Science.gov

Sample records for functional domains required

  1. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  2. Uncertainty Analysis via Failure Domain Characterization: Unrestricted Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. The methods developed herein, which are based on nonlinear constrained optimization, are applicable to requirement functions whose functional dependency on the uncertainty is arbitrary and whose explicit form may even be unknown. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the assumed uncertainty model (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  3. The functional requirement of two structural domains within telomerase RNA emerged early in eukaryotes.

    PubMed

    Podlevsky, Joshua D; Li, Yang; Chen, Julian J-L

    2016-11-16

    Telomerase emerged during evolution as a prominent solution to the eukaryotic linear chromosome end-replication problem. Telomerase minimally comprises the catalytic telomerase reverse transcriptase (TERT) and telomerase RNA (TR) that provides the template for telomeric DNA synthesis. While the TERT protein is well-conserved across taxa, TR is highly divergent amongst distinct groups of species. Herein, we have identified the essential functional domains of TR from the basal eukaryotic species Trypanosoma brucei, revealing the ancestry of TR comprising two distinct structural core domains that can assemble in trans with TERT and reconstitute active telomerase enzyme in vitro The upstream essential domain of T. brucei TR, termed the template core, constitutes three short helices in addition to the 11-nt template. Interestingly, the trypanosome template core domain lacks the ubiquitous pseudoknot found in all known TRs, suggesting later evolution of this critical structural element. The template-distal domain is a short stem-loop, termed equivalent CR4/5 (eCR4/5). While functionally similar to vertebrate and fungal CR4/5, trypanosome eCR4/5 is structurally distinctive, lacking the essential P6.1 stem-loop. Our functional study of trypanosome TR core domains suggests that the functional requirement of two discrete structural domains is a common feature of TRs and emerged early in telomerase evolution.

  4. Functional domains within the human immunodeficiency virus type 2 envelope protein required to enhance virus production.

    PubMed

    Abada, Paolo; Noble, Beth; Cannon, Paula M

    2005-03-01

    Primate lentiviruses code for a protein that stimulates virus production. In human immunodeficiency virus type 1 (HIV-1), the activity is provided by the accessory protein, Vpu, while in HIV-2 and simian immunodeficiency virus it is a property of the envelope (Env) glycoprotein. Using a group of diverse retroviruses and cell types, we have confirmed the functional equivalence of the two proteins. However, despite these similarities, the two proteins have markedly different functional domains. While the Vpu activity is associated primarily with its membrane-spanning region, we have determined that the HIV-2 Env activity requires both the cytoplasmic tail and ectodomain of the protein, with the membrane-spanning domain being less important. Within the Env cytoplasmic tail, we further defined the necessary sequence as a membrane-proximal tyrosine-based motif. Providing the two Env regions separately as distinct CD8 chimeric proteins did not increase virus release. This suggests that the two domains must be either contained within a single protein or closely associated within a multiprotein oligomer, such as the Env trimer, in order to function. Finally, we observed that wild-type levels of incorporation of the HIV-2 Env into budding viruses were not required for this activity.

  5. Functional Domains within the Human Immunodeficiency Virus Type 2 Envelope Protein Required To Enhance Virus Production

    PubMed Central

    Abada, Paolo; Noble, Beth; Cannon, Paula M.

    2005-01-01

    Primate lentiviruses code for a protein that stimulates virus production. In human immunodeficiency virus type 1 (HIV-1), the activity is provided by the accessory protein, Vpu, while in HIV-2 and simian immunodeficiency virus it is a property of the envelope (Env) glycoprotein. Using a group of diverse retroviruses and cell types, we have confirmed the functional equivalence of the two proteins. However, despite these similarities, the two proteins have markedly different functional domains. While the Vpu activity is associated primarily with its membrane-spanning region, we have determined that the HIV-2 Env activity requires both the cytoplasmic tail and ectodomain of the protein, with the membrane-spanning domain being less important. Within the Env cytoplasmic tail, we further defined the necessary sequence as a membrane-proximal tyrosine-based motif. Providing the two Env regions separately as distinct CD8 chimeric proteins did not increase virus release. This suggests that the two domains must be either contained within a single protein or closely associated within a multiprotein oligomer, such as the Env trimer, in order to function. Finally, we observed that wild-type levels of incorporation of the HIV-2 Env into budding viruses were not required for this activity. PMID:15731257

  6. Structure–function analysis of myomaker domains required for myoblast fusion

    PubMed Central

    Millay, Douglas P.; Gamage, Dilani G.; Quinn, Malgorzata E.; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell–cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation. PMID:26858401

  7. Structure-function analysis of myomaker domains required for myoblast fusion.

    PubMed

    Millay, Douglas P; Gamage, Dilani G; Quinn, Malgorzata E; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N

    2016-02-23

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell-cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation.

  8. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors

    PubMed Central

    Farina, Anthony N.; Blain, Katherine Y.; Maruo, Tomohiko; Kwiatkowski, Witek; Choe, Senyon; Nakagawa, Terunaga

    2011-01-01

    The precise knowledge of the subunit assembly process of NMDA receptors (NMDA-Rs) is essential to understand the receptor architecture and underlying mechanism of channel function. Because NMDA-Rs are obligatory heterotetramers requiring the GluN1 subunit, it is critical to investigate how GluN1 and GluN2 type subunits co-assemble into tetramers. By combining approaches in cell biology, biochemistry, single particle electron microscopy, and X-ray crystallography, we report the mechanisms and phenotypes of mutant GluN1 subunits that are defective in receptor maturation. The T110A mutation in the N-terminal domain (NTD) of the GluN1 promotes heterodimerization between the NTDs of GluN1 and GluN2, whereas the Y109C mutation in the adjacent residue stabilizes the homodimer of the NTD of GluN1. The crystal structure of the NTD of GluN1 revealed the mechanism underlying the biochemical properties of these mutants. Effects of these mutations on the maturation of heteromeric NMDA-Rs were investigated using a receptor trafficking assay. Our results suggest that the NTDs of the GluN1 subunit initially form homodimers and the subsequent dimer dissociation is critical for forming heterotetrameric NMDA-Rs containing GluN2 subunits, defining a molecular determinant for receptor assembly. The domain arrangement of the dimeric NTD of GluN1 is unique among the ionotropic glutamate receptors and predicts that the structure and mechanism around the NTDs of NMDA-Rs are different from those of the homologous AMPA and kainate receptors. PMID:21389213

  9. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network.

    PubMed

    van Galen, Josse; Campelo, Felix; Martínez-Alonso, Emma; Scarpa, Margherita; Martínez-Menárguez, José Ángel; Malhotra, Vivek

    2014-09-01

    Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.

  10. Sphingomyelin homeostasis is required to form functional enzymatic domains at the trans-Golgi network

    PubMed Central

    van Galen, Josse; Campelo, Felix; Martínez-Alonso, Emma; Scarpa, Margherita; Martínez-Menárguez, José Ángel

    2014-01-01

    Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN. PMID:25179630

  11. BLUF Domain Function Does Not Require a Metastable Radical Intermediate State

    PubMed Central

    2014-01-01

    BLUF (blue light using flavin) domain proteins are an important family of blue light-sensing proteins which control a wide variety of functions in cells. The primary light-activated step in the BLUF domain is not yet established. A number of experimental and theoretical studies points to a role for photoinduced electron transfer (PET) between a highly conserved tyrosine and the flavin chromophore to form a radical intermediate state. Here we investigate the role of PET in three different BLUF proteins, using ultrafast broadband transient infrared spectroscopy. We characterize and identify infrared active marker modes for excited and ground state species and use them to record photochemical dynamics in the proteins. We also generate mutants which unambiguously show PET and, through isotope labeling of the protein and the chromophore, are able to assign modes characteristic of both flavin and protein radical states. We find that these radical intermediates are not observed in two of the three BLUF domains studied, casting doubt on the importance of the formation of a population of radical intermediates in the BLUF photocycle. Further, unnatural amino acid mutagenesis is used to replace the conserved tyrosine with fluorotyrosines, thus modifying the driving force for the proposed electron transfer reaction; the rate changes observed are also not consistent with a PET mechanism. Thus, while intermediates of PET reactions can be observed in BLUF proteins they are not correlated with photoactivity, suggesting that radical intermediates are not central to their operation. Alternative nonradical pathways including a keto–enol tautomerization induced by electronic excitation of the flavin ring are considered. PMID:24579721

  12. Identification of TSG101 Functional Domains and p21 Loci Required for TSG101-Mediated p21 Gene Regulation

    PubMed Central

    Lin, Yu-Shiuan; Chen, Yin-Ju; Cohen, Stanley N.; Cheng, Tzu-Hao

    2013-01-01

    TSG101 (tumor susceptibility gene 101) is a multi-domain protein known to act in the cell nucleus, cytoplasm, and periplasmic membrane. Remarkably, TSG101, whose location within cells varies with the stage of the cell cycle, affects biological events as diverse as cell growth and proliferation, gene expression, cytokinesis, and endosomal trafficking. The functions of TSG101 additionally are recruited for viral and microvesicle budding and for intracellular survival of invading bacteria. Here we report that the TSG101 protein also interacts with and down-regulates the promoter of the p21CIP1/WAF1tumor suppressor gene, and identify a p21 locus and TSG101 domains that mediate this interaction. TSG101 deficiency in Saos-2 human osteosarcoma cells was accompanied by an increased abundance of p21 mRNA and protein and the retardation of cell proliferation. A cis-acting element in the p21 promoter that interacts with TSG101 and is required for promoter repression was located using chromatin immunoprecipitation (ChIP) analysis and p21-driven luciferase reporter gene expression, respectively. Additional analysis of TSG101 deletion mutants lacking specific domains established the role of the central TSG101 domains in binding to the p21 promoter and demonstrated the additional essentiality of the TSG101 C-terminal steadiness box (SB) in the repression of p21 promoter activity. Neither binding of TSG101 to the p21 promoter nor repression of this promoter required the TSG101 N-terminal UEV domain, which mediates the ubiquitin-recognition functions of TSG101 and its actions as a member of ESCRT endocytic trafficking complexes, indicating that regulation of the p21 promoter by TSG101 is independent of its role in such trafficking. PMID:24244542

  13. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  14. Ribonucleotide reduction - horizontal transfer of a required function spans all three domains

    PubMed Central

    2010-01-01

    Background Ribonucleotide reduction is the only de novo pathway for synthesis of deoxyribonucleotides, the building blocks of DNA. The reaction is catalysed by ribonucleotide reductases (RNRs), an ancient enzyme family comprised of three classes. Each class has distinct operational constraints, and are broadly distributed across organisms from all three domains, though few class I RNRs have been identified in archaeal genomes, and classes II and III likewise appear rare across eukaryotes. In this study, we examine whether this distribution is best explained by presence of all three classes in the Last Universal Common Ancestor (LUCA), or by horizontal gene transfer (HGT) of RNR genes. We also examine to what extent environmental factors may have impacted the distribution of RNR classes. Results Our phylogenies show that the Last Eukaryotic Common Ancestor (LECA) possessed a class I RNR, but that the eukaryotic class I enzymes are not directly descended from class I RNRs in Archaea. Instead, our results indicate that archaeal class I RNR genes have been independently transferred from bacteria on two occasions. While LECA possessed a class I RNR, our trees indicate that this is ultimately bacterial in origin. We also find convincing evidence that eukaryotic class I RNR has been transferred to the Bacteroidetes, providing a stunning example of HGT from eukaryotes back to Bacteria. Based on our phylogenies and available genetic and genomic evidence, class II and III RNRs in eukaryotes also appear to have been transferred from Bacteria, with subsequent within-domain transfer between distantly-related eukaryotes. Under the three-domains hypothesis the RNR present in the last common ancestor of Archaea and eukaryotes appears, through a process of elimination, to have been a dimeric class II RNR, though limited sampling of eukaryotes precludes a firm conclusion as the data may be equally well accounted for by HGT. Conclusions Horizontal gene transfer has clearly played an

  15. An in vivo analysis of the vestigial gene in Drosophila melanogaster defines the domains required for Vg function.

    PubMed

    MacKay, Julie O; Soanes, Kelly H; Srivastava, Ajay; Simmonds, Andrew; Brook, William J; Bell, John B

    2003-04-01

    Considerable evidence indicates an obligate partnership of the Drosophila melanogaster Vestigial (VG) and Scalloped (SD) proteins within the context of wing development. These two proteins interact physically and a 56-amino-acid motif within VG is necessary and sufficient for this binding. While the importance of this SD-binding domain has been clearly demonstrated both in vitro and in vivo, the remaining portions of VG have not been examined for in vivo function. Herein, additional regions within VG were tested for possible in vivo functions. The results identify two additional domains that must be present for optimal VG function as measured by the loss of ability to rescue vg mutants, to induce ectopic sd expression, and to perform other normal VG functions when they are deleted. An in vivo study such as this one is fundamentally important because it identifies domains of VG that are necessary in the cellular context in which wing development actually occurs. The results also indicate that an additional large portion of VG, outside of these two domains and the SD-binding domain, is dispensable in the execution of these normal VG functions.

  16. MERISTEM-DEFECTIVE, an RS domain protein, is required for the correct meristem patterning and function in Arabidopsis.

    PubMed

    Casson, Stuart A; Topping, Jennifer F; Lindsey, Keith

    2009-03-01

    Plant growth and development is dependent on the specification and maintenance of pools of stem cells found in the meristems. Mutations in the Arabidopsis MERISTEM-DEFECTIVE (MDF) gene lead to a loss of stem cell and meristematic activity in the root and vegetative shoot. MDF encodes a putative RS domain protein with a predicted role in transcription or RNA processing control. mdf mutants exhibit decreased levels of PINFORMED2 (PIN2) and PIN4 mRNAs, which is associated with a reduction in PIN:GFP levels, and with a defective auxin maximum in the basal region of the developing mdf embryo and seedling root meristem. Seedling roots also exhibit reduced PLETHORA (PLT), SCARECROW and SHORTROOT gene expression, a loss of stem cell activity, terminal differentiation of the root meristem and defective cell patterning. MDF expression is not defective in the bodenlos, pin1 or eir1/pin2 auxin mutants, and is not modulated by exogenous auxin. plt1 plt2 double mutants have unaffected levels of MDF RNA, indicating that MDF acts upstream of PIN and PLT gene expression. Differentiation of the shoot stem cell pool also occurs in mdf mutants, associated with a reduced WUSCHEL (WUS) expression domain and expanded CLAVATA3 (CLV3) domain. Overexpression of MDF leads to the activation of markers of embryonic identity and ectopic meristem activity in vegetative tissues. These results demonstrate a requirement for the MDF-dependent pathway in regulating PIN/PLT- and WUS/CLV-mediated meristem activity.

  17. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B.; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-05-01

    The use of biophysical assays permitted the identification of a specific human ACC2 carboxyl transferase (CT) domain mutant that binds inhibitors and crystallizes in their presence. This mutant led to determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed differences in the inhibitor conformation from the yeast protein complex that are caused by differing residues in the binding pocket. Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined α-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  18. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-06-15

    Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined -helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  19. pARIS-htt: an optimised expression platform to study huntingtin reveals functional domains required for vesicular trafficking

    PubMed Central

    2010-01-01

    Background Huntingtin (htt) is a multi-domain protein of 350 kDa that is mutated in Huntington's disease (HD) but whose function is yet to be fully understood. This absence of information is due in part to the difficulty of manipulating large DNA fragments by using conventional molecular cloning techniques. Consequently, few studies have addressed the cellular function(s) of full-length htt and its dysfunction(s) associated with the disease. Results We describe a flexible synthetic vector encoding full-length htt called pARIS-htt (Adaptable, RNAi Insensitive &Synthetic). It includes synthetic cDNA coding for full-length human htt modified so that: 1) it is improved for codon usage, 2) it is insensitive to four different siRNAs allowing gene replacement studies, 3) it contains unique restriction sites (URSs) dispersed throughout the entire sequence without modifying the translated amino acid sequence, 4) it contains multiple cloning sites at the N and C-ter ends and 5) it is Gateway compatible. These modifications facilitate mutagenesis, tagging and cloning into diverse expression plasmids. Htt regulates dynein/dynactin-dependent trafficking of vesicles, such as brain-derived neurotrophic factor (BDNF)-containing vesicles, and of organelles, including reforming and maintenance of the Golgi near the cell centre. We used tests of these trafficking functions to validate various pARIS-htt constructs. We demonstrated, after silencing of endogenous htt, that full-length htt expressed from pARIS-htt rescues Golgi apparatus reformation following reversible microtubule disruption. A mutant form of htt that contains a 100Q expansion and a htt form devoid of either HAP1 or dynein interaction domains are both unable to rescue loss of endogenous htt. These mutants have also an impaired capacity to promote BDNF vesicular trafficking in neuronal cells. Conclusion We report the validation of a synthetic gene encoding full-length htt protein that will facilitate analyses of its

  20. FAH Domain Containing Protein 1 (FAHD-1) Is Required for Mitochondrial Function and Locomotion Activity in C. elegans

    PubMed Central

    Taferner, Andrea; Pircher, Haymo; Koziel, Rafal; von Grafenstein, Susanne; Baraldo, Giorgia; Palikaras, Konstantinos; Liedl, Klaus R.; Tavernarakis, Nektarios; Jansen-Dürr, Pidder

    2015-01-01

    The fumarylacetoacetate hydrolase (FAH) protein superfamily of metabolic enzymes comprises a diverse set of enzymatic functions, including ß-diketone hydrolases, decarboxylases, and isomerases. Of note, the FAH superfamily includes many prokaryotic members with very distinct functions that lack homologs in eukaryotes. A prokaryotic member of the FAH superfamily, referred to as Cg1458, was shown to encode a soluble oxaloacetate decarboxylase (ODx). Based on sequence homologies to Cg1458, we recently identified human FAH domain containing protein-1 (FAHD1) as the first eukaryotic oxaloacetate decarboxylase. The physiological functions of ODx in eukaryotes remain unclear. Here we have probed the function of fahd-1, the nematode homolog of FAHD1, in the context of an intact organism. We found that mutation of fahd-1 resulted in reduced brood size, a deregulation of the egg laying process and a severe locomotion deficit, characterized by a reduced frequency of body bends, reduced exploratory movements and reduced performance in an endurance exercise test. Notably, mitochondrial function was altered in the fahd-1(tm5005) mutant strain, as shown by a reduction of mitochondrial membrane potential and a reduced oxygen consumption of fahd-1(tm5005) animals. Mitochondrial dysfunction was accompanied by lifespan extension in worms grown at elevated temperature; however, unlike in mutant worms with a defect in the electron transport chain, the mitochondrial unfolded protein response was not upregulated in worms upon inactivation of fahd-1. Together these data establish a role of fahd-1 to maintain mitochondrial function and consequently physical activity in nematodes. PMID:26266933

  1. In-Depth Mutational Analysis of the Promyelocytic Leukemia Zinc Finger BTB/POZ Domain Reveals Motifs and Residues Required for Biological and Transcriptional Functions

    PubMed Central

    Melnick, Ari; Ahmad, K. Farid; Arai, Sally; Polinger, Adam; Ball, Helen; Borden, Katherine L.; Carlile, Graeme W.; Prive, Gilbert G.; Licht, Jonathan D.

    2000-01-01

    The promyelocytic leukemia zinc finger (PLZF) protein is a transcription factor disrupted in patients with t(11;17)(q23;q21)-associated acute promyelocytic leukemia. PLZF contains an N-terminal BTB/POZ domain which is required for dimerization, transcriptional repression, formation of high-molecular-weight DNA-protein complexes, nuclear sublocalization, and growth suppression. X-ray crystallographic data show that the PLZF BTB/POZ domain forms an obligate homodimer via an extensive interface. In addition, the dimer possesses several highly conserved features, including a charged pocket, a hydrophobic monomer core, an exposed hydrophobic surface on the floor of the dimer, and two negatively charged surface patches. To determine the role of these structures, mutational analysis of the BTB/POZ domain was performed. We found that point mutations in conserved residues that disrupt the dimer interface or the monomer core result in a misfolded nonfunctional protein. Mutation of key residues from the exposed hydrophobic surface suggests that these are also important for the stability of PLZF complexes. The integrity of the charged-pocket region was crucial for proper folding of the BTB/POZ domain. In addition, the pocket was critical for the ability of the BTB/POZ domain to repress transcription. Alteration of charged-pocket residue arginine 49 to a glutamine (mutant R49Q) yields a domain that can still dimerize but activates rather than represses transcription. In the context of full-length PLZF, a properly folded BTB/POZ domain was required for all PLZF functions. However, PLZF with the single pocket mutation R49Q repressed transcription, while the double mutant D35N/R49Q could not, despite its ability to dimerize. These results indicate that PLZF requires the BTB/POZ domain for dimerization and the charged pocket for transcriptional repression. PMID:10938130

  2. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    PubMed Central

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B.; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-01-01

    Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain–CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is com­prised of three intertwined α-helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket. PMID:19390150

  3. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors.

    PubMed

    Binet, Virginie; Duthey, Béatrice; Lecaillon, Jennifer; Vol, Claire; Quoyer, Julie; Labesse, Gilles; Pin, Jean-Philippe; Prézeau, Laurent

    2007-04-20

    G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.

  4. Nucleocytoplasmic Distribution Is Required for Activation of Resistance by the Potato NB-LRR Receptor Rx1 and Is Balanced by Its Functional Domains[W

    PubMed Central

    Slootweg, Erik; Roosien, Jan; Spiridon, Laurentiu N.; Petrescu, Andrei-Jose; Tameling, Wladimir; Joosten, Matthieu; Pomp, Rikus; van Schaik, Casper; Dees, Robert; Borst, Jan Willem; Smant, Geert; Schots, Arjen; Bakker, Jaap; Goverse, Aska

    2010-01-01

    The Rx1 protein, as many resistance proteins of the nucleotide binding–leucine-rich repeat (NB-LRR) class, is predicted to be cytoplasmic because it lacks discernable nuclear targeting signals. Here, we demonstrate that Rx1, which confers extreme resistance to Potato virus X, is located both in the nucleus and cytoplasm. Manipulating the nucleocytoplasmic distribution of Rx1 or its elicitor revealed that Rx1 is activated in the cytoplasm and cannot be activated in the nucleus. The coiled coil (CC) domain was found to be required for accumulation of Rx1 in the nucleus, whereas the LRR domain promoted the localization in the cytoplasm. Analyses of structural subdomains of the CC domain revealed no autonomous signals responsible for active nuclear import. Fluorescence recovery after photobleaching and nuclear fractionation indicated that the CC domain binds transiently to large complexes in the nucleus. Disruption of the Rx1 resistance function and protein conformation by mutating the ATP binding phosphate binding loop in the NB domain, or by silencing the cochaperone SGT1, impaired the accumulation of Rx1 protein in the nucleus, while Rx1 versions lacking the LRR domain were not affected in this respect. Our results support a model in which interdomain interactions and folding states determine the nucleocytoplasmic distribution of Rx1. PMID:21177483

  5. The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains.

    PubMed

    Vater, C A; Raymond, C K; Ekena, K; Howald-Stevenson, I; Stevens, T H

    1992-11-01

    The product of the VPS1 gene, Vps1p, is required for the sorting of soluble vacuolar proteins in the yeast Saccharomyces cerevisiae. We demonstrate here that Vps1p, which contains a consensus tripartite motif for guanine nucleotide binding, is capable of binding and hydrolyzing GTP. Vps1p is a member of a subfamily of large GTP-binding proteins whose members include the vertebrate Mx proteins, the yeast MGM1 protein, the Drosophila melanogaster shibire protein, and dynamin, a bovine brain protein that bundles microtubules in vitro. Disruption of microtubules did not affect the fidelity or kinetics of vacuolar protein sorting, indicating that Vps1p function is not dependent on microtubules. Based on mutational analyses, we propose a two-domain model for Vps1p function. When VPS1 was treated with hydroxylamine, half of all mutations isolated were found to be dominant negative with respect to vacuolar protein sorting. All of the dominant-negative mutations analyzed further mapped to the amino-terminal half of Vps1p and gave rise to full-length protein products. In contrast, recessive mutations gave rise to truncated or unstable protein products. Two large deletion mutations in VPS1 were created to further investigate Vps1p function. A mutant form of Vps1p lacking the carboxy-terminal half of the protein retained the capacity to bind GTP and did not interfere with sorting in a wild-type background. A mutant form of Vps1p lacking the entire GTP-binding domain interfered with vacuolar protein sorting in wild-type cells. We suggest that the amino-terminal domain of Vps1p provides a GTP-binding and hydrolyzing activity required for vacuolar protein sorting, and the carboxy-terminal domain mediates Vps1p association with an as yet unidentified component of the sorting apparatus.

  6. 3D structural conformation and functional domains of polysialyltransferase ST8Sia IV required for polysialylation of neural cell adhesion molecules.

    PubMed

    Zhou, Guo-Ping; Huang, Ri-Bo; Troy, Frederic A

    2015-01-01

    Synthesis of α2,8-polysialic acid (polySia) glycans are catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), which are two members of the ST8Sia gene family of sialytransferases. During polysialylation, both STX and PST catalyze the transfer of multiple Sia residues from the activated sugar nucleotide precursor, CMP-Neu5Ac (Sia), to terminal Sia residues on N- and Olinked oligosaccharide chains on acceptor glycoproteins, including the neural cell adhesion molecule (NCAM), which is the major carrier protein of polySia. Based on our new findings and previously published studies, this review summarizes the present concepts regarding the molecular mechanism underlying regulation of protein-specific polysialylation of NCAM that includes the following: (1) Determination of the catalytic domains and specific regions within ST8Sia IV for recognizing and catalyzing the efficient polysialylation of NCAM; (2) Identification of key amino acid residues within the PSTD motif of ST8Sia IV that are essential for polysialylation; (3) Verification of key amino acids in the PBR domain of ST8Sia IV required for NCAM-specific polysialylation; and (4) a 3D conformational study of ST8Sia IV based on the Phyre2 server to discover the relationship between the structure and its functional domains of the polyST. Based on these results, our 3D model of ST8Sia IV was used to identify and characterize the catalytic domains and amino acid residues critical for catalyzing polysialylation, and have provided new structural information for supporting a detailed mechanism of polyST-NCAM interaction required for polysialylation of NCAM, findings that have not been previously reported.

  7. Distinct functional domains within the acidic cluster of tegument protein pp28 required for trafficking and cytoplasmic envelopment of human cytomegalovirus.

    PubMed

    Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J

    2016-10-01

    Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.

  8. Functional domain walls in multiferroics.

    PubMed

    Meier, Dennis

    2015-11-25

    During the last decade a wide variety of novel and fascinating correlation phenomena has been discovered at domain walls in multiferroic bulk systems, ranging from unusual electronic conductance to inseparably entangled spin and charge degrees of freedom. The domain walls represent quasi-2D functional objects that can be induced, positioned, and erased on demand, bearing considerable technological potential for future nanoelectronics. Most of the challenges that remain to be solved before turning related device paradigms into reality, however, still fall in the field of fundamental condensed matter physics and materials science. In this topical review seminal experimental findings gained on electric and magnetic domain walls in multiferroic bulk materials are addressed. A special focus is put on the physical properties that emerge at so-called charged domain walls and the added functionality that arises from coexisting magnetic order. The research presented in this review highlights that we are just entering a whole new world of intriguing nanoscale physics that is yet to be explored in all its details. The goal is to draw attention to the persistent challenges and identify future key directions for the research on functional domain walls in multiferroics.

  9. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals.

    PubMed

    Jerber, Julie; Baas, Dominique; Soulavie, Fabien; Chhin, Brigitte; Cortier, Elisabeth; Vesque, Christine; Thomas, Joëlle; Durand, Bénédicte

    2014-02-01

    Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates.

  10. Functional requirements for interactions between CD84 and Src homology 2 domain-containing proteins and their contribution to human T cell activation.

    PubMed

    Tangye, Stuart G; Nichols, Kim E; Hare, Nathan J; van de Weerdt, Barbara C M

    2003-09-01

    Cell surface receptors belonging to the CD2 subset of the Ig superfamily of molecules include CD2, CD48, CD58, 2B4, signaling lymphocytic activation molecule (SLAM), Ly9, CD84, and the recently identified molecules NTB-A/Ly108/SLAM family (SF) 2000, CD84H-1/SF2001, B lymphocyte activator macrophage expressed (BLAME), and CRACC (CD2-like receptor-activating cytotoxic cells)/CS-1. Some of these receptors, such as CD2, SLAM, 2B4, CRACC, and NTB-A, contribute to the activation and effector function of T cells and NK cells. Signaling pathways elicited via some of these receptors are believed to involve the Src homology 2 (SH2) domain-containing cytoplasmic adaptor protein SLAM-associated protein (SAP), as it is recruited to SLAM, 2B4, CD84, NTB-A, and Ly-9. Importantly, mutations in SAP cause the inherited human immunodeficiency X-linked lymphoproliferative syndrome (XLP), suggesting that XLP may result from perturbed signaling via one or more of these SAP-associating receptors. We have now studied the requirements for SAP recruitment to CD84 and lymphocyte activation elicited following ligation of CD84 on primary and transformed human T cells. CD84 was found to be rapidly tyrosine phosphorylated following receptor ligation on activated T cells, an event that involved the Src kinase Lck. Phosphorylation of CD84 was indispensable for the recruitment of SAP, which was mediated by Y(262) within the cytoplasmic domain of CD84 and by R(32) within the SH2 domain of SAP. Furthermore, ligating CD84 enhanced the proliferation of anti-CD3 mAb-stimulated human T cells. Strikingly, this effect was also apparent in SAP-deficient T cells obtained from patients with XLP. These results reveal a novel function of CD84 on human lymphocytes and suggest that CD84 can activate human T cells via a SAP-independent mechanism.

  11. Functional domains in tetraspanin proteins.

    PubMed

    Stipp, Christopher S; Kolesnikova, Tatiana V; Hemler, Martin E

    2003-02-01

    Exciting new findings have emerged about the structure, function and biochemistry of tetraspanin proteins. Five distinct tetraspanin regions have now been delineated linking structural features to specific functions. Within the large extracellular loop of tetraspanins, there is a variable region that mediates specific interactions with other proteins, as well as a more highly conserved region that has been suggested to mediate homodimerization. Within the transmembrane region, the four tetraspanin transmembrane domains are probable sites of both intra- and inter-molecular interactions that are crucial during biosynthesis and assembly of the network of tetraspanin-linked membrane proteins known as the 'tetraspanin web'. In the intracellular juxtamembrane region, palmitoylation of cysteine residues also contributes to tetraspanin web assembly, and the C-terminal cytoplasmic tail region could provide specific functional links to cytoskeletal or signaling proteins.

  12. An amino-proximal domain required for the localization of FtsQ in the cytoplasmic membrane, and for its biological function in Escherichia coli.

    PubMed

    Dopazo, A; Palacios, P; Sánchez, M; Pla, J; Vicente, M

    1992-03-01

    The location of FtsQ, an Escherichia coli protein essential for cell division, is, under physiological conditions, in the cytoplasmic membrane facing towards the periplasmic space. An amino-proximal hydrophobic domain is required for FtsQ to reach its location and for its activity in the cell. Overexpression of modified forms of FtsQ is deleterious for the cell.

  13. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    PubMed

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-08

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.

  14. The BH3 Domain of Bcl-xS Is Required for Inhibition of the Antiapoptotic Function of Bcl-xL

    PubMed Central

    Chang, Brian S.; Kelekar, Ameeta; Harris, Marian H.; Harlan, John E.; Fesik, Stephen W.; Thompson, Craig B.

    1999-01-01

    bcl-x is a member of the bcl-2 family of genes. The major protein product, Bcl-xL, is a 233-amino-acid protein which has antiapoptotic properties. In contrast, one of the alternatively spliced transcripts of the bcl-x gene codes for the protein Bcl-xS, which lacks 63 amino acids present in Bcl-xL and has proapoptotic activity. Unlike other proapoptotic Bcl-2 family members, such as Bax and Bak, Bcl-xS does not seem to induce cell death in the absence of an additional death signal. However, Bcl-xS does interfere with the ability of Bcl-xL to antagonize Bax-induced death in transiently transfected 293 cells. Mutational analysis of Bcl-xS was conducted to identify the domains necessary to mediate its proapoptotic phenotype. Deletion mutants of Bcl-xS which still contained an intact BH3 domain retained the ability to inhibit survival through antagonism of Bcl-xL. Bcl-xS was able to form heterodimers with Bcl-xL in mammalian cells, and its ability to inhibit survival correlated with the ability to heterodimerize with Bcl-xL. Deletion mutants of Bax and Bcl-2, which lacked BH1 and BH2 domains but contained a BH3 domain, were able to antagonize the survival effect conferred by Bcl-xL. The results suggest that BH3 domains from both pro- and antiapoptotic Bcl-2 family members, while lacking an intrinsic ability to promote programmed cell death, can be potent inhibitors of Bcl-xL survival function. PMID:10490606

  15. The Conserved Tetratricopeptide Repeat-Containing C-Terminal Domain of Pseudomonas aeruginosa FimV Is Required for Its Cyclic AMP-Dependent and -Independent Functions

    PubMed Central

    Buensuceso, Ryan N. C.; Nguyen, Ylan; Zhang, Kun; Daniel-Ivad, Martin; Sugiman-Marangos, Seiji N.; Fleetwood, Aaron D.; Junop, Murray S.

    2016-01-01

    ABSTRACT FimV is a Pseudomonas aeruginosa inner membrane protein that regulates intracellular cyclic AMP (cAMP) levels—and thus type IV pilus (T4P)-mediated twitching motility and type II secretion (T2S)—by activating the adenylate cyclase CyaB. Its cytoplasmic domain contains three predicted tetratricopeptide repeat (TPR) motifs separated by an unstructured region: two proximal to the inner membrane and one within the “FimV C-terminal domain,” which is highly conserved across diverse homologs. Here, we present the crystal structure of the FimV C terminus, FimV861–919, containing a TPR motif decorated with solvent-exposed, charged side chains, plus a C-terminal capping helix. FimV689, a truncated form lacking this C-terminal motif, did not restore wild-type levels of twitching or surface piliation compared to the full-length protein. FimV689 failed to restore wild-type levels of the T4P motor ATPase PilU or T2S, suggesting that it was unable to activate cAMP synthesis. Bacterial two-hybrid analysis showed that TPR3 interacts directly with the CyaB activator, FimL. However, FimV689 failed to restore wild-type motility in a fimV mutant expressing a constitutively active CyaB (fimV cyaB-R456L), suggesting that the C-terminal motif is also involved in cAMP-independent functions of FimV. The data show that the highly conserved TPR-containing C-terminal domain of FimV is critical for its cAMP-dependent and -independent functions. IMPORTANCE FimV is important for twitching motility and cAMP-dependent virulence gene expression in P. aeruginosa. FimV homologs have been identified in several human pathogens, and their functions are not limited to T4P expression. The C terminus of FimV is remarkably conserved among otherwise very diverse family members, but its role is unknown. We provide here biological evidence for the importance of the C-terminal domain in both cAMP-dependent (through FimL) and -independent functions of FimV. We present X-ray crystal structures

  16. Functional Isoforms of IκB Kinase α (IKKα) Lacking Leucine Zipper and Helix-Loop-Helix Domains Reveal that IKKα and IKKβ Have Different Activation Requirements

    PubMed Central

    McKenzie, Fergus R.; Connelly, Margery A.; Balzarano, Darlene; Müller, Jurgen R.; Geleziunas, Romas; Marcu, Kenneth B.

    2000-01-01

    The activity of the NF-κB family of transcription factors is regulated principally by phosphorylation and subsequent degradation of their inhibitory IκB subunits. Site-specific serine phosphorylation of IκBs by two IκB kinases (IKKα [also known as CHUK] and IKKβ) targets them for proteolysis. IKKα and -β have a unique structure, with an amino-terminal serine-threonine kinase catalytic domain and carboxy-proximal helix-loop-helix (HLH) and leucine zipper-like (LZip) amphipathic α-helical domains. Here, we describe the properties of two novel cellular isoforms of IKKα: IKKα-ΔH and IKKα-ΔLH. IKKα-ΔH and IKKα-ΔLH are differentially spliced isoforms of the IKKα mRNA lacking its HLH domain and both its LZip and HLH domains, respectively. IKKα is the major RNA species in most murine cells and tissues, except for activated T lymphocytes and the brain, where the alternatively spliced isoforms predominate. Remarkably, IKKα-ΔH and IKKα-ΔLH, like IKKα, respond to tumor necrosis factor alpha stimulation to potentiate NF-κB activation in HEK293 cells. A mutant, catalytically inactive form of IKKα blocked IKKα-, IKKα-ΔH-, and IKKα-ΔLH-mediated NF-κB activation. Akin to IKKα, its carboxy-terminally truncated isoforms associated with the upstream activator NIK (NF-κB-inducing kinase). In contrast to IKKα, IKKα-ΔLH failed to associate with either itself, IKKα, IKKβ, or NEMO-IKKγ-IKKAP1, while IKKα-ΔH complexed with IKKβ and IKKα but not with NEMO. Interestingly, each IKKα isoform rescued HEK293 cells from the inhibitory effects of a dominant-negative NEMO mutant, while IKKα could not. IKKα-ΔCm, a recombinant mutant of IKKα structurally akin to IKKα-ΔLH, was equally functional in these assays, but in sharp contrast, IKKβ-ΔCm, a structurally analogous mutant of IKKβ, was inactive. Our results demonstrate that the functional roles of seemingly analogous domains in IKKα and IKKβ need not be equivalent and can also exhibit

  17. DEP domains: structurally similar but functionally different.

    PubMed

    Consonni, Sarah V; Maurice, Madelon M; Bos, Johannes L

    2014-05-01

    The Dishevelled, EGL-10 and pleckstrin (DEP) domain is a globular protein domain that is present in about ten human protein families with well-defined structural features. A picture is emerging that DEP domains mainly function in the spatial and temporal control of diverse signal transduction events by recruiting proteins to the plasma membrane. DEP domains can interact with various partners at the membrane, including phospholipids and membrane receptors, and their binding is subject to regulation.

  18. Structure and function of KH domains.

    PubMed

    Valverde, Roberto; Edwards, Laura; Regan, Lynne

    2008-06-01

    The hnRNP K homology (KH) domain was first identified in the protein human heterogeneous nuclear ribonucleoprotein K (hnRNP K) 14 years ago. Since then, KH domains have been identified as nucleic acid recognition motifs in proteins that perform a wide range of cellular functions. KH domains bind RNA or ssDNA, and are found in proteins associated with transcriptional and translational regulation, along with other cellular processes. Several diseases, e.g. fragile X mental retardation syndrome and paraneoplastic disease, are associated with the loss of function of a particular KH domain. Here we discuss the progress made towards understanding both general and specific features of the molecular recognition of nucleic acids by KH domains. The typical binding surface of KH domains is a cleft that is versatile but that can typically accommodate only four unpaired bases. Van der Waals forces and hydrophobic interactions and, to a lesser extent, electrostatic interactions, contribute to the nucleic acid binding affinity. 'Augmented' KH domains or multiple copies of KH domains within a protein are two strategies that are used to achieve greater affinity and specificity of nucleic acid binding. Isolated KH domains have been seen to crystallize as monomers, dimers and tetramers, but no published data support the formation of noncovalent higher-order oligomers by KH domains in solution. Much attention has been given in the literature to a conserved hydrophobic residue (typically Ile or Leu) that is present in most KH domains. The interest derives from the observation that an individual with this Ile mutated to Asn, in the KH2 domain of fragile X mental retardation protein, exhibits a particularly severe form of the syndrome. The structural effects of this mutation in the fragile X mental retardation protein KH2 domain have recently been reported. We discuss the use of analogous point mutations at this position in other KH domains to dissect both structure and function.

  19. Structure and Function of KH Domains

    SciTech Connect

    Valverde, R.; Regan, E

    2008-01-01

    The hnRNP K homology (KH) domain was first identified in the protein human heterogeneous nuclear ribonucleoprotein K (hnRNP K) 14 years ago. Since then, KH domains have been identified as nucleic acid recognition motifs in proteins that perform a wide range of cellular functions. KH domains bind RNA or ssDNA, and are found in proteins associated with transcriptional and translational regulation, along with other cellular processes. Several diseases, e.g. fragile X mental retardation syndrome and paraneoplastic disease, are associated with the loss of function of a particular KH domain. Here we discuss the progress made towards understanding both general and specific features of the molecular recognition of nucleic acids by KH domains. The typical binding surface of KH domains is a cleft that is versatile but that can typically accommodate only four unpaired bases. Van der Waals forces and hydrophobic interactions and, to a lesser extent, electrostatic interactions, contribute to the nucleic acid binding affinity. 'Augmented' KH domains or multiple copies of KH domains within a protein are two strategies that are used to achieve greater affinity and specificity of nucleic acid binding. Isolated KH domains have been seen to crystallize as monomers, dimers and tetramers, but no published data support the formation of noncovalent higher-order oligomers by KH domains in solution. Much attention has been given in the literature to a conserved hydrophobic residue (typically Ile or Leu) that is present in most KH domains. The interest derives from the observation that an individual with this Ile mutated to Asn, in the KH2 domain of fragile X mental retardation protein, exhibits a particularly severe form of the syndrome. The structural effects of this mutation in the fragile X mental retardation protein KH2 domain have recently been reported. We discuss the use of analogous point mutations at this position in other KH domains to dissect both structure and function.

  20. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level.

  1. Synthetic actin-binding domains reveal compositional constraints for function.

    PubMed

    Lorenzi, Maria; Gimona, Mario

    2008-01-01

    The actin-binding domains of many proteins consist of a canonical type 1/type 2 arrangement of the structurally conserved calponin homology domain. Using the actin-binding domain of alpha-actinin-1 as a scaffold we have generated synthetic actin-binding domains by altering position and composition of the calponin homology domains. We show that the presence of two calponin homology domains alone and in the context of an actin-binding domain is not sufficient for actin-binding, and that both single and homotypic type 2 calponin homology domain tandems fail to bind to actin in vitro and in transfected cells. In contrast, single and tandem type 1 calponin homology domain arrays bind actin directly but result in defective turnover rates on actin filaments, and in aberrant actin bundling when introduced into the full-length alpha-actinin molecule. An actin-binding domain harboring the calponin homology domains in an inverted position, however, functions both in isolation and in the context of the dimeric alpha-actinin molecule. Our data demonstrate that the dynamics and specificity of actin-binding via actin-binding domains requires both the filament binding properties of the type 1, and regulation by type 2 calponin homology domains, and appear independent of their position.

  2. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  3. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex

    PubMed Central

    Ge, Chunmin; Che, Lixiao; Du, Chunying

    2015-01-01

    BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response. PMID:26683461

  4. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex.

    PubMed

    Ge, Chunmin; Che, Lixiao; Du, Chunying

    2015-01-01

    BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response.

  5. An introduction to recognizing functional domains.

    PubMed

    Stormo, Gary D

    2006-10-01

    This unit provides an overview of issues involved in domain recognition in protein and DNA sequences. It opens with a discussion of the two primary methods of domain representation, namely consensus sequences and alignment matrices (e.g., the log-odds matrix). The unit continues with a brief overview of some of the resources available for identifying functional domains in nucleotide sequences (e.g., TRANSFAC). In addition, it reviews databases such as Pfam, InterPro and Blocks, which are available for protein analysis.

  6. Protein function prediction using domain families

    PubMed Central

    2013-01-01

    Here we assessed the use of domain families for predicting the functions of whole proteins. These 'functional families' (FunFams) were derived using a protocol that combines sequence clustering with supervised cluster evaluation, relying on available high-quality Gene Ontology (GO) annotation data in the latter step. In essence, the protocol groups domain sequences belonging to the same superfamily into families based on the GO annotations of their parent proteins. An initial test based on enzyme sequences confirmed that the FunFams resemble enzyme (domain) families much better than do families produced by sequence clustering alone. For the CAFA 2011 experiment, we further associated the FunFams with GO terms probabilistically. All target proteins were first submitted to domain superfamily assignment, followed by FunFam assignment and, eventually, function assignment. The latter included an integration step for multi-domain target proteins. The CAFA results put our domain-based approach among the top ten of 31 competing groups and 56 prediction methods, confirming that it outperforms simple pairwise whole-protein sequence comparisons. PMID:23514456

  7. The PR-Set7 binding domain of Riz1 is required for the H4K20me1-H3K9me1 trans-tail ‘histone code’ and Riz1 tumor suppressor function

    PubMed Central

    Congdon, Lauren M.; Sims, Jennifer K.; Tuzon, Creighton T.; Rice, Judd C.

    2014-01-01

    PR-Set7/Set8/KMT5a is the sole histone H4 lysine 20 monomethyltransferase (H4K20me1) in metazoans and is essential for proper cell division and genomic stability. We unexpectedly discovered that normal cellular levels of monomethylated histone H3 lysine 9 (H3K9me1) were also dependent on PR-Set7, but independent of its catalytic activity. This observation suggested that PR-Set7 interacts with an H3K9 monomethyltransferase to establish the previously reported H4K20me1-H3K9me1 trans-tail ‘histone code’. Here we show that PR-Set7 specifically and directly binds the C-terminus of the Riz1/PRDM2/KMT8 tumor suppressor and demonstrate that the N-terminal PR/SET domain of Riz1 preferentially monomethylates H3K9. The PR-Set7 binding domain was required for Riz1 nuclear localization and maintenance of the H4K20me1-H3K9me1 trans-tail ‘histone code’. Although Riz1 can function as a repressor, Riz1/H3K9me1 was dispensable for the repression of genes regulated by PR-Set7/H4K20me1. Frameshift mutations resulting in a truncated Riz1 incapable of binding PR-Set7 occur frequently in various aggressive cancers. In these cancer cells, expression of wild-type Riz1 restored tumor suppression by decreasing proliferation and increasing apoptosis. These phenotypes were not observed in cells expressing either the Riz1 PR/SET domain or PR-Set7 binding domain indicating that Riz1 methyltransferase activity and PR-Set7 binding domain are both essential for Riz1 tumor suppressor function. PMID:24423864

  8. The PAX3 paired domain and homeodomain function as a single binding module in vivo to regulate subnuclear localization and mobility by a mechanism that requires base-specific recognition.

    PubMed

    Corry, Gareth N; Raghuram, Nikhil; Missiaen, Kristal K; Hu, Ninghe; Hendzel, Michael J; Underhill, D Alan

    2010-09-10

    The transcription factor PAX3 is essential for myogenesis and neural crest development, and is one of several genes mutated in human Waardenburg syndrome. Analysis of disease-causing missense mutations in PAX3 has established the interdependence of its two DNA-binding domains, the paired domain (PD) and the homeodomain (HD), as well as defects in localization and mobility. Paradoxically, mutants that retained DNA binding activity exhibited the greatest defects in localization and mobility, regardless of the domain in which they reside. In the present study, structure-function analyses were used to determine the mechanistic basis of this effect. In the context of the isolated DNA-binding domains, HD mutants adopted an increase in mobility proportional to their loss in DNA binding, while PD mutants continued to display the inverse relationship observed in the full-length protein. At the structural level, this reflected an unexpected dependence on base-specific contacts in the PD, whereas HD mobility was more severely affected by loss of backbone contacts, as has been observed with other DNA-binding proteins. This requires that the HD switch to a base-specific mode in the full-length protein. Moreover, both domains underwent substantial reduction in mobility and altered localization when in a contiguous polypeptide with the endogenous linker segment. Notably, although the HD conferred localization to heterochromatin, this activity was masked when linked to the PD, despite the absence of determinants for subnuclear compartmentalization in the PD or linker. Last, the propensity for PAX3 heterochromatin localization was modulated by sequences at the amino and carboxy termini, supporting a model in which alternate conformations lead to unmasking of the HD. These data indicate that the PD and the HD functionally interact in vivo and behave as a single binding module whose mobility and localization are dependent on sequence-specific contacts.

  9. Architecture and function of metallopeptidase catalytic domains

    PubMed Central

    Cerdà-Costa, Núria; Gomis-Rüth, Francesc Xavier

    2014-01-01

    The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single-step reaction involving a solvent molecule, a general base/acid, and a mono-or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal-binding motif (HEXXH), which includes two metal-binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ∼130–270-residue catalytic domains, which are usually preceded by N-terminal pro-segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C-terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N-terminal subdomain spanning a five-stranded β-sheet, a backing helix, and an active-site helix. The latter contains most of the metal-binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C-terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met-turn—and a C-terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs. PMID:24596965

  10. Microdissection of Shoot Meristem Functional Domains

    PubMed Central

    Zhang, Xiaolan; Ohtsu, Kazuhiro; Zhou, Ruilian; Sarkar, Ananda; Hargreaves, Sarah; Elshire, Robert J.; Eudy, Douglas; Pawlowska, Teresa; Ware, Doreen; Janick-Buckner, Diane; Buckner, Brent; Timmermans, Marja C. P.; Schnable, Patrick S.; Nettleton, Dan; Scanlon, Michael J.

    2009-01-01

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize. PMID:19424435

  11. Microdissection of shoot meristem functional domains.

    PubMed

    Brooks, Lionel; Strable, Josh; Zhang, Xiaolan; Ohtsu, Kazuhiro; Zhou, Ruilian; Sarkar, Ananda; Hargreaves, Sarah; Elshire, Robert J; Eudy, Douglas; Pawlowska, Teresa; Ware, Doreen; Janick-Buckner, Diane; Buckner, Brent; Timmermans, Marja C P; Schnable, Patrick S; Nettleton, Dan; Scanlon, Michael J

    2009-05-01

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection-microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes that function during leaf development. Nine hundred and sixty-two differentially expressed maize genes were detected; control genes known to be upregulated in the initiating leaf (P0/P1) or in the SAM proper verified the precision of the microdissections. Genes involved in cell division/growth, cell wall biosynthesis, chromatin remodeling, RNA binding, and translation are especially upregulated in initiating leaves, whereas genes functioning during protein fate and DNA repair are more abundant in the SAM proper. In situ hybridization analyses confirmed the expression patterns of six previously uncharacterized maize genes upregulated in the P0/P1. P0/P1-upregulated genes that were also shown to be downregulated in leaf-arrested shoots treated with an auxin transport inhibitor are especially implicated to function during early events in maize leaf initiation. Reverse genetic analyses of asceapen1 (asc1), a maize D4-cyclin gene upregulated in the P0/P1, revealed novel leaf phenotypes, less genetic redundancy, and expanded D4-CYCLIN function during maize shoot development as compared to Arabidopsis. These analyses generated a unique SAM domain-specific database that provides new insight into SAM function and a useful platform for reverse genetic analyses of shoot development in maize.

  12. The RED domain of Paired is specifically required for Drosophila accessory gland maturation.

    PubMed

    Li, Li; Li, Ping; Xue, Lei

    2015-02-01

    The evolutionarily conserved paired domain consists of the N-terminal PAI and the C-terminal RED domains, each containing a helix-turn-helix motif capable of binding DNA. Despite its conserved sequence, the physiological functions of the RED domain remain elusive. Here, we constructed a prd transgene expressing a truncated Paired (Prd) protein without the RED domain, and examined its rescue ability in prd mutants. We found that the RED domain is specifically required for the expression of Acp26Aa and sex peptide in male accessory glands, and the induction of female post-mating response. Our data thus identified an important physiological function for the evolutionarily conserved RED domain.

  13. Functional analysis of the nuclear LIM domain interactor NLI.

    PubMed Central

    Jurata, L W; Gill, G N

    1997-01-01

    LIM homeodomain and LIM-only (LMO) transcription factors contain two tandemly arranged Zn2+-binding LIM domains capable of mediating protein-protein interactions. These factors have restricted patterns of expression, are found in invertebrates as well as vertebrates, and are required for cell type specification in a variety of developing tissues. A recently identified, widely expressed protein, NLI, binds with high affinity to the LIM domains of LIM homeodomain and LMO proteins in vitro and in vivo. In this study, a 38-amino-acid fragment of NLI was found to be sufficient for the association of NLI with nuclear LIM domains. In addition, NLI was shown to form high affinity homodimers through the amino-terminal 200 amino acids, but dimerization of NLI was not required for association with the LIM homeodomain protein Lmxl. Chemical cross-linking analysis revealed higher-order complexes containing multiple NLI molecules bound to Lmx1, indicating that dimerization of NLI does not interfere with LIM domain interactions. Additionally, NLI formed complexes with Lmx1 on the rat insulin I promoter and inhibited the LIM domain-dependent synergistic transcriptional activation by Lmx1 and the basic helix-loop-helix protein E47 from the rat insulin I minienhancer. These studies indicate that NLI contains at least two functionally independent domains and may serve as a negative regulator of synergistic transcriptional responses which require direct interaction via LIM domains. Thus, NLI may regulate the transcriptional activity of LIM homeodomain proteins by determining specific partner interactions. PMID:9315627

  14. Phospholipid binding to the FAK catalytic domain impacts function

    PubMed Central

    Schaller, Michael D.

