Science.gov

Sample records for functional domains required

  1. Uncertainty Analysis via Failure Domain Characterization: Polynomial Requirement Functions

    NASA Technical Reports Server (NTRS)

    Crespo, Luis G.; Munoz, Cesar A.; Narkawicz, Anthony J.; Kenny, Sean P.; Giesy, Daniel P.

    2011-01-01

    This paper proposes an uncertainty analysis framework based on the characterization of the uncertain parameter space. This characterization enables the identification of worst-case uncertainty combinations and the approximation of the failure and safe domains with a high level of accuracy. Because these approximations are comprised of subsets of readily computable probability, they enable the calculation of arbitrarily tight upper and lower bounds to the failure probability. A Bernstein expansion approach is used to size hyper-rectangular subsets while a sum of squares programming approach is used to size quasi-ellipsoidal subsets. These methods are applicable to requirement functions whose functional dependency on the uncertainty is a known polynomial. Some of the most prominent features of the methodology are the substantial desensitization of the calculations from the uncertainty model assumed (i.e., the probability distribution describing the uncertainty) as well as the accommodation for changes in such a model with a practically insignificant amount of computational effort.

  2. Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat.

    PubMed

    Garcia, J A; Harrich, D; Pearson, L; Mitsuyasu, R; Gaynor, R B

    1988-10-01

    The transcriptional regulation of the human immunodeficiency virus (HIV) type I involves the interaction of both viral and cellular proteins. The viral protein tat is important in increasing the amount of viral steady-state mRNA and may also play a role in regulating the translational efficiency of viral mRNA. To identify distinct functional domains of tat, oligonucleotide-directed mutagenesis of the tat gene was performed. Point mutations of cysteine residues in three of the four Cys-X-X-Cys sequences in the tat protein resulted in a marked decrease in transcriptional activation of the HIV long terminal repeat. Point mutations which altered the basic C-domain of the protein also resulted in decreases in transcriptional activity, as did a series of mutations that repositioned either the N or C termini of the protein. Conservative mutations of other amino acids in the cysteine-rich or basic regions and in a series of proline residues in the N terminus of the molecule resulted in minimal changes in tat activation. These results suggest that several domains of tat protein are involved in transcriptional activation with the cysteine-rich domain being required for complete activity of the tat protein.

  3. Structure–function analysis of myomaker domains required for myoblast fusion

    PubMed Central

    Millay, Douglas P.; Gamage, Dilani G.; Quinn, Malgorzata E.; Min, Yi-Li; Mitani, Yasuyuki; Bassel-Duby, Rhonda; Olson, Eric N.

    2016-01-01

    During skeletal muscle development, myoblasts fuse to form multinucleated myofibers. Myomaker [Transmembrane protein 8c (TMEM8c)] is a muscle-specific protein that is essential for myoblast fusion and sufficient to promote fusion of fibroblasts with muscle cells; however, the structure and biochemical properties of this membrane protein have not been explored. Here, we used CRISPR/Cas9 mutagenesis to disrupt myomaker expression in the C2C12 muscle cell line, which resulted in complete blockade to fusion. To define the functional domains of myomaker required to direct fusion, we established a heterologous cell–cell fusion system, in which fibroblasts expressing mutant versions of myomaker were mixed with WT myoblasts. Our data indicate that the majority of myomaker is embedded in the plasma membrane with seven membrane-spanning regions and a required intracellular C-terminal tail. We show that myomaker function is conserved in other mammalian orthologs; however, related family members (TMEM8a and TMEM8b) do not exhibit fusogenic activity. These findings represent an important step toward deciphering the cellular components and mechanisms that control myoblast fusion and muscle formation. PMID:26858401

  4. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding.

    PubMed

    Deffieu, Maika S; Pfeffer, Suzanne R

    2011-11-22

    Niemann-Pick type C1 (NPC1) protein is needed for cellular utilization of low-density lipoprotein-derived cholesterol that has been delivered to lysosomes. The protein has 13 transmembrane domains, three large lumenal domains, and a cytoplasmic tail. NPC1's lumenally oriented, N-terminal domain binds cholesterol and has been proposed to receive cholesterol from NPC2 protein as part of the process by which cholesterol is exported from lysosomes into the cytosol. Using surface plasmon resonance and affinity chromatography, we show here that the second lumenal domain of NPC1 binds directly to NPC2 protein. For these experiments, a soluble NPC1 lumenal domain 2 was engineered by replacing adjacent transmembrane domains with antiparallel coiled-coil sequences. Interaction of NPC2 with NPC1 lumenal domain 2 is only detected at acidic pH, conditions that are optimal for cholesterol binding to NPC2 and transfer to NPC1; the pH is also appropriate for the acidic environment where binding would take place. Binding to NPC1 domain 2 requires the presence of cholesterol on NPC2 protein, a finding that supports directional transfer of cholesterol from NPC2 onto NPC1's N-terminal domain. Finally, human disease-causing mutations in NPC1 domain 2 decrease NPC2 binding, suggesting that NPC2 binding is necessary for NPC1 function in humans. These data support a model in which NPC1 domain 2 holds NPC2 in position to facilitate directional cholesterol transfer from NPC2 onto NPC1 protein for export from lysosomes.

  5. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  6. Identification of TSG101 functional domains and p21 loci required for TSG101-mediated p21 gene regulation.

    PubMed

    Lin, Yu-Shiuan; Chen, Yin-Ju; Cohen, Stanley N; Cheng, Tzu-Hao

    2013-01-01

    TSG101 (tumor susceptibility gene 101) is a multi-domain protein known to act in the cell nucleus, cytoplasm, and periplasmic membrane. Remarkably, TSG101, whose location within cells varies with the stage of the cell cycle, affects biological events as diverse as cell growth and proliferation, gene expression, cytokinesis, and endosomal trafficking. The functions of TSG101 additionally are recruited for viral and microvesicle budding and for intracellular survival of invading bacteria. Here we report that the TSG101 protein also interacts with and down-regulates the promoter of the p21 (CIP1/WAF1) tumor suppressor gene, and identify a p21 locus and TSG101 domains that mediate this interaction. TSG101 deficiency in Saos-2 human osteosarcoma cells was accompanied by an increased abundance of p21 mRNA and protein and the retardation of cell proliferation. A cis-acting element in the p21 promoter that interacts with TSG101 and is required for promoter repression was located using chromatin immunoprecipitation (ChIP) analysis and p21-driven luciferase reporter gene expression, respectively. Additional analysis of TSG101 deletion mutants lacking specific domains established the role of the central TSG101 domains in binding to the p21 promoter and demonstrated the additional essentiality of the TSG101 C-terminal steadiness box (SB) in the repression of p21 promoter activity. Neither binding of TSG101 to the p21 promoter nor repression of this promoter required the TSG101 N-terminal UEV domain, which mediates the ubiquitin-recognition functions of TSG101 and its actions as a member of ESCRT endocytic trafficking complexes, indicating that regulation of the p21 promoter by TSG101 is independent of its role in such trafficking.

  7. Requirements analysis, domain knowledge, and design

    NASA Technical Reports Server (NTRS)

    Potts, Colin

    1988-01-01

    Two improvements to current requirements analysis practices are suggested: domain modeling, and the systematic application of analysis heuristics. Domain modeling is the representation of relevant application knowledge prior to requirements specification. Artificial intelligence techniques may eventually be applicable for domain modeling. In the short term, however, restricted domain modeling techniques, such as that in JSD, will still be of practical benefit. Analysis heuristics are standard patterns of reasoning about the requirements. They usually generate questions of clarification or issues relating to completeness. Analysis heuristics can be represented and therefore systematically applied in an issue-based framework. This is illustrated by an issue-based analysis of JSD's domain modeling and functional specification heuristics. They are discussed in the context of the preliminary design of simple embedded systems.

  8. Two Structural and Functional Domains of MESD Required for Proper Folding and Trafficking of LRP5/6

    PubMed Central

    Chen, Jianglei; Liu, Chia-Chen; Li, Qianqian; Nowak, Christian; Bu, Guojun; Wang, Jianjun

    2011-01-01

    SUMMARY How the ER folding machinery coordinates general and specialized chaperones during protein translation and folding remains an important unanswered question. Here, we show two structural domains in MESD, a specialized chaperone for LRP5/6, carry out dual functions. The chaperone domain forms a complex with the immature receptor, maintaining the β-propeller domain in an interaction competent state for EGF-repeat binding. This promotes proper folding of the BP domain, causing a binding switch from the chaperone domain to the escort domain. The escort complex ensures LRP5/6 safe-trafficking from the ER to the Golgi by preventing premature ligand-binding. Inside the Golgi, the BP domain may contain a histidine switch, regulating MESD dissociation and retrieval. Together, we generate a plausible cell biology picture of the MESD/LRP5/6 pathway, suggesting that it is the specialized chaperones, MESD, that serves as the folding template to drive proper folding and safe trafficking of large multi-domain proteins LRP5/6. PMID:21397183

  9. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    SciTech Connect

    Kim, Seong K. Kim, Seongman; Dai Gan; Zhang Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2011-09-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: > We examine the functional domains of IR2P that mediates negative regulation. > IR2P inhibits at the transcriptional level. > DNA-binding mutant or TFIIB-binding mutant fails to inhibit. > C-terminal aa 707 to 1116 are required for full inhibition. > Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.

  10. Zinc finger domain of Su(Hw) protein is required for the formation of functional Su(Hw)-dependent insulator complex.

    PubMed

    Golovnin, A K; Molodina, V V; Georgiev, P G; Melnikova, L S

    2016-07-01

    This study is devoted to clarifying the role of Mod(mdg4)-67.2 and Su(Hw) proteins in the interaction between Su(Hw)-dependent insulator complexes and identifying the specific domains of the Su(Hw) protein required for insulation or mutual neutralization of insulators. Using genetic techniques and experiments in yeast two-hybrid system, we have demonstrated that the zinc finger domain of the Su(Hw) protein is involved in forming a functional insulator complex and cannot be replaced with the DNA-binding domain of the GAL4 protein. PMID:27599504

  11. Phenotypic Complementation Establishes Requirements for Specific POU Domain and Generic Transactivation Function of Oct-3/4 in Embryonic Stem Cells

    PubMed Central

    Niwa, Hitoshi; Masui, Shinji; Chambers, Ian; Smith, Austin G.; Miyazaki, Jun-ichi

    2002-01-01

    Transcription factors of the POU family govern cell fate through combinatorial interactions with coactivators and corepressors. The POU factor Oct-3/4 can define differentiation, dedifferentation, or self-renewal of pluripotent embryonic stem (ES) cells in a sensitive, dose-dependent manner (H. Niwa, J.-I. Miyazali, and A. G. Smith, Nat. Genet. 24:372-376, 2000). Here we have developed a complementation assay based on the ability of Oct-3/4 transgenes to rescue self-renewal in conditionally null ES cells and used this to define which domains of Oct-3/4 are required to sustain the undifferentiated stem cell phenotype. Surprisingly, we found that molecules lacking either the N-terminal or C-terminal transactivation domain, though not both, can effectively replace full-length Oct-3/4. Furthermore, a fusion of the heterologous transactivation domain of Oct-2 to the Oct-3/4 POU domain can also sustain self-renewal. Thus, the unique function of Oct-3/4 in ES cell propagation resides in combination of the specific POU domain with a generic proline-rich transactivation domain. Interestingly, however, Oct-3/4 target gene expression elicited by the N- and C-terminal transactivation domains is not identical, indicating that at least one class of genes activated by Oct-3/4 is not required for ES cell propagation. PMID:11839818

  12. The human ACC2 CT-domain C-terminus is required for full functionality and has a novel twist

    SciTech Connect

    Madauss, Kevin P.; Burkhart, William A.; Consler, Thomas G.; Cowan, David J.; Gottschalk, William K.; Miller, Aaron B; Short, Steven A.; Tran, Thuy B.; Williams, Shawn P.

    2009-06-15

    Inhibition of acetyl-CoA carboxylase (ACC) may prevent lipid-induced insulin resistance and type 2 diabetes, making the enzyme an attractive pharmaceutical target. Although the enzyme is highly conserved amongst animals, only the yeast enzyme structure is available for rational drug design. The use of biophysical assays has permitted the identification of a specific C-terminal truncation of the 826-residue human ACC2 carboxyl transferase (CT) domain that is both functionally competent to bind inhibitors and crystallizes in their presence. This C-terminal truncation led to the determination of the human ACC2 CT domain-CP-640186 complex crystal structure, which revealed distinctions from the yeast-enzyme complex. The human ACC2 CT-domain C-terminus is comprised of three intertwined -helices that extend outwards from the enzyme on the opposite side to the ligand-binding site. Differences in the observed inhibitor conformation between the yeast and human structures are caused by differing residues in the binding pocket.

  13. Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors.

    PubMed

    Binet, Virginie; Duthey, Béatrice; Lecaillon, Jennifer; Vol, Claire; Quoyer, Julie; Labesse, Gilles; Pin, Jean-Philippe; Prézeau, Laurent

    2007-04-20

    G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.

  14. Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation.

    PubMed Central

    Feldheim, D; Rothblatt, J; Schekman, R

    1992-01-01

    SEC63 encodes a protein required for secretory protein translocation into the endoplasmic reticulum (ER) of Saccharomyces cerevisiae (J. A. Rothblatt, R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman, J. Cell Biol. 109:2641-2652, 1989). Antibody directed against a recombinant form of the protein detects a 73-kDa polypeptide which, by immunofluorescence microscopy, is localized to the nuclear envelope-ER network. Cell fractionation and protease protection experiments confirm the prediction that Sec63p is an integral membrane protein. A series of SEC63-SUC2 fusion genes was created to assess the topology of Sec63p within the ER membrane. The largest hybrid proteins are unglycosylated, suggesting that the carboxyl terminus of Sec63p faces the cytosol. Invertase fusion to a loop in Sec63p that is flanked by two putative transmembrane domains produces an extensively glycosylated hybrid protein. This loop, which is homologous to the amino terminus of the Escherichia coli heat shock protein, DnaJ, is likely to face the ER lumen. By analogy to the interaction of the DnaJ and Hsp70-like DnaK proteins in E. coli, the DnaJ loop of Sec63p may recruit luminal Hsp70 (BiP/GRP78/Kar2p) to the translocation apparatus. Mutations in two highly conserved positions of the DnaJ loop and short deletions of the carboxyl terminus inactivate Sec63p activity. Sec63p associates with several other proteins, including Sec61p, a 31.5-kDa glycoprotein, and a 23-kDa protein, and together with these proteins may constitute part of the polypeptide translocation apparatus. A nonfunctional DnaJ domain mutant allele does not interfere with the formation of the Sec63p/Sec61p/gp31.5/p23 complex. Images PMID:1620130

  15. STAS Domain Structure and Function

    PubMed Central

    Sharma, Alok K.; Rigby, Alan C.; Alper, Seth L.

    2011-01-01

    Pendrin shares with nearly all SLC26/SulP anion transporters a carboxy-terminal cytoplasmic segment organized around a Sulfate Transporter and Anti-Sigma factor antagonist (STAS) domain. STAS domains of divergent amino acid sequence exhibit a conserved fold of 4 β strands interspersed among 5 α helices. The first STAS domain proteins studied were single-domain anti-sigma factor antagonists (anti-anti-σ). These anti-anti-σ indirectly stimulate bacterial RNA polymerase by inactivating inhibitory anti-σ kinases, liberating σ factors to direct specific transcription of target genes or operons. Some STAS domains are nucleotide-binding phosphoproteins or nucleotidases. Others are interaction/transduction modules within multidomain sensors of light, oxygen and other gasotransmitters, cyclic nucleotides, inositol phosphates, and G proteins. Additional multidomain STAS protein sequences suggest functions in sensing, metabolism, or transport of nutrients such as sugars, amino acids, lipids, anions, vitamins, or hydrocarbons. Still other multidomain STAS polypeptides include histidine and serine/threonine kinase domains and ligand-activated transcription factor domains. SulP/SLC26 STAS domains and adjacent sequences interact with other transporters, cytoskeletal scaffolds, and with enzymes metabolizing transported anion substrates, forming putative metabolons. STAS domains are central to membrane targeting of many SulP/SLC26 anion transporters, and STAS domain mutations are associated with at least three human recessive diseases. This review summarizes STAS domain structure and function. PMID:22116355

  16. The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain.

    PubMed

    Rawling, David C; Kohlway, Andrew S; Luo, Dahai; Ding, Steve C; Pyle, Anna Marie

    2014-10-01

    Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor expressed in metazoan cells that is responsible for eliciting the production of type I interferons and pro-inflammatory cytokines upon detection of intracellular, non-self RNA. Structural studies of RIG-I have identified a novel Pincer domain composed of two alpha helices that physically tethers the C-terminal domain to the SF2 helicase core. We find that the Pincer plays an important role in mediating the enzymatic and signaling activities of RIG-I. We identify a series of mutations that additively decouple the Pincer motif from the ATPase core and show that this decoupling results in impaired signaling. Through enzymological and biophysical analysis, we further show that the Pincer domain controls coupled enzymatic activity of the protein through allosteric control of the ATPase core. Further, we show that select regions of the HEL1 domain have evolved to potentiate interactions with the Pincer domain, resulting in an adapted ATPase cleft that is now responsive to adjacent domains that selectively bind viral RNA.

  17. Dissecting CNBP, a zinc-finger protein required for neural crest development, in its structural and functional domains.

    PubMed

    Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B

    2008-10-17

    Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the

  18. Characterization of the osmoprotectant transporter OpuC from Pseudomonas syringae and demonstration that cystathionine-beta-synthase domains are required for its osmoregulatory function.

    PubMed

    Chen, Chiliang; Beattie, Gwyn A

    2007-10-01

    The plant pathogen Pseudomonas syringae may cope with osmotic stress on plants, in part, by importing osmoprotective compounds. In this study, we found that P. syringae pv. tomato strain DC3000 was distinct from most bacterial species in deriving greater osmoprotection from exogenous choline than from glycine betaine. This superior osmoprotection was correlated with a higher capacity for uptake of choline than for uptake of glycine betaine. Of four putative osmoregulatory ABC transporters in DC3000, one, designated OpuC, functioned as the primary or sole transporter for glycine betaine and as one of multiple transporters for choline under high osmolarity. Surprisingly, the homolog of the well-characterized ProU transporter from Escherichia coli and Salmonella enterica serovar Typhimurium did not function in osmoprotection. The P. syringae pv. tomato OpuC transporter was more closely related to the Bacillus subtilis and Listeria monocytogenes OpuC transporters than to known osmoprotectant transporters in gram-negative bacteria based on sequence similarity and genetic arrangement. The P. syringae pv. tomato OpuC transporter had a high affinity for glycine betaine, a low affinity for choline, and a broad substrate specificity that included acetylcholine, carnitine, and proline betaine. Tandem cystathionine-beta-synthase (CBS) domains in the ATP-binding component of OpuC were required for transporter function. The presence of these CBS domains was correlated with osmoregulatory function among the putative transporters examined in DC3000 and was found to be predictive of functional osmoregulatory transporters in other pseudomonads. These results provide the first functional evaluation of an osmoprotectant transporter in a Pseudomonas species and demonstrate the usefulness of the CBS domains as predictors of osmoregulatory activity. PMID:17660277

  19. Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors.

    PubMed

    Welcker, Jochen E; Hernandez-Miranda, Luis R; Paul, Florian E; Jia, Shiqi; Ivanov, Andranik; Selbach, Matthias; Birchmeier, Carmen

    2013-12-01

    The Insm1 gene encodes a zinc finger factor expressed in many endocrine organs. We show here that Insm1 is required for differentiation of all endocrine cells in the pituitary. Thus, in Insm1 mutant mice, hormones characteristic of the different pituitary cell types (thyroid-stimulating hormone, follicle-stimulating hormone, melanocyte-stimulating hormone, adrenocorticotrope hormone, growth hormone and prolactin) are absent or produced at markedly reduced levels. This differentiation deficit is accompanied by upregulated expression of components of the Notch signaling pathway, and by prolonged expression of progenitor markers, such as Sox2. Furthermore, skeletal muscle-specific genes are ectopically expressed in endocrine cells, indicating that Insm1 participates in the repression of an inappropriate gene expression program. Because Insm1 is also essential for differentiation of endocrine cells in the pancreas, intestine and adrenal gland, it is emerging as a transcription factor that acts in a pan-endocrine manner. The Insm1 factor contains a SNAG domain at its N-terminus, and we show here that the SNAG domain recruits histone-modifying factors (Kdm1a, Hdac1/2 and Rcor1-3) and other proteins implicated in transcriptional regulation (Hmg20a/b and Gse1). Deletion of sequences encoding the SNAG domain in mice disrupted differentiation of pituitary endocrine cells, and resulted in an upregulated expression of components of the Notch signaling pathway and ectopic expression of skeletal muscle-specific genes. Our work demonstrates that Insm1 acts in the epigenetic and transcriptional network that controls differentiation of endocrine cells in the anterior pituitary gland, and that it requires the SNAG domain to exert this function in vivo.

  20. Functional domain walls in multiferroics

    NASA Astrophysics Data System (ADS)

    Meier, Dennis

    2015-11-01

    During the last decade a wide variety of novel and fascinating correlation phenomena has been discovered at domain walls in multiferroic bulk systems, ranging from unusual electronic conductance to inseparably entangled spin and charge degrees of freedom. The domain walls represent quasi-2D functional objects that can be induced, positioned, and erased on demand, bearing considerable technological potential for future nanoelectronics. Most of the challenges that remain to be solved before turning related device paradigms into reality, however, still fall in the field of fundamental condensed matter physics and materials science. In this topical review seminal experimental findings gained on electric and magnetic domain walls in multiferroic bulk materials are addressed. A special focus is put on the physical properties that emerge at so-called charged domain walls and the added functionality that arises from coexisting magnetic order. The research presented in this review highlights that we are just entering a whole new world of intriguing nanoscale physics that is yet to be explored in all its details. The goal is to draw attention to the persistent challenges and identify future key directions for the research on functional domain walls in multiferroics.

  1. The coiled-coil domain containing protein CCDC151 is required for the function of IFT-dependent motile cilia in animals.

    PubMed

    Jerber, Julie; Baas, Dominique; Soulavie, Fabien; Chhin, Brigitte; Cortier, Elisabeth; Vesque, Christine; Thomas, Joëlle; Durand, Bénédicte

    2014-02-01

    Cilia are evolutionarily conserved organelles endowed with essential physiological and developmental functions. In humans, disruption of cilia motility or signaling leads to complex pleiotropic genetic disorders called ciliopathies. Cilia motility requires the assembly of multi-subunit motile components such as dynein arms, but mechanisms underlying their assembly pathway and transport into the axoneme are still largely unknown. We identified a previously uncharacterized coiled-coil domain containing protein CCDC151, which is evolutionarily conserved in motile ciliated species and shares ancient features with the outer dynein arm-docking complex 2 of Chlamydomonas. In Drosophila, we show that CG14127/CCDC151 is associated with motile intraflagellar transport (IFT)-dependent cilia and required for geotaxis behavior of adult flies. In zebrafish, Ccdc151 is expressed in tissues with motile cilia, and morpholino-induced depletion of Ccdc151 leads to left-right asymmetry defects and kidney cysts. We demonstrate that Ccdc151 is required for proper motile function of cilia in the Kupffer's vesicle and in the pronephros by controlling dynein arm assembly, showing that Ccdc151 is a novel player in the control of IFT-dependent dynein arm assembly in animals. However, we observed that CCDC151 is also implicated in other cellular functions in vertebrates. In zebrafish, ccdc151 is involved in proper orientation of cell divisions in the pronephros and genetically interacts with prickle1 in this process. Furthermore, knockdown experiments in mammalian cells demonstrate that CCDC151 is implicated in the regulation of primary cilium length. Hence, CCDC151 is required for motile cilia function in animals but has acquired additional non-motile functions in vertebrates.

  2. A conserved domain of previously unknown function in Gap1 mediates protein-protein interaction and is required for biogenesis of a serine-rich streptococcal adhesin

    PubMed Central

    Li, Yirong; Chen, Yabing; Huang, Xiang; Zhou, Meixian; Wu, Ren; Dong, Shengli; Pritchard, David G.; Fives-Taylor, Paula; Wu, Hui

    2010-01-01

    Summary Fap1-like serine-rich proteins are a new family of bacterial adhesins found in a variety of streptococci and staphylococci that have been implicated in bacterial pathogenesis. A gene cluster encoding glycosyltransferases and accessory Sec components is required for Fap1 glycosylation and biogenesis in Streptococcus parasanguinis. Here we report that the glycosylation-associated protein, Gap1, contributes to glycosylation and biogenesis of Fap1 by interacting with another glycosylation-associated protein, Gap3. Gap1 shares structural homology with glycosyltransferases. The gap1 mutant, like the gap3 mutant, produced an aberrantly-glycosylated Fap1 precursor and failed to produce mature Fap1, suggesting that Gap1 and Gap3 might function in concert in the Fap1 glycosylation and biogenesis. Indeed, Gap1 interacted with Gap3 in vitro and in vivo. A Gap1 amino-terminal motif, within a highly conserved domain of unknown function (DUF1975) identified in many bacterial glycosyltrasnferases, was required for the Gap1-Gap3 interaction. Deletion of one, four, and nine amino acids within the conserved motif gradually inhibited the Gap1-Gap3 interaction and diminished production of mature Fap1 and concurrently increased production of the Fap1 precursor. Consequently, bacterial adhesion to an in vitro tooth model was also reduced. These data demonstrate that the Gap1-Gap3 interaction is required for Fap1 biogenesis and Fap1-dependent bacterial adhesion. PMID:18826412

  3. Bipartite Topology of Treponema pallidum Repeat Proteins C/D and I: OUTER MEMBRANE INSERTION, TRIMERIZATION, AND PORIN FUNCTION REQUIRE A C-TERMINAL β-BARREL DOMAIN.

