estimation and extract the anatomical subnetworks associated with specific functional modes by constraining the anatomical connections as structural supports to the functional connections. The key idea is similar to a multi-commodity flow optimization problem that minimizes the cost or maximizes the efficiency for flow configuration and simultaneously fulfills the supply-demand constraint for each commodity. In the proposed network, the nodes represent the grey matter (GM) regions providing brain functionality, and the links represent white matter (WM) fiber bundles connecting those regions and delivering information. The commodities can be thought of as the information corresponding to brain activity patterns as obtained for instance by independent component analysis (ICA) of fMRI data. The concept of information

  6. Diffusion of innovations dynamics, biological growth and catenary function

    NASA Astrophysics Data System (ADS)

    Guseo, Renato

    2016-12-01

    The catenary function has a well-known role in determining the shape of chains and cables supported at their ends under the force of gravity. This enables design using a specific static equilibrium over space. Its reflected version, the catenary arch, allows the construction of bridges and arches exploiting the dual equilibrium property under uniform compression. In this paper, we emphasize a further connection with well-known aggregate biological growth models over time and the related diffusion of innovation key paradigms (e.g., logistic and Bass distributions over time) that determine self-sustaining evolutionary growth dynamics in naturalistic and socio-economic contexts. Moreover, we prove that the 'local entropy function', related to a logistic distribution, is a catenary and vice versa. This special invariance may be explained, at a deeper level, through the Verlinde's conjecture on the origin of gravity as an effect of the entropic force.

  7. Thrombotic Thrombocytopenic Purpura with Reversible Neurological Features: Brain Diffusion MRI with ADC Map, Spect and EEG Findings. A Case Report.

    PubMed

    Yerdelen, D; Göksel, B K; Yıldırım, T; Karataş, M; Karaca, S; Reyhan, M; Ozdoğu, H

    2006-11-30

    Although nervous system involvement is common in thrombotic thrombocytopenic purpura (TTP), abnormalities on computerized tomography, magnetic resonance imaging and electroencephalography are not encountered so frequently and if present, these abnormalities are often reversible. We describe a 39-year-old woman with recurring transient focal neurological findings found to have laboratory findings consistent with TTP. In cerebral diffusion weighted images (DWI), diffuse cortical hyperintensity was noted in right frontal lobe, but the ADC (apparent diffusion coefficient) map was normal. Electroencephalography demonstrated lateralized slowing and repeated DWI showed diffuse cortical hyperintensity in the right hemisphere. SPECT showed luxury perfusion in the right hemisphere areas. The patient's condition resolved with plasmapheresis. Our patient illustrates that diffuse hemispheric involvement can be seen in DWI and EEG, and SPECT may show luxury perfusion after resolution of neurological findings in TTP cases. To our knowledge, this is the first TTP case in which the ADC map was normal.

  8. Diagnostic Ability of Retinal Nerve Fiber Layer Thickness Deviation Map for Localized and Diffuse Retinal Nerve Fiber Layer Defects

    PubMed Central

    Shin, Joong Won; Seong, Mincheol; Lee, Jung Wook; Hong, Eun Hee

    2017-01-01

    Purpose. To evaluate the diagnostic ability of the retinal nerve fiber layer (RNFL) deviation map for glaucoma with localized or diffuse RNFL defects. Methods. Eyes of 139 glaucoma patients and 165 healthy subjects were enrolled. All participants were imaged with Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA). A RNFL defect was defined as at least 10 contiguous red (<1% level) superpixels in RNFL deviation map. The area, location, and angular width of RNFL defects were automatically measured. We compared sensitivities, specificities, and area under the receiver operating characteristic curves (AUCs) of RNFL deviation map and circumpapillary RNFL thickness for localized and diffuse RNFL defects. Subgroup analysis was performed according to the severity of glaucoma. Results. For localized defects, the area of RNFL defects (AUC, 0.991; sensitivity, 97%; specificity, 90%) in deviation map showed a higher diagnostic performance (p = 0.002) than the best circumpapillary RNFL parameter (inferior RNFL thickness; AUC, 0.914; sensitivity, 79%; specificity, 92%). For diffuse defects, there was no significant difference between the RNFL deviation map and circumpapillary RNFL parameters. In mild glaucoma with localized defect, RNFL deviation map showed a better diagnostic performance than circumpapillary RNFL measurement. Conclusions. RNFL deviation map is a useful tool for evaluating glaucoma regardless of localized or diffuse defect type and has advantages over circumpapillary RNFL measurement for detecting localized RNFL defects. PMID:28168048

  9. A technology mapping of boolean functions for CPLDs

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz

    2014-10-01

    The effective technology mapping for PAL-based Complex PLDs is presented. The aim of this approach is to cover a multiple-output function by a minimal number of PAL-based logic blocks. Proposed algorithm, implemented within the PALDec system, has been used for synthesizing the benchmarks. The obtained results are compared with the classical technology mapping.

  10. Application of diffusion maps to identify human factors of self-reported anomalies in aviation.

    PubMed

    Andrzejczak, Chris; Karwowski, Waldemar; Mikusinski, Piotr

    2012-01-01

    A study investigating what factors are present leading to pilots submitting voluntary anomaly reports regarding their flight performance was conducted. Diffusion Maps (DM) were selected as the method of choice for performing dimensionality reduction on text records for this study. Diffusion Maps have seen successful use in other domains such as image classification and pattern recognition. High-dimensionality data in the form of narrative text reports from the NASA Aviation Safety Reporting System (ASRS) were clustered and categorized by way of dimensionality reduction. Supervised analyses were performed to create a baseline document clustering system. Dimensionality reduction techniques identified concepts or keywords within records, and allowed the creation of a framework for an unsupervised document classification system. Results from the unsupervised clustering algorithm performed similarly to the supervised methods outlined in the study. The dimensionality reduction was performed on 100 of the most commonly occurring words within 126,000 text records describing commercial aviation incidents. This study demonstrates that unsupervised machine clustering and organization of incident reports is possible based on unbiased inputs. Findings from this study reinforced traditional views on what factors contribute to civil aviation anomalies, however, new associations between previously unrelated factors and conditions were also found.

  11. Rapid exploration of configuration space with diffusion-map-directed molecular dynamics.

    PubMed

    Zheng, Wenwei; Rohrdanz, Mary A; Clementi, Cecilia

    2013-10-24

    The gap between the time scale of interesting behavior in macromolecular systems and that which our computational resources can afford often limits molecular dynamics (MD) from understanding experimental results and predicting what is inaccessible in experiments. In this paper, we introduce a new sampling scheme, named diffusion-map-directed MD (DM-d-MD), to rapidly explore molecular configuration space. The method uses a diffusion map to guide MD on the fly. DM-d-MD can be combined with other methods to reconstruct the equilibrium free energy, and here, we used umbrella sampling as an example. We present results from two systems: alanine dipeptide and alanine-12. In both systems, we gain tremendous speedup with respect to standard MD both in exploring the configuration space and reconstructing the equilibrium distribution. In particular, we obtain 3 orders of magnitude of speedup over standard MD in the exploration of the configurational space of alanine-12 at 300 K with DM-d-MD. The method is reaction coordinate free and minimally dependent on a priori knowledge of the system. We expect wide applications of DM-d-MD to other macromolecular systems in which equilibrium sampling is not affordable by standard MD.

  12. The Association between Diffuse Myocardial Fibrosis on Cardiac Magnetic Resonance T1 Mapping and Myocardial Dysfunction in Diabetic Rabbits

    PubMed Central

    Zeng, Mu; Qiao, Yingyan; Wen, Zhaoying; Liu, Jun; Xiao, Enhua; Tan, Changlian; Xie, Yibin; An, Jing; Zhang, Zishu; Fan, Zhanming; Li, Debiao

    2017-01-01

    The objective of this study was to assess the relationship between imaging surrogates for diffuse fibrosis and myocardial dysfunction. Thirty-six New Zealand white rabbits were classified into two groups: a control group (n = 18) and an alloxan-induced diabetes mellitus (DM) group (n = 18). For all rabbits, conventional ultrasonography, two-dimensional speckle tracking, and cardiac magnetic resonance (CMR) T1 mapping were performed; all of the rabbits were then sacrificed for Masson’s staining. The extracellular volume (ECV) was calculated from pre- and post-contrast T1 values and compared with myocardial function measured by echocardiography using Pearson’s correlation. In the DM group, ECV increased as the duration of diabetes increased, consistent with the changes in myocardial fibrosis verified by pathology. Moreover, ECV was strongly correlated with the early diastolic strain rate (r = −0.782, p < 0.001) and moderately correlated with the radial systolic peak strain (r = 0.478, p = 0.045). Thus, ECV is an effective surrogate for myocardial diffuse fibrosis on CMR imaging, and higher ECV values are associated with an increased impairment of myocardial diastolic function. PMID:28338005

  13. Photoelectric scanner makes detailed work function maps of metal surface

    NASA Technical Reports Server (NTRS)

    Rasor, N. S.

    1966-01-01

    Photoelectric scanning device maps the work function of a metal surface by scanning it with a light spot and measuring the resulting photocurrent. The device is capable of use over a range of surface temperatures.

  14. Diffusion of responsibility attenuates altruistic punishment: A functional magnetic resonance imaging effective connectivity study.

    PubMed

    Feng, Chunliang; Deshpande, Gopikrishna; Liu, Chao; Gu, Ruolei; Luo, Yue-Jia; Krueger, Frank

    2016-02-01

    Humans altruistically punish violators of social norms to enforce cooperation and pro-social behaviors. However, such altruistic behaviors diminish when others are present, due to a diffusion of responsibility. We investigated the neural signatures underlying the modulations of diffusion of responsibility on altruistic punishment, conjoining a third-party punishment task with event-related functional magnetic resonance imaging and multivariate Granger causality mapping. In our study, participants acted as impartial third-party decision-makers and decided how to punish norm violations under two different social contexts: alone (i.e., full responsibility) or in the presence of putative other third-party decision makers (i.e., diffused responsibility). Our behavioral results demonstrated that the diffusion of responsibility served as a mediator of context-dependent punishment. In the presence of putative others, participants who felt less responsible also punished less severely in response to norm violations. Our neural results revealed that underlying this behavioral effect was a network of interconnected brain regions. For unfair relative to fair splits, the presence of others led to attenuated responses in brain regions implicated in signaling norm violations (e.g., AI) and to increased responses in brain regions implicated in calculating values of norm violations (e.g., vmPFC, precuneus) and mentalizing about others (dmPFC). The dmPFC acted as the driver of the punishment network, modulating target regions, such as AI, vmPFC, and precuneus, to adjust altruistic punishment behavior. Our results uncovered the neural basis of the influence of diffusion of responsibility on altruistic punishment and highlighted the role of the mentalizing network in this important phenomenon. Hum Brain Mapp 37:663-677, 2016. © 2015 Wiley Periodicals, Inc.

  15. Detecting Buried Archaeological Remains by the Use of Geophysical Data Processing with 'Diffusion Maps' Methodology

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2015-04-01

    Geophysical methods are prompt, non-invasive and low-cost tool for quantitative delineation of buried archaeological targets. However, taking into account the complexity of geological-archaeological media, some unfavourable environments and known ambiguity of geophysical data analysis, a single geophysical method examination might be insufficient (Khesin and Eppelbaum, 1997). Besides this, it is well-known that the majority of inverse-problem solutions in geophysics are ill-posed (e.g., Zhdanov, 2002), which means, according to Hadamard (1902), that the solution does not exist, or is not unique, or is not a continuous function of observed geophysical data (when small perturbations in the observations will cause arbitrary mistakes in the solution). This fact has a wide application for informational, probabilistic and wavelet methodologies in archaeological geophysics (Eppelbaum, 2014a). The goal of the modern geophysical data examination is to detect the geophysical signatures of buried targets at noisy areas via the analysis of some physical parameters with a minimal number of false alarms and miss-detections (Eppelbaum et al., 2011; Eppelbaum, 2014b). The proposed wavelet approach to recognition of archaeological targets (AT) by the examination of geophysical method integration consists of advanced processing of each geophysical method and nonconventional integration of different geophysical methods between themselves. The recently developed technique of diffusion clustering combined with the abovementioned wavelet methods was utilized to integrate the geophysical data and detect existing irregularities. The approach is based on the wavelet packet techniques applied as to the geophysical images (or graphs) versus coordinates. For such an analysis may be utilized practically all geophysical methods (magnetic, gravity, seismic, GPR, ERT, self-potential, etc.). On the first stage of the proposed investigation a few tens of typical physical-archaeological models (PAM

  16. Fractional Brownian motions: memory, diffusion velocity, and correlation functions

    NASA Astrophysics Data System (ADS)

    Fuliński, A.

    2017-02-01

    Fractional Brownian motions (FBMs) have been observed recently in the measured trajectories of individual molecules or small particles in the cytoplasm of living cells and in other dense composite systems, among others. Various types of FBMs differ in a number of ways, including the strength, range and type of damping of the memory encoded in their definitions, but share several basic characteristics: distributions, non-ergodic properties, and scaling of the second moment, which makes it difficult to determine which type of Brownian motion (fractional or normal) the measured trajectory belongs to. Here, we show, by introducing FBMs with regulated range and strength of memory, that it is the structure of memory which determines their physical properties, including mean velocity of diffusion; therefore, the course and kinetics of several processes (including coagulation and some chemical reactions). We also show that autocorrelation functions possess characteristic features which enable identification of an observed FBM, and of the type of memory governing its trajectory. In memoriam Marian Smoluchowski, on the 100th anniversary of the publication of his seminal papers on Brownian motion and diffusion-limited kinetics.

  17. ChalkBoard: Mapping Functions to Polygons

    NASA Astrophysics Data System (ADS)

    Matlage, Kevin; Gill, Andy

    ChalkBoard is a domain specific language for describing images. The ChalkBoard language is uncompromisingly functional and encourages the use of modern functional idioms. ChalkBoard uses off-the-shelf graphics cards to speed up rendering of functional descriptions. In this paper, we describe the design of the core ChalkBoard language, and the architecture of our static image generation accelerator.

  18. Investigation of the Dynamical Structure and Diffusion in a System of Hamiltonian Type: 4-Dimensional Symplectic Map

    NASA Astrophysics Data System (ADS)

    Todorovic, N.

    2009-09-01

    The Nekhoroshev theorem (Nekhoroshev 1977) is one of the most important theorems in modern Hamiltonian dynamics. This theorem applies to quasi integrable Hamiltonian systems of type H(I,\\varphi)=h(I)+\\varepsilon f (I, \\varphi), where h(I) is the integrable approximation, f(I, \\varphi) the perturbing function, \\varepsilon is a small perturbing parameter, Iin R^n are the actions and \\varphi in T^n the angles of the system. With some additional geometrical and analytical properties, the theorem provides the stability of actions in exponentially long times. In recent years it has been shown that with some modifications the Nekhoroshev theorem can be applied to the problems in Solar system dynamics (Morbidelli and Guzzo 1997, Guzzo et al 2002, Efthymiopoulos and Sándor 2105, Pavlović and Guzzo 2008). In this work, we are interested to observe numerically a Nekhoroshev like behavior on a model given with a 4-dimensional symplectic map. The model is not in the quasi-integrable form, i.e. independently from the perturbation it contains some additional hyperbolic structures (they appear in the model as primary resonances). Since the hyperbolic structures exist even for zero perturbation, the system will belong to the class of the so called a priori unstable systems. The main numerical tool used here was the Fast Lyapunov Indicator- FLI, introduced in (Froschlé et al. 1997, 2000). As an indicator of chaotic motion, FLI gives very precise and fast information about the chaoticity of an orbit. Also, among regular orbits, FLI is able to differentiate resonant from nonresonant motions. This property of FLI allows us to visualize the studied system and to obtain the Arnold web of the model (Froschlé et al. 2000). In such a way it was possible to observe the transition from a stable Nekhoroshev like structure (regular orbits dominate) to a globally chaotic system where resonances overlap, also known as Chirikov regime. Numerically, this transition happens when between 50

  19. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  20. A Comparative evaluation of voxel-based spatial mapping in diffusion tensor imaging.

    PubMed

    Cabeen, Ryan P; Bastin, Mark E; Laidlaw, David H

    2017-02-01

    This paper presents a comparative evaluation of methods for automated voxel-based spatial mapping in diffusion tensor imaging studies. Such methods are an essential step in computational pipelines and provide anatomically comparable measurements across a population in atlas-based studies. To better understand their strengths and weaknesses, we tested a total of eight methods for voxel-based spatial mapping in two types of diffusion tensor templates. The methods were evaluated with respect to scan-rescan reliability and an application to normal aging. The methods included voxel-based analysis with and without smoothing, two types of region-based analysis, and combinations thereof with skeletonization. The templates included a study-specific template created with DTI-TK and the IIT template serving as a standard template. To control for other factors in the pipeline, the experiments used a common dataset, acquired at 1.5T with a single shell high angular resolution diffusion MR imaging protocol, and tensor-based spatial normalization with DTI-TK. Scan-rescan reliability was assessed using the coefficient of variation (CV) and intraclass correlation (ICC) in eight subjects with three scans each. Sensitivity to normal aging was assessed in a population of 80 subjects aged 25-65 years old, and methods were compared with respect to the anatomical agreement of significant findings and the R(2) of the associated models of fractional anisotropy. The results show that reliability depended greatly on the method used for spatial mapping. The largest differences in reliability were found when adding smoothing and comparing voxel-based and region-based analyses. Skeletonization and template type were found to have either a small or negligible effect on reliability. The aging results showed agreement among the methods in nine brain areas, with some methods showing more sensitivity than others. Skeletonization and smoothing were not major factors affecting sensitivity to aging

  1. Assessment of allograft function using diffusion-weighted magnetic resonance imaging in kidney transplant patients.

    PubMed

    Kaul, Anupma; Sharma, Raj Kumar; Gupta, Rakesh Kumar; Lal, Hira; Yadav, Abhishek; Bhadhuria, Dharmendra; Prasad, Narayan; Gupta, Amit

    2014-11-01

    Developing a non-invasive method such as diffusion-weighted magnetic resonance imaging (DWMRI) could be used as a feasible and reproducible modality in the differential diagnosis of allograft dysfunction. We assessed the functional status of the renal allograft by DWMRI and its applicability in assessment of graft dysfunction on all end-stage renal transplant patients who attained normal renal function on the 7th day post-transplantation. Follow-up imaging of the recipient allograft was performed at the end of 90 and 180 days and in case of graft dysfunction. Kidney biopsies were performed to correlate with the corresponding MRI. The apparent diffusion coefficient (ADC) maps of the cortex and medulla were obtained by studying the DWMRI. The ADC values were significantly lower in the medulla compared with the cortex in normal donor kidneys and normally functioning transplanted kidneys, while they decreased significantly when rejection occurred. The reduction in ADC values occurred both in the cortex and in the medulla, and correlated with the degree of rejection on the kidney biopsies. The ADC values increased significantly during the recovery from rejection. We conclude that DWMRI can be beneficial in the diagnosis and follow-up of transplant patients during acute rejection.

  2. Mapping of health system functions to strengthen priority programs. The case of maternal health in Mexico

    PubMed Central

    2011-01-01

    Background Health system strengthening is critical to ensure the integration and scaling-up of priority health promotion, disease prevention and control programs. Normative guidelines are available to address health system function imbalances while strategic and analytical frameworks address critical functions in complex systems. Tacit knowledge-based health system constructs can help identify actors' perspectives, contributing to improve strengthening strategies. Using maternal health as an example, this paper maps and analyses the health system functions that critical actors charged with formulating and delivering priority health programs consider important for their success. Methods Using concept mapping qualitative and statistical methods, health system functions were mapped for different categories of actors in high maternal mortality states of Mexico and at the federal level. Functions within and across maps were analyzed for degree of classification, importance, feasibility and coding. Results Hospital infrastructure and human resource training are the most prominent functions in the maternal health system, associated to federal efforts to support emergency obstetric care. Health policy is a highly diffuse function while program development, intercultural and community participation and social networks are clearly stated although less focused and with lower perceived importance. The importance of functions is less correlated between federal and state decision makers, between federal decision makers and reproductive health/local health area program officers and between state decision makers and system-wide support officers. Two sets of oppositions can be observed in coding across functions: health sector vs. social context; and given structures vs. manageable processes. Conclusions Concept mapping enabled the identification of critical functions constituting adaptive maternal health systems, including aspects of actor perspectives that are seldom included in

  3. Task-specific functional brain geometry from model maps.

    PubMed

    Langs, Georg; Samaras, Dimitris; Paragios, Nikos; Honorio, Jean; Alia-Klein, Nelly; Tomasi, Dardo; Volkow, Nora D; Goldstein, Rita Z

    2008-01-01

    In this paper we propose model maps to derive and represent the intrinsic functional geometry of a brain from functional magnetic resonance imaging (fMRI) data for a specific task. Model maps represent the coherence of behavior of individual fMRI-measurements for a set of observations, or a time sequence. The maps establish a relation between individual positions in the brain by encoding the blood oxygen level dependent (BOLD) signal over a time period in a Markov chain. They represent this relation by mapping spatial positions to a new metric space, the model map. In this map the Euclidean distance between two points relates to the joint modeling behavior of their signals and thus the co-dependencies of the corresponding signals. The map reflects the functional as opposed to the anatomical geometry of the brain. It provides a quantitative tool to explore and study global and local patterns of resource allocation in the brain. To demonstrate the merit of this representation, we report quantitative experimental results on 29 fMRI time sequences, each with sub-sequences corresponding to 4 different conditions for two groups of individuals. We demonstrate that drug abusers exhibit lower differentiation in brain interactivity between baseline and reward related tasks, which could not be quantified until now.

  4. Understanding the geometry of transport: Diffusion maps for Lagrangian trajectory data unravel coherent sets

    NASA Astrophysics Data System (ADS)

    Banisch, Ralf; Koltai, Péter

    2017-03-01

    Dynamical systems often exhibit the emergence of long-lived coherent sets, which are regions in state space that keep their geometric integrity to a high extent and thus play an important role in transport. In this article, we provide a method for extracting coherent sets from possibly sparse Lagrangian trajectory data. Our method can be seen as an extension of diffusion maps to trajectory space, and it allows us to construct "dynamical coordinates," which reveal the intrinsic low-dimensional organization of the data with respect to transport. The only a priori knowledge about the dynamics that we require is a locally valid notion of distance, which renders our method highly suitable for automated data analysis. We show convergence of our method to the analytic transfer operator framework of coherence in the infinite data limit and illustrate its potential on several two- and three-dimensional examples as well as real world data.

  5. Interstellar medium. Pseudo-three-dimensional maps of the diffuse interstellar band at 862 nm.

    PubMed

    Kos, Janez; Zwitter, Tomaž; Wyse, Rosemary; Bienaymé, Olivier; Binney, James; Bland-Hawthorn, Joss; Freeman, Kenneth; Gibson, Brad K; Gilmore, Gerry; Grebel, Eva K; Helmi, Amina; Kordopatis, Georges; Munari, Ulisse; Navarro, Julio; Parker, Quentin; Reid, Warren A; Seabroke, George; Sharma, Sanjib; Siebert, Arnaud; Siviero, Alessandro; Steinmetz, Matthias; Watson, Fred G; Williams, Mary E K

    2014-08-15

    The diffuse interstellar bands (DIBs) are absorption lines observed in visual and near-infrared spectra of stars. Understanding their origin in the interstellar medium is one of the oldest problems in astronomical spectroscopy, as DIBs have been known since 1922. In a completely new approach to understanding DIBs, we combined information from nearly 500,000 stellar spectra obtained by the massive spectroscopic survey RAVE (Radial Velocity Experiment) to produce the first pseudo-three-dimensional map of the strength of the DIB at 8620 angstroms covering the nearest 3 kiloparsecs from the Sun, and show that it follows our independently constructed spatial distribution of extinction by interstellar dust along the Galactic plane. Despite having a similar distribution in the Galactic plane, the DIB 8620 carrier has a significantly larger vertical scale height than the dust. Even if one DIB may not represent the general DIB population, our observations outline the future direction of DIB research.

  6. Mapping atomic and diffuse interstellar band absorption across the Magellanic Clouds and the Milky Way

    NASA Astrophysics Data System (ADS)

    Bailey, Mandy; van Loon, Jacco Th.; Sarre, Peter J.; Beckman, John E.

    2015-12-01

    Diffuse interstellar bands (DIBs) trace warm neutral and weakly ionized diffuse interstellar medium (ISM). Here we present a dedicated, high signal-to-noise spectroscopic survey of two of the strongest DIBs, at 5780 and 5797 Å, in optical spectra of 666 early-type stars in the Small and Large Magellanic Clouds, along with measurements of the atomic Na I D and Ca II K lines. The resulting maps show for the first time the distribution of DIB carriers across large swathes of galaxies, as well as the foreground Milky Way ISM. We confirm the association of the 5797 Å DIB with neutral gas, and the 5780 Å DIB with more translucent gas, generally tracing the star-forming regions within the Magellanic Clouds. Likewise, the Na I D line traces the denser ISM whereas the Ca II K line traces the more diffuse, warmer gas. The Ca II K line has an additional component at ˜200-220 km s-1 seen towards both Magellanic Clouds; this may be associated with a pan-Magellanic halo. Both the atomic lines and DIBs show sub-pc-scale structure in the Galactic foreground absorption; the 5780 and 5797 Å DIBs show very little correlation on these small scales, as do the Ca II K and Na I D lines. This suggests that good correlations between the 5780 and 5797 Å DIBs, or between Ca II K and Na I D, arise from the superposition of multiple interstellar structures. Similarity in behaviour between DIBs and Na I in the Small Magellanic Cloud (SMC), Large Magellanic Cloud (LMC) and Milky Way suggests the abundance of DIB carriers scales in proportion to metallicity.

  7. Intraoperative Functional Mapping and Monitoring during Glioma Surgery

    PubMed Central

    SAITO, Taiichi; MURAGAKI, Yoshihiro; MARUYAMA, Takashi; TAMURA, Manabu; NITTA, Masayuki; OKADA, Yoshikazu

    2015-01-01

    Glioma surgery represents a significant advance with respect to improving resection rates using new surgical techniques, including intraoperative functional mapping, monitoring, and imaging. Functional mapping under awake craniotomy can be used to detect individual eloquent tissues of speech and/or motor functions in order to prevent unexpected deficits and promote extensive resection. In addition, monitoring the patient’s neurological findings during resection is also very useful for maximizing the removal rate and minimizing deficits by alarming that the touched area is close to eloquent regions and fibers. Assessing several types of evoked potentials, including motor evoked potentials (MEPs), sensory evoked potentials (SEPs) and visual evoked potentials (VEPs), is also helpful for performing surgical monitoring in patients under general anesthesia (GA). We herein review the utility of intraoperative mapping and monitoring the assessment of neurological findings, with a particular focus on speech and the motor function, in patients undergoing glioma surgery. PMID:25744346

  8. A fast algorithm for functional mapping of complex traits.

    PubMed Central

    Zhao, Wei; Wu, Rongling; Ma, Chang-Xing; Casella, George

    2004-01-01

    By integrating the underlying developmental mechanisms for the phenotypic formation of traits into a mapping framework, functional mapping has emerged as an important statistical approach for mapping complex traits. In this note, we explore the feasibility of using the simplex algorithm as an alternative to solve the mixture-based likelihood for functional mapping of complex traits. The results from the simplex algorithm are consistent with those from the traditional EM algorithm, but the simplex algorithm has considerably reduced computational times. Moreover, because of its nonderivative nature and easy implementation with current software, the simplex algorithm enjoys an advantage over the EM algorithm in the dynamic modeling and analysis of complex traits. PMID:15342547

  9. Using Immediate-Early Genes to Map Hippocampal Subregional Functions

    ERIC Educational Resources Information Center

    Kubik, Stepan; Miyashita, Teiko; Guzowski, John F.

    2007-01-01

    Different functions have been suggested for the hippocampus and its subdivisions along both transversal and longitudinal axes. Expression of immediate-early genes (IEGs) has been used to map specific functions onto neuronal activity in different areas of the brain including the hippocampus (IEG imaging). Here we review IEG studies on hippocampal…

  10. In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: a clinical study

    NASA Astrophysics Data System (ADS)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan

    2013-02-01

    Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.

  11. Comparing diffuse optical tomography and functional magnetic resonance imaging signals during a cognitive task: pilot study.

    PubMed

    Hernández-Martin, Estefania; Marcano, Francisco; Casanova, Oscar; Modroño, Cristian; Plata-Bello, Julio; González-Mora, Jose Luis

    2017-01-01

    Diffuse optical tomography (DOT) measures concentration changes in both oxy- and deoxyhemoglobin providing three-dimensional images of local brain activations. A pilot study, which compares both DOT and functional magnetic resonance imaging (fMRI) volumes through t-maps given by canonical statistical parametric mapping (SPM) processing for both data modalities, is presented. The DOT series were processed using a method that is based on a Bayesian filter application on raw DOT data to remove physiological changes and minimum description length application index to select a number of singular values, which reduce the data dimensionality during image reconstruction and adaptation of DOT volume series to normalized standard space. Therefore, statistical analysis is performed with canonical SPM software in the same way as fMRI analysis is done, accepting DOT volumes as if they were fMRI volumes. The results show the reproducibility and ruggedness of the method to process DOT series on group analysis using cognitive paradigms on the prefrontal cortex. Difficulties such as the fact that scalp-brain distances vary between subjects or cerebral activations are difficult to reproduce due to strategies used by the subjects to solve arithmetic problems are considered. T-images given by fMRI and DOT volume series analyzed in SPM show that at the functional level, both DOT and fMRI measures detect the same areas, although DOT provides complementary information to fMRI signals about cerebral activity.

  12. Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.

    PubMed

    Sun, Junqiang; Chu, Mike; Wang, Menghua

    2016-08-01

    The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this

  13. Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults.

    PubMed

    Vorburger, Robert S; Habeck, Christian G; Narkhede, Atul; Guzman, Vanessa A; Manly, Jennifer J; Brickman, Adam M

    2016-01-01

    Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed. However, bootstrap-derived metrics are not independent of the underlying diffusion profile. A higher mean diffusivity causes a smaller signal-to-noise ratio and, thus, increases the measurement uncertainty. Moreover, the goodness of the tensor model, which relies strongly on the complexity of the underlying diffusion profile, influences bootstrap-derived metrics as well. The presented simulations clearly depict the cone of uncertainty as a function of the underlying diffusion profile. Since the relationship of the cone of uncertainty and common diffusion parameters, such as the mean diffusivity and the fractional anisotropy, is not linear, the cone of uncertainty has a different sensitivity. In vivo analysis of the fornix reveals the cone of uncertainty to be a predictor of memory function among older adults. No significant correlation occurs with the common diffusion parameters. The present work not only demonstrates the cone of uncertainty as a function of the actual diffusion profile, but also discloses the cone of uncertainty as a sensitive predictor of memory function. Future studies should incorporate bootstrap-derived metrics to provide more comprehensive analysis.

  14. Probing Cosmology with Minkowski Functionals of Weak Lensing Maps

    NASA Astrophysics Data System (ADS)

    Kratochvil, Jan Michael; Lim, E. A.; Wang, S.; Haiman, Z.; May, M.; Huffenberger, K.

    2011-01-01

    Minkowski functionals (MFs) are alternative probes of non-Gaussianity of random fields and probe the morphology and topology. We apply them to constrain cosmological parameters from weak gravitational lensing maps. We use MFs with Monte Carlo-optimized threshold bins to distinguish between different cosmological models from simulated convergence maps. We find that MFs discern better than the power spectrum from the same maps, thus providing evidence that they probe nonlinear structure formation and measure information beyond the power spectrum. The lensing maps were created with our new huge Inspector Gadget lensing simulation pipeline on the IBM Blue Gene at Brookhaven National Laboratory, allowing us to create an extensive simulation suite of ninety 5123-particle N-body simulations and sample many cosmological models and initial conditions.

  15. A Method for Automated Classification of Parkinson’s Disease Diagnosis Using an Ensemble Average Propagator Template Brain Map Estimated from Diffusion MRI

    PubMed Central

    Banerjee, Monami; Okun, Michael S.; Vaillancourt, David E.; Vemuri, Baba C.

    2016-01-01

    Parkinson’s disease (PD) is a common and debilitating neurodegenerative disorder that affects patients in all countries and of all nationalities. Magnetic resonance imaging (MRI) is currently one of the most widely used diagnostic imaging techniques utilized for detection of neurologic diseases. Changes in structural biomarkers will likely play an important future role in assessing progression of many neurological diseases inclusive of PD. In this paper, we derived structural biomarkers from diffusion MRI (dMRI), a structural modality that allows for non-invasive inference of neuronal fiber connectivity patterns. The structural biomarker we use is the ensemble average propagator (EAP), a probability density function fully characterizing the diffusion locally at a voxel level. To assess changes with respect to a normal anatomy, we construct an unbiased template brain map from the EAP fields of a control population. Use of an EAP captures both orientation and shape information of the diffusion process at each voxel in the dMRI data, and this feature can be a powerful representation to achieve enhanced PD brain mapping. This template brain map construction method is applicable to small animal models as well as to human brains. The differences between the control template brain map and novel patient data can then be assessed via a nonrigid warping algorithm that transforms the novel data into correspondence with the template brain map, thereby capturing the amount of elastic deformation needed to achieve this correspondence. We present the use of a manifold-valued feature called the Cauchy deformation tensor (CDT), which facilitates morphometric analysis and automated classification of a PD versus a control population. Finally, we present preliminary results of automated discrimination between a group of 22 controls and 46 PD patients using CDT. This method may be possibly applied to larger population sizes and other parkinsonian syndromes in the near future. PMID

  16. Functional preoperative and intraoperative mapping and monitoring: increasing safety and efficacy in glioma surgery.

    PubMed

    Ottenhausen, Malte; Krieg, Sandro M; Meyer, Bernhard; Ringel, Florian

    2015-01-01

    Greater extent of resection (EOR) of low-grade gliomas is associated with improved survival. Proximity to eloquent cortical regions often limits resectability and elevates the risk of surgery-related deficits. Therefore, functional localization of eloquent cortex or subcortical fiber tracts can enhance the EOR and functional outcome. Imaging techniques such as functional MRI and diffusion tensor imaging fiber tracking, and neurophysiological methods like navigated transcranial magnetic stimulation and magnetoencephalography, make it possible to identify eloquent areas prior to resective surgery and to tailor indication and surgical approach but also to assess the surgical risk. Intraoperative monitoring with direct cortical stimulation and subcortical stimulation enables surgeons to preserve essential functional tissue during surgery. Through tailored pre- and intraoperative mapping and monitoring the EOR can be maximized, with reduced rates of surgery-related deficits.

  17. Coarse-grained variables for particle-based models: diffusion maps and animal swarming simulations

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Safford, Hannah R.; Couzin, Iain D.; Kevrekidis, Ioannis G.

    2014-12-01

    As microscopic (e.g. atomistic, stochastic, agent-based, particle-based) simulations become increasingly prevalent in the modeling of complex systems, so does the need to systematically coarse-grain the information they provide. Before even starting to formulate relevant coarse-grained equations, we need to determine the right macroscopic observables—the right variables in terms of which emergent behavior will be described. This paper illustrates the use of data mining (and, in particular, diffusion maps, a nonlinear manifold learning technique) in coarse-graining the dynamics of a particle-based model of animal swarming. Our computational data-driven coarse-graining approach extracts two coarse (collective) variables from the detailed particle-based simulations, and helps formulate a low-dimensional stochastic differential equation in terms of these two collective variables; this allows the efficient quantification of the interplay of "informed" and "naive" individuals in the collective swarm dynamics. We also present a brief exploration of swarm breakup and use data-mining in an attempt to identify useful predictors for it. In our discussion of the scope and limitations of the approach we focus on the key step of selecting an informative metric, allowing us to usefully compare different particle swarm configurations.

  18. Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

    PubMed

    Ouyang, Austin; Jeon, Tina; Sunkin, Susan M; Pletikos, Mihovil; Sedmak, Goran; Sestan, Nenad; Lein, Ed S; Huang, Hao

    2015-02-01

    During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.

  19. Mapping the core mass function to the initial mass function

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2015-07-01

    It has been shown that fragmentation within self-gravitating, turbulent molecular clouds (`turbulent fragmentation') can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the initial mass function (IMF). First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Secondly, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly dependent on galaxy properties), and the equation of state (EOS). A `soft' EOS with polytropic index γ < 1.0 predicts that the IMF slope becomes `shallow' below the sonic scale, but fails to produce the full turnover observed. An EOS, which becomes `stiff' at sufficiently low surface densities Σgas ˜ 5000 M⊙ pc-2, and/or models, where each collapsing core is able to heat and effectively stiffen the EOS of a modest mass (˜0.02 M⊙) of surrounding gas, are able to reproduce the observed turnover. Such features are likely a consequence of more detailed chemistry and radiative feedback.

  20. A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging.

    PubMed

    Karakas, Sirel; Baran, Zeynel; Ceylan, Arzu Ozkan; Tileylioglu, Emre; Tali, Turgut; Karakas, Hakki Muammer

    2013-11-01

    Existing batteries for FMRI do not precisely meet the criteria for comprehensive mapping of cognitive functions within minimum data acquisition times using standard scanners and head coils. The goal was to develop a battery of neuropsychological paradigms for FMRI that can also be used in other brain imaging techniques and behavioural research. Participants were 61 healthy, young adult volunteers (48 females and 13 males, mean age: 22.25 ± 3.39 years) from the university community. The battery included 8 paradigms for basic (visual, auditory, sensory-motor, emotional arousal) and complex (language, working memory, inhibition/interference control, learning) cognitive functions. Imaging was performed using standard functional imaging capabilities (1.5-T MR scanner, standard head coil). Structural and functional data series were analysed using Brain Voyager QX2.9 and Statistical Parametric Mapping-8. For basic processes, activation centres for individuals were within a distance of 3-11 mm of the group centres of the target regions and for complex cognitive processes, between 7 mm and 15 mm. Based on fixed-effect and random-effects analyses, the distance between the activation centres was 0-4 mm. There was spatial variability between individual cases; however, as shown by the distances between the centres found with fixed-effect and random-effects analyses, the coordinates for individual cases can be used to represent those of the group. The findings show that the neuropsychological brain mapping battery described here can be used in basic science studies that investigate the relationship of the brain to the mind and also as functional localiser in clinical studies for diagnosis, follow-up and pre-surgical mapping.

  1. Functional connectivity networks for preoperative brain mapping in neurosurgery.

    PubMed

    Hart, Michael G; Price, Stephen J; Suckling, John

    2016-08-26

    OBJECTIVE Resection of focal brain lesions involves maximizing the resection while preserving brain function. Mapping brain function has entered a new era focusing on distributed connectivity networks at "rest," that is, in the absence of a specific task or stimulus, requiring minimal participant engagement. Central to this frame shift has been the development of methods for the rapid assessment of whole-brain connectivity with functional MRI (fMRI) involving blood oxygenation level-dependent imaging. The authors appraised the feasibility of fMRI-based mapping of a repertoire of functional connectivity networks in neurosurgical patients with focal lesions and the potential benefits of resting-state connectivity mapping for surgical planning. METHODS Resting-state fMRI sequences with a 3-T scanner and multiecho echo-planar imaging coupled to independent component analysis were acquired preoperatively from 5 study participants who had a right temporoparietooccipital glioblastoma. Seed-based functional connectivity analysis was performed with InstaCorr. Network identification focused on 7 major functional connectivity networks described in the literature and a putative language network centered on Broca's area. RESULTS All 8 functional connectivity networks were identified in each participant. Tumor-related topological changes to the default mode network were observed in all participants. In addition, each participant had at least 1 other abnormal network, and each network was abnormal in at least 1 participant. Individual patterns of network irregularities were identified with a qualitative approach and included local displacement due to mass effect, loss of a functional network component, and recruitment of new regions. CONCLUSIONS Resting-state fMRI can reliably and rapidly detect common functional connectivity networks in patients with glioblastoma and also has sufficient sensitivity for identifying patterns of network alterations. Mapping of functional

  2. Applications of blood-oxygen-level-dependent functional magnetic resonance imaging and diffusion tensor imaging in epilepsy.

    PubMed

    Chaudhary, Umair J; Duncan, John S

    2014-11-01

    The lifetime prevalence of epilepsy ranges from 2.7 to 12.4 per 1000 in Western countries. Around 30% of patients with epilepsy remain refractory to antiepileptic drugs and continue to have seizures. Noninvasive imaging techniques such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) have helped to better understand mechanisms of seizure generation and propagation, and to localize epileptic, eloquent, and cognitive networks. In this review, the clinical applications of fMRI and DTI are discussed, for mapping cognitive and epileptic networks and organization of white matter tracts in individuals with epilepsy.

  3. MAPPING THE INTERSTELLAR MEDIUM WITH NEAR-INFRARED DIFFUSE INTERSTELLAR BANDS

    SciTech Connect

    Zasowski, G.; Ménard, B.; Bizyaev, D.; García-Hernández, D. A.; Pérez, A. E. García; Majewski, S. R.; Hayden, M. R.; Holtzman, J.; Kinemuchi, K.; Johnson, J. A.; Wilson, J. C.; Nidever, D. L.; Shetrone, M.

    2015-01-01

    We map the distribution and properties of the Milky Way's interstellar medium as traced by diffuse interstellar bands (DIBs) detected in near-infrared stellar spectra from the SDSS-III/APOGEE survey. Focusing exclusively on the strongest DIB in the H band, at λ ∼ 1.527 μm, we present a projected map of the DIB absorption field in the Galactic plane, using a set of about 60,000 sightlines that reach up to 15 kpc from the Sun and probe up to 30 mag of visual extinction. The strength of this DIB is linearly correlated with dust reddening over three orders of magnitude in both DIB equivalent width (W {sub DIB}) and extinction, with a power law index of 1.01 ± 0.01, a mean relationship of W {sub DIB}/A{sub V} = 0.1 Å mag{sup –1} and a dispersion of ∼0.05 Å mag{sup –1} at extinctions characteristic of the Galactic midplane. These properties establish this DIB as a powerful, independent probe of dust extinction over a wide range of A{sub V} values. The subset of about 14,000 robustly detected DIB features have a W {sub DIB} distribution that follows an exponential trend. We empirically determine the intrinsic rest wavelength of this transition to be λ{sub 0} = 15 272.42 Å  and use it to calculate absolute radial velocities of the carrier, which display the kinematical signature of the rotating Galactic disk. We probe the DIB carrier distribution in three dimensions and show that it can be characterized by an exponential disk model with a scale height of about 100 pc and a scale length of about 5 kpc. Finally, we show that the DIB distribution also traces large-scale Galactic structures, including the Galactic long bar and the warp of the outer disk.

  4. Solutions of fractional reaction-diffusion equations in terms of the H-function

    NASA Astrophysics Data System (ADS)

    Haubold, H. J.; Mathai, A. M.; Saxena, R. K.

    2007-12-01

    This paper deals with the investigation of the solution of an unified fractional reaction-diffusion equation associated with the Caputo derivative as the time-derivative and Riesz-Feller fractional derivative as the space-derivative. The solution is derived by the application of the Laplace and Fourier transforms in closed form in terms of the H-function. The results derived are of general nature and include the results investigated earlier by many authors, notably by Mainardi et al. (2001, 2005) for the fundamental solution of the space-time fractional diffusion equation, and Saxena et al. (2006a, b) for fractional reaction-diffusion equations. The advantage of using Riesz-Feller derivative lies in the fact that the solution of the fractional reaction-diffusion equation containing this derivative includes the fundamental solution for space-time fractional diffusion, which itself is a generalization of neutral fractional diffusion, space-fractional diffusion, and time-fractional diffusion. These specialized types of diffusion can be interpreted as spatial probability density functions evolving in time and are expressible in terms of the H-functions in compact form.

  5. Fast recovery of free energy landscapes via diffusion-map-directed molecular dynamics.

    PubMed

    Preto, Jordane; Clementi, Cecilia

    2014-09-28

    The reaction pathways characterizing macromolecular systems of biological interest are associated with high free energy barriers. Resorting to the standard all-atom molecular dynamics (MD) to explore such critical regions may be inappropriate as the time needed to observe the relevant transitions can be remarkably long. In this paper, we present a new method called Extended Diffusion-Map-directed Molecular Dynamics (extended DM-d-MD) used to enhance the sampling of MD trajectories in such a way as to rapidly cover all important regions of the free energy landscape including deep metastable states and critical transition paths. Moreover, extended DM-d-MD was combined with a reweighting scheme enabling to save on-the-fly information about the Boltzmann distribution. Our algorithm was successfully applied to two systems, alanine dipeptide and alanine-12. Due to the enhanced sampling, the Boltzmann distribution is recovered much faster than in plain MD simulations. For alanine dipeptide, we report a speedup of one order of magnitude with respect to plain MD simulations. For alanine-12, our algorithm allows us to highlight all important unfolded basins in several days of computation when one single misfolded event is barely observable within the same amount of computational time by plain MD simulations. Our method is reaction coordinate free, shows little dependence on the a priori knowledge of the system, and can be implemented in such a way that the biased steps are not computationally expensive with respect to MD simulations thus making our approach well adapted for larger complex systems from which little information is known.

  6. Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium

    NASA Astrophysics Data System (ADS)

    Mizera, Mikołaj; Lewadowska, Kornelia; Talaczyńska, Alicja; Cielecka-Piontek, Judyta

    2015-02-01

    The work was aimed at investigating the influence of diffusion of basis functions on the geometry optimization of molecule of losartan in acidic and salt form. Spectroscopic properties of losartan potassium were also calculated and compared with experiment. Density functional theory method with various basis sets: 6-31G(d,p) and its diffused variations 6-31G(d,p)+ and 6-31G(d,p)++ was used. Application of diffuse basis functions in geometry optimization resulted in significant change of total molecule energy. Total molecule energy of losartan potassium decreased by 112.91 kJ/mol and 114.32 kJ/mol for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets, respectively. Almost the same decrease was observed for losartan: 114.99 kJ/mol and 117.08 kJ/mol respectively for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets. Further investigation showed significant difference within geometries of losartan potassium optimized with investigated basis sets. Application of diffused basis functions resulted in average 1.29 Å difference in relative position between corresponding atoms of three obtained geometries. Similar study taken on losartan resulted in only average 0.22 Å of dislocation. Extensive analysis of geometry changes in molecules obtained with diffused and non-diffuse basis functions was carried out in order to elucidate observed changes. The analysis was supported by electrostatic potential maps and calculation of natural atomic charges. UV, FT-IR and Raman spectra of losartan potassium were calculated and compared with experimental results. No crucial differences between Raman spectra obtained with different basis sets were observed. However, FT-IR spectra of geometry of losartan potassium optimized with 6-31G(d,p)++ basis set resulted in 40% better correlation with experimental FT-IR spectra than FT-IR calculated with geometry optimized with 6-31G(d,p) basis set. Therefore, it is highly advisable to optimize geometry of molecules with ionic interactions using diffuse basis functions

  7. Computational study of influence of diffuse basis functions on geometry optimization and spectroscopic properties of losartan potassium.