    2017-01-01

    Focal adhesion kinase is an essential nonreceptor tyrosine kinase that plays an important role in development, in homeostasis and in the progression of human disease. Multiple stimuli activate FAK, which requires a change in structure from an autoinhibited to activated conformation. In the autoinhibited conformation the FERM domain associates with the catalytic domain of FAK and PI(4,5)P2 binding to the FERM domain plays a role in the release of autoinhibition, activating the enzyme. An in silico model of FAK/PI(4,5)P2 interaction suggests that residues on the catalytic domain interact with PI(4,5)P2, in addition to the known FERM domain PI(4,5)P2 binding site. This study was undertaken to test the significance of this in silico observation. Mutations designed to disrupt the putative PI(4,5)P2 binding site were engineered into FAK. These mutants exhibited defects in phosphorylation and failed to completely rescue the phenotype associated with fak -/- phenotype fibroblasts demonstrating the importance of these residues in FAK function. The catalytic domain of FAK exhibited PI(4,5)P2 binding in vitro and binding activity was lost upon mutation of putative PI(4,5)P2 binding site basic residues. However, binding was not selective for PI(4,5)P2, and the catalytic domain bound to several phosphatidylinositol phosphorylation variants. The mutant exhibiting the most severe biological defect was defective for phosphatidylinositol phosphate binding, supporting the model that catalytic domain phospholipid binding is important for biochemical and biological function. PMID:28222177

  15. Identification and characterization of structural domains of human ERp57: association with calreticulin requires several domains.

    PubMed

    Silvennoinen, Laura; Myllyharju, Johanna; Ruoppolo, Margherita; Orrù, Stefania; Caterino, Marianna; Kivirikko, Kari I; Koivunen, Peppi

    2004-04-02

    The amino acid sequence of ERp57, which functions in the endoplasmic reticulum together with the lectins calreticulin and calnexin to achieve folding of newly synthesized glycoproteins, is highly similar to that of protein disulfide isomerase (PDI), but they have their own distinct roles in protein folding. We have characterized the domain structure of ERp57 by limited proteolysis and N-terminal sequencing and have found it to be similar but not identical to that of PDI. ERp57 had three major protease-sensitive regions, the first of which was located between residues 120 and 150, the second between 201 and 215, and the third between 313 and 341, the data thus being consistent with a four-domain structure abb'a'. Recombinant expression in Escherichia coli was used to verify the domain boundaries. Each single domain and a b'a' double domain could be produced in the form of soluble, folded polypeptides, as verified by circular dichroism spectra and urea gradient gel electrophoresis. When the ability of ERp57 and its a and a' domains to fold denatured RNase A was studied by electrospray mass analyses, ERp57 markedly enhanced the folding rate at early time points, although less effectively than PDI, but was an ineffective catalyst of the overall process. The a and a' domains produced only minor, if any, increases in the folding rate at the early stages and no increase at the late stages. Interaction of the soluble ERp57 domains with the P domain of calreticulin was studied by chemical cross-linking in vitro. None of the single ERp57 domains nor the b'a' double domain could be cross-linked to the P domain, whereas cross-linking was obtained with a hybrid ERpabb'PDIa'c polypeptide but not with ERpabPDIb'a'c, indicating that multiple domains are involved in this protein-protein interaction and that the b' domain of ERp57 cannot be replaced by that of PDI.

  16. Project X functional requirements specification

    SciTech Connect

    Holmes, S.D.; Henderson, S.D.; Kephart, R.; Kerby, J.; Kourbanis, I.; Lebedev, V.; Mishra, S.; Nagaitsev, S.; Solyak, N.; Tschirhart, R.; /Fermilab

    2012-05-01

    Project X is a multi-megawatt proton facility being developed to support a world-leading program in Intensity Frontier physics at Fermilab. The facility is designed to support programs in elementary particle and nuclear physics, with possible applications to nuclear energy research. A Functional Requirements Specification has been developed in order to establish performance criteria for the Project X complex in support of these multiple missions, and to assure that the facility is designed with sufficient upgrade capability to provide U.S. leadership for many decades to come. This paper will briefly review the previously described Functional Requirements, and then discuss their recent evolution.

  17. Design of protein function leaps by directed domain interface evolution

    PubMed Central

    Huang, Jin; Koide, Akiko; Makabe, Koki; Koide, Shohei

    2008-01-01

    Most natural proteins performing sophisticated tasks contain multiple domains where an active site is located at the domain interface. Comparative structural analyses suggest that major leaps in protein function occur through gene recombination events that connect two or more protein domains to generate a new active site, frequently occurring at the newly created domain interface. However, such functional leaps by combination of unrelated domains have not been directly demonstrated. Here we show that highly specific and complex protein functions can be generated by joining a low-affinity peptide-binding domain with a functionally inert second domain and subsequently optimizing the domain interface. These directed evolution processes dramatically enhanced both affinity and specificity to a level unattainable with a single domain, corresponding to >500-fold and >2,000-fold increases of affinity and specificity, respectively. An x-ray crystal structure revealed that the resulting “affinity clamp” had clamshell architecture as designed, with large additional binding surface contributed by the second domain. The affinity clamps having a single-nanomolar dissociation constant outperformed a monoclonal antibody in immunochemical applications. This work establishes evolutionary paths from isolated domains with primitive function to multidomain proteins with sophisticated function and introduces a new protein-engineering concept that allows for the generation of highly functional affinity reagents to a predefined target. The prevalence and variety of natural interaction domains suggest that numerous new functions can be designed by using directed domain interface evolution. PMID:18445649

  18. Defining the boundaries: structure and function of LOB domain proteins.

    PubMed

    Majer, Christine; Hochholdinger, Frank

    2011-01-01

    The plant-specific LBD (Lateral Organ Boundaries Domain) gene family is essential in the regulation of plant lateral organ development and is involved in the regulation of anthocyanin and nitrogen metabolism. LBD proteins contain a characteristic LOB domain composed of a C-motif required for DNA-binding, a conserved glycine residue, and a leucine-zipper-like sequence required for protein-protein interactions. Recently, several LBD genes associated with mutant phenotypes related to almost all aspects of plant development, including embryo, root, leaf, and inflorescence development have been functionally characterized. These novel insights contribute to a better understanding of the molecular definition of boundaries between organs or boundaries between organs and meristems and the regulation of these processes by environmental cues and phytohormones.

  19. Functional domains of yeast hexokinase 2

    PubMed Central

    Peláez, Rafael; Herrero, Pilar; Moreno, Fernando

    2010-01-01

    Hkx2 (hexokinase 2) from Saccharomyces cerevisiae was one of the first metabolic enzymes described as a multifunctional protein. Hxk2 has a double subcellular localization: it functions as a glycolytic enzyme in the cytoplasm and as a regulator of gene transcription of several Mig1-regulated genes in the nucleus. To get more insights into the structure–function relationships of the Hxk2 protein, we followed two different approaches. In the first, we deleted the last eight amino acids of Hxk2 and replaced Ser304 with phenylalanine to generate Hxk2wca. Analysis of this mutant demonstrated that these domains play an essential role in the catalytic activity of yeast Hxk2, but has no effect on the regulatory function of this protein. In the second, we analysed whether amino acids from Lys6 to Met15 of Hxk2 (Hxk2wrf) are essential for the regulatory role of Hxk2 and whether there is an effect on the hexose kinase activity of this protein. In the present paper, we report that the Hxk2wca mutant protein interacts with the Mig1 transcriptional repressor and the Snf1 protein kinase in the nucleus at the level of the SUC2–Mig1 repressor complex. We have demonstrated that Hxk2wca maintained full regulatory function because the glucose-repression signalling of the wild-type machinery is maintained. We also report that the Hxk2wrf mutant allele is incapable of glucose repression signalling because it does not interact with Mig1 at the level of the SUC2–Mig1 repressor complex. The two mutants, Hxk2wca and Hxk2wrf retain single functions, as a transcriptional factor or as an enzyme with hexose-phosphorylating activity, but have lost the original bifunctionality of Hxk2. PMID:20815814

  20. Functional domains of yeast hexokinase 2.

    PubMed

    Peláez, Rafael; Herrero, Pilar; Moreno, Fernando

    2010-11-15

    Hkx2 (hexokinase 2) from Saccharomyces cerevisiae was one of the first metabolic enzymes described as a multifunctional protein. Hxk2 has a double subcellular localization: it functions as a glycolytic enzyme in the cytoplasm and as a regulator of gene transcription of several Mig1-regulated genes in the nucleus. To get more insights into the structure-function relationships of the Hxk2 protein, we followed two different approaches. In the first, we deleted the last eight amino acids of Hxk2 and replaced Ser³⁰⁴ with phenylalanine to generate Hxk2(wca). Analysis of this mutant demonstrated that these domains play an essential role in the catalytic activity of yeast Hxk2, but has no effect on the regulatory function of this protein. In the second, we analysed whether amino acids from Lys⁶ to Met¹⁵ of Hxk2 (Hxk2(wrf)) are essential for the regulatory role of Hxk2 and whether there is an effect on the hexose kinase activity of this protein. In the present paper, we report that the Hxk2(wca) mutant protein interacts with the Mig1 transcriptional repressor and the Snf1 protein kinase in the nucleus at the level of the SUC2-Mig1 repressor complex. We have demonstrated that Hxk2(wca) maintained full regulatory function because the glucose-repression signalling of the wild-type machinery is maintained. We also report that the Hxk2(wrf) mutant allele is incapable of glucose repression signalling because it does not interact with Mig1 at the level of the SUC2-Mig1 repressor complex. The two mutants, Hxk2(wca) and Hxk2(wrf) retain single functions, as a transcriptional factor or as an enzyme with hexose-phosphorylating activity, but have lost the original bifunctionality of Hxk2.

  1. Non-functional Avionics Requirements

    NASA Astrophysics Data System (ADS)

    Paulitsch, Michael; Ruess, Harald; Sorea, Maria

    Embedded systems in aerospace become more and more integrated in order to reduce weight, volume/size, and power of hardware for more fuel-effi ciency. Such integration tendencies change architectural approaches of system ar chi tec tures, which subsequently change non-functional requirements for plat forms. This paper provides some insight into state-of-the-practice of non-func tional requirements for developing ultra-critical embedded systems in the aero space industry, including recent changes and trends. In particular, formal requi re ment capture and formal analysis of non-functional requirements of avionic systems - including hard-real time, fault-tolerance, reliability, and per for mance - are exemplified by means of recent developments in SAL and HiLiTE.

  2. Slicing-independent RISC activation requires the argonaute PAZ domain.

    PubMed

    Gu, Shuo; Jin, Lan; Huang, Yong; Zhang, Feijie; Kay, Mark A

    2012-08-21

    Small RNAs regulate genetic networks through a ribonucleoprotein complex called the RNA-induced silencing complex (RISC), which, in mammals, contains at its center one of four Argonaute proteins (Ago1-Ago4). A key regulatory event in the RNA interference (RNAi) and microRNA (miRNA) pathways is Ago loading, wherein double-stranded small-RNA duplexes are incorporated into RISC (pre-RISC) and then become single-stranded (mature RISC), a process that is not well understood. The Agos contain an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose primary function is to bind the 3' end of small RNAs. We created multiple PAZ-domain-disrupted mutant Ago proteins and studied their biochemical properties and biological functionality in cells. We found that the PAZ domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer-substrate duplex RNAs, PAZ-disrupted Agos bound duplex small interfering RNAs, but were unable to unwind or eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved PAZ domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA- and RNAi-based therapeutics.

  3. Structure and function of WD40 domain proteins.

    PubMed

    Xu, Chao; Min, Jinrong

    2011-03-01

    The WD40 domain exhibits a β-propeller architecture, often comprising seven blades. The WD40 domain is one of the most abundant domains and also among the top interacting domains in eukaryotic genomes. In this review, we will discuss the identification, definition and architecture of the WD40 domains. WD40 domain proteins are involved in a large variety of cellular processes, in which WD40 domains function as a protein-protein or protein-DNA interaction platform. WD40 domain mediates molecular recognition events mainly through the smaller top surface, but also through the bottom surface and sides. So far, no WD40 domain has been found to display enzymatic activity. We will also discuss the different binding modes exhibited by the large versatile family of WD40 domain proteins. In the last part of this review, we will discuss how post-translational modifications are recognized by WD40 domain proteins.

  4. Concomitant prediction of function and fold at the domain level with GO-based profiles

    PubMed Central

    2013-01-01

    Predicting the function of newly sequenced proteins is crucial due to the pace at which these raw sequences are being obtained. Almost all resources for predicting protein function assign functional terms to whole chains, and do not distinguish which particular domain is responsible for the allocated function. This is not a limitation of the methodologies themselves but it is due to the fact that in the databases of functional annotations these methods use for transferring functional terms to new proteins, these annotations are done on a whole-chain basis. Nevertheless, domains are the basic evolutionary and often functional units of proteins. In many cases, the domains of a protein chain have distinct molecular functions, independent from each other. For that reason resources with functional annotations at the domain level, as well as methodologies for predicting function for individual domains adapted to these resources are required. We present a methodology for predicting the molecular function of individual domains, based on a previously developed database of functional annotations at the domain level. The approach, which we show outperforms a standard method based on sequence searches in assigning function, concomitantly predicts the structural fold of the domains and can give hints on the functionally important residues associated to the predicted function. PMID:23514233

  5. Interaction between Functional Domains of Bacillus thuringiensis Insecticidal Crystal Proteins

    PubMed Central

    Rang, Cécile; Vachon, Vincent; de Maagd, Ruud A.; Villalon, Mario; Schwartz, Jean-Louis; Bosch, Dirk; Frutos, Roger; Laprade, Raynald

    1999-01-01

    Interactions among the three structural domains of Bacillus thuringiensis Cry1 toxins were investigated by functional analysis of chimeric proteins. Hybrid genes were prepared by exchanging the regions coding for either domain I or domain III among Cry1Ab, Cry1Ac, Cry1C, and Cry1E. The activity of the purified trypsin-activated chimeric toxins was evaluated by testing their effects on the viability and plasma membrane permeability of Sf9 cells. Among the parental toxins, only Cry1C was active against these cells and only chimeras possessing domain II from Cry1C were functional. Combination of domain I from Cry1E with domains II and III from Cry1C, however, resulted in an inactive toxin, indicating that domain II from an active toxin is necessary, but not sufficient, for activity. Pores formed by chimeric toxins in which domain I was from Cry1Ab or Cry1Ac were slightly smaller than those formed by toxins in which domain I was from Cry1C. The properties of the pores formed by the chimeras are therefore likely to result from an interaction between domain I and domain II or III. Domain III appears to modulate the activity of the chimeric toxins: combination of domain III from Cry1Ab with domains I and II of Cry1C gave a protein which was more strongly active than Cry1C. PMID:10388684

  6. The significance of requirements engineering for the medical domain.

    PubMed

    Kossmann, Mario

    2014-07-01

    This paper aims to raise awareness of the importance of Requirements Engineering (RE) for the successful and efficient development of high-quality systems and products for the medical domain. It does so by providing an introduction to RE from the viewpoints of project and programme management and systems engineering in general and by illustrating the usefulness of a sound RE approach to the development of a local healthcare system in a deprived region in central Africa. The paper concludes that RE is just as crucial for the development of systems and products in the medical domain, as it is for the development of systems in the aerospace industry or software systems in the consumer electronics industry; while the degree of detail and formality of how RE is used has to be tailored to fit the context in question.

  7. Structural and Functional Analysis of Multi-Interface Domains

    PubMed Central

    Zhao, Liang; Hoi, Steven C. H.; Wong, Limsoon; Hamp, Tobias; Li, Jinyan

    2012-01-01

    A multi-interface domain is a domain that can shape multiple and distinctive binding sites to contact with many other domains, forming a hub in domain-domain interaction networks. The functions played by the multiple interfaces are usually different, but there is no strict bijection between the functions and interfaces as some subsets of the interfaces play the same function. This work applies graph theory and algorithms to discover fingerprints for the multiple interfaces of a domain and to establish associations between the interfaces and functions, based on a huge set of multi-interface proteins from PDB. We found that about 40% of proteins have the multi-interface property, however the involved multi-interface domains account for only a tiny fraction (1.8%) of the total number of domains. The interfaces of these domains are distinguishable in terms of their fingerprints, indicating the functional specificity of the multiple interfaces in a domain. Furthermore, we observed that both cooperative and distinctive structural patterns, which will be useful for protein engineering, exist in the multiple interfaces of a domain. PMID:23272073

  8. Functional domains of the poliovirus receptor

    SciTech Connect

    Koike, Satoshi; Ise, Iku; Nomoto, Akio )

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor. Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.

  9. Functions and Functional Domains of the GTPase Cdc42p

    PubMed Central

    Kozminski, Keith G.; Chen, Ann J.; Rodal, Avital A.; Drubin, David G.

    2000-01-01

    Cdc42p, a Rho family GTPase of the Ras superfamily, is a key regulator of cell polarity and morphogenesis in eukaryotes. Using 37 site-directed cdc42 mutants, we explored the functions and interactions of Cdc42p in the budding yeast Saccharomyces cerevisiae. Cytological and genetic analyses of these cdc42 mutants revealed novel and diverse phenotypes, showing that Cdc42p possesses at least two distinct essential functions and acts as a nodal point of cell polarity regulation in vivo. In addition, mapping the functional data for each cdc42 mutation onto a structural model of the protein revealed as functionally important a surface of Cdc42p that is distinct from the canonical protein-interacting domains (switch I, switch II, and the C terminus) identified previously in members of the Ras superfamily. This region overlaps with a region (α5-helix) recently predicted by structural models to be a specificity determinant for Cdc42p-protein interactions. PMID:10637312

  10. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.

    PubMed Central

    Mizukami, Y; Huang, H; Tudor, M; Hu, Y; Ma, H

    1996-01-01

    The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes. PMID:8672883

  11. Microdissection of Shoot Meristem Functional Domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The shoot apical meristem (SAM) maintains a pool of indeterminate cells within the SAM proper, while lateral organs are initiated from the SAM periphery. Laser microdissection–microarray technology was used to compare transcriptional profiles within these SAM domains to identify novel maize genes th...

  12. CBS domains: structure, function, and pathology in human proteins.

    PubMed

    Ignoul, Sofie; Eggermont, Jan

    2005-12-01

    The cystathionine-beta-synthase (CBS) domain is an evolutionarily conserved protein domain that is present in the proteome of archaebacteria, prokaryotes, and eukaryotes. CBS domains usually come in tandem repeats and are found in cytosolic and membrane proteins performing different functions (metabolic enzymes, kinases, and channels). Crystallographic studies of bacterial CBS domains have shown that two CBS domains form an intramolecular dimeric structure (CBS pair). Several human hereditary diseases (homocystinuria, retinitis pigmentosa, hypertrophic cardiomyopathy, myotonia congenital, etc.) can be caused by mutations in CBS domains of, respectively, cystathionine-beta-synthase, inosine 5'-monophosphate dehydrogenase, AMP kinase, and chloride channels. Despite their clinical relevance, it remains to be established what the precise function of CBS domains is and how they affect the structural and/or functional properties of an enzyme, kinase, or channel. Depending on the protein in which they occur, CBS domains have been proposed to affect multimerization and sorting of proteins, channel gating, and ligand binding. However, recent experiments revealing that CBS domains can bind adenosine-containing ligands such ATP, AMP, or S-adenosylmethionine have led to the hypothesis that CBS domains function as sensors of intracellular metabolites.

  13. Structure and Function of the TIR Domain from the Grape NLR Protein RPV1

    PubMed Central

    Williams, Simon J.; Yin, Ling; Foley, Gabriel; Casey, Lachlan W.; Outram, Megan A.; Ericsson, Daniel J.; Lu, Jiang; Boden, Mikael; Dry, Ian B.; Kobe, Bostjan

    2016-01-01

    The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR) domain has been shown to be both necessary and sufficient for defense signaling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signaling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signaling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices (“AE” interface). This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signaling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signaling. PMID:28008335

  14. Recombinant spider silk genetically functionalized with affinity domains.

    PubMed

    Jansson, Ronnie; Thatikonda, Naresh; Lindberg, Diana; Rising, Anna; Johansson, Jan; Nygren, Per-Åke; Hedhammar, My

    2014-05-12

    Functionalization of biocompatible materials for presentation of active protein domains is an area of growing interest. Herein, we describe a strategy for functionalization of recombinant spider silk via gene fusion to affinity domains of broad biotechnological use. Four affinity domains of different origin and structure; the IgG-binding domains Z and C2, the albumin-binding domain ABD, and the biotin-binding domain M4, were all successfully produced as soluble silk fusion proteins under nondenaturing purification conditions. Silk films and fibers produced from the fusion proteins were demonstrated to be chemically and thermally stable. Still, the bioactive domains are concluded to be folded and accessible, since their respective targets could be selectively captured from complex samples, including rabbit serum and human plasma. Interestingly, materials produced from mixtures of two different silk fusion proteins displayed combined binding properties, suggesting that tailor-made materials with desired stoichiometry and surface distributions of several binding domains can be produced. Further, use of the IgG binding ability as a general mean for presentation of desired biomolecules could be demonstrated for a human vascular endothelial growth factor (hVEGF) model system, via a first capture of anti-VEGF IgG to silk containing the Z-domain, followed by incubation with hVEGF. Taken together, this study demonstrates the potential of recombinant silk, genetically functionalized with affinity domains, for construction of biomaterials capable of presentation of almost any desired biomolecule.

  15. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications.

  16. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  17. A selective screen reveals discrete functional domains in Drosophila Nanos.

    PubMed Central

    Arrizabalaga, G; Lehmann, R

    1999-01-01

    The Drosophila protein Nanos encodes an evolutionarily conserved protein with two zinc finger motifs. In the embryo, Nanos protein function is required for establishment of the anterior-posterior body pattern and for the migration of primordial germ cells. During oogenesis, Nanos protein is involved in the establishment and maintenance of germ-line stem cells and the differentiation of oocyte precursor cells. To establish proper embryonic patterning, Nanos acts as a translational regulator of hunchback RNA. Nanos' targets for germ cell migration and development are not known. Here, we describe a selective genetic screen aimed at isolating new nanos alleles. The molecular and genetic analysis of 68 new alleles has allowed us to identify amino acids critical for nanos function. This analysis shows that the CCHC motifs, which coordinate two metal ions, are essential for all known functions of Nanos protein. Furthermore, a region C-terminal to the zinc fingers seems to constitute a novel functional domain within the Nanos protein. This "tail region" of Nanos is required for abdomen formation and germ cell migration, but not for oogenesis. PMID:10581288

  18. The N- and C-Terminal Domains Differentially Contribute to the Structure and Function of Dystrophin and Utrophin Tandem Calponin-Homology Domains.

    PubMed

    Singh, Surinder M; Bandi, Swati; Mallela, Krishna M G

    2015-11-24

    Dystrophin and utrophin are two muscle proteins involved in Duchenne/Becker muscular dystrophy. Both proteins use tandem calponin-homology (CH) domains to bind to F-actin. We probed the role of N-terminal CH1 and C-terminal CH2 domains in the structure and function of dystrophin tandem CH domain and compared with our earlier results on utrophin to understand the unifying principles of how tandem CH domains work. Actin cosedimentation assays indicate that the isolated CH2 domain of dystrophin weakly binds to F-actin compared to the full-length tandem CH domain. In contrast, the isolated CH1 domain binds to F-actin with an affinity similar to that of the full-length tandem CH domain. Thus, the obvious question is why the dystrophin tandem CH domain requires CH2, when its actin binding is determined primarily by CH1. To answer, we probed the structural stabilities of CH domains. The isolated CH1 domain is very unstable and is prone to serious aggregation. The isolated CH2 domain is very stable, similar to the full-length tandem CH domain. These results indicate that the main role of CH2 is to stabilize the tandem CH domain structure. These conclusions from dystrophin agree with our earlier results on utrophin, indicating that this phenomenon of differential contribution of CH domains to the structure and function of tandem CH domains may be quite general. The N-terminal CH1 domains primarily determine the actin binding function whereas the C-terminal CH2 domains primarily determine the structural stability of tandem CH domains, and the extent of stabilization depends on the strength of inter-CH domain interactions.

  19. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases.

    PubMed

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.

  20. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases

    PubMed Central

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements. PMID:26024355

  1. Purification, Cellular Levels, and Functional Domains of LMF1

    PubMed Central

    Babilonia-Rosa, Melissa; Neher, Saskia B.

    2014-01-01

    Over a third of the US adult population has hypertriglyceridemia, resulting in an increased risk of atherosclerosis, pancreatitis, and metabolic syndrome. Lipoprotein lipase (LPL)1, a dimeric enzyme, is the main lipase responsible for TG clearance from the blood after food intake. LPL requires an endoplasmic reticulum (ER)-resident, transmembrane protein known as lipase maturation factor 1 (LMF1) for secretion and enzymatic activity. LMF1 is believed to act as a client specific chaperone for dimeric lipases, but the precise mechanism by which LMF1 functions is not understood. Here, we examine which domains of LMF1 contribute to dimeric lipase maturation by assessing the function of truncation variants. N-terminal truncations of LMF1 show that all the domains are necessary for LPL maturation. Fluorescence microscopy and protease protection assays confirmed that these variants were properly oriented in the ER. We measured cellular levels of LMF1 and found that it is expressed at low levels and each molecule of LMF1 promotes the maturation of 50 or more molecules of LPL. Thus we provide evidence for the critical role of the N-terminus of LMF1 for the maturation of LPL and relevant ratio of chaperone to substrate. PMID:24909692

  2. Extensions of PDZ domains as important structural and functional elements.

    PubMed

    Wang, Conan K; Pan, Lifeng; Chen, Jia; Zhang, Mingjie

    2010-08-01

    'Divide and conquer' has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions 'extensions'. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.

  3. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding.

    PubMed

    Walker, S; Greaves, R; O'Hare, P

    1993-09-01

    In this work we have examined the requirements for activity of the acidic domain of Vmw65 (VP16) by deletion and site-directed mutagenesis of the region in the context of GAL4 fusion proteins. The results indicate that the present interpretation of what actually constitutes the activation domain is not correct. We demonstrate, using a promoter with one target site which is efficiently activated by the wild-type (wt) fusion protein, that amino acids distal to residue 453 are critical for activity. Truncation of the domain or substitution of residues in the distal region almost completely abrogate activity. However, inactivating mutations within the distal region are complemented by using a promoter containing multiple target sites. Moreover, duplication of the proximal region, but not the distal region, restores the ability to activate a promoter with a single target site. These results indicate some distinct qualitative difference between the proximal and distal regions. We have also examined the binding of nuclear proteins to the wt domain and to a variant with the distal region inactivated by mutation. The lack of activity of this variant is not explained by a lack of binding of TFIIB, a protein previously reported to be the likely target of the acidic domain. Therefore some additional function is involved in transcriptional activation by the acid domain, and determinants distinct from those involved in TFIIB binding are required for this function. Analysis of the total protein profiles binding to the wt and mutant domains has demonstrated the selective binding to the wt domain of a 135-kDa polypeptide, which is therefore a candidate component involved in this additional function. This is the first report to provide evidence for the proposal of a multiplicity of interactions within the acidic domain, by uncoupling requirements for one function from those for another.

  4. Identification of Ind transcription activation and repression domains required for dorsoventral patterning of the CNS

    PubMed Central

    Von Ohlen, Tonia L.; Moses, Cade

    2009-01-01

    Specification of cell fates across the dorsoventral axis of the central nervous system in Drosophila involves the subdivision of the neuroectoderm into three domains that give rise to three columns of neural precursor cells called neuroblasts. Ventral nervous system defective (Vnd), Intermediate neuroblasts defective (Ind) and Muscle segment homeobox (Msh) are expressed in the three columns from ventral to dorsal, respectively. The products of these genes play multiple important roles in formation and specification of the embryonic nervous system. Ind for example is known to play roles in two important processes. First, Ind is essential for formation of neuroblasts conjunction with SoxB class transcription factors. Sox class transcription factors are known to specify neural stem cells in vertebrates. Second, Ind plays an important role in patterning the CNS in conjunction with, vnd and msh, which is also similar to how vertebrates pattern their neural tube. This work focuses two important aspects of Ind function. First, we used multiple approaches to identify and characterize specific domains within the protein that confer repressor or activator ability. Currently, little is known about the presence of activation or repression domains within Ind. Here we show that transcriptional repression by Ind requires multiple conserved domains within the protein, and that Ind has a transcriptional activation domain. Specifically, we have identified a novel domain, the Pst domain, that has transcriptional repression ability and appears to act independent of interaction with the co-repressor Groucho. This domain is highly conserved among insect species, but is not found in vertebrate Gsh class homeodomain proteins. Second, we show that Ind can and does repress vnd expression, but does so in a stage specific manner. We conclude from this that the function of Ind in regulating vnd expression is one of refinement and maintenance of the dorsal border. PMID:19348939

  5. Variable-Domain Functional Regression for Modeling ICU Data.

    PubMed

    Gellar, Jonathan E; Colantuoni, Elizabeth; Needham, Dale M; Crainiceanu, Ciprian M

    2014-12-01

    We introduce a class of scalar-on-function regression models with subject-specific functional predictor domains. The fundamental idea is to consider a bivariate functional parameter that depends both on the functional argument and on the width of the functional predictor domain. Both parametric and nonparametric models are introduced to fit the functional coefficient. The nonparametric model is theoretically and practically invariant to functional support transformation, or support registration. Methods were motivated by and applied to a study of association between daily measures of the Intensive Care Unit (ICU) Sequential Organ Failure Assessment (SOFA) score and two outcomes: in-hospital mortality, and physical impairment at hospital discharge among survivors. Methods are generally applicable to a large number of new studies that record a continuous variables over unequal domains.

  6. Membrane-bound mucin modular domains: from structure to function.

    PubMed

    Jonckheere, Nicolas; Skrypek, Nicolas; Frénois, Frédéric; Van Seuningen, Isabelle

    2013-06-01

    Mucins belong to a heterogeneous family of large O-glycoproteins composed of a long peptidic chain called apomucin on which are linked hundreds of oligosaccharidic chains. Among mucins, membrane-bound mucins are modular proteins and have a structural organization usually containing Pro/Thr/Ser-rich O-glycosylated domains (PTS), EGF-like and SEA domains. Via these modular domains, the membrane-bound mucins participate in cell signalling and cell interaction with their environment in normal and pathological conditions. Moreover, the recent knowledge of these domains and their biological activities led to the development of new therapeutic approaches involving mucins. In this review, we show 3D structures of EGF and SEA domains. We also describe the functional features of the evolutionary conserved domains of membrane-bound mucins and discuss consequences of splice events.

  7. Structural and functional diversity of Topologically Associating Domains.

    PubMed

    Dekker, Job; Heard, Edith

    2015-10-07

    Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization. Here we outline our current understanding of such domains in different organisms and their roles in gene regulation.

  8. Domain mobility in proteins: functional and evolutionary implications.

    PubMed

    Basu, Malay Kumar; Poliakov, Eugenia; Rogozin, Igor B

    2009-05-01

    A substantial fraction of eukaryotic proteins contains multiple domains, some of which show a tendency to occur in diverse domain architectures and can be considered mobile (or 'promiscuous'). These promiscuous domains are typically involved in protein-protein interactions and play crucial roles in interaction networks, particularly those contributing to signal transduction. They also play a major role in creating diversity of protein domain architecture in the proteome. It is now apparent that promiscuity is a volatile and relatively fast-changing feature in evolution, and that only a few domains retain their promiscuity status throughout evolution. Many such domains attained their promiscuity status independently in different lineages. Only recently, we have begun to understand the diversity of protein domain architectures and the role the promiscuous domains play in evolution of this diversity. However, many of the biological mechanisms of protein domain mobility remain shrouded in mystery. In this review, we discuss our present understanding of protein domain promiscuity, its evolution and its role in cellular function.

  9. Identification of Two Functional Domains within the Arenavirus Nucleoprotein▿

    PubMed Central

    Levingston Macleod, Jesica M.; D'Antuono, Alejandra; Loureiro, Maria Eugenia; Casabona, Juan Cruz; Gomez, Guillermo A.; Lopez, Nora

    2011-01-01

    Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions. PMID:21159858

  10. Functions and Requirements for the Transition Project

    SciTech Connect

    YANOCHKO, R.M.

    2000-04-24

    This document describes the functional requirement baseline for the Transition of 100 K Area Facilities Project (Transition Project). This baseline information consists of top-level functions, requirements, concept description, interface description, issues, and enabling assumptions.

  11. Aperiodic topological order in the domain configurations of functional materials

    NASA Astrophysics Data System (ADS)

    Huang, Fei-Ting; Cheong, Sang-Wook

    2017-03-01

    In numerous functional materials, such as steels, ferroelectrics and magnets, new functionalities can be achieved through the engineering of the domain structures, which are associated with the ordering of certain parameters within the material. The recent progress in technologies that enable imaging at atomic-scale spatial resolution has transformed our understanding of domain topology, revealing that, along with simple stripe-like or irregularly shaped domains, intriguing vortex-type topological domain configurations also exist. In this Review, we present a new classification scheme of 'Zm Zn domains with Zl vortices' for 2D macroscopic domain structures with m directional variants and n translational antiphases. This classification, together with the concepts of topological protection and topological charge conservation, can be applied to a wide range of materials, such as multiferroics, improper ferroelectrics, layered transition metal dichalcogenides and magnetic superconductors, as we discuss using selected examples. The resulting topological considerations provide a new basis for the understanding of the formation, kinetics, manipulation and property optimization of domains and domain boundaries in functional materials.

  12. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    PubMed

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  13. Airspace Operations Demo Functional Requirements Matrix

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The Flight IPT assessed the reasonableness of demonstrating each of the Access 5 Step 1 functional requirements. The functional requirements listed in this matrix are from the September 2005 release of the Access 5 Functional Requirements Document. The demonstration mission considered was a notional Western US mission (WUS). The conclusion of the assessment is that 90% of the Access 5 Step 1 functional requirements can be demonstrated using the notional Western US mission.

  14. Domain coloring of complex functions: an implementation-oriented introduction.

    PubMed

    Poelke, Konstantin; Polthier, Konrad

    2012-01-01

    This article gives a short overview of domain coloring for complex functions that have four-dimensional function graphs and therefore can't be visualized traditionally. The authors discuss several color schemes, focus on various aspects of complex functions, and provide Java-like pseudocode examples explaining the crucial ideas of the coloring algorithms to allow for easy reproduction.

  15. Evolution of distinct EGF domains with specific functions

    PubMed Central

    Wouters, Merridee A.; Rigoutsos, Isidore; Chu, Carmen K.; Feng, Lina L.; Sparrow, Duncan B.; Dunwoodie, Sally L.

    2005-01-01

    EGF domains are extracellular protein modules cross-linked by three intradomain disulfides. Past studies suggest the existence of two types of EGF domain with three-disulfides, human EGF-like (hEGF) domains and complement C1r-like (cEGF) domains, but to date no functional information has been related to the two different types, and they are not differentiated in sequence or structure databases. We have developed new sequence patterns based on the different C-termini to search specifically for the two types of EGF domains in sequence databases. The exhibited sensitivity and specificity of the new pattern-based method represents a significant advancement over the currently available sequence detection techniques. We re-annotated EGF sequences in the latest release of Swiss-Prot looking for functional relationships that might correlate with EGF type. We show that important post-translational modifications of three-disulfide EGFs, including unusual forms of glycosylation and post-translational proteolytic processing, are dependent on EGF subtype. For example, EGF domains that are shed from the cell surface and mediate intercellular signaling are all hEGFs, as are all human EGF receptor family ligands. Additional experimental data suggest that functional specialization has accompanied subtype divergence. Based on our structural analysis of EGF domains with three-disulfide bonds and comparison to laminin and integrin-like EGF domains with an additional inter-domain disulfide, we propose that these hEGF and cEGF domains may have arisen from a four-disulfide ancestor by selective loss of different cysteine residues. PMID:15772310

  16. Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites.

    PubMed

    Babic, Milos; Russo, Gary J; Wellington, Andrea J; Sangston, Ryan M; Gonzalez, Migdalia; Zinsmaier, Konrad E

    2015-04-08

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.

  17. Miro's N-Terminal GTPase Domain Is Required for Transport of Mitochondria into Axons and Dendrites

    PubMed Central

    Babic, Milos; Russo, Gary J.; Wellington, Andrea J.; Sangston, Ryan M.; Gonzalez, Migdalia

    2015-01-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state. PMID:25855186

  18. Functional divergence in the Arabidopsis LOB-domain gene family

    PubMed Central

    Mangeon, Amanda; Lin, Wan-ching; Springer, Patricia S.

    2012-01-01

    The Arabidopsis LOB-domain (LBD) gene family is composed by 43 members divided in two classes based on amino acid conservation within the LOB-domain. The LOB domain is known to be responsible for DNA binding and protein-protein interactions. There is very little functional information available for most genes in the LBD family and many lbd single mutants do not exhibit conspicuous phenotypes. One plausible explanation for the limited loss-of-function phenotypes observed in this family is that LBD genes exhibit significant functional redundancy. Here we discuss an example of one phylogenetic subgroup of the LBD family, in which genes that are closely related based on phylogeny exhibit distinctly different expression patterns and do not have overlapping functions. We discuss the challenges of using phylogenetic analyses to predict redundancy in gene families. PMID:23073009

  19. Domain Requirements of the JIL-1 Tandem Kinase for Histone H3 Serine 10 Phosphorylation and Chromatin Remodeling in Vivo*

    PubMed Central

    Li, Yeran; Cai, Weili; Wang, Chao; Yao, Changfu; Bao, Xiaomin; Deng, Huai; Girton, Jack; Johansen, Jørgen; Johansen, Kristen M.

    2013-01-01

    The JIL-1 kinase localizes to Drosophila polytene chromosome interbands and phosphorylates histone H3 at interphase, counteracting histone H3 lysine 9 dimethylation and gene silencing. JIL-1 can be divided into four main domains, including an NH2-terminal domain, two separate kinase domains, and a COOH-terminal domain. In this study, we characterize the domain requirements of the JIL-1 kinase for histone H3 serine 10 (H3S10) phosphorylation and chromatin remodeling in vivo. We show that a JIL-1 construct without the NH2-terminal domain is without H3S10 phosphorylation activity despite the fact that it localizes properly to polytene interband regions and that it contains both kinase domains. JIL-1 is a double kinase, and we demonstrate that both kinase domains of JIL-1 are required to be catalytically active for H3S10 phosphorylation to occur. Furthermore, we provide evidence that JIL-1 is phosphorylated at serine 424 and that this phosphorylation is necessary for JIL-1 H3S10 phosphorylation activity. Thus, these data are compatible with a model where the NH2-terminal domain of JIL-1 is required for chromatin complex interactions that position the kinase domain(s) for catalytic activity in the context of the state of higher order nucleosome packaging and chromatin structure and where catalytic H3S10 phosphorylation activity mediated by the first kinase domain is dependent on autophosphorylation of serine 424 by the second kinase domain. Furthermore, using a lacO repeat tethering system to target mutated JIL-1 constructs with or without catalytic activity, we show that the epigenetic H3S10 phosphorylation mark itself functions as a causative regulator of chromatin structure independently of any structural contributions from the JIL-1 protein. PMID:23723094

  20. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation.

    PubMed

    Narendra, Varun; Rocha, Pedro P; An, Disi; Raviram, Ramya; Skok, Jane A; Mazzoni, Esteban O; Reinberg, Danny

    2015-02-27

    Polycomb and Trithorax group proteins encode the epigenetic memory of cellular positional identity by establishing inheritable domains of repressive and active chromatin within the Hox clusters. Here we demonstrate that the CCCTC-binding factor (CTCF) functions to insulate these adjacent yet antagonistic chromatin domains during embryonic stem cell differentiation into cervical motor neurons. Deletion of CTCF binding sites within the Hox clusters results in the expansion of active chromatin into the repressive domain. CTCF functions as an insulator by organizing Hox clusters into spatially disjoint domains. Ablation of CTCF binding disrupts topological boundaries such that caudal Hox genes leave the repressed domain and become subject to transcriptional activation. Hence, CTCF is required to insulate facultative heterochromatin from impinging euchromatin to produce discrete positional identities.

  1. A freestanding proofreading domain is required for protein synthesis quality control in Archaea.

    PubMed

    Korencic, Dragana; Ahel, Ivan; Schelert, James; Sacher, Meik; Ruan, Benfang; Stathopoulos, Constantinos; Blum, Paul; Ibba, Michael; Söll, Dieter

    2004-07-13

    Threonyl-tRNA synthetase (ThrRS) participates in protein synthesis quality control by selectively editing the misacylated species Ser-tRNA(Thr). In bacteria and eukaryotes the editing function of ThrRS resides in a highly conserved N-terminal domain distant from the active site. Most archaeal ThrRS proteins are devoid of this editing domain, suggesting evolutionary divergence of quality-control mechanisms. Here we show that archaeal editing of Ser-tRNAThr is catalyzed by a domain unrelated to, and absent from, bacterial and eukaryotic ThrRSs. Despite the lack of sequence homology, the archaeal and bacterial editing domains are both reliant on a pair of essential histidine residues suggestive of a common catalytic mechanism. Whereas the archaeal editing module is most commonly part of full-length ThrRS, several crenarchaeal species contain individual genes encoding the catalytic (ThrRS-cat) and editing domains (ThrRS-ed). Sulfolobus solfataricus ThrRS-cat was shown to synthesize both Thr-tRNAThr and Ser-tRNAThr and to lack editing activity against Ser-tRNAThr. In contrast, ThrRS-ed lacks aminoacylation activity but can act as an autonomous protein in trans to hydrolyze specifically Ser-tRNAThr, or it can be fused to ThrRS-cat to provide the same function in cis. Deletion analyses indicate that ThrRS-ed is dispensable for growth of S. solfataricus under standard conditions but is required for normal growth in media with elevated serine levels. The growth phenotype of the ThrRS-ed deletion strain suggests that retention of the discontinuous ThrRS quaternary structure relates to specific physiological requirements still evident in certain Archaea.

  2. The Coxsackievirus and Adenovirus Receptor: Glycosylation and the Extracellular D2 Domain Are Not Required for Coxsackievirus B3 Infection

    PubMed Central

    Röger, Carsten; Kurreck, Jens; Bergelson, Jeffrey M.; Fechner, Henry

    2016-01-01

    ABSTRACT The coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1. IMPORTANCE An important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data

  3. Functional domains of the Xenopus replication licensing factor Cdt1.

    PubMed

    Ferenbach, Andrew; Li, Anatoliy; Brito-Martins, Marta; Blow, J Julian

    2005-01-01

    During late mitosis and early G1, replication origins are licensed for subsequent replication by loading heterohexamers of the mini-chromosome maintenance proteins (Mcm2-7). To prevent re-replication of DNA, the licensing system is down-regulated at other cell cycle stages. A small protein called geminin plays an important role in this down-regulation by binding and inhibiting the Cdt1 component of the licensing system. We examine here the organization of Xenopus Cdt1, delimiting regions of Cdt1 required for licensing and regions required for geminin interaction. The C-terminal 377 residues of Cdt1 are required for licensing and the extreme C-terminus contains a domain that interacts with an Mcm(2,4,6,7) complex. Two regions of Cdt1 interact with geminin: one at the N-terminus, and one in the centre of the protein. Only the central region binds geminin tightly enough to successfully compete with full-length Cdt1 for geminin binding. This interaction requires a predicted coiled-coil domain that is conserved amongst metazoan Cdt1 homologues. Geminin forms a homodimer, with each dimer binding one molecule of Cdt1. Separation of the domains necessary for licensing activity from domains required for a strong interaction with geminin generated a construct, whose licensing activity was partially insensitive to geminin inhibition.

  4. The C-terminal Domain (CTD) of Human DNA Glycosylase NEIL1 Is Required for Forming BERosome Repair Complex with DNA Replication Proteins at the Replicating Genome: DOMINANT NEGATIVE FUNCTION OF THE CTD.

    PubMed

    Hegde, Pavana M; Dutta, Arijit; Sengupta, Shiladitya; Mitra, Joy; Adhikari, Sanjay; Tomkinson, Alan E; Li, Guo-Min; Boldogh, Istvan; Hazra, Tapas K; Mitra, Sankar; Hegde, Muralidhar L

    2015-08-21

    The human DNA glycosylase NEIL1 was recently demonstrated to initiate prereplicative base excision repair (BER) of oxidized bases in the replicating genome, thus preventing mutagenic replication. A significant fraction of NEIL1 in cells is present in large cellular complexes containing DNA replication and other repair proteins, as shown by gel filtration. However, how the interaction of NEIL1 affects its recruitment to the replication site for prereplicative repair was not investigated. Here, we show that NEIL1 binarily interacts with the proliferating cell nuclear antigen clamp loader replication factor C, DNA polymerase δ, and DNA ligase I in the absence of DNA via its non-conserved C-terminal domain (CTD); replication factor C interaction results in ∼8-fold stimulation of NEIL1 activity. Disruption of NEIL1 interactions within the BERosome complex, as observed for a NEIL1 deletion mutant (N311) lacking the CTD, not only inhibits complete BER in vitro but also prevents its chromatin association and reduced recruitment at replication foci in S phase cells. This suggests that the interaction of NEIL1 with replication and other BER proteins is required for efficient repair of the replicating genome. Consistently, the CTD polypeptide acts as a dominant negative inhibitor during in vitro repair, and its ectopic expression sensitizes human cells to reactive oxygen species. We conclude that multiple interactions among BER proteins lead to large complexes, which are critical for efficient BER in mammalian cells, and the CTD interaction could be targeted for enhancing drug/radiation sensitivity of tumor cells.

  5. Talin is required to position and expand the luminal domain of the Drosophila heart tube.

    PubMed

    Vanderploeg, Jessica; Jacobs, J Roger

    2015-09-15

    Fluid- and gas-transporting tubular organs are critical to metazoan development and homeostasis. Tubulogenesis involves cell polarization and morphogenesis to specify the luminal, adhesive, and basal cell domains and to establish an open lumen. We explore a requirement for Talin, a cytoplasmic integrin adapter, during Drosophila melanogaster embryonic heart tube development. Talin marks the presumptive luminal domain and is required to orient and develop an open luminal space within the heart. Genetic analysis demonstrates that loss of zygotic or maternal-and-zygotic Talin disrupts heart cell migratory dynamics, morphogenesis, and polarity. Talin is essential for subsequent polarization of luminal determinants Slit, Robo, and Dystroglycan as well as stabilization of extracellular and intracellular integrin adhesion factors. In the absence of Talin function, mini-lumens enriched in luminal factors form in ectopic locations. Rescue experiments performed with mutant Talin transgenes suggest that actin-binding is required for normal lumen formation, but not for initial heart cell polarization. We propose that Talin provides instructive cues to position the luminal domain and coordinate the actin cytoskeleton during Drosophila heart lumen development.

  6. Intein Clustering Suggests Functional Importance in Different Domains of Life

    PubMed Central

    Novikova, Olga; Jayachandran, Pradeepa; Kelley, Danielle S.; Morton, Zachary; Merwin, Samantha; Topilina, Natalya I.; Belfort, Marlene

    2016-01-01

    Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution. PMID:26609079

  7. Intein Clustering Suggests Functional Importance in Different Domains of Life.

    PubMed

    Novikova, Olga; Jayachandran, Pradeepa; Kelley, Danielle S; Morton, Zachary; Merwin, Samantha; Topilina, Natalya I; Belfort, Marlene

    2016-03-01

    Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution.

  8. Diversity of Structure and Function of Response Regulator Output Domains

    PubMed Central

    Galperin, Michael Y.

    2011-01-01

    Summary Response regulators (RRs) within two-component signal transduction systems control a variety of cellular processes. Most RRs contain DNA-binding output domains and serve as transcriptional regulators. Other RR types contain RNA-binding, ligand-binding, protein-binding or transporter output domains and exert regulation at the transcriptional, post-transcriptional or post-translational levels. In a significant fraction of RRs, output domains are enzymes that themselves participate in signal transduction: methylesterases, adenylate or diguanylate cyclases, c-di-GMP-specific phosphodiesterases, histidine kinases, serine/threonine protein kinases and protein phosphatases. In addition, there remain output domains whose functions are still unknown. Patterns of the distribution of various RR families are generally conserved within key microbial lineages and can be used to trace adaptations of various species to their unique ecological niches. PMID:20226724

  9. Diversity of structure and function of response regulator output domains.

    PubMed

    Galperin, Michael Y

    2010-04-01

    Response regulators (RRs) within two-component signal transduction systems control a variety of cellular processes. Most RRs contain DNA-binding output domains and serve as transcriptional regulators. Other RR types contain RNA-binding, ligand-binding, protein-binding or transporter output domains and exert regulation at the transcriptional, post-transcriptional or post-translational levels. In a significant fraction of RRs, output domains are enzymes that themselves participate in signal transduction: methylesterases, adenylate or diguanylate cyclases, c-di-GMP-specific phosphodiesterases, histidine kinases, serine/threonine protein kinases and protein phosphatases. In addition, there remain output domains whose functions are still unknown. Patterns of the distribution of various RR families are generally conserved within key microbial lineages and can be used to trace adaptations of various species to their unique ecological niches.

  10. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins.

    PubMed Central

    Gillooly, D J; Simonsen, A; Stenmark, H

    2001-01-01

    PtdIns3P is a phosphoinositide 3-kinase product that has been strongly implicated in regulating membrane trafficking in both mammalian and yeast cells. PtdIns3P has been shown to be specifically located on membranes associated with the endocytic pathway. Proteins that contain FYVE zinc-finger domains are recruited to PtdIns3P-containing membranes. Structural information is now available concerning the interaction between FYVE domains and PtdIns3P. A number of proteins have been identified which contain a FYVE domain, and in this review we discuss the functions of PtdIns3P and its FYVE-domain-containing effector proteins in membrane trafficking, cytoskeletal regulation and receptor signalling. PMID:11284710

  11. Stability of the mitochondrial genome requires an amino-terminal domain of yeast mitochondrial RNA polymerase

    PubMed Central

    Wang, Yuanhong; Shadel, Gerald S.

    1999-01-01

    Mitochondrial RNA (mtRNA) polymerases are related to bacteriophage RNA polymerases, but contain a unique amino-terminal extension of unknown origin and function. In addition to harboring mitochondrial targeting information, we show here that the amino-terminal extension of yeast mtRNA polymerase is required for a mtDNA maintenance function that is separable from the known RNA polymerization activity of the enzyme. Deletion of 185 N-terminal amino acids from the enzyme results in a temperature-sensitive mitochondrial petite phenotype, characterized by increased instability and eventual loss of the mitochondrial genome. Mitochondrial transcription initiation in vivo is largely unaffected by this mutation and expression of just the amino-terminal portion of the protein in trans partially suppresses the mitochondrial defect, indicating that the amino-terminal extension of the enzyme harbors an independent functional domain that is required for mtDNA replication and/or stability. These results suggest that amino-terminal extensions present in mtRNA polymerases comprise functional domains that couple additional activities to the transcription process in mitochondria. PMID:10393945

  12. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage.