    PubMed

    Anand, Arvind; LeDoyt, Morgan; Karanian, Carson; Luthra, Amit; Koszelak-Rosenblum, Mary; Malkowski, Michael G; Puthenveetil, Robbins; Vinogradova, Olga; Radolf, Justin D

    2015-05-01

    We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprC(N) and TprC(C)) orthologous to regions in the major outer sheath protein (MOSP(N) and MOSP(C)) of Treponema denticola and that TprC(C) is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSP(C)-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSP(N)-like domains are tethered within the periplasm. TprF, which does not contain a MOSP(C)-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSP(N) and MOSP(C)-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSP(N)-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.

  4. Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex.

    PubMed Central

    Dubrovskaya, V; Lavigne, A C; Davidson, I; Acker, J; Staub, A; Tora, L

    1996-01-01

    TFIID is the DNA binding component of the RNA polymerase II transcriptional machinery and is composed of the TATA binding protein (TBP) and TBP-associated factors (TAFIIs). Here we report the characterization of a new human TAF, hTAFII100, which is the human homologue of Drosophila TAFII80 and yeast TAFII90. hTAFII100 interacts strongly with hTAFII250, hTAFII55 and hTAFII28, less with hTAFII20 and hTAFII18, weakly with TBP and not at all with delta NTAFII135 and hTAFII30. Deletion analysis revealed that the C-terminal half of hTAFII100, which contains six WD-40 repeats, is not required for incorporation into the TFIID complex. Our results suggest that hTAFII100 can be divided into two domains, the N-terminal region responsible for interactions within the TFIID complex and the C-terminal WD repeat-containing half responsible for interactions between hTAFII100 and other factors. An anti-hTAFII100 antibody, raised against a C-terminal epitope, selectively inhibited basal TFIID-dependent in vitro transcription and the specific interaction between hTAFII100 and the 30 kDa subunit of TFIIF (RAP30). We demonstrate that the hTAFII100-TFIIF interaction supports pre-initiation complex formation in the presence of TFIID. Thus, this is the first demonstration that a TAFII functionally interacts with a basal transcription factor in vitro. Images PMID:8758937

  5. The Pseudomonas aeruginosa AmrZ C-terminal domain mediates tetramerization and is required for its activator and repressor functions

    PubMed Central

    Xu, Binjie; Ju, Yue; Soukup, Randal J.; Ramsey, Deborah M.; Fishel, Richard; Wysocki, Vicki H.; Wozniak, Daniel J.

    2015-01-01

    Summary Pseudomonas aeruginosa is an important bacterial opportunistic pathogen, presenting a significant threat towards individuals with underlying diseases such as cystic fibrosis. The transcription factor AmrZ regulates expression of multiple P. aeruginosa virulence factors. AmrZ belongs to the ribbon-helix-helix protein superfamily, in which many members function as dimers, yet others form higher-order oligomers. In this study, four independent approaches were undertaken and demonstrated that the primary AmrZ form in solution is tetrameric. Deletion of the AmrZ C-terminal domain leads to loss of tetramerization and reduced DNA binding to both activated and repressed target promoters. Additionally, the C-terminal domain is essential for efficient AmrZ-mediated activation and repression of its targets. PMID:26549743

  6. GDP dissociation inhibitor domain II required for Rab GTPase recycling.

    PubMed

    Gilbert, P M; Burd, C G

    2001-03-16

    Rab GTPases are localized to distinct subsets of organelles within the cell, where they regulate SNARE-mediated membrane trafficking between organelles. One factor required for Rab localization and function is Rab GDP dissociation inhibitor (GDI), which is proposed to recycle Rab after vesicle fusion by extracting Rab from the membrane and loading Rab onto newly formed transport intermediates. GDI is composed of two domains; Rab binding is mediated by Domain I, and the function of Domain II is not known. In this study, Domain II of yeast GDI, encoded by the essential GDI1/SEC19 gene, was targeted in a genetic screen to obtain mutants that might lend insight into the function of this domain. In one gdi1 mutant, the cytosolic pools of all Rabs tested were depleted, and Rab accumulated on membranes, suggesting that this mutant Gdi1 protein has a general defect in extraction of Rab from membranes. In a second gdi1 mutant, the endosomal/vacuolar Rabs Vps21/Ypt51p and Ypt7p accumulated in the cytosol bound to Gdi1p, but localization of Ypt1p and Sec4p were not significantly affected. Using an in vitro assay which reconstitutes Gdi1p-mediated membrane loading of Rab, this mutant Gdi1p was found to be defective in loading of Vps21p but not Ypt1p. Loading of Vps21p by loading-defective Gdi1p was restored when acceptor membranes prepared from a deletion strain lacking Vps21p were used. These results suggest that membrane-associated Rab may regulate recruitment of GDI-Rab from the cytosol, possibly by regulating a GDI-Rab receptor. We conclude that Domain II of Gdi1p is essential for Rab loading and Rab extraction, and confirm that each of these activities is required for Gdi1p function in vivo.

  7. Structure and Function of KH Domains

    SciTech Connect

    Valverde, R.; Regan, E

    2008-01-01

    The hnRNP K homology (KH) domain was first identified in the protein human heterogeneous nuclear ribonucleoprotein K (hnRNP K) 14 years ago. Since then, KH domains have been identified as nucleic acid recognition motifs in proteins that perform a wide range of cellular functions. KH domains bind RNA or ssDNA, and are found in proteins associated with transcriptional and translational regulation, along with other cellular processes. Several diseases, e.g. fragile X mental retardation syndrome and paraneoplastic disease, are associated with the loss of function of a particular KH domain. Here we discuss the progress made towards understanding both general and specific features of the molecular recognition of nucleic acids by KH domains. The typical binding surface of KH domains is a cleft that is versatile but that can typically accommodate only four unpaired bases. Van der Waals forces and hydrophobic interactions and, to a lesser extent, electrostatic interactions, contribute to the nucleic acid binding affinity. 'Augmented' KH domains or multiple copies of KH domains within a protein are two strategies that are used to achieve greater affinity and specificity of nucleic acid binding. Isolated KH domains have been seen to crystallize as monomers, dimers and tetramers, but no published data support the formation of noncovalent higher-order oligomers by KH domains in solution. Much attention has been given in the literature to a conserved hydrophobic residue (typically Ile or Leu) that is present in most KH domains. The interest derives from the observation that an individual with this Ile mutated to Asn, in the KH2 domain of fragile X mental retardation protein, exhibits a particularly severe form of the syndrome. The structural effects of this mutation in the fragile X mental retardation protein KH2 domain have recently been reported. We discuss the use of analogous point mutations at this position in other KH domains to dissect both structure and function.

  8. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level. PMID:27309309

  9. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  10. The UBC Domain Is Required for BRUCE to Promote BRIT1/MCPH1 Function in DSB Signaling and Repair Post Formation of BRUCE-USP8-BRIT1 Complex

    PubMed Central

    Ge, Chunmin; Che, Lixiao; Du, Chunying

    2015-01-01

    BRUCE is implicated in the regulation of DNA double-strand break response to preserve genome stability. It acts as a scaffold to tether USP8 and BRIT1, together they form a nuclear BRUCE-USP8-BRIT1 complex, where BRUCE holds K63-ubiquitinated BRIT1 from access to DSB in unstressed cells. Following DSB induction, BRUCE promotes USP8 mediated deubiquitination of BRIT1, a prerequisite for BRIT1 to be released from the complex and recruited to DSB by binding to γ-H2AX. BRUCE contains UBC and BIR domains, but neither is required for the scaffolding function of BRUCE mentioned above. Therefore, it remains to be determined whether they are required for BRUCE in DSB response. Here we show that the UBC domain, not the BIR domain, is required for BRUCE to promote DNA repair at a step post the formation of BRUCE-USP8-BRIT1 complex. Mutation or deletion of the BRUCE UBC domain did not disrupt the BRUCE-USP8-BRIT1 complex, but impaired deubiquitination and consequent recruitment of BRIT1 to DSB. This leads to impaired chromatin relaxation, decreased accumulation of MDC1, NBS1, pATM and RAD51 at DSB, and compromised homologous recombination repair of DNA DSB. These results demonstrate that in addition to the scaffolding function in complex formation, BRUCE has an E3 ligase function to promote BRIT1 deubiquitination by USP8 leading to accumulation of BRIT1 at DNA double-strand break. These data support a crucial role for BRUCE UBC activity in the early stage of DSB response. PMID:26683461

  11. Functional domains of rabbit thrombomodulin.

    PubMed

    Bourin, M C; Boffa, M C; Björk, I; Lindahl, U

    1986-08-01

    Thrombomodulin isolated from rabbit lung was separated by ion-exchange chromatography on DEAE-cellulose into a retarded (acidic) and a nonretarded (nonacidic) fraction. Both fractions contained the cofactor required for the activation of protein C. In addition, the acidic fraction (but not the nonacidic fraction) prevented the clotting of fibrinogen by thrombin ("direct" anticoagulant activity) and accelerated the inhibition of thrombin by antithrombin (effect corresponding to 2-10 international units of heparin per mg of protein). Both of these activities were readily neutralized by the synthetic polycation Polybrene, which did not appreciably affect protein C activation. They were also eliminated by digestion of thrombomodulin with bacterial heparinase, which, in addition, converted the acidic form of the protein C activation cofactor to a nonacidic form. Similar conversion observed during storage of thrombomodulin was attributed to endogenous proteinase activity. Density-gradient centrifugation of the acidic form of thrombomodulin in CsCl/4M guanidinium chloride failed to separate either of the direct or antithrombin-dependent anticoagulant activities from the protein C activation cofactor, which showed a buoyant density of 1.31-1.34 g/ml. The nonacidic cofactor had a lower density, 1.26-1.28 g/ml. Unreduced thrombomodulin yielded two major fractions of protein C activation cofactor on NaDodSO4/PAGE, with apparent Mr of approximately 68,000 and 57,000, respectively. The larger component contained essentially all of the direct and antithrombin-dependent anticoagulant activities. We propose that these activities as well as the negative charge and the higher buoyant density of the acidic, Mr 68,000 form of thrombomodulin are due to a heparin-like polysaccharide and, further, that this component can be separated from the major portion of the molecule, which contains the protein C activation site, through the action of a proteinase.

  12. An essential virulence protein of Agrobacterium tumefaciens, VirB4, requires an intact mononucleotide binding domain to function in transfer of T-DNA.

    PubMed

    Fullner, K J; Stephens, K M; Nester, E W

    1994-12-15

    The 11 gene products of the Agrobacterium tumefaciens virB operon, together with the VirD4 protein, are proposed to form a membrane complex which mediates the transfer of T-DNA to plant cells. This study examined one putative component of that complex, VirB4. A deletion of the virB4 gene on the Ti plasmid pTiA6NC was constructed by replacing the virB4 gene with the kanamycin resistance-conferring nptII gene. The virB4 gene was found to be necessary for virulence on plants and for the transfer of IncQ plasmids to recipient cells of A. tumefaciens. Genetic complementation of the deletion strain by the virB4 gene under control of the virB promoter confirmed that the deletion was nonpolar on downstream virB genes. Genetic complementation was also achieved with the virB4 gene placed under control of the lac promoter, even though synthesis of the VirB4 protein from this promoter is far below wild-type levels. Having shown a role for the VirB4 protein in DNA transfer, lysine-439, found within the conserved mononucleotide binding domain of VirB4, was changed to a glutamic acid, methionine, or arginine by oligonucleotide-directed mutagenesis. virB4 genes bearing these mutations were unable to complement the virB4 deletion for either virulence or for IncQ transfer, showing that an intact mononucleotide binding site is necessary for the function of VirB4 in DNA transfer. The necessity of the VirB4 protein with an intact mononucleotide binding site for extracellular complementation of virE2 mutants was also shown. In merodiploid studies, lysine-439 mutations present in trans decreased IncQ plasmid transfer frequencies, suggesting that VirB4 functions within a complex to facilitate DNA transfer. PMID:7830718

  13. Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry

    PubMed Central

    Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.

    2014-01-01

    ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral

  14. Architecture and function of metallopeptidase catalytic domains

    PubMed Central

    Cerdà-Costa, Núria; Gomis-Rüth, Francesc Xavier

    2014-01-01

    The cleavage of peptide bonds by metallopeptidases (MPs) is essential for life. These ubiquitous enzymes participate in all major physiological processes, and so their deregulation leads to diseases ranging from cancer and metastasis, inflammation, and microbial infection to neurological insults and cardiovascular disorders. MPs cleave their substrates without a covalent intermediate in a single-step reaction involving a solvent molecule, a general base/acid, and a mono-or dinuclear catalytic metal site. Most monometallic MPs comprise a short metal-binding motif (HEXXH), which includes two metal-binding histidines and a general base/acid glutamate, and they are grouped into the zincin tribe of MPs. The latter divides mainly into the gluzincin and metzincin clans. Metzincins consist of globular ∼130–270-residue catalytic domains, which are usually preceded by N-terminal pro-segments, typically required for folding and latency maintenance. The catalytic domains are often followed by C-terminal domains for substrate recognition and other protein–protein interactions, anchoring to membranes, oligomerization, and compartmentalization. Metzincin catalytic domains consist of a structurally conserved N-terminal subdomain spanning a five-stranded β-sheet, a backing helix, and an active-site helix. The latter contains most of the metal-binding motif, which is here characteristically extended to HEXXHXXGXX(H,D). Downstream C-terminal subdomains are generally shorter, differ more among metzincins, and mainly share a conserved loop—the Met-turn—and a C-terminal helix. The accumulated structural data from more than 300 deposited structures of the 12 currently characterized metzincin families reviewed here provide detailed knowledge of the molecular features of their catalytic domains, help in our understanding of their working mechanisms, and form the basis for the design of novel drugs. PMID:24596965

  15. Domain-Independent Scientific Function Finding

    NASA Astrophysics Data System (ADS)

    Schaffer, Cullen R.

    1990-01-01

    Programs such as Bacon, Abacus, Coper, Kepler and others are designed to find functional relationships of scientific significance in quantitative data without relying on the deep domain knowledge scientists normally bring to bear in analytic work. Whether these systems actually perform as intended is an open question, however. To date, they have been supported only by anecdotal evidence --reports that a desirable answer has been found in one or more selected and often artificial cases. In this dissertation, I thus attempt to develop, not only new approaches to domain -independent scientific function finding, but, equally, a rigorous methodology under which research into such methods can be conducted. A fundamental problem with previous work is that it has investigated scientific data analysis in the abstract --without referring to actual scientific data. By contrast, the work reported here is founded on a collection of 352 real scientific data sets. This empirical base supports a number of strong conclusions. First, while researchers working with artificial data have targeted complex multivariate relations, real data provides powerful evidence that even the simplest bivariate relationships are difficult to identify reliably. Second, despite its ubiquitous presence in previous work, the notion of heuristic search of a potentially explosive space of formulas appears to help very little with the problem of reliably identifying basic bivariate relationships. Instead, third, substantial performance improvement results from viewing function finding as a decision problem, the problem of classifying data sets reliably within a fixed--and quite limited--system of functional categories. This dissertation presents what I believe to be the strongest domain-independent scientific function-finding algorithm currently in existence and, certainly, the only one which has been rigorously demonstrated. At the same time, it suggests fundamental limitations in the power of such

  16. The RED domain of Paired is specifically required for Drosophila accessory gland maturation

    PubMed Central

    Li, Li; Li, Ping; Xue, Lei

    2015-01-01

    The evolutionarily conserved paired domain consists of the N-terminal PAI and the C-terminal RED domains, each containing a helix–turn–helix motif capable of binding DNA. Despite its conserved sequence, the physiological functions of the RED domain remain elusive. Here, we constructed a prd transgene expressing a truncated Paired (Prd) protein without the RED domain, and examined its rescue ability in prd mutants. We found that the RED domain is specifically required for the expression of Acp26Aa and sex peptide in male accessory glands, and the induction of female post-mating response. Our data thus identified an important physiological function for the evolutionarily conserved RED domain. PMID:25694546

  17. The RED domain of Paired is specifically required for Drosophila accessory gland maturation.

    PubMed

    Li, Li; Li, Ping; Xue, Lei

    2015-02-01

    The evolutionarily conserved paired domain consists of the N-terminal PAI and the C-terminal RED domains, each containing a helix-turn-helix motif capable of binding DNA. Despite its conserved sequence, the physiological functions of the RED domain remain elusive. Here, we constructed a prd transgene expressing a truncated Paired (Prd) protein without the RED domain, and examined its rescue ability in prd mutants. We found that the RED domain is specifically required for the expression of Acp26Aa and sex peptide in male accessory glands, and the induction of female post-mating response. Our data thus identified an important physiological function for the evolutionarily conserved RED domain.

  18. Antibody mapping of functional domains in vinculin.

    PubMed Central

    Westmeyer, A; Ruhnau, K; Wegner, A; Jockusch, B M

    1990-01-01

    We have analyzed the functional domain structure of vinculin, a protein involved in linking microfilaments to the cytoplasmic face of cell membranes in animal cells. For this purpose, we used several monoclonal antibodies raised against chicken gizzard vinculin whose epitopes could be assigned to discrete regions in the vinculin sequence by immunoblotting of proteolytic fragments combined with N-terminal amino acid sequencing. Two of these antibodies induced the disruption of stress fibers and changed the number of morphology of focal contacts after microinjection in chicken embryo fibroblasts. Based on the location of its epitope in comparison with vinculin domains previously identified by other groups, we propose that one of these antibodies (15B7) interferes with the binding of vinculin to talin, the most peripheral of the microfilament proteins. The second antibody (14C10) binds within a region comprising three internal repeats and might therefore distort the inner architecture of vinculin. A third antibody (As3) inhibited the binding of F-actin to vinculin in an in vitro assay but had no effect on the microfilament system in cells. These data emphasize the role of vinculin as a key protein in microfilament-membrane linkage and support previous work on a direct interaction between vinculin and actin. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:1694125

  19. The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim proto-oncogenes.

    PubMed

    Wernig, Gerlinde; Gonneville, Jeffrey R; Crowley, Brian J; Rodrigues, Margret S; Reddy, Mamatha M; Hudon, Heidi E; Walz, Christoph; Reiter, Andreas; Podar, Klaus; Royer, Yohan; Constantinescu, Stefan N; Tomasson, Michael H; Griffin, James D; Gilliland, D Gary; Sattler, Martin

    2008-04-01

    The V617F activating point mutation in Jak2 is associated with a proportion of myeloproliferative disorders. In normal hematopoietic cells, Jak2 signals only when associated with a growth factor receptor, such as the erythropoietin receptor (EpoR). We sought to identify the molecular requirements for activation of Jak2V617F by introducing a point mutation in the FERM domain (Y114A), required for receptor binding. Whereas BaF3.EpoR cells are readily transformed by Jak2V617F to Epo independence, we found that the addition of the FERM domain mutation blocked transformation and the induction of reactive oxygen species. Further, while cells expressing Jak2V617F had constitutive activation of STAT5, cells expressing Jak2V617F/Y114A did not, suggesting that signaling is defective at a very proximal level. In addition, expression of the Myc and Pim proto-oncogenes by Jak2V617F was found to be FERM domain dependent. An inducible constitutively active STAT5 mutant expressed in BaF3 cells was sufficient to induce Myc and Pim. Finally, the FERM domain in Jak2V617F was also required for abnormal hematopoiesis in transduced primary murine fetal liver cells. Overall, our results suggest that constitutive activation of Jak2 requires an intact FERM domain for a transforming phenotype, and is necessary for activation of the major target of Jak2, STAT5.

  20. The WD40 Domain Is Required for LRRK2 Neurotoxicity

    PubMed Central

    Jorgensen, Nathan D.; Peng, Yong; Ho, Cherry C.-Y.; Rideout, Hardy J.; Petrey, Donald; Liu, Peng; Dauer, William T.

    2009-01-01

    Background Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson disease (PD). LRRK2 contains an “enzymatic core” composed of GTPase and kinase domains that is flanked by leucine-rich repeat (LRR) and WD40 protein-protein interaction domains. While kinase activity and GTP-binding have both been implicated in LRRK2 neurotoxicity, the potential role of other LRRK2 domains has not been as extensively explored. Principal Findings We demonstrate that LRRK2 normally exists in a dimeric complex, and that removing the WD40 domain prevents complex formation and autophosphorylation. Moreover, loss of the WD40 domain completely blocks the neurotoxicity of multiple LRRK2 PD mutations. Conclusion These findings suggest that LRRK2 dimerization and autophosphorylation may be required for the neurotoxicity of LRRK2 PD mutations and highlight a potential role for the WD40 domain in the mechanism of LRRK2-mediated cell death. PMID:20041156

  1. A functional N-terminal domain in C/EBPβ-LAP* is required for interacting with SWI/SNF and to repress Ric-8B gene transcription in osteoblasts.

    PubMed

    Aguilar, Rodrigo; Grandy, Rodrigo; Meza, Daniel; Sepulveda, Hugo; Pihan, Philippe; van Wijnen, Andre J; Lian, Jane B; Stein, Gary S; Stein, Janet L; Montecino, Martin

    2014-10-01

    The chromatin remodeling complex SWI/SNF and the transcription factor C/EBPβ play critical roles in osteoblastic cells as they jointly control transcription of a number of bone-related target genes. The largest C/EBPβ isoform, LAP*, possesses a short additional N-terminal domain that has been proposed to mediate the interaction of this factor with SWI/SNF in myeloid cells. Here we examine the requirement of a functional N-terminus in C/EBPβ-LAP* for binding SWI/SNF and for recruiting this complex to the Ric-8B gene to mediate transcriptional repression. We find that both C/EBPβ-LAP* and SWI/SNF simultaneously bind to the Ric-8B promoter in differentiating osteoblasts that repress Ric-8B expression. This decreased expression of Ric-8B is not accompanied by significant changes in histone acetylation at the Ric-8B gene promoter sequence. A single aminoacid change at the C/EBPβ-LAP* N-terminus (R3L) that inhibits C/EBPβ-LAP*-SWI/SNF interaction, also prevents SWI/SNF recruitment to the Ric-8B promoter as well as C/EBPβ-LAP*-dependent repression of the Ric-8B gene. Inducible expression of the C/EBPβ-LAP*R3L protein in stably transfected osteoblastic cells demonstrates that this mutant protein binds to C/EBPβ-LAP*-target promoters and competes with the endogenous C/EBPβ factor. Together our results indicate that a functional N-terminus in C/EBPβ-LAP* is required for interacting with SWI/SNF and for Ric-8B gene repression in osteoblasts.

  2. Slicing-independent RISC activation requires the argonaute PAZ domain.

    PubMed

    Gu, Shuo; Jin, Lan; Huang, Yong; Zhang, Feijie; Kay, Mark A

    2012-08-21

    Small RNAs regulate genetic networks through a ribonucleoprotein complex called the RNA-induced silencing complex (RISC), which, in mammals, contains at its center one of four Argonaute proteins (Ago1-Ago4). A key regulatory event in the RNA interference (RNAi) and microRNA (miRNA) pathways is Ago loading, wherein double-stranded small-RNA duplexes are incorporated into RISC (pre-RISC) and then become single-stranded (mature RISC), a process that is not well understood. The Agos contain an evolutionarily conserved PAZ (Piwi/Argonaute/Zwille) domain whose primary function is to bind the 3' end of small RNAs. We created multiple PAZ-domain-disrupted mutant Ago proteins and studied their biochemical properties and biological functionality in cells. We found that the PAZ domain is dispensable for Ago loading of slicing-competent RISC. In contrast, in the absence of slicer activity or slicer-substrate duplex RNAs, PAZ-disrupted Agos bound duplex small interfering RNAs, but were unable to unwind or eject the passenger strand and form functional RISC complexes. We have discovered that the highly conserved PAZ domain plays an important role in RISC activation, providing new mechanistic insights into how miRNAs regulate genes, as well as new insights for future design of miRNA- and RNAi-based therapeutics.