    PubMed

    Mizera, Mikołaj; Lewadowska, Kornelia; Talaczyńska, Alicja; Cielecka-Piontek, Judyta

    2015-02-25

    The work was aimed at investigating the influence of diffusion of basis functions on the geometry optimization of molecule of losartan in acidic and salt form. Spectroscopic properties of losartan potassium were also calculated and compared with experiment. Density functional theory method with various basis sets: 6-31G(d,p) and its diffused variations 6-31G(d,p)+ and 6-31G(d,p)++ was used. Application of diffuse basis functions in geometry optimization resulted in significant change of total molecule energy. Total molecule energy of losartan potassium decreased by 112.91kJ/mol and 114.32kJ/mol for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets, respectively. Almost the same decrease was observed for losartan: 114.99kJ/mol and 117.08kJ/mol respectively for 6-31G(d,p)+ and 6-31G(d,p)++ basis sets. Further investigation showed significant difference within geometries of losartan potassium optimized with investigated basis sets. Application of diffused basis functions resulted in average 1.29Å difference in relative position between corresponding atoms of three obtained geometries. Similar study taken on losartan resulted in only average 0.22Å of dislocation. Extensive analysis of geometry changes in molecules obtained with diffused and non-diffuse basis functions was carried out in order to elucidate observed changes. The analysis was supported by electrostatic potential maps and calculation of natural atomic charges. UV, FT-IR and Raman spectra of losartan potassium were calculated and compared with experimental results. No crucial differences between Raman spectra obtained with different basis sets were observed. However, FT-IR spectra of geometry of losartan potassium optimized with 6-31G(d,p)++ basis set resulted in 40% better correlation with experimental FT-IR spectra than FT-IR calculated with geometry optimized with 6-31G(d,p) basis set. Therefore, it is highly advisable to optimize geometry of molecules with ionic interactions using diffuse basis functions when

  8. Detailed map of a cis-regulatory input function

    NASA Astrophysics Data System (ADS)

    Setty, Y.; Mayo, A. E.; Surette, M. G.; Alon, U.

    2003-06-01

    Most genes are regulated by multiple transcription factors that bind specific sites in DNA regulatory regions. These cis-regulatory regions perform a computation: the rate of transcription is a function of the active concentrations of each of the input transcription factors. Here, we used accurate gene expression measurements from living cell cultures, bearing GFP reporters, to map in detail the input function of the classic lacZYA operon of Escherichia coli, as a function of about a hundred combinations of its two inducers, cAMP and isopropyl -D-thiogalactoside (IPTG). We found an unexpectedly intricate function with four plateau levels and four thresholds. This result compares well with a mathematical model of the binding of the regulatory proteins cAMP receptor protein (CRP) and LacI to the lac regulatory region. The model is also used to demonstrate that with few mutations, the same region could encode much purer AND-like or even OR-like functions. This possibility means that the wild-type region is selected to perform an elaborate computation in setting the transcription rate. The present approach can be generally used to map the input functions of other genes.

  9. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery

    PubMed Central

    Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed

    2014-01-01

    Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID

  10. On the emergence of the Green's function in the correlations of a diffuse field

    NASA Astrophysics Data System (ADS)

    Lobkis, Oleg I.; Weaver, Richard L.

    2001-12-01

    A diffuse acoustic field is shown to have correlations equal to the Green's function of the body. Simple plausibility arguments for this assertion are followed by a more detailed proof. A careful version of the statement is found to include caveats in regard to how diffuse the field truly is, the spectrum of the diffuse field, and the phase of the receivers. Ultrasonic laboratory tests confirm the assertion. The main features of the direct signal between two transducers are indeed recovered by cross correlating their responses to a diffuse field generated by a third transducer. The quality of the recovery improves with increased averaging and the use of multiple sources. Applications are discussed.

  11. The value of preoperative functional cortical mapping using navigated TMS.

    PubMed

    Lefaucheur, Jean-Pascal; Picht, Thomas

    2016-04-01

    The surgical removal of brain tumours in so-called eloquent regions is frequently associated with a high risk of causing disabling postoperative deficits. Among the preoperative techniques proposed to help neurosurgical planning and procedure, navigated transcranial magnetic stimulation (nTMS) is increasingly performed. A high level of evidence is now available in the literature regarding the anatomical and functional accuracy of this mapping technique. This article presents the principles and facts demonstrating the value of using nTMS in clinical practice to preserve motor or language functions from deleterious lesions secondary to brain tumour resection or epilepsy surgery.

  12. From chemotaxis to the cognitive map: The function of olfaction

    PubMed Central

    Jacobs, Lucia F.

    2012-01-01

    A paradox of vertebrate brain evolution is the unexplained variability in the size of the olfactory bulb (OB), in contrast to other brain regions, which scale predictably with brain size. Such variability appears to be the result of selection for olfactory function, yet there is no obvious concordance that would predict the causal relationship between OB size and behavior. This discordance may derive from assuming the primary function of olfaction is odorant discrimination and acuity. If instead the primary function of olfaction is navigation, i.e., predicting odorant distributions in time and space, variability in absolute OB size could be ascribed and explained by variability in navigational demand. This olfactory spatial hypothesis offers a single functional explanation to account for patterns of olfactory system scaling in vertebrates, the primacy of olfaction in spatial navigation, even in visual specialists, and proposes an evolutionary scenario to account for the convergence in olfactory structure and function across protostomes and deuterostomes. In addition, the unique percepts of olfaction may organize odorant information in a parallel map structure. This could have served as a scaffold for the evolution of the parallel map structure of the mammalian hippocampus, and possibly the arthropod mushroom body, and offers an explanation for similar flexible spatial navigation strategies in arthropods and vertebrates. PMID:22723365

  13. Comparison of 3D Orientation Distribution Functions Measured with Confocal Microscopy and Diffusion MRI

    PubMed Central

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-01-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI’s ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  14. Density functional calculation of activation energies for lattice and grain boundary diffusion in alumina

    NASA Astrophysics Data System (ADS)

    Lei, Yinkai; Gong, Yu; Duan, Zhiyao; Wang, Guofeng

    2013-06-01

    To acquire knowledge on the lattice and grain boundary diffusion processes in alumina, we have determined the activation energies of elementary O and Al diffusive jumps in the bulk crystal, Σ3(0001) grain boundaries, and Σ3(101¯0) grain boundaries of α-Al2O3 using the first-principles density functional theory method. Specifically, we calculated the activation energies for four elementary jumps of both O and Al lattice diffusion in alumina. It was predicted that the activation energy of O lattice diffusion varied from 3.58 to 5.03 eV, while the activation energy of Al lattice diffusion ranged from 1.80 to 3.17 eV. As compared with experimental measurements, the theoretical predictions of the activation energy for lattice diffusion were lower and thus implied that there might be other high-energy diffusive jumps in the experimental alumina samples. Moreover, our results suggested that the Al lattice diffusion was faster than the O lattice diffusion in alumina, in agreement with experiment observations. Furthermore, it was found from our calculations for α-Al2O3 that the activation energies of O and Al grain boundary diffusion in the high-energy Σ3(0001) grain boundaries were significantly lower than those of the lattice diffusion. In contrast, the activation energies of O and Al grain boundary diffusion in the low-energy Σ3(101¯0) grain boundaries could be even higher than those of the lattice diffusion.

  15. Functional implications of orientation maps in primary visual cortex

    NASA Astrophysics Data System (ADS)

    Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim

    2016-11-01

    Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures.

  16. Functional implications of orientation maps in primary visual cortex

    PubMed Central

    Koch, Erin; Jin, Jianzhong; Alonso, Jose M.; Zaidi, Qasim

    2016-01-01

    Stimulus orientation in the primary visual cortex of primates and carnivores is mapped as iso-orientation domains radiating from pinwheel centres, where orientation preferences of neighbouring cells change circularly. Whether this orientation map has a function is currently debated, because many mammals, such as rodents, do not have such maps. Here we show that two fundamental properties of visual cortical responses, contrast saturation and cross-orientation suppression, are stronger within cat iso-orientation domains than at pinwheel centres. These differences develop when excitation (not normalization) from neighbouring oriented neurons is applied to different cortical orientation domains and then balanced by inhibition from un-oriented neurons. The functions of the pinwheel mosaic emerge from these local intra-cortical computations: Narrower tuning, greater cross-orientation suppression and higher contrast gain of iso-orientation cells facilitate extraction of object contours from images, whereas broader tuning, greater linearity and less suppression of pinwheel cells generate selectivity for surface patterns and textures. PMID:27876796

  17. A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces.

    PubMed

    Shankar, Varun; Wright, Grady B; Kirby, Robert M; Fogelson, Aaron L

    2016-06-01

    In this paper, we present a method based on Radial Basis Function (RBF)-generated Finite Differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in ℝ (d) . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.

  18. Diffusion-relaxation distribution functions of sedimentary rocks in different saturation states.

    PubMed

    Hürlimann, M D; Flaum, M; Venkataramanan, L; Flaum, C; Freedman, R; Hirasaki, G J

    2003-01-01

    We present diffusion-relaxation distribution functions measured on four rock cores that were prepared in a succession of different saturation states of brine and crude oil. The measurements were performed in a static gradient field at a Larmor frequency of 1.76 MHz. The diffusion-relaxation distribution functions clearly separate the contributions from the two fluid phases. The results can be used to identify the wetting and non-wetting phase, to infer fluid properties of the phases, and to obtain additional information on the geometrical arrangement of the phases. We also observe effects due to restricted diffusion and susceptibility induced internal gradients.

  19. Network Plasticity and Intraoperative Mapping for Personalized Multimodal Management of Diffuse Low-Grade Gliomas

    PubMed Central

    Ghinda, Cristina Diana; Duffau, Hugues

    2017-01-01

    Gliomas are the most frequent primary brain tumors and include a variety of different histological tumor types and malignancy grades. Recent achievements in terms of molecular and imaging fields have created an unprecedented opportunity to perform a comprehensive interdisciplinary assessment of the glioma pathophysiology, with direct implications in terms of the medical and surgical treatment strategies available for patients. The current paradigm shift considers glioma management in a comprehensive perspective that takes into account the intricate connectivity of the cerebral networks. This allowed significant improvement in the outcome of patients with lesions previously considered inoperable. The current review summarizes the current theoretical framework integrating the adult human brain plasticity and functional reorganization within a dynamic individualized treatment strategy for patients affected by diffuse low-grade gliomas. The concept of neuro-oncology as a brain network surgery has major implications in terms of the clinical management and ensuing outcomes, as indexed by the increased survival and quality of life of patients managed using such an approach. PMID:28197403

  20. Network Plasticity and Intraoperative Mapping for Personalized Multimodal Management of Diffuse Low-Grade Gliomas.

    PubMed

    Ghinda, Cristina Diana; Duffau, Hugues

    2017-01-01

    Gliomas are the most frequent primary brain tumors and include a variety of different histological tumor types and malignancy grades. Recent achievements in terms of molecular and imaging fields have created an unprecedented opportunity to perform a comprehensive interdisciplinary assessment of the glioma pathophysiology, with direct implications in terms of the medical and surgical treatment strategies available for patients. The current paradigm shift considers glioma management in a comprehensive perspective that takes into account the intricate connectivity of the cerebral networks. This allowed significant improvement in the outcome of patients with lesions previously considered inoperable. The current review summarizes the current theoretical framework integrating the adult human brain plasticity and functional reorganization within a dynamic individualized treatment strategy for patients affected by diffuse low-grade gliomas. The concept of neuro-oncology as a brain network surgery has major implications in terms of the clinical management and ensuing outcomes, as indexed by the increased survival and quality of life of patients managed using such an approach.

  1. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    SciTech Connect

    Larin, K V; Tuchin, V V

    2008-06-30

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)

  2. A minimally diffusive interface function steepening approach for compressible multiphase flows

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan

    2015-11-01

    Interface capturing methods for contacts and shocks are commonly used in compressible multiphase flows. Artificial diffusion is inherently necessary to stabilize jump discontinuities across shocks and contacts. Contacts suffer from diffusion more severely than shock waves because their characteristics are not convergent like shocks. Interface steepening procedures are commonly used to counteract numerical diffusion necessary to maintain a sharp interface function. In this work, a modification to the sharpening approach used in Shukla, Pantano, and Freund [J. Comp. Phys, 229, 2010] is developed that minimizes the artificial diffusion across the interface while maintaining a monotonic interface function. The method requires fewer iterations for convergence and provides a steeper interface function. Examples in one and two dimensions demonstrate the method's performance.

  3. The contribution of electrophysiology to functional connectivity mapping

    PubMed Central

    Schölvinck, Marieke L; Leopold, David A; Brookes, Matthew J; Khader, Patrick H

    2014-01-01

    A powerful way to probe brain function is to assess the relationship between simultaneous changes in activity across different parts of the brain. In recent years, the temporal activity correlation between brain areas has frequently been taken as a measure of their functional connections. Evaluating ‘functional connectivity’ in this way is particularly popular in the fMRI community, but has also drawn interest among electrophysiologists. Like hemodynamic fluctuations observed with fMRI, electrophysiological signals display significant temporal fluctuations, even in the absence of a stimulus. These neural fluctuations exhibit correlational structure over a wide range of spatial and temporal scales. Initial evidence suggests that certain aspects of this correlational structure bear a high correspondence to so-called functional networks defined using fMRI. The growing family of methods to study activity covariation, combined with the diverse neural mechanisms that contribute to the spontaneous fluctuations, have somewhat blurred the operational concept of functional connectivity. What is clear is that spontaneous activity is a conspicuous, energy-consuming feature of the brain. Given its prominence and its practical applications for the functional connectivity mapping of brain networks, it is of increasing importance that we understand its neural origins as well as its contribution to normal brain function. PMID:23587686

  4. Mapping the global topography of the cost function in STELLOPT

    NASA Astrophysics Data System (ADS)

    Lucia, M.; Mynick, H. E.; Pomphrey, N.

    2011-10-01

    Stellarator designs have long been optimized for reduced neoclassical transport, but optimization for reduced turbulent transport is a relatively nascent research thrust. Recent work has addressed this ``turbulent optimization'' by using the GENE/GIST nonlinear gyrokinetic code and the STELLOPT stellarator optimization code. That work demonstrated that STELLOPT can produce stellarator designs that reduce the turbulent transport without adversely affecting other design metrics. STELLOPT utilizes a Levenberg-Marquardt (LM) algorithm to find a local minimum of a cost function in a shape space z of coefficients that define the plasma boundary. However, a visualization of the topography of the cost function in z space might reveal a lower global minimum and provide insight into why the LM algorithm missed it. The current work uses STELLOPT to provide this capability, replacing its LM algorithm with one that produces maps of the wider topography of the cost function. Analysis of these maps will be used to gain insight into the properties of the studied design configurations and to identify possible improvements to STELLOPT's optimization algorithm. Supported by U.S. DOE contract DE-AC02-09CH11466 and by U.S. DOD NDSEG fellowship.

  5. Nested Association Mapping for Identification of Functional Markers

    PubMed Central

    Guo, Baohong; Sleper, David A.; Beavis, William D.

    2010-01-01

    Identification of functional markers (FMs) provides information about the genetic architecture underlying complex traits. An approach that combines the strengths of linkage and association mapping, referred to as nested association mapping (NAM), has been proposed to identify FMs in many plant species. The ability to identify and resolve FMs for complex traits depends upon a number of factors including frequency of FM alleles, magnitudes of their genetic effects, disequilibrium among functional and nonfunctional markers, statistical analysis methods, and mating design. The statistical characteristics of power, accuracy, and precision to identify FMs with a NAM population were investigated using three simulation studies. The simulated data sets utilized publicly available genetic sequences and simulated FMs were identified using least-squares variable selection methods. Results indicate that FMs with simple additive genetic effects that contribute at least 5% to the phenotypic variability in at least five segregating families of a NAM population consisting of recombinant inbred progeny derived from 28 matings with a single reference inbred will have adequate power to accurately and precisely identify FMs. This resolution and power are possible even for genetic architectures consisting of disequilibrium among multiple functional and nonfunctional markers in the same genomic region, although the resolution of FMs will deteriorate rapidly if more than two FMs are tightly linked within the same amplicon. Finally, nested mating designs involving several reference parents will have a greater likelihood of resolving FMs than single reference designs. PMID:20551444

  6. Calculation of the second term of the exact Green's function of the diffusion equation for diffusion-controlled chemical reactions

    NASA Astrophysics Data System (ADS)

    Plante, Ianik

    2016-01-01

    The exact Green's function of the diffusion equation (GFDE) is often considered to be the gold standard for the simulation of partially diffusion-controlled reactions. As the GFDE with angular dependency is quite complex, the radial GFDE is more often used. Indeed, the exact GFDE is expressed as a Legendre expansion, the coefficients of which are given in terms of an integral comprising Bessel functions. This integral does not seem to have been evaluated analytically in existing literature. While the integral can be evaluated numerically, the Bessel functions make the integral oscillate and convergence is difficult to obtain. Therefore it would be of great interest to evaluate the integral analytically. The first term was evaluated previously, and was found to be equal to the radial GFDE. In this work, the second term of this expansion was evaluated. As this work has shown that the first two terms of the Legendre polynomial expansion can be calculated analytically, it raises the question of the possibility that an analytical solution exists for the other terms.

  7. Resecting diffuse low-grade gliomas to the boundaries of brain functions: a new concept in surgical neuro-oncology.

    PubMed

    Duffau, H

    2015-12-01

    The traditional dilemma making surgery for diffuse low-grade gliomas (DLGGs) challenging is underlain by the need to optimize tumor resection in order to significantly increase survival versus the risk of permanent neurological morbidity. Development of neuroimaging led neurosurgeons to achieve tumorectomy according to the oncological limits provided by preoperative or intraoperative structural and metabolic imaging. However, this principle is not coherent, neither with the infiltrative nature of DLGGs nor with the limited resolution of current neuroimaging. Indeed, despite technical advances, MRI still underestimates the actual spatial extent of gliomas, since tumoral cells are present several millimeters to centimeters beyond the area of signal abnormalities. Furthermore, cortical and subcortical structures may be still crucial for brain functions despite their invasion by this diffuse tumoral disease. Finally, the lack of reliability of functional MRI has also been demonstrated. Therefore, to talk about "maximal safe resection" based upon neuroimaging is a non-sense, because oncological MRI does not show the tumor and functional MRI does not show critical neural pathways. This review proposes an original concept in neuro-oncological surgery, i.e. to resect DLGG to the boundaries of brain functions, thanks to intraoperative electrical mapping performed in awake patients. This paradigmatic shift from image-guided resection to functional mapping-guided resection, based upon an accurate study of brain connectomics and neuroplasticity in each patient throughout tumor removal has permitted to solve the classical dilemma, by increasing both survival and quality of life in DLGG patients. With this in mind, brain surgeons should also be neuroscientists.

  8. Mapping areas at risk of diffuse phosphorus losses to water: a pilot study of Lake Haderslev Dam, Denmark.

    PubMed

    Andersen, Hans Estrup; Heckrath, Goswin; Thodsen, Hans

    2008-01-01

    Haderslev Dam is a 272 ha lake in southern Denmark with a high recreational value. For decades the lake has been severely eutrophicated due to excessive phosphorus loading. Major point sources were cut off in the early 1990s and an upstream wetland was recreated. However, the ecological quality remains unsatisfactory. In this study we estimate the importance of agriculture on diffuse phosphorus (P) input to the lake by modelling combined with independent estimates for contributions from scattered dwellings not connected to a sewer and from background losses. We apply a newly developed Danish P index to the lake catchment for mapping of risk areas for diffuse phosphorus losses. For risk areas we suggest mitigation measures and estimate the effect of the mitigation measures on the total P loading of the lake as well as the associated costs.

  9. Can Native T1 Mapping Differentiate between Healthy and Diffuse Diseased Myocardium in Clinical Routine Cardiac MR Imaging?

    PubMed Central

    Goebel, Juliane; Seifert, Ingmar; Nensa, Felix; Schemuth, Haemi P.; Maderwald, Stefan; Quick, Harald H.; Schlosser, Thomas; Jensen, Christoph; Bruder, Oliver; Nassenstein, Kai

    2016-01-01

    Objectives T1 mapping allows quantitative myocardial assessment, but its value in clinical routine remains unclear. We investigated, whether the average native myocardial T1 value can be used as a diagnostic classifier between healthy and diffuse diseased myocardium. Methods Native T1 mapping was performed in 54 persons with healthy hearts and in 150 patients with diffuse myocardial pathologies (coronary artery disease (CAD): n = 76, acute myocarditis: n = 19, convalescent myocarditis: n = 26, hypertrophic cardiomyopathy (HCM): n = 12, dilated cardiomyopathy (DCM): n = 17) at 1.5 Tesla in a mid-ventricular short axis slice using a modified Look-Locker inversion recovery (MOLLI) sequence. The average native myocardial T1 value was measured using dedicated software for each patient. The mean as well as the range of the observed average T1 values were calculated for each group, and compared using t-test. The ability of T1 mapping to differentiate between healthy and diffuse diseased myocardium was assessed using receiver operating characteristic analysis (ROC). Results The mean T1 value of the group “healthy hearts” (955±34ms) differed significantly from that of the groups DCM (992±37ms, p<0.001), HCM (980±44ms, p = 0.035), and acute myocarditis (974±36ms, p = 0.044). No significant difference was observed between the groups “healthy hearts” and CAD (951±37ms, p = 0.453) or convalescent myocarditis (965±40ms, p = 0.240). The average native T1 value varied considerably within all groups (range: healthy hearts, 838-1018ms; DCM, 882-1034ms; HCM, 897-1043ms; acute myocarditis, 925-1025ms; CAD, 867-1082ms; convalescent myocarditis, 890-1071ms) and overlapped broadly between all groups. ROC analysis showed, that the average native T1 value does not allow for differentiating between healthy and diffuse diseased myocardium, except for the subgroup of DCM. Conclusions The average native T1 value in cardiac MR imaging does not allow differentiating between healthy

  10. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction–diffusion systems

    SciTech Connect

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-10-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy.

  11. The time dependent propensity function for acceleration of spatial stochastic simulation of reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Fu, Jin; Wu, Sheng; Li, Hong; Petzold, Linda R.

    2014-10-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy.

  12. The Time Dependent Propensity Function for Acceleration of Spatial Stochastic Simulation of Reaction-Diffusion Systems

    PubMed Central

    Wu, Sheng; Li, Hong; Petzold, Linda R.

    2015-01-01

    The inhomogeneous stochastic simulation algorithm (ISSA) is a fundamental method for spatial stochastic simulation. However, when diffusion events occur more frequently than reaction events, simulating the diffusion events by ISSA is quite costly. To reduce this cost, we propose to use the time dependent propensity function in each step. In this way we can avoid simulating individual diffusion events, and use the time interval between two adjacent reaction events as the simulation stepsize. We demonstrate that the new algorithm can achieve orders of magnitude efficiency gains over widely-used exact algorithms, scales well with increasing grid resolution, and maintains a high level of accuracy. PMID:26609185

  13. A New Adaptive Diffusive Function for Magnetic Resonance Imaging Denoising Based on Pixel Similarity

    PubMed Central

    Heydari, Mostafa; Karami, Mohammad Reza

    2015-01-01

    Although there are many methods for image denoising, but partial differential equation (PDE) based denoising attracted much attention in the field of medical image processing such as magnetic resonance imaging (MRI). The main advantage of PDE-based denoising approach is laid in its ability to smooth image in a nonlinear way, which effectively removes the noise, as well as preserving edge through anisotropic diffusion controlled by the diffusive function. This function was first introduced by Perona and Malik (P-M) in their model. They proposed two functions that are most frequently used in PDE-based methods. Since these functions consider only the gradient information of a diffused pixel, they cannot remove noise in noisy images with low signal-to-noise (SNR). In this paper we propose a modified diffusive function with fractional power that is based on pixel similarity to improve P-M model for low SNR. We also will show that our proposed function will stabilize the P-M method. As experimental results show, our proposed function that is modified version of P-M function effectively improves the SNR and preserves edges more than P-M functions in low SNR. PMID:26955563

  14. 2D Potential theory using complex functions and conformal mapping

    NASA Astrophysics Data System (ADS)

    Le Maire, Pauline; Munschy, Marc

    2016-04-01

    For infinitely horizontally extended bodies, functions that describe potential and field equations (gravity and magnetics) outside bodies are 2D and harmonic. The consequence of this property is that potential and field equations can be written as complex analytic functions. We define these complex functions whose real part is the commonly used real function and imaginary part is its Hilbert transform. Using data or synthetic cases the transformation is easily performed in the Fourier domain by setting to zero all values for negative frequencies. Written as complex functions of the complex variable, equations of potential and field in gravity and magnetics for different kinds of geometries are simple and correspond to powers of the inverse of the distance. For example, it is easily shown that for a tilted dyke, the dip and the apparent inclination have the same effect on the function and consequently that it is not possible, with data, to compute one of both values without knowing the other. Conformal mapping is an original way to display potential field functions. Considering that the complex variable corresponds to the real axis, complex potential field functions resume to a limaçon, a curve formed by the path of the point fixed to a circle when that circle rolls around the outside of another circle. For example, the point corresponding to the maximum distance to the origin of the complex magnetic field due to a cylinder, corresponds to the maximum of the analytic signal as defined by Nabighan in 1972 and its phase corresponds to the apparent inclination. Several applications are shown in different geological contexts using aeromagnetic data.

  15. Velocity Autocorrelation Functions and Diffusion of Dusty Plasma

    SciTech Connect

    Ramazanov, T. S.; Dzhumagulova, K. N.; Daniyarov, T. T.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The velocity autocorrelation functions and square displacements were calculated on the basis of experimental data obtained on experimental setup with dc discharge. Computer simulation of the system of dust particles by the method of the Langevin dynamics was performed. The comparisons of experimental and theoretical results are given.

  16. Correlation function induced by a generalized diffusion equation with the presence of a harmonic potential

    SciTech Connect

    Fa, Kwok Sau

    2015-02-15

    An integro-differential diffusion equation with linear force, based on the continuous time random walk model, is considered. The equation generalizes the ordinary and fractional diffusion equations, which includes short, intermediate and long-time memory effects described by the waiting time probability density function. Analytical expression for the correlation function is obtained and analyzed, which can be used to describe, for instance, internal motions of proteins. The result shows that the generalized diffusion equation has a broad application and it may be used to describe different kinds of systems. - Highlights: • Calculation of the correlation function. • The correlation function is connected to the survival probability. • The model can be applied to the internal dynamics of proteins.

  17. Nondestructive Method for Mapping Metal Contact Diffusion in In2O3 Thin-Film Transistors

    PubMed Central

    2016-01-01

    The channel width-to-length ratio is an important transistor parameter for integrated circuit design. Contact diffusion into the channel during fabrication or operation alters the channel width and this important parameter. A novel methodology combining atomic force microscopy and scanning Kelvin probe microscopy (SKPM) with self-consistent modeling is developed for the nondestructive detection of contact diffusion on active devices. Scans of the surface potential are modeled using physically based Technology Computer Aided Design (TCAD) simulations when the transistor terminals are grounded and under biased conditions. The simulations also incorporate the tip geometry to investigate its effect on the measurements due to electrostatic tip–sample interactions. The method is particularly useful for semiconductor– and metal–semiconductor interfaces where the potential contrast resulting from dopant diffusion is below that usually detectable with scanning probe microscopy. PMID:27581104

  18. Conductivity tensor mapping of the human brain using diffusion tensor MRI

    PubMed Central

    Tuch, David S.; Wedeen, Van J.; Dale, Anders M.; George, John S.; Belliveau, John W.

    2001-01-01

    Knowledge of the electrical conductivity properties of excitable tissues is essential for relating the electromagnetic fields generated by the tissue to the underlying electrophysiological currents. Efforts to characterize these endogenous currents from measurements of the associated electromagnetic fields would significantly benefit from the ability to measure the electrical conductivity properties of the tissue noninvasively. Here, using an effective medium approach, we show how the electrical conductivity tensor of tissue can be quantitatively inferred from the water self-diffusion tensor as measured by diffusion tensor magnetic resonance imaging. The effective medium model indicates a strong linear relationship between the conductivity and diffusion tensor eigenvalues (respectively, σ and d) in agreement with theoretical bounds and experimental measurements presented here (σ/d ≈ 0.844 ± 0.0545 S⋅s/mm3, r2 = 0.945). The extension to other biological transport phenomena is also discussed. PMID:11573005

  19. Relationship between two different functions derived from diffusion-based decompression theory.

    PubMed

    Ashida, H; Ikeda, T; Tikuisis, P; Nishi, R Y

    2005-01-01

    Hempleman's diffusion-based decompression theory yields two different functions; one is expressed by a simple root function and the other by a complex series function. Although both functions predict the same rate of gas uptake for relatively short exposure times, no clear mathematical explanation has been published that describes the relationship between the two functions. We clarified that (1) the root function is the solution of the one-dimensional diffusion equation for a semi-infinite slab, (2) the series function is an applicable solution for a finite slab thickness, (3) the parameter values of the root function can be used to determine the parameter values of the series function, and (4) the predictions of gas kinetics from both functions agree until an adequate amount of diffusing inert gas reaches the boundary at the opposite end of the finite slab. The last point allows the use of the simpler root function for predicting short no-stop decompression limits. Experience dictates that the inert gas accumulation for a 22 min at 100 feet of seawater (fsw) dive is considered safe for no-stop decompression. Although the constraint, Depth square root of Bottom Time = 100 square root of 22, has been applied as an index to determine either the safe depth or bottom time (given the other) for no-stop decompression, it should not be applied more broadly to dives requiring decompression stops.

  20. Density functional theory calculations of stability and diffusion mechanisms of impurity atoms in Ge crystals

    SciTech Connect

    Maeta, Takahiro; Sueoka, Koji

    2014-08-21

    Ge-based substrates are being developed for applications in advanced nano-electronic devices because of their higher intrinsic carrier mobility than Si. The stability and diffusion mechanism of impurity atoms in Ge are not well known in contrast to those of Si. Systematic studies of the stable sites of 2nd to 6th row element impurity atoms in Ge crystal were undertaken with density functional theory (DFT) and compared with those in Si crystal. It was found that most of the impurity atoms in Ge were stable at substitutional sites, while transition metals in Si were stable at interstitial sites and the other impurity atoms in Si were stable at substitutional sites. Furthermore, DFT calculations were carried out to clarify the mechanism responsible for the diffusion of impurity atoms in Ge crystals. The diffusion mechanism for 3d transition metals in Ge was found to be an interstitial-substitutional diffusion mechanism, while in Si this was an interstitial diffusion mechanism. The diffusion barriers in the proposed diffusion mechanisms in Ge and Si were quantitatively verified by comparing them to the experimental values in the literature.

  1. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    SciTech Connect

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; Finger, A. N.; Mark W. Wanlass

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the two modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.

  2. Spatial resolution versus data acquisition efficiency in mapping an inhomogeneous system with species diffusion.

    PubMed

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T H; Finger, A N; Wanlass, M W

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the two modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer - where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) - whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.

  3. Spatial Resolution Versus Data Acquisition Efficiency in Mapping an Inhomogeneous System with Species Diffusion

    DOE PAGES

    Chen, Fengxiang; Zhang, Yong; Gfroerer, T. H.; ...

    2015-06-02

    Traditionally, spatially-resolved photoluminescence (PL) has been performed using a point-by-point scan mode with both excitation and detection occurring at the same spatial location. But with the availability of high quality detector arrays like CCDs, an imaging mode has become popular for performing spatially-resolved PL. By illuminating the entire area of interest and collecting the data simultaneously from all spatial locations, the measurement efficiency can be greatly improved. However, this new approach has proceeded under the implicit assumption of comparable spatial resolution. We show here that when carrier diffusion is present, the spatial resolution can actually differ substantially between the twomore » modes, with the less efficient scan mode being far superior. We apply both techniques in investigation of defects in a GaAs epilayer – where isolated singlet and doublet dislocations can be identified. A superposition principle is developed for solving the diffusion equation to extract the intrinsic carrier diffusion length, which can be applied to a system with arbitrarily distributed defects. The understanding derived from this work is significant for a broad range of problems in physics and beyond (for instance biology) – whenever the dynamics of generation, diffusion, and annihilation of species can be probed with either measurement mode.« less

  4. Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions.

    PubMed

    Ulrich, Rolf; Schröter, Hannes; Leuthold, Hartmut; Birngruber, Teresa

    2015-05-01

    An elaborated diffusion process model (a Diffusion Model for Conflict Tasks, DMC) is introduced that combines conceptual features of standard diffusion models with the notion of controlled and automatic processes. DMC can account for a variety of distributional properties of reaction time (RT) in conflict tasks (e.g., Eriksen flanker, Simon, Stroop). Specifically, DMC is compatible with all observed shapes of delta functions, including negative-going delta functions that are particularly challenging for the class of standard diffusion models. Basically, DMC assumes that the activations of controlled and automatic processes superimpose to trigger a response. Monte Carlo simulations demonstrate that the unfolding of automatic activation in time largely determines the shape of delta functions. Furthermore, the predictions of DMC are consistent with other phenomena observed in conflict tasks such as error rate patterns. In addition, DMC was successfully fitted to experimental data of the standard Eriksen flanker and the Simon task. Thus, the present paper reconciles the prominent and successful class of diffusion models with the empirical finding of negative-going delta functions.

  5. Is the use of diffuse functions essential for the properly description of noncovalent interactions involving anions?

    PubMed

    Bauzá, Antonio; Quiñonero, David; Deyà, Pere M; Frontera, Antonio

    2013-03-28

    It is commonly assumed that theoretical DFT or ab initio calculations involving anions require the utilization of diffuse functions in order to obtain reliable results. In large systems, the use of diffuse functions in the calculations increases the computational cost and, more importantly, sometimes provokes self-consistent-field (SCF) convergence problems, especially in open shell systems. Nowadays, the popular and often used bases for studying noncovalent interactions are the correlation-consistent polarized basis sets of Dunning and co-workers, denoted as cc-pVXZ (X = D, T, etc.), and the Turbomole def2 basis set family (def2-SVP and def2-TZVP). In this paper we study the effect of the utilization of diffuse functions on the energetic and geometric features of several noncovalent complexes, including hydrogen, halogen, and pnicogen bonding, lithium bonds, anion-π interactions, and van der Waals interactions.

  6. Remote sensing of prefrontal cortex function with diffusive light

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongyao; Wang, Xin C.; Chance, Britton

    2004-12-01

    A data bank on prefrontal imaging under stressful conditions including deceit, has been gathered over several years on National and International populations using a contact imager pad consisting of 16 detectors and 4 sources, validating the concept of imaging prefrontal responses to stress, not only following the response of the PFC to imaging stress but especially of precognitive activations. We designed a new portable and non-invasive optical detecting system for remote sensing of deceit at 1~2m distance. The signals of pre- and post-cognitive function in deceit can be detected with very high sensitivity for blood volume and blood oxygenation detection at depths sufficient for PFC imaging and sensitivities of sub-micromolar oxy-hemoglobin and blood concentration detection. Thus, remote imaging of the process of decision making seems possible and examples will be presented using both contact and flying spot remote sensing.

  7. Probing dissociative molecular dications by mapping vibrational wave functions

    SciTech Connect

    Puettner, R.; Sekushin, V.; Kaindl, G.; Arion, T.; Lischke, T.; Mucke, M.; Hergenhahn, U.; Foerstel, M.; Bradshaw, A. M.

    2011-04-15

    We present high-resolution photoelectron-Auger-electron coincidence spectra of methane (CH{sub 4}). Since the vibrational structure in the photoelectron spectrum is resolved, the Auger spectra corresponding to different vibrational levels can be separated. The seven final states of CH{sub 4}{sup 2+} are either dissociative or metastable, but in any case are populated in a repulsive part of their potential-energy curve via the Auger decay. The Auger line shapes can therefore be obtained by mapping the vibrational wave functions of the core-hole state into energy space. We have implemented this connection in the data analysis. By simultaneously fitting the different Auger spectra, detailed information on the energies of the dicationic states and their repulsive potential-energy curves is derived.

  8. Site and Orbit Repeatabilities using Adaptive Mapping Functions

    NASA Astrophysics Data System (ADS)

    Desjardins, Camille; Gegout, Pascal; Soudarin, Laurent; Biancale, Richard; Perosanz, Felix

    2015-04-01

    The electromagnetic signals emitted by the satellite positioning systems travel at the speed of light in a straight line in a vacuum but are modified in their propagation through the neutral atmosphere by temporal and spatial changes of density, and composition and refractivity. These waves are slowed down and their trajectories are bent. This presentation summarizes the performances of the modeling of the tropospheric propagation by the ray tracing technique through the assimilations of the European Meteorological Centre (ECMWF) in the framework of realizing the geodetic reference frame. This goal is achieved by modeling the spatial variability of the propagation using the time variable three-dimensional physical parameters of the atmosphere. The tropospheric delays obtained by ray tracing in all directions throughout the meteorological model surrounding the geodetic site, are fitted by Adaptive Mapping Functions (AMF) parameterized by several tens of coefficients. The delays produced by the Horizon software are then experimented, kept unchanged or adjusted, when recovering a reference frame based on hundred sites using the GINS software. Without any adjustments of the tropospheric modeling, the subcentimetric performances of the AMF are demonstrated by the repeatability of sites positions and GPS satellites orbits. When some AMF coefficients are adjusted, the accuracy of orbits recovery in term of quadratic mean is 7 to 8 millimeters. This limit is imposed by the lack or deficiency of other models, such as non-tidal and tidal loading respectively. Hence the repeatability of the vertical position is not enhanced by changing the propagation model. At the contrary, the repeatability of the horizontal position of geodetic sites is greatly enhanced by accounting for the azimuthal variability provided by the realistic 3D shapes of the Atmosphere and the Earth and the rigorous interpolations of atmospheric parameters included in Adaptive Mapping Functions with respect

  9. Maps of current density using density-functional methods

    NASA Astrophysics Data System (ADS)

    Soncini, A.; Teale, A. M.; Helgaker, T.; de Proft, F.; Tozer, D. J.

    2008-08-01

    The performance of several density-functional theory (DFT) methods for the calculation of current densities induced by a uniform magnetic field is examined. Calculations are performed using the BLYP and KT3 generalized-gradient approximations, together with the B3LYP hybrid functional. For the latter, both conventional and optimized effective potential (OEP) approaches are used. Results are also determined from coupled-cluster singles-and-doubles (CCSD) electron densities by a DFT constrained search procedure using the approach of Wu and Yang (WY). The current densities are calculated within the CTOCD-DZ2 distributed origin approach. Comparisons are made with results from Hartree-Fock (HF) theory. Several small molecules for which correlation is known to be especially important in the calculation of magnetic response properties are considered-namely, O3, CO, PN, and H2CO. As examples of aromatic and antiaromatic systems, benzene and planarized cyclooctatetraene molecules are considered, with specific attention paid to the ring current phenomenon and its Kohn-Sham orbital origin. Finally, the o-benzyne molecule is considered as a computationally challenging case. The HF and DFT induced current maps show qualitative differences, while among the DFT methods the maps show a similar qualitative structure. To assess quantitative differences in the calculated current densities with different methods, the maximal moduli of the induced current densities are compared and integration of the current densities to yield shielding constants is performed. In general, the maximal modulus is reduced in moving from HF to B3LYP and BLYP, and further reduced in moving to KT3, OEP(B3LYP), and WY(CCSD). The latter three methods offer the most accurate shielding constants in comparison with both experimental and ab initio data and hence the more reliable route to DFT calculation of induced current density in molecules.

  10. Determination of Moisture Diffusivity as a Function of Both Moisture and Temperature

    NASA Astrophysics Data System (ADS)

    Pavlík, Z.; Černý, R.

    2012-09-01

    The effect of moisture and temperature on liquid water transport in porous media was studied. Specimens of autoclaved aerated concrete were subjected to one-sided water penetration in isothermal conditions at temperatures of 20 °C, 40 °C, 60 °C, and 80 °C. After specified time intervals, moisture profiles were determined gravimetrically. The moisture diffusivity was calculated for a particular temperature as a function of moisture content, using an inverse analysis. The results demonstrate the dependence of the moisture diffusivity on the moisture content and the temperature of the samples. The moisture diffusivity for high moisture content can be as much as one order of magnitude greater than for the lowest moisture content studied. The moisture diffusivity was found to increase by as much as a factor of two when the temperature is increased from 20 °C to 80 °C.

  11. Analytic model for the runaway distribution function in the presence of spatial diffusion

    SciTech Connect

    Catto, P.J. Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ); Myra, J.R. ); Wootton, A.J. )

    1994-03-01

    A steady-state kinetic model for runaway electrons in the presence of radial diffusion in a stochastic magnetic field is adopted and solved for a constant magnetic diffusivity. The model is constructed to recover the correct runaway production rate in the absence of spatial diffusion. The parallel energetic electron distribution function [ital f] is found by matching the solutions from three regions in parallel velocity space and is employed to form moments of [ital f]. Upper and lower bounds on the spatial diffusion are obtained by using these moments and the model exhibits the strong sensitivity to collisionality needed to explain the difference between similar plasmas with little or no hard x-ray signal and those with significant hard x-ray signals.

  12. Mapping Multiplex Hubs in Human Functional Brain Networks

    PubMed Central

    De Domenico, Manlio; Sasai, Shuntaro; Arenas, Alex

    2016-01-01

    Typical brain networks consist of many peripheral regions and a few highly central ones, i.e., hubs, playing key functional roles in cerebral inter-regional interactions. Studies have shown that networks, obtained from the analysis of specific frequency components of brain activity, present peculiar architectures with unique profiles of region centrality. However, the identification of hubs in networks built from different frequency bands simultaneously is still a challenging problem, remaining largely unexplored. Here we identify each frequency component with one layer of a multiplex network and face this challenge by exploiting the recent advances in the analysis of multiplex topologies. First, we show that each frequency band carries unique topological information, fundamental to accurately model brain functional networks. We then demonstrate that hubs in the multiplex network, in general different from those ones obtained after discarding or aggregating the measured signals as usual, provide a more accurate map of brain's most important functional regions, allowing to distinguish between healthy and schizophrenic populations better than conventional network approaches. PMID:27471443

  13. Mapping social target detection with functional magnetic resonance imaging.

    PubMed

    Dichter, Gabriel S; Felder, Jennifer N; Bodfish, James W; Sikich, Linmarie; Belger, Aysenil

    2009-03-01

    The neural correlates of cognitive control and social processing functions, as well as the characteristic patterns of anomalous brain activation patterns in psychiatric conditions associated with impairment in these functions, have been well characterized. However, these domains have primarily been examined in isolation. The present study used event-related functional magnetic resonance imaging to map brain areas recruited during a target-detection task designed to evaluate responses to both non-social (i.e. shape) and social (i.e. face) target stimuli. Both shape and face targets activated a similar brain network, including the postcentral gyrus, the anterior and posterior cingulate gyri and the right midfrontal gyrus, whereas face targets additionally activated the thalamus, fusiform and temporooccipital cortex, lingual gyrus and paracingulate gyrus. Comparison of activations to social and non-social target events revealed that a small portion of the dorsal anterior cingulate gyrus (Brodmann's area 32) and the supracalcarine cortex were preferentially activated to face targets. These findings indicate that non-social and social stimuli embedded within a cognitive control task activate overlapping and distinct brain regions. Clinical cognitive neuroscience research of disorders characterized by cognitive dysfunction and impaired social processing would benefit from the use of tasks that evaluate the combined effects of deficits in these two domains.

  14. Pulmonary mechanical function and diffusion capacity after deep saturation dives.

    PubMed Central

    Thorsen, E; Segadal, K; Myrseth, E; Påsche, A; Gulsvik, A

    1990-01-01

    To assess the effects of deep saturation dives on pulmonary function, static and dynamic lung volumes, transfer factor for carbon monoxide (T1CO), delta-N2, and closing volume (CV) were measured before and after eight saturation dives to pressures of 3.1-4.6 MPa. The atmospheres were helium-oxygen mixtures with partial pressures of oxygen of 40-60 kPa. The durations of the dives were 14-30 days. Mean rate of decompression was 10.5-13.5 kPa/hour. A total of 43 divers were examined, six of whom took part in two dives, the others in one only. Dynamic lung volumes did not change significantly but total lung capacity (TLC) increased significantly by 4.3% and residual volume (RV) by 14.8% (p less than 0.05). CV was increased by 16.7% (p less than 0.01). The T1CO was reduced from 13.0 +/- 1.6 to 11.8 +/- 1.7 mmol/min/kPa (p less than 0.01) when corrected to a haemoglobin concentration of 146 g/l. Effective alveolar volume was unchanged. The increase in TLC and decrease in T1CO were correlated (r = -0.574, p less than 0.02). A control examination of 38 of the divers four to six weeks after the dives showed a partial normalisation of the changes. The increase in TLC, RV, and CV, and the decrease in T1CO, could be explained by a loss of pulmonary elastic tissue caused by inflammatory reactions induced by oxygen toxicity or venous gas emboli. PMID:2337532

  15. Evaluation of Symmetric Neutral-Atmosphere Mapping Functions Using Ray-Tracing Through Radiosonde Observations

    NASA Astrophysics Data System (ADS)

    Souri, A. H.; Sharifi, M. A.

    2013-12-01

    The aim of this paper is to compare the validity of six recent symmetric mapping functions. The mapping function models the elevation angle dependence of the tropospheric delay. Niell Mapping Function (NMF), Vienna Mapping Function (VMF1), University of New Brunswick- VMF1 (UNB-VMF1) mapping functions, Global Mapping Function (GMF) and Global Pressure and Temperature (GPT2)/GMF are evaluated by using ray tracing through 25 radiosonde stations covering different climatic regions in one year. The ray-traced measurements are regarded as "ground truth". The ray-tracing approach is performed for diverse elevation angle starting at 5° to 15°. The results for both hydrostatic and non-hydrostatic components of mapping functions support the efficiency of online-mapping functions. The latitudinal dependence of standard deviation for 5° is also demonstrated. Although all the tested mapping functions can provide satisfactory results when used for elevation angles above 15°, for high precision geodetic measurements, it is highly recommended that the online-mapping functions (UNBs and VMF1) be used.The results suggest that UNB models, like VMF have strengths and weaknesses and do not stand out as being consistently better or worse than the VMF1. The GPT2/GMF provided better accuracy than GMF and NMF. Since all of them do not require site specific data; therefore GPT2/GMF can be useful as regards its ease of use.

  16. Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations

    DOE PAGES

    Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; ...

    2016-04-01

    Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancy ismore » lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.« less

  17. Oxygen vacancy diffusion in bulk SrTiO3 from density functional theory calculations

    SciTech Connect

    Zhang, Lipeng; Liu, Bin; Zhuang, Houlong; Kent, Paul R. C.; Cooper, Valentino R.; Ganesh, Panchapakesan; Xu, Haixuan

    2016-04-01

    Point defects and point defect diffusion contribute significantly to the properties of perovskite materials. However, even for the prototypical case of oxygen vacancies in SrTiO3 (STO), predictions vary widely. Here we present a comprehensive and systematic study of the diffusion barriers for this material. We use density functional theory (DFT) and assess the role of different cell sizes, density functionals, and charge states. Our results show that vacancy-induced octahedral rotations, which are limited by the boundary conditions of the supercell, can significantly affect the computed oxygen vacancy diffusion energy barrier. The diffusion energy barrier of a charged oxygen vacancy is lower than that of a neutral one. Unexpectedly, we find that with increasing supercell size, the effects of the oxygen vacancy charge state, the type of DFT exchange and correlation functional on the energy barrier diminish, and the different DFT predictions asymptote to a value in the range of 0.39-0.49 eV. This work provides important insight and guidance that should be considered for investigations of point defect diffusion in other perovskite materials and in oxide superlattices.