    PubMed

    Riccio, Amanda A; Cingolani, Gino; Pascal, John M

    2016-02-29

    Poly(ADP-ribose) polymerase-2 (PARP-2) is one of three human PARP enzymes that are potently activated during the cellular DNA damage response (DDR). DDR-PARPs detect DNA strand breaks, leading to a dramatic increase in their catalytic production of the posttranslational modification poly(ADP-ribose) (PAR) to facilitate repair. There are limited biochemical and structural insights into the functional domains of PARP-2, which has restricted our understanding of how PARP-2 is specialized toward specific repair pathways. PARP-2 has a modular architecture composed of a C-terminal catalytic domain (CAT), a central Trp-Gly-Arg (WGR) domain and an N-terminal region (NTR). Although the NTR is generally considered the key DNA-binding domain of PARP-2, we report here that all three domains of PARP-2 collectively contribute to interaction with DNA damage. Biophysical, structural and biochemical analyses indicate that the NTR is natively disordered, and is only required for activation on specific types of DNA damage. Interestingly, the NTR is not essential for PARP-2 localization to sites of DNA damage. Rather, the WGR and CAT domains function together to recruit PARP-2 to sites of DNA breaks. Our study differentiates the functions of PARP-2 domains from those of PARP-1, the other major DDR-PARP, and highlights the specialization of the multi-domain architectures of DDR-PARPs.

  13. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage

    PubMed Central

    Riccio, Amanda A.; Cingolani, Gino; Pascal, John M.

    2016-01-01

    Poly(ADP-ribose) polymerase-2 (PARP-2) is one of three human PARP enzymes that are potently activated during the cellular DNA damage response (DDR). DDR-PARPs detect DNA strand breaks, leading to a dramatic increase in their catalytic production of the posttranslational modification poly(ADP-ribose) (PAR) to facilitate repair. There are limited biochemical and structural insights into the functional domains of PARP-2, which has restricted our understanding of how PARP-2 is specialized toward specific repair pathways. PARP-2 has a modular architecture composed of a C-terminal catalytic domain (CAT), a central Trp-Gly-Arg (WGR) domain and an N-terminal region (NTR). Although the NTR is generally considered the key DNA-binding domain of PARP-2, we report here that all three domains of PARP-2 collectively contribute to interaction with DNA damage. Biophysical, structural and biochemical analyses indicate that the NTR is natively disordered, and is only required for activation on specific types of DNA damage. Interestingly, the NTR is not essential for PARP-2 localization to sites of DNA damage. Rather, the WGR and CAT domains function together to recruit PARP-2 to sites of DNA breaks. Our study differentiates the functions of PARP-2 domains from those of PARP-1, the other major DDR-PARP, and highlights the specialization of the multi-domain architectures of DDR-PARPs. PMID:26704974

  14. Domain-specific functions of Stardust in Drosophila embryonic development

    PubMed Central

    Koch, Leonie; Feicht, Sabine; Sun, Rui; Sen, Arnab

    2016-01-01

    In Drosophila, the adaptor protein Stardust is essential for the stabilization of the polarity determinant Crumbs in various epithelial tissues, including the embryonic epidermis, the follicular epithelium and photoreceptor cells of the compound eye. In turn, Stardust recruits another adaptor protein, PATJ, to the subapical region to support adherens junction formation and morphogenetic events. Moreover, Stardust binds to Lin-7, which is dispensable in epithelial cells but functions in postsynaptic vesicle fusion. Finally, Stardust has been reported to bind directly to PAR-6, thereby linking the Crumbs–Stardust–PATJ complex to the PAR-6/aPKC complex. PAR-6 and aPKC are also capable of directly binding Bazooka (the Drosophila homologue of PAR-3) to form the PAR/aPKC complex, which is essential for apical–basal polarity and cell–cell contact formation in most epithelia. However, little is known about the physiological relevance of these interactions in the embryonic epidermis of Drosophila in vivo. Thus, we performed a structure–function analysis of the annotated domains with GFP-tagged Stardust and evaluated the localization and function of the mutant proteins in epithelial cells of the embryonic epidermis. The data presented here confirm a crucial role of the PDZ domain in binding Crumbs and recruiting the protein to the subapical region. However, the isolated PDZ domain is not capable of being recruited to the cortex, and the SH3 domain is essential to support the binding to Crumbs. Notably, the conserved N-terminal regions (ECR1 and ECR2) are not crucial for epithelial polarity. Finally, the GUK domain plays an important role for the protein's function, which is not directly linked to Crumbs stabilization, and the L27N domain is essential for epithelial polarization independently of recruiting PATJ. PMID:28018665

  15. Interdependence of the rad50 hook and globular domain functions.

    PubMed

    Hohl, Marcel; Kochańczyk, Tomasz; Tous, Cristina; Aguilera, Andrés; Krężel, Artur; Petrini, John H J

    2015-02-05

    Rad50 contains a conserved Zn(2+) coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here, we focused on rad50 mutations flanking the Zn(2+)-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double-strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end joining, and DNA double-strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled-coil and globular ATPase domains, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions.

  16. Integral estimates for differentiable functions on irregular domains

    SciTech Connect

    Besov, Oleg V

    2011-02-11

    Integral representations for functions and their partial derivatives in terms of some fixed system of partial derivatives are constructed on irregular domains in a Euclidean space. Embedding theorems for Sobolev-type spaces into a Lebesgue space are established and the norms of the derivatives are estimated. Bibliography: 17 titles.

  17. Interdependence of the Rad50 hook and globular domain functions

    PubMed Central

    Hohl, Marcel; Kochańczyk, Tomasz; Tous, Cristina; Aguilera, Andrés; Krężel, Artur; Petrini, John H J

    2015-01-01

    SUMMARY Rad50 contains a conserved Zn2+ coordination domain (the Rad50 hook) that functions as a homodimerization interface. Hook ablation phenocopies Rad50 deficiency in all respects. Here we focused on rad50 mutations flanking the Zn2+-coordinating hook cysteines. These mutants impaired hook-mediated dimerization, but recombination between sister chromatids was largely unaffected. This may reflect that cohesin-mediated sister chromatid interactions are sufficient for double strand break repair. However, Mre11 complex functions specified by the globular domain, including Tel1 (ATM) activation, nonhomologous end-joining, and DNA double strand break end resection were affected, suggesting that dimerization exerts a broad influence on Mre11 complex function. These phenotypes were suppressed by mutations within the coiled coil and globular ATPase domain, suggesting a model in which conformational changes in the hook and globular domains are transmitted via the extended coils of Rad50. We propose that transmission of spatial information in this manner underlies the regulation of Mre11 complex functions. PMID:25601756

  18. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties.

    PubMed Central

    Darboux, I; Barthalay, Y; Piovant, M; Hipeau-Jacquotte, R

    1996-01-01

    Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells. Images PMID:8890157

  19. Functional properties of extracellular domains of transducer receptor gp130.

    PubMed

    Kostjukova, M N; Tupitsyn, N N

    2011-04-01

    Cytokine receptor molecules have been shown to have extracellular domains of complex structure and a multi-step activation system. Glycoprotein gp130 is a typical transducer of cytokine signal; it functions by forming multicomponent receptor complexes and transferring signals of tens of cytokines from the IL-6 family. Structural organization and basic functioning principles of gp130 are well known, as well as related signal pathways, which function during normal differentiation and are involved in pathogenesis of many tumors. The role of gp130 in IL-6-dependent tumors is best studied. In this review, based on extensive accumulated data, we examine the functional significance of certain parts of gp130 extracellular domains. Potentials of a recently developed method for estimation of receptor activation at the level of epitope structure are discussed.

  20. The Ω-loop lid domain of phosphoenolpyruvate carboxykinase is essential for catalytic function.

    PubMed

    Johnson, Troy A; Holyoak, Todd

    2012-11-27

    Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that undergoes a transition between an open, disorded conformation and a closed, ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete. Previous studies showed that the closure of the lid domain stabilizes the reaction intermediate and protects the reactive intermediate from spurious protonation and thus contributes to the fidelity of the enzyme. To more fully investigate the roles of the lid domain in PEPCK function, we introduced three mutations that replaced the 11-residue lid domain with one, two, and three glycine residues. Kinetic analysis of the mutant enzymes demonstrates that none of the enzyme constructs exhibit any measurable kinetic activity, resulting in a decrease in the catalytic parameters of at least 10(6). Structural characterization of the mutants in complexes representing the catalytic cycle suggests that the inactivity is due to a role for the lid domain in the formation of the fully closed state of the enzyme that is required for catalytic function. In the absence of the lid domain, the enzyme is unable to achieve the fully closed state and is rendered inactive despite possessing all of the residues and substrates required for catalytic function. This work demonstrates how enzyme catalytic function can be abolished through the alteration of conformational equilibria despite all the elements required for chemical conversion of substrates to products remaining intact.

  1. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking.

    PubMed

    Galea, Charles A; Nguyen, Hai M; George Chandy, K; Smith, Brian J; Norton, Raymond S

    2014-04-01

    MMP23 is a member of the matrix metalloprotease family of zinc- and calcium-dependent endopeptidases, which are involved in a wide variety of cellular functions. Its catalytic domain displays a high degree of structural homology with those of other metalloproteases, but its atypical domain architecture suggests that it may possess unique functional properties. The N-terminal MMP23 pro-domain contains a type-II transmembrane domain that anchors the protein to the plasma membrane and lacks the cysteine-switch motif that is required to maintain other MMPs in a latent state during passage to the cell surface. Instead of the C-terminal hemopexin domain common to other MMPs, MMP23 contains a small toxin-like domain (TxD) and an immunoglobulin-like cell adhesion molecule (IgCAM) domain. The MMP23 pro-domain can trap Kv1.3 but not closely-related Kv1.2 channels in the endoplasmic reticulum, preventing their passage to the cell surface, while the TxD can bind to the channel pore and block the passage of potassium ions. The MMP23 C-terminal IgCAM domain displays some similarity to Ig-like C2-type domains found in IgCAMs of the immunoglobulin superfamily, which are known to mediate protein-protein and protein-lipid interactions. MMP23 and Kv1.3 are co-expressed in a variety of tissues and together are implicated in diseases including cancer and inflammatory disorders. Further studies are required to elucidate the mechanism of action of this unique member of the MMP family.

  2. PARP-1 activation requires local unfolding of an autoinhibitory domain

    PubMed Central

    Dawicki-McKenna, Jennine M.; Langelier, Marie-France; DeNizio, Jamie E.; Riccio, Amanda A.; Cao, Connie D.; Karch, Kelly R.; McCauley, Michael; Steffen, Jamin D.; Black, Ben E.; Pascal, John M.

    2015-01-01

    SUMMARY Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD+ to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD+ binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors. PMID:26626480

  3. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain.

    PubMed

    Dawicki-McKenna, Jennine M; Langelier, Marie-France; DeNizio, Jamie E; Riccio, Amanda A; Cao, Connie D; Karch, Kelly R; McCauley, Michael; Steffen, Jamin D; Black, Ben E; Pascal, John M

    2015-12-03

    Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.

  4. The Rad50 coiled-coil domain is indispensable for Mre11 complex functions.

    PubMed

    Hohl, Marcel; Kwon, Youngho; Galván, Sandra Muñoz; Xue, Xiaoyu; Tous, Cristina; Aguilera, Andrés; Sung, Patrick; Petrini, John H J

    2011-09-04

    The Mre11 complex (Mre11, Rad50 and Xrs2 in Saccharomyces cerevisiae) influences diverse functions in the DNA damage response. The complex comprises the globular DNA-binding domain and the Rad50 hook domain, which are linked by a long and extended Rad50 coiled-coil domain. In this study, we constructed rad50 alleles encoding truncations of the coiled-coil domain to determine which Mre11 complex functions required the full length of the coils. These mutations abolished telomere maintenance and meiotic double-strand break (DSB) formation, and severely impaired homologous recombination, indicating a requirement for long-range action. Nonhomologous end joining, which is probably mediated by the globular domain of the Mre11 complex, was also severely impaired by alteration of the coiled-coil and hook domains, providing the first evidence of their influence on this process. These data show that functions of Mre11 complex are integrated by the coiled coils of Rad50.

  5. Protein function annotation using protein domain family resources.

    PubMed

    Das, Sayoni; Orengo, Christine A

    2016-01-15

    As a result of the genome sequencing and structural genomics initiatives, we have a wealth of protein sequence and structural data. However, only about 1% of these proteins have experimental functional annotations. As a result, computational approaches that can predict protein functions are essential in bridging this widening annotation gap. This article reviews the current approaches of protein function prediction using structure and sequence based classification of protein domain family resources with a special focus on functional families in the CATH-Gene3D resource.

  6. The Drosophila fork head domain protein crocodile is required for the establishment of head structures.

    PubMed Central

    Häcker, U; Kaufmann, E; Hartmann, C; Jürgens, G; Knöchel, W; Jäckle, H

    1995-01-01

    The fork head (fkh) domain defines the DNA-binding region of a family of transcription factors which has been implicated in regulating cell fate decisions across species lines. We have cloned and molecularly characterized the crocodile (croc) gene which encodes a new family member from Drosophila. croc is expressed in the head anlagen of the blastoderm embryo under the control of the anterior, the dorsoventral and the terminal maternal organizer systems. The croc mutant phenotype indicates that the croc wild-type gene is required to function as an early patterning gene in the anterior-most blastoderm head segment anlage and for the establishment of a specific head skeletal structure that derives from the non-adjacent intercalary segment at a later stage of embryogenesis. As an early patterning gene, croc exerts unusual properties which do not allow it to be grouped among the established segmentation genes. A single-site mutation within the croc fkh domain, which causes a replacement of the first out of four conserved amino acid residues thought to be involved in the coordinate binding of Mg2+, abolishes the DNA binding of the protein in vitro. In view of the resulting lack-of-function mutant phenotype, it appears likely that metal binding by the affected region of the fkh domain is crucial for proper folding of the DNA-binding structure. Images PMID:7489720

  7. Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain

    NASA Astrophysics Data System (ADS)

    Gordon, Thomas F.; Governatori, Guido; Rotolo, Antonino

    In this survey paper we summarize the requirements for rule interchange languages for applications in the legal domain and use these requirements to evaluate RuleML, SBVR, SWRL and RIF. We also present the Legal Knowledge Interchange Format (LKIF), a new rule interchange format developed specifically for applications in the legal domain.

  8. Functional diversity of potassium channel voltage-sensing domains.

    PubMed

    Islas, León D

    2016-01-01

    Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology.

  9. Functional diversity of potassium channel voltage-sensing domains

    PubMed Central

    Islas, León D.

    2016-01-01

    Abstract Voltage-gated potassium channels or Kv's are membrane proteins with fundamental physiological roles. They are composed of 2 main functional protein domains, the pore domain, which regulates ion permeation, and the voltage-sensing domain, which is in charge of sensing voltage and undergoing a conformational change that is later transduced into pore opening. The voltage-sensing domain or VSD is a highly conserved structural motif found in all voltage-gated ion channels and can also exist as an independent feature, giving rise to voltage sensitive enzymes and also sustaining proton fluxes in proton-permeable channels. In spite of the structural conservation of VSDs in potassium channels, there are several differences in the details of VSD function found across variants of Kvs. These differences are mainly reflected in variations in the electrostatic energy needed to open different potassium channels. In turn, the differences in detailed VSD functioning among voltage-gated potassium channels might have physiological consequences that have not been explored and which might reflect evolutionary adaptations to the different roles played by Kv channels in cell physiology. PMID:26794852

  10. Wind-instrument reflection function measurements in the time domain.

    PubMed

    Keefe, D H

    1996-04-01

    Theoretical and computational analyses of wind-instrument sound production in the time domain have emerged as useful tools for understanding musical instrument acoustics, yet there exist few experimental measurements of the air-column response directly in the time domain. A new experimental, time-domain technique is proposed to measure the reflection function response of woodwind and brass-instrument air columns. This response is defined at the location of sound regeneration in the mouthpiece or double reed. A probe assembly comprised of an acoustic source and microphone is inserted directly into the air column entryway using a foam plug to ensure a leak-free fit. An initial calibration phase involves measurements on a single cylindrical tube of known dimensions. Measurements are presented on an alto saxophone and euphonium. The technique has promise for testing any musical instrument air columns using a single probe assembly and foam plugs over a range of diameters typical of air-column entryways.

  11. Functional and topological diversity of LOV domain photoreceptors

    PubMed Central

    Glantz, Spencer T.; Carpenter, Eric J.; Melkonian, Michael; Boyden, Edward S.; Wong, Gane Ka-Shu; Chow, Brian Y.

    2016-01-01

    Light–oxygen–voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor–effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor–effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor–effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure–function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and

  12. Functional and topological diversity of LOV domain photoreceptors.

    PubMed

    Glantz, Spencer T; Carpenter, Eric J; Melkonian, Michael; Gardner, Kevin H; Boyden, Edward S; Wong, Gane Ka-Shu; Chow, Brian Y

    2016-03-15

    Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.

  13. The CA domain of the respiratory complex I is required for normal embryogenesis in Arabidopsis thaliana.

    PubMed

    Córdoba, Juan Pablo; Marchetti, Fernanda; Soto, Débora; Martin, María Victoria; Pagnussat, Gabriela Carolina; Zabaleta, Eduardo

    2016-03-01

    The NADH-ubiquinone oxidoreductase [complex I (CI), EC 1.6.5.3] of the mitochondrial respiratory chain is the principal entry point of electrons, and vital in maintaining metabolism and the redox balance. In a variety of eukaryotic organisms, except animal and fungi (Opisthokonta), it contains an extra domain composed of putative gamma carbonic anhydrases subunits, named the CA domain, which was proposed to be essential for complex I assembly. There are two kinds of carbonic anhydrase subunits: CAs (of which there are three) and carbonic anhydrase-like proteins (CALs) (of which there are two). In plants, the CA domain has been linked to photorespiration. In this work, we report that Arabidopsis mutant plants affected in two specific CA subunits show a lethal phenotype. Double homozygous knockouts ca1ca2 embryos show a significant developmental delay compared to the non-homozygous embryos, which show a wild-type (WT) phenotype in the same silique. Mutant embryos show impaired mitochondrial membrane potential and mitochondrial reactive oxygen species (ROS) accumulation. The characteristic embryo greening does not take place and fewer but larger oil bodies are present. Although seeds look dark brown and wrinkled, they are able to germinate 12 d later than WT seeds. However, they die immediately, most likely due to oxidative stress.Since the CA domain is required for complex I biogenesis, it is predicted that in ca1ca2 mutants no complex I could be formed, triggering the lethal phenotype. The in vivo composition of a functional CA domain is proposed.

  14. Are functional foods redefining nutritional requirements?

    PubMed

    Jones, Peter J; Varady, Krista A

    2008-02-01

    Functional foods are increasing in popularity owing to their ability to confer health and physiological benefits. Nevertheless, the notion that functional foods improve health when providing nutrients at levels above and beyond existing recommended intakes is inconsistent with the definition of requirement. This disparity highlights the need for an alternative definition of nutrient requirement. The present objective is to examine distinctions between optimization of health, as defined by what we currently deem as required intakes, versus adding physiological benefit using bioactive agents found in functional foods. Presently, requirement is defined as the lowest amount of intake of a nutrient that will maintain a defined level of nourishment for a specific indicator of adequacy. In contrast, functional foods are described as ingredients that are not necessary for body function, yet provide added physiological benefit that confer better overall health. Plant sterols are one example of such an ingredient. Plant sterols lower plasma cholesterol concentrations, and may thus be considered essential nutrients in physiological situations where circulating cholesterol concentrations are high. Similarly, intakes of omega-3 fats beyond existing requirement may confer additional health benefits such as hypolipidemic and anti-diabetic effects. These examples underscore the inconsistencies between what is defined as a nutrient requirement versus what is identified as a health benefit of a functional food. Such discrepancies emphasize the need for a more all-encompassing definition of a nutrient requirement; that is, one that moves beyond the prevention of overt deficiency to encompass improved health and disease risk reduction.

  15. Structural and functional definition of the human chitinase chitin-binding domain.

    PubMed

    Tjoelker, L W; Gosting, L; Frey, S; Hunter, C L; Trong, H L; Steiner, B; Brammer, H; Gray, P W

    2000-01-07

    Mammalian chitinase, a chitinolytic enzyme expressed by macrophages, has been detected in atherosclerotic plaques and is elevated in blood and tissues of guinea pigs infected with Aspergillus. Its normal physiological function is unknown. To understand how the enzyme interacts with its substrate, we have characterized the chitin-binding domain. The C-terminal 49 amino acids make up the minimal sequence required for chitin binding activity. The absence of this domain does not affect the ability of the enzyme to hydrolyze the soluble substrate, triacetylchitotriose, but abolishes hydrolysis of insoluble chitin. Within the minimal chitin-binding domain are six cysteines; mutation of any one of these to serine results in complete loss of chitin binding activity. Analysis of purified recombinant chitin-binding domain revealed the presence of three disulfide linkages. The recombinant domain binds specifically to chitin but does not bind chitosan, cellulose, xylan, beta-1, 3-glucan, beta-1,3-1,4-glucan, or mannan. Fluorescently tagged chitin-binding domain was used to demonstrate chitin-specific binding to Saccharomyces cerevisiae, Candida albicans, Mucor rouxii, and Neurospora crassa. These experiments define structural features of the minimal domain of human chitinase required for both specifically binding to and hydrolyzing insoluble chitin and demonstrate relevant binding within the context of the fungal cell wall.

  16. Identification of domains of the insulin-like growth factor I receptor that are required for protection from apoptosis.

    PubMed Central

    O'Connor, R; Kauffmann-Zeh, A; Liu, Y; Lehar, S; Evan, G I; Baserga, R; Blättler, W A

    1997-01-01

    Using a series of insulin-like growth factor I (IGF-I) receptor mutants, we have attempted to define domains required for transmitting the antiapoptotic signal from the receptor and to compare these domains with those required for mitogenesis or transformation. In FL5.12 cells transfected with wild-type IGF-I receptors, IGF-I affords protection from interleukin 3 withdrawal but is not mitogenic. An IGF-I receptor lacking a functional ATP binding site provided no protection from apoptosis. However, receptors mutated at tyrosine residue 950 or in the tyrosine cluster (1131, 1135, and 1136) within the kinase domain remained capable of suppressing apoptosis, although such mutations are known to inactivate transforming and mitogenic functions. In the C terminus of the IGF-I receptor, two mutations, one at tyrosine 1251 and one which replaced residues histidine 1293 and lysine 1294, abolished the antiapoptotic function, whereas mutation of the four serines at 1280 to 1283 did not. Interestingly, receptors truncated at the C terminus had enhanced antiapoptotic function. In Rat-1/ c-MycER fibroblasts, the Y950F mutant and the tyrosine cluster mutant could still provide protection from c-Myc-induced apoptosis, whereas mutant Y1250/1251F could not. These studies demonstrate that the domains of the IGF-I receptor required for its antiapoptotic function are distinct from those required for its proliferation or transformation functions and suggest that domains of the receptor required for inhibition of apoptosis are necessary but not sufficient for transformation. PMID:8972223

  17. A Naturally-Occurring Transcript Variant of MARCO Reveals the SRCR Domain is Critical for Function

    PubMed Central

    Novakowski, Kyle E.; Huynh, Angela; Han, SeongJun; Dorrington, Michael G.; Yin, Charles; Tu, Zhongyuan; Pelka, Peter; Whyte, Peter; Guarné, Alba; Sakamoto, Kaori; Bowdish, Dawn M.E.

    2016-01-01

    Macrophage receptor with collagenous structure (MARCO) is a Class A Scavenger Receptor (cA-SR) that recognizes and phagocytoses of a wide variety of pathogens. Most cA-SRs that contain a C-terminal Scavenger Receptor Cysteine Rich (SRCR) domain use the proximal collagenous domain to bind ligands. In contrast, for the role of the SRCR domain of MARCO in phagocytosis, adhesion and pro-inflammatory signalling is less clear. The discovery of a naturally-occurring transcript variant lacking the SRCR domain, MARCOII, provided the opportunity to study the role of the SRCR domain of MARCO. We tested whether the SRCR domain is required for ligand binding, promoting downstream signalling, and enhancing cellular adhesion. Unlike cells expressing full-length MARCO, ligand binding was abolished in MARCOII-expressing cells. Furthermore, co-expression of MARCO and MARCOII impaired phagocytic function, indicating that MARCOII acts as a dominant negative variant. Unlike MARCO, expression of MARCOII did not enhance Toll-Like Receptor 2 (TLR2)-mediated pro-inflammatory signalling in response to bacterial stimulation. MARCO-expressing cells were more adherent and exhibited a dendritic-like phenotype, while MARCOII-expressing cells were less adherent and did not exhibit changes in morphology. These data suggest the SRCR domain of MARCO is the key domain in modulating ligand binding, enhancing downstream pro-inflammatory signalling, and MARCO-mediated cellular adhesion. PMID:26888252

  18. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    SciTech Connect

    Zhang, Lei; Zhang, Qing; Yang, Yu; Wu, Chuanfang

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  19. X-ray Structural and Functional Studies of the Three Tandemly Linked Domains of Non-structural Protein 3 (nsp3) from Murine Hepatitis Virus Reveal Conserved Functions*

    PubMed Central

    Chen, Yafang; Savinov, Sergey N.; Mielech, Anna M.; Cao, Thu; Baker, Susan C.; Mesecar, Andrew D.

    2015-01-01

    Murine hepatitis virus (MHV) has long served as a model system for the study of coronaviruses. Non-structural protein 3 (nsp3) is the largest nsp in the coronavirus genome, and it contains multiple functional domains that are required for coronavirus replication. Despite the numerous functional studies on MHV and its nsp3 domain, the structure of only one domain in nsp3, the small ubiquitin-like domain 1 (Ubl1), has been determined. We report here the x-ray structure of three tandemly linked domains of MHV nsp3, including the papain-like protease 2 (PLP2) catalytic domain, the ubiquitin-like domain 2 (Ubl2), and a third domain that we call the DPUP (domain preceding Ubl2 and PLP2) domain. DPUP has close structural similarity to the severe acute respiratory syndrome coronavirus unique domain C (SUD-C), suggesting that this domain may not be unique to the severe acute respiratory syndrome coronavirus. The PLP2 catalytic domain was found to have both deubiquitinating and deISGylating isopeptidase activities in addition to proteolytic activity. A computationally derived model of MHV PLP2 bound to ubiquitin was generated, and the potential interactions between ubiquitin and PLP2 were probed by site-directed mutagenesis. These studies extend substantially our structural knowledge of MHV nsp3, providing a platform for further investigation of the role of nsp3 domains in MHV viral replication. PMID:26296883

  20. Human Systems Integration: Requirements and Functional Decomposition

    NASA Technical Reports Server (NTRS)

    Berson, Barry; Gershzohn, Gary; Boltz, Laura; Wolf, Russ; Schultz, Mike

    2005-01-01

    This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given.

  1. The Topology of the l-Arginine Exporter ArgO Conforms to an Nin-Cout Configuration in Escherichia coli: Requirement for the Cytoplasmic N-Terminal Domain, Functional Helical Interactions, and an Aspartate Pair for ArgO Function.

    PubMed

    Pathania, Amit; Gupta, Arvind Kumar; Dubey, Swati; Gopal, Balasubramanian; Sardesai, Abhijit A

    2016-12-01

    ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Cout configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit.

  2. Evolution of function in the "two dinucleotide binding domains" flavoproteins.

    PubMed

    Ojha, Sunil; Meng, Elaine C; Babbitt, Patricia C

    2007-07-01

    Structural and biochemical constraints force some segments of proteins to evolve more slowly than others, often allowing identification of conserved structural or sequence motifs that can be associated with substrate binding properties, chemical mechanisms, and molecular functions. We have assessed the functional and structural constraints imposed by cofactors on the evolution of new functions in a superfamily of flavoproteins characterized by two-dinucleotide binding domains, the "two dinucleotide binding domains" flavoproteins (tDBDF) superfamily. Although these enzymes catalyze many different types of oxidation/reduction reactions, each is initiated by a stereospecific hydride transfer reaction between two cofactors, a pyridine nucleotide and flavin adenine dinucleotide (FAD). Sequence and structural analysis of more than 1,600 members of the superfamily reveals new members and identifies details of the evolutionary connections among them. Our analysis shows that in all of the highly divergent families within the superfamily, these cofactors adopt a conserved configuration optimal for stereospecific hydride transfer that is stabilized by specific interactions with amino acids from several motifs distributed among both dinucleotide binding domains. The conservation of cofactor configuration in the active site restricts the pyridine nucleotide to interact with FAD from the re-side, limiting the flow of electrons from the re-side to the si-side. This directionality of electron flow constrains interactions with the different partner proteins of different families to occur on the same face of the cofactor binding domains. As a result, superimposing the structures of tDBDFs aligns not only these interacting proteins, but also their constituent electron acceptors, including heme and iron-sulfur clusters. Thus, not only are specific aspects of the cofactor-directed chemical mechanism conserved across the superfamily, the constraints they impose are manifested in the

  3. Vaccinia virus A6 is a two-domain protein requiring a cognate N-terminal domain for full viral membrane assembly activity.

    PubMed

    Meng, Xiangzhi; Rose, Lloyd; Han, Yue; Deng, Junpeng; Xiang, Yan

    2017-03-08

    Poxvirus virion biogenesis is a complex, multistep process, starting with the formation of crescent-shaped viral membranes, followed by their enclosure of viral core to form the spherical immature virions. Crescent formation requires a group of proteins that are highly conserved among poxviruses, including A6 and A11 of vaccinia virus (VACV). To gain a better understanding of the molecular function of A6, we established a HeLa cell line that inducibly expressed VACV-A6, which allowed us to construct VACV mutants with A6 deletion or mutation. As expected, A6 deletion VACV mutant failed to replicate in non-complementing cell lines with defects in crescent formation and A11 localization. Surprisingly, a VACV mutant that had A6 substituted with a close ortholog from Yaba-like disease virus, YLDV-97, also failed to replicate. This mutant, however, developed crescents and had normal A11 localization despite failing to form immature virions. A limited proteolysis of the recombinant A6 protein identified an N- and a C-domain of approximately 121 and 251 residues, respectively. Various chimeras of VACV-A6 and YLDV-97 were constructed, but only one that precisely combined the N-domain of VACV-A6 and the C-domain of YLDV-97 supported VACV replication, albeit at reduced efficiency. Our results show that VACV A6 has a two-domain architecture and functions in both crescent formation and its enclosure to form immature virions. While a cognate N-domain is not required for crescent formation, it is required for virion formation, suggesting that interactions of N-domain with cognate viral proteins may be critical for virion assembly.IMPORTANCE Poxviruses are unique among enveloped viruses in that they acquire their primary envelope not through budding from cellular membranes but by forming and extending crescent membranes. The crescents are highly unusual, open-ended membranes, and their origin and biogenesis have perplexed virologists for decades. A group of five viral proteins

  4. Domains of the TCR beta-chain required for early thymocyte development

    PubMed Central

    1996-01-01

    The T cell receptor beta (TCR beta) chain controls the developmental transition from CD4-CD8- to CD4+8+thymocytes. We show that the extracellular constant region and the transmembrane region, but not the variable domain or cytoplasmic tail of the TCR beta chain are required for this differentiation step. TCR beta mutant chains lacking the cytoplasmic tail can be found at the cell surface both in functional TCR/CD3 complexes and in a GPI-anchored monomeric form indicating that the cytoplasmic tail of the TCR beta chain functions as an ER retention signal. The concordance between cell surface expression of the mutant chains as TCR/CD3 complexes and their capacity to mediate thymocyte differentiation supports the CD3 mediated feedback model in which preTCR/CD3 complexes control the developmental transition from CD4-CD8- to CD4+CD8+thymocytes. PMID:8920871

  5. Structural and functional analysis of domains of the progesterone receptor.

    PubMed

    Hill, Krista K; Roemer, Sarah C; Churchill, Mair E A; Edwards, Dean P

    2012-01-30

    Steroid hormone receptors are multi-domain proteins composed of conserved well-structured regions, such as ligand (LBD) and DNA binding domains (DBD), plus other naturally unstructured regions including the amino-terminal domain (NTD) and the hinge region between the LBD and DBD. The hinge is more than just a flexible region between the DBD and LBD and is capable of binding co-regulatory proteins and the minor groove of DNA flanking hormone response elements. Because the hinge can directly participate in DNA binding it has also been termed the carboxyl terminal extension (CTE) of the DNA binding domain. The CTE and NTD are dynamic regions of the receptor that can adopt multiple conformations depending on the environment of interacting proteins and DNA. Both regions have important regulatory roles for multiple receptor functions that are related to the ability of the CTE and NTD to form multiple active conformations. This review focuses on studies of the CTE and NTD of progesterone receptor (PR), as well as related work with other steroid/nuclear receptors.

  6. [Respiratory domain of revised amyotrophic lateral sclerosis. Functional Rating Scale].

    PubMed

    Lima, Sandra E; Pessolano, Fernando A; Monteiro, Sergio G; De Vito, Eduardo L

    2009-01-01

    Virtually all patients with amyotrophic lateral sclerosis will complain of dyspnea, which is perhaps the most distressing symptom of this devastating disease. The objective was to correlate respiratory domain of ALSFRS-R with forced vital capacity and maximal static pressures in the mouth. We designed a prospective study in 20 consecutive patients without dyspnea during 24 months. The global decline of ALSFRS-R was from 34.3 +/- 10.3 to 22.1 +/- 8.0 (p = 0.0325), the contribution of respiratory domain was irrelevant. Those who referred dyspnea (n: 12), forced vital capacity fell 41 +/- 21% of the initial value but with similar value of fall (46 +/- 23%) 8 patients did not referred dyspnea. Total score of ALSFRS-R correlated with forced vital capacity (litres), r: 0.73, p = 0.0016 and maximal inspiratory pressure (cm H2O), r: 0.84, p = 0.0038, but the fall of the forced vital capacity (%) did not correlate with dyspnea (r(s): 0.23, p = 0.1400). There was a moderate correlation between dyspnea and maximal inspiratory pressure (%), r(s): 0.58, p = 0.0300 and between dyspnea and maximal expiratory pressure (%), r(s): 0.49, p = 0.0400. We concluded that the respiratory functional deterioration could not be predicted using respiratory domain of ALSFRS-R. This suggests that respiratory domain of this scale does not replace to respiratory function testing measurements and, due to the respiratory insufficiency could not be clinically evident; performing pulmonary function tests provides an objective view and permit to make anticipatory actions.

  7. Phenotypic lentivirus screens to identify functional single domain antibodies

    PubMed Central

    Schmidt, Florian I.; Hanke, Leo; Morin, Benjamin; Brewer, Rebeccah; Brusic, Vesna; Whelan, Sean P.J.; Ploegh, Hidde L.

    2016-01-01

    Manipulation of proteins is key in assessing their in vivo function. While genetic ablation is straightforward, reversible and specific perturbation of protein function remains a challenge. Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or activators of intracellular protein function, but functional testing of identified VHHs is laborious. To address this challenge, we developed a lentiviral screening approach to identify VHHs that elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus (VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral reagents. In principle, the screening approach described here should be applicable to identify inhibitors of any pathogen or biological pathway. PMID:27573105

  8. Tankyrase Sterile α Motif Domain Polymerization Is Required for Its Role in Wnt Signaling.

    PubMed

    Riccio, Amanda A; McCauley, Michael; Langelier, Marie-France; Pascal, John M

    2016-09-06

    Tankyrase-1 (TNKS1/PARP-5a) is a poly(ADP-ribose) polymerase (PARP) enzyme that regulates multiple cellular processes creating a poly(ADP-ribose) posttranslational modification that can lead to target protein turnover. TNKS1 thereby controls protein levels of key components of signaling pathways, including Axin1, the limiting component of the destruction complex in canonical Wnt signaling that degrades β-catenin to prevent its coactivator function in gene expression. There are limited molecular level insights into TNKS1 regulation in cell signaling pathways. TNKS1 has a sterile α motif (SAM) domain that is known to mediate polymerization, but the functional requirement for SAM polymerization has not been assessed. We have determined the crystal structure of wild-type human TNKS1 SAM domain and used structure-based mutagenesis to disrupt polymer formation and assess the consequences on TNKS1 regulation of β-catenin-dependent transcription. Our data indicate the SAM polymer is critical for TNKS1 catalytic activity and allows TNKS1 to efficiently access cytoplasmic signaling complexes.

  9. Functional Significance of SRJ Domain Mutations in CITED2

    PubMed Central

    Cosgrove, Catherine; Braganca, Jose; Cuenda, Ana; Bamforth, Simon D.; Schneider, Jürgen E.; Watkins, Hugh; Keavney, Bernard; Davies, Benjamin; Bhattacharya, Shoumo

    2012-01-01

    CITED2 is a transcriptional co-activator with 3 conserved domains shared with other CITED family members and a unique Serine-Glycine Rich Junction (SRJ) that is highly conserved in placental mammals. Loss of Cited2 in mice results in cardiac and aortic arch malformations, adrenal agenesis, neural tube and placental defects, and partially penetrant defects in left-right patterning. By screening 1126 sporadic congenital heart disease (CHD) cases and 1227 controls, we identified 19 variants, including 5 unique non-synonymous sequence variations (N62S, R92G, T166N, G180-A187del and A187T) in patients. Many of the CHD-specific variants identified in this and previous studies cluster in the SRJ domain. Transient transfection experiments show that T166N mutation impairs TFAP2 co-activation function and ES cell proliferation. We find that CITED2 is phosphorylated by MAPK1 in vitro at T166, and that MAPK1 activation enhances the coactivation function of CITED2 but not of CITED2-T166N. In order to investigate the functional significance in vivo, we generated a T166N mutation of mouse Cited2. We also used PhiC31 integrase-mediated cassette exchange to generate a Cited2 knock-in allele replacing the mouse Cited2 coding sequence with human CITED2 and with a mutant form deleting the entire SRJ domain. Mouse embryos expressing only CITED2-T166N or CITED2-SRJ-deleted alleles surprisingly show no morphological abnormalities, and mice are viable and fertile. These results indicate that the SRJ domain is dispensable for these functions of CITED2 in mice and that mutations clustering in the SRJ region are unlikely to be the sole cause of the malformations observed in patients with sporadic CHD. Our results also suggest that coding sequence mutations observed in case-control studies need validation using in vivo models and that predictions based on structural conservation and in vitro functional assays, or even in vivo global loss of function models, may be insufficient. PMID:23082118

  10. Natural-like function in artificial WW domains.

    PubMed

    Russ, William P; Lowery, Drew M; Mishra, Prashant; Yaffe, Michael B; Ranganathan, Rama

    2005-09-22

    Protein sequences evolve through random mutagenesis with selection for optimal fitness. Cooperative folding into a stable tertiary structure is one aspect of fitness, but evolutionary selection ultimately operates on function, not on structure. In the accompanying paper, we proposed a model for the evolutionary constraint on a small protein interaction module (the WW domain) through application of the SCA, a statistical analysis of multiple sequence alignments. Construction of artificial protein sequences directed only by the SCA showed that the information extracted by this analysis is sufficient to engineer the WW fold at atomic resolution. Here, we demonstrate that these artificial WW sequences function like their natural counterparts, showing class-specific recognition of proline-containing target peptides. Consistent with SCA predictions, a distributed network of residues mediates functional specificity in WW domains. The ability to recapitulate natural-like function in designed sequences shows that a relatively small quantity of sequence information is sufficient to specify the global energetics of amino acid interactions.

  11. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    SciTech Connect

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  12. The Dof domain, a zinc finger DNA-binding domain conserved only in higher plants, truly functions as a Cys2/Cys2 Zn finger domain.

    PubMed

    Umemura, Yoshimi; Ishiduka, Tomoko; Yamamoto, Rie; Esaka, Muneharu

    2004-03-01

    The Dof (DNA-binding with one finger) proteins are plant transcription factors that have a highly conserved DNA-binding domain, called the Dof domain. The Dof domain, which is composed of 52 amino acid residues, is similar to the Cys2/Cys2 zinc finger DNA-binding domain of GATA1 and steroid hormone receptors, but has a longer putative loop than that in the case of these zinc finger domains. The DNA-binding function of ascorbate oxidase gene binding protein (AOBP), a Dof protein, was investigated by gel retardation analysis. When Cys was replaced by His, the Dof domain could not function as a Cys3/His- or a Cys2/His2-type zinc finger. The characteristic longer loop was essential for DNA-binding activity. Furthermore, heavy metals such as Co(II), Ni(II), Cd(II), Cu(II), Hg(II), Fe(II), and Fe(III) inhibited the DNA-binding activity of the Dof domain. Manganese ion as well as zinc ion was coordinated by the Dof domain in vitro. On the other hand, the analysis using inductively coupled argon plasma mass spectrometry (ICP-MS) showed that the Dof domain contained zinc ion but not manganese ion. Thus, the Dof domain was proved to function as a Cys2/Cys2 zinc finger domain.

  13. Discoidin domain receptor functions in physiological and pathological conditions

    PubMed Central

    Leitinger, Birgit

    2014-01-01

    The discoidin domain receptors, DDR1 and DDR2, are non-integrin collagen receptors that are members of the receptor tyrosine kinase family. Both DDRs bind a number of different collagen types and play important roles in embryo development. Dysregulated DDR function is associated with progression of various human diseases, including fibrosis, arthritis and cancer. By interacting with key components of the extracellular matrix and displaying distinct activation kinetics, the DDRs form a unique subfamily of receptor tyrosine kinases. DDR-facilitated cellular functions include cell migration, cell survival, proliferation and differentiation, as well as remodelling of extracellular matrices. This review summarises the current knowledge of DDR-ligand interactions, DDR-initiated signal pathways and the molecular mechanisms that regulate receptor function. Also discussed are the roles of DDRs in development and disease progression. PMID:24725424

  14. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  15. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication.

    PubMed

    Gu, Haidong

    2016-02-12

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced "conquer and compromise" strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host.

  16. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.

    PubMed

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-04-01

    The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.

  17. From Structure to Function: A Comprehensive Compendium of Tools to Unveil Protein Domains and Understand Their Role in Cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-01-01

    Unveiling the function of a novel protein is a challenging task that requires careful experimental design. Yeast cytokinesis is a conserved process that involves modular structural and regulatory proteins. For such proteins, an important step is to identify their domains and structural organization. Here we briefly discuss a collection of methods commonly used for sequence alignment and prediction of protein structure that represent powerful tools for the identification homologous domains and design of structure-function approaches to test experimentally the function of multi-domain proteins such as those implicated in yeast cytokinesis.

  18. Release of Plasmodium sporozoites requires proteins with histone-fold dimerization domains

    PubMed Central

    Currà, Chiara; Gessmann, Renate; Pace, Tomasino; Picci, Leonardo; Peruzzi, Giulia; Varamogianni-Mamatsi, Vassiliki; Spanos, Lefteris; Garcia, Célia R. S.; Spaccapelo, Roberta; Ponzi, Marta; Siden-Kiamos, Inga

    2016-01-01

    The sporozoite, the stage of the malaria parasite transmitted by the mosquito, first develops for ∼2 weeks in an oocyst. Rupture of the oocyst capsule is required for release of sporozoites, which then transfer to the salivary gland where they are injected into a new host. Here we identify two parasite proteins that we call oocyst rupture proteins 1 (ORP1) and ORP2. These proteins have a histone-fold domain (HFD) that promotes heterodimer formation in the oocyst capsule at the time of rupture. Oocyst rupture is prevented in mutants lacking either protein. Mutational analysis confirms the HFD as essential for ORP1 and ORP2 function, and heterodimer formation was verified in vitro. These two proteins are potential targets for blocking transmission of the parasite in the mosquito. PMID:27982038

  19. The Drosophila SOX-domain protein Dichaete is required for the development of the central nervous system midline.

    PubMed

    Soriano, N S; Russell, S

    1998-10-01

    SOX-domain proteins are a class of developmentally important transcriptional regulators related to the mammalian testis determining factor SRY. In common with other SOX-domain genes, the Drosophila Dichaete gene has a dynamic expression profile in the developing central nervous system, including cells of the ventral midline. We find defects in the differentiation of midline glia and concomitant axonal defects in Dichaete mutants that are rescued by driving Dichaete expression in the midline. Since Dichaete is required for the correct specification or differentiation of midline glia, we have used the ventral midline as a model system to study SOX gene function in vivo and demonstrate a genetic interaction between Dichaete and the POU domain gene ventral veinless. In mammals, a protein related to Dichaete, SOX2, also interacts with POU transcription factors. The midline phenotypes of Dichaete mutations are rescued by expression of mouse SOX2. Our data suggest that SOX gene structure, function and interactions have been conserved during evolution.

  20. Functional Foods Baseline and Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Bermudez-Aguirre, L. D.; Douglas, G.

    2015-01-01

    Current spaceflight foods were evaluated to determine if their nutrient profile supports positioning as a functional food and if the stability of the bioactive compound within the food matrix over an extended shelf-life correlated with the expected storage duration during the mission. Specifically, the research aims were: Aim A. To determine the amount of each nutrient in representative spaceflight foods immediately after processing and at predetermined storage time to establish the current nutritional state. Aim B. To identify the requirements to develop foods that stabilize these nutrients such that required concentrations are maintained in the space food system throughout long duration missions (up to five years). Aim C. To coordinate collaborations with health and performance groups that may require functional foods as a countermeasure.

  1. Role of the PB2 627 Domain in Influenza A Virus Polymerase Function

    PubMed Central

    Nilsson, Benjamin E.; te Velthuis, Aartjan J. W.

    2017-01-01

    ABSTRACT The RNA genome of influenza A viruses is transcribed and replicated by the viral RNA-dependent RNA polymerase, composed of the subunits PA, PB1, and PB2. High-resolution structural data revealed that the polymerase assembles into a central polymerase core and several auxiliary highly flexible, protruding domains. The auxiliary PB2 cap-binding and the PA endonuclease domains are both involved in cap snatching, but the role of the auxiliary PB2 627 domain, implicated in host range restriction of influenza A viruses, is still poorly understood. In this study, we used structure-guided truncations of the PB2 subunit to show that a PB2 subunit lacking the 627 domain accumulates in the cell nucleus and assembles into a heterotrimeric polymerase with PB1 and PA. Furthermore, we showed that a recombinant viral polymerase lacking the PB2 627 domain is able to carry out cap snatching, cap-dependent transcription initiation, and cap-independent ApG dinucleotide extension in vitro, indicating that the PB2 627 domain of the influenza virus RNA polymerase is not involved in core catalytic functions of the polymerase. However, in a cellular context, the 627 domain is essential for both transcription and replication. In particular, we showed that the PB2 627 domain is essential for the accumulation of the cRNA replicative intermediate in infected cells. Together, these results further our understanding of the role of the PB2 627 domain in transcription and replication of the influenza virus RNA genome. IMPORTANCE Influenza A viruses are a major global health threat, not only causing disease in both humans and birds but also placing significant strains on economies worldwide. Avian influenza A virus polymerases typically do not function efficiently in mammalian hosts and require adaptive mutations to restore polymerase activity. These adaptations include mutations in the 627 domain of the PB2 subunit of the viral polymerase, but it still remains to be established how these

  2. Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo

    PubMed Central

    Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M.

    2016-01-01

    ABSTRACT The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. IMPORTANCE While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed

  3. Gas Test Loop Functional and Technical Requirements

    SciTech Connect

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  4. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues

    PubMed Central

    Briant, Kit; Koay, Yee-Hui; Otsuka, Yuka; Swanton, Eileithyia

    2015-01-01

    ABSTRACT Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. PMID:26446255

  5. 55 Amino acid linker between helicase and carboxyl terminal domains of RIG-I functions as a critical repression domain and determines inter-domain conformation.

    PubMed

    Kageyama, Maiko; Takahasi, Kiyohiro; Narita, Ryo; Hirai, Reiko; Yoneyama, Mitsutoshi; Kato, Hiroki; Fujita, Takashi

    2011-11-11

    In virus-infected cells, viral RNA with non-self structural pattern is recognized by DExD/Hbox RNA helicase, RIG-I. Once RIG-I senses viral RNA, it triggers a signaling cascade, resulting in the activation of genes including type I interferon, which activates antiviral responses. Overexpression of N-terminal caspase activation and recruitment domain (CARD) is sufficient to activate signaling; however basal activity of full-length RIG-I is undetectable. The repressor domain (RD), initially identified as a.a. 735-925, is responsible for diminished basal activity; therefore, it is suggested that RIG-I is under auto-repression in uninfected cells and the repression is reversed upon its encounter with viral RNA. In this report, we further delimited RD to a.a. 747-801, which corresponds to a linker connecting the helicase and the C-terminal domain (CTD). Alanine substitutions of the conserved residues in the linker conferred constitutive activity to full-length RIG-I. We found that the constitutive active mutants do not exhibit ATPase activity, suggesting that ATPase is required for de-repression but not signaling itself. Furthermore, trypsin digestion of recombinant RIG-I revealed that the wild-type, but not linker mutant conforms to the trypsin-resistant structure, containing CARD and helicase domain. The result strongly suggests that the linker is responsible for maintaining RIG-I in a "closed" structure to minimize unwanted production of interferon in uninfected cells. These findings shed light on the structural regulation of RIG-I function.

  6. Functional regions of the mouse interleukin-10 receptor cytoplasmic domain.

    PubMed Central

    Ho, A S; Wei, S H; Mui, A L; Miyajima, A; Moore, K W

    1995-01-01

    The functions of wild-type and mutant mouse interleukin-10 receptors (mIL-10R) expressed in murine Ba/F3 cells were studied. As observed previously, IL-10 stimulates proliferation of IL-10R-expressing Ba/F3 cells. Accumulation of viable cells in the proliferation assay is to a significant extent balanced by concomitant cell death. Moreover, growth in IL-10 also induces a previously unrecognized response, differentiation of the cells, as evidenced both by formation of large clusters of cells in cultures with IL-10 and by induction or enhancement of expression of several cell surface antigens, including CD32/16, CD2, LECAM-1 (v-selectin), and heat-stable antigen. Two distinct functional regions near the C terminus of the mIL-10R cytoplasmic domain which mediate proliferation were identified; one of these regions also mediates the differentiation response. A third region proximal to the transmembrane domain was identified; removal of this region renders the cell 10- to 100-fold more sensitive to IL-10 in the proliferation assay. In cells expressing both wild-type and mutant IL-10R, stimulation with IL-10 leads to tyrosine phosphorylation of the kinases JAK1 and TYK2 but not JAK2 or JAK3 under the conditions tested. PMID:7544437

  7. Structure and function of the interacting domains of Spire and Fmn-family formins

    SciTech Connect

    Vizcarra, Christina L.; Kreutz, Barry; Rodal, Avital A.; Toms, Angela V.; Lu, Jun; Zheng, Wei; Quinlan, Margot E.; Eck, Michael J.

    2012-07-11

    Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.

  8. Functional synergy between the Munc13 C-terminal C1 and C2 domains

    PubMed Central

    Liu, Xiaoxia; Seven, Alpay Burak; Camacho, Marcial; Esser, Victoria; Xu, Junjie; Trimbuch, Thorsten; Quade, Bradley; Su, Lijing; Ma, Cong; Rosenmund, Christian; Rizo, Josep

    2016-01-01

    Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a ‘primed’ state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion. DOI: http://dx.doi.org/10.7554/eLife.13696.001 PMID:27213521

  9. Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition.

    PubMed

    Thakur, Meghna; Seo, Eun Joo; Dever, Thomas E

    2014-02-01

    Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.

  10. Mapping of Functional Subdomains in the Terminal Protein Domain of Hepatitis B Virus Polymerase.

    PubMed

    Clark, Daniel N; Flanagan, John M; Hu, Jianming

    2017-02-01

    Hepatitis B virus (HBV) encodes a multifunction reverse transcriptase or polymerase (P), which is composed of several domains. The terminal protein (TP) domain is unique to HBV and related hepadnaviruses and is required for specifically binding to the viral pregenomic RNA (pgRNA). Subsequently, the TP domain is necessary for pgRNA packaging into viral nucleocapsids and the initiation of viral reverse transcription for conversion of the pgRNA to viral DNA. Uniquely, the HBV P protein initiates reverse transcription via a protein priming mechanism using the TP domain as a primer. No structural homologs or high-resolution structure exists for the TP domain. Secondary structure prediction identified three disordered loops in TP with highly conserved sequences. A meta-analysis of mutagenesis studies indicated these predicted loops are almost exclusively where functionally important residues are located. Newly constructed TP mutations revealed a priming loop in TP which plays a specific role in protein-primed DNA synthesis beyond simply harboring the site of priming. Substitutions of potential sites of phosphorylation surrounding the priming site demonstrated that these residues are involved in interactions critical for priming but are unlikely to be phosphorylated during viral replication. Furthermore, the first 13 and 66 TP residues were shown to be dispensable for protein priming and pgRNA binding, respectively. Combining current and previous mutagenesis work with sequence analysis has increased our understanding of TP structure and functions by mapping specific functions to distinct predicted secondary structures and will facilitate antiviral targeting of this unique domain.