  3. In the Multi-domain Protein Adenylate Kinase, Domain Insertion Facilitates Cooperative Folding while Accommodating Function at Domain Interfaces

    PubMed Central

    Giri Rao, V. V. Hemanth; Gosavi, Shachi

    2014-01-01

    Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins. PMID:25393408

  4. Differential function of Themis CABIT domains during T cell development.

    PubMed

    Okada, Toshiyuki; Nitta, Takeshi; Kaji, Kentaro; Takashima, Akiko; Oda, Hiroyo; Tamehiro, Norimasa; Goto, Motohito; Okamura, Tadashi; Patrick, Michael S; Suzuki, Harumi

    2014-01-01

    Themis (also named Gasp) is a newly identified Grb2-binding protein that is essential for thymocyte positive selection. Despite the possible involvement of Themis in TCR-mediated signal transduction, its function remains unresolved and controversial. Themis contains two functionally uncharacterized regions called CABIT (cysteine-containing, all-β in Themis) domains, a nuclear localization signal (NLS), and a proline-rich sequence (PRS). To elucidate the role of these motifs in Themis's function in vivo, we established a series of mutant Themis transgenic mice on a Themis(-/-) background. Deletion of the highly conserved Core motif of CABIT1 or CABIT2 (Core1 or Core2, respectively), the NLS, or the PRS abolished Grb2-association, as well as TCR-dependent tyrosine-phosphorylation and the ability to induce positive selection in the thymus. The NLS and Core1 motifs were required for the nuclear localization of Themis, whereas Core2 and PRS were not. Furthermore, expression of ΔCore1- but not ΔCore2-Themis conferred dominant negative-type inhibition on T cell development. Collectively, our current results indicate that PRS, NLS, CABIT1, and CABIT2 are all required for positive selection, and that each of the CABIT domains exerts distinct functions during positive selection. PMID:24586531

  5. Functional domains of the poliovirus receptor

    SciTech Connect

    Koike, Satoshi; Ise, Iku; Nomoto, Akio )

    1991-05-15

    A number of mutant cDNAs of the human poliovirus receptor were constructed to identify essential regions of the molecule as the receptor. All mutant cDNAs carrying the sequence coding for the entire N-terminal immunoglobulin-like domain (domain I) confer permissiveness for poliovirus to mouse L cells, but a mutant cDNA lacking the sequence for domain I does not. The transformants permissive for poliovirus were able to bind the virus and were also recognized by monoclonal antibody D171, which competes with poliovirus for the cellular receptor. These results strongly suggest that the poliovirus binding site resides in domain I of the receptor. Mutant cDNAs for the sequence encoding the intracellular peptide were also constructed and expressed in mouse L cells. Susceptibility of these cells to poliovirus revealed that the entire putative cytoplasmic domain is not essential for virus infection. Thus, the cytoplasmic domain of the molecule appears not to play a role in the penetration of poliovirus.

  6. Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations.

    PubMed Central

    Mizukami, Y; Huang, H; Tudor, M; Hu, Y; Ma, H

    1996-01-01

    The Arabidopsis MADS box gene AGAMOUS (AG) controls reproductive organ identity and floral meristem determinacy. The AG protein binds in vitro to DNA sequences similar to the targets of known MADS domain transcription factors. Whereas most plant MADS domain proteins begin with the MADS domain, AG and its orthologs contain a region N-terminal to the MADS domain. All plant MADS domain proteins share another region with moderate sequence similarity called the K domain. Neither the region (I region) that lies between the MADS and K domains nor the C-terminal region is conserved. We show here that the AG MADS domain and the I region are necessary and sufficient for DNA binding in vitro and that AG binds to DNA as a dimer. To investigate the in vivo function of the regions of AG not required for in vitro DNA binding, we introduced several AG constructs into wild-type plants and characterized their floral phenotypes. We show that transgenic Arabidopsis plants with a 35S-AG construct encoding an AG protein lacking the N-terminal region produced apetala 2 (ap2)-like flowers similar to those ectopically expressing AG proteins retaining the N-terminal region. This result suggests that the N-terminal region is not required to produce the ap2-like phenotype. In addition, transformants with a 35S-AG construct encoding an AG protein lacking the C-terminal region produced ag-like flowers, indicating that this truncated AG protein inhibits normal AG function. Finally, transformants with a 35S-AG construct encoding an AG protein lacking both K and C regions produced flowers with more stamens and carpels. The phenotypes of the AG transformants demonstrate that both the K domain and the C-terminal region have important and distinct in vivo functions. We discuss possible mechanisms through which AG may regulate downstream genes. PMID:8672883

  7. Genetic analysis of a hydrophobic domain of coxsackie B3 virus protein 2B: a moderate degree of hydrophobicity is required for a cis-acting function in viral RNA synthesis.

    PubMed Central

    van Kuppeveld, F J; Galama, J M; Zoll, J; Melchers, W J

    1995-01-01

    Coxsackie B virus protein 2B contains near its C terminus a hydrophobic domain with an amino acid composition that is characteristic for transmembrane regions. A molecular genetic approach was followed to define the role of this domain in virus reproduction and to study the structural and hydrophobic requirements of the domain. Nine substitution mutations were introduced in an infectious cDNA clone of coxsackie B3 virus. The effects of the mutations were studied in vivo by transfection of Buffalo green monkey cells with copy RNA transcripts. The results reported here suggest that a critical degree of hydrophobicity of the domain is essential for virus growth. The mutations S77M, C75M, I64S, and V66S, which caused either a small increase or decrease in mean hydrophobicity, yielded viable viruses. The double mutations S77M/C75M and I64S/V6-6S, which caused a more pronounced increase or decrease in hydrophobicity, were nonviable. Negatively charged residues (mutations A71E, I73E, and A71E/I73E) abolished virus growth. The mutations had no effect on the synthesis and processing of the viral polyprotein. Replication and complementation were studied by using a subgenomic coxsackievirus replicon containing the luciferase gene in place of the capsid coding region. Analysis of luciferase accumulation demonstrated that the mutations cause primary defects in viral RNA synthesis that cannot be complemented by wild-type protein 2B provided in trans. The hydrophobic domain is predicted by computer analysis to form a multimeric transmembrane helix. The proposed interaction with the membrane and the implications of the mutations on this interaction are discussed. PMID:7494289

  8. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  9. Intellectual Growth in Children as a Function of Domain Specific and Domain General Working Memory Subgroups

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    2011-01-01

    This study examined whether children's growth on measures of fluid (Raven Colored Progressive Matrices) and crystallized (reading and math achievement) intelligence was attributable to domain-specific or domain-general functions of working memory (WM). A sample of 290 elementary school children was tested on measures of intelligence across three…

  10. The Capping Domain in RalF Regulates Effector Functions

    PubMed Central

    Alix, Eric; Chesnel, Laurent; Bowzard, Brad J.; Tucker, Aimee M.; Delprato, Anna; Cherfils, Jacqueline; Wood, David O.; Kahn, Richard A.; Roy, Craig R.

    2012-01-01

    The Legionella pneumophila effector protein RalF functions as a guanine nucleotide exchange factor (GEF) that activates the host small GTPase protein ADP-ribosylation factor (Arf), and recruits this host protein to the vacuoles in which this pathogen resides. GEF activity is conferred by the Sec7 domain located in the N-terminal region of RalF. Structural studies indicate that the C-terminal region of RalF makes contacts with residues in the Sec7 domain important for Arf interactions. Theoretically, the C-terminal region of RalF could prevent nucleotide exchange activity by blocking the ability of Arf to interact with the Sec7 domain. For this reason, the C-terminal region of RalF has been termed a capping domain. Here, the role of the RalF capping domain was investigated by comparing biochemical and effector activities mediated by this domain in both the Legionella RalF protein (LpRalF) and in a RalF ortholog isolated from the unrelated intracellular pathogen Rickettsia prowazekii (RpRalF). These data indicate that both RalF proteins contain a functional Sec7 domain and that the capping domain regulates RalF GEF activity. The capping domain has intrinsic determinants that mediate localization of the RalF protein inside of host cells and confer distinct effector activities. Localization mediated by the capping domain of LpRalF enables the GEF to modulate membrane transport in the secretory pathway, whereas, the capping domain of RpRalF enables this bacterial GEF to modulate actin dynamics occurring near the plasma membrane. Thus, these data reveal that divergence in the function of the C-terminal capping domain alters the in vivo functions of the RalF proteins. PMID:23166491

  11. The Pitx2c N-terminal domain is a critical interaction domain required for asymmetric morphogenesis

    PubMed Central

    Simard, Annie; Di Giorgio, Luciano; Amen, Melanie; Westwood, Ashley; Amendt, Brad A.; Ryan, Aimee K.

    2010-01-01

    The paired-like homeodomain transcription factor Pitx2c has an essential role in patterning the left-right axis. However, neither its transcriptional targets nor the molecular mechanisms through which it exerts its patterning function are known. Here we provide evidence that the N-terminal domain of Pitx2c is important for this activity. Overexpression of the Pitx2c N-terminus in ovo randomizes the direction of heart looping, the first morphological asymmetry conserved in vertebrate embryos. In addition, the Pitx2c N-terminal domain blocks the ability of Pitx2c to synergize with Nkx2.5 to transactivate the procollagen lysyl hydroxylase (Plod-1) promoter in transient transfection assays. A five amino acid region containing leucine-41 is required for both of these effects. Our data suggest that the Pitx2c N-terminal domain competes with endogenous Pitx2c for binding to a protein interaction partner that is required for the activation of genes that direct asymmetric morphogenesis along the left-right axis. PMID:19681163

  12. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases

    PubMed Central

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements. PMID:26024355

  13. Activation of transcription by PU.1 requires both acidic and glutamine domains.

    PubMed Central

    Klemsz, M J; Maki, R A

    1996-01-01

    The B-lymphocyte- and macrophage-specific transcription factor PU.1 is a member of the ets family of proteins. To understand how PU.1 functions as a transcription factor, we initiated a series of experiments to define its activation domain. Using deletion analysis, we showed that the activation domain of PU.1 is located in the amino-terminal half of the protein. Within this region, we identified three acidic subdomains and one glutamine-rich subdomain. The deletion of any of these subdomains resulted in a significant loss in the ability of PU.1 to transactivate in cotransfection studies. Amino acid substitution analysis showed that the activation of transcription by PU.1 requires acidic residues between amino acids 7 and 74 and a group of glutamine residues between amino acids 75 and 84. These data show that PU.1 contains two types of known activation domains and that both are required for maximal transactivation. PMID:8524320

  14. Structure and Function of CW Domain Containing Proteins.

    PubMed

    Liu, Yanli; Liu, Shasha; Zhang, Xinxin; Liang, Xiao; Zahid, Kashif Rafiq; Liu, Ke; Liu, Jinlin; Deng, Lingfu; Yang, Jihong; Qi, Chao

    2016-01-01

    The CW domain is a zinc binding domain, composed of approximately 50- 60 amino acid residues with four conserved cysteine (C) and two to four conserved tryptophan (W) residues. The members of the superfamily of CW domain containing proteins, comprised of 12 different eukaryotic nuclear protein families, are extensively expressed in vertebrates, vertebrate-infecting parasites and higher plants, where they are often involved in chromatin remodeling, methylation recognition, epigenetic regulation and early embryonic development. Since the first CW domain structure was determined 5 years ago, structures of five CW domains have been solved so far. In this review, we will discuss these recent advances in understanding the identification, definition, structure, and functions of the CW domain containing proteins. PMID:26806410

  15. Structural and functional diversity of Topologically Associating Domains.

    PubMed

    Dekker, Job; Heard, Edith

    2015-10-01

    Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization. Here we outline our current understanding of such domains in different organisms and their roles in gene regulation. PMID:26348399

  16. Further insight into BRUTUS domain composition and functionality

    PubMed Central

    Matthiadis, Anna; Long, Terri A.

    2016-01-01

    ABSTRACT BRUTUS (BTS) is a hemerythrin (HHE) domain containing E3 ligase that facilitates the degradation of POPEYE-like (PYEL) proteins in a proteasomal-dependent manner. Deletion of BTS HHE domains enhances BTS stability in the presence of iron and also complements loss of BTS function, suggesting that the HHE domains are critical for protein stability but not for enzymatic function. The RING E3 domain plays an essential role in BTS' capacity to both interact with PYEL proteins and to act as an E3 ligase. Here we show that removal of the RING domain does not complement loss of BTS function. We conclude that enzymatic activity of BTS via the RING domain is essential for response to iron deficiency in plants. Further, we analyze possible BTS domain structure evolution and predict that the combination of domains found in BTS is specific to photosynthetic organisms, potentially indicative of a role for BTS and its orthologs in mitigating the iron-related challenges presented by photosynthesis. PMID:27359166

  17. Further insight into BRUTUS domain composition and functionality.

    PubMed

    Matthiadis, Anna; Long, Terri A

    2016-08-01

    BRUTUS (BTS) is a hemerythrin (HHE) domain containing E3 ligase that facilitates the degradation of POPEYE-like (PYEL) proteins in a proteasomal-dependent manner. Deletion of BTS HHE domains enhances BTS stability in the presence of iron and also complements loss of BTS function, suggesting that the HHE domains are critical for protein stability but not for enzymatic function. The RING E3 domain plays an essential role in BTS' capacity to both interact with PYEL proteins and to act as an E3 ligase. Here we show that removal of the RING domain does not complement loss of BTS function. We conclude that enzymatic activity of BTS via the RING domain is essential for response to iron deficiency in plants. Further, we analyze possible BTS domain structure evolution and predict that the combination of domains found in BTS is specific to photosynthetic organisms, potentially indicative of a role for BTS and its orthologs in mitigating the iron-related challenges presented by photosynthesis. PMID:27359166

  18. Identification of two functional domains within the arenavirus nucleoprotein.

    PubMed

    Levingston Macleod, Jesica M; D'Antuono, Alejandra; Loureiro, Maria Eugenia; Casabona, Juan Cruz; Gomez, Guillermo A; Lopez, Nora

    2011-03-01

    Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions. PMID:21159858

  19. Identification of Two Functional Domains within the Arenavirus Nucleoprotein▿

    PubMed Central

    Levingston Macleod, Jesica M.; D'Antuono, Alejandra; Loureiro, Maria Eugenia; Casabona, Juan Cruz; Gomez, Guillermo A.; Lopez, Nora

    2011-01-01

    Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions. PMID:21159858

  20. Identification of two functional domains within the arenavirus nucleoprotein.

    PubMed

    Levingston Macleod, Jesica M; D'Antuono, Alejandra; Loureiro, Maria Eugenia; Casabona, Juan Cruz; Gomez, Guillermo A; Lopez, Nora

    2011-03-01

    Tacaribe virus (TCRV) belongs to the Arenaviridae family. Its bisegmented negative-stranded RNA genome encodes the nucleoprotein (N), the precursor of the envelope glycoproteins, the polymerase (L), and a RING finger matrix (Z) protein. The 570-amino-acid N protein binds to viral RNA, forming nucleocapsids, which are the template for transcription and replication by the viral polymerase. We have previously shown that the interaction between N and Z is required for assembly of infectious virus-like particles (VLPs) (J. C. Casabona et al., J. Virol. 83:7029-7039, 2009). Here, we examine the functional organization of TCRV N protein. A series of deletions and point mutations were introduced into the N-coding sequence, and the ability of the mutants to sustain heterotypic (N-Z) or homotypic (N-N) interactions was analyzed. We found that N protein displays two functional domains. By using coimmunoprecipitation studies, VLP incorporation assays, and double immunofluorescence staining, the carboxy-terminal region of N was found to be required for N-Z interaction and also necessary for incorporation of N protein into VLPs. Moreover, further analysis of this region showed that the integrity of a putative zinc-finger motif, as well as its amino-flanking sequence (residues 461 to 489), are critical for Z binding and N incorporation into VLPs. In addition, we provide evidence of an essential role of the amino-terminal region of N protein for N-N interaction. In this regard, using reciprocal coimmunoprecipitation analysis, we identified a 28-residue region predicted to form a coiled-coil domain (residues 92 to 119) as a newly recognized molecular determinant of N homotypic interactions.

  1. Transcriptional activation by the acidic domain of Vmw65 requires the integrity of the domain and involves additional determinants distinct from those necessary for TFIIB binding.

    PubMed Central

    Walker, S; Greaves, R; O'Hare, P

    1993-01-01

    In this work we have examined the requirements for activity of the acidic domain of Vmw65 (VP16) by deletion and site-directed mutagenesis of the region in the context of GAL4 fusion proteins. The results indicate that the present interpretation of what actually constitutes the activation domain is not correct. We demonstrate, using a promoter with one target site which is efficiently activated by the wild-type (wt) fusion protein, that amino acids distal to residue 453 are critical for activity. Truncation of the domain or substitution of residues in the distal region almost completely abrogate activity. However, inactivating mutations within the distal region are complemented by using a promoter containing multiple target sites. Moreover, duplication of the proximal region, but not the distal region, restores the ability to activate a promoter with a single target site. These results indicate some distinct qualitative difference between the proximal and distal regions. We have also examined the binding of nuclear proteins to the wt domain and to a variant with the distal region inactivated by mutation. The lack of activity of this variant is not explained by a lack of binding of TFIIB, a protein previously reported to be the likely target of the acidic domain. Therefore some additional function is involved in transcriptional activation by the acid domain, and determinants distinct from those involved in TFIIB binding are required for this function. Analysis of the total protein profiles binding to the wt and mutant domains has demonstrated the selective binding to the wt domain of a 135-kDa polypeptide, which is therefore a candidate component involved in this additional function. This is the first report to provide evidence for the proposal of a multiplicity of interactions within the acidic domain, by uncoupling requirements for one function from those for another. Images PMID:8395001

  2. Dissecting BAR Domain Function in the Yeast Amphiphysins Rvs161 and Rvs167 during Endocytosis

    PubMed Central

    Youn, Ji-Young; Friesen, Helena; Kishimoto, Takuma; Henne, William M.; Kurat, Christoph F.; Ye, Wei; Ceccarelli, Derek F.; Sicheri, Frank; Kohlwein, Sepp D.; McMahon, Harvey T.

    2010-01-01

    BAR domains are protein modules that bind to membranes and promote membrane curvature. One type of BAR domain, the N-BAR domain, contains an additional N-terminal amphipathic helix, which contributes to membrane-binding and bending activities. The only known N-BAR-domain proteins in the budding yeast Saccharomyces cerevisiae, Rvs161 and Rvs167, are required for endocytosis. We have explored the mechanism of N-BAR-domain function in the endocytosis process using a combined biochemical and genetic approach. We show that the purified Rvs161–Rvs167 complex binds to liposomes in a curvature-independent manner and promotes tubule formation in vitro. Consistent with the known role of BAR domain polymerization in membrane bending, we found that Rvs167 BAR domains interact with each other at cortical actin patches in vivo. To characterize N-BAR-domain function in endocytosis, we constructed yeast strains harboring changes in conserved residues in the Rvs161 and Rvs167 N-BAR domains. In vivo analysis of the rvs endocytosis mutants suggests that Rvs proteins are initially recruited to sites of endocytosis through their membrane-binding ability. We show that inappropriate regulation of complex sphingolipid and phosphoinositide levels in the membrane can impinge on Rvs function, highlighting the relationship between membrane components and N-BAR-domain proteins in vivo. PMID:20610658

  3. Shapes of lipid monolayer domains: Solutions using elliptic functions

    NASA Astrophysics Data System (ADS)

    Iwamoto, M.; Liu, F.; Ou-Yang, Z. C.

    2008-09-01

    Solid lipid monolayer domains surrounded by a fluid phase at an air-water interface exhibit complex shapes. These intriguing shapes can be understood in terms of a competition between line tension and long-range dipole-dipole interaction. The dipolar energy has recently been relevant to a negative line tension and a positive curvature energy at the boundary, and a corresponding shape equation was derived by the variation of the approximated domain energy (Phys. Rev. Lett. 93, 206101 (2004)). Here we further incorporate surface pressure into the shape equation and show that the equation can be analytically solved: the curvature of the domain boundary is exactly obtained as an elliptic function of arc-length. We find that a circular domain can grow into bean- and peach-like domains with pressure, i.e., dipping and cuspidal transitions of circle by compression. The comparison with the experimental observation shows nice agreement.

  4. RING DOMAIN DIMERIZATION IS ESSENTIAL FOR RNF4 FUNCTION

    PubMed Central

    Liew, Chu Wai; Sun, Huaiyu; Hunter, Tony; Day, Catherine L.

    2011-01-01

    SYNOPSIS RNF4 family ubiquitin ligases are RING E3 ligases that regulate the homeostasis of SUMOylated proteins by promoting their ubiquitylation. Here we report that the RING domain of RNF4 forms a stable dimer, and that dimerization is required for ubiquitin transfer. Our data suggests that the stability of the E2~ubiquitin thioester bond is regulated by RING domain dimerization. PMID:20681948

  5. Functions and Requirements for the Transition Project

    SciTech Connect

    YANOCHKO, R.M.

    2000-04-24

    This document describes the functional requirement baseline for the Transition of 100 K Area Facilities Project (Transition Project). This baseline information consists of top-level functions, requirements, concept description, interface description, issues, and enabling assumptions.

  6. Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites.

    PubMed

    Babic, Milos; Russo, Gary J; Wellington, Andrea J; Sangston, Ryan M; Gonzalez, Migdalia; Zinsmaier, Konrad E

    2015-04-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.

  7. Intein Clustering Suggests Functional Importance in Different Domains of Life

    PubMed Central

    Novikova, Olga; Jayachandran, Pradeepa; Kelley, Danielle S.; Morton, Zachary; Merwin, Samantha; Topilina, Natalya I.; Belfort, Marlene

    2016-01-01

    Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution. PMID:26609079

  8. The ATM-related domain of TRRAP is required for histone acetyltransferase recruitment and Myc-dependent oncogenesis

    PubMed Central

    Park, Jeonghyeon; Kunjibettu, Sudeesha; McMahon, Steven B.; Cole, Michael D.

    2001-01-01

    The ATM-related TRRAP protein is a component of several different histone acetyltransferase (HAT) complexes but lacks the kinase activity characteristic of other ATM family members. We identified a novel function for this evolutionarily conserved domain in its requirement for the assembly of a functional HAT complex. Ectopic expression of TRRAP protein with a mutation in the ATM-related domain inhibits Myc-mediated oncogenic transformation. The Myc-binding region of TRRAP maps to a separable domain, and ectopic expression of this domain inhibits cell growth. These findings demonstrate that the ATM-related domain of TRRAP forms a structural core for the assembly and recruitment of HAT complexes by transcriptional activators. PMID:11445536

  9. An updated view on the structure and function of PYRIN domains

    PubMed Central

    Chu, Lan Hoang; Gangopadhyay, Anu; Dorfleutner, Andrea; Stehlik, Christian

    2014-01-01

    The PYRIN domain (PYD) is a protein-protein interaction domain, which belongs to the death domain fold (DDF) superfamily. It is best known for its signaling function in innate immune responses and particularly in the assembly of inflammasomes, which are large protein complexes that allow the induced proximity-mediated activation of caspase-1 and subsequently the release of pro-inflammatory cytokines. The molecular mechanism of inflammasome assembly was only recently elucidated and specifically requires PYD oligomerization. Here we discuss the recent advances in our understanding of PYD signaling and its regulation by PYD-only proteins. PMID:25451010

  10. Function of a Conserved Checkpoint Recruitment Domain in ATRIP Proteins▿

    PubMed Central

    Ball, Heather L.; Ehrhardt, Mark R.; Mordes, Daniel A.; Glick, Gloria G.; Chazin, Walter J.; Cortez, David

    2007-01-01

    The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP. PMID:17339343

  11. Talin is required to position and expand the luminal domain of the Drosophila heart tube.

    PubMed

    Vanderploeg, Jessica; Jacobs, J Roger

    2015-09-15

    Fluid- and gas-transporting tubular organs are critical to metazoan development and homeostasis. Tubulogenesis involves cell polarization and morphogenesis to specify the luminal, adhesive, and basal cell domains and to establish an open lumen. We explore a requirement for Talin, a cytoplasmic integrin adapter, during Drosophila melanogaster embryonic heart tube development. Talin marks the presumptive luminal domain and is required to orient and develop an open luminal space within the heart. Genetic analysis demonstrates that loss of zygotic or maternal-and-zygotic Talin disrupts heart cell migratory dynamics, morphogenesis, and polarity. Talin is essential for subsequent polarization of luminal determinants Slit, Robo, and Dystroglycan as well as stabilization of extracellular and intracellular integrin adhesion factors. In the absence of Talin function, mini-lumens enriched in luminal factors form in ectopic locations. Rescue experiments performed with mutant Talin transgenes suggest that actin-binding is required for normal lumen formation, but not for initial heart cell polarization. We propose that Talin provides instructive cues to position the luminal domain and coordinate the actin cytoskeleton during Drosophila heart lumen development.