  18. Estimating diffusion propagator and its moments using directional radial basis functions

    PubMed Central

    Ning, Lipeng; Westin, Carl-Fredrik; Rathi, Yogesh

    2015-01-01

    The ensemble average diffusion propagator (EAP) obtained from diffusion MRI (dMRI) data captures important structural properties of the underlying tissue. As such, it is imperative to derive an accurate estimate of the EAP from the acquired diffusion data. In this work, we propose a novel method for estimating the EAP by representing the diffusion signal as a linear combination of directional radial basis functions scattered in q-space. In particular, we focus on a special case of anisotropic Gaussian basis functions and derive analytical expressions for the diffusion orientation distribution function (ODF), the return-to-origin probability (RTOP), and mean-squared-displacement (MSD). A significant advantage of the proposed method is that the second and the fourth order moment tensors of the EAP can be computed explicitly. This allows for computing several novel scalar indices (from the moment tensors) such as mean-fourth-order-displacement (MFD) and generalized kurtosis (GK) – which is a generalization of the mean kurtosis measure used in diffusion kurtosis imaging. Additionally, we also propose novel scalar indices computed from the signal in q-space, called the q-space mean-squared-displacement (QMSD) and the q-space mean-fourth-order-displacement (QMFD), which are sensitive to short diffusion time scales. We validate our method extensively on data obtained from a physical phantom with known crossing angle as well as on in-vivo human brain data. Our experiments demonstrate the robustness of our method for different combinations of b-values and number of gradient directions. PMID:25838518

  19. Automated Talairach atlas labels for functional brain mapping.

    PubMed

    Lancaster, J L; Woldorff, M G; Parsons, L M; Liotti, M; Freitas, C S; Rainey, L; Kochunov, P V; Nickerson, D; Mikiten, S A; Fox, P T

    2000-07-01

    An automated coordinate-based system to retrieve brain labels from the 1988 Talairach Atlas, called the Talairach Daemon (TD), was previously introduced [Lancaster et al., 1997]. In the present study, the TD system and its 3-D database of labels for the 1988 Talairach atlas were tested for labeling of functional activation foci. TD system labels were compared with author-designated labels of activation coordinates from over 250 published functional brain-mapping studies and with manual atlas-derived labels from an expert group using a subset of these activation coordinates. Automated labeling by the TD system compared well with authors' labels, with a 70% or greater label match averaged over all locations. Author-label matching improved to greater than 90% within a search range of +/-5 mm for most sites. An adaptive grey matter (GM) range-search utility was evaluated using individual activations from the M1 mouth region (30 subjects, 52 sites). It provided an 87% label match to Brodmann area labels (BA 4 & BA 6) within a search range of +/-5 mm. Using the adaptive GM range search, the TD system's overall match with authors' labels (90%) was better than that of the expert group (80%). When used in concert with authors' deeper knowledge of an experiment, the TD system provides consistent and comprehensive labels for brain activation foci. Additional suggested applications of the TD system include interactive labeling, anatomical grouping of activation foci, lesion-deficit analysis, and neuroanatomy education.

  20. Non Gaussian Minkowski functionals and extrema counts for CMB maps

    NASA Astrophysics Data System (ADS)

    Pogosyan, Dmitri; Codis, Sandrine; Pichon, Christophe

    2016-10-01

    In the conference presentation we have reviewed the theory of non-Gaussian geometrical measures for 3D Cosmic Web of the matter distribution in the Universe and 2D sky data, such as Cosmic Microwave Background (CMB) maps that was developed in a series of our papers. The theory leverages symmetry of isotropic statistics such as Minkowski functionals and extrema counts to develop post Gaussian expansion of the statistics in orthogonal polynomials of invariant descriptors of the field, its first and second derivatives. The application of the approach to 2D fields defined on a spherical sky was suggested, but never rigorously developed. In this paper we present such development treating the effects of the curvature and finiteness of the spherical space $S_2$ exactly, without relying on flat-sky approximation. We present Minkowski functionals, including Euler characteristic and extrema counts to the first non-Gaussian correction, suitable for weakly non-Gaussian fields on a sphere, of which CMB is the prime example.

  1. A mapping of the electron localization function for earth materials

    NASA Astrophysics Data System (ADS)

    Gibbs, G. V.; Cox, D. F.; Ross, N. L.; Crawford, T. D.; Burt, J. B.; Rosso, K. M.

    2005-06-01

    The electron localization function, ELF, generated for a number of geometry-optimized earth materials, provides a graphical representation of the spatial localization of the probability electron density distribution as embodied in domains ascribed to localized bond and lone pair electrons. The lone pair domains, displayed by the silica polymorphs quartz, coesite and cristobalite, are typically banana-shaped and oriented perpendicular to the plane of the SiOSi angle at ~0.60 Å from the O atom on the reflex side of the angle. With decreasing angle, the domains increase in magnitude, indicating an increase in the nucleophilic character of the O atom, rendering it more susceptible to potential electrophilic attack. The Laplacian isosurface maps of the experimental and theoretical electron density distribution for coesite substantiates the increase in the size of the domain with decreasing angle. Bond pair domains are displayed along each of the SiO bond vectors as discrete concave hemispherically-shaped domains at ~0.70 Å from the O atom. For more closed-shell ionic bonded interactions, the bond and lone pair domains are often coalesced, resulting in concave hemispherical toroidal-shaped domains with local maxima centered along the bond vectors. As the shared covalent character of the bonded interactions increases, the bond and lone pair domains are better developed as discrete domains. ELF isosurface maps generated for the earth materials tremolite, diopside, talc and dickite display banana-shaped lone pair domains associated with the bridging O atoms of SiOSi angles and concave hemispherical toroidal bond pair domains associated with the nonbridging ones. The lone pair domains in dickite and talc provide a basis for understanding the bonded interactions between the adjacent neutral layers. Maps were also generated for beryl, cordierite, quartz, low albite, forsterite, wadeite, åkermanite, pectolite, periclase, hurlbutite, thortveitite and vanthoffite. Strategies

  2. A Mapping of the Electron Localization Function for Earth Materials

    SciTech Connect

    Gibbs, Gerald V.; Cox, David F.; Ross, Nancy; Crawford, T Daniel; Burt, Jason; Rosso, Kevin M.

    2005-06-01

    The electron localization function, ELF, generated for a number of geometry-optimized earth materials, provides a graphical representation of the spatial localization of the probability electron density distribution as embodied in domains ascribed to localized bond and lone pair electrons. The lone pair domains, displayed by the silica polymorphs quartz, coesite and cristobalite, are typically banana-shaped and oriented perpendicular to the plane of the SiOSi angle at ~0.60 Å from the O atom on the reflex side of the angle. With decreasing angle, the domains increase in magnitude, indicating an increase in the nucleophilic character of the O atom, rendering it more susceptible to potential electrophilic attack. The Laplacian isosurface maps of the experimental and theoretical electron density distribution for coesite substantiates the increase in the size of the domain with decreasing angle. Bond pair domains are displayed along each of the SiO bond vectors as discrete concave hemispherically-shaped domains at ~0.70 Å from the O atom. For more closed-shell ionic bonded interactions, the bond and lone pair domains are often coalesced, resulting in concave hemispherical toroidal-shaped domains with local maxima centered along the bond vectors. As the shared covalent character of the bonded interactions increases, the bond and lone pair domains are better developed as discrete domains. ELF isosurface maps generated for the earth materials tremolite, diopside, talc and dickite display banana-shaped lone pair domains associated with the bridging O atoms of SiOSi angles and concave hemispherical toroidal bond pair domains associated with the nonbridging ones. The lone pair domains in dickite and talc provide a basis for understanding the bonded interactions between the adjacent neutral layers. Maps were also generated for beryl, cordierite, quartz, low albite, forsterite, wadeite, åkermanite, pectolite, periclase, hurlbutite, thortveitite and vanthoffite. Strategies

  3. Adaptive diffusion kernel learning from biological networks for protein function prediction

    PubMed Central

    Sun, Liang; Ji, Shuiwang; Ye, Jieping

    2008-01-01

    Background Machine-learning tools have gained considerable attention during the last few years for analyzing biological networks for protein function prediction. Kernel methods are suitable for learning from graph-based data such as biological networks, as they only require the abstraction of the similarities between objects into the kernel matrix. One key issue in kernel methods is the selection of a good kernel function. Diffusion kernels, the discretization of the familiar Gaussian kernel of Euclidean space, are commonly used for graph-based data. Results In this paper, we address the issue of learning an optimal diffusion kernel, in the form of a convex combination of a set of pre-specified kernels constructed from biological networks, for protein function prediction. Most prior work on this kernel learning task focus on variants of the loss function based on Support Vector Machines (SVM). Their extensions to other loss functions such as the one based on Kullback-Leibler (KL) divergence, which is more suitable for mining biological networks, lead to expensive optimization problems. By exploiting the special structure of the diffusion kernel, we show that this KL divergence based kernel learning problem can be formulated as a simple optimization problem, which can then be solved efficiently. It is further extended to the multi-task case where we predict multiple functions of a protein simultaneously. We evaluate the efficiency and effectiveness of the proposed algorithms using two benchmark data sets. Conclusion Results show that the performance of linearly combined diffusion kernel is better than every single candidate diffusion kernel. When the number of tasks is large, the algorithms based on multiple tasks are favored due to their competitive recognition performance and small computational costs. PMID:18366736

  4. Nonlinear stability in reaction-diffusion systems via optimal Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Lombardo, S.; Mulone, G.; Trovato, M.

    2008-06-01

    We define optimal Lyapunov functions to study nonlinear stability of constant solutions to reaction-diffusion systems. A computable and finite radius of attraction for the initial data is obtained. Applications are given to the well-known Brusselator model and a three-species model for the spatial spread of rabies among foxes.

  5. Identity Diffusion as a Function of Sex-Roles in Adult Women.

    ERIC Educational Resources Information Center

    Jabury, Donald Eugene

    This study sought to demonstrate that the relative degree of adult female identity diffusion, as well as certain personality correlates, would be a function of specific sex roles and their combinations. Three groups of 32 women each were selected as married and noncareer, married and career, or unmarried and career women. They were administered a…

  6. Relation of the diffuse reflectance remission function to the fundamental optical parameters.

    NASA Technical Reports Server (NTRS)

    Simmons, E. L.

    1972-01-01

    The Kubelka-Munk equations describing the diffuse reflectance of a powdered sample were compared to equations obtained using a uniformly-sized rough-surfaced spherical particle model. The comparison resulted in equations relating the remission function and the Kubelka-Munk constants to the index of refraction, the absorption coefficient, and the average particle diameter of a powdered sample. Published experimental results were used to test the equation relating to the remission function to the fundamental optical parameters.

  7. Symmetric Neutral-Atmosphere Mapping Functions: A Review of the State-Of-The-Art

    NASA Astrophysics Data System (ADS)

    Sharifi, M. A.; Souri, A. H.

    2013-12-01

    The aim of this paper is to review of six recent symmetric mapping functions. The mapping function can be largely used for GPS meteorological measurements, InSAR atmospheric corrections and precise measurements of very long baseline interferometry (VLBI). These spacebased techniques use radio signal that propagate through the Earth's atmosphere. The electrically-neutral region, predominantly the troposphere, affects the speed and direction of travel of radio waves leading to existence of excess path. The mapping function models the elevation angle dependence of the delay. Within the past decade, significant improvements have been achieved in order to use of Numerical Weather Models (NWM) for geodetic positioning. Ray-tracing algorithms have been performed through refractivity shells retrieved from NWMs in order to relate zenith delays to slant delays. Therefore, there seems to be a real need for deep review of recent developments in the mapping function domain. This paper proposes a comprehensive review of the symmetric mapping functions state of the art, their spatio-temporal variations and used NWM and generic models. Niell Mapping Function (NMF), Vienna Mapping Function (VMF1), University of New Brunswick-VMF1 (UNB-VMF1) mapping functions, Global Mapping Function (GMF) and Global Pressure and Temperature (GPT2)/GMF are reviewed in this paper.

  8. The link between diffusion MRI and tumor heterogeneity: Mapping cell eccentricity and density by diffusional variance decomposition (DIVIDE).

    PubMed

    Szczepankiewicz, Filip; van Westen, Danielle; Englund, Elisabet; Westin, Carl-Fredrik; Ståhlberg, Freddy; Lätt, Jimmy; Sundgren, Pia C; Nilsson, Markus

    2016-11-15

    only to cell density variance. The variance in meningiomas was caused primarily by microscopic anisotropy (mean±s.d.) MKA=1.11±0.33 vs MKI=0.44±0.20 (p<10(-3)), whereas in the gliomas, it was mostly caused by isotropic heterogeneity MKI=0.57±0.30 vs MKA=0.26±0.11 (p<0.05). In conclusion, DIVIDE allows non-invasive mapping of parameters that reflect variable cell eccentricity and density. These results constitute convincing evidence that a link exists between specific aspects of tissue heterogeneity and parameters from dMRI. Decomposing effects of microscopic anisotropy and isotropic heterogeneity facilitates an improved interpretation of tumor heterogeneity as well as diffusion anisotropy on both the microscopic and macroscopic scale.

  9. H2O2: a Ca(2+) or Mg(2+)-sensing function in statin passive diffusion.

    PubMed

    Guillaume, Yves Claude; Lethier, Lydie; André, Claire

    2015-09-01

    In a previous paper Guillaume's group demonstrated that magnesium (Mg(2+) concentration range 0.00-2.60 mm) increased the passive diffusion of statins and thus played a role in their potential toxicity. In order to confirm an increase in this passive diffusion by divalent salt cations, the role of calcium chloride (CaCl2) on the statin-immobilized artificial membrane (IAM) association was studied. It was demonstrated that calcium supplementation (Ca(2+) concentration range 0.00-3.25 mm) increases the statin passive diffusion. In addition, it was shown that the Ca(2+) effect on the statin-IAM association is higher than that of Mg(2+). These results show that Ca(2+) enhances the passive diffusion of drugs into biological membranes and thus their potential toxicity. Also, addition of H2O2 to the medium showed a hyperbolic response for the statin passive diffusion and this effect was enhanced for the highest Ca(2+) or Mg(2+) concentrations in the medium. H2O2 is likely to interact with the polar head groups of the IAM through dipole-dipole interactions. The conformational changes in H2O2-IAM result in a higher degree of exposure of hydrophobic areas, thus explaining why the binding of pravastatin, which showed the lowest logP value, was less affected by H2O2. This result shows the significant contribution of H2O2 and thus the oxidative stress on the statin passive diffusion. Much of the sensitivity derives from the action of Ca(2+) or Mg(2+), in turn supported the idea that H2O2 may serve a Ca(2+) or Mg(2+) sensing function in statin passive diffusion.

  10. Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation

    NASA Astrophysics Data System (ADS)

    Zhan, Hanyu; Voelz, David G.

    2016-12-01

    The polarimetric bidirectional reflectance distribution function (pBRDF) describes the relationships between incident and scattered Stokes parameters, but the familiar surface-only microfacet pBRDF cannot capture diffuse scattering contributions and depolarization phenomena. We propose a modified pBRDF model with a diffuse scattering component developed from the Kubelka-Munk and Le Hors et al. theories, and apply it in the development of a method to jointly estimate refractive index, slope variance, and diffuse scattering parameters from a series of Stokes parameter measurements of a surface. An application of the model and estimation approach to experimental data published by Priest and Meier shows improved correspondence with measurements of normalized Mueller matrix elements. By converting the Stokes/Mueller calculus formulation of the model to a degree of polarization (DOP) description, the estimation results of the parameters from measured DOP values are found to be consistent with a previous DOP model and results.

  11. Diffusion of interstitial oxygen in silicon and germanium: a hybrid functional study

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Pasquarello, Alfredo

    2016-12-01

    The minimum-energy paths for the diffusion of an interstitial O atom in silicon and germanium are studied through the nudged-elastic-band method and hybrid functional calculations. The reconsideration of the diffusion of O in silicon primarily serves the purpose of validating the procedure for studying the O diffusion in germanium. Our calculations show that the minimum energy path goes through an asymmetric transition state in both silicon and germanium. The stability of these transition states is found to be enhanced by the generation of unpaired electrons in the highest occupied single-particle states. Calculated energy barriers are 2.54 and 2.14 eV for Si and Ge, in very good agreement with corresponding experimental values of 2.53 and 2.08 eV, respectively.

  12. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions

    NASA Astrophysics Data System (ADS)

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  13. Particle tracking single protein-functionalized quantum dot diffusion and binding at silica surfaces.

    PubMed

    Rife, Jack C; Long, James P; Wilkinson, John; Whitman, Lloyd J

    2009-04-09

    We evaluate commercial QD585 and QD605 streptavidin-functionalized quantum dots (QDs) for single-particle tracking microscopy at surfaces using total internal reflectance fluorescence and measure single QD diffusion and nonspecific binding at silica surfaces in static and flow conditions. The QD diffusion coefficient on smooth, near-ideal, highly hydroxylated silica surfaces is near bulk-solution diffusivity, as expected for repulsive surfaces, but many QD trajectories on rougher, less-than-ideal surfaces or regions display transient adsorptions. We attribute the binding to defect sites or adsorbates, possibly in conjunction with protein conformation changes, and estimate binding energies from the transient adsorption lifetimes. We also assess QD parameters relevant to tracking, including hydrodynamic radius, charge state, signal levels, blinking reduction with reducing solutions, and photoinduced blueing and bleaching.

  14. Stochastic chaos induced by diffusion processes with identical spectral density but different probability density functions.

    PubMed

    Lei, Youming; Zheng, Fan

    2016-12-01

    Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.

  15. Topographic Brain Mapping: A Window on Brain Function?

    ERIC Educational Resources Information Center

    Karniski, Walt M.

    1989-01-01

    The article reviews the method of topographic mapping of the brain's electrical activity. Multiple electroencephalogram (EEG) electrodes and computerized analysis of the EEG signal are used to generate maps of frequency and voltage (evoked potential). This relatively new technique holds promise in the evaluation of children with behavioral and…

  16. Real space mapping of ionic diffusion and electrochemical activity in energy storage and conversion materials

    DOEpatents

    Kalinin, Sergei V; Balke, Nina; Kumar, Amit; Dudney, Nancy J; Jesse, Stephen

    2014-05-06

    A method and system for probing mobile ion diffusivity and electrochemical reactivity on a nanometer length scale of a free electrochemically active surface includes a control module that biases the surface of the material. An electrical excitation signal is applied to the material and induces the movement of mobile ions. An SPM probe in contact with the surface of the material detects the displacement of mobile ions at the surface of the material. A detector measures an electromechanical strain response at the surface of the material based on the movement and reactions of the mobile ions. The use of an SPM tip to detect local deformations allows highly reproducible measurements in an ambient environment without visible changes in surface structure. The measurements illustrate effective spatial resolution comparable with defect spacing and well below characteristic grain sizes of the material.

  17. Mapping Diffuse HI Content in MHONGOOSE Galaxies NGC 1744 and NGC 7424

    NASA Astrophysics Data System (ADS)

    Sardone, Amy; Pisano, Daniel J.; Pingel, Nickolas

    2017-01-01

    The universe contains an abundance of neutral atomic hydrogen, or HI. This HI holds the key to knowing how stars are born, how galaxies form and develop, and how dark matter halos accrete gas from the cosmic web. One of the most crucial questions regarding galaxy formation today is how galaxies accrete their gas and how accretion processes affect subsequent star formation. We are trying to answer these questions by mapping the HI content in a four square degree region around galaxies NGC 1744 and NGC 7424, galaxies to be observed as part of the MHONGOOSE survey. NGC 1744 has already been observed extensively with the VLA, so we will be able to quantify the differences in emission. To do this our GBT maps must be sensitive to column densities on the order of ~1018 cm-2. With such low column densities, we will be able to search for features of the cosmic web in the form of tidal interactions and cosmic web filaments with its relation to star-forming galaxies.

  18. Efficient floating diffuse functions for accurate characterization of the surface-bound excess electrons in water cluster anions.

    PubMed

    Zhang, Changzhe; Bu, Yuxiang

    2017-01-25

    In this work, the effect of diffuse function types (atom-centered diffuse functions versus floating functions and s-type versus p-type diffuse functions) on the structures and properties of three representative water cluster anions featuring a surface-bound excess electron is studied and we find that an effective combination of such two kinds of diffuse functions can not only reduce the computational cost but also, most importantly, considerably improve the accuracy of results and even avoid incorrect predictions of spectra and the EE shape. Our results indicate that (a) simple augmentation of atom-centered diffuse functions is beneficial for the vertical detachment energy convergence, but it leads to very poor descriptions for the singly occupied molecular orbital (SOMO) and lowest unoccupied molecular orbital (LUMO) distributions of the water cluster anions featuring a surface-bound excess electron and thus a significant ultraviolet spectrum redshift; (b) the ghost-atom-based floating diffuse functions can not only contribute to accurate electronic calculations of the ground state but also avoid poor and even incorrect descriptions of the SOMO and the LUMO induced by excessive augmentation of atom-centered diffuse functions; (c) the floating functions can be realized by ghost atoms and their positions could be determined through an optimization routine along the dipole moment vector direction. In addition, both the s- and p-type floating functions are necessary to supplement in the basis set which are responsible for the ground (s-type character) and excited (p-type character) states of the surface-bound excess electron, respectively. The exponents of the diffuse functions should also be determined to make the diffuse functions cover the main region of the excess electron distribution. Note that excessive augmentation of such diffuse functions is redundant and even can lead to unreasonable LUMO characteristics.

  19. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping and TSR-RGB Projection Technique

    NASA Astrophysics Data System (ADS)

    Chandarana, Neha; Lansiaux, Henri; Gresil, Matthieu

    2016-11-01

    An increase in the use of composite materials, owing to improved design and fabrication processes, has led to cost reductions in many industries. Resistance to corrosion, high specific strength, and stiffness are just a few of their many attractive properties. However, damage tolerance remains a major concern in the implementation of composites and uncertainty regarding component lifetimes can lead to over-design and under-use of such materials. A combination of non-destructive evaluation (NDE) and structural health monitoring (SHM) have shown promise in improving confidence by enabling data collection in-situ and in real time. In this work, infrared thermography (IRT) is employed for NDE of tubular composite specimens before and after impact. Four samples are impacted with energies of 5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) are monitored using bonded piezoelectric sensors during one of the four impact tests. IRT data is used to generate diffusivity and thermal depth mappings of each sample using the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique. Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres and matrix; this is in good agreement with the generated thermal depth mappings for each sample, which indicate damage through multiple fibre layers. IRT and AE data are correlated and validated by optical micrographs taken along the cross section of damage.

  20. Characterisation of Damaged Tubular Composites by Acoustic Emission, Thermal Diffusivity Mapping and TSR-RGB Projection Technique

    NASA Astrophysics Data System (ADS)

    Chandarana, Neha; Lansiaux, Henri; Gresil, Matthieu

    2017-04-01

    An increase in the use of composite materials, owing to improved design and fabrication processes, has led to cost reductions in many industries. Resistance to corrosion, high specific strength, and stiffness are just a few of their many attractive properties. However, damage tolerance remains a major concern in the implementation of composites and uncertainty regarding component lifetimes can lead to over-design and under-use of such materials. A combination of non-destructive evaluation (NDE) and structural health monitoring (SHM) have shown promise in improving confidence by enabling data collection in-situ and in real time. In this work, infrared thermography (IRT) is employed for NDE of tubular composite specimens before and after impact. Four samples are impacted with energies of 5 J, 7.5 J, and 10 J by an un-instrumented falling weight set-up. Acoustic emissions (AE) are monitored using bonded piezoelectric sensors during one of the four impact tests. IRT data is used to generate diffusivity and thermal depth mappings of each sample using the thermographic signal reconstruction (TSR) red green blue (RGB) projection technique. Analysis of AE data alone for a 10 J impact suggest significant damage to the fibres and matrix; this is in good agreement with the generated thermal depth mappings for each sample, which indicate damage through multiple fibre layers. IRT and AE data are correlated and validated by optical micrographs taken along the cross section of damage.

  1. Symplectic Propagation of the Map, Tangent Map and Tangent Map Derivative through Quadrupole and Combined-Function Dipole Magnets without Truncation

    NASA Astrophysics Data System (ADS)

    Bruhwiler, D. L.; Cary, J. R.; Shasharina, S.

    1998-04-01

    The MAPA accelerator modeling code symplectically advances the full nonlinear map, tangent map and tangent map derivative through all accelerator elements. The tangent map and its derivative are nonlinear generalizations of Browns first- and second-order matrices(K. Brown, SLAC-75, Rev. 4 (1982), pp. 107-118.), and they are valid even near the edges of the dynamic aperture, which may be beyond the radius of convergence for a truncated Taylor series. In order to avoid truncation of the map and its derivatives, the Hamiltonian is split into pieces for which the map can be obtained analytically. Yoshidas method(H. Yoshida, Phys. Lett. A 150 (1990), pp. 262-268.) is then used to obtain a symplectic approximation to the map, while the tangent map and its derivative are appropriately composed at each step to obtain them with equal accuracy. We discuss our splitting of the quadrupole and combined-function dipole Hamiltonians and show that typically few steps are required for a high-energy accelerator.

  2. Phenotyping mouse pulmonary function in vivo with the lung diffusing capacity.

    PubMed

    Limjunyawong, Nathachit; Fallica, Jonathan; Ramakrishnan, Amritha; Datta, Kausik; Gabrielson, Matthew; Horton, Maureen; Mitzner, Wayne

    2015-01-06

    The mouse is now the primary animal used to model a variety of lung diseases. To study the mechanisms that underlie such pathologies, phenotypic methods are needed that can quantify the pathologic changes. Furthermore, to provide translational relevance to the mouse models, such measurements should be tests that can easily be done in both humans and mice. Unfortunately, in the present literature few phenotypic measurements of lung function have direct application to humans. One exception is the diffusing capacity for carbon monoxide, which is a measurement that is routinely done in humans. In the present report, we describe a means to quickly and simply measure this diffusing capacity in mice. The procedure involves brief lung inflation with tracer gases in an anesthetized mouse, followed by a 1 min gas analysis time. We have tested the ability of this method to detect several lung pathologies, including emphysema, fibrosis, acute lung injury, and influenza and fungal lung infections, as well as monitoring lung maturation in young pups. Results show significant decreases in all the lung pathologies, as well as an increase in the diffusing capacity with lung maturation. This measurement of lung diffusing capacity thus provides a pulmonary function test that has broad application with its ability to detect phenotypic structural changes with most of the existing pathologic lung models.

  3. Bingham-NODDI: Mapping anisotropic orientation dispersion of neurites using diffusion MRI.

    PubMed

    Tariq, Maira; Schneider, Torben; Alexander, Daniel C; Gandini Wheeler-Kingshott, Claudia A; Zhang, Hui

    2016-06-01

    This paper presents Bingham-NODDI, a clinically-feasible technique for estimating the anisotropic orientation dispersion of neurites. Direct quantification of neurite morphology on clinical scanners was recently realised by a diffusion MRI technique known as neurite orientation dispersion and density imaging (NODDI). However in its current form NODDI cannot estimate anisotropic orientation dispersion, which is widespread in the brain due to common fanning and bending of neurites. This work proposes Bingham-NODDI that extends the NODDI formalism to address this limitation. Bingham-NODDI characterises anisotropic orientation dispersion by utilising the Bingham distribution to model neurite orientation distribution. The new model estimates the extent of dispersion about the dominant orientation, separately along the primary and secondary dispersion orientations. These estimates are subsequently used to estimate the overall dispersion about the dominant orientation and the dispersion anisotropy. We systematically evaluate the ability of the new model to recover these key parameters of anisotropic orientation dispersion with standard NODDI protocol, both in silico and in vivo. The results demonstrate that the parameters of the proposed model can be estimated without additional acquisition requirements over the standard NODDI protocol. Thus anisotropic dispersion can be determined and has the potential to be used as a marker for normal brain development and ageing or in pathology. We additionally find that the original NODDI model is robust to the effects of anisotropic orientation dispersion, when the quantification of anisotropic dispersion is not of interest.

  4. Investigating the Diffuse Ionized Gas in the Magellanic Stream with Mapped WHAM Observations

    NASA Astrophysics Data System (ADS)

    Smart, Brianna; Haffner, L. Matthew; Barger, Kathleen; Hernandez, Mike

    2016-01-01

    We present early stages of an Hα survey of the Magellanic Stream using the Wisconsin H-Alpha Mapper (WHAM). While the neutral component of the Stream may extend 200° across the sky (Nidever et al. 2010), its ionized gas has not yet been studied in detail. Fox et al. 2014 find that the tidal debris in the Magellanic System contains twice as much ionized gas as neutral and may extend 30° away from the H I emission. However, such absorption-line studies are not sensitive to the overall morphology of the ionized gas. Using targeted Hα emission observations of the Magellanic Stream, Barger et al. 2015 find that although the warm ionized gas tracks the neutral gas, it often spans a few degrees away from the H I emission at slightly offset velocities. Using WHAM's unprecedented sensitivity to diffuse emission (~ 10s of mR) and its velocity resolution (12 km/s) to isolate Stream emission, we are now conducting the first full Hα survey of its ionized component. Here we present early results, including spatial and kinematic comparisons to the well-established neutral profile of the Stream. WHAM research and operations are supported through NSF Award AST-1108911.

  5. Mapping of ApoE4 related white matter damage using diffusion MRI

    NASA Astrophysics Data System (ADS)

    Tsao, Sinchai; Gajawelli, Niharika; Hwang, Darryl H.; Kriger, Stephen; Law, Meng; Chui, Helena; Weiner, Michael; Lepore, Natasha

    2014-04-01

    ApoliopoproteinE Ɛ4 (ApoE-Ɛ4) polymorphism is the most well known genetic risk factor for developing Alzheimers Disease. The exact mechanism through which ApoE 4 increases AD risk is not fully known, but may be related to decreased clearance and increased oligomerization of Aβ. By making measurements of white matter integrity via diffusion MR and correlating the metrics in a voxel-based statistical analysis with ApoE-Ɛ4 genotype (whilst controlling for vascular risk factor, gender, cognitive status and age) we are able to identify changes in white matter associated with carrying an ApoE Ɛ4 allele. We found potentially significant regions (Puncorrected < 0:05) near the hippocampus and the posterior cingulum that were independent of voxels that correlated with age or clinical dementia rating (CDR) status suggesting that ApoE may affect cognitive decline via a pathway in dependent of normal aging and acute insults that can be measured by CDR and Framingham Coronary Risk Score (FCRS).

  6. Predicting diffuse light-enhancement of GPP from plant functional traits: A multi-site synthesis

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Barr, J. G.; Cook, B.; Goeckede, M.; Law, B. E.; Kueppers, L. M.; Riley, W. J.

    2013-12-01

    Diffuse light enhances canopy-scale photosynthesis because isotropic diffuse light penetrates deeper into the canopy, involves more leaf area in photosynthesis, and prevents the top of the canopy from becoming light saturated. However, the observational and modeling communities still have little understanding of how the 'Diffuse light Enhancement Effect' (DEE) varies across plant functional types or is constrained by factors such as nitrogen availability and plant structure. So far, variability in the strength of DEE across plant functional types (PFTs) remains poorly constrained, but canopy models indicate leaf area index (LAI) is a primary controller. While the very few existing multi-site, measurement-based syntheses of the DEE have provided valuable information on the variability of the DEE across a few plant functional types, no study has correlated measured metrics of DEE magnitude with direct measurements of canopy physical traits across a wide range of plant functional types. Here we report a new metric that is suitable for quantifying the DEE in both flux measurements and land surface models. We also present, for the first time, an examination of the relationship between the DEE metric and plant functional traits. Results from our 70+ site AmeriFlux and FLUXNET synthesis indicate that LAI is the strongest controller of the DEE across sites and PFTs, with less significant influences from foliar nitrogen, canopy height, and mean annual precipitation. Our results will enable direct evaluation and improvement of remote sensing algorithms and light use efficiency models (e.g. MODIS GPP), which to this point regard diffuse light fraction as a source of noise. Additionally, improving resolution of the DEE in prognostic land surface models, such as the Community Land Model (CLM), will greatly improve our ability to forecast future feedbacks to terrestrial carbon sequestration from changes in cloudiness and aerosol amount.

  7. Mapping brain structure and function: cellular resolution, global perspective.

    PubMed

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  8. Carbon diffusion in solid iron as function of pressure and temperature

    NASA Astrophysics Data System (ADS)

    Stagno, V.; Crispin, K. L.; Fei, Y.

    2012-12-01

    pressure is required to affect the mobility of carbon through metallic iron by almost the same order of magnitude as cooling. The variation of the diffusion coefficient as function of temperature and pressure will be used to determine the activation energy and volume. It is known that the stability of carbide phases in the Earth's interior is mainly governed by the local Fe/C ratios. In the case of enriched mantle model, for instance, carbon in form of diamond will coexist with Fe7C3 for small amounts of metallic iron. In contrast, this would imply that at low carbon contents (<50 ppm) typical of a depleted mantle source, and at oxygen fugacity conditions lower than EMOD buffer, the transport of carbon will likely occur by diffusion through the coexisting metal phase. Results from this study will improve our understanding on the transport of carbon by diffusion at conditions of the Earth's interior and will provide new thermodynamic data to explain the fractionation of carbon by diffusion in other planetary bodies.

  9. A skewed PDF combustion model for jet diffusion flames. [Probability density function (PDF)

    SciTech Connect

    Abou-Ellail, M.M.M.; Salem, H. )

    1990-11-01

    A combustion model based on restricted chemical equilibrium is described. A transport equation for the skewness of the mixture fraction is derived. It contains two adjustable constants. The computed values of the mean mixture fraction (f) and its variance and skewness (g and s) for a jet diffusion methane flame are used to obtain the shape of a shewed pdf. The skewed pdf is split into a turbulent part (beta function) and a nonturbulent part (delta function) at f = 0. The contribution of each part is directly related to the values of f, g, and s. The inclusion of intermittency in the skewed pdf appreciably improves the numerical predictions obtained for a turbulent jet diffusion methane flame for which experimental data are available.

  10. Benchmarking Rapid TLES Simulations of Gas Diffusion in Proteins: Mapping O2 Migration and Escape in Myoglobin as a Case Study.

    PubMed

    Shadrina, Maria S; English, Ann M; Peslherbe, Gilles H

    2016-04-12

    Standard molecular dynamics (MD) simulations of gas diffusion consume considerable computational time and resources even for small proteins. To combat this, temperature-controlled locally enhanced sampling (TLES) examines multiple diffusion trajectories per simulation by accommodating multiple noninteracting copies of a gas molecule that diffuse independently, while the protein and water molecules experience an average interaction from all copies. Furthermore, gas migration within a protein matrix can be accelerated without altering protein dynamics by increasing the effective temperature of the TLES copies. These features of TLES enable rapid simulations of gas diffusion within a protein matrix at significantly reduced (∼98%) computational cost. However, the results of TLES and standard MD simulations have not been systematically compared, which limits the adoption of the TLES approach. We address this drawback here by benchmarking TLES against standard MD in the simulation of O2 diffusion in myoglobin (Mb) as a case study since this model system has been extensively characterized. We find that 2 ns TLES and 108 ns standard simulations map the same network of diffusion tunnels in Mb and uncover the same docking sites, barriers, and escape portals. We further discuss the influence of simulation time as well as the number of independent simulations on the O2 population density within the diffusion tunnels and on the sampling of Mb's conformational space as revealed by principal component analysis. Overall, our comprehensive benchmarking reveals that TLES is an appropriate and robust tool for the rapid mapping of gas diffusion in proteins when the kinetic data provided by standard MD are not required. Furthermore, TLES provides explicit ligand diffusion pathways, unlike most rapid methods.

  11. Spatial and temporal hemodynamic study of human primary visual cortex using simultaneous functional MRI and diffuse optical tomography

    PubMed Central

    Zhang, Xiaofeng; Toronov, Vladislav Y.; Webb, Andrew G.

    2011-01-01

    The blood oxygenation level dependent (BOLD) functional MRI and near infrared optical tomography have been widely used to investigate the hemodynamic response to functional stimulation in the human brain. In this paper, we present a complete methodology of integrating the two imaging modalities to study the underlying physiological mechanism of hemodynamic response in the human primary visual cortex. The integration was made feasible thanks to the development of an MRI-compatible optical probe. The optical imaging was conducted using a frequency-domain near infrared spectrometer. The 3-dimentional optical image reconstruction was based on diffuse optical tomography (DOT) using the perturbative approach. The sensitivity function of the forward problem was obtained using Monte Carlo method. From our preliminary observation, the spatial activation pattern of deoxyhemoglobin is consistent with the BOLD signal map. The patterns of oxy- and deoxyhemoglobin are very similar. The temporal hemodynamic response shows an increased total hemoglobin concentration, which indicates an increment of cerebral blood volume (CBV) during physiological activation. PMID:17282286

  12. Graphical function mapping as a new way to explore cause-and-effect chains

    USGS Publications Warehouse

    Evans, Mary Anne

    2016-01-01

    Graphical function mapping provides a simple method for improving communication within interdisciplinary research teams and between scientists and nonscientists. This article introduces graphical function mapping using two examples and discusses its usefulness. Function mapping projects the outcome of one function into another to show the combined effect. Using this mathematical property in a simpler, even cartoon-like, graphical way allows the rapid combination of multiple information sources (models, empirical data, expert judgment, and guesses) in an intuitive visual to promote further discussion, scenario development, and clear communication.

  13. MR spectroscopy, functional MRI, and diffusion-tensor imaging in the aging brain: a conceptual review.

    PubMed

    Minati, L; Grisoli, M; Bruzzone, M G

    2007-03-01

    In vivo magnetic resonance spectroscopy (MRS), functional magnetic resonance imaging (fMRI), and diffusion-tensor imaging (DTI) have recently opened new possibilities for noninvasively assessing the metabolic, functional, and connectivity correlates of aging in research and clinical settings. The purpose of this article is to provide a conceptual review intended for a multidisciplinary audience, covering physical principles and main findings related to normal aging and senile cognitive impairment. This article is divided into 3 sections, dedicated to MRS, to fMRI, and to DTI. The spectroscopy section surveys physiological function of the observable metabolites, concentration changes in normal aging and their interpretation, and correlation with cognitive performance. The functional MRI section surveys the hemispheric asymmetry reduction model from compensation and de-differentiation viewpoints, memory encoding, retrieval and consolidation, inhibitory control, perception and action, resting-state networks, and functional deactivations. The DTI section surveys age-related changes, correlation with behavioral scores, and transition to cognitive impairment.

  14. THE QUaD GALACTIC PLANE SURVEY. I. MAPS AND ANALYSIS OF DIFFUSE EMISSION

    SciTech Connect

    Culverhouse, T.; Friedman, R.; Ade, P.; Bowden, M.; Gear, W. K.; Gupta, S.; Melhuish, S. J.; Orlando, A.; Bock, J.; Leitch, E.; Brown, M. L.; Cahill, G.; Murphy, J. A.; Castro, P. G.; Memari, Y.; Church, S. E.; Hinderks, J. R.; Ganga, K.; Lange, A. E.

    2010-10-20

    We present a survey of {approx}800 deg{sup 2} of the galactic plane observed with the QUaD telescope. The primary products of the survey are maps of Stokes I, Q, and U parameters at 100 and 150 GHz, with spatial resolution of 5' and 3.'5, respectively. Two regions are covered, spanning approximately 245{sup 0}-295{sup 0} and 315{sup 0}-5{sup 0} in the galactic longitude l and -4{sup 0} < b < +4{sup 0} in the galactic latitude b. At 0.{sup 0}02 square pixel size, the median sensitivity is 74 and 107 kJy sr{sup -1} at 100 GHz and 150 GHz respectively in I, and 98 and 120 kJy sr{sup -1} for Q and U. In total intensity, we find an average spectral index of {alpha} = 2.35 {+-} 0.01(stat) {+-} 0.02(sys) for |b| {<=} 1{sup 0}, indicative of emission components other than thermal dust. A comparison to published dust, synchrotron, and free-free models implies an excess of emission in the 100 GHz QUaD band, while better agreement is found at 150 GHz. A smaller excess is observed when comparing QUaD 100 GHz data to the WMAP five-year W band; in this case, the excess is likely due to the wider bandwidth of QUaD. Combining the QUaD and WMAP data, a two-component spectral fit to the inner galactic plane (|b| {<=} 1{sup 0}) yields mean spectral indices of {alpha}{sub s} = -0.32 {+-} 0.03 and {alpha}{sub d} = 2.84 {+-} 0.03; the former is interpreted as a combination of the spectral indices of synchrotron, free-free, and dust, while the second is largely attributed to the thermal dust continuum. In the same galactic latitude range, the polarization data show a high degree of alignment perpendicular to the expected galactic magnetic field direction, and exhibit mean polarization fraction 1.38 {+-} 0.08(stat) {+-} 0.1(sys)% at 100 GHz and 1.70 {+-} 0.06(stat) {+-} 0.1(sys)% at 150 GHz. We find agreement in polarization fraction between QUaD 100 GHz and the WMAP W band, the latter giving 1.1% {+-} 0.4%.

  15. A Radiation Chemistry Code Based on the Greens Functions of the Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Wu, Honglu

    2014-01-01

    Ionizing radiation produces several radiolytic species such as.OH, e-aq, and H. when interacting with biological matter. Following their creation, radiolytic species diffuse and chemically react with biological molecules such as DNA. Despite years of research, many questions on the DNA damage by ionizing radiation remains, notably on the indirect effect, i.e. the damage resulting from the reactions of the radiolytic species with DNA. To simulate DNA damage by ionizing radiation, we are developing a step-by-step radiation chemistry code that is based on the Green's functions of the diffusion equation (GFDE), which is able to follow the trajectories of all particles and their reactions with time. In the recent years, simulations based on the GFDE have been used extensively in biochemistry, notably to simulate biochemical networks in time and space and are often used as the "gold standard" to validate diffusion-reaction theories. The exact GFDE for partially diffusion-controlled reactions is difficult to use because of its complex form. Therefore, the radial Green's function, which is much simpler, is often used. Hence, much effort has been devoted to the sampling of the radial Green's functions, for which we have developed a sampling algorithm This algorithm only yields the inter-particle distance vector length after a time step; the sampling of the deviation angle of the inter-particle vector is not taken into consideration. In this work, we show that the radial distribution is predicted by the exact radial Green's function. We also use a technique developed by Clifford et al. to generate the inter-particle vector deviation angles, knowing the inter-particle vector length before and after a time step. The results are compared with those predicted by the exact GFDE and by the analytical angular functions for free diffusion. This first step in the creation of the radiation chemistry code should help the understanding of the contribution of the indirect effect in the

  16. A Dynamic Density Functional Theory Approach to Diffusion in White Dwarfs and Neutron Star Envelopes

    NASA Astrophysics Data System (ADS)

    Diaw, A.; Murillo, M. S.

    2016-09-01

    We develop a multicomponent hydrodynamic model based on moments of the Born-Bogolyubov-Green-Kirkwood-Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.

  17. Jigsaw puzzle metasurface for multiple functions: polarization conversion, anomalous reflection and diffusion.

    PubMed

    Zhao, Yi; Cao, Xiangyu; Gao, Jun; Liu, Xiao; Li, Sijia

    2016-05-16

    We demonstrate a simple reconfigurable metasurface with multiple functions. Anisotropic tiles are investigated and manufactured as fundamental elements. Then, the tiles are combined in a certain sequence to construct a metasurface. Each of the tiles can be adjusted independently which is like a jigsaw puzzle and the whole metasurface can achieve diverse functions by different layouts. For demonstration purposes, we realize polarization conversion, anomalous reflection and diffusion by a jigsaw puzzle metasurface with 6 × 6 pieces of anisotropic tile. Simulated and measured results prove that our method offers a simple and effective strategy for metasurface design.

  18. Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography

    PubMed Central

    Cloutman, Lauren L.; Lambon Ralph, Matthew A.

    2012-01-01

    The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation of the human cerebral cortex, discussing the strengths and limitations of the current approaches. Cortical parcellation via white matter connectivity is based on the premise that, as connectional anatomy determines functional organization, it should be possible to segregate functionally-distinct cortical regions by identifying similarities and differences in connectivity profiles. Recent studies have provided initial evidence in support of the efficacy of this connectional parcellation methodology. Such investigations have identified distinct cortical subregions which correlate strongly with functional regions identified via fMRI and meta-analyses. Furthermore, a strong parallel between the cortical regions defined via tractographic and more traditional cytoarchitectonic parcellation methods has been observed. However, the degree of correspondence and relative functional importance of cytoarchitectonic- versus connectivity-derived parcellations still remains unclear. Diffusion tractography remains one of the only methods capable of visualizing the structural networks of the brain in vivo. As such, it is of vital importance to continue to improve the accuracy of the methodology and to extend its potential applications in the study of cognition in neurological health and disease. PMID:22952459

  19. Technique for examining biological materials using diffuse reflectance spectroscopy and the kubelka-munk function

    DOEpatents

    Alfano, Robert R.; Yang, Yuanlong

    2003-09-02

    Method and apparatus for examining biological materials using diffuse reflectance spectroscopy and the Kubelka-Munk function. In one aspect, the method is used to determine whether a tissue sample is cancerous or not and comprises the steps of (a) measuring the diffuse reflectance from the tissue sample at a first wavelength and at a second wavelength, wherein the first wavelength is a wavelength selected from the group consisting of 255-265 nm and wherein the second wavelength is a wavelength selected from the group consisting of 275-285 nm; (b) using the Kubelka-Munk function to transform the diffuse reflectance measurement obtained at the first and second wavelengths; and (c) comparing a ratio or a difference of the transformed Kubelka-Munk measurements at the first and second wavelengths to appropriate standards determine whether or not the tissue sample is cancerous. One can use the spectral profile of KMF between 250 nm to 300 nm to determine whether or not the tissue sample is cancerous or precancerous. According to the value at the first and second wavelengths determine whether or not the malignant tissue is invasive or mixed invasive and in situ or carcinoma in situ.

  20. On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection

    NASA Astrophysics Data System (ADS)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-11-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) metrics were judged by quantitative—rather than qualitative—criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the ‘swelling effect’ occurrence following Euclidean averaging was found to be too unimportant to be worth consideration.

  1. Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.

    PubMed

    Roguev, Assen; Bandyopadhyay, Sourav; Zofall, Martin; Zhang, Ke; Fischer, Tamas; Collins, Sean R; Qu, Hongjing; Shales, Michael; Park, Han-Oh; Hayles, Jacqueline; Hoe, Kwang-Lae; Kim, Dong-Uk; Ideker, Trey; Grewal, Shiv I; Weissman, Jonathan S; Krogan, Nevan J

    2008-10-17

    An epistasis map (E-MAP) was constructed in the fission yeast, Schizosaccharomyces pombe, by systematically measuring the phenotypes associated with pairs of mutations. This high-density, quantitative genetic interaction map focused on various aspects of chromosome function, including transcription regulation and DNA repair/replication. The E-MAP uncovered a previously unidentified component of the RNA interference (RNAi) machinery (rsh1) and linked the RNAi pathway to several other biological processes. Comparison of the S. pombe E-MAP to an analogous genetic map from the budding yeast revealed that, whereas negative interactions were conserved between genes involved in similar biological processes, positive interactions and overall genetic profiles between pairs of genes coding for physically associated proteins were even more conserved. Hence, conservation occurs at the level of the functional module (protein complex), but the genetic cross talk between modules can differ substantially.