  11. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing

    SciTech Connect

    Jackson, R.N.; Robinson, H.; Klauer, A. A.; Hintze, B. J.; van Hoof, A.; Johnson, S. J.

    2010-07-01

    The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch-like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonical helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2-like helicases.

  12. Pathway logic modeling of protein functional domains in signal transduction.

    PubMed

    Talcott, C; Eker, S; Knapp, M; Lincoln, P; Laderoute, K

    2004-01-01

    Protein functional domains (PFDs) are consensus sequences within signaling molecules that recognize and assemble other signaling components into complexes. Here we describe the application of an approach called Pathway Logic to the symbolic modeling signal transduction networks at the level of PFDs. These models are developed using Maude, a symbolic language founded on rewriting logic. Models can be queried (analyzed) using the execution, search and model-checking tools of Maude. We show how signal transduction processes can be modeled using Maude at very different levels of abstraction involving either an overall state of a protein or its PFDs and their interactions. The key insight for the latter is our algebraic representation of binding interactions as a graph.

  13. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex.

    PubMed Central

    Engelman, A; Bushman, F D; Craigie, R

    1993-01-01

    HIV-1 integrase protein possesses the 3' processing and DNA strand transfer activities that are required to integrate HIV DNA into a host chromosome. The N-, C-terminal and core domains of integrase are necessary for both activities in vitro. We find that certain pairs of mutant integrase proteins, which are inactive when each protein is assayed alone, can support near wild type levels of activity when both proteins are present together in the reaction mixture. This complementation implies that HIV-1 integrase functions as a multimer and has enabled us to probe the organization of the functional domains within active mixed multimers. We have identified a minimal set of functional integrase domains that are sufficient for 3' processing and DNA strand transfer and find that some domains are contributed in trans by separate monomers within the functional complex. Images PMID:8344264

  14. DIFFERENT REQUIREMENTS OF THE KINASE AND UHM DOMAINS OF KIS FOR ITS NUCLEAR LOCALIZATION AND BINDING TO SPLICING FACTORS

    PubMed Central

    Manceau, Valérie; Kielkopf, Clara L.; Sobel, André; Maucuer, Alexandre

    2008-01-01

    Summary The protein kinase KIS is made by the juxtaposition of a unique kinase domain and a C-terminal domain with a U2AF Homology Motif (UHM), a sequence motif for protein interaction initially identified in the heterodimeric pre-mRNA splicing factor U2AF. This domain of KIS is closely related to the C-terminal UHM domain of the U2AF large subunit, U2AF65. KIS phosphorylates the splicing factor SF1, which in turn enhances SF1 binding to U2AF65 and the 3′ splice site, an event known to take place at an early step of spliceosome assembly. Here, the analysis of the subcellular localization of mutated forms of KIS indicates that the kinase domain of KIS is the necessary domain for its nuclear localization. As in the case of U2AF65, the UHM containing C-terminal domain of KIS is required for binding to the splicing factors SF1 and SF3b155. The efficiency of KIS binding to SF1 and SF3b155 is similar to that of U2AF65 in pull-down assays. These results further support the functional link of KIS with splicing factors. Interestingly, when compared to other UHM containing proteins, KIS presents a different specificity for the UHM docking sites that are present in the N-terminal region of SF3b155, thus providing a new insight into the variety of interactions mediated by UHM domains. PMID:18588901

  15. PB1 Domain-Dependent Signaling Complex Is Required for Extracellular Signal-Regulated Kinase 5 Activation

    PubMed Central

    Nakamura, Kazuhiro; Uhlik, Mark T.; Johnson, Nancy L.; Hahn, Klaus M.; Johnson, Gary L.

    2006-01-01

    MEKK2, MEK5, and extracellular signal-regulated kinase 5 (ERK5) are members of a three-kinase cascade for the activation of ERK5. MEK5 is the only MAP2K to express a PB1 domain, and we have shown that it heterodimerizes with the PB1 domain of MEKK2. Here we demonstrate the MEK5 PB1 domain is a scaffold that also binds ERK5, functionally forming a MEKK2-MEK5-ERK5 complex. Reconstitution assays and CFP/YFP imaging (fluorescence resonance energy transfer [FRET]) measuring YFP-MEKK2/CFP-MEK5 and CFP-MEK5/YFP-ERK5 interactions define distinct MEK5 PB1 domain binding sites for MEKK2 and ERK5, with a C-terminal extension of the PB1 domain contributing to ERK5 binding. Stimulus-dependent CFP/YFP FRET in combination with mutational analysis was used to define MEK5 PB1 domain residues critical for the interaction of MEKK2/MEK5 and MEK5/ERK5 required for activation of the ERK5 pathway in living cells. Fusion of the MEK5 PB1 domain to the N terminus of MEK1 confers ERK5 regulation by a MAP2K normally regulating only ERK1/2. The MEK5 PB1 domain confers stringent MAP3K regulation of ERK5 relative to more promiscuous MAP3K control of ERK1/2, JNK, and p38. PMID:16507987

  16. Functional Interactions of the HHCC Domain of Moloney Murine Leukemia Virus Integrase Revealed by Nonoverlapping Complementation and Zinc-Dependent Dimerization

    PubMed Central

    Yang, Fan; Leon, Oscar; Greenfield, Norma J.; Roth, Monica J.

    1999-01-01

    The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a completely nonoverlapping construct lacking the HHCC domain for strand transfer, 3′ processing and coordinated disintegration reactions, revealing trans interactions among IN domains. The HHCC domain protein binds zinc at a 1:1 ratio and changes its conformation upon binding to zinc. The presence of zinc within the HHCC domain stimulates selective integration processes. Zinc promotes the dimerization of the HHCC domain and protects it from N-ethylmaleimide modification. These studies dissect and define the requirement for the HHCC domain, the exact function of which remains unknown. PMID:9971758

  17. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT).

    PubMed Central

    Reisz-Porszasz, S; Probst, M R; Fukunaga, B N; Hankinson, O

    1994-01-01

    The activated aryl hydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT) bind DNA as a heterodimer. Both proteins represent a novel class of basic helix-loop-helix (bHLH)-containing transcription factors in that (i) activation of AHR requires the binding of ligand (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]), (ii) the xenobiotic responsive element (XRE) recognized by the AHR/ARNT heterodimer differs from the recognition sequence for nearly all other bHLH proteins, and (iii) both proteins contain a PAS homology region, which in the Drosophila PER and SIM proteins functions as a dimerization domain. A cDNA for mouse ARNT has been cloned, and potential functional domains of ARNT were investigated by deletion analysis. A mutant lacking all regions of ARNT other than the bHLH and PAS regions is unimpaired in TCDD-dependent dimerization and subsequent XRE binding and only modestly reduced in ability to complement an ARNT-deficient mutant cell line, c4, in vivo. Both the first and second alpha helices of the bHLH region are required for dimerization. The basic region is required for XRE binding but not for dimerization. Deletion of either the A or B segments of the PAS region slightly affects TCDD-induced heterodimerization, while deletion of the complete PAS region severely affects (but does not eliminate) dimerization. Thus, ARNT possesses multiple domains required for maximal heterodimerization. Mutants deleted for PAS A, PAS B, and the complete PAS region all retain some degree of XRE binding, yet none can rescue the c4 mutant. Therefore, both the PAS A and PAS B segments, besides contributing to dimerization, apparently fulfill additional, unknown functions required for biological activity of ARNT. Images PMID:8065341

  18. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    DOE PAGES

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; ...

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less

  19. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    SciTech Connect

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  20. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  1. The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae.

    PubMed

    Okumura, Yuuya; Nakamura, Tsuyoshi S; Tanaka, Takayuki; Inoue, Ichiro; Suda, Yasuyuki; Takahashi, Tetsuo; Nakanishi, Hideki; Nakamura, Shugo; Gao, Xiao-Dong; Tachikawa, Hiroyuki

    2016-01-01

    Sporulation of Saccharomyces cerevisiae is a developmental process in which an ascus containing four haploid spores forms from a diploid cell. During this process, newly formed membrane structures called prospore membranes extend along the nuclear envelope and engulf and package daughter nuclei along with cytosol and organelles to form precursors of spores. Proteins involved in prospore membrane extension, Vps13 and Spo71, have recently been reported; however, the overall mechanism of membrane extension remains unclear. Here, we identified Spo73 as an additional factor involved in prospore membrane extension. Analysis of a spo73∆ mutant revealed that it shows defects similar to those of a spo71∆ mutant during prospore membrane formation. Spo73 localizes to the prospore membrane, and this localization is independent of Spo71 and Vps13. In contrast, a Spo73 protein carrying mutations in a surface basic patch mislocalizes to the cytoplasm and overexpression of Spo71 can partially rescue localization to the prospore membrane. Similar to spo71∆ mutants, spo73∆ mutants display genetic interactions with the mutations in the SMA2 and SPO1 genes involved in prospore membrane bending. Further, our bioinformatic analysis revealed that Spo73 is a dysferlin domain-only protein. Thus, these results suggest that a dysferlin domain-only protein, Spo73, functions with a dual pleckstrin homology domain protein, Spo71, in prospore membrane extension. Analysis of Spo73 will provide insights into the conserved function of dysferlin domains, which is related to dysferlinopathy. IMPORTANCE Prospore membrane formation consists of de novo double-membrane formation, which occurs during the developmental process of sporulation in Saccharomyces cerevisiae. Membranes are formed into their proper size and shape, and thus, prospore membrane formation has been studied as a general model of membrane formation. We identified SPO73, previously shown to be required for spore wall formation

  2. Functional regions of the N-terminal domain of the antiterminator RfaH

    PubMed Central

    Belogurov, Georgiy A; Sevostyanova, Anastasia; Svetlov, Vladimir; Artsimovitch, Irina

    2010-01-01

    RfaH is a bacterial elongation factor that increases expression of distal genes in several long, horizontally acquired operons. RfaH is recruited to the transcription complex during RNA chain elongation through specific interactions with a DNA element called ops. Following recruitment, RfaH remains bound to RNA polymerase (RNAP) and acts as an antiterminator by reducing RNAP pausing and termination at some factor-independent and Rho-dependent signals. RfaH consists of two domains connected by a flexible linker. The N-terminal RfaH domain (RfaHN) recognizes the ops element, binds to the RNAP and reduces pausing and termination in vitro. Functional analysis of single substitutions in this domain reported here suggests that three separate RfaHN regions mediate these functions. We propose that a polar patch on one side of RfaHN interacts with the non-template DNA strand during recruitment, whereas a hydrophobic surface on the opposite side of RfaHN remains bound to the β′ subunit clamp helices domain throughout transcription of the entire operon. The third region is apparently dispensable for RfaH binding to the transcription complex but is required for the antitermination modification of RNAP. PMID:20132437

  3. An exploration of function analysis and function allocation in the commercial flight domain

    NASA Technical Reports Server (NTRS)

    Mcguire, James C.; Zich, John A.; Goins, Richard T.; Erickson, Jeffery B.; Dwyer, John P.; Cody, William J.; Rouse, William B.

    1991-01-01

    The applicability is explored of functional analysis methods to support cockpit design. Specifically, alternative techniques are studied for ensuring an effective division of responsibility between the flight crew and automation. A functional decomposition is performed of the commercial flight domain to provide the information necessary to support allocation decisions and demonstrate methodology for allocating functions to flight crew or to automation. The function analysis employed 'bottom up' and 'top down' analyses and demonstrated the comparability of identified functions, using the 'lift off' segment of the 'take off' phase as a test case. The normal flight mission and selected contingencies were addressed. Two alternative methods for using the functional description in the allocation of functions between man and machine were investigated. The two methods were compared in order to ascertain their relative strengths and weaknesses. Finally, conclusions were drawn regarding the practical utility of function analysis methods.

  4. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  5. Glycolipid Crosslinking Is Required for Cholera Toxin to Partition Into and Stabilize Ordered Domains.

    PubMed

    Raghunathan, Krishnan; Wong, Tiffany H; Chinnapen, Daniel J; Lencer, Wayne I; Jobling, Michael G; Kenworthy, Anne K

    2016-12-20

    Current models of lipid rafts propose that lipid domains exist as nanoscale compositional fluctuations and these fluctuations can potentially be stabilized into larger domains, consequently better compartmentalizing cellular functions. However, the mechanisms governing stabilized raft assembly and function remain unclear. Here, we test the role of glycolipid crosslinking as a raft targeting and ordering mechanism using the well-studied raft marker cholera toxin B pentamer (CTxB) that binds up to five GM1 glycosphingolipids to enter host cells. We show that when applied to cell-derived giant plasma membrane vesicles, a variant of CTxB containing only a single functional GM1 binding site exhibits significantly reduced partitioning to the ordered phase compared to wild-type CTxB with five binding sites. Moreover, monovalent CTxB does not stabilize membrane domains, unlike wild-type CTxB. These results support the long-held hypothesis that CTxB stabilizes raft domains via a lipid crosslinking mechanism and establish a role for crosslinking in the partitioning of CTxB to ordered domains.

  6. Reader domain specificity and lysine demethylase-4 family function

    PubMed Central

    Su, Zhangli; Wang, Fengbin; Lee, Jin-Hee; Stephens, Kimberly E.; Papazyan, Romeo; Voronina, Ekaterina; Krautkramer, Kimberly A.; Raman, Ana; Thorpe, Jeremy J.; Boersma, Melissa D.; Kuznetsov, Vyacheslav I.; Miller, Mitchell D.; Taverna, Sean D.; Phillips, George N.; Denu, John M.

    2016-01-01

    The KDM4 histone demethylases are conserved epigenetic regulators linked to development, spermatogenesis and tumorigenesis. However, how the KDM4 family targets specific chromatin regions is largely unknown. Here, an extensive histone peptide microarray analysis uncovers trimethyl-lysine histone-binding preferences among the closely related KDM4 double tudor domains (DTDs). KDM4A/B DTDs bind strongly to H3K23me3, a poorly understood histone modification recently shown to be enriched in meiotic chromatin of ciliates and nematodes. The 2.28 Å co-crystal structure of KDM4A-DTD in complex with H3K23me3 peptide reveals key intermolecular interactions for H3K23me3 recognition. Furthermore, analysis of the 2.56 Å KDM4B-DTD crystal structure pinpoints the underlying residues required for exclusive H3K23me3 specificity, an interaction supported by in vivo co-localization of KDM4B and H3K23me3 at heterochromatin in mammalian meiotic and newly postmeiotic spermatocytes. In vitro demethylation assays suggest H3K23me3 binding by KDM4B stimulates H3K36 demethylation. Together, these results provide a possible mechanism whereby H3K23me3-binding by KDM4B directs localized H3K36 demethylation during meiosis and spermatogenesis. PMID:27841353

  7. Regulatory T cells require TCR signaling for their suppressive function.

    PubMed

    Schmidt, Amanda M; Lu, Wen; Sindhava, Vishal J; Huang, Yanping; Burkhardt, Janis K; Yang, Enjun; Riese, Matthew J; Maltzman, Jonathan S; Jordan, Martha S; Kambayashi, Taku

    2015-05-01

    Regulatory T cells (Tregs) are a subset of CD4(+) T cells that maintain immune tolerance in part by their ability to inhibit the proliferation of conventional CD4(+) T cells (Tconvs). The role of the TCR and the downstream signaling pathways required for this suppressive function of Tregs are not fully understood. To yield insight into how TCR-mediated signals influence Treg suppressive function, we assessed the ability of Tregs with altered TCR-mediated signaling capacity to inhibit Tconv proliferation. Mature Tregs deficient in Src homology 2 domain containing leukocyte protein of 76 kDa (SLP-76), an adaptor protein that nucleates the proximal signaling complex downstream of the TCR, were unable to inhibit Tconv proliferation, suggesting that TCR signaling is required for Treg suppressive function. Moreover, Tregs with defective phospholipase C γ (PLCγ) activation due to a Y145F mutation of SLP-76 were also defective in their suppressive function. Conversely, enhancement of diacylglycerol-mediated signaling downstream of PLCγ by genetic ablation of a negative regulator of diacylglycerol kinase ζ increased the suppressive ability of Tregs. Because SLP-76 is also important for integrin activation and signaling, we tested the role of integrin activation in Treg-mediated suppression. Tregs lacking the adaptor proteins adhesion and degranulation promoting adapter protein or CT10 regulator of kinase/CT10 regulator of kinase-like, which are required for TCR-mediated integrin activation, inhibited Tconv proliferation to a similar extent as wild-type Tregs. Together, these data suggest that TCR-mediated PLCγ activation, but not integrin activation, is required for Tregs to inhibit Tconv proliferation.

  8. Trehalose induces functionally active conformation in the intrinsically disordered N-terminal domain of glucocorticoid receptor.

    PubMed

    Khan, Shagufta H; Jasuja, Ravi; Kumar, Raj

    2016-08-05

    Glucocorticoid receptor (GR) is a classic member of the nuclear receptor superfamily and plays pivotal roles in human physiology at the level of gene regulation. Various constellations of cellular cofactors are required to associate with GR to activate/repress genes. The effects of specific ligands on the AF2 structure and consequent preferential binding of co-activators or co-repressors have helped our understanding of the mechanisms involved. But the data so far fall short of fully explaining GR actions. We believe that this is because work so far has largely avoided detailed examination of the contributions of AF1 to overall GR actions. It has been shown that the GR containing only the N-terminal domain (NTD) and the DNA-binding domain (GR500) is constitutively quite active in stimulating transcription from simple promoters. However, we are only beginning to understand structure and functions of GR500 in spite of the fact that AF1 located within the NTD serves as major transactivation domain for GR. Lack of this information has hampered our complete understanding of how GR regulates its target gene(s). The major obstacle in determining GR500 structure has been due to its intrinsically disordered NTD conformation, frequently found in transcription factors. In this study, we tested whether a naturally occurring osmolyte, trehalose, can promote functionally ordered conformation in GR500. Our data show that in the presence of trehalose, GR500 is capable of formation of a native-like functionally folded conformation.

  9. Time domain functional NIRS imaging for human brain mapping.

    PubMed

    Torricelli, Alessandro; Contini, Davide; Pifferi, Antonio; Caffini, Matteo; Re, Rebecca; Zucchelli, Lucia; Spinelli, Lorenzo

    2014-01-15

    This review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spectroscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic instrumentation components (light sources, detection techniques, and delivery and collection systems) of a TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for research and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization issues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth, depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of experimental results performed on phantoms or in vivo. Finally we give an account on the technological developments that would pave the way for a broader use of TD fNIRS in the neuroimaging community.

  10. Multiple ER–Golgi SNARE transmembrane domains are dispensable for trafficking but required for SNARE recycling

    PubMed Central

    Chen, Li; Lau, Martin S. Y.; Banfield, David K.

    2016-01-01

    The formation of soluble N-ethylmaleimide–sensitive factor attachment protein receptor (SNARE) complexes between opposing membranes is an essential prerequisite for fusion between vesicles and their target compartments. The composition and length of a SNARE’s transmembrane domain (TMD) is also an indicator for their steady-state distribution in cells. The evolutionary conservation of the SNARE TMD, together with the strict requirement of this feature for membrane fusion in biochemical studies, implies that the TMD represents an essential protein module. Paradoxically, we find that for several essential ER- and Golgi-localized SNAREs, a TMD is unnecessary. Moreover, in the absence of a covalent membrane tether, such SNAREs can still support ER–Golgi vesicle transport and recapitulate established genetic interactions. Transport anomalies appear to be restricted to retrograde trafficking, but these defects are overcome by the attachment of a C-terminal lipid anchor to the SNARE. We conclude that the TMD functions principally to support the recycling of Qb-, Qc-, and R-SNAREs and, in so doing, retrograde transport. PMID:27385338

  11. Dissection of Amino-Terminal Functional Domains of Murine Coronavirus Nonstructural Protein 3

    PubMed Central

    Hurst-Hess, Kelley R.; Kuo, Lili

    2015-01-01

    ABSTRACT Coronaviruses, the largest RNA viruses, have a complex program of RNA synthesis that entails genome replication and transcription of subgenomic mRNAs. RNA synthesis by the prototype coronavirus mouse hepatitis virus (MHV) is carried out by a replicase-transcriptase composed of 16 nonstructural protein (nsp) subunits. Among these, nsp3 is the largest and the first to be inserted into the endoplasmic reticulum. nsp3 comprises multiple structural domains, including two papain-like proteases (PLPs) and a highly conserved ADP-ribose-1″-phosphatase (ADRP) macrodomain. We have previously shown that the ubiquitin-like domain at the amino terminus of nsp3 is essential and participates in a critical interaction with the viral nucleocapsid protein early in infection. In the current study, we exploited atypical expression schemes to uncouple PLP1 from the processing of nsp1 and nsp2 in order to investigate the requirements of nsp3 domains for viral RNA synthesis. In the first strategy, a mutant was created in which replicase polyprotein translation initiated with nsp3, thereby establishing that complete elimination of nsp1 and nsp2 does not abolish MHV viability. In the second strategy, a picornavirus autoprocessing element was used to separate a truncated nsp1 from nsp3. This provided a platform for further dissection of amino-terminal domains of nsp3. From this, we found that catalytic mutation of PLP1 or complete deletion of PLP1 and the adjacent ADRP domain was tolerated by the virus. These results showed that neither the PLP1 domain nor the ADRP domain of nsp3 provides integral activities essential for coronavirus genomic or subgenomic RNA synthesis. IMPORTANCE The largest component of the coronavirus replicase-transcriptase complex, nsp3, contains multiple modules, many of which do not have clearly defined functions in genome replication or transcription. These domains may play direct roles in RNA synthesis, or they may have evolved for other purposes, such as

  12. CNS Myelination Requires Cytoplasmic Dynein Function

    PubMed Central

    Yang, Michele L.; Shin, Jimann; Kearns, Christina A.; Langworthy, Melissa M.; Snell, Heather; Walker, Macie B.; Appel, Bruce

    2014-01-01

    Background Cytoplasmic dynein provides the main motor force for minus-end-directed transport of cargo on microtubules. Within the vertebrate central nervous system (CNS), proliferation, neuronal migration and retrograde axon transport are among the cellular functions known to require dynein. Accordingly, mutations of DYNC1H1, which encodes the heavy chain subunit of cytoplasmic dynein, have been linked to developmental brain malformations and axonal pathologies. Oligodendrocytes, the myelinating glial cell type of the CNS, migrate from their origins to their target axons and subsequently extend multiple long processes that ensheath axons with specialized insulating membrane. These processes are filled with microtubules, which facilitate molecular transport of myelin components. However, whether oligodendrocytes require cytoplasmic dynein to ensheath axons with myelin is not known. Results We identified a mutation of zebrafish dync1h1 in a forward genetic screen that caused a deficit of oligodendrocytes. Using in vivo imaging and gene expression analyses, we additionally found evidence that dync1h1 promotes axon ensheathment and myelin gene expression. Conclusions In addition to its well known roles in axon transport and neuronal migration, cytoplasmic dynein contributes to neural development by promoting myelination. PMID:25488883

  13. A functional protein pore with a "retro" transmembrane domain.

    PubMed Central

    Cheley, S.; Braha, O.; Lu, X.; Conlan, S.; Bayley, H.

    1999-01-01

    Extended retro (reversed) peptide sequences have not previously been accommodated within functional proteins. Here, we show that the entire transmembrane portion of the beta-barrel of the pore-forming protein alpha-hemolysin can be formed by retrosequences comprising a total of 175 amino acid residues, 25 contributed by the central sequence of each subunit of the heptameric pore. The properties of wild-type and retro heptamers in planar bilayers are similar. The single-channel conductance of the retro pore is 15% less than that of the wild-type heptamer and its current-voltage relationship denotes close to ohmic behavior, while the wild-type pore is weakly rectifying. Both wild-type and retro pores are very weakly anion selective. These results and the examination of molecular models suggest that beta-barrels may be especially accepting of retro sequences compared to other protein folds. Indeed, the ability to form a retro domain could be diagnostic of a beta-barrel, explaining, for example, the activity of the retro forms of many membrane-permeabilizing peptides. By contrast with the wild-type subunits, monomeric retro subunits undergo premature assembly in the absence of membranes, most likely because the altered central sequence fails to interact with the remainder of the subunit, thereby initiating assembly. Despite this difficulty, a technique was devised for obtaining heteromeric pores containing both wild-type and retro subunits. Most probably as a consequence of unfavorable interstrand side-chain interactions, the heteromeric pores are less stable than either the wild-type or retro homoheptamers, as judged by the presence of subconductance states in single-channel recordings. Knowledge about the extraordinary plasticity of the transmembrane beta-barrel of alpha-hemolysin will be very useful in the de novo design of functional membrane proteins based on the beta-barrel motif. PMID:10386875

  14. LRIG1 extracellular domain: structure and function analysis.

    PubMed

    Xu, Yibin; Soo, Priscilla; Walker, Francesca; Zhang, Hui Hua; Redpath, Nicholas; Tan, Chin Wee; Nicola, Nicos A; Adams, Timothy E; Garrett, Thomas P; Zhang, Jian-Guo; Burgess, Antony W

    2015-05-22

    We have expressed and purified three soluble fragments of the human LRIG1-ECD (extracellular domain): the LRIG1-LRR (leucine-rich repeat) domain, the LRIG1-3Ig (immunoglobulin-like) domain, and the LRIG1-LRR-1Ig fragment using baculovirus vectors in insect cells. The two LRIG1 domains crystallised so that we have been able to determine the three-dimensional structures at 2.3Å resolution. We developed a three-dimensional structure for the LRIG1-ECD using homology modelling based on the LINGO-1 structure. The LRIG1-LRR domain and the LRIG1-LRR-1Ig fragment are monomers in solution, whereas the LRIG1-3Ig domain appears to be dimeric. We could not detect any binding of the LRIG1 domains or the LRIG1-LRR-1Ig fragment to the EGF receptor (EGFR), either in solution using biosensor analysis or when the EGFR was expressed on the cell surface. The FLAG-tagged LRIG1-LRR-1Ig fragment binds weakly to colon cancer cells regardless of the presence of EGFRs. Similarly, neither the soluble LRIG1-LRR nor the LRIG1-3Ig domains nor the full-length LRIG1 co-expressed in HEK293 cells inhibited ligand-stimulated activation of cell-surface EGFR.

  15. Functional and topological characteristics of mammalian regulatory domains

    PubMed Central

    Symmons, Orsolya; Uslu, Veli Vural; Tsujimura, Taro; Ruf, Sandra; Nassari, Sonya; Schwarzer, Wibke; Ettwiller, Laurence; Spitz, François

    2014-01-01

    Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles. PMID:24398455

  16. Crystallographic and functional analyses of J-domain of JAC1 essential for chloroplast photorelocation movement in Arabidopsis thaliana.

    PubMed

    Takano, Akira; Suetsugu, Noriyuki; Wada, Masamitsu; Kohda, Daisuke

    2010-08-01

    An auxilin-like J-domain-containing protein, JAC1, is necessary for chloroplast movement in Arabidopsis thaliana, to capture photosynthetic light efficiently under weak light conditions. Here, we performed crystallographic and functional analyses of the J-domain of JAC1. The crystal structure of the J-domain is quite similar to that of bovine auxilin, and possesses a similar positively charged surface, which probably forms the interface with the Hsp70 chaperone. The mutation of the highly conserved HPD motif of the JAC1 J-domain abrogated the chloroplast photorelocation response. These results suggest that the requirement of JAC1 in chloroplast photorelocation movement is attributable to the J-domain's cochaperone activity.

  17. A cell-permeable tool for analysing APP intracellular domain function and manipulation of PIKfyve activity

    PubMed Central

    Guscott, Benjamin; Balklava, Zita; Safrany, Stephen T.; Wassmer, Thomas

    2016-01-01

    The mechanisms for regulating PIKfyve complex activity are currently emerging. The PIKfyve complex, consisting of the phosphoinositide kinase PIKfyve (also known as FAB1), VAC14 and FIG4, is required for the production of phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2]. PIKfyve function is required for homoeostasis of the endo/lysosomal system and is crucially implicated in neuronal function and integrity, as loss of function mutations in the PIKfyve complex lead to neurodegeneration in mouse models and human patients. Our recent work has shown that the intracellular domain of the amyloid precursor protein (APP), a molecule central to the aetiology of Alzheimer's disease binds to VAC14 and enhances PIKfyve function. In the present study, we utilize this recent advance to create an easy-to-use tool for increasing PIKfyve activity in cells. We fused APP intracellular domain (AICD) to the HIV TAT domain, a cell-permeable peptide allowing proteins to penetrate cells. The resultant TAT–AICD fusion protein is cell permeable and triggers an increase in PI(3,5)P2. Using the PI(3,5)P2 specific GFP-ML1Nx2 probe, we show that cell-permeable AICD alters PI(3,5)P2 dynamics. TAT–AICD also provides partial protection from pharmacological inhibition of PIKfyve. All three lines of evidence show that the AICD activates the PIKfyve complex in cells, a finding that is important for our understanding of the mechanism of neurodegeneration in Alzheimer's disease. PMID:26934981

  18. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis*

    PubMed Central

    Petrie, Matt; Esquibel, Joseph; Maciuba, Stephanie; Takahashi, Hirohide

    2016-01-01

    Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca2+-triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P2-triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming. PMID:27528604

  19. A new functional motif in Hox domain-containing ceramide synthases: identification of a novel region flanking the Hox and TLC domains essential for activity.

    PubMed

    Mesika, Adi; Ben-Dor, Shifra; Laviad, Elad L; Futerman, Anthony H

    2007-09-14

    Ceramide is synthesized in mammals by a family of ceramide synthases (CerS) each of which uses a relatively restricted set of fatty acyl-CoAs for N-acylation of the sphingoid long chain base (Pewzner-Jung, Y., Ben-Dor, S., and Futerman, A. H. (2006) J. Biol. Chem. 281, 25001-25005). CerS are characterized by two functional domains, the Tram-Lag-CLN8 (TLC) domain and the homeobox (Hox) domain, which is found in all mammalian CerS except CerS1. We now demonstrate that the majority of the Hox domain is not required for CerS activity since its deletion in CerS5 does not affect activity. Subsequently, we define a highly conserved new motif of 12 amino acid residues that flanks the Hox and TLC domains but is not part of the TLC domain, which is essential for CerS5 and CerS6 activity. Two positively charged residues in this domain, one of which is conserved in all putative CerS in all organisms, are essential for activity since site-directed mutagenesis of either (Lys-134 and Lys-140 in CerS5) results in an approximately 50% loss of activity, whereas mutation of both leads to a complete loss of activity. Because this region is conserved across species, we propose that it plays a previously unidentified and essential role in CerS activity and can be used as a new motif to define Hox domain-containing CerS.

  20. Linking Functional Domains of the Human Insulin Receptor with the Bacterial Aspartate Receptor

    NASA Astrophysics Data System (ADS)

    Ellis, Leland; Morgan, David O.; Koshland, Daniel E.; Clauser, Eric; Moe, Gregory R.; Bollag, Gideon; Roth, Richard A.; Rutter, William J.

    1986-11-01

    A hybrid receptor has been constructed that is composed of the extracellular domain of the human insulin receptor fused to the transmembrane and cytoplasmic domains of the bacterial aspartate chemoreceptor. This hybrid protein can be expressed in rodent (CHO) cells and displays several functional features comparable to wild-type insulin receptor. It is localized to the cell surface, binds insulin with high affinity, forms oligomers, and is recognized by conformation-specific monoclonal antibodies. Although most of the expressed protein accumulates as a 180-kDa proreceptor, some processed 135-kDa receptor can be detected on the cell surface by covalent cross-linking. Expression of the hybrid receptor inhibits the insulin-activated uptake of 2-deoxyglucose by CHO cells. Thus, this hybrid is partially functional and can be processed; however, it is incapable of native transmembrane signaling. The results indicate that the intact domains of different types of receptors can retain some of the native features in a hybrid molecule but specific requirements will need to be satisfied for transmembrane signaling.

  1. Reovirus Cell Entry Requires Functional Microtubules

    PubMed Central

    Mainou, Bernardo A.; Zamora, Paula F.; Ashbrook, Alison W.; Dorset, Daniel C.; Kim, Kwang S.; Dermody, Terence S.

    2013-01-01

    ABSTRACT Mammalian reovirus binds to cell-surface glycans and junctional adhesion molecule A and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within the endocytic compartment, reovirus undergoes stepwise disassembly, allowing release of the transcriptionally active viral core into the cytoplasm. To identify cellular mediators of reovirus infectivity, we screened a library of small-molecule inhibitors for the capacity to block virus-induced cytotoxicity. In this screen, reovirus-induced cell killing was dampened by several compounds known to impair microtubule dynamics. Microtubule inhibitors were assessed for blockade of various stages of the reovirus life cycle. While these drugs did not alter reovirus cell attachment or internalization, microtubule inhibitors diminished viral disassembly kinetics with a concomitant decrease in infectivity. Reovirus virions colocalize with microtubules and microtubule motor dynein 1 during cell entry, and depolymerization of microtubules results in intracellular aggregation of viral particles. These data indicate that functional microtubules are required for proper sorting of reovirus virions following internalization and point to a new drug target for pathogens that use the endocytic pathway to invade host cells. PMID:23820395

  2. Frequency domain transfer function identification using the computer program SYSFIT

    SciTech Connect

    Trudnowski, D.J.

    1992-12-01

    Because the primary application of SYSFIT for BPA involves studying power system dynamics, this investigation was geared toward simulating the effects that might be encountered in studying electromechanical oscillations in power systems. Although the intended focus of this work is power system oscillations, the studies are sufficiently genetic that the results can be applied to many types of oscillatory systems with closely-spaced modes. In general, there are two possible ways of solving the optimization problem. One is to use a least-squares optimization function and to write the system in such a form that the problem becomes one of linear least-squares. The solution can then be obtained using a standard least-squares technique. The other method involves using a search method to obtain the optimal model. This method allows considerably more freedom in forming the optimization function and model, but it requires an initial guess of the system parameters. SYSFIT employs this second approach. Detailed investigations were conducted into three main areas: (1) fitting to exact frequency response data of a linear system; (2) fitting to the discrete Fourier transformation of noisy data; and (3) fitting to multi-path systems. The first area consisted of investigating the effects of alternative optimization cost function options; using different optimization search methods; incorrect model order, missing response data; closely-spaced poles; and closely-spaced pole-zero pairs. Within the second area, different noise colorations and levels were studied. In the third area, methods were investigated for improving fitting results by incorporating more than one system path. The following is a list of guidelines and properties developed from the study for fitting a transfer function to the frequency response of a system using optimization search methods.

  3. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  4. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2.

    PubMed

    Lanier, M Hunter; McConnell, Patrick; Cooper, John A

    2016-01-15

    CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP.

  5. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2*

    PubMed Central

    Lanier, M. Hunter; McConnell, Patrick; Cooper, John A.

    2016-01-01

    CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP. PMID:26578515

  6. Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

    NASA Astrophysics Data System (ADS)

    Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike

    2017-03-01

    Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the

  7. Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

    NASA Astrophysics Data System (ADS)

    Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike

    2016-09-01

    Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the

  8. Fibronectin Growth Factor-Binding Domains Are Required for Fibroblast Survival

    PubMed Central

    Lin, Fubao; Ren, Xiang-Dong; Pan, Zhi; Macri, Lauren; Zong, Wei-Xing; Tonnesen, Marcia G.; Rafailovich, Miriam; Bar-Sagi, Dafna; Clark, Richard A.F.

    2011-01-01

    Fibronectin (FN) is required for embryogenesis, morphogenesis, and wound repair, and its Arg–Gly–Asp-containing central cell-binding domain (CCBD) is essential for mesenchymal cell survival and growth. Here, we demonstrate that FN contains three growth factor-binding domains (FN-GFBDs) that bind platelet-derived growth factor-BB (PDGF-BB), a potent fibroblast survival and mitogenic factor. These sites bind PDGF-BB with dissociation constants of 10–100 nm. FN-null cells cultured on recombinant CCBD (FNIII8–11) without a FN-GFBD demonstrated minimal metabolism and underwent autophagy at 24 hours, followed by apoptosis at 72 hours, even in the presence of PDGF-BB. In contrast, FN-null cells plated on FNIII8–11 contiguous with FN-GFBD survived without, and proliferated with, PDGF-BB. FN-null cell survival on FNIII8–11 and noncontiguous arrays of FN-GFBDs required these domains to be adsorbed on the same surface, suggesting the existence of a mesenchymal cell-extracellular matrix synapse. Thus, fibroblast survival required GF stimulation in the presence of a FN-GFBD, as well as adhesion to FN through the CCBD. The findings that fibroblast survival is dependent on FN-GFBD underscore the critical importance of pericellular matrix for cell survival and have significant implications for cutaneous wound healing and regeneration. PMID:20811396

  9. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses.

    PubMed

    Kessels, Michael M; Qualmann, Britta

    2015-09-01

    A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions.

  10. Structural and functional conservation of key domains in InsP[subscript 3] and ryanodine receptors

    SciTech Connect

    Seo, Min-Duk; Velamakanni, Saroj; Ishiyama, Noboru; Stathopulos, Peter B.; Rossi, Ana M.; Khan, Samir A.; Dale, Philippa; Li, Congmin; Ames, James B.; Ikura, Mitsuhiko; Taylor, Colin W.

    2012-07-11

    Inositol-1,4,5-trisphosphate receptors (InsP{sub 3}Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca{sup 2+} channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP{sub 3}R gating is initiated by InsP{sub 3} binding to the InsP{sub 3}-binding core (IBC, residues 224-604 of InsP{sub 3}R1) and it requires the suppressor domain (SD, residues 1-223 of InsP{sub 3}R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP{sub 3}R1 with (3.6 {angstrom}) and without (3.0 {angstrom}) InsP{sub 3} bound. The arrangement of the three NT domains, SD, IBC-{beta} and IBC-{alpha}, identifies two discrete interfaces ({alpha} and {beta}) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP{sub 3}R and of the ABC domains docked into RyR are remarkably similar. The importance of the {alpha}-interface for activation of InsP{sub 3}R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP{sub 3} causes partial closure of the clam-like IBC, disrupting the {beta}-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP{sub 3}R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP{sub 3}R, and an InsP{sub 3}R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP{sub 3} and blocked by ryanodine. Activation mechanisms are conserved between InsP{sub 3}R and Ry

  11. FENS-1 and DFCP1 are FYVE domain-containing proteins with distinct functions in the endosomal and Golgi compartments.

    PubMed

    Ridley, S H; Ktistakis, N; Davidson, K; Anderson, K E; Manifava, M; Ellson, C D; Lipp, P; Bootman, M; Coadwell, J; Nazarian, A; Erdjument-Bromage, H; Tempst, P; Cooper, M A; Thuring, J W; Lim, Z Y; Holmes, A B; Stephens, L R; Hawkins, P T

    2001-11-01

    FENS-1 and DFCP1 are recently discovered proteins containing one or two FYVE-domains respectively. We show that the FYVE domains in these proteins can bind PtdIns3P in vitro with high specificity over other phosphoinositides. Exogenously expressed FENS-1 localises to early endosomes: this localisation requires an intact FYVE domain and is sensitive to wortmannin inhibition. The isolated FYVE domain of FENS-1 also localises to endosomes. These results are consistent with current models of FYVE-domain function in this cellular compartment. By contrast, exogenously expressed DFCP1 displays a predominantly Golgi, endoplasmic reticulum (ER) and vesicular distribution with little or no overlap with FENS-1 or other endosomal markers. Overexpression of DFCP1 was found to cause dispersal of the Golgi compartment defined by giantin and gpp130-staining. Disruption of the FYVE domains of DFCP1 causes a shift to more condensed and compact Golgi structures and overexpression of this mutant was found to confer significant protection to the Golgi against brefeldin-induced dispersal. These properties of DFCP1 are surprising, and suggest FYVE domain-localisation and function may not be exclusively endosomal. Movies available on-line

  12. The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling.

    PubMed

    Aanstad, Pia; Santos, Nicole; Corbit, Kevin C; Scherz, Paul J; Trinh, Le A; Salvenmoser, Willi; Huisken, Jan; Reiter, Jeremy F; Stainier, Didier Y R

    2009-06-23

    Members of the Hedgehog (Hh) family of secreted proteins function as morphogens to pattern developing tissues and control cell proliferation. The seven-transmembrane domain (7TM) protein Smoothened (Smo) is essential for the activation of all levels of Hh signaling. However, the mechanisms by which Smo differentially activates low- or high-level Hh signaling are not known. Here we show that a newly identified mutation in the extracellular domain (ECD) of zebrafish Smo attenuates Smo signaling. The Smo agonist purmorphamine induces the stabilization, ciliary translocation, and high-level signaling of wild-type Smo. In contrast, purmorphamine induces the stabilization but not the ciliary translocation or high-level signaling of the Smo ECD mutant protein. Surprisingly, a truncated form of Smo that lacks the cysteine-rich domain of the ECD localizes to the cilium but is unable to activate high-level Hh signaling. We also present evidence that cilia may be required for Hh signaling in early zebrafish embryos. These data indicate that the ECD, previously thought to be dispensable for vertebrate Smo function, both regulates Smo ciliary localization and is essential for high-level Hh signaling.

  13. Computational Prediction of Protein Function Based on Weighted Mapping of Domains and GO Terms

    PubMed Central

    Teng, Zhixia; Guo, Maozu; Dai, Qiguo; Wang, Chunyu; Li, Jin; Liu, Xiaoyan

    2014-01-01

    In this paper, we propose a novel method, SeekFun, to predict protein function based on weighted mapping of domains and GO terms. Firstly, a weighted mapping of domains and GO terms is constructed according to GO annotations and domain composition of the proteins. The association strength between domain and GO term is weighted by symmetrical conditional probability. Secondly, the mapping is extended along the true paths of the terms based on GO hierarchy. Finally, the terms associated with resident domains are transferred to host protein and real annotations of the host protein are determined by association strengths. Our careful comparisons demonstrate that SeekFun outperforms the concerned methods on most occasions. SeekFun provides a flexible and effective way for protein function prediction. It benefits from the well-constructed mapping of domains and GO terms, as well as the reasonable strategy for inferring annotations of protein from those of its domains. PMID:24868539

  14. Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV

    SciTech Connect

    Zhai, Q.; Fisher, R.D.; Chung, H.-Y.; Myszka, D.G.; Sundquist, W.I.; Hill, C.P.

    2009-05-28

    Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalent contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.

  15. Functional analyses of two cellular binding domains of bovine lactadherin.

    PubMed

    Andersen, M H; Graversen, H; Fedosov, S N; Petersen, T E; Rasmussen, J T

    2000-05-23

    The glycoprotein bovine lactadherin (formerly known as PAS-6/7) comprises two EGF-like domains and two C-like domains found in blood clotting factors V and VIII. Bovine lactadherin binds to alpha(v)beta(5) integrin in an RGD-dependent manner and also to phospholipids, especially phosphatidyl serine. To define and characterize these bindings the interactions between lactadherin and different mammalian cell types were investigated. Using recombinant forms of bovine lactadherin, the human breast carcinomas MCF-7 cells expressing the alpha(v)beta(5) integrin receptor were shown to bind specifically to RGD containing lactadherin but not to a mutated RGE lactadherin. A monoclonal antibody against the alpha(v)beta(5) integrin receptor and a synthetic RGD-containing peptide inhibited the adhesion of MCF-7 cells to lactadherin. Green monkey kidney MA-104 cells, also expressing the alpha(v)beta(3) together with the alpha(v)beta(5) integrin, showed binding to bovine lactadherin via both integrins. To investigate the interaction of lipid with lactadherin two fragments were expressed corresponding to the C1C2 domains and the C2 domain. Both fragments bound to phosphatidyl serine in a concentration-dependent manner with an affinity similar to native lactadherin (K(d) = 1.8 nM). A peptide corresponding to the C-terminal part of the C2 domain inhibited the binding of lactadherin to phospholipid in a concentration-dependent manner, and finally it was shown that lactadherin mediates binding between artificial phosphatidyl serine membranes and MCF-7 cells. Taken together these results show that lactadherin can act as link between two surfaces by binding to integrin receptors through its N-terminus and to phospholipids through its C-terminus.

  16. Regulation of synaptic Pumilio function by an aggregation-prone domain

    PubMed Central

    Salazar, Anna M.; Silverman, Edward J.; Menon, Kaushiki P.; Zinn, Kai

    2010-01-01

    We identified Pumilio (Pum), a Drosophila translational repressor, in a computational search for metazoan proteins whose activities might be regulated by assembly into ordered aggregates. The search algorithm was based on evolutionary sequence conservation patterns observed for yeast prion proteins, which contain aggregation-prone glutamine/asparagine (Q/N)-rich domains attached to functional domains of normal amino acid composition. We examined aggregation of Pum and its nematode ortholog PUF-9 by expression in yeast. A domain of Pum containing the Q/N-rich sequence, denoted as NQ1, the entire Pum N-terminus, and the complete PUF-9 protein localize to macroscopic aggregates (foci) in yeast. NQ1 and PUF-9 can generate the yeast Pin+ trait, which is transmitted by a heritable aggregate. NQ1 also assembles into amyloid fibrils in vitro. In Drosophila, Pum regulates postsynaptic translation at neuromuscular junctions (NMJs). To assess whether NQ1 affects synaptic Pum activity in vivo, we expressed it in muscles. We found that it negatively regulates endogenous Pum, producing gene dosage-dependent pum loss-of-function NMJ phenotypes. NQ1 coexpression also suppresses lethality and NMJ phenotypes caused by overexpression of Pum in muscles. The Q/N block of NQ1 is required for these phenotypic effects. Negative regulation of Pum by NQ1 might be explained by formation of inactive aggregates, but we have been unable to demonstrate that NQ1 aggregates in Drosophila. NQ1 could also regulate Pum by a “dominant-negative” effect, in which it would block Q/N-mediated interactions of Pum with itself or with cofactors required for translational repression. PMID:20071514

  17. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.

    PubMed

    Marchler-Bauer, Aron; Bo, Yu; Han, Lianyi; He, Jane; Lanczycki, Christopher J; Lu, Shennan; Chitsaz, Farideh; Derbyshire, Myra K; Geer, Renata C; Gonzales, Noreen R; Gwadz, Marc; Hurwitz, David I; Lu, Fu; Marchler, Gabriele H; Song, James S; Thanki, Narmada; Wang, Zhouxi; Yamashita, Roxanne A; Zhang, Dachuan; Zheng, Chanjuan; Geer, Lewis Y; Bryant, Stephen H

    2017-01-04

    NCBI's Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBI's Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml.

  18. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    NASA Astrophysics Data System (ADS)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  19. Distinct and redundant roles of the non-muscle myosin II isoforms and functional domains.

    PubMed

    Wang, Aibing; Ma, Xuefei; Conti, Mary Anne; Adelstein, Robert S

    2011-10-01

    We propose that the in vivo functions of NM II (non-muscle myosin II) can be divided between those that depend on the N-terminal globular motor domain and those less dependent on motor activity but more dependent on the C-terminal domain. The former, being more dependent on the kinetic properties of NM II to translocate actin filaments, are less amenable to substitution by different NM II isoforms, whereas the in vivo functions of the latter, which involve the structural properties of NM II to cross-link actin filaments, are more amenable to substitution. In light of this hypothesis, we examine the ability of NM II-A, as well as a motor-compromised form of NM II-B, to replace NM II-B and rescue neuroepithelial cell-cell adhesion defects and hydrocephalus in the brain of NM II-B-depleted mice. We also examine the ability of NM II-B as well as chimaeric forms of NM II (II-A head and II-B tail and vice versa) to substitute for NM II-A in cell-cell adhesions in II-A-ablated mice. However, we also show that certain functions, such as neuronal cell migration in the developing brain and vascularization of the mouse embryo and placenta, specifically require NM II-B and II-A respectively.

  20. The coiled-coil and nucleotide binding domains of the Potato Rx disease resistance protein function in pathogen recognition and signaling.

    PubMed

    Rairdan, Gregory J; Collier, Sarah M; Sacco, Melanie A; Baldwin, Thomas T; Boettrich, Teresa; Moffett, Peter

    2008-03-01

    Plant genomes encode large numbers of nucleotide binding and leucine-rich repeat (NB-LRR) proteins, some of which mediate the recognition of pathogen-encoded proteins. Following recognition, the initiation of a resistance response is thought to be mediated by the domains present at the N termini of NB-LRR proteins, either a Toll and Interleukin-1 Receptor or a coiled-coil (CC) domain. In order to understand the role of the CC domain in NB-LRR function, we have undertaken a systematic structure-function analysis of the CC domain of the potato (Solanum tuberosum) CC-NB-LRR protein Rx, which confers resistance to Potato virus X. We show that the highly conserved EDVID motif of the CC domain mediates an intramolecular interaction that is dependent on several domains within the rest of the Rx protein, including the NB and LRR domains. Other conserved and nonconserved regions of the CC domain mediate the interaction with the Ran GTPase-activating protein, RanGAP2, a protein required for Rx function. Furthermore, we show that the Rx NB domain is sufficient for inducing cell death typical of hypersensitive plant resistance responses. We describe a model of CC-NB-LRR function wherein the LRR and CC domains coregulate the signaling activity of the NB domain in a recognition-specific manner.

  1. ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases*

    PubMed Central

    East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.

    2012-01-01

    The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990

  2. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  3. A subtype-specific function for the extracellular domain of neuroligin 1 in hippocampal LTP.

    PubMed

    Shipman, Seth L; Nicoll, Roger A

    2012-10-18

    At neuronal excitatory synapses, two major subtypes of the synaptic adhesion molecule neuroligin are present. These subtypes, neuroligin 1 and neuroligin 3, have roles in synaptogenesis and synaptic maintenance that appear largely overlapping. In this study, we combine electrophysiology with molecular deletion and replacement of these proteins to identify similarities and differences between these subtypes. In doing so, we identify a subtype-specific role in LTP for neuroligin 1 in young CA1, which persists into adulthood in the dentate gyrus. As neuroligin 3 showed no requirement for LTP, we constructed chimeric proteins of the two excitatory neuroligin subtypes to identify the molecular determinants particular to the unique function of neuroligin 1. Using in vivo molecular replacement experiments, we find that these unique functions depend on a region in its extracellular domain containing the B site splice insertion previously shown to determine specificity of neurexin binding.

  4. CD6-ligand interactions: a paradigm for SRCR domain function?

    PubMed

    Aruffo, A; Bowen, M A; Patel, D D; Haynes, B F; Starling, G C; Gebe, J A; Bajorath, J

    1997-10-01

    The scavenger receptor cysteine-rich (SRCR) superfamily, which includes proteins expressed by leukocytes, can be subdivided into groups A and B. Group B contains the lymphocyte cell-surface receptor CD6. This article reviews recent progress in understanding the interaction between CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM). Analysis of the CD6-ALCAM interaction may help to understand how other SRCR domains bind to their ligands.

  5. Expanding the Landscape of Chromatin Modification (CM)-Related Functional Domains and Genes in Human

    PubMed Central

    Pu, Shuye; Turinsky, Andrei L.; Vlasblom, James; On, Tuan; Xiong, Xuejian; Emili, Andrew; Zhang, Zhaolei; Greenblatt, Jack; Parkinson, John; Wodak, Shoshana J.

    2010-01-01

    Chromatin modification (CM) plays a key role in regulating transcription, DNA replication, repair and recombination. However, our knowledge of these processes in humans remains very limited. Here we use computational approaches to study proteins and functional domains involved in CM in humans. We analyze the abundance and the pair-wise domain-domain co-occurrences of 25 well-documented CM domains in 5 model organisms: yeast, worm, fly, mouse and human. Results show that domains involved in histone methylation, DNA methylation, and histone variants are remarkably expanded in metazoan, reflecting the increased demand for cell type-specific gene regulation. We find that CM domains tend to co-occur with a limited number of partner domains and are hence not promiscuous. This property is exploited to identify 47 potentially novel CM domains, including 24 DNA-binding domains, whose role in CM has received little attention so far. Lastly, we use a consensus Machine Learning approach to predict 379 novel CM genes (coding for 329 proteins) in humans based on domain compositions. Several of these predictions are supported by very recent experimental studies and others are slated for experimental verification. Identification of novel CM genes and domains in humans will aid our understanding of fundamental epigenetic processes that are important for stem cell differentiation and cancer biology. Information on all the candidate CM domains and genes reported here is publicly available. PMID:21124763

  6. Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins.