  12. Mapping a kingdom-specific functional domain of squalene synthase.

    PubMed

    Linscott, Kristin B; Niehaus, Thomas D; Zhuang, Xun; Bell, Stephen A; Chappell, Joe

    2016-09-01

    Squalene synthase catalyzes the first committed step in sterol biosynthesis and consists of both an amino-terminal catalytic domain and a carboxy-terminal domain tethering the enzyme to the ER membrane. While the overall architecture of this enzyme is identical in eukaryotes, it was previously shown that plant and animal genes cannot complement a squalene synthase knockout mutation in yeast unless the carboxy-terminal domain is swapped for one of fungal origin. This implied a unique component of the fungal carboxy-terminal domain was responsible for the complementation phenotype. To identify this motif, we used Saccharomyces cerevisiae with a squalene synthase knockout mutation, and expressed intact and chimeric squalene synthases originating from fungi, plants, and animals. In contrast to previous observations, all enzymes tested could partially complement the knockout mutation when the genes were weakly expressed. However, when highly expressed, non-fungal squalene synthases could not complement the yeast mutation and instead led to the accumulation of a toxic intermediate(s) as defined by mutations of genes downstream in the ergosterol pathway. Restoration of the complete complementation phenotype was mapped to a 26-amino acid hinge region linking the catalytic and membrane-spanning domains specific to fungal squalene synthases. Over-expression of the C-terminal domain containing a hinge domain from fungi, not from animals or plants, led to growth inhibition of wild-type yeast. Because this hinge region is unique to and highly conserved within each kingdom of life, the data suggests that the hinge domain plays an essential functional role, such as assembly of ergosterol multi-enzyme complexes in fungi.

  13. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro.

    PubMed

    Krauss, Sharon Wald; Heald, Rebecca; Lee, Gloria; Nunomura, Wataru; Gimm, J Aura; Mohandas, Narla; Chasis, Joel Anne

    2002-11-15

    Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.

  14. The structure-function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties.

    PubMed Central

    Darboux, I; Barthalay, Y; Piovant, M; Hipeau-Jacquotte, R

    1996-01-01

    Neurotactin (Nrt), a Drosophila transmembrane glycoprotein which is expressed in neuronal and epithelial tissues during embryonic and larval stages, exhibits heterophilic adhesive properties. The extracellular domain is composed of a catalytically inactive cholinesterase-like domain. A three-dimensional model deduced from the crystal structure of Torpedo acetylcholinesterase (AChE) has been constructed for Nrt and suggests that its extracellular domain is composed of two sub-domains organized around a gorge: an N-terminal region, whose three-dimensional structure is almost identical to that of Torpedo AChE, and a less conserved C-terminal region. By using truncated Nrt molecules and a homotypic cell aggregation assay which involves a soluble ligand activity, it has been possible to show that the adhesive function is localized in the N-terminal region of the extracellular domain comprised between His347 and His482. The C-terminal region of the protein can be removed without impairing Nrt adhesive properties, suggesting that the two sub-domains are structurally independent. Chimeric molecules in which the Nrt cholinesterase-like domain has been replaced by homologous domains from Drosophila AChE, Torpedo AChE or Drosophila glutactin (Glt), share similar adhesive properties. These properties may require the presence of Nrt cytoplasmic and transmembrane domains since authentic Drosophila AChE does not behave as an adhesive molecule when transfected in S2 cells. Images PMID:8890157

  15. The Pilus Usher Controls Protein Interactions via Domain Masking and is Functional as an Oligomer

    PubMed Central

    Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Li, Huilin; Thanassi, David G.

    2015-01-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. PMID:26052892

  16. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis

    PubMed Central

    Sartaj, Rachel; Chee, Ru‐ik; Yang, Jing; Wan, Pengxia; Liu, Aihong; Guaiquil, Victor; Fuchs, Elaine

    2016-01-01

    Abstract The cornea requires constant epithelial renewal to maintain clarity for appropriate vision. A subset of stem cells residing at the limbus is primarily responsible for maintaining corneal epithelium homeostasis. Trauma and disease may lead to stem cell deficiency and therapeutic targeting to replenish the stemness capacity has been stalled by the lack of reliable corneal epithelial stem cell markers. Here we identified the location of Lhx2 in mice (mLhx2) cornea and conjunctival tissue using an Lhx2eGFP reporter model and in human tissues (hLHX2). Lhx2 localized to the basal cells of central cornea, the conjunctiva and the entire limbal epithelium in humans and mice. To ascribe a functional role we generated Lhx2 conditional knockout (cKO) mice and the phenotypic effects in corneas were analyzed by slit lamp microscopy, in cell‐based assays and in a model of corneal epithelium debridement. Immunodetection on corneal sections were used to visualize conjunctivalization, a sign of limbal barrier failure. Lhx2cKO mice produced reduced body hair and spontaneous epithelial defects in the cornea that included neovascularization, perforation with formation of scar tissue and opacification. Cell based assays showed that Lhx2cKO derived corneal epithelial cells have a significantly lower capacity to form colonies over time and delayed wound‐healing recovery when compared to wildtype cells. Repeated corneal epithelial wounding resulted in decreased re‐epithelialization and multiple cornea lesions in Lhx2cKO mice compared to normal recovery seen in wildtype mice. We conclude that Lhx2 is required for maintenance of the corneal epithelial cell compartment and the limbal barrier. Stem Cells 2016;34:493–503 PMID:26661907

  17. Individual Carboxypeptidase D domains have both redundant and unique functions in Drosophila development and behavior

    PubMed Central

    Sidyelyeva, Galyna; Wegener, Christian; Schoenfeld, Brian P.; Bell, Aaron J.; Baker, Nicholas E.; McBride, Sean M. J.; Fricker, Lloyd D.

    2010-01-01

    Metallocarboxypeptidase D (CPD) functions in protein and peptide processing. The Drosophila CPD svr gene undergoes alternative splicing, producing forms containing 1–3 active or inactive CP domains. To investigate the function of the various CP domains, we created transgenic flies expressing specific forms of CPD in the embryonic-lethal svrPG33 mutant. All constructs containing an active CP domain rescued the lethality with varying degrees, and full viability required inactive CP domain-3. Transgenic flies overexpressing active CP domain-1 or -2 were similar to each other and to the viable svr mutants, with pointed wing shape, enhanced ethanol sensitivity, and decreased cold sensitivity. The transgenes fully compensated for a long-term memory deficit observed in the viable svr mutants. Overexpression of CP domain-1 or -2 reduced the levels of Lys/Arg-extended adipokinetic hormone intermediates. These findings suggest that CPD domains-1 and -2 have largely redundant functions in the processing of growth factors, hormones, and neuropeptides. PMID:20386952

  18. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage.

    PubMed

    Riccio, Amanda A; Cingolani, Gino; Pascal, John M

    2016-02-29

    Poly(ADP-ribose) polymerase-2 (PARP-2) is one of three human PARP enzymes that are potently activated during the cellular DNA damage response (DDR). DDR-PARPs detect DNA strand breaks, leading to a dramatic increase in their catalytic production of the posttranslational modification poly(ADP-ribose) (PAR) to facilitate repair. There are limited biochemical and structural insights into the functional domains of PARP-2, which has restricted our understanding of how PARP-2 is specialized toward specific repair pathways. PARP-2 has a modular architecture composed of a C-terminal catalytic domain (CAT), a central Trp-Gly-Arg (WGR) domain and an N-terminal region (NTR). Although the NTR is generally considered the key DNA-binding domain of PARP-2, we report here that all three domains of PARP-2 collectively contribute to interaction with DNA damage. Biophysical, structural and biochemical analyses indicate that the NTR is natively disordered, and is only required for activation on specific types of DNA damage. Interestingly, the NTR is not essential for PARP-2 localization to sites of DNA damage. Rather, the WGR and CAT domains function together to recruit PARP-2 to sites of DNA breaks. Our study differentiates the functions of PARP-2 domains from those of PARP-1, the other major DDR-PARP, and highlights the specialization of the multi-domain architectures of DDR-PARPs.

  19. Functional and topological diversity of LOV domain photoreceptors.

    PubMed

    Glantz, Spencer T; Carpenter, Eric J; Melkonian, Michael; Gardner, Kevin H; Boyden, Edward S; Wong, Gane Ka-Shu; Chow, Brian Y

    2016-03-15

    Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics.

  20. Functional and topological diversity of LOV domain photoreceptors

    PubMed Central

    Glantz, Spencer T.; Carpenter, Eric J.; Melkonian, Michael; Boyden, Edward S.; Wong, Gane Ka-Shu; Chow, Brian Y.

    2016-01-01

    Light–oxygen–voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor–effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor–effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor–effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure–function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and

  1. Functional and topological diversity of LOV domain photoreceptors.

    PubMed

    Glantz, Spencer T; Carpenter, Eric J; Melkonian, Michael; Gardner, Kevin H; Boyden, Edward S; Wong, Gane Ka-Shu; Chow, Brian Y

    2016-03-15

    Light-oxygen-voltage sensitive (LOV) flavoproteins are ubiquitous photoreceptors that mediate responses to environmental cues. Photosensory inputs are transduced into signaling outputs via structural rearrangements in sensor domains that consequently modulate the activity of an effector domain or multidomain clusters. Establishing the diversity in effector function and sensor-effector topology will inform what signaling mechanisms govern light-responsive behaviors across multiple kingdoms of life and how these signals are transduced. Here, we report the bioinformatics identification of over 6,700 candidate LOV domains (including over 4,000 previously unidentified sequences from plants and protists), and insights from their annotations for ontological function and structural arrangements. Motif analysis identified the sensors from ∼42 million ORFs, with strong statistical separation from other flavoproteins and non-LOV members of the structurally related Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim family. Conserved-domain analysis determined putative light-regulated function and multidomain topologies. We found that for certain effectors, sensor-effector linker length is discretized based on both phylogeny and the preservation of α-helical heptad repeats within an extended coiled-coil linker structure. This finding suggests that preserving sensor-effector orientation is a key determinant of linker length, in addition to ancestry, in LOV signaling structure-function. We found a surprisingly high prevalence of effectors with functions previously thought to be rare among LOV proteins, such as regulators of G protein signaling, and discovered several previously unidentified effectors, such as lipases. This work highlights the value of applying genomic and transcriptomic technologies to diverse organisms to capture the structural and functional variation in photosensory proteins that are vastly important in adaptation, photobiology, and optogenetics

  2. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain.

    PubMed

    Dawicki-McKenna, Jennine M; Langelier, Marie-France; DeNizio, Jamie E; Riccio, Amanda A; Cao, Connie D; Karch, Kelly R; McCauley, Michael; Steffen, Jamin D; Black, Ben E; Pascal, John M

    2015-12-01

    Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.

  3. Domain evolution and functional diversification of sulfite reductases.

    PubMed

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  4. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications. PMID:18536033

  5. Domain Evolution and Functional Diversification of Sulfite Reductases

    NASA Astrophysics Data System (ADS)

    Dhillon, Ashita; Goswami, Sulip; Riley, Monica; Teske, Andreas; Sogin, Mitchell

    2005-02-01

    Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.

  6. The IRBIT domain adds new functions to the AHCY family.

    PubMed

    Devogelaere, Benoit; Sammels, Eva; De Smedt, Humbert

    2008-07-01

    During the past few years, the IRBIT domain has emerged as an important add-on of S-adenosyl-L-homocystein hydrolase (AHCY), thereby creating the new family of AHCY-like proteins. In this review, we discuss the currently available data on this new family of proteins. We describe the IRBIT domain as a unique part of these proteins and give an overview of its regulation via (de)phosphorylation and proteolysis. The second part of this review is focused on the potential functions of the AHCY-like proteins. We propose that the IRBIT domain serves as an anchor for targeting AHCY-like proteins towards cytoplasmic targets. This leads to regulation of (i) intracellular Ca2+ via the inositol 1,4,5-trisphosphate receptor (IP3R), (ii) intracellular pH via the Na+/HCO3 - cotransporters (NBCs); whereas inactivation of the IRBIT domain induces (iii) nuclear translocation and regulation of AHCY activity. Dysfunction of AHCY-like proteins will disturb these three important functions, with various biological implications.

  7. Rules and Norms: Requirements for Rule Interchange Languages in the Legal Domain

    NASA Astrophysics Data System (ADS)

    Gordon, Thomas F.; Governatori, Guido; Rotolo, Antonino

    In this survey paper we summarize the requirements for rule interchange languages for applications in the legal domain and use these requirements to evaluate RuleML, SBVR, SWRL and RIF. We also present the Legal Knowledge Interchange Format (LKIF), a new rule interchange format developed specifically for applications in the legal domain.

  8. Massively Parallel Functional Analysis of BRCA1 RING Domain Variants

    PubMed Central

    Starita, Lea M.; Young, David L.; Islam, Muhtadi; Kitzman, Jacob O.; Gullingsrud, Justin; Hause, Ronald J.; Fowler, Douglas M.; Parvin, Jeffrey D.; Shendure, Jay; Fields, Stanley

    2015-01-01

    Interpreting variants of uncertain significance (VUS) is a central challenge in medical genetics. One approach is to experimentally measure the functional consequences of VUS, but to date this approach has been post hoc and low throughput. Here we use massively parallel assays to measure the effects of nearly 2000 missense substitutions in the RING domain of BRCA1 on its E3 ubiquitin ligase activity and its binding to the BARD1 RING domain. From the resulting scores, we generate a model to predict the capacities of full-length BRCA1 variants to support homology-directed DNA repair, the essential role of BRCA1 in tumor suppression, and show that it outperforms widely used biological-effect prediction algorithms. We envision that massively parallel functional assays may facilitate the prospective interpretation of variants observed in clinical sequencing. PMID:25823446

  9. Inheritance contradictions between functional and extra-functional requirements

    SciTech Connect

    Hochmueller, E.

    1996-12-31

    This paper discusses the tension which may arise between functional and extra-functional requirements during the process of object-oriented design. A sketch of some design conflicts in object-oriented development induced by concurrency and security requirements will serve as a basis for rather provocative prospects on an essential distinction between the core requirements for systems dealing with their proper purpose and functionality and the requirements which can be considered to be of extra-functional nature in constraining the systems solution space.

  10. Photonic-crystal time-domain simulations using Wannier functions.

    PubMed

    Blum, Christian; Wolff, Christian; Busch, Kurt

    2011-01-15

    We present a Wannier-function-based time-domain method for photonic-crystal integrated optical circuits. In contrast to other approaches, this method allows one to trade CPU time against memory consumption and therefore is particularly well suited for the treatment of large-scale systems. As an illustration, we apply the method to the design of a photonic-crystal-based sensor, which utilizes a dual Mach-Zehnder-Fano interferometer. PMID:21263535

  11. Section 5: Adapting Requirements Practices in Different Domains

    NASA Astrophysics Data System (ADS)

    Robinson, William

    Technology has a tremendous impact on society. In recent years, the Internet, World Wide Web, and Web 2.0 has changed the nature of commerce, government, and of course software development. It affects the practices of producing requirements and as well as the kinds of systems to be designed. The effect of converging technologies on the role of requirements engineering is considered in the first article by Matthias Jarke, while the effect of technology on requirements practices is considered in the second article by Walt Scacchi. Together, they provide theoretical and practical perspective on requirements engineering issues faced in a modern, technology driven world.

  12. Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR Required for Hypersensitive Response-Associated Cell Death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket.

    PubMed

    Sueldo, Daniela J; Shimels, Mahdere; Spiridon, Laurentiu N; Caldararu, Octav; Petrescu, Andrei-Jose; Joosten, Matthieu H A J; Tameling, Wladimir I L

    2015-10-01

    Plant nucleotide-binding, leucine-rich repeat (NB-LRR) proteins confer immunity to pathogens possessing the corresponding avirulence proteins. Activation of NB-LRR proteins is often associated with induction of the hypersensitive response (HR), a form of programmed cell death. NRC1 (NB-LRR Required for HR-Associated Cell Death-1) is a tomato (Solanum lycopersicum) NB-LRR protein that participates in the signalling cascade leading to resistance to the pathogens Cladosporium fulvum and Verticillium dahliae. To identify mutations in NRC1 that cause increased signalling activity, we generated a random library of NRC1 variants mutated in their nucleotide-binding domain and screened them for the ability to induce an elicitor-independent HR in Nicotiana tabacum. Screening of 1920 clones retrieved 11 gain-of-function mutants, with 10 of them caused by a single amino acid substitution. All substitutions are located in or very close to highly conserved motifs within the nucleotide-binding domain, suggesting modulation of the signalling activity of NRC1. Three-dimensional modelling of the nucleotide-binding domain of NRC1 revealed that the targeted residues are centred around the bound nucleotide. Our mutational approach has generated a wide set of novel gain-of-function mutations in NRC1 and provides insight into how the activity of this NB-LRR is regulated.

  13. Francisella tularensis RipA Protein Topology and Identification of Functional Domains

    PubMed Central

    Mortensen, Brittany L.; Fuller, James R.; Taft-Benz, Sharon; Collins, Edward J.

    2012-01-01

    Francisella tularensis is a Gram-negative coccobacillus and is the etiological agent of the disease tularemia. Expression of the cytoplasmic membrane protein RipA is required for Francisella replication within macrophages and other cell types; however, the function of this protein remains unknown. RipA is conserved among all sequenced Francisella species, and RipA-like proteins are present in a number of individual strains of a wide variety of species scattered throughout the prokaryotic kingdom. Cross-linking studies revealed that RipA forms homoligomers. Using a panel of RipA-green fluorescent protein and RipA-PhoA fusion constructs, we determined that RipA has a unique topology within the cytoplasmic membrane, with the N and C termini in the cytoplasm and periplasm, respectively. RipA has two significant cytoplasmic domains, one composed roughly of amino acids 1 to 50 and the second flanked by the second and third transmembrane domains and comprising amino acids 104 to 152. RipA functional domains were identified by measuring the effects of deletion mutations, amino acid substitution mutations, and spontaneously arising intragenic suppressor mutations on intracellular replication, induction of interleukin-1β (IL-1β) secretion by infected macrophages, and oligomer formation. Results from these experiments demonstrated that each of the cytoplasmic domains and specific amino acids within these domains are required for RipA function. PMID:22267515

  14. Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis

    PubMed Central

    Capstick, David S.; Jomaa, Ahmad; Hanke, Chistopher; Ortega, Joaquin; Elliot, Marie A.

    2011-01-01

    The chaplin proteins are functional amyloids found in the filamentous Streptomyces bacteria. These secreted proteins are required for the aerial development of Streptomyces coelicolor, and contribute to an intricate rodlet ultrastructure that decorates the surfaces of aerial hyphae and spores. S. coelicolor encodes eight chaplin proteins. Previous studies have revealed that only three of these proteins (ChpC, ChpE, and ChpH) are necessary for promoting aerial development, and of these three, ChpH is the primary developmental determinant. Here, we show that the model chaplin, ChpH, contains two amyloidogenic domains: one in the N terminus and one in the C terminus of the mature protein. These domains have different polymerization properties as determined using fluorescence spectroscopy, secondary structure analyses, and electron microscopy. We coupled these in vitro assays with in vivo genetic studies to probe the connection between ChpH amyloidogenesis and its biological function. Using mutational analyses, we demonstrated that both N- and C-terminal amyloid domains of ChpH were required for promoting aerial hypha formation, while the N-terminal domain was dispensable for assembly of the rodlet ultrastructure. These results suggest that there is a functional differentiation of the dual amyloid domains in the chaplin proteins. PMID:21628577

  15. The RNA recognition motif domains of RBM5 are required for RNA binding and cancer cell proliferation inhibition

    SciTech Connect

    Zhang, Lei; Zhang, Qing; Yang, Yu; Wu, Chuanfang

    2014-02-14

    Highlights: • RNA recognition motif domains of RBM5 are essential for cell proliferation inhibition. • RNA recognition motif domains of RBM5 are essential for apoptosis induction. • RNA recognition motif domains of RBM5 are essential for RNA binding. • RNA recognition motif domains of RBM5 are essential for caspase-2 alternative splicing. - Abstract: RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.

  16. Critical comparison between time- and frequency-domain relaxation functions

    NASA Astrophysics Data System (ADS)

    Snyder, Chad R.; Mopsik, Frederick I.

    1999-07-01

    Considerable work has been performed on providing a theoretical basis for the Kohlrausch-Williams-Watts (KWW) and Havriliak-Negami (HN) relaxation functions. Because of this, several papers have examined the ``interconnection'' of these two functions. In this paper, we demonstrate that, with achievable instrumental sensitivity, these two functions are distinguishable. We further address the issue of the ``universal'' limiting power laws and the ability to obtain the exponents associated with them. Finally, the stability and accuracy of our numerical Laplace transform is demonstrated by comparison between functions with known analytical time and frequency solutions. The stability of our algorithm indicates that the method of Alvarez and co-workers [F. Alvarez, A. Alegría, and J. Colmenero, Phys. Rev. B 44, 7306 (1991)] is an unnecessary approximation for converting between the time and frequency domain.

  17. Phenotypic lentivirus screens to identify functional single domain antibodies.

    PubMed

    Schmidt, Florian I; Hanke, Leo; Morin, Benjamin; Brewer, Rebeccah; Brusic, Vesna; Whelan, Sean P J; Ploegh, Hidde L

    2016-01-01

    Manipulation of proteins is key in assessing their in vivo function. Although genetic ablation is straightforward, reversible and specific perturbation of protein function remains a challenge. Single domain antibody fragments, such as camelid-derived VHHs, can serve as inhibitors or activators of intracellular protein function, but functional testing of identified VHHs is laborious. To address this challenge, we have developed a lentiviral screening approach to identify VHHs that elicit a phenotype when expressed intracellularly. We identified 19 antiviral VHHs that protect human A549 cells from lethal infection with influenza A virus (IAV) or vesicular stomatitis virus (VSV), respectively. Both negative-sense RNA viruses are vulnerable to VHHs uniquely specific for their respective nucleoproteins. Antiviral VHHs prevented nuclear import of viral ribonucleoproteins or mRNA transcription, respectively, and may provide clues for novel antiviral reagents. In principle, the screening approach described here should be applicable to identify inhibitors of any pathogen or biological pathway. PMID:27573105

  18. Domains of the TCR beta-chain required for early thymocyte development

    PubMed Central

    1996-01-01

    The T cell receptor beta (TCR beta) chain controls the developmental transition from CD4-CD8- to CD4+8+thymocytes. We show that the extracellular constant region and the transmembrane region, but not the variable domain or cytoplasmic tail of the TCR beta chain are required for this differentiation step. TCR beta mutant chains lacking the cytoplasmic tail can be found at the cell surface both in functional TCR/CD3 complexes and in a GPI-anchored monomeric form indicating that the cytoplasmic tail of the TCR beta chain functions as an ER retention signal. The concordance between cell surface expression of the mutant chains as TCR/CD3 complexes and their capacity to mediate thymocyte differentiation supports the CD3 mediated feedback model in which preTCR/CD3 complexes control the developmental transition from CD4-CD8- to CD4+CD8+thymocytes. PMID:8920871

  19. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    SciTech Connect

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  20. Human Systems Integration: Requirements and Functional Decomposition

    NASA Technical Reports Server (NTRS)

    Berson, Barry; Gershzohn, Gary; Boltz, Laura; Wolf, Russ; Schultz, Mike

    2005-01-01

    This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given.

  1. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  2. Transmembrane domain interactions control biological functions of neuropilin-1.

    PubMed

    Roth, Lise; Nasarre, Cécile; Dirrig-Grosch, Sylvie; Aunis, Dominique; Crémel, Gérard; Hubert, Pierre; Bagnard, Dominique

    2008-02-01

    Neuropilin-1 (NRP1) is a transmembrane receptor playing a pivotal role in the control of semaphorins and VEGF signaling pathways. The exact mechanism controlling semaphorin receptor complex formation is unknown. A structural analysis and modeling of NRP1 revealed a putative dimerization GxxxG motif potentially important for NRP1 dimerization and oligomerization. Our data show that this motif mediates the dimerization of the transmembrane domain of NRP1 as demonstrated by a dimerization assay (ToxLuc assay) performed in natural membrane and FRET analysis. A synthetic peptide derived from the transmembrane segment of NRP1 abolished the inhibitory effect of Sema3A. This effect depends on the capacity of the peptide to interfere with NRP1 dimerization and the formation of oligomeric complexes. Mutation of the GxxxG dimerization motif in the transmembrane domain of NRP1 confirmed its biological importance for Sema3A signaling. Overall, our results shed light on an essential step required for semaphorin signaling and provide novel evidence for the crucial role of transmembrane domain of bitopic protein containing GxxxG motif in the formation of receptor complexes that are a prerequisite for cell signaling.

  3. Functional classification of CATH superfamilies: a domain-based approach for protein function annotation

    PubMed Central

    Das, Sayoni; Lee, David; Sillitoe, Ian; Dawson, Natalie L.; Lees, Jonathan G.; Orengo, Christine A.