  2. Semantic Web Technology for Mapping and Applying Clinical Functional Assessment Information

    DTIC Science & Technology

    2015-05-01

    Award Number: W81XWH-13-2-0010 TITLE: Semantic Web Technology for Mapping and Applying Clinical Functional Assessment Information PRINCIPAL...SUBTITLE Semantic Web Technology for Mapping and Applying Clinical 5a. CONTRACT NUMBER W81XWH-13-2-0010 Functional Assessment Information 5b. GRANT...International Classification of Functioning, Disability, and Health (ICF). We developed the mechanisms to generate programmatically data-acquisition Web forms

  3. On the mapping associated with the complex representation of functions and processes.

    NASA Technical Reports Server (NTRS)

    Harger, R. O.

    1972-01-01

    The mapping between function spaces that is implied by the representation of a real 'bandpass' function by a complex 'low-pass' function is explicitly accepted. The discussion is extended to the representation of stationary random processes where the mapping is between spaces of random processes. This approach clarifies the nature of the complex representation, especially in the case of random processes and, in addition, derives the properties of the complex representation.-

  4. Validation of diffuse correlation spectroscopic measurement of cerebral blood flow using phase-encoded velocity mapping magnetic resonance imaging

    PubMed Central

    Hance, Dalton; Pawlowski, Thomas; Lynch, Jennifer; Wilson, Felice B.; Mesquita, Rickson C.; Durduran, Turgut; Diaz, Laura K.; Putt, Mary E.; Licht, Daniel J.; Fogel, Mark A.; Yodh, Arjun G.

    2012-01-01

    Abstract. Diffuse correlation spectroscopy (DCS) is a novel optical technique that appears to be an excellent tool for assessing cerebral blood flow in a continuous and non-invasive manner at the bedside. We present new clinical validation of the DCS methodology by demonstrating strong agreement between DCS indices of relative cerebral blood flow and indices based on phase-encoded velocity mapping magnetic resonance imaging (VENC MRI) of relative blood flow in the jugular veins and superior vena cava. Data were acquired from 46 children with single ventricle cardiac lesions during a hypercapnia intervention. Significant increases in cerebral blood flow, measured both by DCS and by VENC MRI, as well as significant increases in oxyhemoglobin concentration, and total hemoglobin concentration, were observed during hypercapnia. Comparison of blood flow changes measured by VENC MRI in the jugular veins and by DCS revealed a strong linear relationship, R=0.88, p<0.001, slope=0.91±0.07. Similar correlations were observed between DCS and VENC MRI in the superior vena cava, R=0.77, slope=0.99±0.12, p<0.001. The relationship between VENC MRI in the aorta and DCS, a negative control, was weakly correlated, R=0.46, slope=1.77±0.45, p<0.001. PMID:22502579

  5. MODELING OF THE ZODIACAL EMISSION FOR THE AKARI/IRC MID-INFRARED ALL-SKY DIFFUSE MAPS

    SciTech Connect

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi; Ootsubo, Takafumi; Pyo, Jeonghyun; Onaka, Takashi E-mail: ishihara@u.phys.nagoya-u.ac.jp

    2016-03-15

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  6. Modeling of the Zodiacal Emission for the AKARI/IRC Mid-infrared All-sky Diffuse Maps

    NASA Astrophysics Data System (ADS)

    Kondo, Toru; Ishihara, Daisuke; Kaneda, Hidehiro; Nakamichi, Keichiro; Takaba, Sachi; Kobayashi, Hiroshi; Ootsubo, Takafumi; Pyo, Jeonghyun; Onaka, Takashi

    2016-03-01

    The zodiacal emission, which is the thermal infrared (IR) emission from the interplanetary dust (IPD) in our solar system, has been studied for a long time. Nevertheless, accurate modeling of the zodiacal emission has not been successful to reproduce the all-sky spatial distribution of the zodiacal emission, especially in the mid-IR where the zodiacal emission peaks. Therefore, we aim to improve the IPD cloud model based on Kelsall et al., using the AKARI 9 and 18 μm all-sky diffuse maps. By adopting a new fitting method based on the total brightness, we have succeeded in reducing the residual levels after subtraction of the zodiacal emission from the AKARI data and thus in improving the modeling of the zodiacal emission. Comparing the AKARI and the COBE data, we confirm that the changes from the previous model to our new model are mostly due to model improvements, but not temporal variations between the AKARI and the COBE epoch, except for the position of the Earth-trailing blob. Our results suggest that the size of the smooth cloud, a dominant component in the model, is about 10% more compact than previously thought, and that the dust sizes are not large enough to emit blackbody radiation in the mid-IR. Furthermore, we detect a significant isotropically distributed IPD component, owing to an accurate baseline measurement with AKARI.

  7. On the possibility of obtaining non-diffused proximity functions from cloud-chamber data: I. Fourier deconvolution.

    PubMed

    Zaider, M; Minerbo, G N

    1988-11-01

    A mathematical procedure, using Fourier deconvolution, is described whereby diffusion-free proximity functions can be obtained from cloud-chamber data. Such non-diffused distributions can be used to obtain further microdosimetric and nanodosimetric quantities hitherto not available from experiments, thus making the cloud chamber an almost ideal nanodosimeter.

  8. Step-by-Step Simulation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    Radiolytic species are formed approximately 1 ps after the passage of ionizing radiation through matter. After their formation, they diffuse and chemically react with other radiolytic species and neighboring biological molecules, leading to various oxidative damage. Therefore, the simulation of radiation chemistry is of considerable importance to understand how radiolytic species damage biological molecules [1]. The step-by-step simulation of chemical reactions is difficult, because the radiolytic species are distributed non-homogeneously in the medium. Consequently, computational approaches based on Green functions for diffusion-influenced reactions should be used [2]. Recently, Green functions for more complex type of reactions have been published [3-4]. We have developed exact random variate generators of these Green functions [5], which will allow us to use them in radiation chemistry codes. Moreover, simulating chemistry using the Green functions is which is computationally very demanding, because the probabilities of reactions between each pair of particles should be evaluated at each timestep [2]. This kind of problem is well adapted for General Purpose Graphic Processing Units (GPGPU), which can handle a large number of similar calculations simultaneously. These new developments will allow us to include more complex reactions in chemistry codes, and to improve the calculation time. This code should be of importance to link radiation track structure simulations and DNA damage models.

  9. Mapping Viral Functional Domains for Genetic Diversity in Plants

    PubMed Central

    Pita, Justin S.

    2013-01-01

    Cucumber mosaic virus (CMV) comprises numerous isolates with various levels of in-host diversity. Subgroup-distinctive features of the Fny and LS strains provided us with a platform to genetically map the viral control elements for genetic variation in planta. We found that both RNAs 1 and 2 controlled levels of genetic diversity, and further fine mapping revealed that the control elements of mutation frequency reside within the first 596 amino acids (aa) of RNA 1. The 2a/2b overlapping region of the 2a protein also contributed to control of viral genetic variation. Furthermore, the 3′ nontranslated region (NTR) of RNA 3 constituted a hot spot of polymorphism, where the majority of fixed mutations found in the population were clustered. The 2b gene of CMV, a viral suppressor of gene silencing, controls the abundance of the fixed mutants in the viral population via a host-dependent mechanism. PMID:23115283

  10. Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: progress and challenges.

    PubMed

    Vuilleumier, Patrik

    2013-08-01

    Spatial neglect is generally defined by various deficits in processing information from one (e.g., left) side of space contralateral to focal (e.g., right) hemisphere damage. Although classically associated with parietal lobe functions, there is now compelling evidence that neglect can follow lesions in many different cortical and subcortical sites, suggesting a dysfunction in distributed brain networks. In addition, neglect is likely to result from a combination of distinct deficits that co-occur due to concomitant damage affecting juxtaposed brain areas and their connections, but the exact nature of core deficits and their neural substrates still remains unclear. The present review describes recent progress in identifying functional components of the neglect syndrome and relating them to distinct subregions of parietal cortex. A comprehensive understanding of spatial neglect will require a more precise definition of cognitive processes implicated in different behavioral manifestations, as well as meticulous mapping of these processes onto specific brain circuits, while taking into account functional changes in activity that may arise in structurally intact areas subsequent to damage in distant portions of the relevant networks.

  11. A diffusive virus infection dynamic model with nonlinear functional response, absorption effect and chemotaxis

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ma, Wanbiao; Lai, Xiulan

    2017-01-01

    From a biological perspective, a diffusive virus infection dynamic model with nonlinear functional response, absorption effect and chemotaxis is proposed. In the model, the diffusion of virus consists of two parts, the random diffusion and the chemotactic movement. The chemotaxis flux of virus depends not only on their own density, but also on the density of infected cells, and the density gradient of infected cells. The well posedness of the proposed model is deeply investigated. For the proposed model, the linear stabilities of the infection-free steady state E0 and the infection steady state E* are extensively performed. We show that the threshold dynamics can be expressed by the basic reproduction number R0 of the model without chemotaxis. That is, the infection-free steady state E0 is globally asymptotically stable if R0 < 1, and the virus is uniformly persistent if R0 > 1. In addition, we use the cross iteration method and the Schauder's fixed point theorem to prove the existence of travelling wave solutions connecting the infection-free steady state E0 and the infection steady state E* by constructing a pair of upper-lower solutions. At last, numerical simulations are presented to confirm theoretical findings.

  12. Dynamics of supercooled water in nanotubes: Cage correlation function and diffusion coefficient

    NASA Astrophysics Data System (ADS)

    Khademi, Mahdi; Kalia, Rajiv K.; Sahimi, Muhammad

    2015-09-01

    Dynamics of low-temperature water in nanostructured materials is important to a variety of phenomena, ranging from transport in cement and asphaltene, to conformational dynamics of proteins in "crowded" cellular environments, survival of microorganisms at very low temperatures, and diffusion in nanogeoscience. Using silicon-carbide nanotubes as a prototype of nanostructured materials, extensive molecular dynamics simulations were carried out to study the cage correlation function C (t ) and self-diffusivity D of supercooled water in the nanotubes. C (t ) , which measures changes in the atomic surroundings inside the nanotube, follows the Kohlrausch-Williams-Watts law, C (t ) ˜exp[-(t/τ ) β] , where τ is a relaxation time and β is a topological exponent. For the temperature range 220 Kdiffusivity manifests a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. Thus the results indicate that water does not freeze in the nanotube over the studied temperature range, and that the Stokes-Einstein relation breaks down.

  13. Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory

    NASA Astrophysics Data System (ADS)

    Kolsbjerg, Esben L.; Groves, Michael N.; Hammer, Bjørk

    2016-04-01

    The adsorption, diffusion, and dissociation of pyridine, C5H5N, on Pt(111) are investigated with van der Waals-corrected density functional theory. An elaborate search for local minima in the adsorption potential energy landscape reveals that the intact pyridine adsorbs with the aromatic ring parallel to the surface. Piecewise interconnections of the local minima in the energy landscape reveal that the most favourable diffusion path for pyridine has a barrier of 0.53 eV. In the preferred path, the pyridine remains parallel to the surface while performing small single rotational steps with a carbon-carbon double bond hinged above a single Pt atom. The origin of the diffusion pathway is discussed in terms of the C2-Pt π-bond being stronger than the corresponding CN-Pt π-bond. The energy barrier and reaction enthalpy for dehydrogenation of adsorbed pyridine into an adsorbed, upright bound α-pyridyl species are calculated to 0.71 eV and 0.18 eV, respectively (both zero-point energy corrected). The calculations are used to rationalize previous experimental observations from the literature for pyridine on Pt(111).

  14. Modeling structure-function relationships for diffusive drug transport in inert porous geopolymer matrices.

    PubMed

    Jämstorp, Erik; Strømme, Maria; Frenning, Göran

    2011-10-01

    A unique structure-function relationship investigation of mechanically strong geopolymer drug delivery vehicles for sustained release of potent substances is presented. The effect of in-synthesis water content on geopolymer pore structure and diffusive drug transport is investigated. Scanning electron microscopy, N2 gas adsorption, mercury intrusion porosimetry, compression strength test, drug permeation, and release experiments are performed. Effective diffusion coefficients are measured and compared with corresponding theoretical values as derived from pore size distribution and connectivity via pore-network modeling. By solely varying the in-synthesis water content, mesoporous and mechanically strong geopolymers with porosities of 8%-45% are obtained. Effective diffusion coefficients of the model drugs Saccharin and Zolpidem are observed to span two orders of magnitude (∼1.6-120 × 10(-8) cm(2) /s), comparing very well to theoretical estimations. The ability to predict drug permeation and release from geopolymers, and materials alike, allows future formulations to be tailored on a structural and chemical level for specific applications such as controlled drug delivery of highly potent substances.

  15. 3D mapping of somatotopic reorganization with small animal functional MRI

    PubMed Central

    Yu, Xin; Wang, Shumin; Chen, Der-Yow; Dodd, Stephen; Goloshevsky, Artem; Koretsky, Alan P.

    2009-01-01

    There are few in vivo noninvasive methods to study neuroplasticity in animal brains. Functional MRI (fMRI) has been developed for animal brain mapping, but few fMRI studies have analyzed functional alteration due to plasticity in animal models. One major limitation is that fMRI maps are characterized by statistical parametric mapping making the apparent boundary dependent on the statistical threshold used. Here, we developed a method to characterize the location of center-of-mass in fMRI maps that is shown not to be sensitive to statistical threshold. Utilizing centers-of-mass as anchor points to fit the spatial distribution of the BOLD response enabled quantitative group analysis of altered boundaries of functional somatosensory maps. This approach was used to study cortical reorganization in the rat primary somatosensory cortex (S1) after sensory deprivation to the barrel cortex by follicle ablation (F.A.). FMRI demonstrated an enlarged nose S1 representation in the 3D somatotopic functional maps. This result clearly demonstrates that fMRI enables the spatial mapping of functional changes that can characterize multiple regions of S1 cortex and still be sensitive to changes due to plasticity. PMID:19770051

  16. LGL: creating a map of protein function with an algorithm for visualizing very large biological networks.

    PubMed

    Adai, Alex T; Date, Shailesh V; Wieland, Shannon; Marcotte, Edward M

    2004-06-25

    Networks are proving to be central to the study of gene function, protein-protein interaction, and biochemical pathway data. Visualization of networks is important for their study, but visualization tools are often inadequate for working with very large biological networks. Here, we present an algorithm, called large graph layout (LGL), which can be used to dynamically visualize large networks on the order of hundreds of thousands of vertices and millions of edges. LGL applies a force-directed iterative layout guided by a minimal spanning tree of the network in order to generate coordinates for the vertices in two or three dimensions, which are subsequently visualized and interactively navigated with companion programs. We demonstrate the use of LGL in visualizing an extensive protein map summarizing the results of approximately 21 billion sequence comparisons between 145579 proteins from 50 genomes. Proteins are positioned in the map according to sequence homology and gene fusions, with the map ultimately serving as a theoretical framework that integrates inferences about gene function derived from sequence homology, remote homology, gene fusions, and higher-order fusions. We confirm that protein neighbors in the resulting map are functionally related, and that distinct map regions correspond to distinct cellular systems, enabling a computational strategy for discovering proteins' functions on the basis of the proteins' map positions. Using the map produced by LGL, we infer general functions for 23 uncharacterized protein families.

  17. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework.

    PubMed

    Ma, Chang-Xing; Casella, George; Wu, Rongling

    2002-08-01

    Unlike a character measured at a finite set of landmark points, function-valued traits are those that change as a function of some independent and continuous variable. These traits, also called infinite-dimensional characters, can be described as the character process and include a number of biologically, economically, or biomedically important features, such as growth trajectories, allometric scalings, and norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical relationships of different traits or variables within the genetic mapping framework. Logistic mapping proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based on a universal biological law that for each and every living organism growth over time follows an exponential growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a tremendous potential to increase the power of QTL detection, the precision of parameter estimation, and the resolution of QTL localization due to the small number of parameters to be estimated, the pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage group using our method, whereas it cannot

  18. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework.

    PubMed Central

    Ma, Chang-Xing; Casella, George; Wu, Rongling

    2002-01-01

    Unlike a character measured at a finite set of landmark points, function-valued traits are those that change as a function of some independent and continuous variable. These traits, also called infinite-dimensional characters, can be described as the character process and include a number of biologically, economically, or biomedically important features, such as growth trajectories, allometric scalings, and norms of reaction. Here we present a new statistical infrastructure for mapping quantitative trait loci (QTL) underlying the character process. This strategy, termed functional mapping, integrates mathematical relationships of different traits or variables within the genetic mapping framework. Logistic mapping proposed in this article can be viewed as an example of functional mapping. Logistic mapping is based on a universal biological law that for each and every living organism growth over time follows an exponential growth curve (e.g., logistic or S-shaped). A maximum-likelihood approach based on a logistic-mixture model, implemented with the EM algorithm, is developed to provide the estimates of QTL positions, QTL effects, and other model parameters responsible for growth trajectories. Logistic mapping displays a tremendous potential to increase the power of QTL detection, the precision of parameter estimation, and the resolution of QTL localization due to the small number of parameters to be estimated, the pleiotropic effect of a QTL on growth, and/or residual correlations of growth at different ages. More importantly, logistic mapping allows for testing numerous biologically important hypotheses concerning the genetic basis of quantitative variation, thus gaining an insight into the critical role of development in shaping plant and animal evolution and domestication. The power of logistic mapping is demonstrated by an example of a forest tree, in which one QTL affecting stem growth processes is detected on a linkage group using our method, whereas it cannot

  19. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy.

    PubMed

    Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao

    2016-02-01

    Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis.

  20. Toward reliable retrieval of functional information of papillary dermis using spatially resolved diffuse reflectance spectroscopy

    PubMed Central

    Chen, Yu-Wen; Guo, Jun-Yen; Tzeng, Shih-Yu; Chou, Ting-Chun; Lin, Ming-Jen; Huang, Lynn Ling-Huei; Yang, Chao-Chun; Hsu, Chao-Kai; Tseng, Sheng-Hao

    2016-01-01

    Spatially resolved diffuse reflectance spectroscopy (SRDRS) has been employed to quantify tissue optical properties and its interrogation volume is majorly controlled by the source-to-detector separations (SDSs). To noninvasively quantify properties of dermis, a SRDRS setup that includes SDS shorter than 1 mm is required. It will be demonstrated in this study that Monte Carlo simulations employing the Henyey-Greenstein phase function cannot always precisely predict experimentally measured diffuse reflectance at such short SDSs, and we speculated this could be caused by the non-negligible backward light scattering at short SDSs that cannot be properly modeled by the Henyey-Greenstein phase function. To accurately recover the optical properties and functional information of dermis using SRDRS, we proposed the use of the modified two-layer (MTL) geometry. Monte Carlo simulations and phantom experiment results revealed that the MTL probing geometry was capable of faithfully recovering the optical properties of upper dermis. The capability of the MTL geometry in probing the upper dermis properties was further verified through a swine study, and it was found that the measurement results were reasonably linked to histological findings. Finally, the MTL probe was utilized to study psoriatic lesions. Our results showed that the MTL probe was sensitive to the physiological condition of tissue volumes within the papillary dermis and could be used in studying the physiology of psoriasis. PMID:26977361

  1. Diffuse traumatic brain injury affects chronic corticosterone function in the rat

    PubMed Central

    Rowe, Rachel K; Rumney, Benjamin M; May, Hazel G; Permana, Paska; Adelson, P David; Harman, S Mitchell; Lifshitz, Jonathan

    2016-01-01

    As many as 20–55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration–deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic–pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI. PMID:27317610

  2. An approach to numerical quantification of room shape and its function in diffuse sound field model.

    PubMed

    Šumarac-Pavlović, Dragana; Mijić, Miomir

    2016-10-01

    This paper deals with an approach to the numerical quantification of room shape and its possible role in diffuse field modeling. The normalized shape factor of the room is introduced as a function of the room volume and the room interior surface. It was shown that in real rooms the value of normalized shape factor ranges from about 0.57 to 0.9. Some simple transformations of well-known formulas by introducing the room shape factor are also discussed. Such approach seems appropriate in architectural acoustics courses as a straightforward way to explain the factors influencing the acoustic response in a room.

  3. Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity.

    PubMed

    Srinivasa, Narayan; Jiang, Qin

    2013-01-01

    This study describes a spiking model that self-organizes for stable formation and maintenance of orientation and ocular dominance maps in the visual cortex (V1). This self-organization process simulates three development phases: an early experience-independent phase, a late experience-independent phase and a subsequent refinement phase during which experience acts to shape the map properties. The ocular dominance maps that emerge accommodate the two sets of monocular inputs that arise from the lateral geniculate nucleus (LGN) to layer 4 of V1. The orientation selectivity maps that emerge feature well-developed iso-orientation domains and fractures. During the last two phases of development the orientation preferences at some locations appear to rotate continuously through ±180° along circular paths and referred to as pinwheel-like patterns but without any corresponding point discontinuities in the orientation gradient maps. The formation of these functional maps is driven by balanced excitatory and inhibitory currents that are established via synaptic plasticity based on spike timing for both excitatory and inhibitory synapses. The stability and maintenance of the formed maps with continuous synaptic plasticity is enabled by homeostasis caused by inhibitory plasticity. However, a prolonged exposure to repeated stimuli does alter the formed maps over time due to plasticity. The results from this study suggest that continuous synaptic plasticity in both excitatory neurons and interneurons could play a critical role in the formation, stability, and maintenance of functional maps in the cortex.

  4. A global genetic interaction network maps a wiring diagram of cellular function.

    PubMed

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D; Pelechano, Vicent; Styles, Erin B; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F; Li, Sheena C; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; San Luis, Bryan-Joseph; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M; Moore, Claire L; Rosebrock, Adam P; Caudy, Amy A; Myers, Chad L; Andrews, Brenda; Boone, Charles

    2016-09-23

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.

  5. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  6. Mapping the royal road and other hierarchical functions.

    PubMed

    Wiles, Janet; Tonkes, Bradley

    2003-01-01

    In this paper we present a technique for visualising hierarchical and symmetric, multi-modal fitness functions that have been investigated in the evolutionary computation literature. The focus of this technique is on landscapes in moderate-dimensional, binary spaces (i.e., fitness functions defined over [0,1](n), for n < or = 16). The visualisation approach involves an unfolding of the hyperspace into a two-dimensional graph, whose layout represents the topology of the space using a recursive relationship, and whose shading defines the shape of the cost surface defined on the space. Using this technique we present case-study explorations of three fitness functions: royal road, hierarchical-if-and-only-if (H-IFF), and hierarchically decomposable functions (HDF). The visualisation approach provides an insight into the properties of these functions, particularly with respect to the size and shape of the basins of attraction around each of the local optima.

  7. Diffusion in an expanding medium: Fokker-Planck equation, Green's function, and first-passage properties

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.; Abad, E.; Escudero, C.

    2016-09-01

    We present a classical, mesoscopic derivation of the Fokker-Planck equation for diffusion in an expanding medium. To this end, we take a conveniently generalized Chapman-Kolmogorov equation as the starting point. We obtain an analytical expression for the Green's function (propagator) and investigate both analytically and numerically how this function and the associated moments behave. We also study first-passage properties in expanding hyperspherical geometries. We show that in all cases the behavior is determined to a great extent by the so-called Brownian conformal time τ (t ) , which we define via the relation τ ˙=1 /a2 , where a (t ) is the expansion scale factor. If the medium expansion is driven by a power law [a (t ) ∝tγ with γ >0 ] , then we find interesting crossover effects in the mixing effectiveness of the diffusion process when the characteristic exponent γ is varied. Crossover effects are also found at the level of the survival probability and of the moments of the first passage-time distribution with two different regimes separated by the critical value γ =1 /2 . The case of an exponential scale factor is analyzed separately both for expanding and contracting media. In the latter situation, a stationary probability distribution arises in the long-time limit.

  8. Diffusion in an expanding medium: Fokker-Planck equation, Green's function, and first-passage properties.

    PubMed

    Yuste, S B; Abad, E; Escudero, C

    2016-09-01

    We present a classical, mesoscopic derivation of the Fokker-Planck equation for diffusion in an expanding medium. To this end, we take a conveniently generalized Chapman-Kolmogorov equation as the starting point. We obtain an analytical expression for the Green's function (propagator) and investigate both analytically and numerically how this function and the associated moments behave. We also study first-passage properties in expanding hyperspherical geometries. We show that in all cases the behavior is determined to a great extent by the so-called Brownian conformal time τ(t), which we define via the relation τ[over ̇]=1/a^{2}, where a(t) is the expansion scale factor. If the medium expansion is driven by a power law [a(t)∝t^{γ} with γ>0], then we find interesting crossover effects in the mixing effectiveness of the diffusion process when the characteristic exponent γ is varied. Crossover effects are also found at the level of the survival probability and of the moments of the first passage-time distribution with two different regimes separated by the critical value γ=1/2. The case of an exponential scale factor is analyzed separately both for expanding and contracting media. In the latter situation, a stationary probability distribution arises in the long-time limit.

  9. Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke.

    PubMed

    Dijkhuizen, Rick M; van der Marel, Kajo; Otte, Willem M; Hoff, Erik I; van der Zijden, Jet P; van der Toorn, Annette; van Meer, Maurits P A

    2012-03-01

    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models.

  10. Concepts of soil mapping as a basis for the assessment of soil functions

    NASA Astrophysics Data System (ADS)

    Baumgarten, Andreas

    2014-05-01

    Soil mapping systems in Europe have been designed mainly as a tool for the description of soil characteristics from a morphogenetic viewpoint. Contrasting to the American or FAO system, the soil development has been in the main focus of European systems. Nevertheless , recent developments in soil science stress the importance of the functions of soils with respect to the ecosystems. As soil mapping systems usually offer a sound and extensive database, the deduction of soil functions from "classic" mapping parameters can be used for local and regional assessments. According to the used pedo-transfer functions and mapping systems, tailored approaches can be chosen for different applications. In Austria, a system mainly for spatial planning purposes has been developed that will be presented and illustrated by means of best practice examples.

  11. A survey of biofilms on wastewater aeration diffusers suggests bacterial community composition and function vary by substrate type and time.

    PubMed

    Noble, Peter A; Park, Hee-Deung; Olson, Betty H; Asvapathanagul, Pitiporn; Hunter, M Colby; Garrido-Baserba, Manel; Lee, Sang-Hoon; Rosso, Diego

    2016-07-01

    Aeration diffusers in wastewater treatment plants generate air bubbles that promote mixing, distribution of dissolved oxygen, and microbial processing of dissolved and suspended matter in bulk solution. Biofouling of diffusers represents a significant problem to wastewater treatment plants because biofilms decrease oxygen transfer efficiency and increase backpressure on the blower. To better understand biofouling, we conducted a pilot study to survey the bacterial community composition and function of biofilms on different diffuser substrates and compare them to those in the bulk solution. DNA was extracted from the surface of ethylene-propylene-diene monomer (EPDM), polyurethane, and silicone diffusers operated for 15 months in a municipal treatment plant and sampled at 3 and 9 months. The bacterial community composition and function of the biofilms and bulk solution were determined by amplifying the 16S rRNA genes and pyrosequencing the amplicons and raw metagenomic DNA. The ordination plots and dendrograms of the 16S rRNA and functional genes showed that while the bacterial community composition and function of the bulk solution was independent of sampling time, the composition and function of the biofilms differed by diffuser type and testing time. For the EPDM and silicone diffusers, the biofilm communities were more similar in composition to the bulk solution at 3 months than 9 months. In contrast, the bacteria on the polyurethane diffusers were more dissimilar to the bulk solution at 3 months than 9 months. Taken together, the survey showed that the community composition and function of bacterial biofilms depend on the diffuser substrate and testing time, which warrants further elucidation.

  12. Mapping wetland functions using Earth observation data and multi-criteria analysis.

    PubMed

    Rapinel, Sébastien; Hubert-Moy, Laurence; Clément, Bernard; Maltby, Edward

    2016-11-01

    Wetland functional assessment is commonly conducted based on field observations, and thus, is generally limited to small areas. However, there is often a need for wetland managers to obtain information on wetland functional performance over larger areas. For this purpose, we are proposing a new field-based functional assessment procedure in which wetland functions are evaluated and classified into hydrogeomorphic units according to a multi-criteria analysis approach. Wetland-related geographic information system layers derived from Earth observation data (LiDAR, multispectral and radar data) are used in this study for a large-scale functional evaluation. These include maps of a hydrogeomorphic units, ditches, vegetation, annual flood duration, biomass, meadows management, and wetland boundaries. To demonstrate the feasibility of this approach, a 132 km(2) international long-term ecological research site located in the west of France was assessed. Four wetland functions were evaluated: flood peak attenuation, low water attenuation, denitrification, and habitat. A spatial distribution map of the individual wetland functions was generated, and the intensity levels of the functions were highlighted. Antagonisms between functions within individual hydrogeomorphic units were also identified. Mapping of hydrological, biogeochemical, and ecological wetland functions over large areas can provide an efficient tool for policy makers and other stakeholders including water authorities, nature conservation agencies, and farmers. Specifically, this tool has the potential to provide a mapping of ecosystem services, conservation management priorities, and possible improvements in water resources management.

  13. Dendritic atrophy constricts functional maps in resonance and impedance properties of hippocampal model neurons

    PubMed Central

    Dhupia, Neha; Rathour, Rahul K.; Narayanan, Rishikesh

    2015-01-01

    A gradient in the density of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels is necessary for the emergence of several functional maps within hippocampal pyramidal neurons. Here, we systematically analyzed the impact of dendritic atrophy on nine such functional maps, related to input resistance and local/transfer impedance properties, using conductance-based models of hippocampal pyramidal neurons. We introduced progressive dendritic atrophy in a CA1 pyramidal neuron reconstruction through a pruning algorithm, measured all functional maps in each pruned reconstruction, and arrived at functional forms for the dependence of underlying measurements on dendritic length. We found that, across frequencies, atrophied neurons responded with higher efficiency to incoming inputs, and the transfer of signals across the dendritic tree was more effective in an atrophied reconstruction. Importantly, despite the presence of identical HCN-channel density gradients, spatial gradients in input resistance, local/transfer resonance frequencies and impedance profiles were significantly constricted in reconstructions with dendritic atrophy, where these physiological measurements across dendritic locations converged to similar values. These results revealed that, in atrophied dendritic structures, the presence of an ion channel density gradient alone was insufficient to sustain homologous functional maps along the same neuronal topograph. We assessed the biophysical basis for these conclusions and found that this atrophy-induced constriction of functional maps was mediated by an enhanced spatial spread of the influence of an HCN-channel cluster in atrophied trees. These results demonstrated that the influence fields of ion channel conductances need to be localized for channel gradients to express themselves as homologous functional maps, suggesting that ion channel gradients are necessary but not sufficient for the emergence of functional maps within single neurons

  14. Dendritic atrophy constricts functional maps in resonance and impedance properties of hippocampal model neurons.

    PubMed

    Dhupia, Neha; Rathour, Rahul K; Narayanan, Rishikesh

    2014-01-01

    A gradient in the density of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels is necessary for the emergence of several functional maps within hippocampal pyramidal neurons. Here, we systematically analyzed the impact of dendritic atrophy on nine such functional maps, related to input resistance and local/transfer impedance properties, using conductance-based models of hippocampal pyramidal neurons. We introduced progressive dendritic atrophy in a CA1 pyramidal neuron reconstruction through a pruning algorithm, measured all functional maps in each pruned reconstruction, and arrived at functional forms for the dependence of underlying measurements on dendritic length. We found that, across frequencies, atrophied neurons responded with higher efficiency to incoming inputs, and the transfer of signals across the dendritic tree was more effective in an atrophied reconstruction. Importantly, despite the presence of identical HCN-channel density gradients, spatial gradients in input resistance, local/transfer resonance frequencies and impedance profiles were significantly constricted in reconstructions with dendritic atrophy, where these physiological measurements across dendritic locations converged to similar values. These results revealed that, in atrophied dendritic structures, the presence of an ion channel density gradient alone was insufficient to sustain homologous functional maps along the same neuronal topograph. We assessed the biophysical basis for these conclusions and found that this atrophy-induced constriction of functional maps was mediated by an enhanced spatial spread of the influence of an HCN-channel cluster in atrophied trees. These results demonstrated that the influence fields of ion channel conductances need to be localized for channel gradients to express themselves as homologous functional maps, suggesting that ion channel gradients are necessary but not sufficient for the emergence of functional maps within single neurons.

  15. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.

    PubMed

    Eickhoff, Simon B; Amunts, Katrin; Mohlberg, Hartmut; Zilles, Karl

    2006-02-01

    In this study we describe the localization of the cytoarchitectonic subdivisions of the human parietal operculum in stereotaxic space and relate these anatomically defined cortical areas to the location of the functionally defined secondary somatosensory cortex (SII cortex) using a meta-analysis of functional imaging results. The human parietal operculum consists of four distinct cytoarchitectonic areas (OP 1-4) as shown in the preceding publication. The 10 cytoarchitectonically examined brains were 3-D-reconstructed and spatially normalized to the T1-weighted single-subject template of the Montreal Neurological Institute (MNI). A probabilistic map was calculated for each area in this standard stereotaxic space. A cytoarchitectonic summary map of the four cortical areas on the human parietal operculum which combines these probabilistic maps was subsequently computed for the comparison with a meta-analysis of functional locations of SII. The meta-analysis used the results from 57 fMRI and PET studies and allowed the comparison of the functionally defined SII region to the cytoarchitectonic map of the parietal operculum. The functional localization of SII showed a good match to the cytoarchitectonically defined region. Therefore the cytoarchitectonic maps of OP 1-4 of the human parietal operculum can be interpreted as an anatomical correlate of the (functionally defined) human SII region. Our results also suggest that the SII foci reported in functional imaging studies may actually reflect activations in either of its architectonic subregions.

  16. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  17. Mapping Variation in Vegetation Functioning with Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Townsend, P. A.; Couture, J. J.; Kruger, E. L.; Serbin, S.; Singh, A.

    2015-12-01

    Imaging spectroscopy (otherwise known as hyperspectral remote sensing) offers the potential to characterize the spatial and temporal variation in biophysical and biochemical properties of vegetation that can be costly or logistically difficult to measure comprehensively using traditional methods. A number of recent studies have illustrated the capacity for imaging spectroscopy data, such as from NASA's AVIRIS sensor, to empirically estimate functional traits related to foliar chemistry and physiology (Singh et al. 2015, Serbin et al. 2015). Here, we present analyses that illustrate the implications of those studies to characterize within-field or -stand variability in ecosystem functioning. In agricultural ecosystems, within-field photosynthetic capacity can vary by 30-50%, likely due to within-field variations in water availability and soil fertility. In general, the variability of foliar traits is lower in forests than agriculture, but can still be significant. Finally, we demonstrate that functional trait variability at the stand scale is strongly related to vegetation diversity. These results have two significant implications: 1) reliance on a small number of field samples to broadly estimate functional traits likely underestimates variability in those traits, and 2) if trait estimations from imaging spectroscopy are reliable, such data offer the opportunity to greatly increase the density of measurements we can use to predict ecosystem function.

  18. Mapping the functional connectome traits of levels of consciousness.

    PubMed

    Amico, Enrico; Marinazzo, Daniele; Di Perri, Carol; Heine, Lizette; Annen, Jitka; Martial, Charlotte; Dzemidzic, Mario; Kirsch, Murielle; Bonhomme, Vincent; Laureys, Steven; Goñi, Joaquín

    2017-03-01

    Examining task-free functional connectivity (FC) in the human brain offers insights on how spontaneous integration and segregation of information relate to human cognition, and how this organization may be altered in different conditions, and neurological disorders. This is particularly relevant for patients in disorders of consciousness (DOC) following severe acquired brain damage and coma, one of the most devastating conditions in modern medical care. We present a novel data-driven methodology, connICA, which implements Independent Component Analysis (ICA) for the extraction of robust independent FC patterns (FC-traits) from a set of individual functional connectomes, without imposing any a priori data stratification into groups. We here apply connICA to investigate associations between network traits derived from task-free FC and cognitive/clinical features that define levels of consciousness. Three main independent FC-traits were identified and linked to consciousness-related clinical features. The first one represents the functional configuration of a "resting" human brain, and it is associated to a sedative (sevoflurane), the overall effect of the pathology and the level of arousal. The second FC-trait reflects the disconnection of the visual and sensory-motor connectivity patterns. It also relates to the time since the insult and to the ability of communicating with the external environment. The third FC-trait isolates the connectivity pattern encompassing the fronto-parietal and the default-mode network areas as well as the interaction between left and right hemispheres, which are also associated to the awareness of the self and its surroundings. Each FC-trait represents a distinct functional process with a role in the degradation of conscious states of functional brain networks, shedding further light on the functional sub-circuits that get disrupted in severe brain-damage.

  19. Physical and functional mapping of Tn2603, a transposon encoding ampicillin, streptomycin, sulfonamide, and mercury resistance.

    PubMed

    Yamamoto, T; Tanaka, M; Baba, R; Yamagishi, S

    1981-01-01

    A map of cleavage sites for restriction endonuclease EcoRI, BamHI, HindIII, and SalI on Tn2603, a transposon encoding resistance to ampicillin, streptomycin, sulfonamide, and mercury, was constructed by an analysis of restriction cleavage patterns of plasmid pMK1.::Tn2603 and its deletion derivative. By cloning the fragments generated from pMK1.::Tn2603 with these restriction endonucleases to a pACYC184 plasmid vehicle, the regions necessary for expression of resistance were located on the restriction cleavage map of Tn2603. Ampicillin, streptomycin, and sulfonamide-resistance genes were mapped in a cluster on the region between the center and the right and the mercury-resistance gene was located to the left of the map. The final functional map of Tn2603 was compared with those of Tn4 and Tn21 and the evolutional relationships between them were discussed.

  20. Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats.

    PubMed

    O'Connor, Christine A; Cernak, Ibolja; Vink, Robert

    2003-06-01

    A number of experimental and clinical studies have demonstrated that functional outcome following traumatic brain injury differs between males and females. Some studies report that females have a better outcome than males following trauma while others report the opposite. In experimental studies, some of the contradictory results may be due to the different experimental conditions, including type of anesthesia and the outcome measures employed. In the present study we have used three different anesthetic protocols and four different outcome measures to determine how these parameters interact and affect functional outcome following traumatic brain injury in male and female rats. Diffuse traumatic brain injury was induced in adult male and female animals using the impact-acceleration brain injury model. Mortality in female animals was no different than males when using halothane anesthesia, slightly better than males when using isoflurane anesthesia, but significantly worse than males under pentobarbital anesthesia. Female animals always performed better than males on rotarod tests of motor outcome, with this effect being unrelated to anesthetic effects. Conversely, in cognitive tests using the Barnes Maze, only isoflurane-anesthetized females performed better than their male counterparts. Similarly, in an open field activity task, females always performed better than males after trauma, with isoflurane-anesthetized females also performing significantly better than the halothane-anesthetized female group after injury. Our results suggest that female animals do better than males after diffuse traumatic brain injury, although this observation is dependent upon the type of anesthesia and the functional task employed. Isoflurane is particularly protective in females, pentobarbital is deleterious to female outcome, while halothane anesthesia has the least influence on gender-related outcome.

  1. Probability density functions of the stream flow discharge in linearized diffusion wave models

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2016-12-01

    This article considers stream flow discharge moving through channels subject to the lateral inflow and described by a linearized diffusion wave equation. The variability of lateral inflow is manifested by random fluctuations in time, which is the only source of uncertainty as to flow discharge quantification. The stochastic nature of stream flow discharge is described by the probability density function (PDF) obtained using the theory of distributions. The PDF of the stream flow discharge depends on the hydraulic properties of the stream flow, such as the wave celerity and hydraulic diffusivity as well as the temporal correlation scale of the lateral inflow rate fluctuations. The focus in this analysis is placed on the influence of the temporal correlation scale and the wave celerity coefficient on the PDF of the flow discharge. The analysis demonstrates that a larger temporal correlation scale causes an increase of PDF of the lateral inflow rate and, in turn, the PDF of the flow discharge which is also affected positively by the wave celerity coefficient.

  2. Bells Galore: Oscillations and circle-map dynamics from space-filling fractal functions

    SciTech Connect

    Puente, C.E.; Cortis, A.; Sivakumar, B.

    2008-10-15

    The construction of a host of interesting patterns over one and two dimensions, as transformations of multifractal measures via fractal interpolating functions related to simple affine mappings, is reviewed. It is illustrated that, while space-filling fractal functions most commonly yield limiting Gaussian distribution measures (bells), there are also situations (depending on the affine mappings parameters) in which there is no limit. Specifically, the one-dimensional case may result in oscillations between two bells, whereas the two-dimensional case may give rise to unexpected circle map dynamics of an arbitrary number of two-dimensional circular bells. It is also shown that, despite the multitude of bells over two dimensions, whose means dance making regular polygons or stars inscribed on a circle, the iteration of affine maps yields exotic kaleidoscopes that decompose such an oscillatory pattern in a way that is similar to the many cases that converge to a single bell.

  3. Computational Prediction of Protein Function Based on Weighted Mapping of Domains and GO Terms

    PubMed Central

    Teng, Zhixia; Guo, Maozu; Dai, Qiguo; Wang, Chunyu; Li, Jin; Liu, Xiaoyan

    2014-01-01

    In this paper, we propose a novel method, SeekFun, to predict protein function based on weighted mapping of domains and GO terms. Firstly, a weighted mapping of domains and GO terms is constructed according to GO annotations and domain composition of the proteins. The association strength between domain and GO term is weighted by symmetrical conditional probability. Secondly, the mapping is extended along the true paths of the terms based on GO hierarchy. Finally, the terms associated with resident domains are transferred to host protein and real annotations of the host protein are determined by association strengths. Our careful comparisons demonstrate that SeekFun outperforms the concerned methods on most occasions. SeekFun provides a flexible and effective way for protein function prediction. It benefits from the well-constructed mapping of domains and GO terms, as well as the reasonable strategy for inferring annotations of protein from those of its domains. PMID:24868539

  4. Recovery of correlation function of internal random rough surfaces from diffusely scattered elastic waves

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Craster, R. V.

    2017-02-01

    We propose an ultrasonic methodology to reconstruct the height correlation function of remotely inaccessible random rough surfaces in solids. The inverse method is based on the Kirchhoff approximation(KA), and it requires measuring the angular distribution of diffuse scattering intensities by sending in a narrow band incident pulse. Near field scattering effects are also included by considering the Fresnel assumption. The proposed approach is successfully verified by simulating the scattering from multiple realizations of rough surfaces whose correlation function is known, calculating the mean scattering intensities from these received signals, and then deploying the inverse method on these to reconstruct the original correlation function. Very good agreement between the reconstructed correlation function and the original is found, for a wide range of roughness parameters. In addition, the effect of reducing the number of realizations to approximate the mean intensity are investigated, providing confidence bounds for the experiment. An experiment on a corrugated rough surface is performed with a limited number of scans using a phased array, which further validates the proposed inversion algorithm.

  5. Mapping Language Function in the Brain: A Review of the Recent Literature.

    ERIC Educational Resources Information Center

    Crafton, Robert E.; Kido, Elissa

    2000-01-01

    Considers the potential importance of brain study for composition instruction, briefly describes functional imaging techniques, and reviews the findings of recent brain-mapping studies investigating the neurocognitive systems involved in language function. Presents a review of the recent literature and considers the possible implications of this…

  6. Electron Distribution Functions in the Diffusion Region of Asymmetric Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Bessho, N.; Chen, L.-J.; Hesse, M.

    2016-01-01

    We study electron distribution functions in a diffusion region of antiparallel asymmetric reconnection by means of particle-in-cell simulations and analytical theory. At the electron stagnation point, the electron distribution comprises a crescent-shaped population and a core component. The crescent-shaped distribution is due to electrons coming from the magnetosheath toward the stagnation point and accelerated mainly by electric field normal to the current sheet. Only a part of magnetosheath electrons can reach the stagnation point and form the crescent-shaped distribution that has a boundary of a parabolic curve. The penetration length of magnetosheath electrons into the magnetosphere is derived. We expect that satellite observations can detect crescent-shaped electron distributions during magnetopause reconnection.

  7. Enhanced anisotropic ionic diffusion in layered electrolyte structures from density functional theory

    NASA Astrophysics Data System (ADS)

    Hirschfeld, J. A.; Lustfeld, H.

    2014-01-01

    Electrolytes with high ionic diffusivity at temperatures distinctively lower than the presently used ones are the prerequisite for the success of, e.g., solid oxide fuel cells. We have found a promising structure having an asymmetric but superior ionic mobility in the direction of the oxygen-ion current. Using a layering of zirconium and yttrium in the fluorite structure of zirconia, a high vacancy concentration and a low migration barrier in two dimensions are obtained, while the mobility in the third direction is basically sacrificed. According to our density functional theory calculations an electrolyte made of this structure could operate at a temperature reduced by ≈200∘C. Thus a window to a different class of electrolytes has been flung open. In our structure the price paid is a more complicated manufacturing method.

  8. Asymmetric neighborhood functions accelerate ordering process of self-organizing maps

    SciTech Connect

    Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji; Aoyagi, Toshio

    2011-02-15

    A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensional stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.

  9. Asymmetric neighborhood functions accelerate ordering process of self-organizing maps

    NASA Astrophysics Data System (ADS)

    Ota, Kaiichiro; Aoki, Takaaki; Kurata, Koji; Aoyagi, Toshio

    2011-02-01

    A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerge in the map. The presence of defects tends to drastically slow down the formation of a globally ordered topographic map. To remove such topological defects, it has been reported that an asymmetric neighborhood function is effective, but only in the simple case of mapping one-dimensional stimuli to a chain of units. In this paper, we demonstrate that even when high-dimensional stimuli are used, the asymmetric neighborhood function is effective for both artificial and real-world data. Our results suggest that applying the asymmetric neighborhood function to the SOM algorithm improves the reliability of the algorithm. In addition, it enables processing of complicated, high-dimensional data by using this algorithm.

  10. Spatial mapping of functional pelvic bone marrow using FLT PET.

    PubMed

    McGuire, Sarah M; Menda, Yusuf; Boles Ponto, Laura L; Gross, Brandie; TenNapel, Mindi; Smith, Brian J; Bayouth, John E

    2014-07-08

    The purpose of this study was to determine the ability of regions identified with bony landmarks on CT imaging to accurately represent active bone marrow when compared to FLT PET imaging. These surrogate regions could then be used to create a bone marrow sparing radiation therapy plan when FLT PET imaging is not available. Whole body (WB) FLT PET images were obtained of 18 subjects prior to chemoradiation therapy. The FLT image of each subject was registered to a CT image acquired for that subject to obtain anatomic information of the pelvis. Seventeen regions were identified based on features of the pelvic bones, sacrum, and femoral heads. The probability of FLT uptake being located in each of 17 different CT-based regions of the bony pelvis was calculated using Tukey's multiple comparison test. Statistical analysis of FLT uptake in the pelvis indicated four distinct groups within the 17 regions that had similar levels of activity. Regions located in the central part of the pelvis, including the superior part of the sacrum, the inner halves of the iliac crests, and the L5 vertebral body, had greater FLT uptake than those in the peripheral regions (p-value < 0.05). We have developed a method to use CT-defined pelvic bone regions to represent FLT PET-identified functional bone marrow. Individual regions that have a statistically significant probability of containing functional bone marrow can be used as avoidance regions to reduce radiation dose to functional bone marrow in radiation therapy planning. However, because likely active bone marrow regions and pelvic targets typically overlap, patient-specific spatial detail may be advantageous in IMRT planning scenarios and may best be provided using FLT PET imaging.