    PubMed Central

    Teixeira, M T; Siniossoglou, S; Podtelejnikov, S; Bénichou, J C; Mann, M; Dujon, B; Hurt, E; Fabre, E

    1997-01-01

    Nup145p is an essential yeast nucleoporin involved in nuclear export of polyadenylated RNAs. We demonstrate here that Nup145p is cleaved in vivo to yield two functionally distinct domains: a carboxy-terminal domain (C-Nup145p) which is located at the nuclear pore complex (NPC) and assembles into the Nup84p complex, and a GLFG-containing amino-terminal domain (N-Nup145p) which is not part of this complex. Whereas the essential C-Nup145p accomplishes the functions required for efficient mRNA export and normal NPC distribution, N-Nup145p, which is homologous to the GLFG-containing nucleoporins Nup100p and Nup116p, is not necessary for cell growth. However, the N-Nup145p becomes essential in a nup188 mutant background. Strikingly, generation of a free N-domain is a prerequisite for complementation of this peculiar synthetic lethal mutant. These data suggest that N- and C-domains of Nup145p perform independent functions, and that the in vivo cleavage observed is of functional importance. PMID:9305650

  7. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families.

    PubMed Central

    Gilkes, N R; Henrissat, B; Kilburn, D G; Miller, R C; Warren, R A

    1991-01-01

    Several types of domain occur in beta-1, 4-glycanases. The best characterized of these are the catalytic domains and the cellulose-binding domains. The domains may be joined by linker sequences rich in proline or hydroxyamino acids or both. Some of the enzymes contain repeated sequences up to 150 amino acids in length. The enzymes can be grouped into families on the basis of sequence similarities between the catalytic domains. There are sequence similarities between the cellulose-binding domains, of which two types have been identified, and also between some domains of unknown function. The beta-1, 4-glycanases appear to have arisen by the shuffling of a relatively small number of progenitor sequences. PMID:1886523

  8. Functional analysis of the interface between the tandem C2 domains of synaptotagmin-1

    PubMed Central

    Evans, Chantell S.; He, Zixuan; Bai, Hua; Lou, Xiaochu; Jeggle, Pia; Sutton, R. Bryan; Edwardson, J. Michael; Chapman, Edwin R.

    2016-01-01

    C2 domains are widespread motifs that often serve as Ca2+-binding modules; some proteins have more than one copy. An open issue is whether these domains, when duplicated within the same parent protein, interact with one another to regulate function. In the present study, we address the functional significance of interfacial residues between the tandem C2 domains of synaptotagmin (syt)-1, a Ca2+ sensor for neuronal exocytosis. Substitution of four residues, YHRD, at the domain interface, disrupted the interaction between the tandem C2 domains, altered the intrinsic affinity of syt-1 for Ca2+, and shifted the Ca2+ dependency for binding to membranes and driving membrane fusion in vitro. When expressed in syt-1 knockout neurons, the YHRD mutant yielded reductions in synaptic transmission, as compared with the wild-type protein. These results indicate that physical interactions between the tandem C2 domains of syt-1 contribute to excitation–secretion coupling. PMID:26792839

  9. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  10. Tubby domain superfamily protein is required for the formation of the 7S SNARE complex in Drosophila.

    PubMed

    Yoon, Eun Jang; Jeong, Yong Taek; Lee, Ji Eun; Moon, Seok Jun; Kim, Chul Hoon

    2017-01-22

    Tubby domain superfamily protein (TUSP) is a distant member of the Tubby-like protein (TULP) family. Although other TULPs play important roles in sensation, metabolism, and development, the molecular functions of TUSP are completely unknown. Here, we explore the function of TUSP in the Drosophila nervous system where it is expressed in all neurons. Tusp mutant flies exhibit a temperature-sensitive paralysis. This paralysis can be rescued by tissue-specific expression of Tusp in the giant fibers and peripherally synapsing interneurons of the giant fiber system, a well-characterized neuronal circuit that mediates rapid escape behavior in flies. Consistent with this paralytic phenotype, we observed a profound reduction in the assembly of the ternary 7S SNARE complex that is required for neurotransmitter release despite seeing no changes in the expression of each individual SNARE complex component. Together, these data suggest TUSP is a novel regulator of SNARE assembly and, therefore, of neurotransmitter release.

  11. Tank waste remediation system functions and requirements document

    SciTech Connect

    Carpenter, K.E

    1996-10-03

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

  12. Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement

    NASA Astrophysics Data System (ADS)

    Cohen-Gihon, Inbar; Sharan, Roded; Nussinov, Ruth

    2011-06-01

    During evolution, organisms have gained functional complexity mainly by modifying and improving existing functioning systems rather than creating new ones ab initio. Here we explore the interplay between two processes which during evolution have had major roles in the acquisition of new functions: gene duplication and protein domain rearrangements. We consider four possible evolutionary scenarios: gene families that have undergone none of these event types; only gene duplication; only domain rearrangement, or both events. We characterize each of the four evolutionary scenarios by functional attributes. Our analysis of ten fungal genomes indicates that at least for the fungi clade, species significantly appear to gain complexity by gene duplication accompanied by the expansion of existing domain architectures via rearrangements. We show that paralogs gaining new domain architectures via duplication tend to adopt new functions compared to paralogs that preserve their domain architectures. We conclude that evolution of protein families through gene duplication and domain rearrangement is correlated with their functional properties. We suggest that in general, new functions are acquired via the integration of gene duplication and domain rearrangements rather than each process acting independently.

  13. How do disordered regions achieve comparable functions to structured domains?

    PubMed

    Latysheva, Natasha S; Flock, Tilman; Weatheritt, Robert J; Chavali, Sreenivas; Babu, M Madan

    2015-06-01

    The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases.

  14. Nuclear localization is required for induction of apoptotic cell death by the Rb-associated p84N5 death domain protein.

    PubMed

    Evans, Randall L; Poe, Bryan S; Goodrich, David W

    2002-07-11

    The mechanisms utilized to transduce apoptotic signals that originate from within the nucleus, in response to DNA damage for example, are not well understood. Identifying these mechanisms is important for predicting how tumor cells will respond to genotoxic radiation or chemotherapy. The Rb tumor suppressor protein can inhibit apoptosis triggered by DNA damage, but how it does so is unclear. We have previously characterized a death domain protein, p84N5, that specifically associates with an amino-terminal domain of Rb protein. The p84N5 death domain is required for its ability to trigger apoptotic cell death. Association with Rb protein inhibits p84N5-induced apoptosis suggesting that it may be a mediator of Rb's effects on apoptosis. Unlike other death domain-containing apoptotic signaling proteins, however, p84N5 is localized predominantly within the nucleus of interphase cells. Here we test whether p84N5 requires nuclear localization in order to trigger apoptosis. We identify the p84N5 nuclear localization signal and demonstrate that nuclear localization is required for p84N5-induced apoptosis. To our knowledge, this identifies p84N5 as the first death-domain containing apoptotic signaling protein that functions within the nucleus. By analogy to other death domain containing proteins, p84N5 may play some role in apoptotic signaling within the nucleus. Further, p84N5 is a potential mediator of Rb protein's effects on DNA damage induced apoptosis.

  15. It takes two to tango: the structure and function of LIM, RING, PHD and MYND domains.

    PubMed

    Matthews, J M; Bhati, M; Lehtomaki, E; Mansfield, R E; Cubeddu, L; Mackay, J P

    2009-01-01

    LIM (Lin-11, Isl-1, Mec-3), RING (Really interesting new gene), PHD (Plant homology domain) and MYND (myeloid, Nervy, DEAF-1) domains are all zinc-binding domains that ligate two zinc ions. Unlike the better known classical zinc fingers, these domains do not bind DNA, but instead mediate interactions with other proteins. LIM-domain containing proteins have diverse functions as regulators of gene expression, cell adhesion and motility and signal transduction. RING finger proteins are generally associated with ubiquitination; the presence of such a domain is the defining feature of a class of E3 ubiquitin protein ligases. PHD proteins have been associated with SUMOylation but most recently have emerged as a chromatin recognition motif that reads the methylation state of histones. The function of the MYND domain is less clear, but MYND domains are also found in proteins that have ubiquitin ligase and/or histone methyltransferase activity. Here we review the structure-function relationships for these domains and discuss strategies to modulate their activity.

  16. Is membrane occupation and recognition nexus domain functional in plant phosphatidylinositol phosphate kinases?

    PubMed

    Mikami, Koji; Saavedra, Laura; Sommarin, Marianne

    2010-10-01

    Phosphatidylinositol phosphate kinase (PIPK) catalyzes a key step controlling cellular contents of phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], a critical intracellular messenger involved in vesicle trafficking and modulation of actin cytoskeleton and also a substrate of phospholipase C to produce the two intracellular messengers, diacylglycerol and inositol-1,4,5-trisphosphate. In addition to the conserved C-terminal PIPK catalytic domain, plant PIPKs contain a unique structural feature consisting of a repeat of membrane occupation and recognition nexus (MORN) motifs, called the MORN domain, in the N-terminal half. The MORN domain has previously been proposed to regulate plasma membrane localization and phosphatidic acid (PA)-inducible activation. Recently, the importance of the catalytic domain, but not the MORN domain, in these aspects was demonstrated. These conflicting data raise the question about the function of the MORN domain in plant PIPKs. We therefore performed analyses of PpPIPK1 from the moss Physcomitrella patens to elucidate the importance of the MORN domain in the control of enzymatic activity; however, we found no effect on either enzymatic activity or activation by PA. Taken together with our previous findings of lack of function in plasma membrane localization, there is no positive evidence indicating roles of the MORN domain in enzymatic and functional regulations of PpPIPK1. Therefore, further biochemical and reverse genetic analyses are necessary to understand the biological significance of the MORN domain in plant PIPKs.

  17. Domain-specific functional software testing: A progress report

    NASA Technical Reports Server (NTRS)

    Nonnenmann, Uwe

    1992-01-01

    Software Engineering is a knowledge intensive activity that involves defining, designing, developing, and maintaining software systems. In order to build effective systems to support Software Engineering activities, Artificial Intelligence techniques are needed. The application of Artificial Intelligence technology to Software Engineering is called Knowledge-based Software Engineering (KBSE). The goal of KBSE is to change the software life cycle such that software maintenance and evolution occur by modifying the specifications and then rederiving the implementation rather than by directly modifying the implementation. The use of domain knowledge in developing KBSE systems is crucial. Our work is mainly related to one area of KBSE that is called automatic specification acquisition. One example is the WATSON prototype on which our current work is based. WATSON is an automatic programming system for formalizing specifications for telephone switching software mainly restricted to POTS, i.e., plain old telephone service. Our current approach differentiates itself from other approaches in two antagonistic ways. On the one hand, we address a large and complex real-world problem instead of a 'toy domain' as in many research prototypes. On the other hand, to allow such scaling, we had to relax the ambitious goal of complete automatic programming, to the easier task of automatic testing.

  18. Genetic, structural, and molecular insights into the function of ras of complex proteins domains.

    PubMed

    Civiero, Laura; Dihanich, Sybille; Lewis, Patrick A; Greggio, Elisa

    2014-07-17

    Ras of complex proteins (ROC) domains were identified in 2003 as GTP binding modules in large multidomain proteins from Dictyostelium discoideum. Research into the function of these domains exploded with their identification in a number of proteins linked to human disease, including leucine-rich repeat kinase 2 (LRRK2) and death-associated protein kinase 1 (DAPK1) in Parkinson's disease and cancer, respectively. This surge in research has resulted in a growing body of data revealing the role that ROC domains play in regulating protein function and signaling pathways. In this review, recent advances in the structural information available for proteins containing ROC domains, along with insights into enzymatic function and the integration of ROC domains as molecular switches in a cellular and organismal context, are explored.

  19. A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution.

    PubMed

    Ostedgaard, L S; Baldursson, O; Vermeer, D W; Welsh, M J; Robertson, A D

    2000-05-09

    Phosphorylation of the regulatory (R) domain initiates cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity. To discover how the function of this domain is determined by its structure, we produced an R domain protein (R8) that spanned residues 708-831 of CFTR. Phosphorylated, but not unphosphorylated, R8 stimulated activity of CFTR channels lacking this domain, indicating that R8 is functional. Unexpectedly, this functional R8 was predominantly random coil, as revealed by CD and limited proteolysis. The CD spectra of both phosphorylated and nonphosphorylated R8 were similar in aqueous buffer. The folding agent trimethylamine N-oxide induced only a small increase in the helical content of nonphosphorylated R8 and even less change in the helical content of phosphorylated R8. These data, indicating that the R domain is predominantly random coil, may explain the seemingly complex way in which phosphorylation regulates CFTR channel activity.

  20. Further characterization of functional domains of PerA, role of amino and carboxy terminal domains in DNA binding.

    PubMed

    Ibarra, J Antonio; García-Zacarias, Claudia M; Lara-Ochoa, Cristina; Carabarin-Lima, Alejandro; Tecpanecatl-Xihuitl, J Sergio; Perez-Rueda, Ernesto; Martínez-Laguna, Ygnacio; Puente, José L

    2013-01-01

    PerA is a key regulator of virulence genes in enteropathogenic E. coli. PerA is a member of the AraC/XylS family of transcriptional regulators that directly regulates the expression of the bfp and per operons in response to different environmental cues. Here, we characterized mutants in both the amino (NTD) and carboxy (CTD) terminal domains of PerA that affect its ability to activate the expression of the bfp and per promoters. Mutants at residues predicted to be important for DNA binding within the CTD had a significant defect in their ability to bind to the regulatory regions of the bfp and per operons and, consequently, in transcriptional activation. Notably, mutants in specific NTD residues were also impaired to bind to DNA suggesting that this domain is involved in structuring the protein for correct DNA recognition. Mutations in residues E116 and D168, located in the vicinity of the putative linker region, significantly affected the activation of the perA promoter, without affecting PerA binding to the per or bfp regulatory sequences. Overall these results provide additional evidence of the importance of the N-terminal domain in PerA activity and suggest that the activation of these promoters involves differential interactions with the transcriptional machinery. This study further contributes to the characterization of the functional domains of PerA by identifying critical residues involved in DNA binding, differential promoter activation and, potentially, in the possible response to environmental cues.

  1. FERM Domain Phosphoinositide Binding Targets Merlin to the Membrane and Is Essential for Its Growth-Suppressive Function

    PubMed Central

    Mani, Timmy; Hennigan, Robert F.; Foster, Lauren A.; Conrady, Deborah G.; Herr, Andrew B.; Ip, Wallace

    2011-01-01

    The neurofibromatosis type 2 tumor suppressor protein, merlin, is related to the ERM (ezrin, radixin, and moesin) family of plasma membrane-actin cytoskeleton linkers. For ezrin, phosphatidylinositol 4,5-bisphosphate (PIP2) binding to the amino-terminal FERM domain is required for its conformational activation, proper subcellular localization, and function, but less is known about the role of phosphoinositide binding for merlin. Current evidence indicates that association with the membrane is important for merlin to function as a growth regulator; however, the mechanisms by which merlin localizes to the membrane are less clear. Here, we report that merlin binds phosphoinositides, including PIP2, via a conserved binding motif in its FERM domain. Abolition of FERM domain-mediated phosphoinositide binding of merlin displaces merlin from the membrane and releases it into the cytosol without altering the folding of merlin. Importantly, a merlin protein whose FERM domain cannot bind phosphoinositide is defective in growth suppression. Retargeting the mutant merlin into the membrane using a dual-acylated amino-terminal decapeptide from Fyn is sufficient to restore the growth-suppressive properties to the mutant merlin. Thus, FERM domain-mediated phosphoinositide binding and membrane association are critical for the growth-regulatory function of merlin. PMID:21402777

  2. New Generation Nuclear Plant -- High Level Functions and Requirements

    SciTech Connect

    J. M. Ryskamp; E. J. Gorski; E. A. Harvego; S. T. Khericha; G. A. Beitel

    2003-09-01

    This functions and requirements (F&R) document was prepared for the Next Generation Nuclear Plant (NGNP) Project. The highest-level functions and requirements for the NGNP preconceptual design are identified in this document, which establishes performance definitions for what the NGNP will achieve. NGNP designs will be developed based on these requirements by commercial vendor(s).

  3. Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains.

    PubMed

    Ve, Thomas; Williams, Simon J; Kobe, Bostjan

    2015-02-01

    The Toll/interleukin-1 receptor/resistance protein (TIR) domain is a protein-protein interaction domain consisting of 125-200 residues, widely distributed in animals, plants and bacteria but absent from fungi, archea and viruses. In plants and animals, these domains are found in proteins with functions in innate immune pathways, while in bacteria, some TIR domain-containing proteins interfere with the innate immune pathways in the host. TIR domains function as protein scaffolds, mostly involving self-association and homotypic interactions with other TIR domains. In the last 15 years, the three-dimensional structures of TIR domains from several mammalian, plant and bacterial proteins have been reported. These structures, jointly with functional data including the identification of interacting proteins, have started to provide insight into the molecular basis of the assembly of animal and plant immune signaling complexes, and for host immunosuppression by bacterial pathogens. This review focuses on the current knowledge of the structures of the TIR domains and how the structure relates to function.

  4. The Influence of Domain Knowledge on the Functional Capacity of Working Memory

    ERIC Educational Resources Information Center

    Ricks, Travis Rex; Wiley, Jennifer

    2009-01-01

    Theories of expertise have proposed that superior cognitive performance is in part due to increases in the functional capacity of working memory during domain-related tasks. Consistent with this approach Fincher-Kiefer et al. (1988), found that domain knowledge increased scores on baseball-related reading span tasks. The present studies extended…

  5. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    SciTech Connect

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko . E-mail: yanase@intmed3.med.kyushu-u.ac.jp

    2006-03-03

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling.

  6. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation.

    PubMed

    Kruse, Janis; Meier, Doreen; Zenk, Fides; Rehders, Maren; Nellen, Wolfgang; Hammann, Christian

    2016-10-02

    The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.

  7. Control of germline torso expression by the BTB/POZ domain protein pipsqueak is required for embryonic terminal patterning in Drosophila.

    PubMed

    Grillo, Marco; Furriols, Marc; Casanova, Jordi; Luschnig, Stefan

    2011-02-01

    Early embryogenesis in Drosophila melanogaster is controlled by maternal gene products, which are deposited in the egg during oogenesis. It is not well understood how maternal gene expression is controlled during germline development. pipsqueak (psq) is a complex locus that encodes several nuclear protein variants containing a PSQ DNA-binding domain and a BTB/POZ domain. Psq proteins are thought to regulate germline gene expression through epigenetic silencing. While psq was originally identified as a posterior-group gene, we show here a novel role of psq in embryonic terminal patterning. We characterized a new psq loss-of-function allele, psq(rum), which specifically affects signaling by the Torso (Tor) receptor tyrosine kinase (RTK). Using genetic epistasis, gene expression analyses, and rescue experiments, we demonstrate that the sole function impaired by the psq(rum) mutation in the terminal system is an essential requirement for controlling transcription of the tor gene in the germline. In contrast, the expression of several other maternal genes, including those encoding Tor pathway components, is not affected by the mutation. Rescue of the psq(rum) terminal phenotype does not require the BTB/POZ domain, suggesting that the PSQ DNA-binding domain can function independently of the BTB/POZ domain. Our finding that tor expression is subject to dedicated transcriptional regulation suggests that different maternal genes may be regulated by multiple distinct mechanisms, rather than by a general program controlling nurse-cell transcription.

  8. Critical role of the first transmembrane domain of Cx26 in regulating oligomerization and function

    PubMed Central

    Jara, Oscar; Acuña, Rodrigo; García, Isaac E.; Maripillán, Jaime; Figueroa, Vania; Sáez, Juan C.; Araya-Secchi, Raúl; Lagos, Carlos F.; Pérez-Acle, Tomas; Berthoud, Viviana M.; Beyer, Eric C.; Martínez, Agustín D.

    2012-01-01

    To identify motifs involved in oligomerization of the gap junction protein Cx26, we studied individual transmembrane (TM) domains and the full-length protein. Using the TOXCAT assay for interactions of isolated TM α-helices, we found that TM1, a Cx26 pore domain, had a strong propensity to homodimerize. We identified amino acids Val-37–Ala-40 (VVAA) as the TM1 motif required for homodimerization. Two deafness-associated Cx26 mutations localized in this region, Cx26V37I and Cx26A40G, differentially affected dimerization. TM1-V37I dimerized only weakly, whereas TM1-A40G did not dimerize. When the full-length mutants were expressed in HeLa cells, both Cx26V37I and Cx26A40G formed oligomers less efficiently than wild-type Cx26. A Cx26 cysteine substitution mutant, Cx26V37C formed dithiothreitol-sensitive dimers. Substitution mutants of Val-37 formed intercellular channels with reduced function, while mutants of Ala-40 did not form functional gap junction channels. Unlike wild-type Cx26, neither Cx26V37I nor Cx26A40G formed functional hemichannels in low extracellular calcium. Thus the VVAA motif of Cx26 is critical for TM1 dimerization, hexamer formation, and channel function. The differential effects of VVAA mutants on hemichannels and gap junction channels imply that inter-TM interactions can differ in unapposed and docked hemichannels. Moreover, Cx26 oligomerization appears dependent on transient TM1 dimerization as an intermediate step. PMID:22787277

  9. Describing functional requirements for knowledge sharing communities

    NASA Technical Reports Server (NTRS)

    Garrett, Sandra; Caldwell, Barrett

    2002-01-01

    Human collaboration in distributed knowledge sharing groups depends on the functionality of information and communication technologies (ICT) to support performance. Since many of these dynamic environments are constrained by time limits, knowledge must be shared efficiently by adapting the level of information detail to the specific situation. This paper focuses on the process of knowledge and context sharing with and without mediation by ICT, as well as issues to be resolved when determining appropriate ICT channels. Both technology-rich and non-technology examples are discussed.

  10. Analysis of functional domains of the host cell factor involved in VP16 complex formation.

    PubMed

    Hughes, T A; La Boissière, S; O'Hare, P

    1999-06-04

    We present biochemical analyses of the regions of the host cell factor (HCF) involved in VP16 complex formation and in the association between the N- and C-terminal domains of HCF itself. We show that the kelch repeat region of HCF (residues 1-380) is sufficient for VP16 complex formation, but that residues C-terminal to the repeats (positions 381-450) interfere with this activity. However, these latter residues are required for the interaction between the N- and C-terminal regions of HCF. The extreme C-terminal region of HCF, corresponding to an area of strong conservation with a Caenorhabditis elegans homologue, is sufficient for interaction with the N-terminal region. These results are discussed with respect to possible differences in the roles of HCF in VP16 activity versus its normal cellular function.

  11. Speech and Language Functions that Require a Functioning Broca's Area

    ERIC Educational Resources Information Center

    Davis, Cameron; Kleinman, Jonathan T.; Newhart, Melissa; Gingis, Leila; Pawlak, Mikolaj; Hillis, Argye E.

    2008-01-01

    A number of previous studies have indicated that Broca's area has an important role in understanding and producing syntactically complex sentences and other language functions. If Broca's area is critical for these functions, then either infarction of Broca's area or temporary hypoperfusion within this region should cause impairment of these…

  12. Evolutionary Algorithms for Boolean Functions in Diverse Domains of Cryptography.

    PubMed

    Picek, Stjepan; Carlet, Claude; Guilley, Sylvain; Miller, Julian F; Jakobovic, Domagoj

    2016-01-01

    The role of Boolean functions is prominent in several areas including cryptography, sequences, and coding theory. Therefore, various methods for the construction of Boolean functions with desired properties are of direct interest. New motivations on the role of Boolean functions in cryptography with attendant new properties have emerged over the years. There are still many combinations of design criteria left unexplored and in this matter evolutionary computation can play a distinct role. This article concentrates on two scenarios for the use of Boolean functions in cryptography. The first uses Boolean functions as the source of the nonlinearity in filter and combiner generators. Although relatively well explored using evolutionary algorithms, it still presents an interesting goal in terms of the practical sizes of Boolean functions. The second scenario appeared rather recently where the objective is to find Boolean functions that have various orders of the correlation immunity and minimal Hamming weight. In both these scenarios we see that evolutionary algorithms are able to find high-quality solutions where genetic programming performs the best.

  13. EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Zhang, Xinchun; Pumplin, Nathan; Ivanov, Sergey; Harrison, Maria J

    2015-08-17

    In eukaryotic cells, polarized secretion mediated by exocytotic fusion of membrane vesicles with the plasma membrane is essential for spatially restricted expansion of the plasma membrane and for the delivery of molecules to specific locations at the membrane and/or cell surface. The EXOCYST complex is central to this process, and in yeast, regulation of the EXO70 subunit influences exocytosis and cargo specificity. In contrast to yeast and mammalian cells, plants have upwards of 23 EXO70 genes with largely unknown roles. During arbuscular mycorrhizal (AM) symbiosis, deposition of the plant periarbuscular membrane (PAM) around the fungal arbuscule creates an intracellular membrane interface between the symbionts. The PAM has two major membrane sub-domains, and symbiosis-specific transporter proteins are localized in the branch domain. Currently, the mechanisms and cellular machinery involved in biogenesis of the PAM are largely unknown. Here, we identify an EXO70I protein present exclusively in plants forming AM symbiosis. Medicago truncatula exo70i mutants are unable to support normal arbuscule development, and incorporation of two PAM-resident ABC transporters, STR and STR2, is limited. During arbuscule branching, EXO70I is located in spatially restricted zones adjacent to the PAM around the arbuscule hyphal tips where it interacts with Vapyrin, a plant-specific protein required for arbuscule development. We conclude that EXO70I provides a specific exocytotic capacity necessary for development of the main functional sub-domain of the PAM. Furthermore, in contrast to other eukaryotes, plant EXO70s have evolved distinct specificities and interaction partners to fulfill their specialized secretory requirements.

  14. Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor

    PubMed Central

    2015-01-01

    Recent work on WW domain-containing oxidoreductase (WWOX) tumor suppressor is beginning to shed new light on both the molecular mechanism of action of its WW domains as well as the contiguous catalytic domain. Herein, the structural basis underlying the ability of WW1 domain to bind to various physiological ligands and how the orphan WW2 tandem partner synergizes its ligand binding in the context of WW1–WW2 tandem module of WWOX is discussed. Notably, the WW domains within the WW1–WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. In this manner, the association of WW2 domain with WW1 hinders ligand binding to the latter. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the fixed orientation of WW domains in the liganded conformation. Equally importantly, structure-guided functional approach suggests that the catalytic domain of WWOX likely serves as a retinal oxidoreductase that catalyzes the reversible oxidation and reduction of all-trans-retinal. Collectively, this review provides structural insights into the functional versatility of a key signaling protein with important implications on its biology. PMID:25662954

  15. Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor.

    PubMed

    Farooq, Amjad

    2015-03-01

    Recent work on WW domain-containing oxidoreductase (WWOX) tumor suppressor is beginning to shed new light on both the molecular mechanism of action of its WW domains as well as the contiguous catalytic domain. Herein, the structural basis underlying the ability of WW1 domain to bind to various physiological ligands and how the orphan WW2 tandem partner synergizes its ligand binding in the context of WW1-WW2 tandem module of WWOX is discussed. Notably, the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. In this manner, the association of WW2 domain with WW1 hinders ligand binding to the latter. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the fixed orientation of WW domains in the liganded conformation. Equally importantly, structure-guided functional approach suggests that the catalytic domain of WWOX likely serves as a retinal oxidoreductase that catalyzes the reversible oxidation and reduction of all-trans-retinal. Collectively, this review provides structural insights into the functional versatility of a key signaling protein with important implications on its biology.

  16. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications.

    PubMed

    Huang, J; Wu, C; Liu, D; Yang, X; Wu, R; Zhang, J; Ma, C; He, H

    2017-01-01

    C-terminal domains widely exist in the C-terminal region of multidomain proteases. As a β-sandwich domain in multidomain protease, the C-terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C-terminal protease domains are described. Furthermore, the application prospects of C-terminal domains, including polycystic kidney disease, prepeptidase C-terminal and collagen-binding domain, in the area of medicine and biological artificial materials are also discussed.

  17. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain.

    PubMed Central

    Kirkpatrick, D T; Fan, Q; Petes, T D

    1999-01-01

    The DNA sequences located upstream of the yeast HIS4 represent a very strong meiotic recombination hotspot. Although the activity of this hotspot requires the transcription activator Rap1p, the level of HIS4 transcription is not directly related to the level of recombination. We find that the recombination-stimulating activity of Rap1p requires the transcription activation domain of the protein. We show that a hybrid protein with the Gal4p DNA-binding domain and the Rap1p activation domain can stimulate recombination in a strain in which Gal4p-binding sites are inserted upstream of HIS4. In addition, we find recombination hotspot activity associated with the Gal4p DNA-binding sites that is independent of known transcription factors. We suggest that yeast cells have two types of recombination hotspots, alpha (transcription factor dependent) and beta (transcription factor independent). PMID:10224246

  18. Protein Domain of Unknown Function 3233 is a Translocation Domain of Autotransporter Secretory Mechanism in Gamma proteobacteria

    PubMed Central

    Prakash, Ananth; Yogeeshwari, S.; Sircar, Sanchari; Agrawal, Shipra

    2011-01-01

    Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3rd of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system. PMID:22073138

  19. Beyond polarity: functional membrane domains in astrocytes and Müller cells.

    PubMed

    Derouiche, Amin; Pannicke, Thomas; Haseleu, Julia; Blaess, Sandra; Grosche, Jens; Reichenbach, Andreas

    2012-11-01

    Various ependymoglial cells display varying degrees of process specialization, in particular processes contacting mesenchymal borders (pia, blood vessels, vitreous body), or those lining the ventricular surface. Within the neuropil, glial morphology, cellular contacts, and interaction partners are complex. It appears that glial processes contacting neurons, specific parts of neurons, or mesenchymal or ventricular borders are characterized by specialized membranes. We propose a concept of membrane domains in addition to the existing concept of ependymoglial polarity. Such membrane domains are equipped with certain membrane-bound proteins, enabling them to function in their specific environment. This review focuses on Müller cells and astrocytes and discusses exemplary the localization of established glial markers in membrane domains. We distinguish three functional glial membrane domains based on their typical molecular arrangement. The domain of the endfoot specifically displays the complex of dystrophin-associated proteins, aquaporin 4 and the potassium channel Kir4.1. We show that the domain of microvilli and the peripheral glial process in the Müller cell share the presence of ezrin, as do peripheral astrocyte processes. As a third domain, the Müller cell has peripheral glial processes related to a specific subtype of synapse. Although many details remain to be studied, the idea of glial membrane domains may permit new insights into glial function and pathology.

  20. Differential functions of the Apoer2 intracellular domain in selenium uptake and cell signaling.

    PubMed

    Masiulis, Irene; Quill, Timothy A; Burk, Raymond F; Herz, Joachim

    2009-01-01

    Apolipoprotein E receptor 2 (Apoer2) is a multifunctional transport and signaling receptor that regulates the uptake of selenium into the mouse brain and testis through endocytosis of selenoprotein P (Sepp1). Mice deficient in Apoer2 or Sepp1 are infertile, with kinked and hypomotile spermatozoa. They also develop severe neurological defects on a low selenium diet, due to a profound impairment of selenium uptake. Little is known about the function of Apoer2 in the testis beyond its role as a Sepp1 receptor. By contrast, in the brain, Apoer2 is an essential component of the Reelin signaling pathway, which is required for proper neuronal organization and synapse function. Using knock-in mice, we have functionally dissociated the signaling motifs in the Apoer2 cytoplasmic domain from Sepp1 uptake. Selenium concentration of brain and testis was normal in the knock-in mutants, in contrast to Apoer2 knock-outs. Thus, the neurological defects in the signaling impaired knock-in mice are not caused by a selenium uptake defect, but instead are a direct consequence of a disruption of the Reelin signal. Reduced sperm motility was observed in some of the knock-in mice, indicating a novel signaling role for Apoer2 in sperm development and function that is independent of selenium uptake.

  1. Functionality of the STNV translational enhancer domain correlates with affinity for two wheat germ factors.

    PubMed

    van Lipzig, R; Van Montagu, M; Cornelissen, M; Meulewaeter, F

    2001-03-01

    The satellite tobacco necrosis virus RNA is uncapped and requires a 3' translational enhancer domain (TED) for translation. Both in the wheat germ extract and in tobacco, TED stimulates in cis translation of heterologous, uncapped RNAs. In this study we investigated to what extent translation stimulation by TED depends on binding to wheat germ factors. We show that in vitro TED binds at least seven wheat germ proteins. Translation and crosslinking assays, to which TED or TED derivatives with reduced functionality were included as competitor, showed that TED function correlates with binding to a 28 kDa protein (p28). One particular condition of competition revealed that p28 binding is not obligatory for TED function. Under this condition, a 30 kDa protein (p30) binds to TED. Importantly, affinity of p30 correlates with functionality of TED. These results strongly suggest that TED has the capacity to stimulate translation by recruiting the translational machinery either via binding to p28 or via binding to p30.

  2. Mapping interactions between myosin relay and converter domains that power muscle function.

    PubMed

    Kronert, William A; Melkani, Girish C; Melkani, Anju; Bernstein, Sanford I

    2014-05-02

    Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile(508), Asn(509), and Asp(511)) in communicating with converter domain residue Arg(759). We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.

  3. Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities.

    PubMed

    Willett, Jonathan W; Kirby, John R

    2012-01-01

    Two-component signal transduction systems, composed of histidine kinases (HK) and response regulators (RR), allow bacteria to respond to diverse environmental stimuli. The HK can control both phosphorylation and subsequent dephosphorylation of its cognate RR. The majority of HKs utilize the HisKA subfamily of dimerization and histidine phosphotransfer (DHp) domains, which contain the phospho-accepting histidine and directly contact the RR. Extensive genetics, biochemistry, and structural biology on several prototypical TCS systems including NtrB-NtrC and EnvZ-OmpR have provided a solid basis for understanding the function of HK-RR signaling. Recently, work on NarX, a HisKA_3 subfamily protein, indicated that two residues in the highly conserved region of the DHp domain are responsible for phosphatase activity. In this study we have carried out both genetic and biochemical analyses on Myxococcus xanthus CrdS, a member of the HisKA subfamily of bacterial HKs. CrdS is required for the regulation of spore formation in response to environmental stress. Following alanine-scanning mutagenesis of the α1 helix of the DHp domain of CrdS, we determined the role for each mutant protein for both kinase and phosphatase activity. Our results indicate that the conserved acidic residue (E372) immediately adjacent to the site of autophosphorylation (H371) is specifically required for kinase activity but not for phosphatase activity. Conversely, we found that the conserved Thr/Asn residue (N375) was required for phosphatase activity but not for kinase activity. We extended our biochemical analyses to two CrdS homologs from M. xanthus, HK1190 and HK4262, as well as Thermotoga maritima HK853. The results were similar for each HisKA family protein where the conserved acidic residue is required for kinase activity while the conserved Thr/Asn residue is required for phosphatase activity. These data are consistent with conserved mechanisms for kinase and phosphatase activities in the

  4. Small Molecule-Induced Domain Swapping as a Mechanism for Controlling Protein Function and Assembly

    PubMed Central

    Karchin, Joshua M.; Ha, Jeung-Hoi; Namitz, Kevin E.; Cosgrove, Michael S.; Loh, Stewart N.

    2017-01-01

    Domain swapping is the process by which identical proteins exchange reciprocal segments to generate dimers. Here we introduce induced domain swapping (INDOS) as a mechanism for regulating protein function. INDOS employs a modular design consisting of the fusion of two proteins: a recognition protein that binds a triggering molecule, and a target protein that undergoes a domain swap in response to binding of the triggering ligand. The recognition protein (FK506 binding protein) is inserted into functionally-inactivated point mutants of two target proteins (staphylococcal nuclease and ribose binding protein). Binding of FK506 to the FKBP domain causes the target domain to first unfold, then refold via domain swap. The inactivating mutations become ‘swapped out’ in the dimer, increasing nuclease and ribose binding activities by 100-fold and 15-fold, respectively, restoring them to near wild-type values. INDOS is intended to convert an arbitrary protein into a functional switch, and is the first example of rational design in which a small molecule is used to trigger protein domain swapping and subsequent activation of biological function. PMID:28287617

  5. Deletions of the Aequorea victoria green fluorescent protein define the minimal domain required for fluorescence.

    PubMed

    Li, X; Zhang, G; Ngo, N; Zhao, X; Kain, S R; Huang, C C

    1997-11-07

    The Green Fluorescent Protein (GFP) from the jellyfish Aequorea victoria is a widely used marker for gene expression and protein localization studies. Dissection of the structure of the protein would be expected to shed light on its potential applications to other fields such as the detection of protease activity. Using deletion analysis, we have defined the minimal domain in GFP required for fluorescence to amino acids 7-229. This domain starts at the middle of the first small alpha helix at the N terminus of GFP and ends immediately following the last beta sheet. Studies of the amino acids at both termini of the minimal domain revealed that positions 6 and 7 at the N terminus are Glu-specific. Change of the Glu residues to other amino acids results in reduction of GFP fluorescence. Position 229 at the C terminus of GFP, however, is nonspecific: the Ile can be replaced with other amino acids with no measurable loss of fluorescence. A total of only 15 terminal amino acids can be deleted from GFP without disrupting fluorescence, consistent with findings of a previous study of GFP crystal structure (Ormo, M., Cubitt, A. B., Kallio, K., Gross, L. A., Tsien, R. Y., Remington, S. J. (1996) Science 273, 1392-1395 and Yang, F., Moss, L. G., and Phillips, G. N., Jr. (1996) Nat. Biotechnol. 14, 1246-1251) that a tightly packed structure exists in the protein. We also generated internal deletions within the loop regions of GFP according to its crystal structure and found that all such deletions eliminated GFP fluorescence.

  6. The role of chromosome domains in shaping the functional genome.

    PubMed

    Sexton, Tom; Cavalli, Giacomo

    2015-03-12

    The genome must be highly compacted to fit within eukaryotic nuclei but must be accessible to the transcriptional machinery to allow appropriate expression of genes in different cell types and throughout developmental pathways. A growing body of work has shown that the genome, analogously to proteins, forms an ordered, hierarchical structure that closely correlates and may even be causally linked with regulation of functions such as transcription. This review describes our current understanding of how these functional genomic "secondary and tertiary structures" form a blueprint for global nuclear architecture and the potential they hold for understanding and manipulating genomic regulation.

  7. Characterization of desnutrin functional domains: critical residues for triacylglycerol hydrolysis in cultured cells.

    PubMed

    Duncan, Robin E; Wang, Yuhui; Ahmadian, Maryam; Lu, Jennifer; Sarkadi-Nagy, Eszter; Sul, Hei Sook

    2010-02-01

    Murine desnutrin/human ATGL is a triacylglycerol (TAG) hydrolase with a predicted catalytic dyad within an alpha-beta hydrolase fold in the N-terminal region. In humans, mutations resulting in C-terminal truncation cause neutral lipid storage disease with myopathy. To identify critical functional domains, we measured TAG breakdown in cultured cells by mutated or truncated desnutrin. In vitro, C-terminally truncated desnutrin displayed an even higher apparent V(max) than the full-length form without changes in K(m), which may be explained by our finding of an interaction between the C- and N-terminal domains. In live cells, however, C-terminally truncated adenoviral desnutrin had lower TAG hydrolase activity. We investigated a role for the phosphorylation of C-terminal S406 and S430 residues but found that these were not necessary for TAG breakdown or lipid droplet localization in cells. The predicted N-terminal active sites, S47 and D166, were both critical for TAG hydrolysis in live cells and in vitro. We also identified two overlapping N-terminal motifs that predict lipid substrate binding domains, a glycine-rich motif (underlined) and an amphipathic alpha-helix (bold) within amino acid residues 10-24 (ISFAGCGFLGVYHIG). G14, F17, L18, and V20, but not G16 and G19, were important for TAG hydrolysis, suggesting a potential role for the amphipathic alpha-helix in TAG binding. This study identifies for the first time critical sites in the N-terminal region of desnutrin and reveals the requirement of the C-terminal region for TAG hydrolysis in cultured cells.

  8. Ecogenomic Perspectives on Domains of Unknown Function: Correlation-Based Exploration of Marine Metagenomes

    PubMed Central

    Buttigieg, Pier Luigi; Hankeln, Wolfgang; Kostadinov, Ivaylo; Kottmann, Renzo; Yilmaz, Pelin; Duhaime, Melissa Beth; Glöckner, Frank Oliver

    2013-01-01

    Background The proportion of conserved DNA sequences with no clear function is steadily growing in bioinformatics databases. Studies of sequence and structural homology have indicated that many uncharacterized protein domain sequences are variants of functionally described domains. If these variants promote an organism's ecological fitness, they are likely to be conserved in the genome of its progeny and the population at large. The genetic composition of microbial communities in their native ecosystems is accessible through metagenomics. We hypothesize the co-variation of protein domain sequences across metagenomes from similar ecosystems will provide insights into their potential roles and aid further investigation. Methodology/Principal findings We calculated the correlation of Pfam protein domain sequences across the Global Ocean Sampling metagenome collection, employing conservative detection and correlation thresholds to limit results to well-supported hits and associations. We then examined intercorrelations between domains of unknown function (DUFs) and domains involved in known metabolic pathways using network visualization and cluster-detection tools. We used a cautious “guilty-by-association” approach, referencing knowledge-level resources to identify and discuss associations that offer insight into DUF function. We observed numerous DUFs associated to photobiologically active domains and prevalent in the Cyanobacteria. Other clusters included DUFs associated with DNA maintenance and repair, inorganic nutrient metabolism, and sodium-translocating transport domains. We also observed a number of clusters reflecting known metabolic associations and cases that predicted functional reclassification of DUFs. Conclusion/Significance Critically examining domain covariation across metagenomic datasets can grant new perspectives on the roles and associations of DUFs in an ecological setting. Targeted attempts at DUF characterization in the laboratory or in

  9. The HhH2/NDD domain of the Drosophila Nod chromokinesin-like protein is required for binding to chromosomes in the oocyte nucleus.

    PubMed

    Cui, Wei; Hawley, R Scott

    2005-12-01

    Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9-10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes.

  10. The macro domain protein family: structure, functions, and their potential therapeutic implications.

    PubMed

    Han, Weidong; Li, Xiaolei; Fu, Xiaobing

    2011-01-01

    Macro domains are ancient, highly evolutionarily conserved domains that are widely distributed throughout all kingdoms of life. The 'macro fold' is roughly 25kDa in size and is composed of a mixed α-β fold with similarity to the P loop-containing nucleotide triphosphate hydrolases. They function as binding modules for metabolites of NAD(+), including poly(ADP-ribose) (PAR), which is synthesized by PAR polymerases (PARPs). Although there is a high degree of sequence similarity within this family, particularly for residues that might be involved in catalysis or substrates binding, it is likely that the sequence variation that does exist among macro domains is responsible for the specificity of function of individual proteins. Recent findings have indicated that macro domain proteins are functionally promiscuous and are implicated in the regulation of diverse biological functions, such as DNA repair, chromatin remodeling and transcriptional regulation. Significant advances in the field of macro domain have occurred in the past few years, including biological insights and the discovery of novel signaling pathways. To provide a framework for understanding these recent findings, this review will provide a comprehensive overview of the known and proposed biochemical, cellular and physiological roles of the macro domain family. Recent data that indicate a critical role of macro domain regulation for the proper progression of cellular differentiation programs will be discussed. In addition, the effect of dysregulated expression of macro domain proteins will be considered in the processes of tumorigenesis and bacterial pathogenesis. Finally, a series of observations will be highlighted that should be addressed in future efforts to develop macro domains as effective therapeutic targets.

  11. Implications of 3D domain swapping for protein folding, misfolding and function.

    PubMed

    Rousseau, Frederic; Schymkowitz, Joost; Itzhaki, Laura S

    2012-01-01

    Three-dimensional domain swapping is the process by which two identical protein chains exchange a part of their structure to form an intertwined dimer or higher-order oligomer. The phenomenon has been observed in the crystal structures of a range of different proteins. In this chapter we review the experiments that have been performed in order to understand the sequence and structural determinants of domain-swapping and these show how the general principles obtained can be used to engineer proteins to domain swap. We discuss the role of domain swapping in regulating protein function and as one possible mechanism of protein misfolding that can lead to aggregation and disease. We also review a number of interesting pathways of macromolecular assembly involving β-strand insertion or complementation that are related to the domain-swapping phenomenon.

  12. Collision Avoidance Functional Requirements for Step 1. Revision 6

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.

  13. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    SciTech Connect

    Sundlov, Jesse A.; Gulick, Andrew M.

    2013-08-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  14. Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase.

    PubMed

    Rosasco, Mario G; Gordon, Sharona E; Bajjalieh, Sandra M

    2015-12-15

    Voltage-sensitive phosphatases (VSPs) are proteins that directly couple changes in membrane electrical potential to inositol lipid phosphatase activity. VSPs thus couple two signaling pathways that are critical for cellular functioning. Although a number of nonmammalian VSPs have been characterized biophysically, mammalian VSPs are less well understood at both the physiological and biophysical levels. In this study, we aimed to address this gap in knowledge by determining whether the VSP from mouse, Mm-VSP, is expressed in the brain and contains a functional voltage-sensing domain (VSD) and a phosphatase domain. We report that Mm-VSP is expressed in neurons and is developmentally regulated. To address whether the functions of the VSD and phosphatase domain are retained in Mm-VSP, we took advantage of the modular nature of these domains and expressed each independently as a chimeric protein in a heterologous expression system. We found that the Mm-VSP VSD, fused to a viral potassium channel, was able to drive voltage-dependent gating of the channel pore. The Mm-VSP phosphatase domain, fused to the VSD of a nonmammalian VSP, was also functional: activation resulted in PI(4,5)P2 depletion that was sufficient to inhibit the PI(4,5)P2-regulated KCNQ2/3 channels. While testing the functionality of the VSD and phosphatase domain, we observed slight differences between the activities of Mm-VSP-based chimeras and those of nonmammalian VSPs. Although the properties of VSP chimeras may not completely reflect the properties of native VSPs, the differences we observed in voltage-sensing and phosphatase activity provide a starting point for future experiments to investigate the function of Mm-VSP and other mammalian VSPs. In conclusion, our data reveal that both the VSD and the lipid phosphatase domain of Mm-VSP are functional, indicating that Mm-VSP likely plays an important role in mouse neurophysiology.

  15. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...

  16. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    PubMed

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  17. RIC-3 affects properties and quantity of nicotinic acetylcholine receptors via a mechanism that does not require the coiled-coil domains.

    PubMed

    Ben-Ami, Hagit Cohen; Yassin, Lina; Farah, Hanna; Michaeli, Avner; Eshel, Margalit; Treinin, Millet

    2005-07-29

    Members of the RIC-3 gene family are effectors of nicotinic acetylcholine receptor (nAChR) expression in vertebrates and invertebrates. In Caenorhabditis elegans RIC-3 is needed for functional expression of multiple nAChRs, including the DEG-3/DES-2 nAChR. Effects of RIC-3 on DEG-3/DES-2 functional expression are found in vivo and following heterologous expression in Xenopus leavis oocytes. We now show that in X. leavis oocytes RIC-3 also affects the kinetics and agonist affinity properties of the DEG-3/DES-2 receptor. Because these effects are mimicked by increasing the ratio of DEG-3 subunits within DEG-3/DES-2 receptors, this suggests that RIC-3 may preferentially promote maturation of DEG-3-rich receptors. Indeed, effects of RIC-3 on functional expression of DEG-3/DES-2 positively correlate with the DEG-3 to DES-2 ratio. All RIC-3 family members have two transmembrane domains followed by one or two coiled-coil domains. Here we show that the effects of RIC-3 on functional expression and on receptor properties are mediated by the transmembrane domains and do not require the coiled-coil domains. In agreement with this, mammals express a RIC-3 transcript lacking the coiled-coil domain that is capable of promoting DEG-3/DES-2 functional expression. Last, we show that RIC-3 affects DEG-3 quantity, suggesting stabilization of receptors or receptor intermediates by RIC-3. Together our results suggest that subunit-specific interactions of RIC-3 with nAChR subunits, mediated by the transmembrane domains, are sufficient for the effects of RIC-3 on nAChR quantity and quality.

  18. Functional Requirements for an Electronic Work Package System

    SciTech Connect

    Oxstrand, Johanna H.

    2016-12-01

    This document provides a set of high level functional requirements for a generic electronic work package (eWP) system. The requirements have been identified by the U.S. nuclear industry as a part of the Nuclear Electronic Work Packages - Enterprise Requirements (NEWPER) initiative. The functional requirements are mainly applied to eWP system supporting Basic and Moderate types of smart documents, i.e., documents that have fields for recording input such as text, dates, numbers, and equipment status, and documents which incorporate additional functionalities such as form field data “type“ validation (e.g. date, text, number, and signature) of data entered and/or self-populate basic document information (usually from existing host application meta data) on the form when the user first opens it. All the requirements are categorized by the roles; Planner, Supervisor, Craft, Work Package Approval Reviewer, Operations, Scheduling/Work Control, and Supporting Functions. The categories Statistics, Records, Information Technology are also included used to group the requirements. All requirements are presented in Section 2 through Section 11. Examples of more detailed requirements are provided for the majority of high level requirements. These examples are meant as an inspiration to be used as each utility goes through the process of identifying their specific requirements. The report’s table of contents provides a summary of the high level requirements.

  19. Optimization of the functional domain of flat plate collectors

    NASA Astrophysics Data System (ADS)

    Ritoux, G.; Irigaray, J.-L.

    1981-12-01

    The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.

  20. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation.

    PubMed Central

    Jayaraman, P S; Hirst, K; Goding, C R

    1994-01-01

    While there are many examples of protein-protein interactions modulating the DNA-binding activity of transcription factors, little is known of the molecular mechanisms underlying the regulation of the transcription activation function. Using a two-hybrid system we show here that transcription repression of the basic domain/helix-loop-helix factor PHO4 is mediated by complex formation with the PHO80 repressor. In contrast to other systems, such as inhibition of GAL4 by GAL80 or of p53 by MDM2, where repression is mediated by direct interaction at regions overlapping the transcription activation domain, interaction with PHO80 involves two regions of PHO4 distinct from those involved in transcription activation or DNA-binding and dimerization. The possibility that repression of PHO4 by PHO80 may represent a general mechanism of transcription control, including regulation of the cell-type-specific transcription activation domain of c-Jun, is discussed. Images PMID:8187772

  1. Predicting protein N-glycosylation by combining functional domain and secretion information.

    PubMed

    Li, Sujun; Liu, Boshu; Cai, Yudong; Li, Yixue

    2007-08-01

    Protein N-glycosylation plays an important role in protein function. Yet, at present, few computational methods are available for the prediction of this protein modification. This prompted our development of a support vector machine (SVM)-based method for this task, as well as a partial least squares (PLS) regression based prediction method for comparison. A functional domain feature space was used to create SVM and PLS models, which achieved accuracies of 83.91% and 79.89%, respectively, as evaluated by a leave-one-out cross-validation. Subsequently, SVM and PLS models were developed based on functional domain and protein secretion information, which yielded accuracies of 89.13% and 86%, respectively. This analysis demonstrates that the protein functional domain and secretion information are both efficient predictors of N-glycosylation.

  2. GTP binding to the ROC domain of DAP-kinase regulates its function through intramolecular signalling.

    PubMed

    Carlessi, Rodrigo; Levin-Salomon, Vered; Ciprut, Sara; Bialik, Shani; Berissi, Hanna; Albeck, Shira; Peleg, Yoav; Kimchi, Adi

    2011-09-01

    Death-associated protein kinase (DAPk) was recently suggested by sequence homology to be a member of the ROCO family of proteins. Here, we show that DAPk has a functional ROC (Ras of complex proteins) domain that mediates homo-oligomerization and GTP binding through a defined P-loop motif. Upon binding to GTP, the ROC domain negatively regulates the catalytic activity of DAPk and its cellular effects. Mechanistically, GTP binding enhances an inhibitory autophosphorylation at a distal site that suppresses kinase activity. This study presents a new mechanism of intramolecular signal transduction, by which GTP binding operates in cis to affect the catalytic activity of a distal domain in the protein.