    2015-01-01

    Motivation: Computational approaches that can predict protein functions are essential to bridge the widening function annotation gap especially since <1.0% of all proteins in UniProtKB have been experimentally characterized. We present a domain-based method for protein function classification and prediction of functional sites that exploits functional sub-classification of CATH superfamilies. The superfamilies are sub-classified into functional families (FunFams) using a hierarchical clustering algorithm supervised by a new classification method, FunFHMMer. Results: FunFHMMer generates more functionally coherent groupings of protein sequences than other domain-based protein classifications. This has been validated using known functional information. The conserved positions predicted by the FunFams are also found to be enriched in known functional residues. Moreover, the functional annotations provided by the FunFams are found to be more precise than other domain-based resources. FunFHMMer currently identifies 110 439 FunFams in 2735 superfamilies which can be used to functionally annotate > 16 million domain sequences. Availability and implementation: All FunFam annotation data are made available through the CATH webpages (http://www.cathdb.info). The FunFHMMer webserver (http://www.cathdb.info/search/by_funfhmmer) allows users to submit query sequences for assignment to a CATH FunFam. Contact: sayoni.das.12@ucl.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26139634

  4. Between Domain Cognitive Dispersion and Functional Abilities in Older Adults

    PubMed Central

    Fellows, Robert P.; Schmitter-Edgecombe, Maureen

    2016-01-01

    Objective Within-person variability in cognitive performance is related to neurological integrity, but the association with functional abilities is less clear. The primary aim of this study was to examine the association between cognitive dispersion, or within-person variability, and everyday multitasking and the way in which these variables may influence performance on a naturalistic assessment of functional abilities. Method Participants were 156 community-dwelling adults, age 50 or older. Cognitive dispersion was calculated by measuring within-person variability in cognitive domains, established through principal components analysis. Path analysis was used to determine the independent contribution of cognitive dispersion to functional ability, mediated by multitasking. Results Results of the path analysis revealed that the number of subtasks interweaved (i.e., multitasked) mediated the association between cognitive dispersion and task sequencing and accuracy. Although increased multitasking was associated with worse task performance in the path model, secondary analyses revealed that for individuals with low cognitive dispersion, increased multitasking was associated with better task performance, whereas for those with higher levels of dispersion multitasking was negatively correlated with task performance. Conclusion These results suggest that cognitive dispersion between domains may be a useful indicator of multitasking and daily living skills among older adults. PMID:26300441

  5. PSCL: predicting protein subcellular localization based on optimal functional domains.

    PubMed

    Wang, Kai; Hu, Le-Le; Shi, Xiao-He; Dong, Ying-Song; Li, Hai-Peng; Wen, Tie-Qiao

    2012-01-01

    It is well known that protein subcellular localizations are closely related to their functions. Although many computational methods and tools are available from Internet, it is still necessary to develop new algorithms in this filed to gain a better understanding of the complex mechanism of plant subcellular localization. Here, we provide a new web server named PSCL for plant protein subcellular localization prediction by employing optimized functional domains. After feature optimization, 848 optimal functional domains from InterPro were obtained to represent each protein. By calculating the distances to each of the seven categories, PSCL showing the possibilities of a protein located into each of those categories in ascending order. Toward our dataset, PSCL achieved a first-order predicted accuracy of 75.7% by jackknife test. Gene Ontology enrichment analysis showing that catalytic activity, cellular process and metabolic process are strongly correlated with the localization of plant proteins. Finally, PSCL, a Linux Operate System based web interface for the predictor was designed and is accessible for public use at http://pscl.biosino.org/.

  6. Infected cell protein 0 functional domains and their coordination in herpes simplex virus replication

    PubMed Central

    Gu, Haidong

    2016-01-01

    Herpes simplex virus 1 (HSV-1) is a ubiquitous human pathogen that establishes latent infection in ganglia neurons. Its unique life cycle requires a balanced “conquer and compromise” strategy to deal with the host anti-viral defenses. One of HSV-1 α (immediate early) gene products, infected cell protein 0 (ICP0), is a multifunctional protein that interacts with and modulates a wide range of cellular defensive pathways. These pathways may locate in different cell compartments, which then migrate or exchange factors upon stimulation, for the purpose of a concerted and effective defense. ICP0 is able to simultaneously attack multiple host pathways by either degrading key restrictive factors or modifying repressive complexes. This is a viral protein that contains an E3 ubiquitin ligase, translocates among different cell compartments and interacts with major defensive complexes. The multiple functional domains of ICP0 can work independently and at the same time coordinate with each other. Dissecting the functional domains of ICP0 and delineating the coordination of these domains will help us understand HSV-1 pathogenicity as well as host defense mechanisms. This article focuses on describing individual ICP0 domains, their biochemical properties and their implication in HSV-1 infection. By putting individual domain functions back into the picture of host anti-viral defense network, this review seeks to elaborate the complex interactions between HSV-1 and its host. PMID:26870669

  7. Tankyrase Sterile α Motif Domain Polymerization Is Required for Its Role in Wnt Signaling.

    PubMed

    Riccio, Amanda A; McCauley, Michael; Langelier, Marie-France; Pascal, John M

    2016-09-01

    Tankyrase-1 (TNKS1/PARP-5a) is a poly(ADP-ribose) polymerase (PARP) enzyme that regulates multiple cellular processes creating a poly(ADP-ribose) posttranslational modification that can lead to target protein turnover. TNKS1 thereby controls protein levels of key components of signaling pathways, including Axin1, the limiting component of the destruction complex in canonical Wnt signaling that degrades β-catenin to prevent its coactivator function in gene expression. There are limited molecular level insights into TNKS1 regulation in cell signaling pathways. TNKS1 has a sterile α motif (SAM) domain that is known to mediate polymerization, but the functional requirement for SAM polymerization has not been assessed. We have determined the crystal structure of wild-type human TNKS1 SAM domain and used structure-based mutagenesis to disrupt polymer formation and assess the consequences on TNKS1 regulation of β-catenin-dependent transcription. Our data indicate the SAM polymer is critical for TNKS1 catalytic activity and allows TNKS1 to efficiently access cytoplasmic signaling complexes.

  8. From Structure to Function: A Comprehensive Compendium of Tools to Unveil Protein Domains and Understand Their Role in Cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-01-01

    Unveiling the function of a novel protein is a challenging task that requires careful experimental design. Yeast cytokinesis is a conserved process that involves modular structural and regulatory proteins. For such proteins, an important step is to identify their domains and structural organization. Here we briefly discuss a collection of methods commonly used for sequence alignment and prediction of protein structure that represent powerful tools for the identification homologous domains and design of structure-function approaches to test experimentally the function of multi-domain proteins such as those implicated in yeast cytokinesis.

  9. Characterization of DNA polymerase X from Thermus thermophilus HB8 reveals the POLXc and PHP domains are both required for 3'-5' exonuclease activity.

    PubMed

    Nakane, Shuhei; Nakagawa, Noriko; Kuramitsu, Seiki; Masui, Ryoji

    2009-04-01

    The X-family DNA polymerases (PolXs) comprise a highly conserved DNA polymerase family found in all kingdoms. Mammalian PolXs are known to be involved in several DNA-processing pathways including repair, but the cellular functions of bacterial PolXs are less known. Many bacterial PolXs have a polymerase and histidinol phosphatase (PHP) domain at their C-termini in addition to a PolX core (POLXc) domain, and possess 3'-5' exonuclease activity. Although both domains are highly conserved in bacteria, their molecular functions, especially for a PHP domain, are unknown. We found Thermus thermophilus HB8 PolX (ttPolX) has Mg(2+)/Mn(2+)-dependent DNA/RNA polymerase, Mn(2+)-dependent 3'-5' exonuclease and DNA-binding activities. We identified the domains of ttPolX by limited proteolysis and characterized their biochemical activities. The POLXc domain was responsible for the polymerase and DNA-binding activities but exonuclease activity was not detected for either domain. However, the POLXc and PHP domains interacted with each other and a mixture of the two domains had Mn(2+)-dependent 3'-5' exonuclease activity. Moreover, site-directed mutagenesis revealed catalytically important residues in the PHP domain for the 3'-5' exonuclease activity. Our findings provide a molecular insight into the functional domain organization of bacterial PolXs, especially the requirement of the PHP domain for 3'-5' exonuclease activity.

  10. Structure and function of the interacting domains of Spire and Fmn-family formins

    SciTech Connect

    Vizcarra, Christina L.; Kreutz, Barry; Rodal, Avital A.; Toms, Angela V.; Lu, Jun; Zheng, Wei; Quinlan, Margot E.; Eck, Michael J.

    2012-07-11

    Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.

  11. Molecular dissection of radixin: distinct and interdependent functions of the amino- and carboxy-terminal domains

    PubMed Central

    1995-01-01

    The ERM proteins--ezrin, radixin, and moesin--occur in particular cortical cytoskeletal structures. Several lines of evidence suggest that they interact with both cytoskeletal elements and plasma membrane components. Here we described the properties of full-length and truncated radixin polypeptides expressed in transfected cells. In stable transfectants, exogenous full-length radixin behaves much like endogenous ERM proteins, localizing to the same cortical structures. However, the presence of full-length radixin or its carboxy-terminal domain in cortical structures correlates with greatly diminished staining of endogenous moesin in those structures, suggesting that radixin and moesin compete for a limiting factor required for normal associations in the cell. The results also reveal distinct roles for the amino- and carboxy-terminal domains. At low levels relative to endogenous radixin, the carboxy-terminal polypeptide is associated with most of the correct cortical targets except cleavage furrows. In contrast, the amino-terminal polypeptide is diffusely localized throughout the cell. Low level expression of full-length radixin or either of the truncated polypeptides has no detectable effect on cell physiology. However, high level expression of the carboxy-terminal domain dramatically disrupts normal cytoskeletal structures and functions. At these high levels, the amino-terminal polypeptide does localize to cortical structures, but does not affect the cells. We conclude that the behavior of radixin in cells depends upon activities contributed by separate domains of the protein, but also requires modulating interactions between those domains. PMID:7744951

  12. MBD2 and Multiple Domains of CHD4 Are Required for Transcriptional Repression by Mi-2/NuRD Complexes

    PubMed Central

    Ramírez, Julita; Dege, Carissa; Kutateladze, Tatiana G.

    2012-01-01

    Mi-2/nucleosome remodeling and deacetylase (NuRD) chromatin remodeling complexes are important regulators of chromatin structure and DNA accessibility. We examined requirements for individual domains of chromodomain helicase DNA-binding protein 4 (CHD4), a core catalytic component of NuRD complexes, as well as the NuRD subunit methyl-binding domain protein 2 (MBD2) and methylated DNA, for NuRD function in the context of tissue-specific transcription. By itself, loss of NuRD activity is not sufficient for transcriptional activation. However, NuRD complexes greatly reduce activation of the B cell-specific mb-1 (Cd79a) gene by the transcription factors EBF1 and Pax5. Using our B cell model system, we determined that the two chromodomains and ATPase/helicase and C-terminal domains (CTD) of CHD4 are all necessary for repression of mb-1 promoters by NuRD. All of these domains except the CTD are required for efficient association of CHD4 with mb-1 promoter chromatin. Loss of MBD2 expression or of DNA methylation impaired association of CHD4 with mb-1 promoter chromatin and enhanced its transcription. We conclude that repressive functions of MBD2-containing NuRD complexes are dependent on cooperative interactions between the major domains of CHD4 with histones and DNA and on binding of methylated DNA by MBD2. PMID:23071088

  13. Functional synergy between the Munc13 C-terminal C1 and C2 domains

    PubMed Central

    Liu, Xiaoxia; Seven, Alpay Burak; Camacho, Marcial; Esser, Victoria; Xu, Junjie; Trimbuch, Thorsten; Quade, Bradley; Su, Lijing; Ma, Cong; Rosenmund, Christian; Rizo, Josep

    2016-01-01

    Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca2+-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a ‘primed’ state that does not fuse but is ready for fast fusion upon Ca2+ influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion. DOI: http://dx.doi.org/10.7554/eLife.13696.001 PMID:27213521

  14. Functional synergy between the Munc13 C-terminal C1 and C2 domains.

    PubMed

    Liu, Xiaoxia; Seven, Alpay Burak; Camacho, Marcial; Esser, Victoria; Xu, Junjie; Trimbuch, Thorsten; Quade, Bradley; Su, Lijing; Ma, Cong; Rosenmund, Christian; Rizo, Josep

    2016-05-23

    Neurotransmitter release requires SNARE complexes to bring membranes together, NSF-SNAPs to recycle the SNAREs, Munc18-1 and Munc13s to orchestrate SNARE complex assembly, and Synaptotagmin-1 to trigger fast Ca(2+)-dependent membrane fusion. However, it is unclear whether Munc13s function upstream and/or downstream of SNARE complex assembly, and how the actions of their multiple domains are integrated. Reconstitution, liposome-clustering and electrophysiological experiments now reveal a functional synergy between the C1, C2B and C2C domains of Munc13-1, indicating that these domains help bridging the vesicle and plasma membranes to facilitate stimulation of SNARE complex assembly by the Munc13-1 MUN domain. Our reconstitution data also suggest that Munc18-1, Munc13-1, NSF, αSNAP and the SNAREs are critical to form a 'primed' state that does not fuse but is ready for fast fusion upon Ca(2+) influx. Overall, our results support a model whereby the multiple domains of Munc13s cooperate to coordinate synaptic vesicle docking, priming and fusion.

  15. Requirement for the E1 Helicase C-Terminal Domain in Papillomavirus DNA Replication In Vivo

    PubMed Central

    Bergvall, Monika; Gagnon, David; Titolo, Steve; Lehoux, Michaël; D'Abramo, Claudia M.

    2016-01-01

    ABSTRACT The papillomavirus (PV) E1 helicase contains a conserved C-terminal domain (CTD), located next to its ATP-binding site, whose function in vivo is still poorly understood. The CTD is comprised of an alpha helix followed by an acidic region (AR) and a C-terminal extension termed the C-tail. Recent biochemical studies on bovine papillomavirus 1 (BPV1) E1 showed that the AR and C-tail regulate the oligomerization of the protein into a double hexamer at the origin. In this study, we assessed the importance of the CTD of human papillomavirus 11 (HPV11) E1 in vivo, using a cell-based DNA replication assay. Our results indicate that combined deletion of the AR and C-tail drastically reduces DNA replication, by 85%, and that further truncation into the alpha-helical region compromises the structural integrity of the E1 helicase domain and its interaction with E2. Surprisingly, removal of the C-tail alone or mutation of highly conserved residues within the domain still allows significant levels of DNA replication (55%). This is in contrast to the absolute requirement for the C-tail reported for BPV1 E1 in vitro and confirmed here in vivo. Characterization of chimeric proteins in which the AR and C-tail from HPV11 E1 were replaced by those of BPV1 indicated that while the function of the AR is transferable, that of the C-tail is not. Collectively, these findings define the contribution of the three CTD subdomains to the DNA replication activity of E1 in vivo and suggest that the function of the C-tail has evolved in a PV type-specific manner. IMPORTANCE While much is known about hexameric DNA helicases from superfamily 3, the papillomavirus E1 helicase contains a unique C-terminal domain (CTD) adjacent to its ATP-binding site. We show here that this CTD is important for the DNA replication activity of HPV11 E1 in vivo and that it can be divided into three functional subdomains that roughly correspond to the three conserved regions of the CTD: an alpha helix, needed

  16. A triple-arginine motif in the amino-terminal domain and oligomerization are required for HIV-1 inhibition by human MX2.

    PubMed

    Goujon, Caroline; Greenbury, Rebecca A; Papaioannou, Stelios; Doyle, Tomas; Malim, Michael H

    2015-04-01

    We have employed molecular genetic approaches to understand the domain organization of the HIV-1 resistance factor myxovirus resistance 2 (MX2). First, we describe an essential triple-arginine motif in the amino-terminal domain. Second, we demonstrate that this 91-residue domain mediates antiviral activity when appended to heterologous proteins, and we provide genetic evidence that protein oligomerization is required for MX2 function. These insights will facilitate future work aiming to elucidate MX2's mechanism of action.

  17. The Twist Box Domain is Required for Twist1-induced Prostate Cancer Metastasis

    PubMed Central

    Gajula, Rajendra P.; Chettiar, Sivarajan T.; Williams, Russell D.; Thiyagarajan, Saravanan; Kato, Yoshinori; Aziz, Khaled; Wang, Ruoqi; Gandhi, Nishant; Wild, Aaron T.; Vesuna, Farhad; Ma, Jinfang; Salih, Tarek; Cades, Jessica; Fertig, Elana; Biswal, Shyam; Burns, Timothy F.; Chung, Christine H.; Rudin, Charles M.; Herman, Joseph M.; Hales, Russell K.; Raman, Venu; An, Steven S.; Tran, Phuoc T.

    2013-01-01

    Twist1, a basic helix-loop-helix transcription factor, plays a key role during development and is a master regulator of the epithelial-mesenchymal transition (EMT) that promotes cancer metastasis. Structure-function relationships of Twist1 to cancer-related phenotypes are underappreciated, so we studied the requirement of the conserved Twist box domain for metastatic phenotypes in prostate cancer (PCa). Evidence suggests that Twist1 is overexpressed in clinical specimens and correlated with aggressive/metastatic disease. Therefore, we examined a transactivation mutant, Twist1-F191G, in PCa cells using in vitro assays which mimic various stages of metastasis. Twist1 overexpression led to elevated cytoskeletal stiffness and cell traction forces at the migratory edge of cells based on biophysical single-cell measurements. Twist1 conferred additional cellular properties associated with cancer cell metastasis including increased migration, invasion, anoikis resistance, and anchorage-independent growth. The Twist box mutant was defective for these Twist1 phenotypes in vitro. Importantly, we observed a high frequency of Twist1-induced metastatic lung tumors and extra-thoracic metastases in vivo using the experimental lung metastasis assay. The Twist box was required for PCa cells to colonize metastatic lung lesions and extra-thoracic metastases. Comparative genomic profiling revealed transcriptional programs directed by the Twist box that were associated with cancer progression, such as Hoxa9. Mechanistically, Twist1 bound to the Hoxa9 promoter and positively regulated Hoxa9 expression in PCa cells. Finally, Hoxa9 was important for Twist1-induced cellular phenotypes associated with metastasis. These data suggest that the Twist box domain is required for Twist1 transcriptional programs and PCa metastasis. PMID:23982216

  18. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase.

    PubMed Central

    Leberer, E; Wu, C; Leeuw, T; Fourest-Lieuvin, A; Segall, J E; Thomas, D Y

    1997-01-01

    Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins. PMID:9009270

  19. 47 CFR 80.1081 - Functional requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Functional requirements. 80.1081 Section 80.1081 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment...

  20. 47 CFR 80.1081 - Functional requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Functional requirements. 80.1081 Section 80.1081 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment...

  1. 47 CFR 80.1081 - Functional requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Functional requirements. 80.1081 Section 80.1081 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment...

  2. 47 CFR 80.1081 - Functional requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Functional requirements. 80.1081 Section 80.1081 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment...

  3. 47 CFR 80.1081 - Functional requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Functional requirements. 80.1081 Section 80.1081 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS) Equipment...

  4. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues

    PubMed Central

    Briant, Kit; Koay, Yee-Hui; Otsuka, Yuka; Swanton, Eileithyia

    2015-01-01

    ABSTRACT Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. PMID:26446255

  5. Functional Foods Baseline and Requirements Analysis

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Bermudez-Aguirre, L. D.; Douglas, G.

    2015-01-01

    Current spaceflight foods were evaluated to determine if their nutrient profile supports positioning as a functional food and if the stability of the bioactive compound within the food matrix over an extended shelf-life correlated with the expected storage duration during the mission. Specifically, the research aims were: Aim A. To determine the amount of each nutrient in representative spaceflight foods immediately after processing and at predetermined storage time to establish the current nutritional state. Aim B. To identify the requirements to develop foods that stabilize these nutrients such that required concentrations are maintained in the space food system throughout long duration missions (up to five years). Aim C. To coordinate collaborations with health and performance groups that may require functional foods as a countermeasure.

  6. The Sushi domains of GABAB receptors function as axonal targeting signals.

    PubMed

    Biermann, Barbara; Ivankova-Susankova, Klara; Bradaia, Amyaouch; Abdel Aziz, Said; Besseyrias, Valerie; Kapfhammer, Josef P; Missler, Markus; Gassmann, Martin; Bettler, Bernhard

    2010-01-27

    GABA(B) receptors are the G-protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. Two receptor subtypes, GABA(B(1a,2)) and GABA(B(1b,2)), are formed by the assembly of GABA(B1a) and GABA(B1b) subunits with GABA(B2) subunits. The GABA(B1b) subunit is a shorter isoform of the GABA(B1a) subunit lacking two N-terminal protein interaction motifs, the sushi domains. Selectively GABA(B1a) protein traffics into the axons of glutamatergic neurons, whereas both the GABA(B1a) and GABA(B1b) proteins traffic into the dendrites. The mechanism(s) and targeting signal(s) responsible for the selective trafficking of GABA(B1a) protein into axons are unknown. Here, we provide evidence that the sushi domains are axonal targeting signals that redirect GABA(B1a) protein from its default dendritic localization to axons. Specifically, we show that mutations in the sushi domains preventing protein interactions preclude axonal localization of GABA(B1a). When fused to CD8alpha, the sushi domains polarize this uniformly distributed protein to axons. Likewise, when fused to mGluR1a the sushi domains redirect this somatodendritic protein to axons, showing that the sushi domains can override dendritic targeting information in a heterologous protein. Cell surface expression of the sushi domains is not required for axonal localization of GABA(B1a). Altogether, our findings are consistent with the sushi domains functioning as axonal targeting signals by interacting with axonally bound proteins along intracellular sorting pathways. Our data provide a mechanistic explanation for the selective trafficking of GABA(B(1a,2)) receptors into axons while at the same time identifying a well defined axonal delivery module that can be used as an experimental tool.

  7. Regulation of Abiotic Stress Signalling by Arabidopsis C-Terminal Domain Phosphatase-Like 1 Requires Interaction with a K-Homology Domain-Containing Protein

    PubMed Central

    Jeong, In Sil; Fukudome, Akihito; Aksoy, Emre; Bang, Woo Young; Kim, Sewon; Guan, Qingmei; Bahk, Jeong Dong; May, Kimberly A.; Russell, William K.; Zhu, Jianhua; Koiwa, Hisashi

    2013-01-01

    Arabidopsis thaliana CARBOXYL-TERMINAL DOMAIN (CTD) PHOSPHATASE-LIKE 1 (CPL1) regulates plant transcriptional responses to diverse stress signals. Unlike typical CTD phosphatases, CPL1 contains two double-stranded (ds) RNA binding motifs (dsRBMs) at its C-terminus. Some dsRBMs can bind to dsRNA and/or other proteins, but the function of the CPL1 dsRBMs has remained obscure. Here, we report identification of REGULATOR OF CBF GENE EXPRESSION 3 (RCF3) as a CPL1-interacting protein. RCF3 co-purified with tandem-affinity-tagged CPL1 from cultured Arabidopsis cells and contains multiple K-homology (KH) domains, which were predicted to be important for binding to single-stranded DNA/RNA. Yeast two-hybrid, luciferase complementation imaging, and bimolecular fluorescence complementation analyses established that CPL1 and RCF3 strongly associate in vivo, an interaction mediated by the dsRBM1 of CPL1 and the KH3/KH4 domains of RCF3. Mapping of functional regions of CPL1 indicated that CPL1 in vivo function requires the dsRBM1, catalytic activity, and nuclear targeting of CPL1. Gene expression profiles of rcf3 and cpl1 mutants were similar during iron deficiency, but were distinct during the cold response. These results suggest that tethering CPL1 to RCF3 via dsRBM1 is part of the mechanism that confers specificity to CPL1-mediated transcriptional regulation. PMID:24303021

  8. Gas Test Loop Functional and Technical Requirements

    SciTech Connect

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  9. The Impact of Acute Phase Domain-Specific Cognitive Function on Post-stroke Functional Recovery

    PubMed Central

    Park, Jihong; Lee, Gangpyo; Lee, Shi-Uk

    2016-01-01

    Objective To assess whether the cognitive function in the acute stage evaluated by domain-specific neuropsychological assessments would be an independent predictor of functional outcome after stroke. Methods Forty patients underwent 4 domain-specific neuropsychological examinations about 3 weeks after the onset of stroke. The tests included the Boston Naming Test (BNT), the construction recall test (CRT), the construction praxis test (CPT), and the verbal fluency test (VFT). The Korean version of Modified Barthel Index (K-MBI) at 3 months and the modified Rankin Scale (mRS) at 6 months were investigated as functional outcome after stroke. Functional improvement was assessed using the change in K-MBI during the first 3 months and subjects were dichotomized into 'good status' and 'poor status' according to mRS at 6 months. The domain-specific cognitive function along with other possible predictors for functional outcome was examined using regression analysis. Results The z-score of CPT (p=0.044) and CRT (p<0.001) were independent predictors for functional improvement measured by the change in K-MBI during the first 3 months after stroke. The z-score of CPT (p=0.049) and CRT (p=0.048) were also independent predictors of functional status at post-stroke 6 months assessed by mRS. Conclusion Impairment in visuospatial construction and memory within one month after stroke can be an independent prognostic factor of functional outcome. Domain-specific neuropsychological assessments could be considered in patients with stroke in the acute phase to predict long-term functional outcome. PMID:27152270

  10. Identification of discrete functional domains of HIV-1 integrase and their organization within an active multimeric complex.