  11. Determining Functional Connectivity using fMRI Data with Diffusion-Based Anatomical Weighting

    PubMed Central

    Bowman, F. DuBois; Zhang, Lijun; Derado, Gordana; Chen, Shuo

    2012-01-01

    There is strong interest in investigating both functional connectivity (FC) using functional magnetic resonance imaging (fMRI) and structural connectivity (SC) using diffusion tensor imaging (DTI). There is also emerging evidence of correspondence between functional and structural pathways within many networks (Skudlarski et al., 2008; van den Heuvel et al., 2009; Greicius, et al., 2009), although some regions without SC exhibit strong FC (Honey et al., 2009). These findings suggest that FC may be mediated by (direct or indirect) anatomical connections, offering an opportunity to supplement fMRI data with DTI data when determining FC. We develop a novel statistical method for determining FC, called anatomically-weighted FC (awFC), which combines fMRI and DTI data. Our awFC approach implements a hierarchical clustering algorithm that establishes neural processing networks using a new distance measure consisting of two components, a primary functional component that captures correlations between fMRI signals from different regions and a secondary anatomical weight reflecting probabilities of SC. The awFC approach defaults to conventional unweighted clustering for specific parameter settings. We optimize awFC parameters using a strictly functional criterion, therefore our approach will generally perform at least as well as an unweighted analysis, with respect to intracluster coherence or autocorrelation. AwFC also yields more informative results since it provides structural properties associated with identified functional networks. We apply awFC to two fMRI data sets: resting-state data from 6 healthy subjects and data from 17 subjects performing an auditory task. In these examples, awFC leads to more highly autocorrelated networks than a conventional analysis. We also conduct a simulation study, which demonstrates accurate performance of awFC and confirms that awFC generally yields comparable, if not superior, accuracy relative to a standard approach. PMID:22634220

  12. Histogram-based characterization of healthy and ischemic brain tissues using multiparametric MR imaging including apparent diffusion coefficient maps and relaxometry.

    PubMed

    Bernarding, J; Braun, J; Hohmann, J; Mansmann, U; Hoehn-Berlage, M; Stapf, C; Wolf, K J; Tolxdorff, T

    2000-01-01

    Decreased, renormalized, or increased values of the calculated apparent diffusion coefficient (ADC) are observed in stroke models. A quantitative description of corresponding tissue states using ADC values may be extended to include true relaxation times. A histogram-based segmentation is well suited for characterizing tissues according to specific parameter combinations irrespective of the heterogeneity found for human healthy and ischemic brain tissues. In a new approach, navigated diffusion-weighted images and ADC maps were incorporated into voxel-based parameter sets of relaxation times (T1, T2), and T1- or T2-weighted images, followed by a supervised histogram-based analysis. Healthy tissues were segmented by incorporating T1 relaxation into the data set, ischemic regions by combining T2- or diffusion-weighted images with ADC maps. Mean values of healthy and pathologic tissues were determined, spatial distributions of the parameter vectors were visualized using color-encoded overlays. One to six days after stroke, ischemic regions exhibited reduced relative mean ADC values.

  13. Functional connectivity-based parcellation of amygdala using self-organized mapping: a data driven approach.

    PubMed

    Mishra, Arabinda; Rogers, Baxter P; Chen, Li Min; Gore, John C

    2014-04-01

    The overall goal of this work is to demonstrate how resting state functional magnetic resonance imaging (fMRI) signals may be used to objectively parcellate functionally heterogeneous subregions of the human amygdala into structures characterized by similar patterns of functional connectivity. We hypothesize that similarity of functional connectivity of subregions with other parts of the brain can be a potential basis to segment and cluster voxels using data driven approaches. In this work, self-organizing map (SOM) was implemented to cluster the connectivity maps associated with each voxel of the human amygdala, thereby defining distinct subregions. The functional separation was optimized by evaluating the overall differences in functional connectivity between the subregions at group level. Analysis of 25 resting state fMRI data sets suggests that SOM can successfully identify functionally independent nuclei based on differences in their inter subregional functional connectivity, evaluated statistically at various confidence levels. Although amygdala contains several nuclei whose distinct roles are implicated in various functions, our objective approach discerns at least two functionally distinct volumes comparable to previous parcellation results obtained using probabilistic tractography and cytoarchitectonic analysis. Association of these nuclei with various known functions and a quantitative evaluation of their differences in overall functional connectivity with lateral orbital frontal cortex and temporal pole confirms the functional diversity of amygdala. The data driven approach adopted here may be used as a powerful indicator of structure-function relationships in the amygdala and other functionally heterogeneous structures as well.

  14. Fuzzy membership functions for analysis of high-resolution CT images of diffuse pulmonary diseases.

    PubMed

    Almeida, Eliana; Rangayyan, Rangaraj M; Azevedo-Marques, Paulo M

    2015-08-01

    We propose the use of fuzzy membership functions to analyze images of diffuse pulmonary diseases (DPDs) based on fractal and texture features. The features were extracted from preprocessed regions of interest (ROIs) selected from high-resolution computed tomography images. The ROIs represent five different patterns of DPDs and normal lung tissue. A Gaussian mixture model (GMM) was constructed for each feature, with six Gaussians modeling the six patterns. Feature selection was performed and the GMMs of the five significant features were used. From the GMMs, fuzzy membership functions were obtained by a probability-possibility transformation and further statistical analysis was performed. An average classification accuracy of 63.5% was obtained for the six classes. For four of the six classes, the classification accuracy was superior to 65%, and the best classification accuracy was 75.5% for one class. The use of fuzzy membership functions to assist in pattern classification is an alternative to deterministic approaches to explore strategies for medical diagnosis.

  15. On Biological Functions Mapping to the Heterochromatin of DROSOPHILA MELANOGASTER

    PubMed Central

    Pimpinelli, Sergio; Sullivan, William; Prout, Mary; Sandler, L.

    1985-01-01

    We examined the behavior of an autosomal recessive maternal-effect mutation, abnormal-oocyte (abo), that is located in the euchromatin of the left arm of chromosome 2. When homozygous in females, abo results in a marked reduction in the probability that an egg produced by a mutant mother will develop into an adult. However, this probability is increased if the fertilizing sperm delivers to the egg either a normal allele of the maternal-effect gene or a specific type of heterochromatin (called ABO) that is located in small regions of the X and Y chromosome constitutive heterochromatin as well as in some autosomal heterochromatin. These regions, moreover, all react to Hoechst 33258 fluorescent dye identically and specifically. The amelioration of the maternal effect produced by this heterochromatin differs temporally from that caused by the normal allele of the euchromatic gene: the heterochromatin reduces only precellular blastoderm mortality, whereas the normal allele of the euchromatic gene reduces only postblastoderm mortality. Thus, although the genome of the preblastoderm Drosophila embryo is apparently mostly silent, the ABO-containing heterochromatin functions at this early time. Finally, preliminary data indicate that abo is but one member of a cluster of linked genes, each of which interacts with its own normal allele and with a different, locus-specific, heterochromatic factor. From these observations, it appears that Drosophila heterochromatin contains developmentally important genetic elements, and that a functional concomitant of heterochromatic location is gene action at a developmental stage during which the activity of the euchromatic genome is as yet undetectable. Some general implications of these inferences are considered. PMID:2580754

  16. Continuity of a Multivalued Mapping Connected with the Problem of Minimizing a Functional

    NASA Astrophysics Data System (ADS)

    Berdyšev, V. I.

    1981-06-01

    Let X and U be locally convex spaces, \\varphi(x,u) a proper convex lower semicontinuous functional on X\\times U and t=t(u)\\geqslant \\inf\\{\\varphi(x,u)\\colonx\\in X\\}. This paper gives conditions for the multivalued mapping \\displaystyle \\Phi_t\\colon u\\in U\\to \\Phi_t(u)=\\{x\\in X\\colon \\varphi(x,u)\\leqslant t\\} to be uniformly continuous and satisfy a Lipschitz condition, and determines the relation of \\Phi_t with other multivalued mappings, in particular, with a metric projection. On the basis of the functional conjugate to \\varphi a mapping conjugate to \\Phi_t is introduced and a condition for its upper semicontinuity is presented. The problem of minimizing a homogeneous convex functional on a convex set is considered. Bibliography: 21 titles.

  17. A physical map of important QTLs, functional markers and genes available for sesame breeding programs.

    PubMed

    Dossa, Komivi

    2016-10-01

    Sesame is one of the oldest oilseed crops grown mainly in Africa and Asia. Although genetic and genomic studies on sesame have started late, the past 5 years have witnessed extensive progresses in these areas on this crop. Important genomic sequence resources such as functional markers, genes and QTLs linked to agronomically important traits, have been generated through linkage mapping and association analysis to assist sesame improvement programs. However, most of these data are scattered in different maps making them hard to be exploited efficiently in breeding programs. In this study, we report a comprehensive physical map gathering 151 published genomic sequence resources which highlighted some hotspot functional regions in the sesame genome. Moreover, 83,135 non-redundant SSRs have been supplied along with their physical position and motif composition. This will assist future research in fine mapping or pinpointing more functional genes based on the already published QTLs and functional markers. This physical map represents a good landmark for further non-overlapping genetic and genomic studies working towards sesame improvement.

  18. Perspectives on Basis Sets Beautiful: Seasonal Plantings of Diffuse Basis Functions.

    PubMed

    Papajak, Ewa; Zheng, Jingjing; Xu, Xuefei; Leverentz, Hannah R; Truhlar, Donald G

    2011-10-11

    We present a perspective on the use of diffuse basis functions for electronic structure calculations by density functional theory and wave function theory. We especially emphasize minimally augmented basis sets and calendar basis sets. We base our conclusions on our previous experience with commonly computed quantities, such as bond energies, barrier heights, electron affinities, noncovalent (van der Waals and hydrogen bond) interaction energies, and ionization potentials, on Stephens et al.'s results for optical rotation and on our own new calculations (presented here) of polarizabilities and of potential energy curves of van der Waals complexes. We emphasize the benefits of partial augmentation of the higher-zeta basis sets in preference to full augmentation at a lower ζ level. Benefits and limitations of the use of fully, partially, and minimally augmented basis sets are reviewed for different electronic structure methods and molecular properties. We have found that minimal augmentation is almost always enough for density functional theory (DFT) when applied to ionization potentials, electron affinities, atomization energies, barrier heights, and hydrogen-bond energies. For electric dipole polarizabilities, we find that augmentation beyond minimal has an average effect of 8% at the polarized triple-ζ level and 5% at the polarized quadruple-ζ level. The effects are larger for potential energy curves of van der Waals complexes. The effects are also larger for wave function theory (WFT). Even for WFT though, full augmentation is not needed for most purposes, and a level of augmentation between minimal and full is optimal for most problems. The calendar basis sets named after the months provide a convergent sequence of partially augmented basis sets that can be used for such calculations. The jun-cc-pV(T+d)Z basis set is very useful for MP2-F12 calculations of barrier heights and hydrogen bond strengths.

  19. Structure of the correlation function at the accumulation points of the logistic map

    NASA Astrophysics Data System (ADS)

    Karamanos, K.; Mistakidis, I. S.; Mistakidis, S. I.

    2017-03-01

    The correlation function of the trajectory exactly at the Feigenbaum point of the logistic map is investigated and checked by numerical experiments. Taking advantage of recent closed analytical results on the symbol-to-symbol correlation function of the generating partition, we are in position to justify the deep algorithmic structure of the correlation function apart from numerical constants. A generalization is given for arbitrary $m\\cdot 2^{\\infty}$ Feigenbaum attractors.

  20. Plant functional type mapping for earth system models

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Hodson, E.; Lischke, H.; Maignan, F.; Plummer, S.; Zimmermann, N. E.

    2011-08-01

    The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into just several classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (β) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30 % (20 %) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of plant functional type datasets that are consistent

  1. Task-free presurgical mapping using functional magnetic resonance imaging intrinsic activity

    PubMed Central

    Liu, Hesheng; Buckner, Randy L.; Talukdar, Tanveer; Tanaka, Naoaki; Madsen, Joseph R.; Stufflebeam, Steven M.

    2013-01-01

    Object Low-frequency components of the spontaneous functional MR imaging signal provide information about the intrinsic functional and anatomical organization of the brain. The ability to use such methods in individual patients may provide a powerful tool for presurgical planning. The authors explore the feasibility of presurgical motor function mapping in which a task-free paradigm is used. Methods Six surgical candidates with tumors or epileptic foci near the motor cortex participated in this study. The investigators directly compared task-elicited activation of the motor system to activation obtained from intrinsic activity correlations. The motor network within the unhealthy hemisphere was identified based on intrinsic activity correlations, allowing distortions of functional anatomy caused by the tumor and epilepsy to be directly visualized. The precision of the motor function mapping was further explored in 1 participant by using direct cortical stimulation. Results The motor regions localized based on the spontaneous activity correlations were quite similar to the regions defined by actual movement tasks and cortical stimulation. Using intrinsic activity correlations, it was possible to map the motor cortex in presurgical patients. Conclusions This task-free paradigm may provide a powerful approach to map functional anatomy in patients without task compliance and allow multiple brain systems to be determined in a single scanning session. PMID:19361264

  2. Time domain functional NIRS imaging for human brain mapping.

    PubMed

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community.

  3. The Shape of Dendritic Arbors in Different Functional Domains of the Cortical Orientation Map

    PubMed Central

    Levy, Manuel; Lu, Zhongyang; Dion, Grace

    2014-01-01

    The neocortex is organized into macroscopic functional maps. However, at the microscopic scale, the functional preference and degree of feature selectivity between neighboring neurons can vary considerably. In the primary visual cortex, adjacent neurons in iso-orientation domains share the same orientation preference, whereas neighboring neurons near pinwheel centers are tuned to different stimulus orientations. Moreover, several studies have found greater orientation selectivity in iso-orientation domains than in pinwheel centers. These differences suggest that neurons sample local inputs in a spatially homogenous fashion and independently of the location of their soma on the orientation map. Here we determine whether dendritic geometry is affected by neuronal position on the orientation map. We labeled individual layer 2/3 pyramidal neurons with fluorescent dyes in specific domains of the orientation map in cat primary visual cortex and imaged their dendritic trees in vivo by two-photon microscopy. We found that the circularity and uniformity of dendritic trees is independent of somatic position on the orientation map. Moreover, the dendrites of neurons located close to pinwheel centers extend across all orientation domains in an unbiased fashion. Thus, unbiased dendritic trees appear to provide an anatomical substrate for the systematic variations in feature selectivity across the orientation map. PMID:24573281

  4. Evaluation of Current Tropospheric Mapping Functions by Deep Space Network Very Long Baseline Interferometry

    NASA Astrophysics Data System (ADS)

    Sovers, O. J.; Lanyi, G. E.

    1994-07-01

    To compare the validity of current algorithms that map zenith tropospheric delay to arbitrary elevation angles, 10 different tropospheric mapping functions are used to analyze the current data base of Deep Space Network Mark III intercontinental very long baseline interferometric (VLBI) data. This analysis serves as a stringent test because of the high proportion of low-elevation observations necessitated by the extremely long baselines. Postfit delay and delay-rate residuals are examined, as well as the scatter of baseline lengths about the time-linear model that characterizes tectonic motion. Among the functions that utilize surface meteorological data as input parameters, the Lanyi 1984 mapping shows the best performance both for residuals and baselines, though the 1985 Davis function is statistically nearly identical. The next best performance is shown by the recent function of Niell, which is based on an examination of global atmospheric characteristics as a function of season and uses no weather data at the time of the measurements. The Niell function shows a slight improvement in residuals relative to Lanyi, but also an increase in baseline scatter that is significant for the California-Spain baseline. Two variants of the Chao mapping function, as well as the Chao tables used with the interpolation algorithm employed in the Orbit Determination Program software, show substandard behavior for both VLBI residuals and baseline scatter. The length of the California-Australia baseline (10,600 km) in the VLBI solution can vary by as much as 5 to 10 cm for the 10 mapping functions.

  5. Incorporating constraint-based shape models into an interactive system for functional brain mapping.

    PubMed

    Hinshaw, K P; Brinkley, J F

    1998-01-01

    Through intraoperative electrical stimulation mapping, it is possible to identify sites on the surface of the brain that are essential for language function. Interesting correlations have been found between the distribution of these sites and behavioral traits such as verbal IQ. In previous work, tools were developed for building a reconstruction of a patient's cortical surface and using it to recover coordinates of essential language sites. However, considerable expertise was required to produce good reconstructions. This paper describes an improved version of the mapping procedure, in which segmentation is driven by a 3-D shape model. The model-based approach provides more intuitive control over the system, allowing a trained user to complete a surface reconstruction and mapping in about two hours. This level of performance makes it feasible to gather language maps for a large number of patients, which hopefully will lead to significant new findings about language organization in the brain.

  6. Plant functional type mapping for earth system models

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Ciais, P.; Hodson, E.; Lischke, H.; Maignan, F.; Plummer, S.; Zimmermann, N. E.

    2011-11-01

    The sensitivity of global carbon and water cycling to climate variability is coupled directly to land cover and the distribution of vegetation. To investigate biogeochemistry-climate interactions, earth system models require a representation of vegetation distributions that are either prescribed from remote sensing data or simulated via biogeography models. However, the abstraction of earth system state variables in models means that data products derived from remote sensing need to be post-processed for model-data assimilation. Dynamic global vegetation models (DGVM) rely on the concept of plant functional types (PFT) to group shared traits of thousands of plant species into usually only 10-20 classes. Available databases of observed PFT distributions must be relevant to existing satellite sensors and their derived products, and to the present day distribution of managed lands. Here, we develop four PFT datasets based on land-cover information from three satellite sensors (EOS-MODIS 1 km and 0.5 km, SPOT4-VEGETATION 1 km, and ENVISAT-MERIS 0.3 km spatial resolution) that are merged with spatially-consistent Köppen-Geiger climate zones. Using a beta (ß) diversity metric to assess reclassification similarity, we find that the greatest uncertainty in PFT classifications occur most frequently between cropland and grassland categories, and in dryland systems between shrubland, grassland and forest categories because of differences in the minimum threshold required for forest cover. The biogeography-biogeochemistry DGVM, LPJmL, is used in diagnostic mode with the four PFT datasets prescribed to quantify the effect of land-cover uncertainty on climatic sensitivity of gross primary productivity (GPP) and transpiration fluxes. Our results show that land-cover uncertainty has large effects in arid regions, contributing up to 30% (20%) uncertainty in the sensitivity of GPP (transpiration) to precipitation. The availability of PFT datasets that are consistent with current

  7. Diffusive Particle Acceleration in Shocked, Viscous Accretion Disks: Green's Function Energy Distribution

    NASA Astrophysics Data System (ADS)

    Becker, Peter A.; Das, Santabrata; Le, Truong

    2011-12-01

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classical method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {\\sim}0.01\\,\\dot{M} c^2, and the outflowing relativistic particles have a mean energy ~300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.

  8. Evaluation of improvement of diffuse optical imaging of brain function by high-density probe arrangements and imaging algorithms

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yusuke; Kurihara, Kazuki; Okada, Eiji

    2016-04-01

    Diffuse optical imaging has been applied to measure the localized hemodynamic responses to brain activation. One of the serious problems with diffuse optical imaging is the limitation of the spatial resolution caused by the sparse probe arrangement and broadened spatial sensitivity profile for each probe pair. High-density probe arrangements and an image reconstruction algorithm considering the broadening of the spatial sensitivity can improve the spatial resolution of the image. In this study, the diffuse optical imaging of the absorption change in the brain is simulated to evaluate the effect of the high-density probe arrangements and imaging methods. The localization error, equivalent full-width half maximum and circularity of the absorption change in the image obtained by the mapping and reconstruction methods from the data measured by five probe arrangements are compared to quantitatively evaluate the imaging methods and probe arrangements. The simple mapping method is sufficient for the density of the measurement points up to the double-density probe arrangement. The image reconstruction method considering the broadening of the spatial sensitivity of the probe pairs can effectively improve the spatial resolution of the image obtained from the probe arrangements higher than the quadruple density, in which the distance between the neighboring measurement points is 10.6 mm.

  9. [Diffuse infiltrative lung disease in scleroderma. Analysis of radio-clinical and functional semiology].

    PubMed

    El Khattabi, W; Afif, H; Moussali, N; Aichane, A; Abdelouafi, A; Bouayad, Z

    2013-06-01

    Scleroderma (SD) is a systemic disease that predominantly affects the skin. Diffuse infiltrative lung disease (DILD) is rare and occurs most often in the course of the disease. We analyzed seven cases of DILO of SD recorded between 2003 and 2010 among 196 PID (3.6%). Functional signs were limited to respiratory dyspnea, it was associated to dysphagia in six cases, dry syndrome in five cases and Raynaud's phenomenon in four cases. Clinical examination found crackles in the bases of the thorax in all cases and specific cutaneous signs in six cases. The chest radiograph showed that interstitial disease predominates at the lung bases in all cases with a large aspect of the pulmonary arteries in two cases. The chest CT scan confirmed the predominance of basal and peripheral damage with signs of fibrosis in six cases. The pulmonary function objectified a severe restrictive ventilatory defect in all cases. Bronchoscopy showed a normal macroscopic appearance in all cases, the broncho-alveolar lavage was predominated by neutrophilic formula in four cases. SCL 70 antibodies were positive in four cases. All patients were treated by steroids with improvement of dyspnea and stabilization of radiographs. A patient had died in an array of acute respiratory failure and one patient was lost to follow-up. DILD in scleroderma is rare and seldom reveals the disease, it affects the patient's prognosis especially when associated with arterial pulmonary hypertension.

  10. Structure-Function Network Mapping and Its Assessment via Persistent Homology

    PubMed Central

    2017-01-01

    Understanding the relationship between brain structure and function is a fundamental problem in network neuroscience. This work deals with the general method of structure-function mapping at the whole-brain level. We formulate the problem as a topological mapping of structure-function connectivity via matrix function, and find a stable solution by exploiting a regularization procedure to cope with large matrices. We introduce a novel measure of network similarity based on persistent homology for assessing the quality of the network mapping, which enables a detailed comparison of network topological changes across all possible thresholds, rather than just at a single, arbitrary threshold that may not be optimal. We demonstrate that our approach can uncover the direct and indirect structural paths for predicting functional connectivity, and our network similarity measure outperforms other currently available methods. We systematically validate our approach with (1) a comparison of regularized vs. non-regularized procedures, (2) a null model of the degree-preserving random rewired structural matrix, (3) different network types (binary vs. weighted matrices), and (4) different brain parcellation schemes (low vs. high resolutions). Finally, we evaluate the scalability of our method with relatively large matrices (2514x2514) of structural and functional connectivity obtained from 12 healthy human subjects measured non-invasively while at rest. Our results reveal a nonlinear structure-function relationship, suggesting that the resting-state functional connectivity depends on direct structural connections, as well as relatively parsimonious indirect connections via polysynaptic pathways. PMID:28046127

  11. Altered structure-function relations of semantic processing in youths with high-functioning autism: a combined diffusion and functional MRI study.

    PubMed

    Lo, Yu-Chun; Chou, Tai-Li; Fan, Li-Ying; Gau, Susan Shur-Fen; Chiu, Yen-Nan; Tseng, Wen-Yih Isaac

    2013-12-01

    Deficits in language and communication are among the core symptoms of autism, a common neurodevelopmental disorder with long-term impairment. Despite the striking nature of the autistic language impairment, knowledge about its corresponding alterations in the brain is still evolving. We hypothesized that the dual stream language network is altered in autism, and that this alteration could be revealed by changes in the relationships between microstructural integrity and functional activation. The study recruited 20 right-handed male youths with autism and 20 carefully matched individually, typically developing (TD) youths. Microstructural integrity of the left dorsal and left ventral pathways responsible for language processing and the functional activation of the connected brain regions were investigated by using diffusion spectrum imaging and functional magnetic resonance imaging of a semantic task, respectively. Youths with autism had significantly poorer language function, and lower functional activation in left dorsal and left ventral regions of the language network, compared with TD youths. The TD group showed a significant correlation of the functional activation of the left dorsal region with microstructural integrity of the left ventral pathway, whereas the autism group showed a significant correlation of the functional activation of the left ventral region with microstructural integrity of the left dorsal pathway, and moreover verbal comprehension index was correlated with microstructural integrity of the left ventral pathway. These altered structure-function relationships in autism suggest possible involvement of the dual pathways in supporting deficient semantic processing.

  12. Intraoperative Monitoring and Mapping of the Functional Integrity of the Brainstem

    PubMed Central

    Fernández-Conejero, Isabel

    2016-01-01

    The risk of iatrogenic damage is very high in surgical interventions in or around the brainstem. However, surgical techniques and intraoperative neuromonitoring (ION) have evolved sufficiently to increase the likelihood of successful functional outcomes in many patients. We present a critical review of the methodologies available for intraoperative monitoring and mapping of the brainstem. There are three main groups of techniques that can be used to assess the functional integrity of the brainstem: 1) mapping, which provides rapid anatomical identification of neural structures using electrical stimulation with a hand-held probe, 2) monitoring, which provides real-time information about the functional integrity of the nervous tissue, and 3) techniques involving the examination of brainstem reflexes in the operating room, which allows for the evaluation of the reflex responses that are known to be crucial for most brainstem functions. These include the blink reflex, which is already in use, and other brainstem reflexes that are being explored, such as the masseter H-reflex. This is still under development but is likely to have important functional consequences. Today an abundant armory of ION methods is available for the monitoring and mapping of the functional integrity of the brainstem during surgery. ION methods are essential in surgery either in or around the brainstem; they facilitate the removal of lesions and contribute to notable improvements in the functional outcomes of patients. PMID:27449909

  13. Functional food and nutraceutical registration processes in Japan and China: a diffusion of innovation perspective.

    PubMed

    Patel, Darshika; Dufour, Yvon; Domigan, Neil

    2008-01-01

    Purpose - This paper looks into the functional food and nutraceutical registration processes in Japan and China. The Japanese have developed the Foods for Specified Health Use (FOSHU) registration process whereas the Chinese have put into place the Health Food (HF) registration process. The aim of this paper is to compare the regulation processes between the two countries in search for answers to three core empirical questions: (1) how have the registration processes developed and changed? (2) What are the similarities and differences between the processes of registration in the two countries investigated? (3) Why are the registration processes similar/different? Method - The study was conducted using secondary sources. The literature surveyed covered academic journals, trade journals, magazine and newspaper articles, market reports, proceedings, books and web pages of relevant regulatory authorities and regulatory consultants. Information from the more recently published sources was used preferentially over older sources. As well as using the most recent sources, information was selected on the basis of which source it was from. Official regulations and SFDA and MHLW websites would contain accurate and up to date information and information from here would be taken as true over other sources of information. Results - The two diagrams of the registration processes respectively in Japan and China clearly show that there are similarities and differences. There are six categories under which these can be found: (1) the scientific evidence required; (2) the application process; (3) the evaluation process; (4) the law and the categories of products; (5) the labels and the types of claims; and finally (6) the cost and the time involved. Conclusions -The data analysis suggests that the process of diffusion of innovation played a role in the development of the regulations. Further it was found that while Japan was at the outset a pioneer innovator in nutraceutical

  14. Protection zone in a diffusive predator-prey model with Beddington-DeAngelis functional response.

    PubMed

    He, Xiao; Zheng, Sining

    2016-12-03

    In any reaction-diffusion system of predator-prey models, the population densities of species are determined by the interactions between them, together with the influences from the spatial environments surrounding them. Generally, the prey species would die out when their birth rate is too low, the habitat size is too small, the predator grows too fast, or the predation pressure is too high. To save the endangered prey species, some human interference is useful, such as creating a protection zone where the prey could cross the boundary freely but the predator is prohibited from entering. This paper studies the existence of positive steady states to a predator-prey model with reaction-diffusion terms, Beddington-DeAngelis type functional response and non-flux boundary conditions. It is shown that there is a threshold value [Formula: see text] which characterizes the refuge ability of prey such that the positivity of prey population can be ensured if either the prey's birth rate satisfies [Formula: see text] (no matter how large the predator's growth rate is) or the predator's growth rate satisfies [Formula: see text], while a protection zone [Formula: see text] is necessary for such positive solutions if [Formula: see text] with [Formula: see text] properly large. The more interesting finding is that there is another threshold value [Formula: see text], such that the positive solutions do exist for all [Formula: see text]. Letting [Formula: see text], we get the third threshold value [Formula: see text] such that if [Formula: see text], prey species could survive no matter how large the predator's growth rate is. In addition, we get the fourth threshold value [Formula: see text] for negative [Formula: see text] such that the system admits positive steady states if and only if [Formula: see text]. All these results match well with the mechanistic derivation for the B-D type functional response recently given by Geritz and Gyllenberg (J Theoret Biol 314:106-108, 2012

  15. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods.

    PubMed

    Ganesh, P; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A; Kent, Paul R C

    2014-12-09

    Highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. The results demonstrate that the lithium-carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  16. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    SciTech Connect

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; Yoon, Mina; Reboredo, Fernando A.; Kent, Paul R. C.

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based on point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.

  17. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Han, Zongying; Chen, Haipeng; Zhou, Shixue

    2017-02-01

    First-principles calculations with the density functional theory (DFT) have been carried out to study dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces. Results show that energy barriers of 1.42 eV and 1.28 eV require to be overcome for H2 dissociation on defect-free and vacancy defective Mg (0001) surfaces respectively, indicating that reactivity of Mg (0001) surface is moderately increased due to vacancy defect. Besides, the existence of vacancy defect changes the preferential H atom diffusion entrance to the subsurface and reduces the diffusion energy barrier. An interesting remark is that the minimum energy diffusion path of H atom from magnesium surface into bulk is a spiral channel formed by staggered octahedral and tetrahedral interstitials. The diffusion barriers computed for H atom penetration from the surface into inner-layers are all less than 0.70 eV, which is much smaller than the activation energy for H2 dissociation on the Mg (0001) surface. This suggests that H2 dissociation is more likely than H diffusion to be rate-limiting step for magnesium hydrogenation.

  18. Mapping the Orientation of White Matter Fiber Bundles: A Comparative Study between Diffusion Tensor Imaging (DTI), Diffusional Kurtosis Imaging (DKI), and Diffusion Spectrum Imaging (DSI)

    PubMed Central

    Glenn, G. Russell; Kuo, Li-Wei; Chao, Yi-Ping; Lee, Chu-Yu; Helpern, Joseph A.; Jensen, Jens H.

    2016-01-01

    Background and Purpose White matter fiber tractography relies on fiber bundle orientation estimates from diffusion MRI. However, clinically feasible techniques such as DTI and DKI utilize assumptions, which may introduce error into in vivo orientation estimates. In this study, fiber bundle orientations from DTI and DKI are compared to DSI as a gold standard to assess the performance of each technique. Materials and Methods For each subject, full DTI, DKI, and DSI datasets were acquired during two independent sessions, and fiber bundle orientations were estimated using the specific theoretical assumptions of each technique. Angular variability and angular error measures were assessed by comparing the orientation estimates. Tractography generated with each of the three reconstructions was also examined and contrasted. Results Orientation estimates from all three techniques had comparable angular reproducibility, but DKI decreased angular error throughout the white matter compared to DTI. DSI and DKI enabled the detection of crossing fiber bundles, which had pronounced effects on tractography relative to DTI. DSI had the highest sensitivity for detecting crossing fibers; however, the DSI and DKI tracts were qualitatively similar. Conclusion Fiber bundle orientation estimates from DKI have less systematic error than those from DTI, which can significantly affect tractography. Moreover, tractography obtained with DKI is qualitatively comparable to that of DSI. Since DKI has a shorter typical scan time than DSI, DKI is potentially more suitable for a variety of clinical and research applications. PMID:26939628

  19. In vivo functional and myeloarchitectonic mapping of human primary auditory areas

    PubMed Central

    Dick, Frederic; Tierney, Adam Taylor; Lutti, Antoine; Josephs, Oliver; Sereno, Martin I.; Weiskopf, Nikolaus

    2012-01-01

    In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with post mortem cyto- or myelo-architectonics from the same individual. We combined high-resolution (800 μm) quantitative T1 mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the ‘auditory core’ of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to post-mortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two ‘mirror-image‘ tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that thee two maps within the core are the human analogues of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multi-modal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies. PMID:23152594

  20. Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping

    PubMed Central

    Heo, Hye-Young; Wemmie, John A; Johnson, Casey P; Thedens, Daniel R; Magnotta, Vincent A

    2015-01-01

    Recent experiments suggest that T1 relaxation in the rotating frame (T1ρ) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T1ρ is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T1ρ changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T1ρ, BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T1ρ versus BOLD and ASL. The results suggest that T1ρ changes precede changes in the two blood flow-dependent measures. These observations indicate that T1ρ detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T1ρ is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T1ρ changes. PMID:25966957

  1. Scanning pattern of diffusion tensor tractography and an analysis of the morphology and function of spinal nerve roots.

    PubMed

    Tian, Xin; Liu, Huaijun; Geng, Zuojun; Yang, Hua; Wang, Guoshi; Yang, Jiping; Wang, Chunxia; Li, Cuining; Li, Ying

    2013-11-25

    Radiculopathy, commonly induced by intervertebral disk bulging or protrusion, is presently diagnosed in accordance with clinical symptoms because there is no objective quantitative diagnostic criterion. Diffusion tensor magnetic resonance imaging and diffusion tensor tractography revealed the characterization of anisotropic diffusion and displayed the anatomic form of nerve root fibers. This study included 18 cases with intervertebral disc degeneration-induced unilateral radiculopathy. Magnetic resonance diffusion tensor imaging was creatively used to reveal the scanning pattern of fiber tracking of the spinal nerve root. A scoring system of nerve root morphology was used to quantitatively assess nerve root morphology and functional alteration after intervertebral disc degeneration. Results showed that after fiber tracking, compared with unaffected nerve root, fiber bundles gathered together and interrupted at the affected side. No significant alteration was detected in the number of fiber bundles, but the cross-sectional area of nerve root fibers was reduced. These results suggest that diffusion tensor magnetic resonance imaging-based tractography can be used to quantitatively evaluate nerve root function according to the area and morphology of fiber bundles of nerve roots.

  2. Accurate protein structure annotation through competitive diffusion of enzymatic functions over a network of local evolutionary similarities.

    PubMed

    Venner, Eric; Lisewski, Andreas Martin; Erdin, Serkan; Ward, R Matthew; Amin, Shivas R; Lichtarge, Olivier

    2010-12-13

    High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC) levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks.

  3. Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration.

    PubMed

    Lemos, Dario R; Paylor, Benjamin; Chang, Chihkai; Sampaio, Arthur; Underhill, T Michael; Rossi, Fabio M V

    2012-06-01

    Pathologies characterized by lipomatous infiltration of craniofacial structures as well as certain forms of lipodystrophies suggest the existence of a distinct adipogenic program in the cephalic region of mammals. Using lineage tracing, we studied the origin of craniofacial adipocytes that accumulate both in cranial fat depots and during ectopic lipomatous infiltration of craniofacial muscles. We found that unlike their counterparts in limb muscle, a significant percentage of cranial adipocytes is derived from the neural crest (NC). In addition, we identified a population of NC-derived Lin(-)/α7(-)/CD34(+)/Sca-1(+) fibro/adipogenic progenitors (NC-FAPs) that resides exclusively in the mesenchyme of cephalic fat and muscle. Comparative analysis of the adipogenic potential, impact on metabolism, and contribution to the regenerative response of NC-FAPs and mesoderm-derived FAPs (M-FAPs) suggests that these cells are functionally indistinguishable. While both NC- and M-FAPs express mesenchymal markers and promyogenic cytokines upon damage-induced activation, NC-FAPs additionally express components of the NC developmental program. Furthermore, we show that craniofacial FAP composition changes with age, with young mice containing FAPs that are almost exclusively of NC origin, while NC-FAPs are progressively replaced by M-FAPs as mice age. Based on these results, we propose that in the adult, ontogenetically distinct FAPs form a diffused system reminiscent of the endothelium, which can originate from multiple developmental intermediates to seed all anatomical locations.

  4. Analytical solution of advection-diffusion equation in heterogeneous infinite medium using Green's function method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Kumar, Naveen

    2016-12-01

    Some analytical solutions of one-dimensional advection-diffusion equation (ADE) with variable dispersion coefficient and velocity are obtained using Green's function method (GFM). The variability attributes to the heterogeneity of hydro-geological media like river bed or aquifer in more general ways than that in the previous works. Dispersion coefficient is considered temporally dependent, while velocity is considered spatially and temporally dependent. The spatial dependence is considered to be linear and temporal dependence is considered to be of linear, exponential and asymptotic. The spatio-temporal dependence of velocity is considered in three ways. Results of previous works are also derived validating the results of the present work. To use GFM, a moving coordinate transformation is developed through which this ADE is reduced into a form, whose analytical solution is already known. Analytical solutions are obtained for the pollutant's mass dispersion from an instantaneous point source as well as from a continuous point source in a heterogeneous medium. The effect of such dependence on the mass transport is explained through the illustrations of the analytical solutions.

  5. Evidence of improved small airways function after azithromycin treatment in diffuse panbronchiolitis.

    PubMed

    Hanon, Shane; Verbanck, Sylvia; Schuermans, Daniel; Vanden Berghe, Bram; Vanderhelst, Eef; Vincken, Walter

    2012-01-01

    A 67-year-old never-smoker was diagnosed with diffuse panbronchiolitis (DPB) and was started on 250 mg azithromycin twice weekly. Over a 16-month observation period, lung function was assessed monthly, including a dedicated small airways test, the multiple breath nitrogen washout (MBW) with indices S(cond) and S(acin) of ventilation heterogeneity at the level of the conductive and acinar air spaces, respectively. Baseline measurements indicated moderate airway obstruction, air trapping and considerable dysfunction of the small airways around the acinar entrance. Treatment resulted in excellent symptomatic improvement paralleled by marked improvements in FEV(1), FVC, RV/TLC, S(cond) and S(acin); by contrast, there were no consistent changes in FEF(75) or TL(CO). While improvements were such that S(cond) fell within normal limits after 5 months, S(acin) remained abnormal even after 16 months of treatment. This suggests a distinct acinar structural abnormality in DPB that cannot be reversed by azithromycin.

  6. Simulation of the radiolysis of water using Green's functions of the diffusion equation.

    PubMed

    Plante, I; Cucinotta, F A

    2015-09-01

    Radiation chemistry is of fundamental importance in the understanding of the effects of ionising radiation, notably with regard to DNA damage by indirect effect (e.g. damage by ·OH radicals created by the radiolysis of water). In the recent years, Green's functions of the diffusion equation (GFDEs) have been used extensively in biochemistry, notably to simulate biochemical networks in time and space. In the present work, an approach based on the GFDE will be used to refine existing models on the indirect effect of ionising radiation on DNA. As a starting point, the code RITRACKS (relativistic ion tracks) will be used to simulate the radiation track structure and calculate the position of all radiolytic species formed during irradiation. The chemical reactions between these radiolytic species and with DNA will be done by using an efficient Monte Carlo sampling algorithm for the GFDE of reversible reactions with an intermediate state that has been developed recently. These simulations should help the understanding of the contribution of the indirect effect in the formation of DNA damage, particularly with regards to the formation of double-strand breaks.

  7. Empirical Synthesis of Green functions from the correlation of diffuse waves

    NASA Astrophysics Data System (ADS)

    Campillo, M.; Larose, E.; Margerin, L.; Paul, A.; van Tiggelen, B.; Derode, A.; Abers, G.

    2003-12-01

    We show the existence of long range field correlations in the seismic coda of regional records in both Mexico and Alaska. The cross-correlation tensor between the coda records at two points is measured for a set of distant earthquakes. Remarkably, while individual correlations have a random character, the source- averaged correlations exhibit deterministic arrivals that obey the same symmetry rules as the Green tensor between the two points. In addition, the arrival times of these waves coincide with propagating surface waves between the two stations. Thus, we propose to identify the averaged correlation signals with the surface wave part of the Green tensor. However, while time reversal symmetry theoretically imposes that the Green function appears at both negative and positive times, we find experimentally this symmetry to be broken when the distribution of earthquakes is not isotropic around the stations. We explain this observation by the long lasting anisotropy of the diffuse field. This point is further discussed in a companion paper where we prove both experimentally and theoretically that a dominant flux of energy coming from the source can persist in the late coda. Finally, we show that averaged cross-correlations of ambient noise enable the reconstruction of some coherent arrivals. These examples illustrate a novel empirical method that provides synthetic seismograms between two stations, without the knowledge of the precise location and origin times of the sources.

  8. Masking Level Differences – A Diffusion Tensor Imaging and Functional MRI Study

    PubMed Central

    Wack, David S.; Polak, Paul; Furuyama, Jon; Burkard, Robert F.

    2014-01-01

    In our previous study we investigated Masking Level Differences (MLD) using functional Magnetic Resonance Imaging (fMRI), but were unable to confirm neural correlations for the MLD within the auditory cortex and inferior colliculus. Here we have duplicated conditions from our previous study, but have included more participants and changed the study site to a new location with a newer scanner and presentation system. Additionally, Diffusion Tensor Imaging (DTI) is included to allow investigation of fiber tracts that may be involved with MLDs. Twenty participants were included and underwent audiometric testing and MRI scanning. The current study revealed regions of increased and decreased activity within the auditory cortex when comparing the combined noise and signal of the dichotic MLD stimuli (N0Sπ and NπS0) with N0S0. Furthermore, we found evidence of inferior colliculus involvement. Our DTI findings show strong correlations between DTI measures within the brainstem and signal detection threshold levels. Patterns of correlation when the signal was presented only to the right ear showed an extensive network in the left hemisphere; however, the opposite was not true for the signal presented only to the left ear. Our current study was able to confirm what we had previously hypothesized using fMRI, while extending our investigation of MLDs to include the characteristics of connecting neural pathways. PMID:24558392

  9. Toward Universal Half-Saturation Coefficients: Describing Extant K(s) as a Function of Diffusion.

    PubMed

    Shaw, Andrew; Takacs, Imre; Pagilla, Krishna; Riffat, Rumana; DeClippeleir, Haydee; Wilson, Christopher; Murthy, Sudhir

    2015-05-01

    Observed (extant) K(s) is not a constant and it is strongly influenced by diffusion. This paper argues that diffusion can be used to describe bacterial kinetic effects that are sometimes attributed to "K-strategists" and, in fact, the physics of the system is the dominant mechanism affecting the apparent (extant) Ks--not intrinsic biological characteristics--in real water resource recovery facility systems. Four different biological processes have been modeled using the "porter-diffusion" model that was originally developed by Pasciak and Gavis (1974) for aquatic systems. The results demonstrate that diffusion is the dominant mechanism affecting K(s) in all four biological processes. Therefore, the authors argue that for treatment processes in which substrate concentrations are low, it is important to consider shifting to variable extant K(s) values or explicitly modeling the effects of diffusion.

  10. Prognostic and Functional Significance of MAP4K5 in Pancreatic Cancer

    PubMed Central

    Wang, Oliver H.; Azizian, Nancy; Guo, Ming; Capello, Michela; Deng, Defeng; Zang, Fenglin; Fry, Jason; Katz, Matthew H.; Fleming, Jason B.; Lee, Jeffrey E.; Wolff, Robert A.; Hanash, Samir; Wang, Huamin; Maitra, Anirban

    2016-01-01

    Objectives MAP4K5 plays an important role in regulating a range of cellular responses and is involved in Wnt signaling in hematopoietic cells. However, its functions in human malignancies have not been studied. The major objectives of this study are to examine the expression, functions and clinical significance of MAP4K5 in pancreatic ductal adenocarcinoma (PDAC). Materials and Methods The expression levels of MAP4K5, E-cadherin, vimentin, and carboxylesterase 2 (CES2) were examined by immunohistochemistry in 105 PDAC and matched non-neoplastic pancreas samples from our institution. The RNA sequencing data of 112 PDAC patients were downloaded from the TCGA data portal. Immunoblotting and RNA sequencing analysis were used to examine the expression of MAP4K5 and E-cadherin in pancreatic cancer cell lines. The effect of knockdown MAP4K5 using siRNA on the expression of CDH1 and vimentin were examined by Real-time RT-PCR in Panc-1 and AsPC-1 cells. Statistical analyses were performed using IBM SPSS Statistics. Results MAP4K5 protein is expressed at high levels specifically in the pancreatic ductal cells of 100% non-neoplastic pancreas samples, but is decreased or lost in 77.1% (81/105) of PDAC samples. MAP4K5-low correlated with the loss of E-cadherin (P = 0.001) and reduced CES2 expression (P = 0.002) in our patient populations. The expression levels of MAP4K5 mRNA directly correlated with the expression levels of CDH1 mRNA (R = 0.2490, P = 0.008) in the second cohort of 112 PDAC patients from The Cancer Genome Atlas (TCGA) RNA-seq dataset. Similar correlations between the expression of MAP4K5 and E-cadherin were observed both at protein and mRNA levels in multiple pancreatic cancer cell lines. Knockdown MAP4K5 led to decreased CDH1 mRNA expression in Panc-1 and AsPC-1 cells. MAP4K5-low correlated significantly with reduced overall survival and was an independent prognosticator in patients with stage II PDAC. Conclusions MAP4K5 expression is decreased or lost in

  11. Comparison of functional results after ethmoidectomy and nasalization for diffuse and severe nasal polyposis.

    PubMed

    Jankowski, R; Pigret, D; Decroocq, F

    1997-07-01

    Taking advantage of a natural experimental situation, we compared, retrospectively, functional results after nasalization and ethmoidectomy for diffuse nasal polyposis. Nasalization was a radical ethmoidectomy systematically removing all the bony lamellae and mucosa within the labyrinth, with large antrostomy, sphenoidotomy, frontotomy, and middle turbinectomy (Surgeon 1, 39 consecutive patients operated on between March and September 1991). Ethmoidectomy was a less systematic procedure, that was adapted to the extent of the pathology (Surgeon 2, 37 consecutive patients, operated on between October 1991 and November 1994). In May 1994, a third physician mailed a questionnaire simultaneously to all patients including 10-point visual analog scales 34/39 patients in the nasalization group (age: 28-71 years: 20 asthmatics; follow-up: 32-36 months), and 29/37 patients in the ethmoidectomy group (age: 26-65 years: 9 asthmatics: follow-up: 18-31 months) participated in the study. The overall nasal improvement was 8.8 +/- 0.2 (mean +/- SEM) after nasalization and 5.9 +/- 0.6 after ethmoidectomy (p = 0.0001). Olfaction improvement was similar in both groups 6 months after surgery, remained at the same level 36 months after nasalization (6.9 +/- 0.7), but decreased to 4.2 +/- 1 points 24 months after ethmoidectomy (p = 0.02). Asthma improvement remained significantly better after nasalization (p = 0.05), and the need for systemic steroids was also lower (p = 0.03). Results of this study suggest that when dealing with nasal polyposis, the more radical the surgery, the better the functional results.

  12. Radial distribution function imaging by STEM diffraction: Phase mapping and analysis of heterogeneous nanostructured glasses.