  3. The EF-hand Ca2+ Binding Domain Is Not Required for Cytosolic Ca2+ Activation of the Cardiac Ryanodine Receptor.

    PubMed

    Guo, Wenting; Sun, Bo; Xiao, Zhichao; Liu, Yingjie; Wang, Yundi; Zhang, Lin; Wang, Ruiwu; Chen, S R Wayne

    2016-01-29

    Activation of the cardiac ryanodine receptor (RyR2) by elevating cytosolic Ca(2+) is a central step in the process of Ca(2+)-induced Ca(2+) release, but the molecular basis of RyR2 activation by cytosolic Ca(2+) is poorly defined. It has been proposed recently that the putative Ca(2+) binding domain encompassing a pair of EF-hand motifs (EF1 and EF2) in the skeletal muscle ryanodine receptor (RyR1) functions as a Ca(2+) sensor that regulates the gating of RyR1. Although the role of the EF-hand domain in RyR1 function has been studied extensively, little is known about the functional significance of the corresponding EF-hand domain in RyR2. Here we investigate the effect of mutations in the EF-hand motifs on the Ca(2+) activation of RyR2. We found that mutations in the EF-hand motifs or deletion of the entire EF-hand domain did not affect the Ca(2+)-dependent activation of [(3)H]ryanodine binding or the cytosolic Ca(2+) activation of RyR2. On the other hand, deletion of the EF-hand domain markedly suppressed the luminal Ca(2+) activation of RyR2 and spontaneous Ca(2+) release in HEK293 cells during store Ca(2+) overload or store overload-induced Ca(2+) release (SOICR). Furthermore, mutations in the EF2 motif, but not EF1 motif, of RyR2 raised the threshold for SOICR termination, whereas deletion of the EF-hand domain of RyR2 increased both the activation and termination thresholds for SOICR. These results indicate that, although the EF-hand domain is not required for RyR2 activation by cytosolic Ca(2+), it plays an important role in luminal Ca(2+) activation and SOICR.

  4. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties.

  5. Structure and Function of the SWIRM Domain, a Conserved Protein Module Found in Chromatin Regulatory Complexes

    SciTech Connect

    Da,G.; Lenkart, J.; Zhao, K.; Shiekhattar, R.; Cairns, B.; Marmorstein, R.

    2006-01-01

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  6. Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity.

    PubMed

    Kelil, Abdellali; Levy, Emmanuel D; Michnick, Stephen W

    2016-07-05

    Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.

  7. Structure and function of the SWIRM domain, a conserved protein module found in chromatin regulatory complexes.

    PubMed

    Da, Guoping; Lenkart, Jeffrey; Zhao, Kehao; Shiekhattar, Ramin; Cairns, Bradley R; Marmorstein, Ronen

    2006-02-14

    The SWIRM domain is a module found in the Swi3 and Rsc8 subunits of SWI/SNF-family chromatin remodeling complexes, and the Ada2 and BHC110/LSD1 subunits of chromatin modification complexes. Here we report the high-resolution crystal structure of the SWIRM domain from Swi3 and characterize the in vitro and in vivo function of the SWIRM domains from Saccharomyces cerevisiae Swi3 and Rsc8. The Swi3 SWIRM forms a four-helix bundle containing a pseudo 2-fold axis and a helix-turn-helix motif commonly found in DNA-binding proteins. We show that the Swi3 SWIRM binds free DNA and mononucleosomes with high and comparable affinity and that a subset of Swi3 substitution mutants that display growth defects in vivo also show impaired DNA-binding activity in vitro, consistent with a nucleosome targeting function of this domain. Genetic and biochemical studies also reveal that the Rsc8 and Swi3 SWIRM domains are essential for the proper assembly and in vivo functions of their respective complexes. Together, these studies identify the SWIRM domain as an essential multifunctional module for the regulation of gene expression.

  8. Evolution of the sewage treatment plant model SimpleTreat: applicability domain and data requirements.

    PubMed

    Franco, Antonio; Struijs, Jaap; Gouin, Todd; Price, Oliver R

    2013-10-01

    SimpleTreat 3.1 is the sewage treatment plant (STP) model implemented in the European Union (EU) framework for the environmental risk assessment of chemicals. The model was originally designed for neutral hydrophobic chemicals, whereas many substances currently under regulatory scrutiny, are ionizable at environmental pH. Although the model has been adapted to describe ionization (SimpleTreat 3.1), the fate of organic ions is limited to the unbound aqueous phase, which seriously restricts the applicability domain. New regressions were implemented to estimate the sludge-water partition coefficient normalized to organic carbon (KOC ) of monovalent acids and bases from the octanol-water partition coefficient (KOW ), the dissociation constant (pKa) and the pH. We evaluated the updated model (SimpleTreat 3.2) with 10 test chemicals by comparing predictions with monitoring data collected from the literature. Test chemicals were specifically selected to challenge the applicability domain and to cover a wide range of functionality and physical-chemical properties. Although predicted effluent concentrations are generally conservative, SimpleTreat 3.2 provides reasonable estimates for use in lower-tier risk assessment for neutral and monovalent ionizable chemicals. The accuracy of the new KOC regressions is acceptable for monovalent acid but is lower for bases, for which measured sludge KOC is highly recommended. Measured KOC are also recommended for ionic surfactants and necessary for organic ligands, which may limit the applicability of SimpleTreat using a basic input data set. The conservative nature of model estimates reflects the default worst case, non-numerical parameterization of biodegradation rates and the assumption that biodegradation is limited to the unbound aqueous phase. The potential of refining the description of biodegradation using higher tier simulation tests is explored in a parallel article (Franco et al. this issue).

  9. Functions & Requirements for Debris Removal System Project A-2

    SciTech Connect

    PRECECHTEL, D.R.

    1999-12-29

    This revision of the Functions and Requirements Document updates the approved Functions and Requirements for Debris Removal Subproject WHC-SD-SNF-FRD-009, Rev. 0. It has been revised in its entirety to reflect the current scope of work for Debris Removal as canisters and lids under the K Basin Projects work breakdown structure (WBS). In this revision the canisters and lids will be consider debris and a new set of Functions and Requirements have been developed to remove the canisters and lids from the basin.

  10. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    PubMed Central

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  11. A conserved interaction between the SDI domain of Bre2 and the Dpy-30 domain of Sdc1 is required for histone methylation and gene expression.

    PubMed

    South, Paul F; Fingerman, Ian M; Mersman, Douglas P; Du, Hai-Ning; Briggs, Scott D

    2010-01-01

    In Saccharomyces cerevisiae, lysine 4 on histone H3 (H3K4) is methylated by the Set1 complex (Set1C or COMPASS). Besides the catalytic Set1 subunit, several proteins that form the Set1C (Swd1, Swd2, Swd3, Spp1, Bre2, and Sdc1) are also needed to mediate proper H3K4 methylation. Until this study, it has been unclear how individual Set1C members interact and how this interaction may impact histone methylation and gene expression. In this study, Bre2 and Sdc1 are shown to directly interact, and it is shown that the association of this heteromeric complex is needed for proper H3K4 methylation and gene expression to occur. Interestingly, mutational and biochemical analysis identified the C terminus of Bre2 as a critical protein-protein interaction domain that binds to the Dpy-30 domain of Sdc1. Using the human homologs of Bre2 and Sdc1, ASH2L and DPY-30, respectively, we demonstrate that the C terminus of ASH2L also interacts with the Dpy-30 domain of DPY-30, suggesting that this protein-protein interaction is maintained from yeast to humans. Because of the functionally conserved nature of the C terminus of Bre2 and ASH2L, this region was named the SDI (Sdc1 Dpy-30 interaction) domain. Finally, we show that the SDI-Dpy-30 domain interaction is physiologically important for the function of Set1 in vivo, because specific disruption of this interaction prevents Bre2 and Sdc1 association with Set1, resulting in H3K4 methylation defects and decreases in gene expression. Overall, these and other mechanistic studies on how H3K4 methyltransferase complexes function will likely provide insights into how human MLL and SET1-like complexes or overexpression of ASH2L leads to oncogenesis.

  12. Structural and Functional Characterization of the Aryl Hydrocarbon Receptor Ligand Binding Domain by Homology Modeling and Mutational Analysis†

    PubMed Central

    Pandini, Alessandro; Denison, Michael S.; Song, Yujuan; Soshilov, Anatoly A.; Bonati, Laura

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that is activated by a structurally diverse array of synthetic and natural chemicals, including toxic halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Analysis of the molecular events occurring in the AhR ligand binding and activation processes requires structural information on the AhR Per-Arnt-Sim (PAS) B-containing ligand binding domain, for which no experimentally determined structure has been reported. With the availability of extensive structural information on homologous PAS-containing proteins, a reliable model of the mouse AhR PAS B domain was developed by comparative modeling techniques. The PAS domain structures of the functionally related hypoxia-inducible factor 2α (HIF-2α) and AhR nuclear translocator (ARNT) proteins, which exhibit the highest degree of sequence identity and similarity with AhR, were chosen to develop a two-template model. To confirm the features of the modeled domain, the effects of point mutations in selected residue positions on both TCDD binding to the AhR and TCDD-dependent transformation and DNA binding were analyzed. Mutagenesis and functional analysis results are consistent with the proposed model and confirm that the cavity modeled in the interior of the domain is indeed involved in ligand binding. Moreover, the physicochemical characteristics of some residues and of their mutants, along with the effects of mutagenesis on TCDD and DNA binding, also suggest some key features that are required for ligand binding and activation of mAhR at a molecular level, thus providing a framework for further studies. PMID:17223691

  13. De novo design and engineering of functional metal and porphyrin-binding protein domains

    NASA Astrophysics Data System (ADS)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  14. Functional Characterization of Glycoprotein H Chimeras Composed of Conserved Domains of the Pseudorabies Virus and Herpes Simplex Virus 1 Homologs

    PubMed Central

    Böhm, Sebastian W.; Backovic, Marija; Klupp, Barbara G.; Rey, Felix A.; Fuchs, Walter

    2015-01-01

    ABSTRACT Membrane fusion is indispensable for entry of enveloped viruses into host cells. The conserved core fusion machinery of the Herpesviridae consists of glycoprotein B (gB) and the gH/gL complex. Recently, crystal structures of gH/gL of herpes simplex virus 2 (HSV-2) and Epstein-Barr virus and of a core fragment of pseudorabies virus (PrV) gH identified four structurally conserved gH domains. To investigate functional conservation, chimeric genes encoding combinations of individual domains of PrV and herpes simplex virus 1 (HSV-1) gH were expressed in rabbit kidney cells, and their processing and transport to the cell surface, as well as activity in fusion assays including gB, gD, and gL of PrV or HSV-1, were analyzed. Chimeric gH containing domain I of HSV-1 and domains II to IV of PrV exhibited limited fusion activity in the presence of PrV gB and gD and HSV-1 gL, but not of PrV gL. More strikingly, chimeric gH consisting of PrV domains I to III and HSV-1 domain IV exhibited considerable fusion activity together with PrV gB, gD, and gL. Replacing PrV gB with the HSV-1 protein significantly enhanced this activity. A cell line stably expressing this chimeric gH supported replication of gH-deleted PrV. Our results confirm the specificity of domain I for gL binding, demonstrate functional conservation of domain IV in two alphaherpesviruses from different genera, and indicate species-specific interactions of this domain with gB. They also suggest that gH domains II and III might form a structural and functional unit which does not tolerate major substitutions. IMPORTANCE Envelope glycoprotein H (gH) is essential for herpesvirus-induced membrane fusion, which is required for host cell entry and viral spread. Although gH is structurally conserved within the Herpesviridae, its precise role and its interactions with other components of the viral fusion machinery are not fully understood. Chimeric proteins containing domains of gH proteins from different

  15. Functional Specialization of Domains Tandemly Duplicated Witin 16S rRNA Methyltransferase RsmC

    SciTech Connect

    Sunita,S.; Purta, E.; Durawa, M.; Tkaczuk, K.; Swaathi, J.; Bujnicki, J.; Sivaraman, J.

    2007-01-01

    RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 Angstroms resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability.

  16. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... exceed the capacity of the system....

  17. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... exceed the capacity of the system....

  18. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... exceed the capacity of the system....

  19. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SECURITY (CONTINUED) POLLUTION RULES FOR THE PROTECTION OF THE MARINE ENVIRONMENT RELATING TO TANK VESSELS CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... exceed the capacity of the system....

  20. Streptococcus pneumoniae PBP2x mid-cell localization requires the C-terminal PASTA domains and is essential for cell shape maintenance.

    PubMed

    Peters, Katharina; Schweizer, Inga; Beilharz, Katrin; Stahlmann, Christoph; Veening, Jan-Willem; Hakenbeck, Regine; Denapaite, Dalia

    2014-05-01

    The transpeptidase activity of the essential penicillin-binding protein 2x (PBP2x) of Streptococcus pneumoniae is believed to be important for murein biosynthesis required for cell division. To study the molecular mechanism driving localization of PBP2x in live cells, we constructed a set of N-terminal GFP-PBP2x fusions under the control of a zinc-inducible promoter. The ectopic fusion protein localized at mid-cell. Cells showed no growth defects even in the absence of the genomic pbp2x, demonstrating that GFP-PBP2x is functional. Depletion of GFP-PBP2x resulted in severe morphological alterations, confirming the essentiality of PBP2x and demonstrating that PBP2x is required for cell division and not for cell elongation. A genetically or antibiotic inactivated GFP-PBP2x still localized at septal sites. Remarkably, the same was true for a GFP-PBP2x derivative containing a deletion of the central transpeptidase domain, although only in the absence of the protease/chaperone HtrA. Thus localization is independent of the catalytic transpeptidase domain but requires the C-terminal PASTA domains, identifying HtrA as targeting GFP-PBP2x derivatives. Finally, PBP2x was positioned at the septum similar to PBP1a and the PASTA domain containing StkP protein, confirming that PBP2x is a key element of the divisome complex.

  1. Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII

    PubMed Central

    Poleszak, Katarzyna; Kaminska, Katarzyna H.; Dunin-Horkawicz, Stanislaw; Lupas, Andrei; Skowronek, Krzysztof J.; Bujnicki, Janusz M.

    2012-01-01

    Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence–structure–function relationships in ExoVII. PMID:22718974

  2. Energy Emergency Management Information System (EEMIS): functional requirements

    SciTech Connect

    Not Available

    1980-10-17

    This report deals with the functional requirements of the Energy Emergency Management Information System (EEMIS) as it is defined for State level use (EEMIS-S). This report provides a technical description of the EEMIS-S requirements. These guidelines state that in order to create the widest practicable competition the system's requirements, with few exceptions, must be expressed in functional terms without reference to specific hardware or software products, and that wherever exceptions are made a statement of justification must be provided. In addition, these guidelines set forth a recommended maximum threshold limit of annual contract value for schedule contract procurements. Section 2.0 presents a general overview of the EEMIS structure in terms of requirements for vendor support. The functional requirements for each component are developed by section as: Teleprocessing Monitor Requirements, Section 3.0; EEMIS File Requirements, Section 4.0; Data Base Management Requirements, Section 5.0; Application Program Requirements, Section 6.0; and Utility Program Requirements, Section 7.0. The final Section, 8.0, justifies the use of the GSA Teleprocessing Service Program - Multiple Award Schedule Contracts (TSP-MASC) procurement process. The intent of this section is to substantiate, in this instance, the desirability of obtaining time-sharing vendor services to support EEMIS under a schedule contract, even if certain TSP-MASC threshold limits might be exceeded.

  3. Structural and functional characterization of a cold adapted TPM-domain with ATPase/ADPase activity.

    PubMed

    Cerutti, María L; Otero, Lisandro H; Smal, Clara; Pellizza, Leonardo; Goldbaum, Fernando A; Klinke, Sebastián; Aran, Martín

    2016-11-01

    The Pfam PF04536 TPM_phosphatase family is a broadly conserved family of domains found across prokaryotes, plants and invertebrates. Despite having a similar protein fold, members of this family have been implicated in diverse cellular processes and found in varied subcellular localizations. Very recently, the biochemical characterization of two evolutionary divergent TPM domains has shown that they are able to hydrolyze phosphate groups from different substrates. However, there are still incorrect functional annotations and uncertain relationships between the structure and function of this family of domains. BA41 is an uncharacterized single-pass transmembrane protein from the Antarctic psychrotolerant bacterium Bizionia argentinensis with a predicted compact extracytoplasmic TPM domain and a C-terminal cytoplasmic low complexity region. To shed light on the structural properties that enable TPM domains to adopt divergent roles, we here accomplish a comprehensive structural and functional characterization of the central TPM domain of BA41 (BA41-TPM). Contrary to its predicted function as a beta-propeller methanol dehydrogenase, light scattering and crystallographic studies showed that BA41-TPM behaves as a globular monomeric protein and adopts a conserved Rossmann fold, typically observed in other TPM domain structures. Although the crystal structure reveals the conservation of residues involved in substrate binding, no putative catalytic or intramolecular metal ions were detected. Most important, however, extensive biochemical studies demonstrated that BA41-TPM has hydrolase activity against ADP, ATP, and other di- and triphosphate nucleotides and shares properties of cold-adapted enzymes. The role of BA41 in extracellular ATP-mediated signaling pathways and its occurrence in environmental and pathogenic microorganisms is discussed.

  4. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms.

    PubMed

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Nicora, Horacio D Lopez; Caetano-Anollés, Gustavo

    2011-11-08

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  5. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  6. Structures and Functions of the Multiple KOW Domains of Transcription Elongation Factor Spt5

    PubMed Central

    Meyer, Peter A.; Li, Sheng; Zhang, Mincheng; Yamada, Kentaro; Takagi, Yuichiro; Hartzog, Grant A.

    2015-01-01

    The eukaryotic Spt4-Spt5 heterodimer forms a higher-order complex with RNA polymerase II (and I) to regulate transcription elongation. Extensive genetic and functional data have revealed diverse roles of Spt4-Spt5 in coupling elongation with chromatin modification and RNA-processing pathways. A mechanistic understanding of the diverse functions of Spt4-Spt5 is hampered by challenges in resolving the distribution of functions among its structural domains, including the five KOW domains in Spt5, and a lack of their high-resolution structures. We present high-resolution crystallographic results demonstrating that distinct structures are formed by the first through third KOW domains (KOW1-Linker1 [K1L1] and KOW2-KOW3) of Saccharomyces cerevisiae Spt5. The structure reveals that K1L1 displays a positively charged patch (PCP) on its surface, which binds nucleic acids in vitro, as shown in biochemical assays, and is important for in vivo function, as shown in growth assays. Furthermore, assays in yeast have shown that the PCP has a function that partially overlaps that of Spt4. Synthesis of our results with previous evidence suggests a model in which Spt4 and the K1L1 domain of Spt5 form functionally overlapping interactions with nucleic acids upstream of the transcription bubble, and this mechanism may confer robustness on processes associated with transcription elongation. PMID:26217010

  7. Structural and functional analysis of the YAP-binding domain of human TEAD2

    PubMed Central

    Tian, Wei; Yu, Jianzhong; Tomchick, Diana R.; Pan, Duojia; Luo, Xuelian

    2010-01-01

    The Hippo pathway controls organ size and suppresses tumorigenesis in metazoans by blocking cell proliferation and promoting apoptosis. The TEAD1-4 proteins (which contain a DNA-binding domain but lack an activation domain) interact with YAP (which lacks a DNA-binding domain but contains an activation domain) to form functional heterodimeric transcription factors that activate proliferative and prosurvival gene expression programs. The Hippo pathway inhibits the YAP-TEAD hybrid transcription factors by phosphorylating and promoting cytoplasmic retention of YAP. Here we report the crystal structure of the YAP-binding domain (YBD) of human TEAD2. TEAD2 YBD adopts an immunoglobulin-like β-sandwich fold with two extra helix-turn-helix inserts. NMR studies reveal that the TEAD-binding domain of YAP is natively unfolded and that TEAD binding causes localized conformational changes in YAP. In vitro binding and in vivo functional assays define an extensive conserved surface of TEAD2 YBD as the YAP-binding site. Therefore, our studies suggest that a short segment of YAP adopts an extended conformation and forms extensive contacts with a rigid surface of TEAD. Targeting a surface-exposed pocket of TEAD might be an effective strategy to disrupt the YAP-TEAD interaction and to reduce the oncogenic potential of YAP. PMID:20368466

  8. Nse1 RING-like Domain Supports Functions of the Smc5-Smc6 Holocomplex in Genome Stability

    PubMed Central

    Pebernard, Stephanie; Perry, J. Jefferson P.; Tainer, John A.

    2008-01-01

    The Smc5-Smc6 holocomplex plays essential but largely enigmatic roles in chromosome segregation, and facilitates DNA repair. The Smc5-Smc6 complex contains six conserved non-SMC subunits. One of these, Nse1, contains a RING-like motif that often confers ubiquitin E3 ligase activity. We have functionally characterized the Nse1 RING-like motif, to determine its contribution to the chromosome segregation and DNA repair roles of Smc5-Smc6. Strikingly, whereas a full deletion of nse1 is lethal, the Nse1 RING-like motif is not essential for cellular viability. However, Nse1 RING mutant cells are hypersensitive to a broad spectrum of genotoxic stresses, indicating that the Nse1 RING motif promotes DNA repair functions of Smc5-Smc6. We tested the ability of both human and yeast Nse1 to mediate ubiquitin E3 ligase activity in vitro and found no detectable activity associated with full-length Nse1 or the isolated RING domains. Interestingly, however, the Nse1 RING-like domain is required for normal Nse1-Nse3-Nse4 trimer formation in vitro and for damage-induced recruitment of Nse4 and Smc5 to subnuclear foci in vivo. Thus, we propose that the Nse1 RING-like motif is a protein–protein interaction domain required for Smc5-Smc6 holocomplex integrity and recruitment to, or retention at, DNA lesions. PMID:18667531

  9. Structural similarities and functional diversity of eukaryotic discoidin-like domains.

    PubMed

    Kiedzierska, A; Smietana, K; Czepczynska, H; Otlewski, J

    2007-09-01

    The discoidin domain is a approximately 150 amino acid motif common in both eukaryotic and prokaryotic proteins. It is found in a variety of extracellular, intracellular and transmembrane multidomain proteins characterized by a considerable functional diversity, mostly involved in developmental processes. The biological role of the domain depends on its interactions with different molecules, including growth factors, phospholipids and lipids, galactose or its derivatives, and collagen. The conservation of the motif, as well as the serious physiological consequences of discoidin domain disorders underscore the importance of the fold, while the ability to accommodate such an extraordinarily broad range of ligand molecules makes it a fascinating research target. In present review we characterize the distinctive features of discoidin domains and briefly outline the biological role of this module in various eukaryotic proteins.

  10. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  11. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability

    PubMed Central

    Julian, Mark C.; Li, Lijuan; Garde, Shekhar; Wilen, Rebecca; Tessier, Peter M.

    2017-01-01

    The ability of antibodies to accumulate affinity-enhancing mutations in their complementarity-determining regions (CDRs) without compromising thermodynamic stability is critical to their natural function. However, it is unclear if affinity mutations in the hypervariable CDRs generally impact antibody stability and to what extent additional compensatory mutations are required to maintain stability during affinity maturation. Here we have experimentally and computationally evaluated the functional contributions of mutations acquired by a human variable (VH) domain that was evolved using strong selections for enhanced stability and affinity for the Alzheimer’s Aβ42 peptide. Interestingly, half of the key affinity mutations in the CDRs were destabilizing. Moreover, the destabilizing effects of these mutations were compensated for by a subset of the affinity mutations that were also stabilizing. Our findings demonstrate that the accumulation of both affinity and stability mutations is necessary to maintain thermodynamic stability during extensive mutagenesis and affinity maturation in vitro, which is similar to findings for natural antibodies that are subjected to somatic hypermutation in vivo. These findings for diverse antibodies and antibody fragments specific for unrelated antigens suggest that the formation of the antigen-binding site is generally a destabilizing process and that co-enrichment for compensatory mutations is critical for maintaining thermodynamic stability. PMID:28349921

  12. Septin phosphorylation and coiled-coil domains function in cell and septin ring morphology in the filamentous fungus Ashbya gossypii.

    PubMed

    Meseroll, Rebecca A; Occhipinti, Patricia; Gladfelter, Amy S

    2013-02-01

    Septins are a class of GTP-binding proteins conserved throughout many eukaryotes. Individual septin subunits associate with one another and assemble into heteromeric complexes that form filaments and higher-order structures in vivo. The mechanisms underlying the assembly and maintenance of higher-order structures in cells remain poorly understood. Septins in several organisms have been shown to be phosphorylated, although precisely how septin phosphorylation may be contributing to the formation of high-order septin structures is unknown. Four of the five septins expressed in the filamentous fungus, Ashbya gossypii, are phosphorylated, and we demonstrate here the diverse roles of these phosphorylation sites in septin ring formation and septin dynamics, as well as cell morphology and viability. Intriguingly, the alteration of specific sites in Cdc3p and Cdc11p leads to a complete loss of higher-order septin structures, implicating septin phosphorylation as a regulator of septin structure formation. Introducing phosphomimetic point mutations to specific sites in Cdc12p and Shs1p causes cell lethality, highlighting the importance of normal septin modification in overall cell function and health. In addition to discovering roles for phosphorylation, we also present diverse functions for conserved septin domains in the formation of septin higher-order structure. We previously showed the requirement for the Shs1p coiled-coil domain in limiting septin ring size and reveal here that, in contrast to Shs1p, the coiled-coil domains of Cdc11p and Cdc12p are required for septin ring formation. Our results as a whole reveal novel roles for septin phosphorylation and coiled-coil domains in regulating septin structure and function.

  13. Comparative Analysis of the Biochemical and Functional Properties of C-Terminal Domains of Autotransporters ▿

    PubMed Central

    Marín, Elvira; Bodelón, Gustavo; Fernández, Luis Ángel

    2010-01-01

    Autotransporters (ATs) are the largest group of proteins secreted by Gram-negative bacteria and include many virulence factors from human pathogens. ATs are synthesized as large precursors with a C-terminal domain that is inserted in the outer membrane (OM) and is essential for the translocation of an N-terminal passenger domain to the extracellular milieu. Several mechanisms have been proposed for AT secretion. Self-translocation models suggest transport across a hydrophilic channel formed by an internal pore of the β-barrel or by the oligomerization of C-terminal domains. Alternatively, an assisted-translocation model suggests that transport employs a conserved machinery of the bacterial OM such as the Bam complex. In this work we have investigated AT secretion by carrying out a comparative study to analyze the conserved biochemical and functional features of different C-terminal domains selected from ATs of gammaproteobacteria, betaproteobacteria, alphaproteobacteria, and epsilonproteobacteria. Our results indicate that C-terminal domains having an N-terminal α-helix and a β-barrel constitute functional transport units for the translocation of peptides and immunoglobulin domains with disulfide bonds. In vivo and in vitro analyses show that multimerization is not a conserved feature in AT C-terminal domains. Furthermore, we demonstrate that the deletion of the conserved α-helix severely impairs β-barrel folding and OM insertion and thereby blocks passenger domain secretion. These observations suggest that the AT β-barrel without its α-helix cannot form a stable hydrophilic channel in the OM for protein translocation. The implications of our data for an understanding of AT secretion are discussed. PMID:20802036

  14. Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system

    PubMed Central

    Yoshimoto, Yuki; Takimoto, Aki; Watanabe, Hitomi; Hiraki, Yuji; Kondoh, Gen; Shukunami, Chisa

    2017-01-01

    Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is expressed persistently in tendons/ligaments, but transiently in entheseal cartilage. In this study, we generated a novel ScxCre knock-in (KI) allele, by in-frame replacement of most of Scx exon 1 with Cre recombinase (Cre), to drive Cre expression using Scx promoter and to inactivate the endogenous Scx. Reflecting the intensity and duration of endogenous expression, Cre-mediated excision occurs in tendinous and ligamentous tissues persistently expressing Scx. Expression of tenomodulin, a marker of mature tenocytes and ligamentocytes, was almost absent in tendons and ligaments of ScxCre/Cre KI mice lacking Scx to indicate defective maturation. In homozygotes, the transiently Scx-expressing entheseal regions such as the rib cage, patella cartilage, and calcaneus were small and defective and cartilaginous tuberosity was missing. Decreased Sox9 expression and phosphorylation of Smad1/5 and Smad3 were also observed in the developing entheseal cartilage, patella, and deltoid tuberosity of ScxCre/Cre KI mice. These results highlighted the functional importance of both transient and persistent expression domains of Scx for proper integration of the musculoskeletal components. PMID:28327634

  15. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9

    PubMed Central

    Geraldo, Marcos Tadeu; Valente, Guilherme Targino; Nakajima, Rafael Takahiro; Martins, Cesar

    2016-01-01

    Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts. PMID:27196604

  16. Transactivation domains are not functionally conserved between vertebrate and invertebrate serum response factors.

    PubMed

    Avila, Sonia; Casero, Marie-Carmen; Fernandez-Cantón, Rocío; Sastre, Leandro

    2002-08-01

    The transcription factor serum response factor (SRF) regulates expression of growth factor-dependent genes and muscle-specific genes in vertebrates. Homologous factors regulate differentiation of some ectodermic tissues in invertebrates. To explore the molecular basis of these different physiological functions, the functionality of human, Drosophila melanogaster and Artemia franciscana SRFs in mammalian cells has been compared in this article. D. melanogaster and, to a lesser extend, A. franciscana SRF co-expression represses the activity of strong SRF-dependent promoters, such as those of the mouse c-fos and A. franciscana actin 403 genes. Domain-exchange experiments showed that these results can be explained by the absence of a transactivation domain, functional in mammalian cells, in D. melanogaster and A. franciscana SRFs. Both invertebrate SRFs can dimerize with endogenous mouse SRF through the conserved DNA-binding and dimerization domain. Co-expression of human and A. franciscana SRFs activate expression of weaker SRF-dependent promoters, such as those of the human cardiac alpha-actin gene or an A. franciscana actin 403 promoter where the SRF-binding site has been mutated. Mapping of A. franciscana SRF domains involved in transcriptional activation has shown that the conserved DNA-binding and dimerization domain is neccessary, but not sufficient, for promoter activation in mammalian cells.

  17. Disgust trait modulates frontal-posterior coupling as a function of disgust domain.

    PubMed

    Borg, Charmaine; de Jong, Peter J; Renken, Remco J; Georgiadis, Janniko R

    2013-03-01

    Following the two-stage model of disgust, 'core disgust' (e.g. elicited by rotten food) is extended to stimuli that remind us of our animal nature 'AR disgust' (e.g. mutilations, animalistic instincts). There is ample evidence that core and AR represent distinct domains of disgust elicitors. Moreover, people show large differences in their tendency to respond with disgust to potential disgust elicitors (propensity), as well as in their appraisal of experiencing disgust (sensitivity). Thus these traits may be important moderators of people's response patterns. Here, we aimed to find brain mechanisms associated with these distinct disgust domains and traits, as well as the interaction between them. The right ventrolateral occipitotemporal cortex, which preferentially responded to visual AR, was functionally coupled to the middle cingulate cortex (MCC), thalamus and prefrontal cortex (medial, dorsolateral), as a function of disgust domain. Coupling with the anterior part of MCC was modulated by disgust 'propensity', which was strongest during AR. Coupling with anterior insula and ventral premotor cortex was weaker, but relied fully on this domain-trait interaction. Disgust 'sensitivity' modulated left anterior insula activity irrespective of domain, and did not affect functional connectivity. Thus a frontal-posterior network that interacts with disgust 'propensity' dissects AR and core disgust.

  18. Structural and Functional Relationships between the Lectin and Arm Domains of Calreticulin*

    PubMed Central

    Pocanschi, Cosmin L.; Kozlov, Guennadi; Brockmeier, Ulf; Brockmeier, Achim; Williams, David B.; Gehring, Kalle

    2011-01-01

    Calreticulin and calnexin are key components in maintaining the quality control of glycoprotein folding within the endoplasmic reticulum. Although their lectin function of binding monoglucosylated sugar moieties of glycoproteins is well documented, their chaperone activity in suppressing protein aggregation is less well understood. Here, we use a series of deletion mutants of calreticulin to demonstrate that its aggregation suppression function resides primarily within its lectin domain. Using hydrophobic peptides as substrate mimetics, we show that aggregation suppression is mediated through a single polypeptide binding site that exhibits a Kd for peptides of 0.5–1 μm. This site is distinct from the oligosaccharide binding site and differs from previously identified sites of binding to thrombospondin and GABARAP (4-aminobutyrate type A receptor-associated protein). Although the arm domain of calreticulin was incapable of suppressing aggregation or binding hydrophobic peptides on its own, it did contribute to aggregation suppression in the context of the whole molecule. The high resolution x-ray crystal structure of calreticulin with a partially truncated arm domain reveals a marked difference in the relative orientations of the arm and lectin domains when compared with calnexin. Furthermore, a hydrophobic patch was detected on the arm domain that mediates crystal packing and may contribute to calreticulin chaperone function. PMID:21652723

  19. Structure-function studies of the lustrin A polyelectrolyte domains, RKSY and D4.

    PubMed

    Wustman, Brandon A; Weaver, James C; Morse, Daniel E; Evans, John Spencer

    2003-01-01

    The lustrin superfamily represents a unique group of biomineralization proteins localized between layered aragonite mineral plates (i.e., nacre layers) in mollusk shell. These proteins not only exhibit elastomeric behavior within the mineralized matrix, but also adhesion to the aragonite-containing composite layer. One member of the lustrin superfamily, Lustrin A, has been sequenced; the protein is organized into defined, modular sequence domains that are hypothesized to perform separate functions (i.e., force unfolding, mineral adhesion, intermolecular binding) within the Lustrin A protein. Using nuclear magnetic resonance (NMR) and in vitro mineralization assays, we investigated structure-function relationships for two Lustrin A putative mineral binding domains, the 30 AA Arg, Lys, Tyr, Ser-rich (RKSY) and the 24 AA Asp-rich (D4) sequence regions domain of the Lustrin A protein. The results indicate that both sequences adopt open, unfolded structures that represent either extended or random coil states. Using geologic calcite overgrowth assays and scanning electron microscopic analyses, we observe that the RKSY polypeptide does not significantly perturb calcium carbonate growth. However, the D4 domain does influence crystal growth in a concentration-dependent manner. Collectively, our data indicate that D4, and not the RKSY domain, exhibits structure-function activity consistent with a mineral binding region.

  20. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  1. THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)

    EPA Science Inventory

    A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...

  2. Activation of the exchange factor Ras-GRF by calcium requires an intact Dbl homology domain.

    PubMed

    Freshney, N W; Goonesekera, S D; Feig, L A

    1997-04-21

    Ras-GRF is a guanine nucleotide exchange factor that activates Ras proteins. Its activity on Ras in cells is enhanced upon calcium influx. Activation follows calcium-induced binding of calmodulin to an IQ motif near the N-terminus of Ras-GRF. Ras-GRF also contains a Dbl homology (DH) domain C-terminal to the IQ motif. In many proteins, DH domains act as exchange factors for Rho-GTPase family members. However, we failed to detect exchange activity of this domain on well characterized Rho family members. Instead, we found that mutations analogous to those that block exchange activity of Dbl prevented Ras-GRF activation by calcium/ calmodulin in vivo. All DH domains are followed immediately by a pleckstrin homology (PH) domain. We found that a mutation at a conserved site within the PH domain following the DH domain also prevented Ras-GRF activation by calcium in vivo. These results suggest that in addition to playing a role as activators of Rho proteins, DH domains can also contribute to the coupling of cellular signals to Ras activation.

  3. Identifying Similarities in Cognitive Subtest Functional Requirements: An Empirical Approach

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Parkin, Jason R.

    2007-01-01

    In the cognitive test interpretation literature, a Rational/Intuitive, Indirect Empirical, or Combined approach is typically used to construct conceptual taxonomies of the functional (behavioral) similarities between subtests. To address shortcomings of these approaches, the functional requirements for 49 subtests from six individually…

  4. Structural and functional comparisons of retroviral envelope protein C-terminal domains: still much to learn.

    PubMed

    Steckbeck, Jonathan D; Kuhlmann, Anne-Sophie; Montelaro, Ronald C

    2014-01-16

    Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.

  5. The domain organization of streptokinase: nuclear magnetic resonance, circular dichroism, and functional characterization of proteolytic fragments.

    PubMed Central

    Parrado, J.; Conejero-Lara, F.; Smith, R. A.; Marshall, J. M.; Ponting, C. P.; Dobson, C. M.

    1996-01-01

    Streptococcus equisimilis streptokinase (SK) is a bacterial protein of unknown tertiary structure and domain organization that is used extensively to treat acute myocardial infarction following coronary thrombosis. Six fragments of SK were generated by limited proteolysis with chymotrypsin and purified. NMR and CD experiments have shown that the secondary and tertiary structure present in the native molecule is preserved within all fragments, except the N-terminal fragment SK7. NMR spectra demonstrate the presence in SK of three structurally autonomous domains and a less structured C-terminal "tail." Cleavage within the N-terminal domain generates an N-terminal fragment, SK7, which remains noncovalently associated with the remainder of the molecule; in isolation, SK7 adopts an unfolded conformation. The abilities of these fragments to induce active site formation within human plasminogen upon formation of their heterodimeric complex were assayed. The lowest mass SK fragment exhibiting Plg-dependent activator activity was shown to be SK27 (mass 27,000, residues 147-380), which contains both central and C-terminal domains, although this activity was reduced approximately 6,000-fold relative to that of full-length SK. The activity of a 36,000 mass fragment, SK36 (residues 64-380), which differs from SK27 in possessing a portion of the N-terminal domain, was reduced to 0.1-1.0% of that of SK. Other fragments (masses 7,000, 11,000, 16,000, 17,000, 25,000, and 26,000), representing either single domains or single domains extended by portions of other domains, were inactive. However, SK7 (residues 1-63), at a 100-fold molar excess concentration, greatly potentiated the activities of SK27 and SK36, by up to 50- and > 130-fold, respectively. These findings demonstrate that all of SK's three domains are essential for native-like SK activity. The central and C-terminal domains mediate plasminogen-binding and active site-generating functions, whereas the N-terminal domain

  6. Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2).

    PubMed

    Mills, Ryan D; Mulhern, Terrence D; Liu, Fei; Culvenor, Janetta G; Cheng, Heung-Chin

    2014-04-01

    Genetic variations of leucine-rich repeat kinase 2 (LRRK2) are the major cause of dominantly inherited Parkinson disease (PD). LRRK2 protein contains seven predicted domains: a tandem Ras-like GTPase (ROC) domain and C-terminal of Roc (COR) domain, a protein kinase domain, and four repeat domains. PD-causative variations arise in all domains, suggesting that aberrant functioning of any domain can contribute to neurotoxic mechanisms of LRRK2. Determination of the three-dimensional structure of LRRK2 is one of the best avenues to decipher its neurotoxic mechanism. However, with the exception of the Roc domain, the three-dimensional structures of the functional domains of LRRK2 have yet to be determined. Based on the known three-dimensional structures of repeat domains of other proteins, the tandem Roc-COR domains of the Chlorobium tepidum Rab family protein, and the kinase domain of the Dictyostelium discoideum Roco4 protein, we predicted (1) the motifs essential for protein-protein interactions in all domains, (2) the motifs critical for catalysis and substrate recognition in the tandem Roc-COR and kinase domains, and (3) the effects of some PD-associated missense variations on the neurotoxic action of LRRK2. Results of our analysis provide a conceptual framework for future investigation into the regulation and the neurotoxic mechanism of LRRK2.

  7. UML Profiles for Design Decisions and Non-Functional Requirements

    SciTech Connect

    Zhu, Liming; Gorton, Ian

    2007-06-30

    A software architecture is composed of a collection of design decisions. Each design decision helps or hinders certain Non-Functional Requirements (NFR). Current software architecture views focus on expressing components and connectors in the system. Design decisions and their relationships with non-functional requirements are often captured in separate design documentation, not explicitly expressed in any views. This disassociation makes architecture comprehension and architecture evolution harder. In this paper, we propose a UML profile for modeling design decisions and an associated UML profile for modeling non-functional requirements in a generic way. The two UML profiles treat design decisions and nonfunctional requirements as first-class elements. Modeled design decisions always refer to existing architectural elements and thus maintain traceability between the two. We provide a mechanism for checking consistency over this traceability. An exemplar is given as

  8. Functional domains and motifs of bacterial type III effector proteins and their roles in infection.

    PubMed

    Dean, Paul

    2011-11-01

    A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.

  9. Cell surface expression and function of an HLA class II molecule with class I domain configuration

    PubMed Central

    1993-01-01

    Recombinant major histocompatibility complex (MHC) class II molecules were expressed with extracellular polypeptide domains reorganized to form heavy (H) and light (L) chains (alpha 1-beta 1-beta 2 and alpha 2) analogous to class I. Accurate protein folding and dimerization is demonstrated by the ability of this 3+1-DR1 construct to bind class II- restricted peptides and stimulate CD4+ T cells. Cell surface expression of a functional class II molecule consisting of H and L chains supports the validity of current class II models and affirms the evolutionary relatedness of class I/II. MHC functions that differ between class I/II may be influenced by domain configuration, and the use of domain- shifted constructs will allow examination of this possibility. PMID:8340763

  10. Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding

    SciTech Connect

    Zhai Q.; Robinson H.; Landesman M. B.; Sundquist W. I.; Hill C. P.

    2011-12-01

    Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NC{sup Gag} protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements. We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding. Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.

  11. Discrete domains of MARCH1 mediate its localization, functional interactions, and posttranscriptional control of expression.

    PubMed

    Jabbour, Maurice; Campbell, Erin M; Fares, Hanna; Lybarger, Lonnie

    2009-11-15

    Within APCs, ubiquitination regulates the trafficking of immune modulators such as MHC class II and CD86 (B7.2) molecules. MARCH1 (membrane-associated RING-CH), a newly identified ubiquitin E3 ligase expressed in APCs, ubiquitinates MHC class II, thereby reducing its surface expression. Following LPS-induced maturation of dendritic cells, MARCH1 mRNA is down-regulated and MHC class II is redistributed to the cell surface from endosomal compartments. Here, we show that MARCH1 expression is also regulated at the posttranscriptional level. In primary dendritic cell and APC cell lines of murine origin, MARCH1 had a half-life of <30 min. MARCH1 degradation appears to occur partly in lysosomes, since inhibiting lysosomal activity stabilized MARCH1. Similar stabilization was observed when MARCH1-expressing cells were treated with cysteine protease inhibitors. Mutational analyses of MARCH1 defined discrete domains required for destabilization, proper localization, and functional interaction with substrates. Taken together, these data suggest that MARCH1 expression is regulated at a posttranscriptional level by trafficking within the endolysosomal pathway where MARCH1 is proteolyzed. The short half-life of MARCH1 permits very rapid changes in the levels of the protein in response to changes in the mRNA, resulting in efficient induction of Ag presentation once APCs receive maturational signals.

  12. Direct injection of functional single-domain antibodies from E. coli into human cells.

    PubMed

    Blanco-Toribio, Ana; Muyldermans, Serge; Frankel, Gad; Fernández, Luis Ángel

    2010-12-08

    Intracellular proteins have a great potential as targets for therapeutic antibodies (Abs) but the plasma membrane prevents access to these antigens. Ab fragments and IgGs are selected and engineered in E. coli and this microorganism may be also an ideal vector for their intracellular delivery. In this work we demonstrate that single-domain Ab (sdAbs) can be engineered to be injected into human cells by E. coli bacteria carrying molecular syringes assembled by a type III protein secretion system (T3SS). The injected sdAbs accumulate in the cytoplasm of HeLa cells at levels ca. 10⁵-10⁶ molecules per cell and their functionality is shown by the isolation of sdAb-antigen complexes. Injection of sdAbs does not require bacterial invasion or the transfer of genetic material. These results are proof-of-principle for the capacity of E. coli bacteria to directly deliver intracellular sdAbs (intrabodies) into human cells for analytical and therapeutic purposes.

  13. Aircraft-store Electrical Interconnection System (AEIS) functional requirements

    NASA Astrophysics Data System (ADS)

    Perkins, J. R.; Lautner, D. E.

    1982-11-01

    This paper provides a summary of the work performed under an A2I2 (Aircraft Armament Interoperable Interface) contract sponsored by the Naval Weapon Center and Air Force Armament Laboratory for developing the aircraft-store electrical functional requirements which will be principally implemented by MIL-STD-1760. The paper provides an overview of the overall requirement drivers and then focuses on three principal electrical areas of the AEIS: The power interface, high bandwidth signaling, and digital data transfer. The paper provides insight on derivation of these requirements and supporting rationale in terms of drivers from existing store requirements, developmental store and technology trends, and traditional engineering approaches.

  14. Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain.

    PubMed

    Coonrod, Emily M; Graham, Laurie A; Carpp, Lindsay N; Carr, Tom M; Stirrat, Laura; Bowers, Katherine; Bryant, Nia J; Stevens, Tom H

    2013-11-25

    Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.

  15. Structure and function of regulator of G protein signaling homology domains.

    PubMed

    Tesmer, John J G

    2009-01-01

    All regulator of G protein signaling (RGS) proteins contain a conserved domain of approximately 130 amino acids that binds to activated heterotrimeric G protein α subunits (Gα) and accelerates their rate of GTP hydrolysis. Homologous domains are found in at least six other protein families, including a family of Rho guanine nucleotide exchange factors (RhoGEFs) and the G protein-coupled receptor kinases (GRKs). Although some of the RhoGEF and GRK RGS-like domains can also bind to activated Gα subunits, they do so in distinct ways and with much lower levels of GTPase activation. In other protein families, the domains have as of yet no obvious relationship to heterotrimeric G protein signaling. These RGS homology (RH) domains are now recognized as mediators of extraordinarily diverse protein-protein interactions. Through these interactions, they play roles that range from enzyme to molecular scaffold to signal transducing module. In this review, the atomic structures of RH domains from RGS proteins, Axins, RhoGEFs, and GRKs are compared in light of what is currently known about their functional roles.

  16. Statistics and frequency-domain moveout for multiple-taper receiver functions

    NASA Astrophysics Data System (ADS)

    Park, J.; Levin, V.

    2016-10-01

    The multiple-taper correlation (MTC) algorithm for the estimation of teleseismic receiver functions (RFs) has desirable statistical properties. This paper presents several adaptations to the MTC algorithm that exploit its frequency-domain uncertainty estimates to generate stable RFs that include moveout corrections for deeper interfaces. Narrow-band frequency averaging implicit in spectral cross-correlation restricts the MTC-based RF estimates to resolve Ps converted phases only at short delay times, appropriate to the upper 100 km of Earth's lithosphere. The Ps conversions from deeper interfaces can be reconstructed by the MTC algorithm in two ways. Event cross-correlation computes a cross-correlation of single-taper spectrum estimates for a cluster of events rather than for a set of eigenspectrum estimates of a single P coda. To extend the reach of the algorithm, pre-stack moveout corrections in the frequency domain preserves the formal uncertainties of the RF estimates, which are used to weight RF stacks. Moving-window migration retains the multiple-taper approach, but cross-correlates the P-polarized motion with time-delayed SH and SV motion to focus on a Ps phase of interest. The frequency-domain uncertainties of bin-averaged RFs do not translate directly into the time domain. A jackknife over data records in each bin stack offers uncertainty estimates in the time domain while preserving uncertainty weighting in the frequency-domain RF stack.

  17. The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function

    PubMed Central

    Weiner, Joshua J.; Han, Lanlan; Peterson, Francis C.; Volkman, Brian F.; Silvaggi, Nicholas R.; Ulijasz, Andrew T.

    2015-01-01

    Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains. PMID:25875291

  18. Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains.

    PubMed

    Lavoie, Hugo; Debeane, Francois; Trinh, Quoc-Dien; Turcotte, Jean-Francois; Corbeil-Girard, Louis-Philippe; Dicaire, Marie-Josée; Saint-Denis, Anik; Pagé, Martin; Rouleau, Guy A; Brais, Bernard

    2003-11-15

    Mutations causing expansions of polyalanine domains are responsible for nine hereditary diseases. Other GC-rich sequences coding for some polyalanine domains were found to be polymorphic in human. These observations prompted us to identify all sequences in the human genome coding for polyalanine stretches longer than four alanines and establish their degree of polymorphism. We identified 494 annotated human proteins containing 604 polyalanine domains. Thirty-two percent (31/98) of tested sequences coding for more than seven alanines were polymorphic. The length of the polyalanine-coding sequence and its GCG or GCC repeat content are the major predictors of polymorphism. GCG codons are over-represented in human polyalanine coding sequences. Our data suggest that GCG and GCC codons play a key role in polyalanine-coding sequence appearance and polymorphism. The grouping by shared function of polyalanine-containing proteins in Homo sapiens, Drosophila melanogaster and Caenorhabditis elegans shows that the majority are involved in transcriptional regulation. Phylogenetic analyses of HOX, GATA and EVX protein families demonstrate that polyalanine domains arose independently in different members of these families, suggesting that convergent molecular evolution may have played a role. Finally polyalanine domains in vertebrates are conserved between mammals and are rarer and shorter in Gallus gallus and Danio rerio. Together our results show that the polymorphic nature of sequences coding for polyalanine domains makes them prime candidates for mutations in hereditary diseases and suggests that they have appeared in many different protein families through convergent evolution.

  19. Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty.

    PubMed

    Chen, Yen-Shan; Racca, Joseph D; Sequeira, Paul W; Phillips, Nelson B; Weiss, Michael A

    2013-08-13

    The male program of therian mammals is determined by Sry, a transcription factor encoded by the Y chromosome. Specific DNA binding is mediated by a high mobility group (HMG) box. Expression of Sry in the gonadal ridge activates a Sox9-dependent gene regulatory network leading to testis formation. A subset of Sry alleles in superfamily Muroidea (order Rodentia) is remarkable for insertion of an unstable DNA microsatellite, most commonly encoding (as in mice) a CAG repeat-associated glutamine-rich domain. We provide evidence, based on an embryonic pre-Sertoli cell line, that this domain functions at a threshold length as a genetic capacitor to facilitate accumulation of variation elsewhere in the protein, including the HMG box. The glutamine-rich domain compensates for otherwise deleterious substitutions in the box and absence of nonbox phosphorylation sites to ensure occupancy of DNA target sites. Such compensation enables activation of a male transcriptional program despite perturbations to the box. Whereas human SRY requires nucleocytoplasmic shuttling and coupled phosphorylation, mouse Sry contains a defective nuclear export signal analogous to a variant human SRY associated with inherited sex reversal. We propose that the rodent glutamine-rich domain has (i) fostered accumulation of cryptic intragenic variation and (ii) enabled unmasking of such variation due to DNA replicative slippage. This model highlights genomic contingency as a source of protein novelty at the edge of developmental ambiguity and may underlie emergence of non-Sry-dependent sex determination in the radiation of Muroidea.

  20. Functional characterization of heat-shock protein 90 from Oryza sativa and crystal structure of its N-terminal domain.

    PubMed

    Raman, Swetha; Suguna, Kaza

    2015-06-01

    Heat-shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is essential for the normal functioning of eukaryotic cells. It plays crucial roles in cell signalling, cell-cycle control and in maintaining proteome integrity and protein homeostasis. In plants, Hsp90s are required for normal plant growth and development. Hsp90s are observed to be upregulated in response to various abiotic and biotic stresses and are also involved in immune responses in plants. Although there are several studies elucidating the physiological role of Hsp90s in plants, their molecular mechanism of action is still unclear. In this study, biochemical characterization of an Hsp90 protein from rice (Oryza sativa; OsHsp90) has been performed and the crystal structure of its N-terminal domain (OsHsp90-NTD) was determined. The binding of OsHsp90 to its substrate ATP and the inhibitor 17-AAG was studied by fluorescence spectroscopy. The protein also exhibited a weak ATPase activity. The crystal structure of OsHsp90-NTD was solved in complex with the nonhydrolyzable ATP analogue AMPPCP at 3.1 Å resolution. The domain was crystallized by cross-seeding with crystals of the N-terminal domain of Hsp90 from Dictyostelium discoideum, which shares 70% sequence identity with OsHsp90-NTD. This is the second reported structure of a domain of Hsp90 from a plant source.