    PubMed Central

    Engelman, A; Bushman, F D; Craigie, R

    1993-01-01

    HIV-1 integrase protein possesses the 3' processing and DNA strand transfer activities that are required to integrate HIV DNA into a host chromosome. The N-, C-terminal and core domains of integrase are necessary for both activities in vitro. We find that certain pairs of mutant integrase proteins, which are inactive when each protein is assayed alone, can support near wild type levels of activity when both proteins are present together in the reaction mixture. This complementation implies that HIV-1 integrase functions as a multimer and has enabled us to probe the organization of the functional domains within active mixed multimers. We have identified a minimal set of functional integrase domains that are sufficient for 3' processing and DNA strand transfer and find that some domains are contributed in trans by separate monomers within the functional complex. Images PMID:8344264

  11. Functional role of the additional domains in inulosucrase (IslA) from Leuconostoc citreum CW28

    PubMed Central

    del Moral, Sandra; Olvera, Clarita; Rodriguez, Maria Elena; Munguia, Agustin Lopez

    2008-01-01

    Background Inulosucrase (IslA) from Leuconostoc citreum CW28 belongs to a new subfamily of multidomain fructosyltransferases (FTFs), containing additional domains from glucosyltransferases. It is not known what the function of the additional domains in this subfamily is. Results Through construction of truncated versions we demonstrate that the acquired regions are involved in anchoring IslA to the cell wall; they also confer stability to the enzyme, generating a larger structure that affects its kinetic properties and reaction specificity, particularly the hydrolysis and transglycosylase ratio. The accessibility of larger molecules such as EDTA to the catalytic domain (where a Ca2+ binding site is located) is also affected as demonstrated by the requirement of 100 times higher EDTA concentrations to inactivate IslA with respect to the smallest truncated form. Conclusion The C-terminal domain may have been acquired to anchor inulosucrase to the cell surface. Furthermore, the acquired domains in IslA interact with the catalytic core resulting in a new conformation that renders the enzyme more stable and switch the specificity from a hydrolytic to a transglycosylase mechanism. Based on these results, chimeric constructions may become a strategy to stabilize and modulate biocatalysts based on FTF activity. PMID:18237396

  12. Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition.

    PubMed

    Thakur, Meghna; Seo, Eun Joo; Dever, Thomas E

    2014-02-01

    Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.

  13. Identification of functional domains of the aryl hydrocarbon receptor nuclear translocator protein (ARNT).

    PubMed Central

    Reisz-Porszasz, S; Probst, M R; Fukunaga, B N; Hankinson, O

    1994-01-01

    The activated aryl hydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT) bind DNA as a heterodimer. Both proteins represent a novel class of basic helix-loop-helix (bHLH)-containing transcription factors in that (i) activation of AHR requires the binding of ligand (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]), (ii) the xenobiotic responsive element (XRE) recognized by the AHR/ARNT heterodimer differs from the recognition sequence for nearly all other bHLH proteins, and (iii) both proteins contain a PAS homology region, which in the Drosophila PER and SIM proteins functions as a dimerization domain. A cDNA for mouse ARNT has been cloned, and potential functional domains of ARNT were investigated by deletion analysis. A mutant lacking all regions of ARNT other than the bHLH and PAS regions is unimpaired in TCDD-dependent dimerization and subsequent XRE binding and only modestly reduced in ability to complement an ARNT-deficient mutant cell line, c4, in vivo. Both the first and second alpha helices of the bHLH region are required for dimerization. The basic region is required for XRE binding but not for dimerization. Deletion of either the A or B segments of the PAS region slightly affects TCDD-induced heterodimerization, while deletion of the complete PAS region severely affects (but does not eliminate) dimerization. Thus, ARNT possesses multiple domains required for maximal heterodimerization. Mutants deleted for PAS A, PAS B, and the complete PAS region all retain some degree of XRE binding, yet none can rescue the c4 mutant. Therefore, both the PAS A and PAS B segments, besides contributing to dimerization, apparently fulfill additional, unknown functions required for biological activity of ARNT. Images PMID:8065341

  14. Measurement of retinal physiology using functional Fourier domain OCT concepts

    NASA Astrophysics Data System (ADS)

    Leitgeb, R. A.; Bachmann, A. H.; Villiger, M.; Michaely, R.; Blatter, C.; Lasser, T.; Pache, C.; Pircher, M.

    2007-02-01

    Fourier Domain OCT proved to be an outstanding tool for measuring 3D retinal structures with high sensitivity, resolution, and speed. We extended the FDOCT concept towards functional imaging by analyzing the spectroscopic tissue properties, polarization contrast and Doppler velocity imaging. Differential spectral contrast FDOCT allows optical staining of retinal tomograms and to contrast tissue of high pigmentation such as the retinal pigment epithelium (RPE). The latter shows strong correlation if compared to polarization sensitive OCT images. First implementations of Doppler FDOCT systems demonstrated the capability of measuring in-vivo retinal blood flow profiles and pulsatility. We developed a new concept of Doppler FDOCT that allows measuring also large flow velocities typically close to the optic nerve head. Studies of retinal perfusion based on Laser Doppler Flowmetry (LDF) demonstrated the high sensitivity of blood flow to external stimuli. We performed first experiments of studying retinal perfusion in response to flicker stimulation. An increase in vessel diameter by 11% and of flow velocity by 49% was measured. We believe that a multi-modal functional imaging concept is of high value for an accurate and early diagnosis and understanding of retinal pathologies and pathogenesis.

  15. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  16. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    DOE PAGES

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstratemore » that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.« less

  17. The pilus usher controls protein interactions via domain masking and is functional as an oligomer

    SciTech Connect

    Werneburg, Glenn T.; Li, Huilin; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Thanassi, David G.

    2015-06-08

    The chaperone/usher (CU) pathway is responsible for biogenesis of organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Assembly and secretion of pili by the CU pathway requires a dedicated periplasmic chaperone and a multidomain outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which served as a central switch controlling usher activation. In addition, we demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria.

  18. Functional Interactions of the HHCC Domain of Moloney Murine Leukemia Virus Integrase Revealed by Nonoverlapping Complementation and Zinc-Dependent Dimerization

    PubMed Central

    Yang, Fan; Leon, Oscar; Greenfield, Norma J.; Roth, Monica J.

    1999-01-01

    The retroviral integrase (IN) is required for the integration of viral DNA into the host genome. The N terminus of IN contains an HHCC zinc finger-like motif, which is conserved among all retroviruses. To study the function of the HHCC domain of Moloney murine leukemia virus IN, the first N-terminal 105 residues were expressed independently. This HHCC domain protein is found to complement a completely nonoverlapping construct lacking the HHCC domain for strand transfer, 3′ processing and coordinated disintegration reactions, revealing trans interactions among IN domains. The HHCC domain protein binds zinc at a 1:1 ratio and changes its conformation upon binding to zinc. The presence of zinc within the HHCC domain stimulates selective integration processes. Zinc promotes the dimerization of the HHCC domain and protects it from N-ethylmaleimide modification. These studies dissect and define the requirement for the HHCC domain, the exact function of which remains unknown. PMID:9971758

  19. Intrinsic HER4/4ICD transcriptional activation domains are required for STAT5A activated gene expression.

    PubMed

    Han, Wen; Sfondouris, Mary E; Semmes, Eleanor C; Meyer, Alicia M; Jones, Frank E

    2016-10-30

    The epidermal growth factor receptor family member HER4 undergoes proteolytic processing at the cell surface to release the HER4 intracellular domain (4ICD) nuclear protein. Interestingly, 4ICD directly interacts with STAT5 and functions as an obligate STAT5 nuclear chaperone. Once in the nucleus 4ICD binds with STAT5 at STAT5 target genes, dramatically potentiating STAT5 transcriptional activation. These observations raise the possibility that 4ICD directly coactivates STAT5 gene expression. Using both yeast and mammalian transactivation reporter assays, we performed truncations of 4ICD fused to a GAL4 DNA binding domain and identified two independent 4ICD transactivation domains located between residues 1022 and 1090 (TAD1) and 1192 and 1225 (TAD2). The ability of the 4ICD DNA binding domain fusions to transactivate reporter gene expression required deletion of the intrinsic tyrosine kinase domain. In addition, we identified the 4ICD carboxyl terminal TVV residues, a PDZ domain binding motif (PDZ-DBM), as a potent transcriptional repressor. The transactivation activity of the HER4 carboxyl terminal domain lacking the tyrosine kinase (CTD) was significantly lower than similar EGFR or HER2 CTD. However, deletion of the HER4 CTD PDZ-DBM enhanced HER4 CTD transactivation to levels equivalent to the EGFR and HER2 CTDs. To determine if 4ICD TAD1 and TAD2 have a physiologically relevant role in STAT5 transactivation, we coexpressed 4ICD or 4ICD lacking TAD2 or both TAD1 and TAD2 with STAT5 in a luciferase reporter assay. Our results demonstrate that each 4ICD TAD contributes additively to STAT5A transactivation and the ability of STAT5A to transactivate the β-casein promoter requires the 4ICD TADs. Taken together, published data and our current results demonstrate that both 4ICD nuclear chaperone and intrinsic coactivation activities are essential for STAT5 regulated gene expression. PMID:27502417

  20. Cytoplasmic domains of the reduced folate carrier are essential for trafficking, but not function.

    PubMed Central

    Sadlish, Heather; Williams, Frederick M R; Flintoff, Wayne F

    2002-01-01

    The reduced folate carrier (RFC) protein has a secondary structure consistent with the predicted 12 transmembrane (TM) domains, intracellular N- and C-termini and a large cytoplasmic loop between TM6 and TM7. In the present study, the role of the cytoplasmic domains in substrate transport and protein biogenesis were examined using an array of hamster RFC deletion mutants fused to enhanced green fluorescent protein and expressed in Chinese hamster ovary cells. The N- and C-terminal tails were removed both individually and together, or the large cytoplasmic loop was modified such that the domain size and role of conserved sequences could be examined. The loss of the N- or C-terminal tails did not appear to significantly disrupt protein function, although both termini appeared to have a role in the efficiency with which molecules exited the endoplasmic reticulum to localize at the plasma membrane. There appeared to be both size and sequence requirements for the intracellular loop, which are able to drastically affect protein stability and function unless met. Furthermore, there might be an indirect role for the loop in substrate translocation, since even moderate changes significantly reduced the V(max) for methotrexate transport. Although these cytoplasmic domains do not appear to be absolutely essential for substrate transport, each one is important for biogenesis and localization. PMID:12049642

  1. The Transmembrane Domain C of AMPA Receptors is Critically Involved in Receptor Function and Modulation

    PubMed Central

    Terhag, Jan; Gottschling, Kevin; Hollmann, Michael

    2010-01-01

    Ionotropic glutamate receptors are major players in synaptic transmission and are critically involved in many cognitive events. Although receptors of different subfamilies serve different functions, they all show a conserved domain topology. For most of these domains, structure–function relationships have been established and are well understood. However, up to date the role of the transmembrane domain C in receptor function has been investigated only poorly. We have constructed a series of receptor chimeras and point mutants designed to shed light on the structural and/or functional importance of this domain. We here present evidence that the role of transmembrane domain C exceeds that of a mere scaffolding domain and that several amino acid residues located within the domain are crucial for receptor gating and desensitization. Furthermore, our data suggest that the domain may be involved in receptor interaction with transmembrane AMPA receptor regulatory proteins. PMID:21206529

  2. An exploration of function analysis and function allocation in the commercial flight domain

    NASA Technical Reports Server (NTRS)

    Mcguire, James C.; Zich, John A.; Goins, Richard T.; Erickson, Jeffery B.; Dwyer, John P.; Cody, William J.; Rouse, William B.

    1991-01-01

    The applicability is explored of functional analysis methods to support cockpit design. Specifically, alternative techniques are studied for ensuring an effective division of responsibility between the flight crew and automation. A functional decomposition is performed of the commercial flight domain to provide the information necessary to support allocation decisions and demonstrate methodology for allocating functions to flight crew or to automation. The function analysis employed 'bottom up' and 'top down' analyses and demonstrated the comparability of identified functions, using the 'lift off' segment of the 'take off' phase as a test case. The normal flight mission and selected contingencies were addressed. Two alternative methods for using the functional description in the allocation of functions between man and machine were investigated. The two methods were compared in order to ascertain their relative strengths and weaknesses. Finally, conclusions were drawn regarding the practical utility of function analysis methods.

  3. Organized living: formation mechanisms and functions of plasma membrane domains in yeast.

    PubMed

    Ziółkowska, Natasza E; Christiano, Romain; Walther, Tobias C

    2012-03-01

    Plasma membrane proteins and lipids organize into lateral domains of specific composition. Domain formation is achieved by a combination of lipid-lipid and lipid-protein interactions, membrane-binding protein scaffolds and protein fences. The resulting domains function in membrane protein turnover and homeostasis, as well as in cell signaling. We review the mechanisms generating plasma membrane domains and the functional consequences of this organization, focusing on recent findings from research on the yeast model system.

  4. Ascidian tail formation requires caudal function.

    PubMed

    Katsuyama, Y; Sato, Y; Wada, S; Saiga, H

    1999-09-15

    Although the tail is one of the major characteristics of animals of the phylum Chordata, evolutionary aspects of the molecular mechanisms involved in its formation are not clear. To obtain insights into these issues, we have isolated and investigated the caudal gene of an ascidian, one of the lower animal groups among chordates. Ascidian caudal is expressed from the midgastrula stage onward in the lateral walls of the posterior neural tube cell lineage and also in the posterior epidermal cells from the neurula stage. Thus, ascidian caudal expression is restricted to the ectoderm of a tail-forming region throughout embryogenesis. Suppression of caudal function by an antisense oligonucleotide or a dominant negative construct caused inhibition of the cell movement required for tail formation. Overexpression of wild-type caudal mRNA in an ascidian animal cap, an animal half explant prepared at the eight-cell stage, caused elongation of the cap. Furthermore, Xenopus embryos injected with dominant negative ascidian caudal exhibited defects in elongation, suggesting a conserved caudal function among chordates. These results indicate that caudal function is required for chordate tail formation and may play a key role in its evolution. PMID:10479446

  5. The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae.

    PubMed

    Okumura, Yuuya; Nakamura, Tsuyoshi S; Tanaka, Takayuki; Inoue, Ichiro; Suda, Yasuyuki; Takahashi, Tetsuo; Nakanishi, Hideki; Nakamura, Shugo; Gao, Xiao-Dong; Tachikawa, Hiroyuki

    2016-01-01

    Sporulation of Saccharomyces cerevisiae is a developmental process in which an ascus containing four haploid spores forms from a diploid cell. During this process, newly formed membrane structures called prospore membranes extend along the nuclear envelope and engulf and package daughter nuclei along with cytosol and organelles to form precursors of spores. Proteins involved in prospore membrane extension, Vps13 and Spo71, have recently been reported; however, the overall mechanism of membrane extension remains unclear. Here, we identified Spo73 as an additional factor involved in prospore membrane extension. Analysis of a spo73∆ mutant revealed that it shows defects similar to those of a spo71∆ mutant during prospore membrane formation. Spo73 localizes to the prospore membrane, and this localization is independent of Spo71 and Vps13. In contrast, a Spo73 protein carrying mutations in a surface basic patch mislocalizes to the cytoplasm and overexpression of Spo71 can partially rescue localization to the prospore membrane. Similar to spo71∆ mutants, spo73∆ mutants display genetic interactions with the mutations in the SMA2 and SPO1 genes involved in prospore membrane bending. Further, our bioinformatic analysis revealed that Spo73 is a dysferlin domain-only protein. Thus, these results suggest that a dysferlin domain-only protein, Spo73, functions with a dual pleckstrin homology domain protein, Spo71, in prospore membrane extension. Analysis of Spo73 will provide insights into the conserved function of dysferlin domains, which is related to dysferlinopathy. IMPORTANCE Prospore membrane formation consists of de novo double-membrane formation, which occurs during the developmental process of sporulation in Saccharomyces cerevisiae. Membranes are formed into their proper size and shape, and thus, prospore membrane formation has been studied as a general model of membrane formation. We identified SPO73, previously shown to be required for spore wall formation

  6. The Dysferlin Domain-Only Protein, Spo73, Is Required for Prospore Membrane Extension in Saccharomyces cerevisiae.

    PubMed

    Okumura, Yuuya; Nakamura, Tsuyoshi S; Tanaka, Takayuki; Inoue, Ichiro; Suda, Yasuyuki; Takahashi, Tetsuo; Nakanishi, Hideki; Nakamura, Shugo; Gao, Xiao-Dong; Tachikawa, Hiroyuki

    2016-01-01

    Sporulation of Saccharomyces cerevisiae is a developmental process in which an ascus containing four haploid spores forms from a diploid cell. During this process, newly formed membrane structures called prospore membranes extend along the nuclear envelope and engulf and package daughter nuclei along with cytosol and organelles to form precursors of spores. Proteins involved in prospore membrane extension, Vps13 and Spo71, have recently been reported; however, the overall mechanism of membrane extension remains unclear. Here, we identified Spo73 as an additional factor involved in prospore membrane extension. Analysis of a spo73∆ mutant revealed that it shows defects similar to those of a spo71∆ mutant during prospore membrane formation. Spo73 localizes to the prospore membrane, and this localization is independent of Spo71 and Vps13. In contrast, a Spo73 protein carrying mutations in a surface basic patch mislocalizes to the cytoplasm and overexpression of Spo71 can partially rescue localization to the prospore membrane. Similar to spo71∆ mutants, spo73∆ mutants display genetic interactions with the mutations in the SMA2 and SPO1 genes involved in prospore membrane bending. Further, our bioinformatic analysis revealed that Spo73 is a dysferlin domain-only protein. Thus, these results suggest that a dysferlin domain-only protein, Spo73, functions with a dual pleckstrin homology domain protein, Spo71, in prospore membrane extension. Analysis of Spo73 will provide insights into the conserved function of dysferlin domains, which is related to dysferlinopathy. IMPORTANCE Prospore membrane formation consists of de novo double-membrane formation, which occurs during the developmental process of sporulation in Saccharomyces cerevisiae. Membranes are formed into their proper size and shape, and thus, prospore membrane formation has been studied as a general model of membrane formation. We identified SPO73, previously shown to be required for spore wall formation

  7. Parsing Physiological Functions of Erythropoietin One Domain at a Time.

    PubMed

    Steinman, Lawrence

    2015-10-01

    A domain of erythropoietin (EPO), separate from the domain involved in red blood cell development, has been identified. This region of EPO has anti-inflammatory and neuroprotective effects. Use of a peptide sequence from this region provides the potential for an effective therapeutic without effects on erythropoiesis. PMID:26311151

  8. Weighted mutual information analysis substantially improves domain-based functional network models

    PubMed Central

    Shim, Jung Eun; Lee, Insuk

    2016-01-01

    Motivation: Functional protein–protein interaction (PPI) networks elucidate molecular pathways underlying complex phenotypes, including those of human diseases. Extrapolation of domain–domain interactions (DDIs) from known PPIs is a major domain-based method for inferring functional PPI networks. However, the protein domain is a functional unit of the protein. Therefore, we should be able to effectively infer functional interactions between proteins based on the co-occurrence of domains. Results: Here, we present a method for inferring accurate functional PPIs based on the similarity of domain composition between proteins by weighted mutual information (MI) that assigned different weights to the domains based on their genome-wide frequencies. Weighted MI outperforms other domain-based network inference methods and is highly predictive for pathways as well as phenotypes. A genome-scale human functional network determined by our method reveals numerous communities that are significantly associated with known pathways and diseases. Domain-based functional networks may, therefore, have potential applications in mapping domain-to-pathway or domain-to-phenotype associations. Availability and Implementation: Source code for calculating weighted mutual information based on the domain profile matrix is available from www.netbiolab.org/w/WMI. Contact: Insuklee@yonsei.ac.kr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27207946

  9. Dissection of the adenoviral VA RNAI central domain structure reveals minimum requirements for RNA-mediated inhibition of PKR.

    PubMed

    Wilson, Jo L; Vachon, Virginia K; Sunita, S; Schwartz, Samantha L; Conn, Graeme L

    2014-08-15

    Virus-associated RNA I (VA RNAI) is a short (∼160-nucleotide) non-coding RNA transcript employed by adenoviruses to subvert the innate immune system protein double-stranded RNA-activated protein kinase (PKR). The central domain of VA RNAI is proposed to contain a complex tertiary structure that contributes to its optimal inhibitory activity against PKR. Here we use a combination of VA RNAI mutagenesis, structural analyses, as well as PKR activity and binding assays to dissect this tertiary structure and assess its functional role. Our results support the existence of a pH- and Mg(2+)-dependent tertiary structure involving pseudoknot formation within the central domain. Unexpectedly, this structure appears to play no direct role in PKR inhibition. Deletion of central domain sequences within a minimal but fully active construct lacking the tertiary structure reveals a crucial role in PKR binding and inhibition for nucleotides in the 5' half of the central domain. Deletion of the central domain 3' half also significantly impacts activity but appears to arise indirectly by reducing its capacity to assist in optimally presenting the 5' half sequence. Collectively, our results identify regions of VA RNAI critical for PKR inhibition and reveal that the requirements for an effective RNA inhibitor of PKR are simpler than appreciated previously.

  10. Functional domains of LAG-2, a putative signaling ligand for LIN-12 and GLP-1 receptors in Caenorhabditis elegans.

    PubMed Central

    Henderson, S T; Gao, D; Christensen, S; Kimble, J

    1997-01-01

    The LAG-2 membrane protein is a putative signaling ligand for the LIN-12 and GLP-1 receptors of Caenorhabditis elegans. LAG-2, like its Drosophila homologues Delta and Serrate, acts in a conserved signal transduction pathway to regulate cell fates during development. In this article, we investigate the functional domains of LAG-2. For the most part, mutants were constructed in vitro and assayed for activity in transgenic animals. We find a functional role for all major regions except one. Within the extracellular domain, the N-terminal region, which bears no known motif, and the DSL domain are both required. By contrast, the region bearing epidermal growth factor-like repeats can be deleted with no apparent reduction in rescuing activity. The intracellular region is not required for activity but instead plays a role in down-regulating LAG-2 function. Finally, membrane association is critical for mutant rescue. Images PMID:9307971

  11. The RFTS Domain of Raf2 Is Required for Cul4 Interaction and Heterochromatin Integrity in Fission Yeast

    PubMed Central

    White, Sharon A.; Buscaino, Alessia; Sanchez-Pulido, Luis; Ponting, Chris P.; Nowicki, Matthew W.; Allshire, Robin C.

    2014-01-01

    Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres. PMID:25090107

  12. The RFTS domain of Raf2 is required for Cul4 interaction and heterochromatin integrity in fission yeast.

    PubMed

    White, Sharon A; Buscaino, Alessia; Sanchez-Pulido, Luis; Ponting, Chris P; Nowicki, Matthew W; Allshire, Robin C

    2014-01-01

    Centromeric heterochromatin assembly in fission yeast is critical for faithful chromosome segregation at mitosis. Its assembly requires a concerted pathway of events whereby the RNA interference (RNAi) pathway guides H3K9 methylation to target sequences. H3K9 methylation, a hallmark of heterochromatin structure, is mediated by the single histone methyltransferase Clr4 (equivalent to metazoan Suv3-9), a component of the CLRC complex. Loss of or defects in CLRC components disrupts heterochromatin formation due to loss of H3K9 methylation, thus an intact, fully functional CLRC complex is required for heterochromatin integrity. Despite its importance, little is known about the contribution of the CLRC component Raf2 to H3K9 methylation and heterochromatin assembly. We demonstrate that Raf2 is concentrated at centromeres and contrary to other analyses, we find that loss of Raf2 does not affect CENP-ACnp1 localisation or recruitment to centromeres. Our sequence alignments show that Raf2 contains a Replication Foci Targeting Sequence (RFTS) domain homologous to the RFTS domain of the human DNA methyltransferase DNMT1. We show that the Raf2 RFTS domain is required for centromeric heterochromatin formation as its mutation disrupts H3K9 methylation but not the processing of centromeric transcripts into small interfering RNAs (siRNAs) by the RNAi pathway. Analysis of biochemical interactions demonstrates that the RFTS domain mediates an interaction between Raf2 and the CLRC component Cul4. We conclude that the RFTS domain of Raf2 is a protein interaction module that plays an important role in heterochromatin formation at centromeres.

  13. Multiple domains in endoglucanase B (CenB) from Cellulomonas fimi: functions and relatedness to domains in other polypeptides.

    PubMed Central

    Meinke, A; Gilkes, N R; Kilburn, D G; Miller, R C; Warren, R A

    1991-01-01

    Endoglucanase B (CenB) from the bacterium Cellulomonas fimi is divided into five discrete domains by linker sequences rich in proline and hydroxyamino acids (A. Meinke, C. Braun, N. R. Gilkes, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren, J. Bacteriol. 173:308-314, 1991). The catalytic domain of 608 amino acids is at the N terminus. The sequence of the first 477 amino acids in the catalytic domain is related to the sequences of cellulases in family E, which includes procaryotic and eucaryotic enzymes. The sequence of the last 131 amino acids of the catalytic domain is related to sequences present in a number of cellulases from different families. The catalytic domain alone can bind to cellulose, and this binding is mediated at least in part by the C-terminal 131 amino acids. Deletion of these 131 amino acids reduces but does not eliminate activity. The catalytic domain is followed by three domains which are repeats of a 98-amino-acid sequence. The repeats are approximately 50% identical to two repeats of 95 amino acids in a chitinase from Bacillus circulans which are related to fibronectin type III repeats (T. Watanabe, K. Suzuki, K. Oyanagi, K. Ohnishi, and H. Tanaka, J. Biol. Chem. 265:15659-15665, 1990). The C-terminal domain of 101 amino acids is related to sequences, present in a number of bacterial cellulases and xylanases from different families, which form cellulose-binding domains (CBDs). It functions as a CBD when fused to a heterologous polypeptide. Cells of Escherichia coli expressing the wild-type cenB gene accumulate both native CenB and a stable proteolytic fragment of 41 kDa comprising the three repeats and the C-terminal CBD. The 41-kDa polypeptide binds to cellulose but lacks enzymatic activity. Images FIG. 7 FIG. 8 PMID:1938913

  14. Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling.