    PubMed

    Mu, Xiaoke; Wang, Di; Feng, Tao; Kübel, Christian

    2016-09-01

    Characterizing heterogeneous nanostructured amorphous materials is a challenging topic, because of difficulty to solve disordered atomic arrangement in nanometer scale. We developed a new transmission electron microscopy (TEM) method to enable phase analysis and mapping of heterogeneous amorphous structures. That is to combine scanning TEM (STEM) diffraction mapping, radial distribution function (RDF) analysis, and hyperspectral analysis. This method was applied to an amorphous zirconium oxide and zirconium iron multilayer system, and showed extreme sensitivity to small atomic packing variations. This approach helps to understand local structure variations in glassy composite materials and provides new insights to correlate structure and properties of glasses.

  13. Automated mapping of the ocean floor using the theory of intrinsic random functions of order k

    USGS Publications Warehouse

    David, M.; Crozel, D.; Robb, James M.

    1986-01-01

    High-quality contour maps can be computer drawn from single track echo-sounding data by combining Universal Kriging and the theory of intrinsic random function of order K (IRFK). These methods interpolate values among the closely spaced points that lie along relatively widely spaced lines. The technique provides a variance which can be contoured as a quantitative measure of map precision. The technique can be used to evaluate alternative survey trackline configurations and data collection intervals, and can be applied to other types of oceanographic data. ?? 1986 D. Reidel Publishing Company.

  14. Real-time functional mapping: potential tool for improving language outcome in pediatric epilepsy surgery.

    PubMed

    Korostenskaja, Milena; Chen, Po-Ching; Salinas, Christine M; Westerveld, Michael; Brunner, Peter; Schalk, Gerwin; Cook, Jane C; Baumgartner, James; Lee, Ki H

    2014-09-01

    Accurate language localization expands surgical treatment options for epilepsy patients and reduces the risk of postsurgery language deficits. Electrical cortical stimulation mapping (ESM) is considered to be the clinical gold standard for language localization. While ESM affords clinically valuable results, it can be poorly tolerated by children, requires active participation and compliance, carries a risk of inducing seizures, is highly time consuming, and is labor intensive. Given these limitations, alternative and/or complementary functional localization methods such as analysis of electrocorticographic (ECoG) activity in high gamma frequency band in real time are needed to precisely identify eloquent cortex in children. In this case report, the authors examined 1) the use of real-time functional mapping (RTFM) for language localization in a high gamma frequency band derived from ECoG to guide surgery in an epileptic pediatric patient and 2) the relationship of RTFM mapping results to postsurgical language outcomes. The authors found that RTFM demonstrated relatively high sensitivity (75%) and high specificity (90%) when compared with ESM in a "next-neighbor" analysis. While overlapping with ESM in the superior temporal region, RTFM showed a few other areas of activation related to expressive language function, areas that were eventually resected during the surgery. The authors speculate that this resection may be associated with observed postsurgical expressive language deficits. With additional validation in more subjects, this finding would suggest that surgical planning and associated assessment of the risk/benefit ratio would benefit from information provided by RTFM mapping.

  15. Functional and structural mapping of human cerebral cortex: solutions are in the surfaces

    NASA Technical Reports Server (NTRS)

    Van Essen, D. C.; Drury, H. A.; Joshi, S.; Miller, M. I.

    1998-01-01

    The human cerebral cortex is notorious for the depth and irregularity of its convolutions and for its variability from one individual to the next. These complexities of cortical geography have been a chronic impediment to studies of functional specialization in the cortex. In this report, we discuss ways to compensate for the convolutions by using a combination of strategies whose common denominator involves explicit reconstructions of the cortical surface. Surface-based visualization involves reconstructing cortical surfaces and displaying them, along with associated experimental data, in various complementary formats (including three-dimensional native configurations, two-dimensional slices, extensively smoothed surfaces, ellipsoidal representations, and cortical flat maps). Generating these representations for the cortex of the Visible Man leads to a surface-based atlas that has important advantages over conventional stereotaxic atlases as a substrate for displaying and analyzing large amounts of experimental data. We illustrate this by showing the relationship between functionally specialized regions and topographically organized areas in human visual cortex. Surface-based warping allows data to be mapped from individual hemispheres to a surface-based atlas while respecting surface topology, improving registration of identifiable landmarks, and minimizing unwanted distortions. Surface-based warping also can aid in comparisons between species, which we illustrate by warping a macaque flat map to match the shape of a human flat map. Collectively, these approaches will allow more refined analyses of commonalities as well as individual differences in the functional organization of primate cerebral cortex.

  16. Brain maps on the go: functional imaging during motor challenge in animals.

    PubMed

    Holschneider, D P; Maarek, J-M I

    2008-08-01

    Brain mapping in the freely moving animal is useful for studying motor circuits, not only because it avoids the potential confound of sedation or restraints, but because activated brain states may serve to accentuate differences that only manifest partially while a subject is in the resting state. Perfusion or metabolic mapping using autoradiography allows one to examine changes in brain function at the circuit level across the entire brain with a spatial resolution (approximately 100 micro) appropriate for the rat or mouse brain, and a temporal resolution (seconds-minutes) sufficient for capturing acute brain changes. Here we summarize the application of these methods to the functional brain mapping of behaviors involving locomotion of small animals, methods for the three-dimensional reconstruction of the brain from autoradiographic sections, voxel based analysis of the whole brain, and generation of maps of the flattened rat cortex. Application of these methods in animal models promises utility in improving our understanding of motor function in the normal brain, and of the effects of neuropathology and treatment interventions such as exercise have on the reorganization of motor circuits.

  17. The diffuse chemosensory system: exploring the iceberg toward the definition of functional roles.

    PubMed

    Sbarbati, Andrea; Bramanti, Placido; Benati, Donatella; Merigo, Flavia

    2010-05-01

    The diffuse chemosensory system (DCS) is an anatomical structure composed of solitary chemosensory cells (SCCs, also called solitary chemoreceptor cells), which have analogies with taste cells but are not aggregated in buds. The concept of DCS has been advanced, after the discovery that cells similar to gustatory elements are present in several organs. The elements forming the DCS share common morphological and biochemical characteristics with the taste cells located in taste buds of the oro-pharyngeal cavity but they are localized in internal organs. In particular, they may express molecules of the chemoreceptorial cascade (e.g. trans-membrane taste receptors, the G-protein alpha-gustducin, PLCbeta2, TRPM5). This article will focus on the mammalian DCS in apparatuses of endodermic origin (i.e. digestive and respiratory systems), which is composed of an enormous number of sensory elements and presents a multiplicity of morphological aspects. Recent research has provided an adequate description of these elements, but the functional role for the DCS in these apparatuses is unknown. The initial findings led to the definition of a DCS structured like an iceberg, with a mysterious "submerged" portion localized in the distal part of endodermic apparatuses. Recent work has focussed on the discovery of this submerged portion, which now appears less puzzling. However, the functional roles of the different cytotypes belonging to the DCS are not well known. Recent studies linked chemosensation of the intraluminal content to local control of absorptive and secretory (exocrine and endocrine) processes. Control of the microbial population and detection of irritants seem to be other possible functions of the DCS. In the light of these new findings, the DCS might be thought to be involved in a wide range of diseases of both the respiratory (e.g. asthma, chronic obstructive pulmonary disease, cystic fibrosis) and digestive apparatuses (absorptive or secretive diseases, dysmicrobism

  18. A simple regression-based method to map quantitative trait loci underlying function-valued phenotypes.

    PubMed

    Kwak, Il-Youp; Moore, Candace R; Spalding, Edgar P; Broman, Karl W

    2014-08-01

    Most statistical methods for quantitative trait loci (QTL) mapping focus on a single phenotype. However, multiple phenotypes are commonly measured, and recent technological advances have greatly simplified the automated acquisition of numerous phenotypes, including function-valued phenotypes, such as growth measured over time. While methods exist for QTL mapping with function-valued phenotypes, they are generally computationally intensive and focus on single-QTL models. We propose two simple, fast methods that maintain high power and precision and are amenable to extensions with multiple-QTL models using a penalized likelihood approach. After identifying multiple QTL by these approaches, we can view the function-valued QTL effects to provide a deeper understanding of the underlying processes. Our methods have been implemented as a package for R, funqtl.

  19. The effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function

    PubMed Central

    Weber, Laney M.; Lopez, Christina G.; Anseth, Kristi S.

    2010-01-01

    The rational design of immunoprotective hydrogel barriers for transplanting insulin-producing cells requires an understanding of protein diffusion within the hydrogel network and how alterations to the network structure affect protein diffusion. Hydrogels of varying crosslinking density were formed via the chain polymerization of dimethacrylated PEG macromers of varying molecular weight, and the diffusion of six model proteins with molecular weights ranging from 5,700 to 67,000 g/mol was observed in these hydrogel networks. Protein release profiles were used to estimate diffusion coefficients for each protein/gel system that exhibited Fickian diffusion. Diffusion coefficients were on the order of 10−6 to 10−7 cm2/s, such that protein diffusion time scales (td = L2/D) from 0.5 mm thick gels vary from 5 minutes to 24 hours. Adult murine islets were encapsulated in PEG hydrogels of varying crosslinking density, and islet survival and insulin release was maintained after two weeks of culture in each gel condition. While the total insulin released during a one hour glucose stimulation period was the same from islets in each sample, increasing hydrogel crosslinking density contributed to delays in insulin release from hydrogel samples within the one hour stimulation period. PMID:18570315

  20. Correlation function analysis of the COBE differential microwave radiometer sky maps

    SciTech Connect

    Lineweaver, Charles Howe

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than ~20° is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9σ, > 10σ and > 18σ above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60° due to the 60° separation of the DMR horns. The mean covariance of 60° is 0.45%$+0.18\\atop{-0.14}$ of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  1. Mapping SAGE questionnaire to the International Classification of Functioning, Disability and Health (ICF).

    PubMed

    Raggi, Alberto; Quintas, Rui; Russo, Emanuela; Martinuzzi, Andrea; Costardi, Daniela; Frisoni, Giovanni Battista; Franco, Maria Grazia; Andreotti, Alessandra; Ojala, Matti; Peña, Sebastián; Perales, Jaime; Chatterji, Somnath; Miret, Marta; Tobiasz-Adamczyk, Beata; Koskinen, Seppo; Frattura, Lucilla; Leonardi, Matilde

    2014-01-01

    The collaborative research on ageing in Europe protocol was based on that of the World Health Organization Study on global AGEing and adult health (SAGE) project that investigated the relationship between health and well-being and provided a set of instruments that can be used across countries to monitor health and health-related outcomes of older populations as well as the strategies for addressing issues concerning the ageing process. To evaluate the degree to which SAGE protocol covered the spectrum of disability given the scope of the World Health Organization International Classification of Functioning, Disability and Health (ICF), a mapping exercise was performed with SAGE protocol. Results show that the SAGE protocol covers ICF domains in a non-uniform way, with environmental factors categories being underrepresented, whereas mental, cardiovascular, sensory functions and mobility were overrepresented. To overcome this partial coverage of ICF functioning categories, new assessment instruments have been developed. PRACTITIONER MESSAGE: Mapping exercises are valid procedures to understand the extent to which a survey protocol covers the spectrum of functioning. The mapping exercise with SAGE protocol shows that it provides only a partial representation of body functions and activities and participation domains, and the coverage of environmental factors is poor. New instruments are therefore needed for researchers to properly understand the health and disability of ageing populations.

  2. RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping.

    PubMed

    Ezpeleta, Santiago; Claver, José M; Pérez-Solano, Juan J; Martí, José V

    2015-10-27

    Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken.

  3. RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping

    PubMed Central

    Ezpeleta, Santiago; Claver, José M.; Pérez-Solano, Juan J.; Martí, José V.

    2015-01-01

    Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken. PMID:26516862

  4. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.

    PubMed

    Brett, Daniel J L; Kucernak, Anthony R; Aguiar, Patricia; Atkins, Stephen C; Brandon, Nigel P; Clague, Ralph; Cohen, Lesley F; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-09-10

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an 'experimental functional map' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models.

  5. Presurgical Mapping of the Language Network Using Resting State Functional Connectivity

    PubMed Central

    Tanaka, Naoaki; Stufflebeam, Steven M.

    2016-01-01

    Resting-state functional magnetic resonance imaging (Resting-state fMRI) is a tool for investigating the functional networks that arise during the resting-state of the brain. Recent advances of the resting-state fMRI analysis suggest its feasibility for evaluating language function. The most common clinical application is for presurgical mapping of cortex for a brain tumor or for resective epilespy surgery. In this article, we review the techniques and presurgical applications of resting-state fMRI analysis for language evaluation, and discuss the use in the clinical setting, focusing on planning for neurosurgery. PMID:26848557

  6. Presurgical Mapping of the Language Network Using Resting-state Functional Connectivity.

    PubMed

    Tanaka, Naoaki; Stufflebeam, Steven M

    2016-02-01

    Resting-state functional magnetic resonance imaging (resting-state fMRI) is a tool for investigating the functional networks that arise during the resting state of the brain. Recent advances of the resting-state fMRI analysis suggest its feasibility for evaluating language function. The most common clinical application is for presurgical mapping of cortex for a brain tumor or for resective epilespy surgery. In this article, we review the techniques and presurgical applications of resting-state fMRI analysis for language evaluation, and discuss the use in the clinical setting, focusing on planning for neurosurgery.

  7. A Functional Model for Teaching Osmosis-Diffusion to Biology Students

    ERIC Educational Resources Information Center

    Olsen, Richard W.; Petry, Douglas E.

    1976-01-01

    Described is a maternal-fetal model, operated by the student, to teach osmosis-diffusion to biology students. Included are materials needed, assembly instructions, and student operating procedures. (SL)

  8. Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions

    NASA Astrophysics Data System (ADS)

    Hooshmandasl, M. R.; Heydari, M. H.; Cattani, C.

    2016-08-01

    Fractional calculus has been used to model physical and engineering processes that are best described by fractional differential equations. Therefore designing efficient and reliable techniques for the solution of such equations is an important task. In this paper, we propose an efficient and accurate Galerkin method based on the fractional-order Legendre functions (FLFs) for solving the fractional sub-diffusion equation (FSDE) and the time-fractional diffusion-wave equation (FDWE). The time-fractional derivatives for FSDE are described in the Riemann-Liouville sense, while for FDWE are described in the Caputo sense. To this end, we first derive a new operational matrix of fractional integration (OMFI) in the Riemann-Liouville sense for FLFs. Next, we transform the original FSDE into an equivalent problem with fractional derivatives in the Caputo sense. Then the FLFs and their OMFI together with the Galerkin method are used to transform the problems under consideration into the corresponding linear systems of algebraic equations, which can be simply solved to achieve the numerical solutions of the problems. The proposed method is very convenient for solving such kind of problems, since the initial and boundary conditions are taken into account automatically. Furthermore, the efficiency of the proposed method is shown for some concrete examples. The results reveal that the proposed method is very accurate and efficient.

  9. Functional mapping of cell surface proteins with localized stimulation of single cells

    NASA Astrophysics Data System (ADS)

    Sun, Bingyun; Chiu, Daniel T.

    2003-11-01

    This paper describes the development of using individual micro and nano meter-sized vesicles as delivery vessels to functionally map the distribution of cell surface proteins at the level of single cells. The formation of different sizes of vesicles from tens of nanometers to a few micrometers in diameter that contain the desired molecules is addressed. An optical trap is used to manipulate the loaded vesicle to specific cell morphology of interest, and a pulsed UV laser is used to photo-release the stimuli onto the cell membrane. Carbachol activated cellular calcium flux, upon binding to muscarinic acetylcholine receptors, is studied by this method, and the potential of using this method for the functional mapping of localized proteins on the cell surface membrane is discussed.

  10. Beyond the usual mapping functions in GPS, VLBI and Deep Space tracking.

    NASA Astrophysics Data System (ADS)

    Barriot, Jean-Pierre; Serafini, Jonathan; Sichoix, Lydie

    2014-05-01

    We describe here a new algorithm to model the water contents of the atmosphere (including ZWD) from GPS slant wet delays relative to a single receiver. We first make the assumption that the water vapor contents are mainly governed by a scale height (exponential law), and secondly that the departures from this decaying exponential can be mapped as a set of low degree 3D Zernike functions (w.r.t. space) and Tchebyshev polynomials (w.r.t. time.) We compare this new algorithm with previous algorithms known as mapping functions in GPS, VLBI and Deep Space tracking and give an example with data acquired over a one day time span at the Geodesy Observatory of Tahiti.

  11. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. III. Diffusion of photo-produced H2 as a function of temperature

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Dartois, E.; Muñoz Caro, G. M.

    2016-06-01

    Context. Hydrogenated amorphous carbon (a-C:H) has been proposed as one of the carbonaceous solids detected in the interstellar medium. Energetic processing of the a-C:H particles leads to the dissociation of the C-H bonds and the formation of hydrogen molecules and small hydrocarbons. Photo-produced H2 molecules in the bulk of the dust particles can diffuse out to the gas phase and contribute to the total H2 abundance. Aims: We have simulated this process in the laboratory with plasma-produced a-C:H and a-C:D analogs under astrophysically relevant conditions to investigate the dependence of the diffusion as a function of temperature. Methods: Experimental simulations were performed in a high-vacuum chamber, with complementary experiments carried out in an ultra-high-vacuum chamber. Plasma-produced a-C:H and a-C:D analogs were UV-irradiated using a microwave-discharged hydrogen flow lamp. Molecules diffusing to the gas-phase were detected by a quadrupole mass spectrometer, providing a measurement of the outgoing H2 or D2 flux. By comparing the experimental measurements with the expected flux from a one-dimensional diffusion model, a diffusion coefficient D could be derived for experiments carried out at different temperatures. Results: Dependence on the diffusion coefficient D with the temperature followed an Arrhenius-type equation. The activation energy for the diffusion process was estimated (ED(H2) = 1660 ± 110 K, ED(D2) = 2090 ± 90 K), as well as the pre-exponential factor (D0(H2) = 0.0007 cm2 s-1, D0(D2) = 0.0045 cm2 s-1). Conclusions: The strong decrease of the diffusion coefficient at low dust particle temperatures exponentially increases the diffusion times in astrophysical environments. Therefore, transient dust heating by cosmic rays needs to be invoked for the release of the photo-produced H2 molecules in cold photon-dominated regions, where destruction of the aliphatic component in hydrogenated amorphous carbons most probably takes place.

  12. Mapping of healthy oral mucosal tissue using diffuse reflectance spectroscopy: ratiometric-based total hemoglobin comparative study.

    PubMed

    Hafez, Razan; Hamadah, Omar; Bachir, Wesam

    2015-11-01

    The objective of this study is to clinically evaluate the diffuse reflectance spectroscopy (DRS) ratiometric method for differentiation of normal oral mucosal tissues with different histological natures and vascularizations in the oral cavity. Twenty-one healthy patients aged 20-44 years were diagnosed as healthy and probed with a portable DRS system. Diffuse reflectance spectra were recorded in vivo in the range (450-650 nm). In this study, the following three oral mucosal tissues were considered: masticatory mucosa, lining mucosa, and specialized mucosa. Spectral features based on spectral intensity ratios were determined at five specific wavelengths (512, 540, 558, 575, and 620 nm). Total hemoglobin based on spectral ratios for the three anatomical regions have also been evaluated. The three studied groups representing different anatomical regions in the oral cavity were compared using analysis of variance and post hoc least significant difference tests. Statistical analysis showed a significant difference in the mean of diffuse spectral ratios between the groups (P < 0.05). Post hoc test detected significant difference between masticatory mucosa group and lining mucosa group (P < 0.05) and between masticatory mucosa group and specialized mucosa group (P = 0.000, at ratio 558/620 and P = 0.000, at ratio 575/620). Significant difference was also found between the lining mucosa group and specialized mucosa group (P = 0.000, at ratio 512/558 and P = 0.000, at ratio 512/575). It has also been shown that spectral ratios at wavelengths 558, 575, and 620 nm reveal the greatest difference among the main oral sites in terms of total hemoglobin content. Diffuse reflectance spectroscopy might be used for creating a DRS databank of normal oral mucosal tissue with specific spectral ratios featuring the total hemoglobin concentrations. That would further enhance the discrimination of oral tissue for examining the histological nature of oral mucosa

  13. A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping

    NASA Astrophysics Data System (ADS)

    Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming

    2016-11-01

    Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.

  14. Novel techniques of real-time blood flow and functional mapping: technical note.

    PubMed

    Kamada, Kyousuke; Ogawa, Hiroshi; Saito, Masato; Tamura, Yukie; Anei, Ryogo; Kapeller, Christoph; Hayashi, Hideaki; Prueckl, Robert; Guger, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies.

  15. Novel Techniques of Real-time Blood Flow and Functional Mapping: Technical Note

    PubMed Central

    KAMADA, Kyousuke; OGAWA, Hiroshi; SAITO, Masato; TAMURA, Yukie; ANEI, Ryogo; KAPELLER, Christoph; HAYASHI, Hideaki; PRUECKL, Robert; GUGER, Christoph

    2014-01-01

    There are two main approaches to intraoperative monitoring in neurosurgery. One approach is related to fluorescent phenomena and the other is related to oscillatory neuronal activity. We developed novel techniques to visualize blood flow (BF) conditions in real time, based on indocyanine green videography (ICG-VG) and the electrophysiological phenomenon of high gamma activity (HGA). We investigated the use of ICG-VG in four patients with moyamoya disease and two with arteriovenous malformation (AVM), and we investigated the use of real-time HGA mapping in four patients with brain tumors who underwent lesion resection with awake craniotomy. Real-time data processing of ICG-VG was based on perfusion imaging, which generated parameters including arrival time (AT), mean transit time (MTT), and BF of brain surface vessels. During awake craniotomy, we analyzed the frequency components of brain oscillation and performed real-time HGA mapping to identify functional areas. Processed results were projected on a wireless monitor linked to the operating microscope. After revascularization for moyamoya disease, AT and BF were significantly shortened and increased, respectively, suggesting hyperperfusion. Real-time fusion images on the wireless monitor provided anatomical, BF, and functional information simultaneously, and allowed the resection of AVMs under the microscope. Real-time HGA mapping during awake craniotomy rapidly indicated the eloquent areas of motor and language function and significantly shortened the operation time. These novel techniques, which we introduced might improve the reliability of intraoperative monitoring and enable the development of rational and objective surgical strategies. PMID:25263624

  16. Effect of yoga regimen on lung functions including diffusion capacity in coronary artery disease patients: A randomized controlled study

    PubMed Central

    Yadav, Asha; Singh, Savita; Singh, KP; Pai, Preeti

    2015-01-01

    Background: Lung functions are found to be impaired in coronary artery disease (CAD), congestive heart failure, left ventricular dysfunction, and after cardiac surgery. Diffusion capacity progressively worsens as the severity of CAD increases due to reduction in lung tissue participating in gas exchange. Aims and Objectives: Pranayama breathing exercises and yogic postures may play an impressive role in improving cardio-respiratory efficiency and facilitating gas diffusion at the alveolo-capillary membrane. This study was done to see the effect of yoga regimen on lung functions particularly diffusion capacity in CAD patients. Materials and Methods: A total of 80 stable CAD patients below 65 years of age of both sexes were selected and randomized into two groups of 40 each. Group I CAD patients were given yoga regimen for 3 months which consisted of yogic postures, pranayama breathing exercises, dietary modification, and holistic teaching along with their conventional medicine while Group II CAD patients were put only on conventional medicine. Lung functions including diffusion capacity were recorded thrice in both the groups: 0 day as baseline, 22nd day and on 90th day by using computerized MS medisoft Cardio-respiratory Instrument, HYP’AIR Compact model of cardio-respiratory testing machine was manufactured by P K Morgan, India. The recorded parameters were statistically analyzed by repeated measures ANOVA followed by Tukey's test in both the groups. Cardiovascular parameters were also compared before and after intervention in both the groups. Results: Statistically significant improvements were seen in slow vital capacity, forced vital capacity, peak expiratory flow rate, maximum voluntary ventilation, and diffusion factor/ transfer factor of lung for carbon monoxide after 3 months of yoga regimen in Group I. Forced expiratory volume in 1st sec (FEV1), and FEV1 % also showed a trend toward improvement although not statistically significant. HR, SBP and DBP also

  17. Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure.

    PubMed

    Solanko, Lukasz M; Honigmann, Alf; Midtiby, Henrik Skov; Lund, Frederik W; Brewer, Jonathan R; Dekaris, Vjekoslav; Bittman, Robert; Eggeling, Christian; Wüstner, Daniel

    2013-11-05

    Cholesterol tagged with the BODIPY fluorophore via the central difluoroboron moiety of the dye (B-Chol) is a promising probe for studying intracellular cholesterol dynamics. We synthesized a new BODIPY-cholesterol probe (B-P-Chol) with the fluorophore attached via one of its pyrrole rings to carbon-24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal, respectively. B-Chol is in all three membrane systems much stronger oriented than B-P-Chol. Interestingly, we found that the lateral diffusion in the PM was two times slower for B-Chol than for B-P-Chol, although we found no difference in lateral diffusion in model membranes. Stimulated emission depletion microscopy, performed for the first time, to our knowledge, with fluorescent sterols, revealed that the difference in lateral diffusion of the BODIPY-cholesterol probes was not caused by anomalous subdiffusion, because diffusion of both analogs in the PM was free but not hindered. Our combined measurements show that the position and orientation of the BODIPY moiety in cholesterol analogs have a severe influence on lateral diffusion specifically in the PM of living cells.

  18. Quantitative full-colour transmitted light microscopy and dyes for concentration mapping and measurement of diffusion coefficients in microfluidic architectures.

    PubMed

    Werts, Martinus H V; Raimbault, Vincent; Texier-Picard, Rozenn; Poizat, Rémi; Français, Olivier; Griscom, Laurent; Navarro, Julien R G

    2012-02-21

    A simple and versatile methodology has been developed for the simultaneous measurement of multiple concentration profiles of colourants in transparent microfluidic systems, using a conventional transmitted light microscope, a digital colour (RGB) camera and numerical image processing combined with multicomponent analysis. Rigorous application of the Beer-Lambert law would require monochromatic probe conditions, but in spite of the broad spectral bandwidths of the three colour channels of the camera, a linear relation between the measured optical density and dye concentration is established under certain conditions. An optimised collection of dye solutions for the quantitative optical microscopic characterisation of microfluidic devices is proposed. Using the methodology for optical concentration measurement we then implement and validate a simplified and robust method for the microfluidic measurement of diffusion coefficients using an H-filter architecture. It consists of measuring the ratio of the concentrations of the two output channels of the H-filter. It enables facile determination of the diffusion coefficient, even for non-fluorescent molecules and nanoparticles, and is compatible with non-optical detection of the analyte.

  19. Mapping the energy density of shaped waves in scattering media onto a complete set of diffusion modes.

    PubMed

    Ojambati, Oluwafemi S; Mosk, Allard P; Vellekoop, Ivo M; Lagendijk, Ad; Vos, Willem L

    2016-08-08

    We study the energy density of shaped waves inside a quasi-1D disordered waveguide. We find that the spatial energy density of optimally shaped waves, when expanded in the complete set of eigenfunctions of the diffusion equation, is well described by considering only a few of the lowest eigenfunctions. Taking into account only the fundamental eigenfunction, the total internal energy inside the sample is underestimated by only 2%. The spatial distribution of the shaped energy density is very similar to the fundamental eigenfunction, up to a cosine distance of about 0.01. We obtain the energy density of transmission eigenchannels inside the sample by numerical simulation of the scattering matrix. Computing the transmission-averaged energy density over all transmission channels yields the ensemble averaged energy density of shaped waves. From the averaged energy density, we reconstruct its spatial distribution using the eigenfunctions of the diffusion equation. The results of our study have exciting applications in controlled biomedical imaging, efficient light harvesting in solar cells, enhanced energy conversion in solid-state lighting, and low threshold random lasers.

  20. MIMEAnTo: profiling functional RNA in mutational interference mapping experiments.

    PubMed

    Smith, Maureen R; Smyth, Redmond P; Marquet, Roland; von Kleist, Max

    2016-11-01

    The mutational interference mapping experiment (MIME) is a powerful method that, coupled to a bioinformatics analysis pipeline, allows the identification of domains and structures in RNA that are important for its function. In MIME, target RNAs are randomly mutated, selected by function, physically separated and sequenced using next-generation sequencing (NGS). Quantitative effects of each mutation at each position in the RNA can be recovered with statistical certainty using the herein developed user-friendly, cross-platform software MIMEAnTo (MIME Analysis Tool).

  1. Rapid and low-invasive functional brain mapping by realtime visualization of high gamma activity for awake craniotomy.

    PubMed

    Kamada, K; Ogawa, H; Kapeller, C; Prueckl, R; Guger, C

    2014-01-01

    For neurosurgery with an awake craniotomy, the critical issue is to set aside enough time to identify eloquent cortices by electrocortical stimulation (ECS). High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram (ECoG) is assumed to reflect localized cortical processing. In this report, we used realtime HGA mapping and functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Three patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. After the craniotomy, we recorded ECoG activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated realtime HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared to ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. The investigation times of HGA mapping was significantly shorter than that of ECS mapping. Specificities of the motor and language-fMRI, however, did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate functional mapping.

  2. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal.

    PubMed

    Keefe, D H; Bulen, J C; Campbell, S L; Burns, E M

    1994-01-01

    The diffuse-field pressure transfer function from a reverberant field to the ear canal of human infants, ages 1, 3, 6, 12, and 24 months, has been measured from 125-10700 Hz. The source was a loudspeaker using pink noise, and the diffuse-field pressure and the ear-canal pressure were simultaneously measured using a spatial averaging technique in a reverberant room. The results in most subjects show a two-peak structure in the 2-6-kHz range, corresponding to the ear-canal and concha resonances. The ear-canal resonance frequency decreases from 4.4 kHz at age 1 month to 2.9 kHz at age 24 months. The concha resonance frequency decreases from 5.5 kHz at age 1 month to 4.5 kHz at age 24 months. Below 2 kHz, the diffuse-field transfer function shows effects due to the torsos of the infant and parent, and varies with how the infant is held. Comparisons are reported of the diffuse-field absorption cross section for infants relative to adults. This quantity is a measure of power absorbed by the middle ear from a diffuse sound field, and large differences are observed in infants relative to adults. The radiation efficiencies of the infant and the adult ear are small at low frequencies, near unity at midfrequencies, and decrease at higher frequencies. The process of ear-canal development is not yet complete at age 24 months. The results have implications for experiments on hearing in infants.

  3. Dynamic topographic mapping of the human bladder during voiding using functional near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Macnab, Andrew; Stothers, Lynn; Shadgan, Babak

    2009-03-01

    Functional near-infrared spectroscopy (fNIRS) with multichannel instruments and grids of source-detector pairs can map regional change in oxygenation/hemodynamics. Developed for cortical brain mapping, fNIRS technology has relevance in other organs where pathology affects the microcirculation. We describe fNIRS of the human bladder for evaluation of hemodynamic change during voiding. A 5×5-cm grid with two source-detector pairs is placed on the abdomen suprapubically in an asymptomatic male. In four separate trials, after natural bladder filling NIRS-derived changes in oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), and total hemoglobin (tHb) concentration are recorded during voiding (measured via uroflow), using four channels of a four wavelength continuous wave instrument. Graphic and video images (topographic mapping software) are generated. Changes in tHb occur following permission to void that predominantly reflected variation in O2Hb; tHb peaks at maximum urine flow then falls to a nadir lasting to uroflow end. Change in fNIRS video color intensity correlates with graphic change in chromophore concentration. Color variations across the mapped area suggest regional hemodynamic variation. fNIRS bladder studies generate reproducible chromophore data consistent with single channel studies, but the dynamic color video and larger tissue area monitored potentially offer new methodology for investigating regional variations in bladder oxygenation and hemodynamics.

  4. Fast IR laser mapping ellipsometry for the study of functional organic thin films.

    PubMed

    Furchner, Andreas; Sun, Guoguang; Ketelsen, Helge; Rappich, Jörg; Hinrichs, Karsten

    2015-03-21

    Fast infrared mapping with sub-millimeter lateral resolution as well as time-resolved infrared studies of kinetic processes of functional organic thin films require a new generation of infrared ellipsometers. We present a novel laboratory-based infrared (IR) laser mapping ellipsometer, in which a laser is coupled to a variable-angle rotating analyzer ellipsometer. Compared to conventional Fourier-transform infrared (FT-IR) ellipsometers, the IR laser ellipsometer provides ten- to hundredfold shorter measurement times down to 80 ms per measured spot, as well as about tenfold increased lateral resolution of 120 μm, thus enabling mapping of small sample areas with thin-film sensitivity. The ellipsometer, equipped with a HeNe laser emitting at about 2949 cm(-1), was applied for the optical characterization of inhomogeneous poly(3-hexylthiophene) [P3HT] and poly(N-isopropylacrylamide) [PNIPAAm] organic thin films used for opto-electronics and bioapplications. With the constant development of tunable IR laser sources, laser-based infrared ellipsometry is a promising technique for fast in-depth mapping characterization of thin films and blends.

  5. Mapping plant functional types over broad mountainous regions: A phenological hierarchical time-space classification

    NASA Astrophysics Data System (ADS)

    Cai, Danlu; Guan, Yanning; Guo, Shan; Zhang, Chunyan; Fraedrich, Klaus

    2013-04-01

    Research on global climate change requires plant functional type (PFT) products. Although several PFT mapping procedures for remote sensing imagery are being used (MODIS PFT), none of them appears to be specifically designed to map and evaluate PFTs over broad mountainous areas which are highly relevant regions to identify and analyse the response of natural ecosystems. The limitations of existing methods to generate PFT (uncertainty of accuracy and limited expandability to broad geographic areas) suggest the development of a new method to determine PFT distributions, which is based on a hierarchical strategy by integrating time varying biomass and phenological information with topography: (i) Temporal variability: Fourier transformation of MODIS Normalized Difference Vegetation Index (NDVI) time series (2006 to 2010) to the frequency domain (five year of five half month scenes). (ii) Spatial partitioning: The harmonics are used to partition the study area into four mapping zones using phenological information based on the harmonics and digital elevation data. (iii) Classification: A similarity measure (Euclidean distance) is employed to obtain the phenological hierarchical time-space plant type classification. Applicability and effectiveness is tested for the eastern Tibetan Plateau. Comparing with the MODIS PFT product and evaluation with the Vegetation Map of the People's Republic of China (1:1000000) reveal a gain on overall accuracy (13081 random samples) by about 7% from 64.5% compared to 57.7% by the MODIS PFT product.

  6. Exact free energy functional for a driven diffusive open stationary nonequilibrium system.

    PubMed

    Derrida, B; Lebowitz, J L; Speer, E R

    2002-07-15

    We obtain the exact probability exp[-LF([rho(x)])] of finding a macroscopic density profile rho(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system L-->infinity. F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in nonconvexity of F, in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state.

  7. Exact Free Energy Functional for a Driven Diffusive Open Stationary Nonequilibrium System

    NASA Astrophysics Data System (ADS)

    Derrida, B.; Lebowitz, J. L.; Speer, E. R.

    2002-06-01

    We obtain the exact probability exp[-LF({ρ(x)})] of finding a macroscopic density profile ρ(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system L-->∞. F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in nonconvexity of F, in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state.

  8. Diffuse renal parenchyma uptake with bone scintigraphy in a patient with paroxysmal nocturnal hemoglobinuria and normal kidney function.

    PubMed

    Balink, Hans; Hoogendoorn, Mels; Hemmelder, Marc

    2014-03-01

    A 41-year-old woman with a Harrington spondylodesis presented with lower back pain. Bone scintigraphy showed diffusely increased parenchymal uptake in both kidneys. She reported 2 previous periods of dark, almost black, urine. Additional flow cytometric analysis confirmed the diagnosis of paroxysmal nocturnal hemoglobinuria. The increased renal parenchyma uptake is very probably due to paroxysmal nocturnal hemoglobinuria-related renal hemosiderosis. Remarkably, the patient did not develop any abnormality of renal function.

  9. Time Dependent Density Functional Theory Calculations of Large Compact PAH Cations: Implications for the Diffuse Interstellar Bands

    NASA Technical Reports Server (NTRS)

    Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Gordon-Head, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We investigate the electronic absorption spectra of several maximally pericondensed polycyclic aromatic hydrocarbon radical cations with time dependent density functional theory calculations. We find interesting trends in the vertical excitation energies and oscillator strengths for this series containing pyrene through circumcoronene, the largest species containing more than 50 carbon atoms. We discuss the implications of these new results for the size and structure distribution of the diffuse interstellar band carriers.

  10. eConnectome: A MATLAB toolbox for mapping and imaging of brain functional connectivity.

    PubMed

    He, Bin; Dai, Yakang; Astolfi, Laura; Babiloni, Fabio; Yuan, Han; Yang, Lin

    2011-02-15

    We have developed a MATLAB-based toolbox, eConnectome (electrophysiological connectome), for mapping and imaging functional connectivity at both the scalp and cortical levels from the electroencephalogram (EEG), as well as from the electrocorticogram (ECoG). Graphical user interfaces were designed for interactive and intuitive use of the toolbox. Major functions of eConnectome include EEG/ECoG preprocessing, scalp spatial mapping, cortical source estimation, connectivity analysis, and visualization. Granger causality measures such as directed transfer function and adaptive directed transfer function were implemented to estimate the directional interactions of brain functional networks, over the scalp and cortical sensor spaces. Cortical current density inverse imaging was implemented using a generic realistic geometry brain-head model from scalp EEGs. Granger causality could be further estimated over the cortical source domain from the inversely reconstructed cortical source signals as derived from the scalp EEG. Users may implement other connectivity estimators in the framework of eConnectome for various applications. The toolbox package is open-source and freely available at http://econnectome.umn.edu under the GNU general public license for noncommercial and academic uses.

  11. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map.

    PubMed

    Collins, Sean R; Miller, Kyle M; Maas, Nancy L; Roguev, Assen; Fillingham, Jeffrey; Chu, Clement S; Schuldiner, Maya; Gebbia, Marinella; Recht, Judith; Shales, Michael; Ding, Huiming; Xu, Hong; Han, Junhong; Ingvarsdottir, Kristin; Cheng, Benjamin; Andrews, Brenda; Boone, Charles; Berger, Shelley L; Hieter, Phil; Zhang, Zhiguo; Brown, Grant W; Ingles, C James; Emili, Andrew; Allis, C David; Toczyski, David P; Weissman, Jonathan S; Greenblatt, Jack F; Krogan, Nevan J

    2007-04-12

    Defining the functional relationships between proteins is critical for understanding virtually all aspects of cell biology. Large-scale identification of protein complexes has provided one important step towards this goal; however, even knowledge of the stoichiometry, affinity and lifetime of every protein-protein interaction would not reveal the functional relationships between and within such complexes. Genetic interactions can provide functional information that is largely invisible to protein-protein interaction data sets. Here we present an epistatic miniarray profile (E-MAP) consisting of quantitative pairwise measurements of the genetic interactions between 743 Saccharomyces cerevisiae genes involved in various aspects of chromosome biology (including DNA replication/repair, chromatid segregation and transcriptional regulation). This E-MAP reveals that physical interactions fall into two well-represented classes distinguished by whether or not the individual proteins act coherently to carry out a common function. Thus, genetic interaction data make it possible to dissect functionally multi-protein complexes, including Mediator, and to organize distinct protein complexes into pathways. In one pathway defined here, we show that Rtt109 is the founding member of a novel class of histone acetyltransferases responsible for Asf1-dependent acetylation of histone H3 on lysine 56. This modification, in turn, enables a ubiquitin ligase complex containing the cullin Rtt101 to ensure genomic integrity during DNA replication.

  12. Structure-function relationships in the context of reinforcement-related learning: a combined diffusion tensor imaging-functional magnetic resonance imaging study.

    PubMed

    Koch, K; Wagner, G; Dahnke, R; Schachtzabel, C; Güllmar, D; Reichenbach, J R; Schlösser, R G M

    2010-06-16

    In the context of probabilistic learning, previous functional magnetic resonance imaging studies have shown decreasing uncertainty accompanying decreasing neuronal activation in task-relevant networks. Moreover, initial evidence points to a relationship between white matter structure and cognitive performance. Little is known, however, about the structural correlates underlying individual differences in activation and performance in the context of probabilistic learning. This combined functional magnetic resonance imaging-diffusion tensor imaging study aimed at investigating the individual ability to reduce processing resources with decreasing uncertainty in direct relation to individual characteristics in white matter brain structure. Results showed that more successful learners, as compared with less successful learners, exhibited stronger activation decreases with decreasing uncertainty. An increased mean and axial diffusivity in, among others, the inferior and superior longitudinal fasciculus, the posterior part of the cingulum bundle, and the corpus callosum were detectable in less successful learners compared with more successful learners. Most importantly, there was a negative correlation between uncertainty-related activation and diffusivity in a fronto-parieto-striatal network in less successful learners only, indicating a direct relation between diffusivity and the ability to reduce processing resources with decreasing uncertainty. These findings indicate that interindividual variations in white matter characteristics within the normal population might be linked to neuronal activation and critically influence individual learning performance.

  13. The relationship between cognitive function and high-resolution diffusion tensor MRI of the cingulum bundle in multiple sclerosis

    PubMed Central

    Koenig, Katherine A.; Sakaie, Ken E.; Lowe, Mark J.; Lin, Jian; Stone, Lael; Bermel, Robert A.; Beall, Erik B.; Rao, Stephen M.; Trapp, Bruce D.; Phillips, Micheal D.

    2015-01-01

    Background Imaging can provide noninvasive neural markers of disease progression in multiple sclerosis that are related to behavioral and cognitive symptoms. Past work suggests that diffusion tensor imaging (DTI) provides a measure of white matter pathology, including demyelination and axonal counts. Objectives In the current study, the authors investigate the relationship of DTI measures in the cingulum bundle to common deficits in MS, including episodic memory, working memory, and information processing speed. Methods Fifty-seven patients with MS and 17 age- and education-matched controls underwent high-spatial resolution diffusion scans and cognitive testing. Probabilistic tracking was used to generate tracks from the posterior cingulate cortex to the entorhinal cortex. Results Radial and axial diffusivity values were significantly different between patients and controls (p<0.031), and in patients bilateral diffusion measures were significantly related to measures of episodic memory and speed of processing (p<0.033). Conclusions The tractography-based measures of posterior cingulum integrity reported here support further development of DTI as a viable measure of axonal integrity and cognitive function in patients with MS. PMID:26106010

  14. Mapping the current–current correlation function near a quantum critical point

    SciTech Connect

    Prodan, Emil; Bellissard, Jean

    2016-05-15

    The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.

  15. Application of the lamp mapping technique for overlap function for Raman lidar systems.

    PubMed

    Walker, Monique; Venable, Demetrius; Whiteman, David N; Sakai, Tetsu

    2016-04-01

    Traditionally, the lidar water vapor mixing ratio (WVMR) is corrected for overlap using data from another instrument, such as a radiosonde. Here we introduce a new experimental method to determine the overlap function using the lamp mapping technique (LMT), which relies on the lidar optics and detection system. The LMT discussed here involves a standard halogen lamp being scanned over the aperture of a Raman lidar telescope in synchronization with the lidar detection system [Appl. Opt.50, 4622 (2011)APOPAI0003-693510.1364/AO.50.004622, Appl. Opt.53, 8538 (2014)APOPAI0003-693510.1364/AO.53.008535]. In this paper, we show results for a LMT-determined overlap function for individual channels, as well as a WVMR overlap function. We found that the LMT-determined WVMR overlap functions deviate within 5% of the traditional radiosonde-determined overlap.

  16. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging.

    PubMed

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J; Gant, Dana J; Alaverdyan, Mher; Kiosea, Nicolae C; Nazari, Sean; Chen, Ping Ping; Nothias, Fatiha; Chan, Piu; Teng, Edmond; Frautschy, Sally A; Cole, Greg M

    2014-05-21

    Hyperphosphorylation and accumulation of tau aggregates are prominent features in tauopathies, including Alzheimer's disease, but the impact of loss of tau function on synaptic and cognitive deficits remains poorly understood. We report that old (19-20 months; OKO) but not middle-aged (8-9 months; MKO) tau knock-out mice develop Morris Water Maze (MWM) deficits and loss of hippocampal acetylated α-tubulin and excitatory synaptic proteins. Mild motor deficits and reduction in tyrosine hydroxylase (TH) in the substantia nigra were present by middle age, but did not affect MWM performance, whereas OKO mice showed MWM deficits paralleling hippocampal deficits. Deletion of tau, a microtubule-associated protein (MAP), resulted in increased levels of MAP1A, MAP1B, and MAP2 in MKO, followed by loss of MAP2 and MAP1B in OKO. Hippocampal synaptic deficits in OKO mice were partially corrected with dietary supplementation with docosahexaenoic acid (DHA) and both MWM and synaptic deficits were fully corrected by combining DHA with α-lipoic acid (ALA), which also prevented TH loss. DHA or DHA/ALA restored phosphorylated and total GSK3β and attenuated hyperactivation of the tau C-Jun N-terminal kinases (JNKs) while increasing MAP1B, dephosphorylated (active) MAP2, and acetylated α-tubulin, suggesting improved microtubule stability and maintenance of active compensatory MAPs. Our results implicate the loss of MAP function in age-associated hippocampal deficits and identify a safe dietary intervention, rescuing both MAP function and TH in OKO mice. Therefore, in addition to microtubule-stabilizing therapeutic drugs, preserving or restoring compensatory MAP function may be a useful new prevention strategy.

  17. Finding zeros of nonlinear functions using the hybrid parallel cell mapping method

    NASA Astrophysics Data System (ADS)

    Xiong, Fu-Rui; Schütze, Oliver; Ding, Qian; Sun, Jian-Qiao

    2016-05-01

    Analysis of nonlinear dynamical systems including finding equilibrium states and stability boundaries often leads to a problem of finding zeros of vector functions. However, finding all the zeros of a set of vector functions in the domain of interest is quite a challenging task. This paper proposes a zero finding algorithm that combines the cell mapping methods and the subdivision techniques. Both the simple cell mapping (SCM) and generalized cell mapping (GCM) methods are used to identify a covering set of zeros. The subdivision technique is applied to enhance the solution resolution. The parallel implementation of the proposed method is discussed extensively. Several examples are presented to demonstrate the application and effectiveness of the proposed method. We then extend the study of finding zeros to the problem of finding stability boundaries of potential fields. Examples of two and three dimensional potential fields are studied. In addition to the effectiveness in finding the stability boundaries, the proposed method can handle several millions of cells in just a few seconds with the help of parallel computing in graphics processing units (GPUs).

  18. Incorporating Functional Annotations for Fine-Mapping Causal Variants in a Bayesian Framework Using Summary Statistics.

    PubMed

    Chen, Wenan; McDonnell, Shannon K; Thibodeau, Stephen N; Tillmans, Lori S; Schaid, Daniel J

    2016-11-01

    Functional annotations have been shown to improve both the discovery power and fine-mapping accuracy in genome-wide association studies. However, the optimal strategy to incorporate the large number of existing annotations is still not clear. In this study, we propose a Bayesian framework to incorporate functional annotations in a systematic manner. We compute the maximum a posteriori solution and use cross validation to find the optimal penalty parameters. By extending our previous fine-mapping method CAVIARBF into this framework, we require only summary statistics as input. We also derived an exact calculation of Bayes factors using summary statistics for quantitative traits, which is necessary when a large proportion of trait variance is explained by the variants of interest, such as in fine mapping expression quantitative trait loci (eQTL). We compared the proposed method with PAINTOR using different strategies to combine annotations. Simulation results show that the proposed method achieves the best accuracy in identifying causal variants among the different strategies and methods compared. We also find that for annotations with moderate effects from a large annotation pool, screening annotations individually and then combining the top annotations can produce overly optimistic results. We applied these methods on two real data sets: a meta-analysis result of lipid traits and a cis-eQTL study of normal prostate tissues. For the eQTL data, incorporating annotations significantly increased the number of potential causal variants with high probabilities.