  1. Differentiating plant cells switched to proliferation remodel the functional organization of nuclear domains.

    PubMed

    Testillano, P S; González-Melendi, P; Coronado, M J; Seguí-Simarro, J M; Moreno-Risueño, M A; Risueño, M C

    2005-01-01

    The immature pollen grain, the microspore, under stress conditions can switch its developmental program towards proliferation and embryogenesis. The comparison between the gametophytic and sporophytic pathways followed by the microspore permitted us to analyse the nuclear changes in plant differentiating cells when switched to proliferation. The nucleus is highly dynamic, the architecture of its well organised functional domains--condensed chromatin, interchromatin region, nuclear bodies and nucleolus--changing in response to DNA replication, RNA transcription, processing and transport. In the present work, the rearrangements of the nuclear domains during the switch to proliferation have been determined by in situ molecular identification methods for the subcellular localization of chromatin at different functional states, rDNA, elements of the nuclear machinery (PCNA, splicing factors), signalling and stress proteins. The study of the changes in the nuclear domains was determined by a correlative approach at confocal and electron microscopy levels. The results showed that the switch of the developmental program and the activation of the proliferative activity affected the functional organization of the nuclear domains, which accordingly changed their architecture and functional state. A redistribution of components, among them various signalling molecules which targeted structures within the interchromatin region upon translocation from the cytoplasm, was also observed.

  2. Wavelet Domain Image Reconstruction by Compactly-Supported Radial Basis Functions

    NASA Astrophysics Data System (ADS)

    Diago, Luis A.; Kitago, Masaki; Hagiwara, Ichiro

    In this paper we propose the use of wavelets to accelerate the solution of the System of Linear Algebraic Equations that arise from the formulation of the problem of image interpolation from scattered data by means of Compactly-Supported Radial Basis Functions. Examples demonstrate the superiority of the solution in the wavelet domain using preconditioned iterative Krylov methods.

  3. Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media

    EPA Science Inventory

    Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...

  4. An Examination of the Domain of Multivariable Functions Using the Pirie-Kieren Model

    ERIC Educational Resources Information Center

    Sengul, Sare; Yildiz, Sevda Goktepe

    2016-01-01

    The aim of this study is to employ the Pirie-Kieren model so as to examine the understandings relating to the domain of multivariable functions held by primary school mathematics preservice teachers. The data obtained was categorized according to Pirie-Kieren model and demonstrated visually in tables and bar charts. The study group consisted of…

  5. Diet-induced docosahexaenoic acid non-raft domains and lymphocyte function.

    PubMed

    Raza Shaikh, Saame

    2010-01-01

    Docosahexaenoic acid (DHA) is an n-3 polyunsaturated fatty acid (PUFA) that generally suppresses the function of T lymphocytes and antigen presenting cells (APCs). An emerging mechanism by which DHA modifies lymphocyte function is through changes in the organization of sphingolipid/cholesterol lipid raft membrane domains. Two contradictory models have been proposed to explain how DHA exerts its effects through changes in raft organization. The biophysical model, developed in model membranes, shows that DHA-containing phospholipids form unique non-raft membrane domains, that are organizationally distinct from lipid rafts, which serve to alter the conformation and/or lateral organization of lymphocyte proteins. In contrast, the cellular model on DHA and rafts shows that DHA suppresses lymphocyte function, in part, by directly incorporating into lipid rafts and altering protein activity. To reconcile opposing biophysical and cellular viewpoints, a major revision to existing models is presented herein. Based largely on quantitative microscopy data, it is proposed that DHA, consumed through the diet, modifies lymphocyte function, in part, through the formation of nanometer scale DHA-rich domains. These nano-scale domains disrupt the optimal raft-dependent clustering of proteins necessary for initial signaling. The data covered in this review highlights the importance of understanding how dietary n-3 PUFAs modify lymphocyte membranes, which is essential toward developing these fatty acids as therapeutic agents for treating inflammatory diseases.

  6. Functional diversity of Robo receptor immunoglobulin domains promotes distinct axon guidance decisions.

    PubMed

    Evans, Timothy A; Bashaw, Greg J

    2010-03-23

    Recognition molecules of the immunoglobulin (Ig) superfamily control axon guidance in the developing nervous system. Ig-like domains are among the most widely represented protein domains in the human genome, and the number of Ig superfamily proteins is strongly correlated with cellular complexity. In Drosophila, three Roundabout (Robo) Ig superfamily receptors respond to their common Slit ligand to regulate axon guidance at the midline: Robo and Robo2 mediate midline repulsion, Robo2 and Robo3 control longitudinal pathway selection, and Robo2 can promote midline crossing. How these closely related receptors mediate distinct guidance functions is not understood. We report that the differential functions of Robo2 and Robo3 are specified by their ectodomains and do not reflect differences in cytoplasmic signaling. Functional modularity of Robo2's ectodomain facilitates multiple guidance decisions: Ig1 and Ig3 of Robo2 confer lateral positioning activity, whereas Ig2 confers promidline crossing activity. Robo2's distinct functions are not dependent on greater Slit affinity but are instead due in part to differences in multimerization and receptor-ligand stoichiometry conferred by Robo2's Ig domains. Together, our findings suggest that diverse responses to the Slit guidance cue are imparted by intrinsic structural differences encoded in the extracellular Ig domains of the Robo receptors.

  7. Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig™) molecule.

    PubMed

    Jakob, Clarissa G; Edalji, Rohinton; Judge, Russell A; DiGiammarino, Enrico; Li, Yingchun; Gu, Jijie; Ghayur, Tariq

    2013-01-01

    Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general.

  8. Function of the CysD domain of the gel-forming MUC2 mucin

    PubMed Central

    Ambort, Daniel; van der Post, Sjoerd; Johansson, Malin E. V.; MacKenzie, Jenny; Thomsson, Elisabeth; Krengel, Ute; Hansson, Gunnar C.

    2011-01-01

    The colonic human MUC2 mucin forms a polymeric gel by covalent disulfide bonds in its N- and C-termini. The middle part of MUC2 is largely composed of two highly O-glycosylated mucin domains that are interrupted by a CysD domain of unknown function. We studied its function as recombinant proteins fused to a removable immunoglobulin Fc domain. Analysis of affinity-purified fusion proteins by native gel electrophoresis and gel filtration showed that they formed oligomeric complexes. Analysis of the individual isolated CysD parts showed that they formed dimers both when flanked by two MUC2 tandem repeats and without these. Cleavages of the two non-reduced CysD fusion proteins and analysis by MS revealed the localization of all five CysD disulfide bonds and that the predicted C-mannosylated site was not glycosylated. All disulfide bonds were within individual peptides showing that the domain was stabilized by intramolecular disulfide bonds and that CysD dimers were of non-covalent nature. These observations suggest that CysD domains act as non-covalent cross-links in the MUC2 gel, thereby determining the pore sizes of the mucus. PMID:21338337

  9. Functional hierarchy of two L domains in Porcine Endogenous Retrovirus (PERV) that influence release and infectivity

    PubMed Central

    Marcucci, Katherine T.; Martina, Yuri; Harrison, Frank; Wilson, Carolyn A.

    2008-01-01

    The Porcine Endogenous Retrovirus (PERV) Gag protein contains two late (L) domain motifs, PPPY and P(F/S)AP. Using viral release assays we demonstrate that PPPY is the dominant L domain involved in PERV release. PFAP represents a novel retroviral L domain variant and is defined by abnormal viral assembly phenotypes visualized by electron microscopy and attenuation of early PERV release as measured by viral genomes. PSAP is functionally dominant over PFAP in early PERV release. PSAP virions are 3.5-fold more infectious in vitro by TCID50 and in vivo results in more RNA positive tissues and higher levels of proviral DNA using our human PERV-A receptor (HuPAR-2) transgenic mouse model (Martina et al., 2006. Journal of Virology. 80: 3135-46). The functional hierarchies displayed by PERV L domains, demonstrates that L domain selection in viral evolution exists to promote efficient viral assembly, release and infectivity in the virus-host context. PMID:18355887

  10. Higher order smooth fitting for the convex cavities in the multiply connected plane domain by multiple functions

    NASA Astrophysics Data System (ADS)

    Cao, Jialian; Wan, Chaoyan; Zhao, Wenzhong

    2013-07-01

    In order to satisfy different engineering applications, a new higher order smooth fitting method for the convex cavities in the multiply connected plane domain by multiple functions is put forward. For the boundaries of convex cavities in the multiply connected domain--every close domain, the unique fitting function KS, is represented with some fitting precision controlled by only one single parameter (Rho). The fitted smooth figure can be drawn according to the function.

  11. The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae.

    PubMed

    Yang, Fenghuan; Tian, Fang; Li, Xiaotong; Fan, Susu; Chen, Huamin; Wu, Maosen; Yang, Ching-Hong; He, Chenyang

    2014-06-01

    Degenerate GGDEF and EAL domain proteins represent major types of cyclic diguanylic acid (c-di-GMP) receptors in pathogenic bacteria. Here, we characterized a FimX-like protein (Filp) which possesses both GGDEF and EAL domains in Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice. Both in silico analysis and enzyme assays indicated that the GGDEF and EAL domains of Filp were degenerate and enzymatically inactive. However, Filp bound to c-di-GMP efficiently within the EAL domain, where Q(477), E(653), and F(654) residues were crucial for the binding. Deletion of the filp gene in X. oryzae pv. oryzae resulted in attenuated virulence in rice and reduced type III secretion system (T3SS) gene expression. Complementation analysis with different truncated proteins indicated that REC, PAS, and EAL domains but not the GGDEF domain were required for the full activity of Filp in vivo. In addition, a PilZ-domain protein (PXO_02715) was identified as a Filp interactor by yeast two-hybrid and glutathione-S-transferase pull-down assays. Deletion of the PXO_02715 gene demonstrated changes in bacterial virulence and T3SS gene expression similar to Δfilp. Moreover, both mutants were impaired in their ability to induce hypersensitive response in nonhost plants. Thus, we concluded that Filp was a novel c-di-GMP receptor of X. oryzae pv. oryzae, and its function to regulate bacterial virulence expression might be via the interaction with PXO_02715.

  12. Discoidin domain receptor 2 (DDR2) is required for maintenance of spermatogenesis in male mice.

    PubMed

    Kano, Kiyoshi; Kitamura, Ayami; Matsuwaki, Takashi; Morimatsu, Masami; Naito, Kunihiko

    2010-01-01

    Discoidin domain receptor 2 (DDR2) is a receptor tyrosine kinase (RTK). We recently identified homozygous smallie mutant mice (BKS.HRS. Ddr2(slie/slie)/J, Ddr2(slie/slie) mutants), which lack a functional DDR2. Ddr2(slie/slie) mutant mice are dwarfed and infertile due to peripheral dysregulation of the endocrine system. To understand the role of DDR2 signaling in spermatogenesis, we studied the expression of several receptors, enzymes, and proteins related to spermatogenesis in wild-type and Ddr2(slie/slie) mutant mice at 10 weeks and 5 months of age. DDR2 were expressed in adult wild-type male mice in Leydig cells. The number of differentiated spermatozoa in the seminal fluid was significantly lower in the Ddr2(slie/slie) mutant mice than in the wild-type mice. The number of TUNEL-positive cells was significantly greater in 5-month-old Ddr2(slie/slie) mutants. Testosterone was significantly reduced at 5 months of age, but LH was similar in both types of mice at both 10 weeks and 5 months of age. The expression levels of LH receptors (Lhcgr), StAR, P450scc, and Hsd3beta6 were not significantly different between the two types of mice at 10 weeks of age, but they were significantly reduced in 5-month-old Ddr2(slie/slie) mutants compared to wild-type mice of the same age. DDR2 was expressed in the Leydig cells of adult wild-type male mice. In conclusion, our results indicated that DDR2 signaling plays a critical role in the maintenance of male spermatogenesis.

  13. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  14. In situ dissection of RNA functional subunits by domain-specific chromatin isolation by RNA purification (dChIRP).

    PubMed

    Quinn, Jeffrey J; Chang, Howard Y

    2015-01-01

    Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a technique for dissecting the functional domains of a target RNA in situ. For an RNA of interest, dChIRP can identify domain-level intramolecular and intermolecular RNA-RNA, RNA-protein, and RNA-DNA interactions and maps the RNA's genomic binding sites with higher precision than domain-agnostic methods. We illustrate how this technique has been applied to the roX1 lncRNA to resolve its domain-level architecture, discover its protein- and chromatin-interacting domains, and map its occupancy on the X chromosome.

  15. Harmonic Analysis and H2-Functions on Siegel Domains of Type II

    PubMed Central

    Ogden, R. D.; Vági, S.

    1972-01-01

    It is known that the distinguished boundary of a Siegel domain of type II can be identified with a simply connected nilpotent Lie group of step two. The Plancherel formula for this group and the irreducible unitary representations which enter into that formula are determined. The H2-space of the domain and its Szegö kernel are characterized in terms of the harmonic analysis of the above group, in particular, the integral representations for H2-functions due to Gindikin and Korányi-Stein are shown to be instances of the Fourier inversion formula. PMID:16591961

  16. Phosphatidylserine exposure is required for ADAM17 sheddase function

    PubMed Central

    Sommer, Anselm; Kordowski, Felix; Büch, Joscha; Maretzky, Thorsten; Evers, Astrid; Andrä, Jörg; Düsterhöft, Stefan; Michalek, Matthias; Lorenzen, Inken; Somasundaram, Prasath; Tholey, Andreas; Sönnichsen, Frank D.; Kunzelmann, Karl; Heinbockel, Lena; Nehls, Christian; Gutsmann, Thomas; Grötzinger, Joachim; Bhakdi, Sucharit; Reiss, Karina

    2016-01-01

    ADAM17, a prominent member of the ‘Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca2+ elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function. PMID:27161080

  17. What is the minimal vestibular function required for compensation?

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Nashner, L. M.

    1996-01-01

    Living with an uncompensated, abnormal vestibular system requires oppressive modification of life style and often prevents return to work and activities of daily living. Patients with vestibular abnormalities were studied to determine the minimal residual vestibular function required to achieve compensation. Three groups of patients with (a) complete unilateral loss of vestibular function with normal horizontal canal-vestibulo-ocular (HCVOR) function in the opposite ear, (b) complete unilateral loss with abnormal HCVOR function in the opposite ear, and (c) bilateral reduction of vestibular function from aminoglycoside toxicity underwent vestibuloocular (VOR), optokinetic (OKN), visual-VOR (VVOR), and computerized dynamic posturography (CDP) tests before and after therapeutic procedures. Results suggest that a minimal VOR response amplitude must be present for compensation of VVOR function to occur. The roles of VOR and OKN phase shifts in vestibular compensation are more complicated and require further study. Compensation of vestibulospinal function does not necessarily accompany VOR or VVOR compensation. Ascending and descending vestibular compensatory mechanisms may involve different spatial sensory inputs. Results of these studies have important implications for the diagnosis and treatment of patients with vestibular disorders, including selection and monitoring of patients for therapeutic regimens such as vestibular nerve section and streptomycin therapy.

  18. Structural and functional characterization of the monomeric U-box domain from E4B†

    PubMed Central

    Nordquist, Kyle A.; Dimitrova, Yoana N.; Brzovic, Peter S.; Ridenour, Whitney B.; Munro, Kim A.; Soss, Sarah E.; Caprioli, Richard M.; Klevit, Rachel E.; Chazin, Walter J.

    2009-01-01

    Substantial evidence has accumulated indicating a significant role for oligomerization in the function of E3 ubiquitin ligases. Among the many characterized E3 ligases, the yeast U-box protein Ufd2 and its mammalian homolog E4B appear to be unique in functioning as monomers. An E4B U-box domain construct (E4BU) has been sub-cloned, over-expressed in E. Coli and purified, which enabled determination of a high resolution NMR solution structure and detailed biophysical analysis. E4BU is a stable monomeric protein that folds into the same structure observed for other structurally characterized U-box domains, all of which are homodimers. Multiple sequence alignment combined with comparative structural analysis reveals substitutions in the sequence that inhibit dimerization. The interaction between E4BU and the E2 conjugating enzyme UbcH5c has been mapped using NMR and this data has been used to generate a structural model for the complex. The E2 binding site is found to be similar to that observed for dimeric U-box and RING domain E3 ligases. Despite the inability to dimerize, E4BU was found to be active in a standard autoubiquitination assay. The structure of E4BU and its ability to function as a monomer are discussed in light of the ubiquitous observation of U-box and RING domain oligomerization. PMID:20017557

  19. Disgust trait modulates frontal-posterior coupling as a function of disgust domain

    PubMed Central

    de Jong, Peter J.; Renken, Remco J.; Georgiadis, Janniko R.

    2013-01-01

    Following the two-stage model of disgust, ‘core disgust’ (e.g. elicited by rotten food) is extended to stimuli that remind us of our animal nature ‘AR disgust’ (e.g. mutilations, animalistic instincts). There is ample evidence that core and AR represent distinct domains of disgust elicitors. Moreover, people show large differences in their tendency to respond with disgust to potential disgust elicitors (propensity), as well as in their appraisal of experiencing disgust (sensitivity). Thus these traits may be important moderators of people's response patterns. Here, we aimed to find brain mechanisms associated with these distinct disgust domains and traits, as well as the interaction between them. The right ventrolateral occipitotemporal cortex, which preferentially responded to visual AR, was functionally coupled to the middle cingulate cortex (MCC), thalamus and prefrontal cortex (medial, dorsolateral), as a function of disgust domain. Coupling with the anterior part of MCC was modulated by disgust ‘propensity’, which was strongest during AR. Coupling with anterior insula and ventral premotor cortex was weaker, but relied fully on this domain–trait interaction. Disgust ‘sensitivity’ modulated left anterior insula activity irrespective of domain, and did not affect functional connectivity. Thus a frontal-posterior network that interacts with disgust ‘propensity’ dissects AR and core disgust. PMID:22258801

  20. The function of Glu338 in the catalytic triad of the carbamoyl phosphate synthetase amidotransferase domain.

    PubMed

    Hewagama, A; Guy, H I; Chaparian, M; Evans, D R

    1998-11-10

    The synthesis of carbamoyl phosphate by the mammalian multifunctional protein, CAD, involves the concerted action of the 40 kDa amidotransferase domain (GLN), that hydrolyzes glutamine and the 120 kDa synthetase (CPS) domain that uses the ammonia, thus produced, ATP and bicarbonate to make carbamoyl phosphate. The separately cloned GLN domain has very low activity due to a reduction in kcat and an increase in Km but forms a hybrid complex with the isolated Escherichia coli CPS subunit. The hybrid has full glutamine-dependent catalytic activity and a functional interdomain linkage. The mammalian-E. coli hybrid was used to investigate the functional consequence of replacing His336 and Glu338, two residues postulated to participate in catalysis as part of a catalytic triad. The mutant mammalian GLN domains formed stable complexes with the E. coli CPS subunit, but the catalytic activity was severely impaired. While the His336Asn mutant does not form measurable amounts of the gamma-glutamyl thioester, the steady state concentration of the intermediate with the Glu338Gly mutant was comparable to the wild type hybrid because both the rate of formation and breakdown of the thioester are reduced. This result is consistent with the postulated role of Glu338 in maintaining His336 in the optimal orientation for catalysis and suggests a mechanism for the GLN CPS functional linkage.

  1. Distinct Domains of Yeast Cortical Tag Proteins Bud8p and Bud9p Confer Polar Localization and Functionality

    PubMed Central

    Krappmann, Anne-Brit; Taheri, Naimeh; Heinrich, Melanie

    2007-01-01

    In Saccharomyces cerevisiae, diploid yeast cells follow a bipolar budding program, which depends on the two transmembrane glycoproteins Bud8p and Bud9p that potentially act as cortical tags to mark the cell poles. Here, we have performed systematic structure-function analyses of Bud8p and Bud9p to identify functional domains. We find that polar transport of Bud8p and Bud9p does not depend on N-terminal sequences but instead on sequences in the median part of the proteins and on the C-terminal parts that contain the transmembrane domains. We show that the guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange factor Bud5p, which is essential for bud site selection and physically interacts with Bud8p, also interacts with Bud9p. Regions of Bud8p and Bud9p predicted to reside in the extracellular space are likely to confer interaction with the N-terminal region of Bud5p, implicating indirect interactions between the cortical tags and the GDP/GTP exchange factor. Finally, we have identified regions of Bud8p and Bud9p that are required for interaction with the cortical tag protein Rax1p. In summary, our study suggests that Bud8p and Bud9p carry distinct domains for delivery of the proteins to the cell poles, for interaction with the general budding machinery and for association with other cortical tag proteins. PMID:17581861

  2. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  3. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes

    SciTech Connect

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E.

    2010-11-15

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  4. Structural and functional relationships of the steroid hormone receptors’ N-terminal transactivation domain

    PubMed Central

    Kumar, Raj; Litwack, Gerald

    2009-01-01

    Steroid hormone receptors are members of a family of ligand inducible transcription factors, and regulate the transcriptional activation of target genes by recruiting coregulatory proteins to the pre-initiation machinery. The binding of these coregulatory proteins to the steroid hormone receptors is often mediated through their two activation functional domains, AF1, which resides in the N-terminal domain, and the ligand-dependent AF2, which is localized in the C-terminal ligand binding domain. Compared to other important functional domains of the steroid hormone receptors, our understanding of the mechanisms of action of the AF1 are incomplete, in part, due to the fact that, in solution, AF1 is intrinsically disordered (ID). However, recent studies have shown that AF1 must adopt a functionally active and folded conformation for its optimal activity under physiological conditions. In this review, we summarize and discuss current knowledge regarding the molecular mechanisms of AF1-mediated gene activation, focusing on AF1 conformation and coactivator binding. We further propose models for the binding/folding of the AF1 domains of the steroid hormone receptors and their protein-protein interactions. The population of ID AF1 can be visualized as a collection of many different conformations, some of which may be assuming the proper functional folding for other critical target binding partners that result in ultimate assembly of AF1:coactivator complexes and subsequent gene regulation. Knowledge of the mechanisms involved therein will significantly help in understanding how signals from a steroid to a specific target gene are conveyed. PMID:19666041

  5. Mediating effects of the ICF domain of function and the gross motor function measure on the ICF domains of activity, and participation in children with cerebral palsy.

    PubMed

    Lee, Byoung-Hee; Kim, Yu-Mi; Jeong, Goo-Churl

    2015-10-01

    [Purpose] This study aimed to evaluate the mediating effect of gross motor function, measured using the Gross Motor Function Measure (GMFM) and of general function, measured using the International Classification of Functioning, Disability and Health-Child and Youth Check List (ICF-CY), on the ICF domains of activity and participation in children with cerebral palsy (CP). [Subjects] Ninety-five children with CP, from Seoul, Korea, participated in the study. [Methods] The GMFM was administered in its entirety to patients without orthoses or mobility aids. The ICF-CY was used to evaluate the degree of disability and health of subjects. [Results] GMFM score and ICF-CY function were negatively correlated to ICF-CY activity and participation. ICF-CY partially mediated the effects of the GMFM on activity and participation. [Conclusion] When establishing a treatment plan for a child with CP, limitations in activity and participation, as described by the ICF-CY, should be considered in addition to the child's physical abilities and development. In addition, the treatment plan should focus on increasing the child's activity and participation level, as well as his/her physical level.

  6. Domain architecture of a Caenorhabditis elegans AKAP suggests a novel AKAP function.

    PubMed

    Herrgård, S; Jambeck, P; Taylor, S S; Subramaniam, S

    2000-12-08

    A-kinase anchoring proteins (AKAPs) are adapter proteins that are involved in directing cAMP-dependent protein kinase and some other signaling enzymes to certain intracellular locations. In this study, we investigate the domain architecture of an AKAP from Caenorhabditis elegans (AKAP(CE)). We show that AKAP(CE) shares two domains with the Smad anchor for receptor activation, a FYVE-finger and a transforming growth factor beta (TGFbeta) receptor binding domain, suggesting that AKAP(CE) may interact with a receptor belonging to the TGFbeta receptor family. This predicted novel AKAP function supports the recent view of AKAPs as adapter proteins that can be involved in various signaling pathways.

  7. Stability of a pinned magnetic domain wall as a function of its internal configuration

    SciTech Connect

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M.; Childress, J. R.

    2015-01-14

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  8. Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses

    PubMed Central

    Nguyen, Quynh-Anh; Horn, Meryl E; Nicoll, Roger A

    2016-01-01

    Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively. DOI: http://dx.doi.org/10.7554/eLife.19236.001 PMID:27805570

  9. Distinct roles for extracellular and intracellular domains in neuroligin function at inhibitory synapses.

    PubMed

    Nguyen, Quynh-Anh; Horn, Meryl E; Nicoll, Roger A

    2016-11-02

    Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that interact trans-synaptically with neurexins to mediate synapse development and function. NLGN2 is only at inhibitory synapses while NLGN3 is at both excitatory and inhibitory synapses. We found that NLGN3 function at inhibitory synapses in rat CA1 depends on the presence of NLGN2 and identified a domain in the extracellular region that accounted for this functional difference between NLGN2 and 3 specifically at inhibitory synapses. We further show that the presence of a cytoplasmic tail (c-tail) is indispensible, and identified two domains in the c-tail that are necessary for NLGN function at inhibitory synapses. These domains point to a gephyrin-dependent mechanism that is disrupted by an autism-associated mutation at R705 and a gephyrin-independent mechanism reliant on a putative phosphorylation site at S714. Our work highlights unique and separate roles for the extracellular and intracellular regions in specifying and carrying out NLGN function respectively.

  10. Orbit targeting specialist function: Level C formulation requirements

    NASA Technical Reports Server (NTRS)

    Dupont, A.; Mcadoo, S.; Jones, H.; Jones, A. K.; Pearson, D.

    1978-01-01

    A definition of the level C requirements for onboard maneuver targeting software is provided. Included are revisions of the level C software requirements delineated in JSC IN 78-FM-27, Proximity Operations Software; Level C Requirements, dated May 1978. The software supports the terminal phase midcourse (TPM) maneuver, braking and close-in operations as well as supporting computation of the rendezvous corrective combination maneuver (NCC), and the terminal phase initiation (TPI). Specific formulation is contained here for the orbit targeting specialist function including the processing logic, linkage, and data base definitions for all modules. The crew interface with the software is through the keyboard and the ORBIT-TGT display.

  11. The Dimerization Domain in DapE Enzymes Is required for Catalysis

    PubMed Central

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C.; Olsen, Kenneth W.; Joachimiak, Andrzej; Holz, Richard C.

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate. PMID:24806882

  12. The dimerization domain in DapE enzymes is required for catalysis.

    PubMed

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  13. The Dc-Module of Doublecortin: Dynamics, Domain Boundaries, and Functional Implications

    SciTech Connect

    Cierpicki,T.; Kim, M.; Cooper, D.; Derewenda, U.; Bushweller, J.; Derwenda, Z.

    2007-01-01

    The doublecortin-like (DC) domains, which usually occur in tandem, constitute novel microtubule-binding modules. They were first identified in doublecortin (DCX), a protein expressed in migrating neurons, and in the doublecortin-like kinase (DCLK). They are also found in other proteins, including the RP1 gene product which-when mutated-causes a form of inherited blindness. We previously reported an X-ray structure of the N-terminal DC domain of DCLK (N-DCLK), and a solution structure of an analogous module of human doublecortin (N-DCX). These studies showed that the DC domain has a tertiary fold closely reminiscent of ubiquitin and similar to several GTPase-binding domains. We now report an X-ray structure of a mutant of N-DCX, in which the C-terminal fragment (residues 139-147) unexpectedly shows an altered, 'open' conformation. However, heteronuclear NMR data show that this C-terminal fragment is only transiently open in solution, and assumes a predominantly 'closed' conformation. While the 'open' conformation may be artificially stabilized by crystal packing interactions, the observed switching between the 'open' and 'closed' conformations, which shortens the linker between the two DC-domains by {approx}20 A, is likely to be of functional importance in the control of tubulin polymerization and microtubule bundling by doublecortin.

  14. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    PubMed Central

    Rye-McCurdy, Tiffiny; Olson, Erik D.; Liu, Shuohui; Binkley, Christiana; Reyes, Joshua-Paolo; Thompson, Brian R.; Flanagan, John M.; Parent, Leslie J.; Musier-Forsyth, Karin

    2016-01-01

    Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity. PMID:27657107

  15. Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening

    PubMed Central

    Ma, Linlin; Yang, Fan; Vu, Simon; Zheng, Jie

    2016-01-01

    TRPV1 is a polymodal nociceptor for diverse physical and chemical stimuli that interact with different parts of the channel protein. Recent cryo-EM studies revealed detailed channel structures, opening the door for mapping structural elements mediating activation by each stimulus. Towards this goal, here we have combined unstructured peptide-insertion screening (UPS) with electrophysiological and fluorescence recordings to explore structural and functional roles of the intracellular regions of TRPV1 in mediating various activation stimuli. We found that most of the tightly packed protein regions did not tolerate structural perturbation by UPS when tested, indicating that structural integrity of the intracellular region is critical. In agreement with previous reports, Ca2+-dependent desensitization is strongly dependent on both intracellular N- and C-terminal domains; insertions of an unstructured peptide between these domains and the transmembrane core domain nearly eliminated Ca2+-dependent desensitization. In contrast, channel activations by capsaicin, low pH, divalent cations, and even heat are mostly intact in mutant channels containing the same insertions. These observations suggest that the transmembrane core domain of TRPV1, but not the intracellular domains, is responsible for sensing these stimuli. PMID:27666400

  16. Crystal structure of a functional dimer of the PhoQ sensor domain.

    PubMed

    Cheung, Jonah; Bingman, Craig A; Reyngold, Marsha; Hendrickson, Wayne A; Waldburger, Carey D

    2008-05-16

    The PhoP-PhoQ two-component system is a well studied bacterial signaling system that regulates virulence and stress response. Catalytic activity of the histidine kinase sensor protein PhoQ is activated by low extracellular concentrations of divalent cations such as Mg2+, and subsequently the response regulator PhoP is activated in turn through a classic phosphotransfer pathway that is typical in such systems. The PhoQ sensor domains of enteric bacteria contain an acidic cluster of residues (EDDDDAE) that has been implicated in direct binding to divalent cations. We have determined crystal structures of the wild-type Escherichia coli PhoQ periplasmic sensor domain and of a mutant variant in which the acidic cluster was neutralized to conservative uncharged residues (QNNNNAQ). The PhoQ domain structure is similar to that of DcuS and CitA sensor domains, and this PhoQ-DcuS-CitA (PDC) sensor fold is seen to be distinct from the superficially similar PAS domain fold. Analysis of the wild-type structure reveals a dimer that allows for the formation of a salt bridge across the dimer interface between Arg-50' and Asp-179 and with nickel ions bound to aspartate residues in the acidic cluster. The physiological importance of the salt bridge to in vivo PhoQ function has been confirmed by mutagenesis. The mutant structure has an alternative, non-physiological dimeric association.

  17. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    NASA Astrophysics Data System (ADS)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  18. Using the Structure-Function Linkage Database to Characterize Functional Domains in Enzymes

    PubMed Central

    Brown, Shoshana; Babbitt, Patricia

    2015-01-01

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a web-accessible database designed to link enzyme sequence, structure and functional information. This unit describes the protocol by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. It is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases. PMID:25501940

  19. Structure-function analysis of the NB-ARC domain of plant disease resistance proteins.

    PubMed

    van Ooijen, Gerben; Mayr, Gabriele; Kasiem, Mobien M A; Albrecht, Mario; Cornelissen, Ben J C; Takken, Frank L W

    2008-01-01

    Resistance (R) proteins in plants are involved in pathogen recognition and subsequent activation of innate immune responses. Most resistance proteins contain a central nucleotide-binding domain. This so-called NB-ARC domain consists of three subdomains: NB, ARC1, and ARC2. The NB-ARC domain is a functional ATPase domain, and its nucleotide-binding state is proposed to regulate activity of the R protein. A highly conserved methionine-histidine-aspartate (MHD) motif is present at the carboxy-terminus of ARC2. An extensive mutational analysis of the MHD motif in the R proteins I-2 and Mi-1 is reported. Several novel autoactivating mutations of the MHD invariant histidine and conserved aspartate were identified. The combination of MHD mutants with autoactivating hydrolysis mutants in the NB subdomain showed that the autoactivation phenotypes are not additive. This finding indicates an important regulatory role for the MHD motif in the control of R protein activity. To explain these observations, a three-dimensional model of the NB-ARC domain of I-2 was built, based on the APAF-1 template structure. The model was used to identify residues important for I-2 function. Substitution of the selected residues resulted in the expected distinct phenotypes. Based on the model, it is proposed that the MHD motif fulfils the same function as the sensor II motif found in AAA+ proteins (ATPases associated with diverse cellular activities)-co-ordination of the nucleotide and control of subdomain interactions. The presented 3D model provides a framework for the formulation of hypotheses on how mutations in the NB-ARC exert their effects.

  20. Anti-TNFα domain antibody construct CEP-37247: Full antibody functionality at half the size.

    PubMed

    Gay, Robert D; Clarke, Adam W; Elgundi, Zehra; Domagala, Teresa; Simpson, Raina J; Le, Nga B; Doyle, Anthony G; Jennings, Phil A

    2010-01-01

    We report preclinical data for CEP-37247, the first human framework domain antibody construct to enter the clinic. At approximately 11 - 13kDa, domain antibodies or dAbs are the smallest antibody domain able to demonstrate the antigen-recognition function of an antibody, e.g. high selectivity and affinity for target antigen. CEP-37247 is a bivalent anti-tumor necrosis factor (TNF)α domain antibody protein construct combining the antigen-recognition function of a dAb with the pharmacological advantages of an antibody Fc region. As a homodimer, with each chain comprising VL dAb, truncated CH1, hinge, CH2 and CH3 domains, CEP-37247 has a molecular mass of approximately 78kDa, which is about half the size of a conventional IgG molecule. Surface plasmon resonance data demonstrate that CEP-37247 possesses high selectivity and affinity for TNFα. CEP-37247 is a potent neutralizer of TNFα activity in vitro in the L929 TNF-mediated cytotoxicity assay. In a human TNFα-over-expressing mouse model of polyarthritis, CEP-37247 prevents development of disease, and is at least as effective as the marketed product etanercept. Fc functionality is intact - CEP-37247 is capable of mediating antibody-dependent cell-mediated cytotoxicity and has a circulating half-life of approximately 4.5 days in cynomolgus macaques. Given the favorable properties outlined above, and its high expression levels (approaching 7 g/L) in a CHOK1 based-expression system, CEP-37247 is progressing into the clinic, where other potential advantages such as enhanced efficacy due to improved tissue distribution, and beneficial immunogenicity profile, will be evaluated.

  1. The Shape of Dendritic Arbors in Different Functional Domains of the Cortical Orientation Map

    PubMed Central

    Levy, Manuel; Lu, Zhongyang; Dion, Grace

    2014-01-01

    The neocortex is organized into macroscopic functional maps. However, at the microscopic scale, the functional preference and degree of feature selectivity between neighboring neurons can vary considerably. In the primary visual cortex, adjacent neurons in iso-orientation domains share the same orientation preference, whereas neighboring neurons near pinwheel centers are tuned to different stimulus orientations. Moreover, several studies have found greater orientation selectivity in iso-orientation domains than in pinwheel centers. These differences suggest that neurons sample local inputs in a spatially homogenous fashion and independently of the location of their soma on the orientation map. Here we determine whether dendritic geometry is affected by neuronal position on the orientation map. We labeled individual layer 2/3 pyramidal neurons with fluorescent dyes in specific domains of the orientation map in cat primary visual cortex and imaged their dendritic trees in vivo by two-photon microscopy. We found that the circularity and uniformity of dendritic trees is independent of somatic position on the orientation map. Moreover, the dendrites of neurons located close to pinwheel centers extend across all orientation domains in an unbiased fashion. Thus, unbiased dendritic trees appear to provide an anatomical substrate for the systematic variations in feature selectivity across the orientation map. PMID:24573281

  2. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity.

    PubMed

    Sinha, Avni; Eniyan, Kandasamy; Sinha, Swati; Lynn, Andrew Michael; Bajpai, Urmi

    2015-07-01

    Mycobacterium tuberculosis (Mtb) is the causal agent of tuberculosis, the second largest infectious disease. With the rise of multi-drug resistant strains of M. tuberculosis, serious challenge lies ahead of us in treating the disease. The availability of complete genome sequence of Mtb has improved the scope for identifying new proteins that would not only further our understanding of biology of the organism but could also serve to discover new drug targets. In this study, Rv2345, a hypothetical membrane protein of M. tuberculosis H37Rv, which is reported to be a putative ortholog of ZipA cell division protein has been assigned function through functional annotation using bioinformatics tools followed by experimental validation. Sequence analysis showed Rv2345 to have a TPM domain at its N-terminal region and predicted it to have phosphatase activity. The TPM domain containing region of Rv2345 was cloned and expressed using pET28a vector in Escherichia coli and purified by Nickel affinity chromatography. The purified TPM domain was tested in vitro and our results confirmed it to have phosphatase activity. The enzyme activity was first checked and optimized with pNPP as substrate, followed by using ATP, which was also found to be used as substrate by the purified protein. Hence sequence analysis followed by in vitro studies characterizes TPM domain of Rv2345 to contain phosphatase activity.

  3. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions.

    PubMed

    Bunney, Tom D; Cole, Ambrose R; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W; Katan, Matilda

    2014-12-02

    Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein,HYPE, which has remained poorly characterized.Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of auto AMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition.

  4. Functional interferon system is required for clearance of lassa virus.

    PubMed

    Yun, Nadezhda E; Poussard, Allison L; Seregin, Alexey V; Walker, Aida G; Smith, Jennifer K; Aronson, Judith F; Smith, Jeanon N; Soong, Lynn; Paessler, Slobodan

    2012-03-01

    Lassa virus (LASV) is the causative agent of Lassa hemorrhagic fever (LF) in humans, a deadly disease endemic to West Africa that results in 5,000 to 10,000 deaths annually. Here we present results demonstrating that functional type I and type II interferon (IFN) signaling is required for efficient control of LASV dissemination and clearance.

  5. Functional Requirements for Bibliographic Records: An Investigation of Two Prototypes

    ERIC Educational Resources Information Center

    Pisanski, Jan; Zumer, Maja

    2007-01-01

    Purpose: This paper aims to establish how the Functional Requirements for Bibliographic Records (FRBR) conceptual model, which holds a lot of potential in theory, works in practice. It also aims to identify, and if possible, give solutions to problems found in two of the existing prototypes. Design/methodology/approach: An independent evaluation…

  6. A conserved C-terminal domain of the Aspergillus fumigatus developmental regulator MedA is required for nuclear localization, adhesion and virulence.

    PubMed

    Al Abdallah, Qusai; Choe, Se-In; Campoli, Paolo; Baptista, Stefanie; Gravelat, Fabrice N; Lee, Mark J; Sheppard, Donald C

    2012-01-01

    MedA is a developmental regulator that is conserved in the genome of most filamentous fungi. In the pathogenic fungus Aspergillus fumigatus MedA regulates conidiogenesis, adherence to host cells, and pathogenicity. The mechanism by which MedA governs these phenotypes remains unknown. Although the nuclear import of MedA orthologues has been reported in other fungi, no nuclear localization signal, DNA-binding domain or other conserved motifs have been identified within MedA. In this work, we performed a deletion analysis of MedA and identified a novel domain within the C-terminal region of the protein, designated MedA(346-557), that is necessary and sufficient for nuclear localization of MedA. We further demonstrate that MedA nuclear localization is required for the function of MedA. Surprisingly, expression of the minimal nuclear localization fragment MedA(346-557) alone was sufficient to restore conidogenesis, biofilm formation and virulence to the medA mutant strain. Collectively these results suggest that MedA functions in the regulation of transcription, and that the MedA(346-557) domain is both necessary and sufficient to mediate MedA function.

  7. A Conserved C-Terminal Domain of the Aspergillus fumigatus Developmental Regulator MedA Is Required for Nuclear Localization, Adhesion and Virulence

    PubMed Central

    Al Abdallah, Qusai; Choe, Se-In; Campoli, Paolo; Baptista, Stefanie; Gravelat, Fabrice N.; Lee, Mark J.; Sheppard, Donald C.

    2012-01-01

    MedA is a developmental regulator that is conserved in the genome of most filamentous fungi. In the pathogenic fungus Aspergillus fumigatus MedA regulates conidiogenesis, adherence to host cells, and pathogenicity. The mechanism by which MedA governs these phenotypes remains unknown. Although the nuclear import of MedA orthologues has been reported in other fungi, no nuclear localization signal, DNA-binding domain or other conserved motifs have been identified within MedA. In this work, we performed a deletion analysis of MedA and identified a novel domain within the C-terminal region of the protein, designated MedA346–557, that is necessary and sufficient for nuclear localization of MedA. We further demonstrate that MedA nuclear localization is required for the function of MedA. Surprisingly, expression of the minimal nuclear localization fragment MedA346–557 alone was sufficient to restore conidogenesis, biofilm formation and virulence to the medA mutant strain. Collectively these results suggest that MedA functions in the regulation of transcription, and that the MedA346–557 domain is both necessary and sufficient to mediate MedA function. PMID:23185496

  8. Smurf1-mediated Axin Ubiquitination Requires Smurf1 C2 Domain and Is Cell Cycle-dependent*

    PubMed Central

    Fei, Cong; He, Xiaoli; Xie, Sichun; Miao, Haofei; Zhou, Zhilei; Li, Lin

    2014-01-01

    Previously, Smad ubiquitination regulatory factor 1 (Smurf1)-mediated Lys29 (K29)-linked poly-ubiquitination of Axin has been identified as a novel regulatory process in Wnt/β-catenin signaling. In this work, we discovered that the C2 domain of Smurf1 is critical for targeting Axin for ubiquitination. We found that the C2 domain-mediated plasma membrane localization of Smurf1 is required for Axin ubiquitination, and interfering with that disturbs the co-localization of Smurf1 and Axin around the plasma membrane. Moreover, the C2 domain of Smurf1, rather than its WW domains, is involved in Smurf1's interaction with Axin; and the putative PPXY motifs (PY motif) of Axin are not essential for such an interaction, indicating that Smurf1 binds to Axin in a non-canonical way independent of WW-PY interaction. Further, we found that Smurf1-Axin interaction and Axin ubiquitination are attenuated in the G2/M phase of cell cycle, contributing to an increased cell response to Wnt stimulation at that stage. Collectively, we uncovered a dual role of Smurf1 C2 domain, recruiting Smurf1 to membrane for accessing Axin and mediating its interaction with Axin, and that Smurf1-mediated Axin ubiquitination is subjected to the regulation of cell cycle. PMID:24700460

  9. WW domain of BAG3 is required for the induction of autophagy in glioma cells.

    PubMed

    Merabova, Nana; Sariyer, Ilker Kudret; Saribas, A Sami; Knezevic, Tijana; Gordon, Jennifer; Turco, M Caterina; Rosati, Alessandra; Weaver, Michael; Landry, Jacques; Khalili, Kamel

    2015-04-01

    Autophagy is an evolutionarily conserved, selective degradation pathway of cellular components that is important for cell homeostasis under healthy and pathologic conditions. Here we demonstrate that an increase in the level of BAG3 results in stimulation of autophagy in glioblastoma cells. BAG3 is a member of a co-chaperone family of proteins that associates with Hsp70 through a conserved BAG domain positioned near the C-terminus of the protein. Expression of BAG3 is induced by a variety of environmental changes that cause stress to cells. Our results show that BAG3 overexpression induces autophagy in glioma cells. Interestingly, inhibition of the proteasome caused an increase in BAG3 levels and induced autophagy. Further analysis using specific siRNA against BAG3 suggests that autophagic activation due to proteosomal inhibition is mediated by BAG3. Analyses of BAG3 domain mutants suggest that the WW domain of BAG3 is crucial for the induction of autophagy. BAG3 overexpression also increased the interaction between Bcl2 and Beclin-1, instead of disrupting them, suggesting that BAG3 induced autophagy is Beclin-1 independent. These observations reveal a novel role for the WW domain of BAG3 in the regulation of autophagy.

  10. The Caenorhabditis elegans Ldb/NLI/Clim orthologue ldb-1 is required for neuronal function.

    PubMed

    Cassata, G; Röhrig, S; Kuhn, F; Hauri, H P; Baumeister, R; Bürglin, T R

    2000-10-01

    LIM homeodomain (LIM-HD) and nuclear LIM-only proteins play important roles in a variety of developmental processes in animals. In some cases their activities are modulated by a nuclear LIM binding protein family called Ldb/NLI/Clim. Here we characterize the Ldb/NLI/Clim orthologue ldb-1 of the nematode Caenorhabditis elegans. Two alternatively spliced variants exist, which differ in their amino-termini. The ldb-1 orthologue of Caenorhabditis briggsae has the same structure as that of C. elegans and is highly conserved throughout the open reading frame, while conservation to fly and vertebrate proteins is restricted to specific domains: the dimerization domain, the nuclear localization sequence, and the LIM interaction domain. C. elegans ldb-1 is expressed in neurogenic tissues in embryos, in all neurons in larval and adult stages, and in vulval cells, gonadal sheath cells, and some body muscle cells. C. elegans LDB-1 is able to specifically bind LIM domains in yeast two-hybrid assays. RNA inactivation studies suggest that C. elegans ldb-1 is not required for the differentiation of neurons that express the respective LIM-HD genes or for LIM-HD gene autoregulation. In contrast, ldb-1 is necessary for several neuronal functions mediated by LIM-HD proteins, including the transcriptional activation of mec-2, the mechanosensory neuron-specific stomatin.

  11. An Amphiphysin-Like Domain in Fus2p Is Required for Rvs161p Interaction and Cortical Localization

    PubMed Central

    Stein, Richard A.; Smith, Jean A.; Rose, Mark D.

    2015-01-01

    Cell–cell fusion fulfils essential roles in fertilization, development and tissue repair. In the budding yeast, Saccharomyces cerevisiae, fusion between two haploid cells of opposite mating type generates the diploid zygote. Fus2p is a pheromone-induced protein that regulates cell wall removal during mating. Fus2p shuttles from the nucleus to localize at the shmoo tip, bound to Rvs161p, an amphiphysin. However, Rvs161p independently binds a second amphiphysin, Rvs167p, playing an essential role in endocytosis. To understand the basis of the Fus2p–Rvs161p interaction, we analyzed Fus2p structural domains. A previously described N-terminal domain (NTD) is necessary and sufficient to regulate nuclear/cytoplasmic trafficking of Fus2p. The Dbl homology domain (DBH) binds GTP-bound Cdc42p; binding is required for cell fusion, but not localization. We identified an approximately 200 amino acid region of Fus2p that is both necessary and sufficient for Rvs161p binding. The Rvs161p binding domain (RBD) contains three predicted alpha-helices; structural modeling suggests that the RBD adopts an amphiphysin-like structure. The RBD contains a 13-amino-acid region, conserved with Rvs161p and other amphiphysins, which is essential for binding. Mutations in the RBD, predicted to affect membrane binding, abolish cell fusion without affecting Rvs161p binding. We propose that Fus2p/Rvs161p form a novel heterodimeric amphiphysin required for cell fusion. Rvs161p binding is required but not sufficient for Fus2p localization. Mutations in the C-terminal domain (CTD) of Fus2p block localization, but not Rvs161p binding, causing a significant defect in cell fusion. We conclude that the Fus2p CTD mediates an additional, Rvs161p-independent interaction at the shmoo tip. PMID:26681517

  12. Using the structure-function linkage database to characterize functional domains in enzymes.

    PubMed

    Brown, Shoshana; Babbitt, Patricia

    2014-12-12

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases.

  13. Using the Structure-function Linkage Database to characterize functional domains in enzymes.

    PubMed

    Brown, Shoshana; Babbitt, Patricia

    2006-03-01

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of newly sequenced enzymes and to correct misannotated functional assignments for enzymes currently in public databases. It is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases.

  14. Functional Domain Analysis of the Cell Division Inhibitor EzrA

    PubMed Central

    Levin, Petra Anne

    2014-01-01

    The precise spatial and temporal control of bacterial cell division is achieved through the balanced actions of factors that inhibit assembly of the tubulin-like protein FtsZ at aberrant subcellular locations or promote its assembly at the future sites of division. In Bacillus subtilis, the membrane anchored cell division protein EzrA, interacts directly with FtsZ to prevent aberrant FtsZ assembly at cell poles and contributes to the inherently dynamic nature of the cytokinetic ring. Recent work suggests EzrA also serves as a scaffolding protein to coordinate lateral growth with cell wall biosynthesis through interactions with a host of proteins, a finding consistent with EzrA's four extensive coiled-coil domains. In a previous study we identified a conserved patch of residues near EzrA's C-terminus (the QNR motif) that are critical for maintenance of a dynamic cytokinetic ring, but dispensable for EzrA-mediated inhibition of FtsZ assembly at cell poles. In an extension of this work, here we report that EzrA's two C-terminal coiled-coils function in concert with the QNR motif to mediate interactions with FtsZ and maintain the dynamic nature of the cytokinetic ring. In contrast, EzrA's two N-terminal coiled-coils are dispensable for interaction between EzrA and FtsZ in vitro and in vivo, but required for EzrA mediated inhibition of FtsZ assembly at cell poles. Finally, chimeric analysis indicates that EzrA's transmembrane anchor plays a generic role: concentrating EzrA at the plasma membrane where presumably it can most effectively modulate FtsZ assembly. PMID:25068683

  15. Functional linkage between the glutaminase and synthetase domains of carbamoyl-phosphate synthetase. Role of serine 44 in carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (cad).

    PubMed

    Hewagama, A; Guy, H I; Vickrey, J F; Evans, D R

    1999-10-01

    Mammalian carbamoyl-phosphate synthetase is part of carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (CAD), a multifunctional protein that also catalyzes the second and third steps of pyrimidine biosynthesis. Carbamoyl phosphate synthesis requires the concerted action of the glutaminase (GLN) and carbamoyl-phosphate synthetase domains of CAD. There is a functional linkage between these domains such that glutamine hydrolysis on the GLN domain does not occur at a significant rate unless ATP and HCO(3)(-), the other substrates needed for carbamoyl phosphate synthesis, bind to the synthetase domain. The GLN domain consists of catalytic and attenuation subdomains. In the separately cloned GLN domain, the catalytic subdomain is down-regulated by interactions with the attenuation domain, a process thought to be part of the functional linkage. Replacement of Ser(44) in the GLN attenuation domain with alanine increases the k(cat)/K(m) for glutamine hydrolysis 680-fold. The formation of a functional hybrid between the mammalian Ser(44) GLN domain and the Escherichia coli carbamoyl-phosphate synthetase large subunit had little effect on glutamine hydrolysis. In contrast, ATP and HCO(3)(-) did not stimulate the glutaminase activity, indicating that the interdomain linkage had been disrupted. In accord with this interpretation, the rate of glutamine hydrolysis and carbamoyl phosphate synthesis were no longer coordinated. Approximately 3 times more glutamine was hydrolyzed by the Ser(44) --> Ala mutant than that needed for carbamoyl phosphate synthesis. Ser(44), the only attenuation subdomain residue that extends into the GLN active site, appears to be an integral component of the regulatory circuit that phases glutamine hydrolysis and carbamoyl phosphate synthesis.

  16. Boundary values of functions in a Sobolev space with Muckenhoupt weight on some non-Lipschitz domains

    SciTech Connect

    Tyulenev, A I

    2014-08-01

    This paper gives an explicit description of the traces of functions in a weighted Sobolev space (with local Muckenhoupt weight) on the domain lying between two graphs of Lipschitz functions and on the complement of the closure of this domain. Bibliography: 11 titles.