    PubMed

    Mariotti, Laura; Templeton, Catherine M; Ranes, Michael; Paracuellos, Patricia; Cronin, Nora; Beuron, Fabienne; Morris, Edward; Guettler, Sebastian

    2016-08-01

    The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-β-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active β-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive β-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling. PMID:27494558

  15. Oncogenic transformation by vrel requires an amino-terminal activation domain

    SciTech Connect

    Kamens, J.; Brent, R. . Dept. of Molecular Biology); Richardson, P.; Gilmore, T. . Dept. of Biology); Mosialos, G. . Dept. of Chemistry)

    1990-06-01

    The mechanism by which the products of the v-{ital rel} oncogene, the corresponding c-{ital rel} proto-oncogene, and the related {ital dorsal} gene of {ital Drosophila melanogaster} exert their effects is not clear. The authors show that the v-{ital rel}, chicken c-{ital rel}, and {ital dorsal} proteins activated gene expression when fused to LexA sequences and bound to DNA upstream of target genes in {ital Saccharomyces cerevisiae}. They have defined two distinct activation regions in the c-{ital rel} protein. Region I, located in the amino-terminal half of {ital rel} and {ital dorsal} proteins, contains no stretches of glutamines, prolines, or acidic amino acids and therefore may be a novel activation domain. Lesions in the v-{ital rel} protein that diminished or abolished oncogenic transformation of avian spleen cells correspondingly affected transcription activation by region I. Region II, located in the carboxy terminus of the c-{ital rel} protein, is highly acidic. Region II is not present in the v-{ital rel} protein or in a transforming mutant derivative of the c-{ital rel} protein. The authors' results show that the oncogenicity of Rel proteins requires activation region I and suggest that the biological function of {ital rel} and {ital dorsal} proteins depends on transcription activation by this region.

  16. An essential single domain response regulator required for normal cell division and differentiation in Caulobacter crescentus.

    PubMed Central

    Hecht, G B; Lane, T; Ohta, N; Sommer, J M; Newton, A

    1995-01-01

    Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions. Here we show that in Caulobacter crescentus these systems also play essential roles in the regulation of polar morphogenesis and cell division. Previous studies have implicated histidine kinase genes pleC and divJ in the regulation of these developmental events. We now report that divK encodes an essential, cell cycle-regulated homolog of the CheY/Spo0F subfamily and present evidence that this protein is a cognate response regulator of the histidine kinase PleC. The purified kinase domain of PleC, like that of DivJ, can serve as an efficient phosphodonor to DivK and as a phospho-DivK phosphatase. Based on these and earlier genetic results we propose that PleC and DivK are members of a signal transduction pathway that couples motility and stalk formation to completion of a late cell division cycle event. Gene disruption experiments and the filamentous phenotype of the conditional divK341 mutant reveal that DivK also functions in an essential signal transduction pathway required for cell division, apparently in response to another histidine kinase. We suggest that phosphotransfer mediated by these two-component signal transduction systems may represent a general mechanism regulating cell differentiation and cell division in response to successive cell cycle checkpoints. Images PMID:7664732

  17. Subcellular patterning: axonal domains with specialized structure and function

    PubMed Central

    Normand, Elizabeth A.; Rasband, Matthew N.

    2015-01-01

    Myelinated axons are patterned into discrete and often repeating domains responsible for the efficient and rapid transmission of electrical signals. These domains include nodes of Ranvier and axon initial segments. Disruption of axonal patterning leads to nervous system dysfunction. In this review we introduce the concept of subcellular patterning as applied to axons and discuss how these patterning events depend on both intrinsic, cytoskeletal mechanisms, and extrinsic, myelinating-glia dependent mechanisms. PMID:25710532

  18. The Vesicle Priming Factor CAPS Functions as a Homodimer via C2 Domain Interactions to Promote Regulated Vesicle Exocytosis*

    PubMed Central

    Petrie, Matt; Esquibel, Joseph; Maciuba, Stephanie; Takahashi, Hirohide

    2016-01-01

    Neurotransmitters and peptide hormones are secreted by regulated vesicle exocytosis. CAPS (also known as CADPS) is a 145-kDa cytosolic and peripheral membrane protein required for vesicle docking and priming steps that precede Ca2+-triggered vesicle exocytosis. CAPS binds phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and SNARE proteins and is proposed to promote SNARE protein complex assembly for vesicle docking and priming. We characterized purified soluble CAPS as mainly monomer in equilibrium with small amounts of dimer. However, the active form of CAPS bound to PC12 cell membranes or to liposomes containing PI(4,5)P2 and Q-SNARE proteins was mainly dimer. CAPS dimer formation required its C2 domain based on mutation or deletion studies. Moreover, C2 domain mutations or deletions resulted in a loss of CAPS function in regulated vesicle exocytosis, indicating that dimerization is essential for CAPS function. Comparison of the CAPS C2 domain to a structurally defined Munc13-1 C2A domain dimer revealed conserved residues involved in CAPS dimerization. We conclude that CAPS functions as a C2 domain-mediated dimer in regulated vesicle exocytosis. The unique tandem C2-PH domain of CAPS may serve as a PI(4,5)P2-triggered switch for dimerization. CAPS dimerization may be coupled to oligomeric SNARE complex assembly for vesicle docking and priming. PMID:27528604

  19. Functioning of the dimeric GABA(B) receptor extracellular domain revealed by glycan wedge scanning.

    PubMed

    Rondard, Philippe; Huang, Siluo; Monnier, Carine; Tu, Haijun; Blanchard, Bertrand; Oueslati, Nadia; Malhaire, Fanny; Li, Ying; Trinquet, Eric; Labesse, Gilles; Pin, Jean-Philippe; Liu, Jianfeng

    2008-05-01

    The G-protein-coupled receptor (GPCR) activated by the neurotransmitter GABA is made up of two subunits, GABA(B1) and GABA(B2). GABA(B1) binds agonists, whereas GABA(B2) is required for trafficking GABA(B1) to the cell surface, increasing agonist affinity to GABA(B1), and activating associated G proteins. These subunits each comprise two domains, a Venus flytrap domain (VFT) and a heptahelical transmembrane domain (7TM). How agonist binding to the GABA(B1) VFT leads to GABA(B2) 7TM activation remains unknown. Here, we used a glycan wedge scanning approach to investigate how the GABA(B) VFT dimer controls receptor activity. We first identified the dimerization interface using a bioinformatics approach and then showed that introducing an N-glycan at this interface prevents the association of the two subunits and abolishes all activities of GABA(B2), including agonist activation of the G protein. We also identified a second region in the VFT where insertion of an N-glycan does not prevent dimerization, but blocks agonist activation of the receptor. These data provide new insight into the function of this prototypical GPCR and demonstrate that a change in the dimerization interface is required for receptor activation.

  20. Structural rearrangements in the thyroid hormone receptor hinge domain and their putative role in the receptor function.

    PubMed

    Nascimento, Alessandro S; Dias, Sandra Martha Gomes; Nunes, Fábio M; Aparício, Ricardo; Ambrosio, Andre L B; Bleicher, Lucas; Figueira, Ana Carolina M; Santos, Maria Auxiliadora M; de Oliveira Neto, Mário; Fischer, Hannes; Togashi, Marie; Craievich, Aldo F; Garratt, Richard C; Baxter, John D; Webb, Paul; Polikarpov, Igor

    2006-07-14

    The thyroid hormone receptor (TR) D-domain links the ligand-binding domain (LBD, EF-domain) to the DNA-binding domain (DBD, C-domain), but its structure, and even its existence as a functional unit, are controversial. The D domain is poorly conserved throughout the nuclear receptor family and was originally proposed to comprise an unfolded hinge that facilitates rotation between the LBD and the DBD. Previous TR LBD structures, however, have indicated that the true unstructured region is three to six amino acid residues long and that the D-domain N terminus folds into a short amphipathic alpha-helix (H0) contiguous with the DBD and that the C terminus of the D-domain comprises H1 and H2 of the LBD. Here, we solve structures of TR-LBDs in different crystal forms and show that the N terminus of the TRalpha D-domain can adopt two structures; it can either fold into an amphipathic helix that resembles TRbeta H0 or form an unstructured loop. H0 formation requires contacts with the AF-2 coactivator-binding groove of the neighboring TR LBD, which binds H0 sequences that resemble coactivator LXXLL motifs. Structural analysis of a liganded TR LBD with small angle X-ray scattering (SAXS) suggests that AF-2/H0 interactions mediate dimerization of this protein in solution. We propose that the TR D-domain has the potential to form functionally important extensions of the DBD and LBD or unfold to permit TRs to adapt to different DNA response elements. We also show that mutations of the D domain LXXLL-like motif indeed selectively inhibit TR interactions with an inverted palindromic response element (F2) in vitro and TR activity at this response element in cell-based transfection experiments.

  1. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation

    PubMed Central

    Hennig, Janosch; Zou, Peijian; Nössner, Elfriede; Ling, Paul D.; Sattler, Michael; Kempkes, Bettina

    2015-01-01

    Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics. PMID:26024477

  2. Structural and functional characterization of an atypical activation domain in erythroid Kruppel-like factor (EKLF).

    PubMed

    Mas, Caroline; Lussier-Price, Mathieu; Soni, Shefali; Morse, Thomas; Arseneault, Geneviève; Di Lello, Paola; Lafrance-Vanasse, Julien; Bieker, James J; Omichinski, James G

    2011-06-28

    Erythroid Krüppel-like factor (EKLF) plays an important role in erythroid development by stimulating β-globin gene expression. We have examined the details by which the minimal transactivation domain (TAD) of EKLF (EKLFTAD) interacts with several transcriptional regulatory factors. We report that EKLFTAD displays homology to the p53TAD and, like the p53TAD, can be divided into two functional subdomains (EKLFTAD1 and EKLFTAD2). Based on sequence analysis, we found that EKLFTAD2 is conserved in KLF2, KLF4, KLF5, and KLF15. In addition, we demonstrate that EKLFTAD2 binds the amino-terminal PH domain of the Tfb1/p62 subunit of TFIIH (Tfb1PH/p62PH) and four domains of CREB-binding protein/p300. The solution structure of the EKLFTAD2/Tfb1PH complex indicates that EKLFTAD2 binds Tfb1PH in an extended conformation, which is in contrast to the α-helical conformation seen for p53TAD2 in complex with Tfb1PH. These studies provide detailed mechanistic information into EKLFTAD functions as well as insights into potential interactions of the TADs of other KLF proteins. In addition, they suggest that not only have acidic TADs evolved so that they bind using different conformations on a common target, but that transitioning from a disordered to a more ordered state is not a requirement for their ability to bind multiple partners. PMID:21670263

  3. Functional performance requirements for seismic network upgrade

    SciTech Connect

    Lee, R.C.

    1991-08-18

    The SRL seismic network, established in 1976, was developed to monitor site and regional seismic activity that may have any potential to impact the safety or reduce containment capability of existing and planned structures and systems at the SRS, report seismic activity that may be relevant to emergency preparedness, including rapid assessments of earthquake location and magnitude, and estimates of potential on-site and off-site damage to facilities and lifelines for mitigation measures. All of these tasks require SRL seismologists to provide rapid analysis of large amounts of seismic data. The current seismic network upgrade, the subject of this Functional Performance Requirements Document, is necessary to improve system reliability and resolution. The upgrade provides equipment for the analysis of the network seismic data and replacement of old out-dated equipment. The digital network upgrade is configured for field station and laboratory digital processing systems. The upgrade consists of the purchase and installation of seismic sensors,, data telemetry digital upgrades, a dedicated Seismic Data Processing (SDP) system (already in procurement stage), and a Seismic Signal Analysis (SSA) system. The field stations and telephone telemetry upgrades include equipment necessary for three remote station upgrades including seismic amplifiers, voltage controlled oscillators, pulse calibrators, weather protection (including lightning protection) systems, seismometers, seismic amplifiers, and miscellaneous other parts. The central receiving and recording station upgrades will include discriminators, helicopter amplifier, omega timing system, strong motion instruments, wide-band velocity sensors, and other miscellaneous equipment.

  4. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  5. Regularized Laplace-Fourier-Domain Full Waveform Inversion Using a Weighted l 2 Objective Function

    NASA Astrophysics Data System (ADS)

    Jun, Hyunggu; Kwon, Jungmin; Shin, Changsoo; Zhou, Hongbo; Cogan, Mike

    2016-09-01

    Full waveform inversion (FWI) can be applied to obtain an accurate velocity model that contains important geophysical and geological information. FWI suffers from the local minimum problem when the starting model is not sufficiently close to the true model. Therefore, an accurate macroscale velocity model is essential for successful FWI, and Laplace-Fourier-domain FWI is appropriate for obtaining such a velocity model. However, conventional Laplace-Fourier-domain FWI remains an ill-posed and ill-conditioned problem, meaning that small errors in the data can result in large differences in the inverted model. This approach also suffers from certain limitations related to the logarithmic objective function. To overcome the limitations of conventional Laplace-Fourier-domain FWI, we introduce a weighted l 2 objective function, instead of the logarithmic objective function, as the data-domain objective function, and we also introduce two different model-domain regularizations: first-order Tikhonov regularization and prior model regularization. The weighting matrix for the data-domain objective function is constructed to suitably enhance the far-offset information. Tikhonov regularization smoothes the gradient, and prior model regularization allows reliable prior information to be taken into account. Two hyperparameters are obtained through trial and error and used to control the trade-off and achieve an appropriate balance between the data-domain and model-domain gradients. The application of the proposed regularizations facilitates finding a unique solution via FWI, and the weighted l 2 objective function ensures a more reasonable residual, thereby improving the stability of the gradient calculation. Numerical tests performed using the Marmousi synthetic dataset show that the use of the weighted l 2 objective function and the model-domain regularizations significantly improves the Laplace-Fourier-domain FWI. Because the Laplace-Fourier-domain FWI is improved, the

  6. Structural and functional conservation of key domains in InsP[subscript 3] and ryanodine receptors

    SciTech Connect

    Seo, Min-Duk; Velamakanni, Saroj; Ishiyama, Noboru; Stathopulos, Peter B.; Rossi, Ana M.; Khan, Samir A.; Dale, Philippa; Li, Congmin; Ames, James B.; Ikura, Mitsuhiko; Taylor, Colin W.

    2012-07-11

    Inositol-1,4,5-trisphosphate receptors (InsP{sub 3}Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca{sup 2+} channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP{sub 3}R gating is initiated by InsP{sub 3} binding to the InsP{sub 3}-binding core (IBC, residues 224-604 of InsP{sub 3}R1) and it requires the suppressor domain (SD, residues 1-223 of InsP{sub 3}R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP{sub 3}R1 with (3.6 {angstrom}) and without (3.0 {angstrom}) InsP{sub 3} bound. The arrangement of the three NT domains, SD, IBC-{beta} and IBC-{alpha}, identifies two discrete interfaces ({alpha} and {beta}) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP{sub 3}R and of the ABC domains docked into RyR are remarkably similar. The importance of the {alpha}-interface for activation of InsP{sub 3}R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP{sub 3} causes partial closure of the clam-like IBC, disrupting the {beta}-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP{sub 3}R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP{sub 3}R, and an InsP{sub 3}R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP{sub 3} and blocked by ryanodine. Activation mechanisms are conserved between InsP{sub 3}R and Ry

  7. The longest mitochondrial RNA editing PPR protein MEF12 in Arabidopsis thaliana requires the full-length E domain.

    PubMed

    Härtel, Barbara; Zehrmann, Anja; Verbitskiy, Daniil; Takenaka, Mizuki

    2013-01-01

    Mitochondrial RNA editing factor 12 (MEF12) was identified in a screen for editing defects of a chemically mutated plant population in Arabidopsis thaliana. The MEF12 editing protein is required for the C to U change of nucleotide nad5-374. The MEF12 polypeptide is characterized by an exceptionally long stretch of 25 pentatricopeptide repeats (PPR) and a C-terminal extension domain. Editing is lost in mutant plants with a stop codon in the extending element. A T-DNA insertion substituting the 10 C-terminal amino acids of the extension domain reduces RNA editing to about 20% at the target site in a mutant plant. These results support the importance of the full-length extension module for functional RNA editing in plant mitochondria.

  8. Cellulase Linkers Are Optimized Based on Domain Type and Function: Insights from Sequence Analysis, Biophysical Measurements, and Molecular Simulation

    PubMed Central

    Sammond, Deanne W.; Payne, Christina M.; Brunecky, Roman; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.

    2012-01-01

    Cellulase enzymes deconstruct cellulose to glucose, and are often comprised of glycosylated linkers connecting glycoside hydrolases (GHs) to carbohydrate-binding modules (CBMs). Although linker modifications can alter cellulase activity, the functional role of linkers beyond domain connectivity remains unknown. Here we investigate cellulase linkers connecting GH Family 6 or 7 catalytic domains to Family 1 or 2 CBMs, from both bacterial and eukaryotic cellulases to identify conserved characteristics potentially related to function. Sequence analysis suggests that the linker lengths between structured domains are optimized based on the GH domain and CBM type, such that linker length may be important for activity. Longer linkers are observed in eukaryotic GH Family 6 cellulases compared to GH Family 7 cellulases. Bacterial GH Family 6 cellulases are found with structured domains in either N to C terminal order, and similar linker lengths suggest there is no effect of domain order on length. O-glycosylation is uniformly distributed across linkers, suggesting that glycans are required along entire linker lengths for proteolysis protection and, as suggested by simulation, for extension. Sequence comparisons show that proline content for bacterial linkers is more than double that observed in eukaryotic linkers, but with fewer putative O-glycan sites, suggesting alternative methods for extension. Conversely, near linker termini where linkers connect to structured domains, O-glycosylation sites are observed less frequently, whereas glycines are more prevalent, suggesting the need for flexibility to achieve proper domain orientations. Putative N-glycosylation sites are quite rare in cellulase linkers, while an N-P motif, which strongly disfavors the attachment of N-glycans, is commonly observed. These results suggest that linkers exhibit features that are likely tailored for optimal function, despite possessing low sequence identity. This study suggests that cellulase

  9. Functional Analysis of a Bacterial Antifreeze Protein Indicates a Cooperative Effect between Its Two Ice-Binding Domains.

    PubMed

    Wang, Chen; Oliver, Erin E; Christner, Brent C; Luo, Bing-Hao

    2016-07-19

    Antifreeze proteins make up a class of ice-binding proteins (IBPs) that are possessed and expressed by certain cold-adapted organisms to enhance their freezing tolerance. Here we report the biophysical and functional characterization of an IBP discovered in a bacterium recovered from a deep glacial ice core drilled at Vostok Station, Antarctica (IBPv). Our study showed that the recombinant protein rIBPv exhibited a thermal hysteresis of 2 °C at concentrations of >50 μM, effectively inhibited ice recrystallization, and enhanced bacterial viability during freeze-thaw cycling. Circular dichroism scans indicated that rIBPv mainly consists of β strands, and its denaturing temperature was 53.5 °C. Multiple-sequence alignment of homologous IBPs predicted that IBPv contains two ice-binding domains, a feature unique among known IBPs. To examine functional differences between the IBPv domains, each domain was cloned, expressed, and purified. The second domain (domain B) expressed greater ice binding activity. Data from thermal hysteresis and gel filtration assays supported the idea that the two domains cooperate to achieve a higher ice binding effect by forming heterodimers. However, physical linkage of the domains was not required for this effect. PMID:27359086

  10. In vivo functional mapping of the conserved protein domains within murine Themis1.

    PubMed

    Zvezdova, Ekaterina; Lee, Jan; El-Khoury, Dalal; Barr, Valarie; Akpan, Itoro; Samelson, Lawrence; Love, Paul E

    2014-09-01

    Thymocyte development requires the coordinated input of signals that originate from numerous cell surface molecules. Although the majority of thymocyte signal-initiating receptors are lineage-specific, most trigger 'ubiquitous' downstream signaling pathways. T-lineage-specific receptors are coupled to these signaling pathways by lymphocyte-restricted adapter molecules. We and others recently identified a new putative adapter protein, Themis1, whose expression is largely restricted to the T lineage. Mice lacking Themis1 exhibit a severe block in thymocyte development and a striking paucity of mature T cells revealing a critical role for Themis1 in T-cell maturation. Themis1 orthologs contain three conserved domains: a proline-rich region (PRR) that binds to the ubiquitous cytosolic adapter Grb2, a nuclear localization sequence (NLS), and two copies of a novel cysteine-containing globular (CABIT) domain. In the present study, we evaluated the functional importance of each of these motifs by retroviral reconstitution of Themis1(-/-) progenitor cells. The results demonstrate an essential requirement for the PRR and NLS motifs but not the conserved CABIT cysteines for Themis1 function.

  11. Functional interaction of the bovine papillomavirus E2 transactivation domain with TFIIB.

    PubMed

    Yao, J M; Breiding, D E; Androphy, E J

    1998-02-01

    Induction of gene expression by the papillomavirus E2 protein requires its approximately 220-amino-acid amino-terminal transactivation domain (TAD) to interact with cellular factors that lead to formation of an activated RNA polymerase complex. These interaction partners have yet to be identified and characterized. The E2 protein localizes the transcription complex to the target promoter through its carboxy-terminal sequence-specific DNA binding domain. This domain has been reported to bind the basal transcription factors TATA-binding protein and TFIIB. We present evidence establishing a direct interaction between amino acids 74 to 134 of the E2 TAD and TFIIB. Within this region, the E2 point mutant N127Y was partially defective and W99C was completely defective for TFIIB binding in vitro, and these mutants displayed reduced or no transcriptional activity, respectively, upon transfection into C33A cells. Overexpression of TFIIB specifically restored transactivation by N127Y to close to wild-type levels, while W99C remained inactive. To further demonstrate the functional interaction of TFIIB with the wild-type E2 TAD, this region was fused to a bacterial DNA binding domain (LexA:E2:1-216). Upon transfection with increasing amounts of LexA:E2:1-216, there was reduction of its transcriptional activity, a phenomenon thought to result from titration of limiting factors, or squelching. Squelching of LexA:E2:1-216, or the wild-type E2 activator, was partially relieved by overexpression of TFIIB. We conclude that a specific region of the E2 TAD functionally interacts with TFIIB.

  12. Structure and functional relevance of the Slit2 homodimerization domain.

    PubMed

    Seiradake, Elena; von Philipsborn, Anne C; Henry, Maud; Fritz, Martin; Lortat-Jacob, Hugues; Jamin, Marc; Hemrika, Wieger; Bastmeyer, Martin; Cusack, Stephen; McCarthy, Andrew A

    2009-07-01

    Slit proteins are secreted ligands that interact with the Roundabout (Robo) receptors to provide important guidance cues in neuronal and vascular development. Slit-Robo signalling is mediated by an interaction between the second Slit domain and the first Robo domain, as well as being dependent on heparan sulphate. In an effort to understand the role of the other Slit domains in signalling, we determined the crystal structure of the fourth Slit2 domain (D4) and examined the effects of various Slit2 constructs on chick retinal ganglion cell axons. Slit2 D4 forms a homodimer using the conserved residues on its concave face, and can also bind to heparan sulphate. We observed that Slit2 D4 frequently results in growth cones with collapsed lamellipodia and that this effect can be inhibited by exogenously added heparan sulphate. Our results show that Slit2 D4-heparan sulphate binding contributes to a Slit-Robo signalling mechanism more intricate than previously thought.

  13. Cell Migration and Invadopodia Formation Require a Membrane-binding Domain of CARMIL2.

    PubMed

    Lanier, M Hunter; McConnell, Patrick; Cooper, John A

    2016-01-15

    CARMILs regulate capping protein (CP), a critical determinant of actin assembly and actin-based cell motility. Vertebrates have three conserved CARMIL genes with distinct functions. In migrating cells, CARMIL2 is important for cell polarity, lamellipodial assembly, ruffling, and macropinocytosis. In cells, CARMIL2 localizes with a distinctive dual pattern to vimentin intermediate filaments and to membranes at leading edges and macropinosomes. The mechanism by which CARMIL2 localizes to membranes has not been defined. Here, we report that CARMIL2 has a conserved membrane-binding domain composed of basic and hydrophobic residues, which is necessary and sufficient for membrane localization, based on expression studies in cells and on direct binding of purified protein to lipids. Most important, we find that the membrane-binding domain is necessary for CARMIL2 to function in cells, based on rescue expression with a set of biochemically defined mutants. CARMIL1 and CARMIL3 contain similar membrane-binding domains, based on sequence analysis and on experiments, but other CPI motif proteins, such as CD2AP, do not. Based on these results, we propose a model in which the membrane-binding domain of CARMIL2 tethers this multidomain protein to the membrane, where it links dynamic vimentin filaments with regulation of actin assembly via CP.