  19. Investigation of techniques to quantify in vivo lesion volume based on comparison of water apparent diffusion coefficient (ADC) maps with histology in focal cerebral ischemia of rats.

    PubMed

    Kazemi, Mark; Silva, Matthew D; Li, Fuhai; Fisher, Marc; Sotak, Christopher H

    2004-06-01

    Stroke lesion-volume estimates derived from calculated water apparent diffusion coefficient (ADC) maps provide a quantitative surrogate end-point for investigating the efficacy of drug treatment or studying the temporal evolution of cerebral ischemia. Methodology is described for estimating ischemic lesion volumes in a rat model of permanent middle cerebral artery occlusion (MCAO) based on absolute and percent-reduction threshold values of the water ADC at 3 h post-MCAO. Volume estimates derived from average ADC (ADC(av)) maps were compared with those derived from post-mortem histological sections. Optimum ADC thresholds were established as those that provided the best correlation and one-to-one correspondence between ADC- and histologically derived lesion-volume estimates. At 3 h post-MCAO, an absolute-ADC(av) threshold of 47 x 10(-5) mm(2)/s (corresponding to a 33% reduction in ADC(av) based on a contralateral hemisphere comparison) provided the most accurate estimate of percent hemispheric lesion volume (%HLV). Experimental and data analysis issues for improving and validating the usefulness of DWI as a surrogate endpoint for the quantification of ischemic lesion volume are discussed.

  20. NOTCH1, TP53, and MAP2K1 Mutations in Splenic Diffuse Red Pulp Small B-cell Lymphoma Are Associated With Progressive Disease.

    PubMed

    Martinez, Daniel; Navarro, Alba; Martinez-Trillos, Alejandra; Molina-Urra, Ricardo; Gonzalez-Farre, Blanca; Salaverria, Itziar; Nadeu, Ferran; Enjuanes, Anna; Clot, Guillem; Costa, Dolors; Carrio, Ana; Villamor, Neus; Colomer, Dolors; Martinez, Antonio; Bens, Susanne; Siebert, Reiner; Wotherspoon, Andrew; Beà, Sílvia; Matutes, Estella; Campo, Elias

    2016-02-01

    Splenic diffuse red pulp small B-cell lymphoma (SDRPL) is considered an indolent neoplasm and its pathogenesis is not well known. We investigated the molecular characteristics of 19 SDRPL patients, 5 of them with progressive disease. IGHV genes were mutated in 9/13 (69%). Cytogenetic and molecular studies identified complex karyotypes in 2 cases, and IGH rearrangements in 3, with PAX5 and potentially TCL1 as partners in each one of them. Copy number arrays showed aberrations in 69% of the tumors, including recurrent losses of 10q23, 14q31-q32, and 17p13 in 3, and 9p21 in 2 cases. Deletion of 7q31.3-q32.3 was present in only 1 case and no trisomies 3 or 18 were detected. NOTCH1 and MAP2K1 were mutated in 2 cases each, whereas BRAF, TP53, and SF3B1 were mutated each in single cases. No mutations were found in NOTCH2 or MYD88. Four of the 5 patients with aggressive disease had mutations in NOTCH1 (2 cases), TP53 (1 case), and MAP2K1 (1 case). The progression-free survival of patients with mutated genes was significantly shorter than in the unmutated (P=0.011). These findings show that SDRPL share some mutated genes but not chromosomal alterations, with other splenic lymphomas, that may confer a more aggressive behavior.

  1. Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2.

    PubMed

    Migliolo, Ludovico; Felício, Mário R; Cardoso, Marlon H; Silva, Osmar N; Xavier, Mary-Ann E; Nolasco, Diego O; de Oliveira, Adeliana Silva; Roca-Subira, Ignasi; Vila Estape, Jordi; Teixeira, Leandro D; Freitas, Sonia M; Otero-Gonzalez, Anselmo J; Gonçalves, Sónia; Santos, Nuno C; Franco, Octavio L

    2016-07-01

    Recently, several peptides have been studied regarding the defence process against pathogenic microorganisms, which are able to act against different targets, with the purpose of developing novel bioactive compounds. The present work focuses on the structural and functional evaluation of the palindromic antimicrobial peptide Pa-MAP2, designed based on the peptide Pa-MAP from Pleuronectes americanus. For a better structural understanding, molecular modelling analyses were carried out, together with molecular dynamics and circular dichroism, in different media. Antibacterial activity against Gram-negative and positive bacteria was evaluated, as well as cytotoxicity against human erythrocytes, RAW 264.7, Vero and L6 cells. In silico docking experiments, lipid vesicle studies, and atomic force microscopy (AFM) imaging were carried out to explore the activity of the peptide. In vivo studies on infected mice were also done. The palindromic primary sequence favoured an α-helix structure that was pH dependent, only present on alkaline environment, with dynamic N- and C-terminals that are stabilized in anionic media. Pa-MAP2 only showed activity against Gram-negative bacteria, with a MIC of 3.2 μM, and without any cytotoxic effect. In silico, lipid vesicles and AFM studies confirm the preference for anionic lipids (POPG, POPS, DPPE, DPPG and LPS), with the positively charged lysine residues being essential for the initial electrostatic interaction. In vivo studies showed that Pa-MAP2 increases to 100% the survival rate of mice infected with Escherichia coli. Data here reported indicated that palindromic Pa-MAP2 could be an alternative candidate for use in therapeutics against Gram-negative bacterial infections.

  2. The paradigm compiler: Mapping a functional language for the connection machine

    NASA Technical Reports Server (NTRS)

    Dennis, Jack B.

    1989-01-01

    The Paradigm Compiler implements a new approach to compiling programs written in high level languages for execution on highly parallel computers. The general approach is to identify the principal data structures constructed by the program and to map these structures onto the processing elements of the target machine. The mapping is chosen to maximize performance as determined through compile time global analysis of the source program. The source language is Sisal, a functional language designed for scientific computations, and the target language is Paris, the published low level interface to the Connection Machine. The data structures considered are multidimensional arrays whose dimensions are known at compile time. Computations that build such arrays usually offer opportunities for highly parallel execution; they are data parallel. The Connection Machine is an attractive target for these computations, and the parallel for construct of the Sisal language is a convenient high level notation for data parallel algorithms. The principles and organization of the Paradigm Compiler are discussed.

  3. [Interest of EEG recording during direct electrical stimulation for brain mapping function in surgery].

    PubMed

    Trebuchon, A; Guye, M; Tcherniack, V; Tramoni, E; Bruder, N; Metellus, P

    2012-06-01

    Brain tumor surgery is at risk when lesions are located in eloquent areas. The interindividual anatomo-functional variability of the central nervous system implies that brain surgery within eloquent regions may induce neurological sequelae. Brain mapping using intraoperative direct electrical stimulation in awake patients has been for long validated as the standard for functional brain mapping. Direct electrical stimulation inducing a local transient electrical and functional disorganization is considered positive if the task performed by the patient is disturbed. The brain area stimulated is then considered as essential for the function tested. However, the exactitude of the information provided by this technique is cautious because the actual impact of cortical direct electrical stimulation is not known. Indeed, the possibility of false negative (insufficient intensity of the stimulation due to the heterogeneity of excitability threshold of different cortical areas) or false positive (current spread, interregional signal propagation responsible for remote effects, which make difficult the interpretation of positive or negative behavioural effects) constitute a limitation of this technique. To improve the sensitivity and specificity of this technique, we used an electrocorticographic recording system allowing a real time visualization of the local. We provide here evidence that direct cortical stimulation combined with electrocorticographic recording could be useful to detect remote after discharge and to adjust stimulation parameters. In addition this technique offers new perspective to better assess connectivity of cerebral networks.

  4. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex.

    PubMed

    Southwell, Derek G; Hervey-Jumper, Shawn L; Perry, David W; Berger, Mitchel S

    2016-05-01

    OBJECT To avoid iatrogenic injury during the removal of intrinsic cerebral neoplasms such as gliomas, direct electrical stimulation (DES) is used to identify cortical and subcortical white matter pathways critical for language, motor, and sensory function. When a patient undergoes more than 1 brain tumor resection as in the case of tumor recurrence, the use of DES provides an unusual opportunity to examine brain plasticity in the setting of neurological disease. METHODS The authors examined 561 consecutive cases in which patients underwent DES mapping during surgery forglioma resection. "Positive" and "negative" sites-discrete cortical regions where electrical stimulation did (positive) or did not (negative) produce transient sensory, motor, or language disturbance-were identified prior to tumor resection and documented by intraoperative photography for categorization into functional maps. In this group of 561 patients, 18 were identified who underwent repeat surgery in which 1 or more stimulation sites overlapped with those tested during the initial surgery. The authors compared intraoperative sensory, motor, or language mapping results between initial and repeat surgeries, and evaluated the clinical outcomes for these patients. RESULTS A total of 117 sites were tested for sensory (7 sites, 6.0%), motor (9 sites, 7.7%), or language (101 sites, 86.3%) function during both initial and repeat surgeries. The mean interval between surgical procedures was 4.1 years. During initial surgeries, 95 (81.2%) of 117 sites were found to be negative and 22 (18.8%) of 117 sites were found to be positive. During repeat surgeries, 103 (88.0%) of 117 sites were negative and 14 (12.0%) of 117 were positive. Of the 95 sites that were negative at the initial surgery, 94 (98.9%) were also negative at the repeat surgery, while 1 (1.1%) site was found to be positive. Of the 22 sites that were initially positive, 13 (59.1%) remained positive at repeat surgery, while 9 (40.9%) had become

  5. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  6. Mapping Long-Term Functional Changes in Cerebral Blood Flow by Arterial Spin Labeling

    PubMed Central

    Ssali, Tracy; Anazodo, Udunna C.; Bureau, Yves; MacIntosh, Bradley J.; Günther, Matthias; St. Lawrence, Keith

    2016-01-01

    Although arterial spin labeling (ASL) is appealing for mapping long-term changes in functional activity, inter-sessional variations in basal blood flow, arterial transit times (ATTs), and alignment errors, can result in significant false activation when comparing images from separate sessions. By taking steps to reduce these sources of noise, this study assessed the ability of ASL to detect functional CBF changes between sessions. ASL data were collected in three sessions to image ATT, resting CBF and CBF changes associated with motor activation (7 participants). Activation maps were generated using rest and task images acquired in the same session and from sessions separated by up to a month. Good agreement was found when comparing between-session activation maps to within-session activation maps with only a 16% decrease in precision (within-session: 90 ± 7%) and a 13% decrease in the Dice similarity (within-session: 0.75 ± 0.07) coefficient after a month. In addition, voxel-wise reproducibility (within-session: 4.7 ± 4.5%) and reliability (within-session: 0.89 ± 0.20) of resting grey-matter CBF decreased by less than 18% for the between-session analysis relative to within-session values. ATT variability between sessions (5.0 ± 2.7%) was roughly half the between-subject variability, indicating that its effects on longitudinal CBF were minimal. These results demonstrate that conducting voxel-wise analysis on CBF images acquired on different days is feasible with only modest loss in precision, highlighting the potential of ASL for longitudinal studies. PMID:27706218

  7. Diffusion-Based Density-Equalizing Maps: an Interdisciplinary Approach to Visualizing Homicide Rates and Other Georeferenced Statistical Data

    NASA Astrophysics Data System (ADS)

    Mazzitello, Karina I.; Candia, Julián

    2012-12-01

    In every country, public and private agencies allocate extensive funding to collect large-scale statistical data, which in turn are studied and analyzed in order to determine local, regional, national, and international policies regarding all aspects relevant to the welfare of society. One important aspect of that process is the visualization of statistical data with embedded geographical information, which most often relies on archaic methods such as maps colored according to graded scales. In this work, we apply nonstandard visualization techniques based on physical principles. We illustrate the method with recent statistics on homicide rates in Brazil and their correlation to other publicly available data. This physics-based approach provides a novel tool that can be used by interdisciplinary teams investigating statistics and model projections in a variety of fields such as economics and gross domestic product research, public health and epidemiology, sociodemographics, political science, business and marketing, and many others.

  8. Global and regional functional connectivity maps of neural oscillations in focal epilepsy

    PubMed Central

    Englot, Dario J.; Hinkley, Leighton B.; Kort, Naomi S.; Imber, Brandon S.; Mizuiri, Danielle; Honma, Susanne M.; Findlay, Anne M.; Garrett, Coleman; Cheung, Paige L.; Mantle, Mary; Tarapore, Phiroz E.; Knowlton, Robert C.; Chang, Edward F.; Nagarajan, Srikantan S.

    2015-01-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious

  9. Global and regional functional connectivity maps of neural oscillations in focal epilepsy.

    PubMed

    Englot, Dario J; Hinkley, Leighton B; Kort, Naomi S; Imber, Brandon S; Mizuiri, Danielle; Honma, Susanne M; Findlay, Anne M; Garrett, Coleman; Cheung, Paige L; Mantle, Mary; Tarapore, Phiroz E; Knowlton, Robert C; Chang, Edward F; Kirsch, Heidi E; Nagarajan, Srikantan S

    2015-08-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious

  10. Effects of a Story Map on Accelerated Reader Postreading Test Scores in Students with High-Functioning Autism

    ERIC Educational Resources Information Center

    Stringfield, Suzanne Griggs; Luscre, Deanna; Gast, David L.

    2011-01-01

    In this study, three elementary-aged boys with high-functioning autism (HFA) were taught to use a graphic organizer called a Story Map as a postreading tool during language arts instruction. Students learned to accurately complete the Story Map. The effect of the intervention on story recall was assessed within the context of a multiple-baseline…

  11. Seventh Graders' Academic Achievement, Creativity, and Ability to Construct a Cross-Domain Concept Map--A Brain Function Perspective

    ERIC Educational Resources Information Center

    Yeh, Yu-Chu

    2004-01-01

    This study proposes an interactive model of "cross-domain" concept mapping with an emphasis on brain functions, and it further investigates the relationships between academic achievement, creative thinking, and cross-domain concept mapping. Sixty-nine seventh graders participated in this study which employed two 50-minute instructional…

  12. Potential Use and Challenges of Functional Connectivity Mapping in Intractable Epilepsy

    PubMed Central

    Constable, Robert Todd; Scheinost, Dustin; Finn, Emily S.; Shen, Xilin; Hampson, Michelle; Winstanley, F. Scott; Spencer, Dennis D.; Papademetris, Xenophon

    2013-01-01

    This review focuses on the use of resting-state functional magnetic resonance imaging data to assess functional connectivity in the human brain and its application in intractable epilepsy. This approach has the potential to predict outcomes for a given surgical procedure based on the pre-surgical functional organization of the brain. Functional connectivity can also identify cortical regions that are organized differently in epilepsy patients either as a direct function of the disease or through indirect compensatory responses. Functional connectivity mapping may help identify epileptogenic tissue, whether this is a single focal location or a network of seizure-generating tissues. This review covers the basics of connectivity analysis and discusses particular issues associated with analyzing such data. These issues include how to define nodes, as well as differences between connectivity analyses of individual nodes, groups of nodes, and whole-brain assessment at the voxel level. The need for arbitrary thresholds in some connectivity analyses is discussed and a solution to this problem is reviewed. Overall, functional connectivity analysis is becoming an important tool for assessing functional brain organization in epilepsy. PMID:23734143

  13. Structural relaxation and diffusion in a model colloid-polymer mixture: dynamical density functional theory and simulation

    NASA Astrophysics Data System (ADS)

    Stopper, Daniel; Roth, Roland; Hansen-Goos, Hendrik

    2016-11-01

    Within the Asakura-Oosawa model, we study structural relaxation in mixtures of colloids and polymers subject to Brownian motion in the overdamped limit. We obtain the time evolution of the self and distinct parts of the van Hove distribution function G(r,t) by means of dynamical density functional theory (DDFT) using an accurate free-energy functional based on Rosenfeld’s fundamental measure theory. In order to remove unphysical interactions within the self part, we extend the recently proposed quenched functional framework (Stopper et al 2015 J. Chem. Phys. 143 181105) toward mixtures. In addition, we obtain results for the long-time self diffusion coefficients of colloids and polymers from dynamic Monte Carlo simulations, which we incorporate into the DDFT. From the resulting DDFT equations we calculate G(r, t), which we find to agree very well with our simulations. In particular, we examine the influence of polymers which are slow relative to the colloids—a scenario for which both DDFT and simulation show a significant peak forming at r  =  0 in the colloid-colloid distribution function, akin to experimental findings involving gelation of colloidal suspensions. Moreover, we observe that, in the presence of slow polymers, the long-time self diffusivity of the colloids displays a maximum at an intermediate colloid packing fraction. This behavior is captured by a simple semi-empirical formula, which provides an excellent description of the data.

  14. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE PAGES

    Ganesh, P.; Kim, Jeongnim; Park, Changwon; ...

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  15. What, if anything, are topological maps for?

    PubMed

    Wilson, Stuart P; Bednar, James A

    2015-06-01

    What, if anything, is the functional significance of spatial patterning in cortical feature maps? We ask this question of four major theories of cortical map formation: self-organizing maps, wiring optimization, place coding, and reaction-diffusion. We argue that (i) self-organizing maps yield spatial patterning only as a by-product of efficient mechanisms for developing environmentally appropriate distributions of feature preferences, (ii) wiring optimization assumes rather than explains a map-like organization, (iii) place-coding mechanisms can at best explain only a subset of maps in functional terms, and (iv) reaction-diffusion models suggest two factors in the evolution of maps, the first based on efficient development of feature distributions, and the second based on generating feature-specific long-range recurrent cortical circuitry. None of these explanations for the existence of topological maps requires spatial patterning in maps to be useful. Thus despite these useful frameworks for understanding how maps form and how they are wired, the possibility that patterns are merely epiphenomena in the evolution of mammalian neocortex cannot be rejected. The article is intended as a nontechnical introduction to the assumptions and predictions of these four important classes of models, along with other possible functional explanations for maps.

  16. Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging.

    PubMed

    Chaudhary, Umair J; Carmichael, David W; Rodionov, Roman; Thornton, Rachel C; Bartlett, Phillipa; Vulliemoz, Serge; Micallef, Caroline; McEvoy, Andrew W; Diehl, Beate; Walker, Matthew C; Duncan, John S; Lemieux, Louis

    2012-12-01

    Ictal patterns on scalp-electroencephalography are often visible only after propagation, therefore rendering localization of the seizure onset zone challenging. We hypothesized that mapping haemodynamic changes before and during seizures using simultaneous video-electroencephalography and functional imaging will improve the localization of the seizure onset zone. Fifty-five patients with ≥2 refractory focal seizures/day, and who had undergone long-term video-electroencephalography monitoring were included in the study. 'Preictal' (30 s immediately preceding the electrographic seizure onset) and ictal phases, 'ictal-onset'; 'ictalestablished' and 'late ictal', were defined based on the evolution of the electrographic pattern and clinical semiology. The functional imaging data were analysed using statistical parametric mapping to map ictal phase-related haemodynamic changes consistent across seizures. The resulting haemodynamic maps were overlaid on co-registered anatomical scans, and the spatial concordance with the presumed and invasively defined seizure onset zone was determined. Twenty patients had typical seizures during functional imaging. Seizures were identified on video-electroencephalography in 15 of 20, on electroencephalography alone in two and on video alone in three patients. All patients showed significant ictal-related haemodynamic changes. In the six cases that underwent invasive evaluation, the ictal-onset phase-related maps had a degree of concordance with the presumed seizure onset zone for all patients. The most statistically significant haemodynamic cluster within the presumed seizure onset zone was between 1.1 and 3.5 cm from the invasively defined seizure onset zone, which was resected in two of three patients undergoing surgery (Class I post-surgical outcome) and was not resected in one patient (Class III post-surgical outcome). In the remaining 14 cases, the ictal-onset phase-related maps had a degree of concordance with the presumed

  17. Time-resolved contrast function and optical characterization of spatially varying absorptive inclusions at different depths in diffusing media.

    PubMed

    De Nicola, S; Esposito, R; Lepore, M; Indovina, P L

    2004-03-01

    The role of a spatially varying absorptive inhomogeneity located at different depths within a turbid material has been investigated. This inhomogeneity has been characterized by a spatially dependent Gaussian distribution of its absorption coefficient. The present study has been performed calculating the time-resolved contrast function in the framework of the first-order perturbative approach to the diffusion equation for a slab geometry and a coaxial measurement scheme. The model has allowed us to take into account different locations of the inclusion along the source-detector axis. The accuracy of time-resolved contrast predictions has been analyzed through comparisons with results of the finite element method that has been used to numerically solve the diffusion equation. Recovery of the absorption perturbation parameter of the inhomogeneity for different axial positions has also been investigated.

  18. Non-invasive mapping of calculation function by repetitive navigated transcranial magnetic stimulation.

    PubMed

    Maurer, Stefanie; Tanigawa, Noriko; Sollmann, Nico; Hauck, Theresa; Ille, Sebastian; Boeckh-Behrens, Tobias; Meyer, Bernhard; Krieg, Sandro M

    2016-11-01

    Concerning calculation function, studies have already reported on localizing computational function in patients and volunteers by functional magnetic resonance imaging and transcranial magnetic stimulation. However, the development of accurate repetitive navigated TMS (rTMS) with a considerably higher spatial resolution opens a new field in cognitive neuroscience. This study was therefore designed to evaluate the feasibility of rTMS for locating cortical calculation function in healthy volunteers, and to establish this technique for future scientific applications as well as preoperative mapping in brain tumor patients. Twenty healthy subjects underwent rTMS calculation mapping using 5 Hz/10 pulses. Fifty-two previously determined cortical spots of the whole hemispheres were stimulated on both sides. The subjects were instructed to perform the calculation task composed of 80 simple arithmetic operations while rTMS pulses were applied. The highest error rate (80 %) for all errors of all subjects was observed in the right ventral precentral gyrus. Concerning division task, a 45 % error rate was achieved in the left middle frontal gyrus. The subtraction task showed its highest error rate (40 %) in the right angular gyrus (anG). In the addition task a 35 % error rate was observed in the left anterior superior temporal gyrus. Lastly, the multiplication task induced a maximum error rate of 30 % in the left anG. rTMS seems feasible as a way to locate cortical calculation function. Besides language function, the cortical localizations are well in accordance with the current literature for other modalities or lesion studies.

  19. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    PubMed

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  20. Myocardial function and perfusion in the CREST syndrome variant of progressive systemic sclerosis. Exercise radionuclide evaluation and comparison with diffuse scleroderma

    SciTech Connect

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Owens, G.R.; Steen, V.D.; Rodnan, G.P.

    1984-09-01

    Myocardial function and perfusion were evaluated in 22 patients with progressive systemic sclerosis with the CREST syndrome using exercise and radionuclide techniques, pulmonary function testing, and chest roentgenography. The results were compared with a similar study of 26 patients with progressive systemic sclerosis with diffuse scleroderma. The prevalence of thallium perfusion abnormalities was similar in the groups with CREST syndrome and diffuse scleroderma, (64 percent versus 77 percent), but the defects were significantly smaller in the CREST syndrome (p less than 0.01). Reperfusion thallium defects in the absence of extramural coronary artery disease were seen in 38 percent of patients with diffuse scleroderma. This finding was not seen in any of the patients with the CREST syndrome. In diffuse scleroderma, abnormalities of both right and left ventricular function were related to larger thallium perfusion defects. In the CREST syndrome, abnormalities of left ventricular function were minor, were seen only during exercise, and were unrelated to thallium perfusion defects. Abnormal resting right ventricular function was seen in 36 percent of the patients with the CREST syndrome and was associated with an isolated decrease in diffusing capacity of carbon monoxide. It is concluded that the cardiac manifestations of the CREST syndrome are distinct from those found in diffuse scleroderma. Unlike diffuse scleroderma, abnormalities of left ventricular function in the CREST syndrome are minor and are unrelated to abnormalities of coronary perfusion. Right ventricular dysfunction in the CREST syndrome appears to be primarily related to pulmonary vascular disease.

  1. Corticostriatal connectivity fingerprints: Probability maps based on resting-state functional connectivity.

    PubMed

    Jaspers, Ellen; Balsters, Joshua H; Kassraian Fard, Pegah; Mantini, Dante; Wenderoth, Nicole

    2017-03-01

    Over the last decade, structure-function relationships have begun to encompass networks of brain areas rather than individual structures. For example, corticostriatal circuits have been associated with sensorimotor, limbic, and cognitive information processing, and damage to these circuits has been shown to produce unique behavioral outcomes in Autism, Parkinson's Disease, Schizophrenia and healthy ageing. However, it remains an open question how abnormal or absent connectivity can be detected at the individual level. Here, we provide a method for clustering gross morphological structures into subregions with unique functional connectivity fingerprints, and generate network probability maps usable as a baseline to compare individual cases against. We used connectivity metrics derived from resting-state fMRI (N = 100), in conjunction with hierarchical clustering methods, to parcellate the striatum into functionally distinct clusters. We identified three highly reproducible striatal subregions, across both hemispheres and in an independent replication dataset (N = 100) (dice-similarity values 0.40-1.00). Each striatal seed region resulted in a highly reproducible distinct connectivity fingerprint: the putamen showed predominant connectivity with cortical and cerebellar sensorimotor and language processing areas; the ventromedial striatum cluster had a distinct limbic connectivity pattern; the caudate showed predominant connectivity with the thalamus, frontal and occipital areas, and the cerebellum. Our corticostriatal probability maps agree with existing connectivity data in humans and non-human primates, and showed a high degree of replication. We believe that these maps offer an efficient tool to further advance hypothesis driven research and provide important guidance when investigating deviant connectivity in neurological patient populations suffering from e.g., stroke or cerebral palsy. Hum Brain Mapp 38:1478-1491, 2017. © 2016 Wiley Periodicals, Inc.

  2. Near Infrared Spectroscopic Mapping of Functional Properties of Equine Articular Cartilage.

    PubMed

    Sarin, Jaakko K; Amissah, Michael; Brommer, Harold; Argüelles, David; Töyräs, Juha; Afara, Isaac O

    2016-11-01

    Mechanical properties of articular cartilage are vital for normal joint function, which can be severely compromised by injuries. Quantitative characterization of cartilage injuries, and evaluation of cartilage stiffness and thickness by means of conventional arthroscopy is poorly reproducible or impossible. In this study, we demonstrate the potential of near infrared (NIR) spectroscopy for predicting and mapping the functional properties of equine articular cartilage at and around lesion sites. Lesion and non-lesion areas of interests (AI, N = 44) of equine joints (N = 5) were divided into grids and NIR spectra were acquired from all grid points (N = 869). Partial least squares (PLS) regression was used to investigate the correlation between the absorbance spectra and thickness, equilibrium modulus, dynamic modulus, and instantaneous modulus at the grid points of 41 AIs. Subsequently, the developed PLS models were validated with spectral data from the grid points of 3 independent AIs. Significant correlations were obtained between spectral data and cartilage thickness (R (2) = 70.3%, p < 0.0001), equilibrium modulus (R (2) = 67.8%, p < 0.0001), dynamic modulus (R (2) = 68.9%, p < 0.0001) and instantaneous modulus (R (2) = 41.8%, p < 0.0001). Relatively low errors were observed in the predicted thickness (5.9%) and instantaneous modulus (9.0%) maps. Thus, if well implemented, NIR spectroscopy could enable arthroscopic evaluation and mapping of cartilage functional properties at and around lesion sites.

  3. Glial and neuronal Semaphorin signaling instruct the development of a functional myotopic map for Drosophila walking

    PubMed Central

    Syed, Durafshan Sakeena; Gowda, Swetha B.M.; Reddy, O Venkateswara; Reichert, Heinrich; VijayRaghavan, K

    2016-01-01

    Motoneurons developmentally acquire appropriate cellular architectures that ensure connections with postsynaptic muscles and presynaptic neurons. In Drosophila, leg motoneurons are organized as a myotopic map, where their dendritic domains represent the muscle field. Here, we investigate mechanisms underlying development of aspects of this myotopic map, required for walking. A behavioral screen identified roles for Semaphorins (Sema) and Plexins (Plex) in walking behavior. Deciphering this phenotype, we show that PlexA/Sema1a mediates motoneuron axon branching in ways that differ in the proximal femur and distal tibia, based on motoneuronal birth order. Importantly, we show a novel role for glia in positioning dendrites of specific motoneurons; PlexB/Sema2a is required for dendritic positioning of late-born motoneurons but not early-born motoneurons. These findings indicate that communication within motoneurons and between glia and motoneurons, mediated by the combined action of different Plexin/Semaphorin signaling systems, are required for the formation of a functional myotopic map. DOI: http://dx.doi.org/10.7554/eLife.11572.001 PMID:26926907

  4. Algorithm To Architecture Mapping Model (ATAMM) multicomputer operating system functional specification

    NASA Technical Reports Server (NTRS)

    Mielke, R.; Stoughton, J.; Som, S.; Obando, R.; Malekpour, M.; Mandala, B.

    1990-01-01

    A functional description of the ATAMM Multicomputer Operating System is presented. ATAMM (Algorithm to Architecture Mapping Model) is a marked graph model which describes the implementation of large grained, decomposed algorithms on data flow architectures. AMOS, the ATAMM Multicomputer Operating System, is an operating system which implements the ATAMM rules. A first generation version of AMOS which was developed for the Advanced Development Module (ADM) is described. A second generation version of AMOS being developed for the Generic VHSIC Spaceborne Computer (GVSC) is also presented.

  5. Nanometric resolution magnetic resonance imaging methods for mapping functional activity in neuronal networks.

    PubMed

    Boretti, Albert; Castelletto, Stefania

    2016-01-01

    This contribution highlights and compares some recent achievements in the use of k-space and real space imaging (scanning probe and wide-filed microscope techniques), when applied to a luminescent color center in diamond, known as nitrogen vacancy (NV) center. These techniques combined with the optically detected magnetic resonance of NV, provide a unique platform to achieve nanometric magnetic resonance imaging (MRI) resolution of nearby nuclear spins (known as nanoMRI), and nanometric NV real space localization. •Atomic size optically detectable spin probe.•High magnetic field sensitivity and nanometric resolution.•Non-invasive mapping of functional activity in neuronal networks.

  6. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa

    DOE PAGES

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; ...

    2014-11-20

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC1, MEK2 and MAK2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every 4 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a protein of unknown biochemical function. How this oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) thatmore » can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM5-GFP co-localized with NRC1, MEK2 and MAK2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK2 activity influences HAM5 function/localization. However, MAK2-GFP showed only cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta, as observed in wild type germlings. Via co-immunoprecipitation experiments, HAM5 was shown to physically interact with MAK2, MEK2 and NRC1, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members during oscillation and chemotropic interactions during both germling and hyphal fusion in N. crassa. The identification of HAM5 as a scaffold-like protein will help to link the activation of MAK2 to upstream factors and other proteins involved in this intriguing process of fungal

  7. Application of Data-Driven Evidential Belief Functions to Prospectivity Mapping for Aquamarine-Bearing Pegmatites, Lundazi District, Zambia

    SciTech Connect

    Carranza, E. J. M. Woldai, T.; Chikambwe, E. M.

    2005-03-15

    A case application of data-driven estimation of evidential belief functions (EBFs) is demonstrated to prospectivity mapping in Lundazi district (eastern Zambia). Spatial data used to represent recognition criteria of prospectivity for aquamarine-bearing pegmatites include mapped granites, mapped faults/fractures, mapped shear zones, and radioelement concentration ratios derived from gridded airborne radiometric data. Data-driven estimates EBFs take into account not only (a) spatial association between an evidential map layer and target deposits but also (b) spatial relationships between classes of evidences in an evidential map layer. Data-driven estimates of EBFs can indicate which spatial data provide positive or negative evidence of prospectivity. Data-driven estimates of EBFs of only spatial data providing positive evidence of prospectivity were integrated according to Dempster's rule of combination. Map of integrated degrees of belief was used to delineate zones of relative degress of prospectivity for aquamarine-bearing pegmatites. The predictive map has at least 85% prediction rate and at least 79% success rate of delineating training and validation deposits, respectively. The results illustrate usefulness of data-driven estimation of EBFs in GIS-based predictive mapping of mineral prospectivity. The results also show usefulness of EBFs in managing uncertainties associated with evidential maps.

  8. Linking Brain Connectivity Across Different Time Scales with Electroencephalogram, Functional Magnetic Resonance Imaging, and Diffusion Tensor Imaging

    PubMed Central

    Federspiel, Andrea; Giezendanner, Stéphanie; Andreotti, Jennifer; Kottlow, Mara; Dierks, Thomas; Koenig, Thomas

    2012-01-01

    Abstract Structural and functional connectivity are intrinsic properties of the human brain and represent the amount of cognitive capacities of individual subjects. These connections are modulated due to development, learning, and disease. Momentary adaptations in functional connectivity alter the structural connections, which in turn affect the functional connectivity. Thus, structural and functional connectivity interact on a broad timescale. In this study, we aimed to explore distinct measures of connectivity assessed by functional magnetic resonance imaging and diffusion tensor imaging and their association to the dominant electroencephalogram oscillatory property at rest: the individual alpha frequency (IAF). We found that in 21 healthy young subjects, small intraindividual temporal IAF fluctuations were correlated to increased blood oxygenation level-dependent signal in brain areas associated to working memory functions and to the modulation of attention. These areas colocalized with functionally connected networks supporting the respective functions. Furthermore, subjects with higher IAF show increased fractional anisotropy values in fascicles connecting the above-mentioned areas and networks. Hence, due to a multimodal approach a consistent functionally and structurally connected network related to IAF was observed. PMID:22574926

  9. Associations of Electrocardiographic P-wave Characteristics with Left Atrial Structure, Function and Diffuse Left Ventricular Fibrosis Defined by Cardiac Magnetic Resonance: the PRIMERI Study

    PubMed Central

    Win, Theingi Tiffany; Venkatesh, Bharath Ambale; Volpe, Gustavo J; Mewton, Nathan; Rizzi, Patricia; Sharma, Ravi K.; Strauss, David G.; Lima, Joao A.; Tereshchenko, Larisa G.

    2014-01-01

    Background Abnormal P-terminal force in V1 (PTFV1) is associated with an increased risk of heart failure, stroke, atrial fibrillation (AF) and death. Objective Our goal was to explore associations of left ventricular (LV) diffuse fibrosis with left atrium (LA) function and ECG measures of LA electrical activity. Methods AF-free patients (n=91, mean age 59.5, 61.5% men, 65.9% Caucasian) with structural heart disease (wide spatial QRS-T angle≥105° ± Selvester QRS score≥5 on ECG) but LV ejection fraction >35% underwent clinical evaluation, cardiac magnetic resonance and resting ECG. LA function indices were obtained by multimodality tissue tracking using 2 and 4-chamber long-axis images. T1 mapping and late gadolinium enhancement were used to assess diffuse LV fibrosis and presence of scar. P-prime in V1 amplitude (PPaV1) and duration (PPdV1), averaged P-duration, PR interval and P-axis were automatically measured using 12SL TM algorithm. PTFV1 was calculated as product of PPaV1 by PPdV1. Results In linear regression after adjustment for demographic, body mass index, LA volumemax index, presence of scar and LV mass index, each decile increase in LV interstitial fibrosis was associated with 0.76mV*ms increase in negative abnormal PTFV1 [(95%CI −1.42 to −0.09), P=0.025], 15.3ms prolongation in PPdV1 [(95%CI 6.9 to 23.8), P=0.001], and 5.4ms widening in averaged P-duration [(95%CI 0.9 to 10.0), P=0.020]. LV fibrosis did not affect LA function. PPaV1 and PTFV1 were associated with an increase in LA volumes, decrease in LAEF and LA reservoir function. Conclusion LV interstitial fibrosis is associated with abnormal PTFV1, prolonged PPdV1 and P-duration, but does not affect LA function. PMID:25267584

  10. Mapping of functionally characterized cell classes onto canonical circuit operations in primate prefrontal cortex.

    PubMed

    Ardid, Salva; Vinck, Martin; Kaping, Daniel; Marquez, Susanna; Everling, Stefan; Womelsdorf, Thilo

    2015-02-18

    Microcircuits are composed of multiple cell classes that likely serve unique circuit operations. But how cell classes map onto circuit functions is largely unknown, particularly for primate prefrontal cortex during actual goal-directed behavior. One difficulty in this quest is to reliably distinguish cell classes in extracellular recordings of action potentials. Here we surmount this issue and report that spike shape and neural firing variability provide reliable markers to segregate seven functional classes of prefrontal cells in macaques engaged in an attention task. We delineate an unbiased clustering protocol that identifies four broad spiking (BS) putative pyramidal cell classes and three narrow spiking (NS) putative inhibitory cell classes dissociated by how sparse, bursty, or regular they fire. We speculate that these functional classes map onto canonical circuit functions. First, two BS classes show sparse, bursty firing, and phase synchronize their spiking to 3-7 Hz (theta) and 12-20 Hz (beta) frequency bands of the local field potential (LFP). These properties make cells flexibly responsive to network activation at varying frequencies. Second, one NS and two BS cell classes show regular firing and higher rate with only marginal synchronization preference. These properties are akin to setting tonically the excitation and inhibition balance. Finally, two NS classes fired irregularly and synchronized to either theta or beta LFP fluctuations, tuning them potentially to frequency-specific subnetworks. These results suggest that a limited set of functional cell classes emerges in macaque prefrontal cortex (PFC) during attentional engagement to not only represent information, but to subserve basic circuit operations.

  11. Functional circuit mapping of striatal output nuclei using simultaneous deep brain stimulation and fMRI.

    PubMed

    Van Den Berge, Nathalie; Albaugh, Daniel L; Salzwedel, Andrew; Vanhove, Christian; Van Holen, Roel; Gao, Wei; Stuber, Garret D; Ian Shih, Yen-Yu

    2017-02-01

    The substantia nigra pars reticulata (SNr) and external globus pallidus (GPe) constitute the two major output targets of the rodent striatum. Both the SNr and GPe converge upon thalamic relay nuclei (directly or indirectly, respectively), and are traditionally modeled as functionally antagonistic relay inputs. However, recent anatomical and functional studies have identified unanticipated circuit connectivity in both the SNr and GPe, demonstrating their potential as far more than relay nuclei. In the present study, we employed simultaneous deep brain stimulation and functional magnetic resonance imaging (DBS-fMRI) with cerebral blood volume (CBV) measurements to functionally and unbiasedly map the circuit- and network level connectivity of the SNr and GPe. Sprague-Dawley rats were implanted with a custom-made MR-compatible stimulating electrode in the right SNr (n=6) or GPe (n=7). SNr- and GPe-DBS, conducted across a wide range of stimulation frequencies, revealed a number of surprising evoked responses, including unexpected CBV decreases within the striatum during DBS at either target, as well as GPe-DBS-evoked positive modulation of frontal cortex. Functional connectivity MRI revealed global modulation of neural networks during DBS at either target, sensitive to stimulation frequency and readily reversed following cessation of stimulation. This work thus contributes to a growing literature demonstrating extensive and unanticipated functional connectivity among basal ganglia nuclei.

  12. Inferring functional constraints and divergence in protein families using 3D mapping of phylogenetic information

    PubMed Central

    Blouin, Christian; Boucher, Yan; Roger, Andrew J.

    2003-01-01

    Comparative sequence analysis has been used to study specific questions about the structure and function of proteins for many years. Here we propose a knowledge-based framework in which the maximum likelihood rate of evolution is used to quantify the level of constraint on the identity of a site. We demonstrate that site-rate mapping on 3D structures using datasets of rhodopsin-like G-protein receptors and α- and β-tubulins provides an excellent tool for pinpointing the functional features shared between orthologous and paralogous proteins. In addition, functional divergence within protein families can be inferred by examining the differences in the site rates, the differences in the chemical properties of the side chains or amino acid usage between aligned sites. Two novel analytical methods are introduced to characterize rate- independent functional divergence. These are tested using a dataset of two classes of HMG-CoA reductases for which only one class can perform both the forward and reverse reaction. We show that functionally divergent sites occur in a cluster of sites interacting with the catalytic residues and that this information should facilitate the design of experimental strategies to directly test functional properties of residues. PMID:12527789

  13. Inferring functional constraints and divergence in protein families using 3D mapping of phylogenetic information.

    PubMed

    Blouin, Christian; Boucher, Yan; Roger, Andrew J

    2003-01-15

    Comparative sequence analysis has been used to study specific questions about the structure and function of proteins for many years. Here we propose a knowledge-based framework in which the maximum likelihood rate of evolution is used to quantify the level of constraint on the identity of a site. We demonstrate that site-rate mapping on 3D structures using datasets of rhodopsin-like G-protein receptors and alpha- and beta-tubulins provides an excellent tool for pinpointing the functional features shared between orthologous and paralogous proteins. In addition, functional divergence within protein families can be inferred by examining the differences in the site rates, the differences in the chemical properties of the side chains or amino acid usage between aligned sites. Two novel analytical methods are introduced to characterize rate- independent functional divergence. These are tested using a dataset of two classes of HMG-CoA reductases for which only one class can perform both the forward and reverse reaction. We show that functionally divergent sites occur in a cluster of sites interacting with the catalytic residues and that this information should facilitate the design of experimental strategies to directly test functional properties of residues.

  14. Radiomic Texture Analysis Mapping Predicts Areas of True Functional MRI Activity

    PubMed Central

    Hassan, Islam; Kotrotsou, Aikaterini; Bakhtiari, Ali Shojaee; Thomas, Ginu A.; Weinberg, Jeffrey S.; Kumar, Ashok J.; Sawaya, Raymond; Luedi, Markus M.; Zinn, Pascal O.; Colen, Rivka R.

    2016-01-01

    Individual analysis of functional Magnetic Resonance Imaging (fMRI) scans requires user-adjustment of the statistical threshold in order to maximize true functional activity and eliminate false positives. In this study, we propose a novel technique that uses radiomic texture analysis (TA) features associated with heterogeneity to predict areas of true functional activity. Scans of 15 right-handed healthy volunteers were analyzed using SPM8. The resulting functional maps were thresholded to optimize visualization of language areas, resulting in 116 regions of interests (ROIs). A board-certified neuroradiologist classified different ROIs into Expected (E) and Non-Expected (NE) based on their anatomical locations. TA was performed using the mean Echo-Planner Imaging (EPI) volume, and 20 rotation-invariant texture features were obtained for each ROI. Using forward stepwise logistic regression, we built a predictive model that discriminated between E and NE areas of functional activity, with a cross-validation AUC and success rate of 79.84% and 80.19% respectively (specificity/sensitivity of 78.34%/82.61%). This study found that radiomic TA of fMRI scans may allow for determination of areas of true functional activity, and thus eliminate clinician bias. PMID:27151623

  15. Mapping the relationship between subgenual cingulate cortex functional connectivity and depressive symptoms across adolescence

    PubMed Central

    Strikwerda-Brown, Cherie; Davey, Christopher G.; Whittle, Sarah; Allen, Nicholas B.; Byrne, Michelle L.; Schwartz, Orli S.; Simmons, Julian G.; Dwyer, Dominic

    2015-01-01

    Changes in the functional connectivity of the subgenual anterior cingulate cortex (SGC) have been linked with depressive symptoms. The aim of this study was to map this relationship across mid to late adolescence. Employing a longitudinal functional magnetic resonance imaging (fMRI) design, associations between patterns of resting-state SGC functional connectivity and symptoms of depression were examined at two time points in an initial sample of 72 adolescents. Using a region-of-interest approach, these associations were evaluated cross-sectionally and longitudinally. Cross-sectionally, weaker SGC functional connectivity with the posterior cingulate cortex (PCC), angular gyrus and dorsal prefrontal cortex at baseline, and weaker SGC connectivity with the dorsomedial prefrontal cortex (DMPFC) and ventromedial prefrontal cortex at follow-up, were associated with higher depressive symptoms. Longitudinally, a decrease in SGC functional connectivity with DMPFC, PCC, angular gyrus and middle temporal gyrus was associated with higher depressive symptoms at follow-up. The observation of weaker SGC connectivity predicting increased symptoms contrasts with the majority of resting-state fMRI studies in clinically depressed populations. Taken together with these past studies, our findings suggest depression-related changes in SGC functional connectivity may differ across developmental and illness stages. PMID:25416726

  16. An integrative architecture for general intelligence and executive function revealed by lesion mapping

    PubMed Central

    Colom, Roberto; Solomon, Jeffrey; Krueger, Frank; Forbes, Chad; Grafman, Jordan

    2012-01-01

    Although cognitive neuroscience has made remarkable progress in understanding the involvement of the prefrontal cortex in executive control, the broader functional networks that support high-level cognition and give rise to general intelligence remain to be well characterized. Here, we investigated the neural substrates of the general factor of intelligence (g) and executive function in 182 patients with focal brain damage using voxel-based lesion–symptom mapping. The Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System were used to derive measures of g and executive function, respectively. Impaired performance on these measures was associated with damage to a distributed network of left lateralized brain areas, including regions of frontal and parietal cortex and white matter association tracts, which bind these areas into a coordinated system. The observed findings support an integrative framework for understanding the architecture of general intelligence and executive function, supporting their reliance upon a shared fronto-parietal network for the integration and control of cognitive representations and making specific recommendations for the application of the Wechsler Adult Intelligence Scale and Delis–Kaplan Executive Function System to the study of high-level cognition in health and disease. PMID:22396393

  17. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    PubMed

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-03-01

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may

  18. The MapCHECK Measurement Uncertainty function and its effect on planar dose pass rates.

    PubMed

    Bailey, Daniel W; Spaans, Jason D; Kumaraswamy, Lalith K; Podgorsak, Matthew B

    2016-03-08

    Our study aimed to quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as measured and analyzed with the Sun Nuclear Corporation MapCHECK 2 array and its associated software. This optional function is toggled in the program preferences of the software (though turned on by default upon installation), and automatically increases the dose difference tolerance defined by the user for each planar dose comparison. Dose planes from 109 static-gantry IMRT fields and 40 VMAT arcs, of varying modulation complexity, were measured at 5 cm water-equivalent depth in the MapCHECK 2 diode array, and respective calculated dose planes were exported from a commercial treatment planning system. Planar dose comparison pass rates were calculated within the Sun Nuclear Corporation analytic software using a number of calculation parameters, including Measurement Uncertainty on and off. By varying the percent difference (%Diff) criterion for similar analyses performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with Measurement Uncertainty turned on. On average, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.8%-1.1% for 3%/3 mm analysis, depending on plan type and calculation technique (corresponding to an average change in pass rate of 1.0%-3.5%, and a maximum change of 8.7%). At the 2%/2 mm level, the Measurement Uncertainty function increases the user-defined %Diff criterion by 0.7%-1.2% on average, again depending on plan type and calculation technique (corresponding to an average change in pass rate of 3.5%-8.1%, and a maximum change of 14.2%). The largest increases in pass rate due to the Measurement Uncertainty function are generally seen with poorly matched planar dose comparisons, while the function has a notably smaller effect as pass rates approach 100%. The Measurement Uncertainty function, then, may

  19. Towards DIB mapping in galaxies beyond 100 Mpc. A radial profile of the λ5780.5 diffuse interstellar band in AM 1353-272 B

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Weilbacher, P. M.; Wendt, M.; Selman, F.; Lallement, R.; Brinchmann, J.; Kamann, S.; Sandin, C.