  17. Using compound similarity and functional domain composition for prediction of drug-target interaction networks.

    PubMed

    Chen, Lei; He, Zhi-Song; Huang, Tao; Cai, Yu-Dong

    2010-11-01

    Study of interactions between drugs and target proteins is an essential step in genomic drug discovery. It is very hard to determine the compound-protein interactions or drug-target interactions by experiment alone. As supplementary, effective prediction model using machine learning or data mining methods can provide much help. In this study, a prediction method based on Nearest Neighbor Algorithm and a novel metric, which was obtained by combining compound similarity and functional domain composition, was proposed. The target proteins were divided into the following groups: enzymes, ion channels, G protein-coupled receptors, and nuclear receptors. As a result, four predictors with the optimal parameters were established. The overall prediction accuracies, evaluated by jackknife cross-validation test, for four groups of target proteins are 90.23%, 94.74%, 97.80%, and 97.51%, respectively, indicating that compound similarity and functional domain composition are very effective to predict drug-target interaction networks.

  18. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors.

    PubMed

    Hopf, Thomas A; Morinaga, Satoshi; Ihara, Sayoko; Touhara, Kazushige; Marks, Debora S; Benton, Richard

    2015-01-13

    Insect odorant receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection.

  19. The microtubule-binding and coiled-coil domains of Kid are required to turn off the polar ejection force at anaphase.

    PubMed

    Soeda, Shou; Yamada-Nomoto, Kaori; Ohsugi, Miho

    2016-10-01

    Mitotic chromosomes move dynamically along the spindle microtubules using the forces generated by motor proteins such as chromokinesin Kid (also known as KIF22). Kid generates a polar ejection force and contributes to alignment of the chromosome arms during prometaphase and metaphase, whereas during anaphase, Kid contributes to chromosome compaction. How Kid is regulated and how this regulation is important for chromosome dynamics remains unclear. Here, we address these questions by expressing mutant forms of Kid in Kid-deficient cells. We demonstrate that Cdk1-mediated phosphorylation of Thr463 is required to generate the polar ejection force on Kid-binding chromosomes, whereas dephosphorylation of Thr463 prevents generation of the ejection force on such chromosomes. In addition to activation of the second microtubule-binding domain through dephosphorylation of Thr463, the coiled-coil domain is essential in suspending generation of the polar ejection force, preventing separated chromosomes from becoming recongressed during anaphase. We propose that phosphorylation of Thr463 switches the mitotic chromosome movement from an anti-poleward direction to a poleward direction by converting the Kid functional mode from polar-ejection-force-ON to -OFF during the metaphase-anaphase transition, and that both the second microtubule-binding domain and the coiled-coil domain are involved in this switching process.

  20. Intracellular Domain Fragment of CD44 Alters CD44 Function in Chondrocytes*

    PubMed Central

    Mellor, Liliana; Knudson, Cheryl B.; Hida, Daisuke; Askew, Emily B.; Knudson, Warren

    2013-01-01

    The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44. PMID:23884413

  1. Drosophila melanogaster clip-domain serine proteases: Structure, function and regulation.

    PubMed

    Veillard, Florian; Troxler, Laurent; Reichhart, Jean-Marc

    2016-03-01

    Mammalian chymotrypsin-like serine proteases (SPs) are one of the best-studied family of enzymes with roles in a wide range of physiological processes, including digestion, blood coagulation, fibrinolysis and humoral immunity. Extracellular SPs can form cascades, in which one protease activates the zymogen of the next protease in the chain, to amplify physiological or pathological signals. These extracellular SPs are generally multi-domain proteins, with pro-domains that are involved in protein-protein interactions critical for the sequential organization of the cascades, the control of their intensity and their proper localization. Far less is known about invertebrate SPs than their mammalian counterparts. In insect genomes, SPs and their proteolytically inactive homologs (SPHs) constitute large protein families. In addition to the chymotrypsin fold, many of these proteins contain additional structural domains, often with conserved mammalian orthologues. However, the largest group of arthropod SP regulatory modules is the clip domains family, which has only been identified in arthropods. The clip-domain SPs are extracellular and have roles in the immune response and embryonic development. The powerful reverse-genetics tools in Drosophila melanogaster have been essential to identify the functions of clip-SPs and their organization in sequential cascades. This review focuses on the current knowledge of Drosophila clip-SPs and presents, when necessary, data obtained in other insect models. We will first cover the biochemical and structural features of clip domain SPs and SPHs. Clip-SPs are implicated in three main biological processes: the control of the dorso-ventral patterning during embryonic development; the activation of the Toll-mediated response to microbial infections and the prophenoloxydase cascade, which triggers melanization. Finally, we review the regulation of SPs and SPHs, from specificity of activation to inhibition by endogenous or pathogen

  2. Identification of AcMNPV EXON0 (ac141) domains required for efficient production of budded virus, dimerization and association with BV/ODV-C42 and FP25.

    PubMed

    Fang, Minggang; Nie, Yingchao; Dai, Xiaojiang; Theilmann, David A

    2008-05-25

    The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) late gene exon0 (ac141) is required for the efficient production of budded virus (BV). EXON0 interacts with nucleopcapsid protein BV/ODV-C42 and FP25 and enables egress of nucleocapsids from the nucleus to the cytoplasm. This study examines the functional domains of EXON0 that play a role in BV production. Six putative domains of the 261 amino acid EXON0 were deleted and examined for functionality by determining their ability to rescue an AcMNPV exon0 knockout bacmid. Domain mapping results showed that all the six domains were required but deletion of the N-terminal acidic region and the leucine zipper domains had the greatest impact on BV production. Yeast 2-hybrid and co-immunoprecipitation demonstrated that EXON0 formed dimers. Point mutation analysis demonstrated that the leucine zipper was required for dimer formation and interaction with BV/ODV-C42 and FP25. The charged domain was also required for BV/ODV-C42 interaction.

  3. Membrane Anchoring and Interaction between Transmembrane Domains are Crucial for K+ Channel Function*

    PubMed Central

    Gebhardt, Manuela; Hoffgaard, Franziska; Hamacher, Kay; Kast, Stefan M.; Moroni, Anna; Thiel, Gerhard

    2011-01-01

    The small viral channel Kcv is a Kir-like K+ channel of only 94 amino acids. With this simple structure, the tetramer of Kcv represents the pore module of all complex K+ channels. To examine the structural contribution of the transmembrane domains (TMDs) to channel function, we performed Ala scanning mutagenesis of the two domains and tested the functionality of the mutants in a yeast complementation assay. The data reveal, in combination with computational models, that the upper halves of both TMDs, which face toward the external medium, are rather rigid, whereas the inner parts are more flexible. The rigidity of the outer TMD is conferred by a number of essential aromatic amino acids that face the membrane and probably anchor this domain in the bilayer. The inner TMD is intimately connected with the rigid part of the outer TMD via π···π interactions between a pair of aromatic amino acids. This structural principle is conserved within the viral K+ channels and also present in Kir2.2, implying a general importance of this architecture for K+ channel function. PMID:21310959

  4. The Nedd8 Non-covalent Binding Region in the Smurf HECT Domain is Critical to its Ubiquitn Ligase Function

    PubMed Central

    He, Shan; Cao, Yu; Xie, Ping; Dong, Guanglong; Zhang, Lingqiang

    2017-01-01

    Nedd8 is a ubiquitin-like protein that controls vital biological events through conjugation to target proteins. We previously identified the HECT-type ubiquitin ligase Smurf1 which controls diverse cellular processes is activated by Nedd8 through covalent neddylation. However, the effect of non-covalent binding to Nedd8 remains unknown. In this study, we demonstrate that both Smurf1 and its homologue Smurf2 carry a non-covalent Nedd8-binding site within its catalytic HECT domain. Structural analysis reveals that Smurf2 has Nedd8-binding sites within the small sub-domain of N-lobe and the C-lobe of HECT domain. Interestingly, the consensus Nedd8 binding sequence, L(X7)R(X5)F(X)ALQ is conserved in both Smurfs. Mutational studies reveal that all the five residues in the conserved sequence are required for binding to Nedd8. Functional studies suggest that mutations that disrupt Smurf interaction with Nedd8 reduce its neddylation and stabilize the protein. Furthermore, Nedd8 binding site in Smurf is shown to be necessary for its ubiquitin ligase activity towards the substrate and also the self-ubiquitylation. Finally, we show that Nedd8 binding to Smurf plays important roles in the regulation of cell migration and the BMP and TGFβ signaling pathways. PMID:28169289

  5. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  6. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain.

    PubMed

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-03-14

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD.

  7. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis.

    PubMed

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-07-15

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals.

  8. Potential DNA binding and nuclease functions of ComEC domains characterized in silico

    PubMed Central

    Baker, James A.; Simkovic, Felix; Taylor, Helen M.C.

    2016-01-01

    ABSTRACT Bacterial competence, which can be natural or induced, allows the uptake of exogenous double stranded DNA (dsDNA) into a competent bacterium. This process is known as transformation. A multiprotein assembly binds and processes the dsDNA to import one strand and degrade another yet the underlying molecular mechanisms are relatively poorly understood. Here distant relationships of domains in Competence protein EC (ComEC) of Bacillus subtilis (Uniprot: P39695) were characterized. DNA‐protein interactions were investigated in silico by analyzing models for structural conservation, surface electrostatics and structure‐based DNA binding propensity; and by data‐driven macromolecular docking of DNA to models. Our findings suggest that the DUF4131 domain contains a cryptic DNA‐binding OB fold domain and that the β‐lactamase‐like domain is the hitherto cryptic competence nuclease. Proteins 2016; 84:1431–1442. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27318187

  9. Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function.

    PubMed

    Kronert, William A; Dambacher, Corey M; Knowles, Aileen F; Swank, Douglas M; Bernstein, Sanford I

    2008-06-06

    The relay domain of myosin is hypothesized to function as a communication pathway between the nucleotide-binding site, actin-binding site and the converter domain. In Drosophila melanogaster, a single myosin heavy chain gene encodes three alternative relay domains. Exon 9a encodes the indirect flight muscle isoform (IFI) relay domain, whereas exon 9b encodes one of the embryonic body wall isoform (EMB) relay domains. To gain a better understanding of the function of the relay domain and the differences imparted by the IFI and the EMB versions, we constructed two transgenic Drosophila lines expressing chimeric myosin heavy chains in indirect flight muscles lacking endogenous myosin. One expresses the IFI relay domain in the EMB backbone (EMB-9a), while the second expresses the EMB relay domain in the IFI backbone (IFI-9b). Our studies reveal that the EMB relay domain is functionally equivalent to the IFI relay domain when it is substituted into IFI. Essentially no differences in ATPase activity, actin-sliding velocity, flight ability at room temperature or muscle structure are observed in IFI-9b compared to native IFI. However, when the EMB relay domain is replaced with the IFI relay domain, we find a 50% reduction in actin-activated ATPase activity, a significant increase in actin affinity, abolition of actin sliding, defects in myofibril assembly and rapid degeneration of muscle structure compared to EMB. We hypothesize that altered relay domain conformational changes in EMB-9a impair intramolecular communication with the EMB-specific converter domain. This decreases transition rates involving strongly bound actomyosin states, leading to a reduced ATPase rate and loss of actin motility.

  10. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  11. Functional Requirements for Information Resource Provenance on the Web

    SciTech Connect

    McCusker, James P.; Lebo, Timothy; Graves, Alvaro; Difranzo, Dominic; Pinheiro da Silva, Paulo; McGuinness, Deborah L.

    2012-06-19

    We provide a means to formally explain the relationship between HTTP URLs and the representations returned when they are requested. According to existing World Wide Web architecture, the URL serves as an identier for a semiotic referent while the document returned via HTTP serves as a representation of the same referent. This begins with two sides of a semiotic triangle; the third side is the relationship between the URL and the representation received. We complete this description by extending the library science resource model Functional Requirements for Bibliographic Resources (FRBR) with cryptographic message and content digests to create a Functional Requirements for Information Resources (FRIR). We show how applying the FRIR model to HTTP GET and POST transactions disambiguates the many relationships between a given URL and all representations received from its request, provides fine-grained explanations that are complementary to existing explanations of web resources, and integrates easily into the emerging W3C provenance standard.

  12. The third P-loop domain in cytoplasmic dynein heavy chain is essential for dynein motor function and ATP-sensitive microtubule binding.

    PubMed

    Silvanovich, Andre; Li, Min-Gang; Serr, Madeline; Mische, Sarah; Hays, Thomas S

    2003-04-01

    Sequence comparisons and structural analyses show that the dynein heavy chain motor subunit is related to the AAA family of chaperone-like ATPases. The core structure of the dynein motor unit derives from the assembly of six AAA domains into a hexameric ring. In dynein, the first four AAA domains contain consensus nucleotide triphosphate-binding motifs, or P-loops. The recent structural models of dynein heavy chain have fostered the hypothesis that the energy derived from hydrolysis at P-loop 1 acts through adjacent P-loop domains to effect changes in the attachment state of the microtubule-binding domain. However, to date, the functional significance of the P-loop domains adjacent to the ATP hydrolytic site has not been demonstrated. Our results provide a mutational analysis of P-loop function within the first and third AAA domains of the Drosophila cytoplasmic dynein heavy chain. Here we report the first evidence that P-loop-3 function is essential for dynein function. Significantly, our results further show that P-loop-3 function is required for the ATP-induced release of the dynein complex from microtubules. Mutation of P-loop-3 blocks ATP-mediated release of dynein from microtubules, but does not appear to block ATP binding and hydrolysis at P-loop 1. Combined with the recent recognition that dynein belongs to the family of AAA ATPases, the observations support current models in which the multiple AAA domains of the dynein heavy chain interact to support the translocation of the dynein motor down the microtubule lattice.

  13. Adapting ORAP to wind plants : industry value and functional requirements.

    SciTech Connect

    Not Available

    2010-08-01

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  14. Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1

    PubMed Central

    Daubner, Gerrit M.; Brümmer, Anneke; Tocchini, Cristina; Gerhardy, Stefan; Ciosk, Rafal; Zavolan, Mihaela; Allain, Frédéric H.-T.

    2014-01-01

    The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5′end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5′end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins. PMID:24838563

  15. Opposing functions of two sub-domains of the SNARE-complex in neurotransmission

    PubMed Central

    Weber, Jens P; Reim, Kerstin; Sørensen, Jakob B

    2010-01-01

    The SNARE-complex consisting of synaptobrevin-2/VAMP-2, SNAP-25 and syntaxin-1 is essential for evoked neurotransmission and also involved in spontaneous release. Here, we used cultured autaptic hippocampal neurons from Snap-25 null mice rescued with mutants challenging the C-terminal, N-terminal and middle domains of the SNARE-bundle to dissect out the involvement of these domains in neurotransmission. We report that the stabilities of two different sub-domains of the SNARE-bundle have opposing functions in setting the probability for both spontaneous and evoked neurotransmission. Destabilizing the C-terminal end of the SNARE-bundle abolishes spontaneous neurotransmitter release and reduces evoked release probability, indicating that the C-terminal end promotes both modes of release. In contrast, destabilizing the middle or deleting the N-terminal end of the SNARE-bundle increases both spontaneous and evoked release probabilities. In both cases, spontaneous release was affected more than evoked neurotransmission. In addition, the N-terminal deletion delays vesicle priming after a high-frequency train. We propose that the stability of N-terminal two-thirds of the SNARE-bundle has a function for vesicle priming and limiting spontaneous release. PMID:20562829

  16. Genetic Analysis of the Lambda Spanins Rz and Rz1: Identification of Functional Domains

    PubMed Central

    Cahill, Jesse; Rajaure, Manoj; O’Leary, Chandler; Sloan, Jordan; Marrufo, Armando; Holt, Ashley; Kulkarni, Aneesha; Hernandez, Oscar; Young, Ry

    2016-01-01

    Coliphage lambda proteins Rz and Rz1 are the inner membrane and outer membrane subunits of the spanin complex—a heterotetramer that bridges the periplasm and is essential for the disruption of the outer membrane during phage lysis. Recent evidence suggests the spanin complex functions by fusing the inner and outer membrane. Here, we use a genetics approach to investigate and characterize determinants of spanin function. Because Rz1 is entirely embedded in the +1 reading frame of Rz, the genes were disembedded before using random mutagenesis to construct a library of lysis-defective alleles for both genes. Surprisingly, most of the lysis-defective missense mutants exhibited normal accumulation or localization in vivo, and also were found to be normal for complex formation in vitro. Analysis of the distribution and nature of single missense mutations revealed subdomains that resemble key motifs in established membrane-fusion systems, i.e., two coiled-coil domains in Rz, a proline-rich region of Rz1, and flexible linkers in both proteins. When coding sequences are aligned respective to the embedded genetic architecture of Rz1 within Rz, genetically silent domains of Rz1 correspond to mutationally sensitive domains in Rz, and vice versa, suggesting that the modular structure of the two subunits facilitated the evolutionary compression that resulted in the unique embedded gene architecture. PMID:28040784

  17. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology.

    PubMed Central

    Katsani, K R; Hajibagheri, M A; Verrijzer, C P

    1999-01-01

    The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation. PMID:9927429

  18. Identification of positive-acting domains in GCN2 protein kinase required for translational activation of GCN4 expression

    SciTech Connect

    Wek, R.C.; Ramirez, M.; Jackson, B.M.; Hinnebusch, A.G. )

    1990-06-01

    GCN4 is a transcriptional activator of amino acid-biosynthetic genes in the yeast {ital Saccharomyces cerevisiae}. GCN2, a translational activator of {ital GCN4} expression, contains a domain homologous to the catalytic subunit of eukaryotic protein kinases. Substitution of a highly conserved lysine residue in the kinase domain abolished GCN2 regulatory function in vivo and its ability to autophosphorylate in vitro, indicating that GCN2 acts as a protein kinase in stimulating {ital GCN4} expression. Elevated {ital GCN2} gene dosage led to depression of {ital GCN4} under nonstarvation conditions; however, the authors found that {ital GCN2} mRNA and protein levels did not increase in wild-type cells in response to amino acid starvation. Therefore, it appears that GCN2 protein kinase function is stimulated postranslationally in amino acid-starved cells. Three dominant-constitutive {ital GCN2} point mutations were isolated that led to derepressed {ital GCN4} expression under nonstarvation conditions. Two of the {ital GCN2}(Con) mutations mapped in the kinase domain itself. The third mapped just downstream from a carboxyl-terminal segment homologous to histidyl-tRNA synthetase (HisRS), which the authors suggest might function to detect uncharged tRNA in amino acid-starved cells and activate the adjacent protein kinase moiety.

  19. Function of conserved domains of hnRNP A1 and other hnRNP A/B proteins.

    PubMed Central

    Mayeda, A; Munroe, S H; Cáceres, J F; Krainer, A R

    1994-01-01

    hnRNP A1 is a pre-mRNA binding protein that antagonizes the alternative splicing activity of splicing factors SF2/ASF or SC35, causing activation of distal 5' splice sites. The structural requirements for hnRNP A1 function were determined by mutagenesis of recombinant human hnRNP A1. Two conserved Phe residues in the RNP-1 submotif of each of two RNA recognition motifs appear to be involved in specific RNA-protein interactions and are essential for modulating alternative splicing. These residues are not required for general pre-mRNA binding or RNA annealing activity. The C-terminal Gly-rich domain is necessary for alternative splicing activity, for stable RNA binding and for optimal RNA annealing activity. hnRNP A1B, which is an alternatively spliced isoform of hnRNP A1 with a longer Gly-rich domain, binds more strongly to pre-mRNA but has only limited alternative splicing activity. In contrast, hnRNP A2 and B1, which have 68% amino acid identity with hnRNP A1, bind more weakly to pre-mRNA and have stronger splice site switching activities than hnRNP A1. We propose that specific combinations of antagonistic hnRNP A/B and SR proteins are involved in regulating alternative splicing of distinct subsets of cellular premRNAs. Images PMID:7957114

  20. Kinetics of the LOV domain of ZEITLUPE determine its circadian function in Arabidopsis.

    PubMed

    Pudasaini, Ashutosh; Shim, Jae Sung; Song, Young Hun; Shi, Hua; Kiba, Takatoshi; Somers, David E; Imaizumi, Takato; Zoltowski, Brian D

    2017-02-28

    A LOV (Light, Oxygen, or Voltage) domain containing blue-light photoreceptor ZEITLUPE (ZTL) directs circadian timing by degrading clock proteins in plants. Functions hinge upon allosteric differences coupled to the ZTL photocycle; however, structural and kinetic information was unavailable. Herein, we tune the ZTL photocycle over two orders of magnitude. These variants reveal that ZTL complexes with targets independent of light, but dictates enhanced protein degradation in the dark. In vivo experiments definitively show photocycle kinetics dictate the rate of clock component degradation, thereby impacting circadian period. Structural studies demonstrate that photocycle dependent activation of ZTL depends on an unusual dark-state conformation of ZTL. Crystal structures of ZTL LOV domain confirm delineation of structural and kinetic mechanisms and identify an evolutionarily selected allosteric hinge differentiating modes of PAS/LOV signal transduction. The combined biochemical, genetic and structural studies provide new mechanisms indicating how PAS/LOV proteins integrate environmental variables in complex networks.

  1. Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation.

    PubMed

    Cahoon, Laty A; Manthei, Kelly A; Rotman, Ella; Keck, James L; Seifert, H Steven

    2013-05-01

    The strict human pathogen Neisseria gonorrhoeae utilizes homologous recombination to antigenically vary the pilus, thus evading the host immune response. High-frequency gene conversion reactions between many silent pilin loci and the expressed pilin locus (pilE) allow for numerous pilus variants per strain to be produced from a single strain. For pilin antigenic variation (Av) to occur, a guanine quartet (G4) structure must form upstream of pilE. The RecQ helicase is one of several recombination or repair enzymes required for efficient levels of pilin Av, and RecQ family members have been shown to bind to and unwind G4 structures. Additionally, the vast majority of RecQ helicase family members encode one "helicase and RNase D C-terminal" (HRDC) domain, whereas the N. gonorrhoeae RecQ helicase gene encodes three HRDC domains, which are critical for pilin Av. Here, we confirm that deletion of RecQ HRDC domains 2 and 3 causes a decrease in the frequency of pilin Av comparable to that obtained with a functional knockout. We demonstrate that the N. gonorrhoeae RecQ helicase can bind and unwind the pilE G4 structure. Deletion of the RecQ HRDC domains 2 and 3 resulted in a decrease in G4 structure binding and unwinding. These data suggest that the decrease in pilin Av observed in the RecQ HRDC domain 2 and 3 deletion mutant is a result of the enzyme's inability to efficiently bind and unwind the pilE G4 structure.

  2. Expression and mutational analysis of Autographa californica nucleopolyhedrovirus HCF-1: functional requirements for cysteine residues.

    PubMed

    Wilson, Joyce A; Forney, Scott D; Ricci, Alessondra M; Allen, Emily G; Hefferon, Kathleen L; Miller, Lois K

    2005-11-01

    The host cell-specific factor 1 gene (hcf-1) of the baculovirus Autographa californica multiple nucleopolyhedrovirus is required for efficient virus growth in TN368 cells but is dispensable for virus replication in SF21 cells. However, the mechanism of action of hcf-1 is unknown. To begin to understand its function in virus replication we have investigated the expression and localization pattern of HCF-1 in infected cells. Analysis of virus-infected TN368 cells showed that hcf-1 is expressed at an early time in the virus life cycle, between 2 and 12 h postinfection, and localized the protein to punctate nuclear foci. Through coprecipitation experiments we have confirmed that HCF-1 self-associates into dimers or higher-order structures. We also found that overexpression of HCF-1 repressed expression from the hcf-1 promoter in transient reporter assays. Mutagenesis of cysteine residues within a putative RING finger domain in the amino acid sequence of HCF-1 abolished self-association activity and suggests that the RING domain may be involved in this protein-protein interaction. A different but overlapping set of cysteine residues were required for efficient gene repression activity. Functional analysis of HCF-1 mutants showed that the cysteine amino acids required for both self-association and gene repression activities of HCF-1 were also required for efficient late-gene expression and occlusion body formation in TN368 cells. Mutational analysis also identified essential charged and hydrophobic amino acids located between two of the essential cysteine residues. We propose that HCF-1 is a RING finger-containing protein whose activity requires HCF-1 self-association and gene repression activity.

  3. Structure and Catalytic Regulatory Function of Ubiquitin Specific Protease 11 N-Terminal and Ubiquitin-like Domains

    PubMed Central

    2014-01-01

    The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal “domain present in USPs” (DUSP) and “ubiquitin-like” (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys63-, Lys6-, Lys33-, and Lys11-linked chains over Lys27-, Lys29-, and Lys48-linked and linear chains consistent with USP11’s function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation. PMID:24724799

  4. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains.

    PubMed

    Harper, Stephen; Gratton, Hayley E; Cornaciu, Irina; Oberer, Monika; Scott, David J; Emsley, Jonas; Dreveny, Ingrid

    2014-05-13

    The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.

  5. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology.

  6. Structural Basis and Function of XRN2-Binding by XTB Domains

    PubMed Central

    Richter, Hannes; Katic, Iskra; Gut, Heinz; Großhans, Helge

    2016-01-01

    The ribonuclease XRN2 is an essential player in RNA metabolism. In Caenorhabditis elegans, XRN2 functions with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with otherwise unrelated mammalian proteins. Here, we characterize structure and function of an XTBD – XRN2 complex. Although XTBD stably interconnects two XRN2 domains through numerous interacting residues, mutation of a single critical residue suffices to disrupt XTBD – XRN2 complexes in vitro, and recapitulates paxt-1 null mutant phenotypes in vivo. Demonstrating conservation of function, vertebrate XTBD-containing proteins bind XRN2 in vitro, and human CDKN2AIPNL (C2AIL) can substitute for PAXT-1 in vivo. In vertebrates, where three distinct XTBD-containing proteins exist, XRN2 may partition to distinct stable heterodimeric complexes, likely differing in subcellular localization or function. In C. elegans, complex formation with the unique PAXT-1 serves to preserve the stability of XRN2 in the absence of substrate. PMID:26779609

  7. Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase.

    PubMed

    Wray, Lewis V; Fisher, Susan H

    2008-04-01

    The Bacillus subtilis GlnR transcription factor regulates gene expression in response to changes in nitrogen availability. Glutamine synthetase transmits the nitrogen regulatory signal to GlnR. The DNA-binding activity of GlnR is activated by a transient protein-protein interaction with feedback-inhibited glutamine synthetase that stabilizes GlnR-DNA complexes. This signal transduction mechanism was analysed by creating mutant GlnR proteins with partial or complete truncations of their C-terminal domains. The truncated GlnR proteins were found to constitutively repress gene expression in vivo. This constitutive repression did not require glutamine synthetase. Purified mutant GlnR proteins bound DNA in vitro more tightly than wild-type GlnR protein and this binding was not activated by feedback-inhibited glutamine synthetase. While full-length GlnR is monomeric, the truncated GlnR proteins contained significant levels of dimers. These results indicate that the C-terminal region of GlnR acts as an autoinhibitory domain that prevents GlnR dimerization and thus impedes DNA binding. The GlnR C-terminal domain is also required for the interaction between GlnR and feedback-inhibited glutamine synthetase. Compared with the full-length GlnR protein, the truncated GlnR proteins were defective in their interaction with feedback-inhibited glutamine synthetase in cross-linking experiments.

  8. Synaptic transmission and plasticity require AMPA receptor anchoring via its N-terminal domain

    PubMed Central

    Watson, Jake F; Ho, Hinze; Greger, Ingo H

    2017-01-01

    AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and are selectively recruited during activity-dependent plasticity to increase synaptic strength. A prerequisite for faithful signal transmission is the positioning and clustering of AMPARs at postsynaptic sites. The mechanisms underlying this positioning have largely been ascribed to the receptor cytoplasmic C-termini and to AMPAR-associated auxiliary subunits, both interacting with the postsynaptic scaffold. Here, using mouse organotypic hippocampal slices, we show that the extracellular AMPAR N-terminal domain (NTD), which projects midway into the synaptic cleft, plays a fundamental role in this process. This highly sequence-diverse domain mediates synaptic anchoring in a subunit-selective manner. Receptors lacking the NTD exhibit increased mobility in synapses, depress synaptic transmission and are unable to sustain long-term potentiation (LTP). Thus, synaptic transmission and the expression of LTP are dependent upon an AMPAR anchoring mechanism that is driven by the NTD. DOI: http://dx.doi.org/10.7554/eLife.23024.001 PMID:28290985

  9. Functional interaction between bases C1049 in domain II and G2751 in domain VI of 23S rRNA in Escherichia coli ribosomes

    PubMed Central

    Miyoshi, Tomohiro; Uchiumi, Toshio

    2008-01-01

    The factor-binding center within the Escherichia coli ribosome is comprised of two discrete domains of 23S rRNA: the GTPase-associated region (GAR) in domain II and the sarcin–ricin loop in domain VI. These two regions appear to collaborate in the factor-dependent events that occur during protein synthesis. Current X-ray crystallography of the ribosome shows an interaction between C1049 in the GAR and G2751 in domain VI. We have confirmed this interaction by site-directed mutagenesis and chemical probing. Disruption of this base pair affected not only the chemical modification of some bases in domains II and VI and in helix H89 of domain V, but also ribosome function dependent on both EF-G and EF-Tu. Mutant ribosomes carrying the C1049 to G substitution, which show enhancement of chemical modification at G2751, were used to probe the interactions between the regions around 1049 and 2751. Binding of EF-G-GDP-fusidic acid, but not EF-G-GMP-PNP, to the ribosome protected G2751 from modification. The G2751 protection was also observed after tRNA binding to the ribosomal P and E sites. The results suggest that the interactions between the bases around 1049 and 2751 alter during different stages of the translation process. PMID:18252772

  10. Cognitive Functioning in Space Exploration Missions: A Human Requirement

    NASA Technical Reports Server (NTRS)

    Fiedler, Edan; Woolford, Barbara

    2005-01-01

    Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.

  11. Genome-Wide Analysis of PDZ Domain Binding Reveals Inherent Functional Overlap within the PDZ Interaction Network

    PubMed Central

    te Velthuis, Aartjan J. W.; Sakalis, Philippe A.; Fowler, Donald A.; Bagowski, Christoph P.

    2011-01-01

    Binding selectivity and cross-reactivity within one of the largest and most abundant interaction domain families, the PDZ family, has long been enigmatic. The complete human PDZ domain complement (the PDZome) consists of 267 domains and we applied here a Bayesian selectivity model to predict hundreds of human PDZ domain interactions, using target sequences of 22,997 non-redundant proteins. Subsequent analysis of these binding scores shows that PDZs can be divided into two genome-wide clusters that coincide well with the division between canonical class 1 and 2 PDZs. Within the class 1 PDZs we observed binding overlap at unprecedented levels, mediated by two residues at positions 1 and 5 of the second α-helix of the binding pocket. Eight PDZ domains were subsequently selected for experimental binding studies and to verify the basics of our predictions. Overall, the PDZ domain class 1 cross-reactivity identified here implies that auxiliary mechanisms must be in place to overcome this inherent functional overlap and to minimize cross-selectivity within the living cell. Indeed, when we superimpose PDZ domain binding affinities with gene ontologies, network topology data and the domain position within a PDZ superfamily protein, functional overlap is minimized and PDZ domains position optimally in the binding space. We therefore propose that PDZ domain selectivity is achieved through cellular context rather than inherent binding specificity. PMID:21283644

  12. The ferredoxin-like domain of the activating enzyme is required for generating a lasting glycyl radical in 4-hydroxyphenylacetate decarboxylase.

    PubMed

    Selvaraj, Brinda; Pierik, Antonio J; Bill, Eckhard; Martins, Berta M

    2014-12-01

    4-Hydroxyphenylacetate decarboxylase-activating enzyme (4Hpad-AE) uses S-adenosylmethionine (SAM or AdoMet) and a [4Fe-4S] ²⁺/⁺cluster (RS cluster) to generate a stable glycyl radical on the decarboxylase. 4Hpad-AE might bind up to two auxiliary [4Fe-4S] clusters coordinated by a ferredoxin-like insert C-terminal to the RS cluster-binding motif. Except for the AEs of pyruvate formate-lyase and anaerobic ribonucleotide reductase, all glycyl radical-activating enzymes possess a similar ferredoxin-like domain, whose functional role is still poorly understood. To assess the role of the putative ferredoxin clusters from 4Hpad-AE, we combined biochemical and spectroscopic methods to characterize a truncated version of the protein (Δ66-AE) devoid of the ferredoxin-like domain. We found that Δ66-AE is stable, harbors a fully active RS cluster and can activate the decarboxylase. From the similar cleavage rates for S-adenosylmethionine of Δ66-AE and wild-type AE, we infer the reactivity of the RS cluster is unperturbed by the absence of the ferredoxin-like domain. Thus, the auxiliary clusters are not required as electron conduit to the RS cluster for effective reductive cleavage of SAM. The activation of the decarboxylase by Δ66-AE is almost as fast as with wild-type AE, but the generated glycyl radical is short living. We postulate that the ferredoxin-like domain is not required for SAM-dependent glycyl radical generation in the decarboxylase, but is necessary for producing a lasting glycyl radical.

  13. Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase.

    PubMed

    Huang, Ju; Birmingham, Cheryl L; Shahnazari, Shahab; Shiu, Jessica; Zheng, Yiyu T; Smith, Adam C; Campellone, Kenneth G; Heo, Won Do; Gruenheid, Samantha; Meyer, Tobias; Welch, Matthew D; Ktistakis, Nicholas T; Kim, Peter Kijun; Klionsky, Daniel J; Brumell, John H

    2011-01-01

    Autophagy mediates the degradation of cytoplasmic components in eukaryotic cells and plays a key role in immunity. The mechanism of autophagosome formation is not clear. Here we examined two potential membrane sources for antibacterial autophagy: the ER and mitochondria. DFCP1, a marker of specialized ER domains known as 'omegasomes,' associated with Salmonella-containing autophagosomes via its PtdIns(3)P and ER-binding domains, while a mitochondrial marker (cytochrome b5-GFP) did not. Rab1 also localized to autophagosomes, and its activity was required for autophagosome formation, clearance of protein aggregates and peroxisomes, and autophagy of Salmonella. Overexpression of Rab1 enhanced antibacterial autophagy. The role of Rab1 in antibacterial autophagy was independent of its role in ER-to-Golgi transport. Our data suggest that antibacterial autophagy occurs at omegasomes and reveal that the Rab1 GTPase plays a crucial role in mammalian autophagy.

  14. The plant-specific VIMAG domain of Glutamine Dumper1 is necessary for the function of the protein in Arabidopsis.

    PubMed

    Pratelli, Réjane; Pilot, Guillaume

    2006-12-22

    The over-expression of the arabidopsis GLUTAMINE DUMPER1 gene (GDU1) leads to increased amino acid content and transport. In a screening for mutations suppressing this phenotype, a mutant was isolated. The mutation leads to a glycine to arginine substitution in one of the two conserved domains of the protein, the VIMAG domain. More detailed structure function relationship analyses showed that the presence of this domain and the membrane localisation are both necessary for the function of the GDU1 protein. These results shed light on the function of the GDU1 protein whose family is specific to plants.

  15. Functional Requirements for Continuation Period Equipment and Drilling

    SciTech Connect

    Sweeney, J.J.

    2000-06-20

    For geophysical measurements, creating a functional requirement based on finding a specific-sized target at a specific depth is difficult because of the wide variation of subsurface and surface geologic conditions that can be encountered. An alternative approach used in this paper is to specify functional requirements based on what is needed to search for the effects of a given target within a reasonable background of environmental or geological variation (noise). There is a gap between what the state-of-the-art expert with a large amount of experience can be expected to accomplish and what a non-expert inspector with limited experience can do. There are also limitations because of the Treaty environment (equipment certification, transparency, managed access, etc.); thus, for OSI, we must opt for pragmatic approach. Equipment must be easy to use, rugged, and functional over a wide range of environmental conditions. Equipment should consist of commercially available technology. Well-established operational procedures should be used for taking measurements, reducing data, and presenting data, with software mostly provided by the manufacturer along with the equipment. Equipment should be used in conjunction with WGB-approved position-finding equipment capable of relative position determinations pertinent to the type of equipment and measurement.

  16. Characterization of Critical Domains within the Tumor Suppressor CASZ1 Required for Transcriptional Regulation and Growth Suppression

    PubMed Central

    Virden, Ryan A.

    2012-01-01

    CASZ1 is a zinc finger (ZF) transcription factor that is critical for controlling the normal differentiation of subtypes of neural and cardiac muscle cells. In neuroblastoma tumors, loss of CASZ1 is associated with poor prognosis and restoration of CASZ1 function suppresses neuroblastoma tumorigenicity. However, the key domains by which CASZ1 transcription controls developmental processes and neuroblastoma tumorigenicity have yet to be elucidated. In this study, we show that loss of any one of ZF1 to ZF4 resulted in a 58 to 79% loss in transcriptional activity, as measured by induction of tyrosine hydroxylase promoter-luciferase activity, compared to that of wild-type (WT) CASZ1b. Mutation of ZF5 or deletion of the C-terminal sequence of amino acids (aa) 728 to 1166 (a truncation of 38% of the protein) does not significantly alter transcriptional function. A series of N-terminal truncations reveals a critical transcriptional activation domain at aa 31 to 185 and a nuclear localization signal at aa 23 to 29. Soft agar colony formation assays and xenograft studies show that WT CASZ1b is more active in suppressing neuroblastoma growth than CASZ1b with a ZF4 mutation or a deletion of aa 31 to 185. This study identifies key domains needed for CASZ1b to regulate gene transcription. Furthermore, we establish a link between loss of CASZ1b transcriptional activity and attenuation of CASZ1b-mediated inhibition of neuroblastoma growth and tumorigenicity. PMID:22331471

  17. Differences in academic and executive function domains among children with ADHD Predominantly Inattentive and Combined Types.

    PubMed

    Riccio, Cynthia A; Homack, Susan; Jarratt, Kelly Pizzitola; Wolfe, Monica E

    2006-10-01

    Differences between the subtypes of Attention Deficit Hyperactivity Disorder (ADHD) continue to have a place in the clinical and research literature. The purpose of this study was to examine differences specific to academic and executive function deficits in a sample of 40 children, aged 9-15 years. Although there was a tendency for the Predominantly Inattentive (PI) group to evidence lower performance on calculation and written expression tasks, these differences dissipated when IQ was included as a covariate. For executive function domains of set shifting, interference, inhibition, and planning, differences emerged for interference, but only when girls were excluded from the analysis and no control for IQ was made. For parent ratings of executive function, expected differences were found on the Inhibit scale with the Combined Type (CT) group evidencing greater problems in this area; this difference remained even when girls were excluded and IQ was controlled. Implications for research and practice are presented.

  18. Characterization of the Ligand Binding Functionality of the Extracellular Domain of Activin Receptor Type IIB

    PubMed Central

    Sako, Dianne; Grinberg, Asya V.; Liu, June; Davies, Monique V.; Castonguay, Roselyne; Maniatis, Silas; Andreucci, Amy J.; Pobre, Eileen G.; Tomkinson, Kathleen N.; Monnell, Travis E.; Ucran, Jeffrey A.; Martinez-Hackert, Erik; Pearsall, R. Scott; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra

    2010-01-01

    The single transmembrane domain serine/threonine kinase activin receptor type IIB (ActRIIB) has been proposed to bind key regulators of skeletal muscle mass development, including the ligands GDF-8 (myostatin) and GDF-11 (BMP-11). Here we provide a detailed kinetic characterization of ActRIIB binding to several low and high affinity ligands using a soluble activin receptor type IIB-Fc chimera (ActRIIB.Fc). We show that both GDF-8 and GDF-11 bind the extracellular domain of ActRIIB with affinities comparable with those of activin A, a known high affinity ActRIIB ligand, whereas BMP-2 and BMP-7 affinities for ActRIIB are at least 100-fold lower. Using site-directed mutagenesis, we demonstrate that ActRIIB binds GDF-11 and activin A in different ways such as, for example, substitutions in ActRIIB Leu79 effectively abolish ActRIIB binding to activin A yet not to GDF-11. Native ActRIIB has four isoforms that differ in the length of the C-terminal portion of their extracellular domains. We demonstrate that the C terminus of the ActRIIB extracellular domain is crucial for maintaining biological activity of the ActRIIB.Fc receptor chimera. In addition, we show that glycosylation of ActRIIB is not required for binding to activin A or GDF-11. Together, our findings reveal binding specificity and activity determinants of the ActRIIB receptor that combine to effect specificity in the activation of distinct signaling pathways. PMID:20385559

  19. Assessment of the Social Functions and Vitality of the Yi Language from the Perspective of Its Domains of Use

    ERIC Educational Resources Information Center

    Suhua, Hu

    2008-01-01

    In general, the vitality and social functions of a language are assessed in connection with such indices as the language's intergenerational transmission, the absolute number of speakers and proportion of speakers in the population, its present domains of use, its development within diverse domains of use, and the availability of its educational…

  20. Seventh Graders' Academic Achievement, Creativity, and Ability to Construct a Cross-Domain Concept Map--A Brain Function Perspective

    ERIC Educational Resources Information Center

    Yeh, Yu-Chu

    2004-01-01

    This study proposes an interactive model of "cross-domain" concept mapping with an emphasis on brain functions, and it further investigates the relationships between academic achievement, creative thinking, and cross-domain concept mapping. Sixty-nine seventh graders participated in this study which employed two 50-minute instructional…

  1. Canid progesterone receptors lack activation function 3 domain-dependent activity.

    PubMed

    Gracanin, Ana; van Wolferen, Monique E; Sartorius, Carol A; Brenkman, Arjan B; Schoonen, Willem G; Mol, Jan A

    2012-12-01

    Progesterone regulates multiple behavioral, physiological, and pathological aspects of female reproductive biology through its two progesterone receptors (PRs), PR-B and the truncated PR-A. PR-B is necessary for mammary gland development in mice and, compared with PR-A, is overall a stronger transactivator of target genes due to an additional activation function 3 (AF3) domain. In dogs, known for their high sensitivity to progesterone-induced mammary cancer, the PR-B function was studied. Canine PR (cPR)-B appeared to contain multiple mutations within AF3 core sequence motifs and lacks N-terminal ligand-independent posttranslational modifications. Consequently, cPR-B has a weak transactivation potential on progesterone-responsive mouse mammary tumor virus-luc and progesterone response element 2-luc reporters transiently transfected in hamster, human, or canine cells and also on known target genes FKBP5 and SGK in doxycycline-inducible, stable transfected cPR-B in canine mammary cells. The cPR-B function was restored to the level of human PR-B by the replacement of canine AF3 domain with the human one. The lack of AF3 domain-dependent transcriptional activity was unique for canids (gray wolf, red fox, and raccoon dog) and not present in closely related caniform species (brown bear, gray seal, and domestic ferret). Despite the limited transactivation potential, canids develop normal mammary glands and frequently mammary tumors. Therefore, these results question the role of PR-B in breast cancer development and may explain unique features of canid reproduction.

  2. Multi-material micro-electromechanical fibers with bendable functional domains

    NASA Astrophysics Data System (ADS)

    Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien

    2017-04-01

    The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin

  3. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers

    PubMed Central

    Arumughan, Anup; Roske, Yvette; Barth, Carolin; Forero, Laura Lleras; Bravo-Rodriguez, Kenny; Redel, Alexandra; Kostova, Simona; McShane, Erik; Opitz, Robert; Faelber, Katja; Rau, Kirstin; Mielke, Thorsten; Daumke, Oliver; Selbach, Matthias; Sanchez-Garcia, Elsa; Rocks, Oliver; Panáková, Daniela; Heinemann, Udo; Wanker, Erich E.

    2016-01-01

    Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity. PMID:27762274

  4. GeMMA: functional subfamily classification within superfamilies of predicted protein structural domains.

    PubMed

    Lee, David A; Rentzsch, Robert; Orengo, Christine

    2010-01-01

    GeMMA (Genome Modelling and Model Annotation) is a new approach to automatic functional subfamily classification within families and superfamilies of protein sequences. A major advantage of GeMMA is its ability to subclassify very large and diverse superfamilies with tens of thousands of members, without the need for an initial multiple sequence alignment. Its performance is shown to be comparable to the established high-performance method SCI-PHY. GeMMA follows an agglomerative clustering protocol that uses existing software for sensitive and accurate multiple sequence alignment and profile-profile comparison. The produced subfamilies are shown to be equivalent in quality whether whole protein sequences are used or just the sequences of component predicted structural domains. A faster, heuristic version of GeMMA that also uses distributed computing is shown to maintain the performance levels of the original implementation. The use of GeMMA to increase the functional annotation coverage of functionally diverse Pfam families is demonstrated. It is further shown how GeMMA clusters can help to predict the impact of experimentally determining a protein domain structure on comparative protein modelling coverage, in the context of structural genomics.

  5. Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing.

    PubMed

    Nishino, Tatsuya; Komori, Kayoko; Tsuchiya, Daisuke; Ishino, Yoshizumi; Morikawa, Kosuke

    2005-01-01

    DNA and RNA frequently form various branched intermediates that are important for the transmission of genetic information. Helicases play pivotal roles in the processing of these transient intermediates during nucleic acid metabolism. The archaeal Hef helicase/ nuclease is a representative protein that processes flap- or fork-DNA structures, and, intriguingly, its C-terminal half belongs to the XPF/Mus81 nuclease family. Here, we report the crystal structure of the helicase domain of the Hef protein from Pyrococcus furiosus. The structure reveals a novel helical insertion between the two conserved helicase core domains. This positively charged extra region, structurally similar to the "thumb" domain of DNA polymerase, plays critical roles in fork recognition. The Hef helicase/nuclease exhibits sequence similarity to the Mph1 helicase from Saccharomyces cerevisiae; XPF/Rad1, involved in DNA repair; and a putative Hef homolog identified in mammals. Hence, our findings provide a structural basis for the functional mechanisms of this helicase/nuclease family.

  6. Structural Conservation and Functional Diversity of the Poxvirus Immune Evasion (PIE) Domain Superfamily.

    PubMed

    Nelson, Christopher A; Epperson, Megan L; Singh, Sukrit; Elliott, Jabari I; Fremont, Daved H

    2015-08-28

    Poxviruses encode a broad array of proteins that serve to undermine host immune defenses. Structural analysis of four of these seemingly unrelated proteins revealed the recurrent use of a conserved beta-sandwich fold that has not been observed in any eukaryotic or prokaryotic protein. Herein we propose to call this unique structural scaffolding the PIE (Poxvirus Immune Evasion) domain. PIE domain containing proteins are abundant in chordopoxvirinae, with our analysis identifying 20 likely PIE subfamilies among 33 representative genomes spanning 7 genera. For example, cowpox strain Brighton Red appears to encode 10 different PIEs: vCCI, A41, C8, M2, T4 (CPVX203), and the SECRET proteins CrmB, CrmD, SCP-1, SCP-2, and SCP-3. Characterized PIE proteins all appear to be nonessential for virus replication, and all contain signal peptides for targeting to the secretory pathway. The PIE subfamilies differ primarily in the number, size, and location of structural embellishments to the beta-sandwich core that confer unique functional specificities. Reported ligands include chemokines, GM-CSF, IL-2, MHC class I, and glycosaminoglycans. We expect that the list of ligands and receptors engaged by the PIE domain will grow as we come to better understand how this versatile structural architecture can be tailored to manipulate host responses to infection.

  7. Structural Conservation and Functional Diversity of the Poxvirus Immune Evasion (PIE) Domain Superfamily

    PubMed Central

    Nelson, Christopher A.; Epperson, Megan L.; Singh, Sukrit; Elliott, Jabari I.; Fremont, Daved H.

    2015-01-01

    Poxviruses encode a broad array of proteins that serve to undermine host immune defenses. Structural analysis of four of these seemingly unrelated proteins revealed the recurrent use of a conserved beta-sandwich fold that has not been observed in any eukaryotic or prokaryotic protein. Herein we propose to call this unique structural scaffolding the PIE (Poxvirus Immune Evasion) domain. PIE domain containing proteins are abundant in chordopoxvirinae, with our analysis identifying 20 likely PIE subfamilies among 33 representative genomes spanning 7 genera. For example, cowpox strain Brighton Red appears to encode 10 different PIEs: vCCI, A41, C8, M2, T4 (CPVX203), and the SECRET proteins CrmB, CrmD, SCP-1, SCP-2, and SCP-3. Characterized PIE proteins all appear to be nonessential for virus replication, and all contain signal peptides for targeting to the secretory pathway. The PIE subfamilies differ primarily in the number, size, and location of structural embellishments to the beta-sandwich core that confer unique functional specificities. Reported ligands include chemokines, GM-CSF, IL-2, MHC class I, and glycosaminoglycans. We expect that the list of ligands and receptors engaged by the PIE domain will grow as we come to better understand how this versatile structural architecture can be tailored to manipulate host responses to infection. PMID:26343707

  8. The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components*

    PubMed Central

    Soldi, Monica; Bonaldi, Tiziana

    2013-01-01

    Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status. PMID:23319141

  9. Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT*

    PubMed Central

    Kemble, David J.; Whitby, Frank G.; Robinson, Howard; McCullough, Laura L.; Formosa, Tim; Hill, Christopher P.

    2013-01-01

    The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins. PMID:23417676

  10. Time Domain Identification of an Optimal Control Pilot Model with Emphasis on the Objective Function

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1982-01-01

    A method for the identification of the pilot's control compensation using time domain techniques is proposed. From this information we hope to infer a quadratic cost function, supported by the data, that represents a reasonable expression for the pilot's control objective in the task being performed, or an inferred piloting strategy. The objectives for this method are: (1) obtain a better understanding of the fundamental piloting techniques in complex tasks, such as landing approach; (2) the development of a metric measurable in simulations and flight test that correlate with subjective pilot opinion; and (3) to further validate pilot models and pilot vehicle analysis methods.

  11. The sequence and antiapoptotic functional domains of the human cytomegalovirus UL37 exon 1 immediate early protein are conserved in multiple primary strains.

    PubMed

    Hayajneh, W A; Colberg-Poley, A M; Skaletskaya, A; Bartle, L M; Lesperance, M M; Contopoulos-Ioannidis, D G; Kedersha, N L; Goldmacher, V S

    2001-01-05

    The human cytomegalovirus UL37 exon 1 gene encodes the immediate early protein pUL37x1 that has antiapoptotic and regulatory activities. Deletion mutagenesis analysis of the open reading frame of UL37x1 identified two domains that are necessary and sufficient for its antiapoptotic activity. These domains are confined within the segments between amino acids 5 to 34, and 118 to 147, respectively. The first domain provides the targeting of the protein to mitochondria. Direct PCR sequencing of UL37 exon 1 amplified from 26 primary strains of human cytomegalovirus demonstrated that the promoter, polyadenylation signal, and the two segments of pUL37x1 required for its antiapoptotic function were invariant in all sequenced strains and identical to those in AD169 pUL37x1. In total, UL37 exon 1 varies between 0.0 and 1.6% at the nucleotide level from strain AD169. Only 11 amino acids were found to vary in one or more viral strains, and these variations occurred only in the domains of pUL37x1 dispensable for its antiapoptotic function. We infer from this remarkable conservation of pUL37x1 in primary strains that this protein and, probably, its antiapoptotic function are required for productive replication of human cytomegalovirus in humans.

  12. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  13. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  14. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  15. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  16. The Functional Requirements and Design Basis for Information Barriers

    SciTech Connect

    Fuller, James L.

    2012-05-01

    This report summarizes the results of the Information Barrier Working Group workshop held at Sandia National Laboratory in Albuquerque, NM, February 2-4, 1999. This workshop was convened to establish the functional requirements associated with warhead radiation signature information barriers, to identify the major design elements of any such system or approach, and to identify a design basis for each of these major elements. Such information forms the general design basis to be used in designing, fabricating, and evaluating the complete integrated systems developed for specific purposes.

  17. Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing.

    PubMed

    Foda, Bardees M; Downey, Kurtis M; Fisk, John C; Read, Laurie K

    2012-09-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.

  18. Multifunctional G-Rich and RRM-Containing Domains of TbRGG2 Perform Separate yet Essential Functions in Trypanosome RNA Editing

    PubMed Central

    Foda, Bardees M.; Downey, Kurtis M.; Fisk, John C.

    2012-01-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3′-to-5′ progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in