    2015-04-01

    Context. Diffuse interstellar bands (DIBs) are non-stellar weak absorption features of unknown origin found in the spectra of stars viewed through one or several clouds of the interstellar medium (ISM). Research of DIBs outside the Milky Way is currently very limited. In particular, spatially resolved investigations of DIBs outside of the Local Group are, to our knowledge, inexistent. Aims: In this contribution, we explore the capability of the high-sensitivity integral field spectrograph, MUSE, as a tool for mapping diffuse interstellar bands at distances larger than 100 Mpc. Methods: We used MUSE commissioning data for AM 1353-272 B, the member with the highest extinction of the Dentist's Chair, an interacting system of two spiral galaxies. High signal-to-noise spectra were created by co-adding the signal of many spatial elements distributed in a geometry of concentric elliptical half-rings. Results: We derived decreasing radial profiles for the equivalent width of the λ5780.5 DIB both in the receding and approaching side of the companion galaxy up to distances of ~4.6 kpc from the centre of the galaxy. The interstellar extinction as derived from the Hα/Hβ line ratio displays a similar trend, with decreasing values towards the external parts. This translates into an intrinsic correlation between the strength of the DIB and the extinction within AM 1353-272 B, consistent with the currently existing global trend between these quantities when using measurements for Galactic and extragalactic sightlines. Conclusions: It seems feasible to map the DIB strength in the Local Universe, which has up to now only been performed for the Milky Way. This offers a new approach to studying the relationship between DIBs and other characteristics and species of the ISM in addition to using galaxies in the Local Group or sightlines towards very bright targets outside the Local Group. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program

  20. Nanoscale structural and functional mapping of nacre by scanning probe microscopy techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Xilong; Miao, Hongchen; Li, Faxin

    2013-11-01

    Nacre has received great attention due to its nanoscale hierarchical structure and extraordinary mechanical properties. Meanwhile, the nanoscale piezoelectric properties of nacre have also been investigated but the structure-function relationship has never been addressed. In this work, firstly we realized quantitative nanomechanical mapping of nacre of a green abalone using atomic force acoustic microscopy (AFAM). The modulus of the mineral tablets is determined to be ~80 GPa and that of the organic biopolymer no more than 23 GPa, and the organic-inorganic interface width is determined to be about 34 +/- 9 nm. Then, we conducted both AFAM and piezoresponse force microscopy (PFM) mapping in the same scanning area to explore the correlations between the nanomechanical and piezoelectric properties. The PFM testing shows that the organic biopolymer exhibits a significantly stronger piezoresponse than the mineral tablets, and they permeate each other, which is very difficult to reproduce in artificial materials. Finally, the phase hysteresis loops and amplitude butterfly loops were also observed using switching spectroscopy PFM, implying that nacre may also be a bio-ferroelectric material. The obtained nanoscale structural and functional properties of nacre could be very helpful in understanding its deformation mechanism and designing biomimetic materials of extraordinary properties.

  1. A joint model for nonparametric functional mapping of longitudinal trajectory and time-to-event

    PubMed Central

    Lin, Min; Wu, Rongling

    2006-01-01

    Background The characterization of the relationship between a longitudinal response process and a time-to-event has been a pressing challenge in biostatistical research. This has emerged as an important issue in genetic studies when one attempts to detect the common genes or quantitative trait loci (QTL) that govern both a longitudinal trajectory and developmental event. Results We present a joint statistical model for functional mapping of dynamic traits in which the event times and longitudinal traits are taken to depend on a common set of genetic mechanisms. By fitting the Legendre polynomial of orthogonal properties for the time-dependent mean vector, our model does not rely on any curve, which is different from earlier parametric models of functional mapping. This newly developed nonparametric model is demonstrated and validated by an example for a forest tree in which stemwood growth and the time to first flower are jointly modelled. Conclusion Our model allows for the detection of specific QTL that govern both longitudinal traits and developmental processes through either pleiotropic effects or close linkage, or both. This model will have great implications for integrating longitudinal and event data to gain better insights into comprehensive biology and biomedicine. PMID:16539724

  2. A Computational Approach for Functional Mapping of Quantitative Trait Loci That Regulate Thermal Performance Curves

    PubMed Central

    Yap, John Stephen; Wang, Chenguang; Wu, Rongling

    2007-01-01

    Whether and how thermal reaction norm is under genetic control is fundamental to understand the mechanistic basis of adaptation to novel thermal environments. However, the genetic study of thermal reaction norm is difficult because it is often expressed as a continuous function or curve. Here we derive a statistical model for dissecting thermal performance curves into individual quantitative trait loci (QTL) with the aid of a genetic linkage map. The model is constructed within the maximum likelihood context and implemented with the EM algorithm. It integrates the biological principle of responses to temperature into a framework for genetic mapping through rigorous mathematical functions established to describe the pattern and shape of thermal reaction norms. The biological advantages of the model lie in the decomposition of the genetic causes for thermal reaction norm into its biologically interpretable modes, such as hotter-colder, faster-slower and generalist-specialist, as well as the formulation of a series of hypotheses at the interface between genetic actions/interactions and temperature-dependent sensitivity. The model is also meritorious in statistics because the precision of parameter estimation and power of QTLdetection can be increased by modeling the mean-covariance structure with a small set of parameters. The results from simulation studies suggest that the model displays favorable statistical properties and can be robust in practical genetic applications. The model provides a conceptual platform for testing many ecologically relevant hypotheses regarding organismic adaptation within the Eco-Devo paradigm. PMID:17579725

  3. Functional imaging of the human brain using a modular, fibre-less, high-density diffuse optical tomography system

    PubMed Central

    Chitnis, Danial; Cooper, Robert J.; Dempsey, Laura; Powell, Samuel; Quaggia, Simone; Highton, David; Elwell, Clare; Hebden, Jeremy C.; Everdell, Nicholas L.

    2016-01-01

    We present the first three-dimensional, functional images of the human brain to be obtained using a fibre-less, high-density diffuse optical tomography system. Our technology consists of independent, miniaturized, silicone-encapsulated DOT modules that can be placed directly on the scalp. Four of these modules were arranged to provide up to 128, dual-wavelength measurement channels over a scalp area of approximately 60 × 65 mm2. Using a series of motor-cortex stimulation experiments, we demonstrate that this system can obtain high-quality, continuous-wave measurements at source-detector separations ranging from 14 to 55 mm in adults, in the presence of hair. We identify robust haemodynamic response functions in 5 out of 5 subjects, and present diffuse optical tomography images that depict functional haemodynamic responses that are well-localized in all three dimensions at both the individual and group levels. This prototype modular system paves the way for a new generation of wearable, wireless, high-density optical neuroimaging technologies. PMID:27867731

  4. Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions

    SciTech Connect

    Gerber, Thomas; Liu Yuzhu; Knopp, Gregor; Hemberger, Patrick; Bodi, Andras; Radi, Peter; Sych, Yaroslav

    2013-03-15

    Velocity map imaging (VMI) is used in mass spectrometry and in angle resolved photo-electron spectroscopy to determine the lateral momentum distributions of charged particles accelerated towards a detector. VM-images are composed of projected Newton spheres with a common centre. The 2D images are usually evaluated by a decomposition into base vectors each representing the 2D projection of a set of particles starting from a centre with a specific velocity distribution. We propose to evaluate 1D projections of VM-images in terms of 1D projections of spherical functions, instead. The proposed evaluation algorithm shows that all distribution information can be retrieved from an adequately chosen set of 1D projections, alleviating the numerical effort for the interpretation of VM-images considerably. The obtained results produce directly the coefficients of the involved spherical functions, making the reconstruction of sliced Newton spheres obsolete.

  5. Neurotransmitter Specific, Cellular-Resolution Functional Brain Mapping Using Receptor Coated Nanoparticles: Assessment of the Possibility

    PubMed Central

    Forati, Ebrahim; Sabouni, Abas; Ray, Supriyo; Head, Brian; Schoen, Christian; Sievenpiper, Dan

    2015-01-01

    Receptor coated resonant nanoparticles and quantum dots are proposed to provide a cellular-level resolution image of neural activities inside the brain. The functionalized nanoparticles and quantum dots in this approach will selectively bind to different neurotransmitters in the extra-synaptic regions of neurons. This allows us to detect neural activities in real time by monitoring the nanoparticles and quantum dots optically. Gold nanoparticles (GNPs) with two different geometries (sphere and rod) and quantum dots (QDs) with different sizes were studied along with three different neurotransmitters: dopamine, gamma-Aminobutyric acid (GABA), and glycine. The absorption/emission spectra of GNPs and QDs before and after binding of neurotransmitters and their corresponding receptors are reported. The results using QDs and nanorods with diameter 25nm and aspect rations larger than three were promising for the development of the proposed functional brain mapping approach. PMID:26717196

  6. Motif-based construction of a functional map for mammalian olfactory receptors.

    PubMed

    Liu, Agatha H; Zhang, Xinmin; Stolovitzky, Gustavo A; Califano, Andrea; Firestein, Stuart J

    2003-05-01

    We applied an automatic and unsupervised system to a nearly complete database of mammalian odor receptor genes. The generated motifs and gene classification were subjected to extensive and systematic downstream analysis to obtain biological insights. Two major results from this analysis were: (1) a map of sequence motifs that may correlate with function and (2) the corresponding receptor classes in which members of each class are likely to share specific functions. We have discovered motifs that have been implicated in structural integrity and posttranslational modification, as well as motifs very likely to be directly involved in ligand binding. We further propose a combinatorial molecular hypothesis, based on unique combinations of the observed motifs, that provides a foundation for understanding the generation of a large number of ligand binding sites.

  7. Step-by-Step Simulation of Radiation of Radiation Chemistry Using Green Functions for Diffusion-Influenced Reactions

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2011-01-01

    The irradiation of biological systems leads to the formation of radiolytic species such as H(raised dot), (raised dot)OH, H2, H2O2, e(sup -)(sub aq), etc.[1]. These species react with neighboring molecules, which result in damage in biological molecules such as DNA. Radiation chemistry is there for every important to understand the radiobiological consequences of radiation[2]. In this work, we discuss an approach based on the exact Green Functions for diffusion-influenced reactions which may be used to simulate radiation chemistry and eventually extended to study more complex systems, including DNA.

  8. An indicator to map diffuse chemical river pollution considering buffer capacity of riparian vegetation--a pan-European case study on pesticides.

    PubMed

    Weissteiner, Christof J; Pistocchi, Alberto; Marinov, Dimitar; Bouraoui, Fayçal; Sala, Serenella

    2014-06-15

    Vegetated riparian areas alongside streams are thought to be effective at intercepting and controlling chemical loads from diffuse agricultural sources entering water bodies. Based on a recently compiled European map of riparian zones and a simplified soil chemical balance model, we propose a new indicator at a continental scale. QuBES (Qualitative indicator of Buffered Emissions to Streams) allows a qualitative assessment of European rivers exposed to pesticide input. The indicator consists of normalised pesticide loads to streams computed through a simplified steady-state fate model that distinguishes various chemical groups according to physico-chemical behaviour (solubility and persistence). The retention of pollutants in the buffer zone is modelled according to buffer width and sorption properties. While the indicator may be applied for the study of a generic emission pattern and for a chemical of generic properties, we demonstrate it to the case of agricultural emissions of pesticides. Due to missing geo-spatial data of pesticide emissions, a total pesticide emission scenario is assumed. The QuBES indicator is easy to calculate and requires far less input data and parameterisation than typical chemical-specific models. At the same time, it allows mapping of (i) riparian buffer permeability, (ii) chemical runoff from soils, and (iii) the buffered load of chemicals to the stream network. When the purpose of modelling is limited to identifying chemical pollution patterns and understanding the relative importance of emissions and natural attenuation in soils and stream buffer strips, the indicator may be suggested as a screening level, cost-effective alternative to spatially distributed models of higher complexity.

  9. Agreement between functional connectivity and cortical thickness-driven correlation maps of the medial frontal cortex

    PubMed Central

    Park, Hyunjin; Park, Yeong-Hun; Cha, Jungho; Seo, Sang Won; Na, Duk L.

    2017-01-01

    Parcellation of the human cortex has important implications in neuroscience. Parcellation is often a crucial requirement before meaningful regional analysis can occur. The human cortex can be parcellated into distinct regions based on structural features, such as gyri and sulci. Brain network patterns in a given region with respect to its neighbors, known as connectional fingerprints, can be used to parcellate the cortex. Distinct imaging modalities might provide complementary information for brain parcellation. Here, we established functional connectivity with time series data from functional MRI (fMRI) combined with a correlation map of cortical thickness obtained from T1-weighted MRI. We aimed to extend the previous study, which parcellated the medial frontal cortex (MFC) using functional connectivity, and to test the value of additional information regarding cortical thickness. Two types of network information were used to parcellate the MFC into two sub-regions with spectral and Ward’s clustering approaches. The MFC region was defined using manual delineation based on in-house data (n = 12). Parcellation was applied to independent large-scale data obtained from the Human Connectome Project (HCP, n = 248). Agreement between parcellation using fMRI- and thickness-driven connectivity yielded dice coefficient overlaps of 0.74 (Ward’s clustering) and 0.54 (spectral clustering). We also explored whole brain connectivity using the MFC sub-regions as seed regions based on these two types of information. The results of whole brain connectivity analyses were also consistent for both types of information. We observed that an inter-regional correlation map derived from cortical thickness strongly reflected the underlying functional connectivity of MFC region. PMID:28328993

  10. Structural and functional quantitative susceptibility mapping from standard fMRI studies.

    PubMed

    Sun, H; Seres, P; Wilman, A H

    2017-04-01

    Standard functional MRI (fMRI), which includes resting-state or paradigm-driven designs, is widely used in studies of brain function, aging, and disease. These fMRI studies typically use two-dimensional gradient echo-planar imaging, which inherently contains phase data that enables quantitative susceptibility mapping (QSM). This work focuses on the dual value of QSM within fMRI studies, by providing both a localized analysis of functional changes in activated tissue, and iron-sensitive structural maps in deep grey matter (DGM). Using a visual paradigm fMRI study on healthy volunteers at clinical (1.5 T) and high field strength (4.7 T), we perform functional analysis of magnitude and QSM time series, and at the same time harness structural QSM of iron-rich DGM, including globus pallidus, putamen, caudate head, substantia nigra, and red nucleus. The effects of fMRI spatial resolution and time series variation on structural DGM QSM are investigated. Our results indicate that structural DGM QSM is feasible within existing fMRI studies, provided that the voxel dimensions are equal to or less than 3 mm, with higher resolutions preferred. The mean DGM QSM values were about 40 to 220 ppb, while the interquartile ranges of the DGM QSM time series varied from about 3 to 9 ppb, depending on structure and resolution. In contrast, the peak voxel functional QSM (fQSM) changes in activated visual cortex ranged from about -10 to -30 ppb, and functional clusters were consistently smaller on QSM than magnitude fMRI. Mean-level DGM QSM of the time series was successfully extracted in all cases, while fQSM results were more prone to residual background fields and showed less functional change compared with standard magnitude fMRI. Under the conditions prescribed, standard fMRI studies may be used for robust mean-level DGM QSM, enabling study of DGM iron accumulation, in addition to functional analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Diffuse myocardial fibrosis by T1-mapping in children with subclinical anthracycline cardiotoxicity: relationship to exercise capacity, cumulative dose and remodeling

    PubMed Central

    2013-01-01

    Background The late cardiotoxic effects of anthracycline chemotherapy influence morbidity and mortality in the growing population of childhood cancer survivors. Even with lower anthracycline doses, evidence of adverse cardiac remodeling and reduced exercise capacity exist. We aim to examine the relationship between cardiac structure, function and cardiovascular magnetic resonance (CMR) tissue characteristics with chemotherapy dose and exercise capacity in childhood cancer survivors. Methods Thirty patients (15 ± 3 years), at least 2 years following anthracycline treatment, underwent CMR, echocardiography, and cardiopulmonary exercise testing (peak VO2). CMR measured ventricular function, mass, T1 and T2 values, and myocardial extracellular volume fraction, ECV, a measure of diffuse fibrosis based on changes in myocardial T1 values pre- and post-gadolinium. Cardiac function was also assessed with conventional and speckle tracking echocardiography. Results Patients had normal LVEF (59 ± 7%) but peak VO2 was 17% lower than age-predicted normal values and were correlated with anthracycline dose (r = −0.49). Increased ECV correlated with decreased mass/volume ratio (r = −0.64), decreased LV wall thickness/height ratio (r = −0.72), lower peak VO2(r = −0.52), and higher cumulative dose (r = 0.40). Echocardiographic measures of systolic and diastolic function were reduced compared to normal values (p < 0.01), but had no relation to ECV, peak VO2 or cumulative dose. Conclusions Myocardial T1 and ECV were found to be early tissue markers of ventricular remodeling that may represent diffuse fibrosis in children with normal ejection fraction post anthracycline therapy, and are related to cumulative dose, exercise capacity and myocardial wall thinning. PMID:23758789

  12. A comprehensive excitatory input map of the striatum reveals novel functional organization

    PubMed Central

    Hunnicutt, Barbara J; Jongbloets, Bart C; Birdsong, William T; Gertz, Katrina J; Zhong, Haining; Mao, Tianyi

    2016-01-01

    The striatum integrates excitatory inputs from the cortex and the thalamus to control diverse functions. Although the striatum is thought to consist of sensorimotor, associative and limbic domains, their precise demarcations and whether additional functional subdivisions exist remain unclear. How striatal inputs are differentially segregated into each domain is also poorly understood. This study presents a comprehensive map of the excitatory inputs to the mouse striatum. The input patterns reveal boundaries between the known striatal domains. The most posterior striatum likely represents the 4th functional subdivision, and the dorsomedial striatum integrates highly heterogeneous, multimodal inputs. The complete thalamo-cortico-striatal loop is also presented, which reveals that the thalamic subregions innervated by the basal ganglia preferentially interconnect with motor-related cortical areas. Optogenetic experiments show the subregion-specific heterogeneity in the synaptic properties of striatal inputs from both the cortex and the thalamus. This projectome will guide functional studies investigating diverse striatal functions. DOI: http://dx.doi.org/10.7554/eLife.19103.001 PMID:27892854

  13. ISMI: a classification index for high angular resolution diffusion imaging

    NASA Astrophysics Data System (ADS)

    Röttger, D.; Dudai, D.; Merhof, D.; Müller, S.

    2012-02-01

    Magnetic resonance diffusion imaging provides a unique insight into the white matter architecture of the brain in vivo. Applications include neurosurgical planning and fundamental neuroscience. Contrary to diffusion tensor imaging (DTI), high angular resolution diffusion imaging (HARDI) is able to characterize complex intra-voxel diffusion distributions and hence provides more accurate information about the true diffusion profile. Anisotropy indices aim to reduce the information of the diffusion probability function to a meaningful scalar representation that classifies the underlying diffusion and thereby the neuronal fiber configuration within a voxel. These indices can be used to answer clinical questions such as the integrity of certain neuronal pathways. Information about the underlying fiber distribution can be beneficial in tractography approaches, reconstructing neuronal pathways using local diffusion orientations. Therefore, an accurate classification of diffusion profiles is of great interest. However, the differentiation between multiple fiber orientations and isotropic diffusion is still a challenging task. In this work, we introduce ISMI, an index which successfully differentiates isotropic diffusion and single and multiple fiber populations. The classifier is based on the orientation distribution function (ODF) resulting from Q-ball imaging. We compare our results with the well-known general fractional anisotropy (GFA) index using a fiber phantom comprising challenging diffusion profiles such as crossing, fanning and kissing fiber configurations and a human brain dataset considering the centrum semiovale. Additionally, we visualize the results directly on the fibers represented by streamtubes using a heat color map.

  14. Application of Polynomial and Radial Basis Function Maps to Signal Masking

    SciTech Connect

    Damiano, B.

    1998-01-01

    The objective of this research was to develop and demonstrate a technique for encrypting information by using a masking signal that closely approximates local ambient noise. Signal masking techniques developed to date have used nonlinear differential equations, spread spectrum, and various modulation schemes to encode information. While these techniques can effectively hide a signal, the resulting masks may not appear as ambient noise to an observer. The advantage of the proposed technique over commonly used masking methods is that the transmitted signal will appear as normal background noise, thus greatly reducing the probability of detection and exploitation. A promising near-term application of this technology presents itself in the area of clandestine minefield reconnaissance in shallow water areas. Shallow water mine-counter-mine (SWMCM) activity is essential for minefield avoidance, efficient minefield clearance, and effective selection of transit lanes within minefields. A key technology area for SWMCM is the development of special sonar waveforms with low probability of exploitation/intercept (LPE/LPI) attributes. In addition to LPE/LPI sonar, this technology has the potential to enable significant improvements in underwater acoustic communications. For SWMCM, the chaotic waveform research provides a mechanism for encrypted communications between a submarine (SSN) and an unmanned underwater vehicle (UUV) via an acoustic channel. Acoustic SSN/UUV communications would eliminate the need for a fiberoptic link between the two vessels, thus increasing the robustness of SWMCM. Similar applications may exist in the areas of radar masking and secure communications. The original approach called for the use of polynomial maps to generate a masking signal. Because polynomial maps were found to have highly restrictive stability criteria, the approach was modified to use radial basis function (RBF) maps. they have shown that stable RBF maps that closely approximate an

  15. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants.

    PubMed

    Akazawa, Kentaro; Chang, Linda; Yamakawa, Robyn; Hayama, Sara; Buchthal, Steven; Alicata, Daniel; Andres, Tamara; Castillo, Deborrah; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2016-03-01

    Diffusion tensor imaging (DTI) has been widely used to investigate the development of the neonatal and infant brain, and deviations related to various diseases or medical conditions like preterm birth. In this study, we created a probabilistic map of fiber pathways with known associated functions, on a published neonatal multimodal atlas. The pathways-of-interest include the superficial white matter (SWM) fibers just beneath the specific cytoarchitectonically defined cortical areas, which were difficult to evaluate with existing DTI analysis methods. The Jülich cytoarchitectonic atlas was applied to define cortical areas related to specific brain functions, and the Dynamic Programming (DP) method was applied to delineate the white matter pathways traversing through the SWM. Probabilistic maps were created for pathways related to motor, somatosensory, auditory, visual, and limbic functions, as well as major white matter tracts, such as the corpus callosum, the inferior fronto-occipital fasciculus, and the middle cerebellar peduncle, by delineating these structures in eleven healthy term-born neonates. In order to characterize maturation-related changes in diffusivity measures of these pathways, the probabilistic maps were then applied to DTIs of 49 healthy infants who were longitudinally scanned at three time-points, approximately five weeks apart. First, we investigated the normal developmental pattern based on 19 term-born infants. Next, we analyzed 30 preterm-born infants to identify developmental patterns related to preterm birth. Last, we investigated the difference in diffusion measures between these groups to evaluate the effects of preterm birth on the development of these functional pathways. Term-born and preterm-born infants both demonstrated a time-dependent decrease in diffusivity, indicating postnatal maturation in these pathways, with laterality seen in the corticospinal tract and the optic radiation. The comparison between term- and preterm

  16. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

    PubMed Central

    Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J.; Weik, Martin

    2015-01-01

    Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity. PMID:25774711

  17. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function

    NASA Astrophysics Data System (ADS)

    Pridans, Clare; Sauter, Kristin A.; Baer, Kristin; Kissel, Holger; Hume, David A.

    2013-10-01

    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS.

  18. Function of the mitochondrial outer membrane as a diffusion barrier in health and diseases.

    PubMed

    Gellerich, F N; Trumbeckaite, S; Opalka, J R; Seppet, E; Rasmussen, H N; Neuhoff, C; Zierz, S

    2000-02-01

    The mitochondrial outer membrane separates the intermembrane space from the cytosol. The whole exchange of metabolites, cations and information between mitochondria and the cell occurs through the outer membrane. Experimental evidence is reviewed supporting the hypothesis of dynamic ADP compartmentation within the intermembrane space. The outer membrane creates a diffusion barrier for small molecules (adenine nucleotides, creatine phosphate, creatine etc.) causing rate-dependent concentration gradients as a prerequisite for the action of ADP shuttles via creatine kinases or adenylate kinases. If the outer membrane becomes leaky, cytochrome c and apoptosis-inducing factor can be released, leading to apoptosis, and as a bioenergetic consequence the cytosolic phosphorylation potential decreases. Leaky outer membranes can be detected in saponin-skinned fibres with spectrophotometric and oxygraphic methods. This is of special interest in respect to acute impairment of mitochondria during ischaemia/reperfusion.

  19. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function

    PubMed Central

    Pridans, Clare; Sauter, Kristin A.; Baer, Kristin; Kissel, Holger; Hume, David A.

    2013-01-01

    Hereditary diffuse leukoencephalopathy with spheroids (HDLS) in humans is a rare autosomal dominant disease characterized by giant neuroaxonal swellings (spheroids) within the CNS white matter. Symptoms are variable and can include personality and behavioural changes. Patients with this disease have mutations in the protein kinase domain of the colony-stimulating factor 1 receptor (CSF1R) which is a tyrosine kinase receptor essential for microglia development. We investigated the effects of these mutations on Csf1r signalling using a factor dependent cell line. Corresponding mutant forms of murine Csf1r were expressed on the cell surface at normal levels, and bound CSF1, but were not able to sustain cell proliferation. Since Csf1r signaling requires receptor dimerization initiated by CSF1 binding, the data suggest a mechanism for phenotypic dominance of the mutant allele in HDLS. PMID:24145216

  20. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins.

    PubMed

    Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J; Weik, Martin

    2015-03-16

    Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.

  1. Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins

    NASA Astrophysics Data System (ADS)

    Schirò, Giorgio; Fichou, Yann; Gallat, Francois-Xavier; Wood, Kathleen; Gabel, Frank; Moulin, Martine; Härtlein, Michael; Heyden, Matthias; Colletier, Jacques-Philippe; Orecchini, Andrea; Paciaroni, Alessandro; Wuttke, Joachim; Tobias, Douglas J.; Weik, Martin

    2015-03-01

    Hydration water is the natural matrix of biological macromolecules and is essential for their activity in cells. The coupling between water and protein dynamics has been intensively studied, yet it remains controversial. Here we combine protein perdeuteration, neutron scattering and molecular dynamics simulations to explore the nature of hydration water motions at temperatures between 200 and 300 K, across the so-called protein dynamical transition, in the intrinsically disordered human protein tau and the globular maltose binding protein. Quasi-elastic broadening is fitted with a model of translating, rotating and immobile water molecules. In both experiment and simulation, the translational component markedly increases at the protein dynamical transition (around 240 K), regardless of whether the protein is intrinsically disordered or folded. Thus, we generalize the notion that the translational diffusion of water molecules on a protein surface promotes the large-amplitude motions of proteins that are required for their biological activity.

  2. Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques.

    PubMed

    Zhu, Jing; Lu, Li; Zeng, Kaiyang

    2013-02-26

    High-resolution real-space mapping of Li-ion diffusion in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ cathode within an all-solid-state thin film Li-ion battery has been conducted using advanced scanning probe microscopy techniques, namely, band excitation electrochemical strain microscopy (BE-ESM) and conductive atomic force microscopy. In addition, local variations of the electrochemical response in the LiNi(1/3)Co(1/3)Mn(1/3)O₂ thin film cathode at different cycling stages have been investigated. This work demonstrates the unique feature and applications of the BE-ESM technique on battery research. The results allow us to establish a direct relationship of the changes in ionic mobility as well as the electrochemical activity at the nanoscale with the numbers of charge/discharge cycles. Furthermore, various factors influencing the BE-ESM measurements, including sample mechanical properties (e.g., elastic and dissipative properties) as well as surface electrical properties, have also been studied to investigate the coupling effects on the electrochemical strain. The study on the relationships between the Li-ion redistribution and microstructure of the electrode materials within thin film Li-ion battery will provide further understanding of the electrochemical degradation mechanisms of Li-ion rechargeable batteries at the nanoscale.

  3. Cross-validation of serial optical coherence scanning and diffusion tensor imaging: a study on neural fiber maps in human medulla oblongata.

    PubMed

    Wang, Hui; Zhu, Junfeng; Reuter, Martin; Vinke, Louis N; Yendiki, Anastasia; Boas, David A; Fischl, Bruce; Akkin, Taner

    2014-10-15

    We established a strategy to perform cross-validation of serial optical coherence scanner imaging (SOCS) and diffusion tensor imaging (DTI) on a postmortem human medulla. Following DTI, the sample was serially scanned by SOCS, which integrates a vibratome slicer and a multi-contrast optical coherence tomography rig for large-scale three-dimensional imaging at microscopic resolution. The DTI dataset was registered to the SOCS space. An average correlation coefficient of 0.9 was found between the co-registered fiber maps constructed by fractional anisotropy and retardance contrasts. Pixelwise comparison of fiber orientations demonstrated good agreement between the DTI and SOCS measures. Details of the comparison were studied in regions exhibiting a variety of fiber organizations. DTI estimated the preferential orientation of small fiber tracts; however, it didn't capture their complex patterns as SOCS did. In terms of resolution and imaging depth, SOCS and DTI complement each other, and open new avenues for cross-modality investigations of the brain.

  4. Regional MRI Diffusion, White-Matter Hyperintensities, and Cognitive Function in Alzheimer's Disease and Vascular Dementia

    PubMed Central

    Scrascia, Federica; Quattrocchi, Carlo Cosimo; Errante, Yuri; Gangemi, Emma; Curcio, Giuseppe; Ursini, Francesca; Silvestrini, Mauro; Maggio, Paola; Beomonte Zobel, Bruno; Rossini, Paolo Maria; Pasqualetti, Patrizio; Falsetti, Lorenzo; Vernieri, Fabrizio

    2016-01-01

    Background and Purpose An increase in brain water diffusivity as measured using magnetic resonance imaging (MRI) has been recently reported in normal-appearing white matter (NAWM) in patients affected by cognitive impairment. However, it remains to be clarified if this reflects an overt neuronal tissue disruption that leads to degenerative or microvascular lesions. This question was addressed by comparing the regional MRI apparent diffusion coefficients (ADCs) of NAWM in patients affected by Alzheimer's disease (AD) or vascular dementia (VaD). The relationships of ADCs with the white-matter hyperintensity (WMH) burden, carotid atherosclerosis, and cognitive performance were also investigated. Methods Forty-nine AD and 31 VaD patients underwent brain MRI to assess the WMH volume and regional NAWM ADCs, neuropsychological evaluations, and carotid ultrasound to assess the plaque severity and intima-media thickness (IMT). Results Regional ADCs in NAWM did not differ between VaD and AD patients, while the WMH volume was greater in VaD than in AD patients. The ADC in the anterior corpus callosum was related to the WMH volume, while a greater carotid IMT was positively correlated with the temporal ADC and WMH volume. The memory performance was worse in patients with higher temporal ADCs. Constructional praxis scores were related to ADCs in the frontal, and occipital lobes, in the anterior and posterior corpus callosum as well as to the WMH volume. Abstract reasoning was related to frontal, parietal, and temporal ADCs. Conclusions Our data show that higher regional ADCs in NAWM are associated with microcirculatory impairment, as depicted by the WMH volume. Moreover, regional ADCs in NAWM are differently associated with the neuropsychological performances in memory, constructional praxia, and abstract reasoning domains. PMID:27074295

  5. Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from

  6. Dependence of Mos-induced Cdc2 activation on MAP kinase function in a cell-free system.

    PubMed Central

    Huang, C Y; Ferrell, J E

    1996-01-01

    The progression of G2-arrested Xenopus laevis oocytes into meiotic M-phase is accompanied by the nearly simultaneous activation of p42 MAP kinase and Cdc2/cyclin B. This timing raises the possibility that the activation of one kinase might depend upon the other. Here we have examined whether Cdc2 activation requires p42 MAP kinase function. We have reconstituted Mos-induced Cdc2 activation in cell-free Xenopus oocyte extracts, and have found that Mos-induced Cdc2 activation requires active p42 MAP kinase, is inhibited by a MAP kinase phosphatase and is independent of protein synthesis. These findings indicate that p42 MAP kinase is an essential component of the M phase trigger in this system. Images PMID:8641282

  7. Mapping 3-D functional capillary geometry in rat skeletal muscle in vivo

    PubMed Central

    Milkovich, Stephanie; Goldman, Daniel; Ellis, Christopher G.

    2012-01-01

    We have developed a novel mapping software package to reconstruct microvascular networks in three dimensions (3-D) from in vivo video images for use in blood flow and O2 transport modeling. An intravital optical imaging system was used to collect video sequences of blood flow in microvessels at different depths in the tissue. Functional images of vessels were produced from the video sequences and were processed using automated edge tracking software to yield location and geometry data for construction of the 3-D network. The same video sequences were analyzed for hemodynamic and O2 saturation data from individual capillaries in the network. Simple user-driven commands allowed the connection of vessel segments at bifurcations, and semiautomated registration enabled the tracking of vessels across multiple focal planes and fields of view. The reconstructed networks can be rotated and manipulated in 3-D to verify vessel connections and continuity. Hemodynamic and O2 saturation measurements made in vivo can be indexed to corresponding vessels and visualized using colorized maps of the vascular geometry. Vessels in each reconstruction are saved as text-based files that can be easily imported into flow or O2 transport models with complete geometry, hemodynamic, and O2 transport conditions. The results of digital morphometric analysis of seven microvascular networks showed mean capillary diameters and overall capillary density consistent with previous findings using histology and corrosion cast techniques. The described mapping software is a valuable tool for the quantification of in vivo microvascular geometry, hemodynamics, and oxygenation, thus providing rich data sets for experiment-based computational models. PMID:22140042

  8. Using Association Mapping in Teosinte to Investigate the Function of Maize Selection-Candidate Genes

    PubMed Central

    Weber, Allison L.; Zhao, Qiong; McMullen, Michael D.; Doebley, John F.

    2009-01-01

    Background Large-scale screens of the maize genome identified 48 genes that show the putative signature of artificial selection during maize domestication or improvement. These selection-candidate genes may act as quantitative trait loci (QTL) that control the phenotypic differences between maize and its progenitor, teosinte. The selection-candidate genes appear to be located closer in the genome to domestication QTL than expected by chance. Methods and Findings As a step toward defining the traits controlled by these genes, we performed phenotype-genotype association mapping in teosinte for 32 of the 48 plus three other selection-candidate genes. Our analyses assayed 32 phenotypic traits, many of which were altered during maize domestication or improvement. We observed several significant associations between SNPs in the selection-candidate genes and trait variation in teosinte. These included two associations that surpassed the Bonferroni correction and five instances where a gene significantly associated with the same trait in both of our association mapping panels. Despite these significant associations, when compared as a group the selection-candidate genes performed no better than randomly chosen genes. Conclusions Our results suggest association analyses can be helpful for identifying traits under the control of selection-candidate genes. Indeed, we present evidence for new functions for several selection-candidate genes. However, with the current set of selection-candidate genes and our association mapping strategy, we found very few significant associations overall and no more than we would have found with randomly chosen genes. We discuss possible reasons that a large number of significant genotype-phenotype associations were not discovered. PMID:20011044

  9. Spatiotemporal Dynamics and Hopf Bifurcation in a Delayed Diffusive Intraguild Predation Model with Holling II Functional Response

    NASA Astrophysics Data System (ADS)

    Han, Renji; Dai, Binxiang

    We propose a kind of delayed diffusive intraguild predation model with Holling II functional response in this paper. By analyzing the eigenvalue spectrum, it is found that the stability or instability of equilibria can be induced by delay. By utilizing the local bifurcation theory of partial functional differential equations, Hopf bifurcation of the proposed system with time delay as bifurcation parameter is investigated. It reveals that the time delay has a destabilizing effect in the intraguild predation model dynamics and a phenomenon of Hopf bifurcation occurs when the delay increases through a certain threshold. Then we give the explicit formulas to determine the direction, stability of Hopf bifurcation by utilizing the normal form method and center manifold reduction for PFDEs. Numerical simulations are performed to illustrate our theoretical results and show that delay and diffusion can induce the system into chaos and even trigger the emergence of different types of spatial patterns, including spiral wave pattern and chaotic wave pattern, which are induced by Hopf instability.

  10. Estimation of the effective phase function of bulk diffusing materials with the inverse adding-doubling method.

    PubMed

    Leyre, Sven; Meuret, Youri; Durinck, Guy; Hofkens, Johan; Deconinck, Geert; Hanselaer, Peter

    2014-04-01

    The accuracy of optical simulations including bulk diffusors is heavily dependent on the accuracy of the bulk scattering properties. If no knowledge on the physical scattering effects is available, an iterative procedure is usually used to obtain the scattering properties, such as the inverse Monte Carlo method or the inverse adding-doubling (AD) method. In these methods, a predefined phase function with one free parameter is usually used to limit the number of free parameters. In this work, three predefined phase functions (Henyey-Greenstein, two-term Henyey-Greenstein, and Gegenbauer kernel (GK) phase function) are implemented in the inverse AD method to determine the optical properties of two strongly diffusing materials: low-density polyethylene and TiO₂ particles. Using the presented approach, an estimation of the effective phase function was made. It was found that the use of the GK phase function resulted in the best agreement between calculated and experimental transmittance, reflectance, and scattered radiant intensity distribution for the LDPE sample. For the TiO₂ sample, a good agreement was obtained with both the two-term Henyey-Greenstein and the GK phase function.

  11. Diffusion and conformation of peptide-functionalized polyphenylene dendrimers studied by fluorescence correlation and 13C NMR spectroscopy.

    PubMed

    Koynov, K; Mihov, G; Mondeshki, M; Moon, C; Spiess, H W; Müllen, K; Butt, H-J; Floudas, G

    2007-05-01

    We report on the combined use of fluorescence correlation spectroscopy (FCS) and 1H and 13C NMR spectroscopy to detect the size and type of peptide secondary structures in a series of poly-Z-L-lysine functionalized polyphenylene dendrimers bearing the fluorescent perylenediimide core in solution. In dilute solution, the size of the molecule as detected from FCS and 1H NMR diffusion measurements matches nicely. We show that FCS is a sensitive probe of the core size as well as of the change in the peptide secondary structure. However, FCS is less sensitive to functionality. A change in the peptide secondary conformation from beta-sheets to alpha-helices detected by 13C NMR spectroscopy gives rise to a steep increase in the hydrodynamic radii for number of residues n > or = 16. Nevertheless, helices are objects of low persistence.

  12. Integrated Transcriptome Map Highlights Structural and Functional Aspects of the Normal Human Heart.

    PubMed

    Caracausi, Maria; Piovesan, Allison; Vitale, Lorenza; Pelleri, Maria Chiara

    2017-04-01

    A systematic meta-analysis of the available gene expression profiling datasets for the whole normal human heart generated a quantitative transcriptome reference map of this organ. Transcriptome Mapper (TRAM) software integrated 32 gene expression profile datasets from different sources returning a reference value of expression for each of the 43,360 known, mapped transcripts assayed by any of the experimental platforms used in this regard. Main findings include the visualization at the gene and chromosomal levels of the classical description of the basic histology and physiology of the heart, the identification of suitable housekeeping reference genes, the analysis of stoichiometry of gene products, and the focusing on chromosome 21 genes, which are present in one excess copy in Down syndrome subjects, presenting cardiovascular defects in 30-40% of cases. Independent in vitro validation showed an excellent correlation coefficient (r = 0.98) with the in silico data. Remarkably, heart/non-cardiac tissue expression ratio may also be used to anticipate that effects of mutations will most probably affect or not the heart. The quantitative reference global portrait of gene expression in the whole normal human heart illustrates the structural and functional aspects of the whole organ and is a general model to understand the mechanisms underlying heart pathophysiology. J. Cell. Physiol. 232: 759-770, 2017. © 2016 Wiley Periodicals, Inc.

  13. Cross-Population Joint Analysis of eQTLs: Fine Mapping and Functional Annotation

    PubMed Central

    Wen, Xiaoquan; Luca, Francesca; Pique-Regi, Roger

    2015-01-01

    Mapping expression quantitative trait loci (eQTLs) has been shown as a powerful tool to uncover the genetic underpinnings of many complex traits at molecular level. In this paper, we present an integrative analysis approach that leverages eQTL data collected from multiple population groups. In particular, our approach effectively identifies multiple independent cis-eQTL signals that are consistent across populations, accounting for population heterogeneity in allele frequencies and linkage disequilibrium patterns. Furthermore, by integrating genomic annotations, our analysis framework enables high-resolution functional analysis of eQTLs. We applied our statistical approach to analyze the GEUVADIS data consisting of samples from five population groups. From this analysis, we concluded that i) jointly analysis across population groups greatly improves the power of eQTL discovery and the resolution of fine mapping of causal eQTL ii) many genes harbor multiple independent eQTLs in their cis regions iii) genetic variants that disrupt transcription factor binding are significantly enriched in eQTLs (p-value = 4.93 × 10-22). PMID:25906321

  14. Time series forecasting by combining the radial basis function network and the self-organizing map

    NASA Astrophysics Data System (ADS)

    Lin, Gwo-Fong; Chen, Lu-Hsien

    2005-06-01

    Based on a combination of a radial basis function network (RBFN) and a self-organizing map (SOM), a time-series forecasting model is proposed. Traditionally, the positioning of the radial basis centres is a crucial problem for the RBFN. In the proposed model, an SOM is used to construct the two-dimensional feature map from which the number of clusters (i.e. the number of hidden units in the RBFN) can be figured out directly by eye, and then the radial basis centres can be determined easily. The proposed model is examined using simulated time series data. The results demonstrate that the proposed RBFN is more competent in modelling and forecasting time series than an autoregressive integrated moving average (ARIMA) model. Finally, the proposed model is applied to actual groundwater head data. It is found that the proposed model can forecast more precisely than the ARIMA model. For time series forecasting, the proposed model is recommended as an alternative to the existing method, because it has a simple structure and can produce reasonable forecasts.

  15. Structure-function mapping of a heptameric module in the nuclear pore complex.

    PubMed

    Fernandez-Martinez, Javier; Phillips, Jeremy; Sekedat, Matthew D; Diaz-Avalos, Ruben; Velazquez-Muriel, Javier; Franke, Josef D; Williams, Rosemary; Stokes, David L; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2012-02-20

    The nuclear pore complex (NPC) is a multiprotein assembly that serves as the sole mediator of nucleocytoplasmic exchange in eukaryotic cells. In this paper, we use an integrative approach to determine the structure of an essential component of the yeast NPC, the ~600-kD heptameric Nup84 complex, to a precision of ~1.5 nm. The configuration of the subunit structures was determined by satisfaction of spatial restraints derived from a diverse set of negative-stain electron microscopy and protein domain-mapping data. Phenotypic data were mapped onto the complex, allowing us to identify regions that stabilize the NPC's interaction with the nuclear envelope membrane and connect the complex to the rest of the NPC. Our data allow us to suggest how the Nup84 complex is assembled into the NPC and propose a scenario for the evolution of the Nup84 complex through a series of gene duplication and loss events. This work demonstrates that integrative approaches based on low-resolution data of sufficient quality can generate functionally informative structures at intermediate resolution.

  16. Quantitative mapping of functional MAO-A in the brain with radioiodinated clorgyline derivative

    SciTech Connect

    Magata, Y.; Konishi, J.; Hirata, M.

    1994-05-01

    The alteration of monoamine oxidase (MAO) activity in the brain may be associated with a number of neurological and psychiatric disorders. C-11 labeled clorgyline and deprenyl have been reported as imaging agents for MAO in the human brain. In order to expand this imaging technique to SPECT, the authors have reported the synthesis and biological evaluation of a number of iodinated clorgyline derivatives. On this basis, 2,4-dichloro-6-iodo-clorgyline analog (SIC) was selected as the most potential agent for mapping MAO-A with SPECT. In this paper, quantitative mapping of functional MAO-A in the brain with this compound was estimated. Pretreatment study with clorgyline showed the selective binding to MAO-A in the brain at 24 hr post injection of I-125-SIC. Good linear correlation between the enzyme activity and the brain up-take of I-125-SIC was observed in the pretreated study with several dose of clorgyline. Furthermore, local MAO-A activity was estimated by the autoradiographic method. High MAO-A activities were observed in midbrain and pons. This result was well agreed with another reported value obtained in vitro assay. In conclusion, this compound is indicated to be variable for quantitative analysis of MAO-A in the brain with SPECT.

  17. Parameterization of Parton Distributions Functions Based on Self-Organizing Maps

    NASA Astrophysics Data System (ADS)

    Loitiere, Y.; Honkanen, H.; Liuti, S.

    2006-11-01

    Neural network algorithms have been recently applied to construct Parton Distribution Functions (PDFs) parametrizations which provide an alternative to standard global fitting procedures [1]. In this contribution we propose a different technique, namely an interactive neural network algorithm using Self-Organizing Maps (SOMs) [2]. SOMs generate a nonuniform projection from a high dimensional data space onto a low dimensional one (usually 1 or 2 dimensions) by clustering similar PDF representations together. Our SOMs are trained on progressively narrower selections of data samples. The selection criterion is that of convergence towards a neighborhood of the experimental data. Our procedure utilizes all available data on deep inelastic scattering in the kinematical region of 0.001 <=x <= 0.75, and 1 <=Q^2 <= 100 GeV^2, with a cut on the final state invariant mass, W^2 >= 10 GeV^2. Our main goal is to provide a fitting procedure that, at variance with standard neural network approaches, allows for an increased control of the systematic bias. SOMs, in fact, enable the user to directly control the data selection procedure at various stages of the process. [1] L. Del Debbio, S. Forte, J. I. Latorre, A. Piccione and J. Rojo, [NNPDF Collaboration], JHEP 0503, 080 (2005). [2] T. Kohonen, ``Self Organizing Maps,'' Springer-Verlag, 1997.

  18. Towards an automated selection of spontaneous co-activity maps in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Sourty, Marion; Thoraval, Laurent; Roquet, Daniel; Armspach, Jean-Paul; Foucher, Jack

    2015-03-01

    Functional magnetic resonance imaging allows to assess large scale functional integration of the brain. One of the leading techniques to extract functionally relevant networks is spatial independent component analysis (ICA). Spatial ICA separates independent spatial sources, many of whom are noise or imaging artifacts, whereas some do correspond to functionally relevant Spontaneous co-Activity Maps (SAMs). For research purposes, ICA is generally performed on group data. This strategy is well adapted to uncover commonly shared networks, e.g. resting-state networks, but fails to capture idiosyncratic functional networks which may be related to pathological activity, e.g. epilepsy, hallucinations. To capture these subject specific networks, ICA has to be applied to single subjects using a large number of components, from which a tenth are SAMs. Up to now, SAMs have to be selected manually by an expert based on predefined criteria. We aim to semi-automate the selection process in order to save time. To this end, some approaches have been proposed but none with the near 100 % sensitivity required for clinical purposes. In this paper, we propose a computerized version of the SAM's criteria used by experts, based on frequential and spatial characteristics of functional networks. Here we present a pre-selection method and its results at different resolutions, with different scanners or imaging sequences. While preserving a near 100 % sensitivity, it allows an average of 70 % reduction of components to be classified which save 55% of experts' time. In comparison, group ICA fails to detect about 25% of the SAMs.

  19. Three-Dimensional Mapping of Soil Organic Carbon by Combining Kriging Method with Profile Depth Function

    PubMed Central

    Chen, Chong; Hu, Kelin; Li, Hong; Yun, Anping; Li, Baoguo

    2015-01-01