  14. The Tail Domain Is Essential but the Head Domain Dispensable for C. elegans Intermediate Filament IFA-2 Function

    PubMed Central

    Williams, Kyle; Williams, Kristen; Baucher, Hallie M.; Plenefisch, John

    2015-01-01

    The intermediate filament protein IFA-2 is essential for the structural integrity of the Caenorhabditis elegans epidermis. It is one of the major components of the fibrous organelle, an epidermal structure comprised of apical and basal hemidesmosomes linked by cytoplasmic intermediate filaments that serve to transmit force from the muscle to the cuticle. Mutations of IFA-2 result in epidermal fragility and separation of the apical and basal epidermal surfaces during postembryonic growth. An IFA-2 lacking the head domain fully rescues the IFA-2 null mutant, whereas an IFA-2 lacking the tail domain cannot. Conversely, an isolated IFA-2 head was able to localize to fibrous organelles whereas the tail was not. Taken together these results suggest that the head domain contains redundant signals for IF localization, whereas non-redundant essential functions map to the IFA-2, tail, although the tail is unlikely to be directly involved in fibrous organelle localization. PMID:25742641

  15. Function and evolution of ubiquitous bacterial signaling adapter phosphopeptide recognition domain FHA.

    PubMed

    Weiling, Hong; Xiaowen, Yu; Chunmei, Li; Jianping, Xie

    2013-03-01

    Forkhead-associated domain (FHA) is a phosphopeptide recognition domain embedded in some regulatory proteins. With similar fold type to important eukaryotic signaling molecules such as Smad2 and IRF3, the role of bacterial FHA domain is intensively pursued. Reported bacterial FHA domain roles include: regulation of glutamate and lipids production, regulation of cell shape, type III secretion, ethambutol resistance, sporulation, signal transduction, carbohydrate storage and transport, and pathogenic and symbiotic host-bacterium interactions. To provide basis for the studies of other bacterial FHA domain containing proteins, the status of bacterial FHA functionality and evolution were summarized.

  16. Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV

    SciTech Connect

    Zhai, Q.; Fisher, R.D.; Chung, H.-Y.; Myszka, D.G.; Sundquist, W.I.; Hill, C.P.

    2009-05-28

    Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalent contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.

  17. N-terminally myristoylated Ras proteins require palmitoylation or a polybasic domain for plasma membrane localization.

    PubMed

    Cadwallader, K A; Paterson, H; Macdonald, S G; Hancock, J F

    1994-07-01

    Plasma membrane targeting of Ras requires CAAX motif modifications together with a second signal from an adjacent polybasic domain or nearby cysteine palmitoylation sites. N-terminal myristoylation is known to restore membrane binding to H-ras C186S (C-186 is changed to S), a mutant protein in which all CAAX processing is abolished. We show here that myristoylated H-ras C186S is a substrate for palmitoyltransferase, despite the absence of C-terminal farnesylation, and that palmitoylation is absolutely required for plasma membrane targeting of myristoylated H-ras. Similarly, the polybasic domain is required for specific plasma membrane targeting of myristoylated K-ras. In contrast, the combination of myristoylation plus farnesylation results in the mislocalization of Ras to numerous intracellular membranes. Ras that is only myristoylated does not bind with a high affinity to any membrane. The specific targeting of Ras to the plasma membrane is therefore critically dependent on signals that are contained in the hypervariable domain but can be supported by N-terminal myristoylation or C-terminal prenylation. Interestingly, oncogenic Ras G12V that is localized correctly to the plasma membrane leads to mitogen-activated protein kinase activation irrespective of the combination of targeting signals used for localization, whereas Ras G12V that is mislocalized to the cytosol or to other membranes activates mitogen-activated protein kinase only if the Ras protein is farnesylated.

  18. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    NASA Astrophysics Data System (ADS)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  19. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  20. A Triple-Arginine Motif in the Amino-Terminal Domain and Oligomerization Are Required for HIV-1 Inhibition by Human MX2

    PubMed Central

    Greenbury, Rebecca A.; Papaioannou, Stelios; Doyle, Tomas

    2015-01-01

    We have employed molecular genetic approaches to understand the domain organization of the HIV-1 resistance factor myxovirus resistance 2 (MX2). First, we describe an essential triple-arginine motif in the amino-terminal domain. Second, we demonstrate that this 91-residue domain mediates antiviral activity when appended to heterologous proteins, and we provide genetic evidence that protein oligomerization is required for MX2 function. These insights will facilitate future work aiming to elucidate MX2's mechanism of action. PMID:25673704

  1. Function of RRM domains of Drosophila melanogaster ELAV: Rnp1 mutations and rrm domain replacements with ELAV family proteins and SXL.

    PubMed Central

    Lisbin, M J; Gordon, M; Yannoni, Y M; White, K

    2000-01-01

    Members of the ELAV family of proteins contain three RNA recognition motifs (RRMs), which are highly conserved. ELAV, a Drosophila melanogaster member of this family, provides a vital function and exhibits a predominantly nuclear localization. To investigate if the RNA-binding property of each of the ELAV RRMs is required for ELAV's in vivo function, amino acid residues critical in RNA binding for each RRM were individually mutated. A stringent genetic complementation test revealed that when the mutant protein was the sole source of ELAV, RNA-binding ability of each RRM was essential to ELAV function. To assess the degree to which each domain was specific for ELAV function and which domains perhaps performed a function common to related ELAV proteins, we substituted an ELAV RRM with the corresponding RRM from RBP9, the D. melanogaster protein most homologous to ELAV; HuD, a human ELAV family protein; and SXL, which, although evolutionarily related, is not an ELAV family member. This analysis revealed that RRM3 replacements were fully functional, but RRM1 and RRM2 replacements were largely nonfunctional. Under less stringent conditions RRM1 and RRM2 replacements from SXL and RRM1 replacement from RBP9 were able to provide supplemental function in the presence of a mutant hypomorphic ELAV protein. PMID:10924474

  2. Function analysis of a new type I PKS-SAT domain by SAT-EAT domain replacement.

    PubMed

    Jiao, Y L; Wang, L H; Jiao, B H; Wang, S J; Fang, Y W; Liu, S

    2010-01-01

    The function of a new starter unit acyltransferase (SAT) domain SAT-EF080951 (GenBank accession number) encoded in a new type I polyketide synthase (PKS) gene cluster EF568935 (GenBank accession number) isolated for this study was analyzed by domain replacement with an extender unit AT (EAT) domain of avermectin PKS. It was shown that the SAT-EF080951 incorporated malonyl-CoA specifically in vivo, which contradicted the specificity that we had previously determined by substrate binding test in vitro. The result of this study indicates that type I PKS-SAT can alter its specificity in vivo and functions well in extender units and proved the feasibility of the SAT-EAT domain replacement in type I PKS. We propose that SAT-EAT replacement strategy could be a novel route for increasing the diversity of new polyketides combinatorially biosynthesized. The new type I PKS-SAT-EF080951 studied herein may be further employed for related studies on enzymology or combinatorial biosynthesis of polyketides. PMID:20391758

  3. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families.

    PubMed Central

    Gilkes, N R; Henrissat, B; Kilburn, D G; Miller, R C; Warren, R A

    1991-01-01

    Several types of domain occur in beta-1, 4-glycanases. The best characterized of these are the catalytic domains and the cellulose-binding domains. The domains may be joined by linker sequences rich in proline or hydroxyamino acids or both. Some of the enzymes contain repeated sequences up to 150 amino acids in length. The enzymes can be grouped into families on the basis of sequence similarities between the catalytic domains. There are sequence similarities between the cellulose-binding domains, of which two types have been identified, and also between some domains of unknown function. The beta-1, 4-glycanases appear to have arisen by the shuffling of a relatively small number of progenitor sequences. PMID:1886523

  4. Functional analysis of the interface between the tandem C2 domains of synaptotagmin-1

    PubMed Central

    Evans, Chantell S.; He, Zixuan; Bai, Hua; Lou, Xiaochu; Jeggle, Pia; Sutton, R. Bryan; Edwardson, J. Michael; Chapman, Edwin R.

    2016-01-01

    C2 domains are widespread motifs that often serve as Ca2+-binding modules; some proteins have more than one copy. An open issue is whether these domains, when duplicated within the same parent protein, interact with one another to regulate function. In the present study, we address the functional significance of interfacial residues between the tandem C2 domains of synaptotagmin (syt)-1, a Ca2+ sensor for neuronal exocytosis. Substitution of four residues, YHRD, at the domain interface, disrupted the interaction between the tandem C2 domains, altered the intrinsic affinity of syt-1 for Ca2+, and shifted the Ca2+ dependency for binding to membranes and driving membrane fusion in vitro. When expressed in syt-1 knockout neurons, the YHRD mutant yielded reductions in synaptic transmission, as compared with the wild-type protein. These results indicate that physical interactions between the tandem C2 domains of syt-1 contribute to excitation–secretion coupling. PMID:26792839

  5. On the function of chitin synthase extracellular domains in biomineralization.

    PubMed

    Weiss, Ingrid M; Lüke, Florian; Eichner, Norbert; Guth, Christina; Clausen-Schaumann, Hauke

    2013-08-01

    Molluscs with various shell architectures evolved around 542-525 million years ago, as part of a larger phenomenon related to the diversification of metazoan phyla. Molluscs deposit minerals in a chitin matrix. The mollusc chitin is synthesized by transmembrane enzymes that contain several unique extracellular domains. Here we investigate the assembly mechanism of the chitin synthase Ar-CS1 via its extracellular domain ArCS1_E22. The corresponding transmembrane protein ArCS1_E22TM accumulates in membrane fractions of the expression host Dictyostelium discoideum. Soluble recombinant ArCS1_E22 proteins can be purified as monomers only at basic pH. According to confocal fluorescence microscopy experiments, immunolabeled ArCS1_E22 proteins adsorb preferably to aragonitic nacre platelets at pH 7.75. At pH 8.2 or pH 9.0 the fluorescence signal is less intense, indicating that protein-mineral interaction is reduced with increasing pH. Furthermore, ArCS1_E22 forms regular nanostructures on cationic substrates as revealed by atomic force microscopy (AFM) experiments on modified mica cleavage planes. These experiments suggest that the extracellular domain ArCS1_E22 is involved in regulating the multiple enzyme activities of Ar-CS1 such as chitin synthesis and myosin movements by interaction with mineral surfaces and eventually by protein assembly. The protein complexes could locally probe the status of mineralization according to pH unless ions and pCO2 are balanced with suitable buffer substances. Taking into account that the intact enzyme could act as a force sensor, the results presented here provide further evidence that shell formation is coordinated physiologically with precise adjustment of cellular activities to the structure, topography and stiffness at the mineralizing interface. PMID:23643908

  6. Structure and Functional Studies of the CS Domain of the Essential H/ACA Ribonucleoparticle Assembly Protein SHQ1

    SciTech Connect

    Singh, Mahavir; Gonzales, Fernando A.; Cascio, Duilio; Heckmann, Nathanael; Chanfreau, Guillaume; Feigon, Juli

    2009-03-16

    H/ACA ribonucleoprotein particles are essential for ribosomal RNA and telomerase RNA processing and metabolism. Shq1p has been identified as an essential eukaryotic H/ACA small nucleolar (sno) ribonucleoparticle (snoRNP) biogenesis and assembly factor. Shq1p is postulated to be involved in the early biogenesis steps of H/ACA snoRNP complexes, and Shq1p depletion leads to a specific decrease in H/ACA small nucleolar RNA levels and to defects in ribosomal RNA processing. Shq1p contains two predicted domains as follows: an N-terminal CS (named after CHORD-containing proteins and SGT1) or HSP20-like domain, and a C-terminal region of high sequence homology called the Shq1 domain. Here we report the crystal structure and functional studies of the Saccharomyces cerevisiae Shq1p CS domain. The structure consists of a compact anti-parallel {beta}-sandwich fold that is composed of two {beta}-sheets containing four and three {beta}-strands, respectively, and a short {alpha}-helix. Deletion studies showed that the CS domain is required for the essential functions of Shq1p. Point mutations in residues Phe-6, Gln-10, and Lys-80 destabilize Shq1p in vivo and induce a temperature-sensitive phenotype with depletion of H/ACA small nucleolar RNAs and defects in rRNA processing. Although CS domains are frequently found in co-chaperones of the Hsp90 molecular chaperone, no interaction was detected between the Shq1p CS domain and yeast Hsp90 in vitro. These results show that the CS domain is essential for Shq1p function in H/ACA snoRNP biogenesis in vivo, possibly in an Hsp90-independent manner.

  7. Characterization of mpl cytoplasmic domain sequences required for myeloproliferative leukemia virus pathogenicity.

    PubMed Central

    Bénit, L; Courtois, G; Charon, M; Varlet, P; Dusanter-Fourt, I; Gisselbrecht, S

    1994-01-01

    v-mpl is a truncated form of a receptor-like chain which belongs to the cytokine receptor superfamily. This sequence has been transduced in the myeloproliferative leukemia virus as an env-mpl fusion gene responsible for an acute myeloproliferative disorder in mice. We constructed a series of viral mutants in the mpl sequence. Analysis of their oncogenic potential in vivo indicated that a critical 69-amino-acid-long cytoplasmic domain of v-Mpl is required for myoproliferative leukemia virus pathogenicity. We also developed an in vitro assay and showed that expression of the env-mpl gene confers growth factor independence to murine as well as to human hematopoietic growth factor-dependent cell lines. These findings strongly suggest that v-Mpl delivers a constitutive proliferative signal through a limited region of its cytoplasmic domain. Images PMID:8035524

  8. How do disordered regions achieve comparable functions to structured domains?

    PubMed Central

    Latysheva, Natasha S; Flock, Tilman; Weatheritt, Robert J; Chavali, Sreenivas; Babu, M Madan

    2015-01-01

    The traditional structure to function paradigm conceives of a protein's function as emerging from its structure. In recent years, it has been established that unstructured, intrinsically disordered regions (IDRs) in proteins are equally crucial elements for protein function, regulation and homeostasis. In this review, we provide a brief overview of how IDRs can perform similar functions to structured proteins, focusing especially on the formation of protein complexes and assemblies and the mediation of regulated conformational changes. In addition to highlighting instances of such functional equivalence, we explain how differences in the biological and physicochemical properties of IDRs allow them to expand the functional and regulatory repertoire of proteins. We also discuss studies that provide insights into how mutations within functional regions of IDRs can lead to human diseases. PMID:25752799

  9. The LIM domain-containing Dbm1 GTPase-activating protein is required for normal cellular morphogenesis in Saccharomyces cerevisiae.

    PubMed Central

    Chen, G C; Zheng, L; Chan, C S

    1996-01-01

    Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C. PMID:8657111

  10. Hanford tanks initiative test facility functions and requirements

    SciTech Connect

    Krieg, S.A., Fluor Daniel Hanford

    1997-03-01

    This document presents the functions and requirements for a test facility for testing single-shell tank waste retrieval equipment and systems for the Hanford Tanks Initiative (HTI) project. This effort includes review of previous test facility functions and requirements and conducting a workshop to develop specific functions and requirements for HTI testing needs. Functions and requirements for testing future retrieval systems that follow HTI are also identified.

  11. Domain-specific functional software testing: A progress report

    NASA Technical Reports Server (NTRS)

    Nonnenmann, Uwe

    1992-01-01

    Software Engineering is a knowledge intensive activity that involves defining, designing, developing, and maintaining software systems. In order to build effective systems to support Software Engineering activities, Artificial Intelligence techniques are needed. The application of Artificial Intelligence technology to Software Engineering is called Knowledge-based Software Engineering (KBSE). The goal of KBSE is to change the software life cycle such that software maintenance and evolution occur by modifying the specifications and then rederiving the implementation rather than by directly modifying the implementation. The use of domain knowledge in developing KBSE systems is crucial. Our work is mainly related to one area of KBSE that is called automatic specification acquisition. One example is the WATSON prototype on which our current work is based. WATSON is an automatic programming system for formalizing specifications for telephone switching software mainly restricted to POTS, i.e., plain old telephone service. Our current approach differentiates itself from other approaches in two antagonistic ways. On the one hand, we address a large and complex real-world problem instead of a 'toy domain' as in many research prototypes. On the other hand, to allow such scaling, we had to relax the ambitious goal of complete automatic programming, to the easier task of automatic testing.

  12. On a New Class of p-Valent Meromorphic Functions Defined in Conic Domains

    PubMed Central

    Alamri, Mohammed Ali

    2016-01-01

    We define a new class of multivalent meromorphic functions using the generalised hypergeometric function. We derived this class related to conic domain. It is also shown that this new class of functions, under certain conditions, becomes a class of starlike functions. Some results on inclusion and closure properties are also derived. PMID:27529076

  13. On a New Class of p-Valent Meromorphic Functions Defined in Conic Domains.

    PubMed

    Alamri, Mohammed Ali; Darus, Maslina

    2016-01-01

    We define a new class of multivalent meromorphic functions using the generalised hypergeometric function. We derived this class related to conic domain. It is also shown that this new class of functions, under certain conditions, becomes a class of starlike functions. Some results on inclusion and closure properties are also derived. PMID:27529076

  14. Functional Analysis of a Rickettsial OmpA Homology Domain of Shigella flexneri IcsA

    PubMed Central

    Charles, Macarthur; Magdalena, Juana; Theriot, Julie A.; Goldberg, Marcia B.

    1999-01-01

    Shigella flexneri is a gram-negative bacterium that causes diarrhea and dysentery by invasion and spread through the colonic epithelium. Bacteria spread by assembling actin and other cytoskeletal proteins of the host into “actin tails” at the bacterial pole; actin tail assembly provides the force required to move bacteria through the cell cytoplasm and into adjacent cells. The 120-kDa S. flexneri outer membrane protein IcsA is essential for actin assembly. IcsA is anchored in the outer membrane by a carboxy-terminal domain (the β domain), such that the amino-terminal 706 amino acid residues (the α domain) are exposed on the exterior of the bacillus. The α domain is therefore likely to contain the domains that are important to interactions with host factors. We identify and characterize a domain of IcsA within the α domain that bears significant sequence similarity to two repeated domains of rickettsial OmpA, which has been implicated in rickettsial actin tail formation. Strains of S. flexneri and Escherichia coli that carry derivatives of IcsA containing deletions within this domain display loss of actin recruitment and increased accessibility to IcsA-specific antibody on the surface of intracytoplasmic bacteria. However, site-directed mutagenesis of charged residues within this domain results in actin assembly that is indistinguishable from that of the wild type, and in vitro competition of a polypeptide of this domain fused to glutathione S-transferase did not alter the motility of the wild-type construct. Taken together, our data suggest that the rickettsial homology domain of IcsA is required for the proper conformation of IcsA and that its disruption leads to loss of interactions of other IcsA domains within the amino terminus with host cytoskeletal proteins. PMID:9922250

  15. A new, highly conserved domain in Swi2/Snf2 is required for SWI/SNF remodeling.

    PubMed

    Sen, Payel; Ghosh, Sujana; Pugh, B Franklin; Bartholomew, Blaine

    2011-11-01

    SWI/SNF is an ATP-dependent remodeler that mobilizes nucleosomes and has important roles in gene regulation. The catalytic subunit of SWI/SNF has an ATP-dependent DNA translocase domain that is essential for remodeling. Besides the DNA translocase domain there are other domains in the catalytic subunit of SWI/SNF that have important roles in mobilizing nucleosomes. One of these domains, termed SnAC (Snf2 ATP Coupling), is conserved in all eukaryotic SWI/SNF complexes and is located between the ATPase and A-T hook domains. Here, we show that the SnAC domain is essential for SWI/SNF activity. The SnAC domain is not required for SWI/SNF complex integrity, efficient nucleosome binding, or recruitment by acidic transcription activators. The SnAC domain is however required in vivo for transcription regulation by SWI/SNF as seen by alternative carbon source growth assays, northern analysis, and genome-wide expression profiling. The ATPase and nucleosome mobilizing activities of SWI/SNF are severely affected when the SnAC domain is removed or mutated. The SnAC domain positively regulates the catalytic activity of the ATPase domain of SWI/SNF to hydrolyze ATP without significantly affecting its affinity for ATP.

  16. The carboxy terminal WD domain of the pre-mRNA splicing factor Prp17p is critical for function.

    PubMed Central

    Lindsey-Boltz, L A; Chawla, G; Srinivasan, N; Vijayraghavan, U; Garcia-Blanco, M A

    2000-01-01

    In Saccharomyces cerevisiae, Prp17p is required for the efficient completion of the second step of pre-mRNA splicing. The function and interacting factors for this protein have not been elucidated. We have performed a mutational analysis of yPrp17p to identify protein domains critical for function. A series of deletions were made throughout the region spanning the N-terminal 158 amino acids of the protein, which do not contain any identified structural motifs. The C-terminal portion (amino acids 160-455) contains a WD domain containing seven WD repeats. We determined that a minimal functional Prp17p consists of the WD domain and 40 amino acids N-terminal to it. We generated a three-dimensional model of the WD repeats in Prp17p based on the crystal structure of the beta-transducin WD domain. This model was used to identify potentially important amino acids for in vivo functional characterization. Through analysis of mutations in four different loops of Prp17p that lie between beta strands in the WD repeats, we have identified four amino acids, 235TETG238, that are critical for function. These amino acids are predicted to be surface exposed and may be involved in interactions that are important for splicing. Temperature-sensitive prp17 alleles with mutations of these four amino acids are defective for the second step of splicing and are synthetically lethal with a U5 snRNA loop I mutation, which is also required for the second step of splicing. These data reinforce the functional significance of this region within the WD domain of Prp17p in the second step of splicing. PMID:10999606

  17. The Influence of Domain Knowledge on the Functional Capacity of Working Memory

    ERIC Educational Resources Information Center

    Ricks, Travis Rex; Wiley, Jennifer

    2009-01-01

    Theories of expertise have proposed that superior cognitive performance is in part due to increases in the functional capacity of working memory during domain-related tasks. Consistent with this approach Fincher-Kiefer et al. (1988), found that domain knowledge increased scores on baseball-related reading span tasks. The present studies extended…

  18. Identification of the functional domains of ANT-1, a novel coactivator of the androgen receptor

    SciTech Connect

    Fan Shuli; Goto, Kiminobu; Chen Guangchun; Morinaga, Hidetaka; Nomura, Masatoshi; Okabe, Taijiro; Nawata, Hajime; Yanase, Toshihiko . E-mail: yanase@intmed3.med.kyushu-u.ac.jp

    2006-03-03

    Previously, we identified a transcriptional coactivator for the activation function-1 (AF-1) domain of the human androgen receptor (AR) and designated it androgen receptor N-terminal domain transactivating protein-1 (ANT-1). This coactivator, which contains multiple tetratricopeptide repeat (TPR) motifs from amino acid (aa) 294, is identical to a component of U5 small nuclear ribonucleoprotein particles and binds specifically to the AR or glucocorticoid receptor. Here, we identified four distinct functional domains. The AR-AF-1-binding domain, which bound to either aa 180-360 or 360-532 in AR-AF-1, clearly overlapped with TAU-1 and TAU-5. This domain and the subnuclear speckle formation domain in ANT-1 were assigned within the TPR motifs, while the transactivating and nuclear localization signal domains resided within the N-terminal sequence. The existence of these functional domains may further support the idea that ANT-1 can function as an AR-AF-1-specific coactivator while mediating a transcription-splicing coupling.

  19. The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway

    PubMed Central

    Roignant, Jean-Yves; Hamel, Sophie; Janody, Florence; Treisman, Jessica E.

    2006-01-01

    Activation of the Raf kinase by GTP-bound Ras is a poorly understood step in receptor tyrosine kinase signaling pathways. One such pathway, the epidermal growth factor receptor (EGFR) pathway, is critical for cell differentiation, survival, and cell cycle regulation in many systems, including the Drosophila eye. We have identified a mutation in a novel gene, aveugle, based on its requirement for normal photoreceptor differentiation. The phenotypes of aveugle mutant cells in the eye and wing imaginal discs resemble those caused by reduction of EGFR pathway function. We show that aveugle is required between ras and raf for EGFR signaling in the eye and for mitogen-activated protein kinase phosphorylation in cell culture. aveugle encodes a small protein with a sterile α motif (SAM) domain that can physically interact with the scaffold protein connector enhancer of Ksr (Cnk). We propose that Aveugle acts together with Cnk to promote Raf activation, perhaps by recruiting an activating kinase. PMID:16600911

  20. Three structural representatives of the PF06855 protein domain family from Staphyloccocus aureus and Bacillus subtilis have SAM domain-like folds and different functions

    PubMed Central

    Swapna, G.V.T.; Rossi, Paolo; Montelione, Alexander F.; Benach, Jordi; Yu, Bomina; Abashidze, Mariam; Seetharaman, Jayaraman; Xiao, Rong; Acton, Thomas B.; Tong, Liang

    2014-01-01

    Protein domain family PF06855 (DUF1250) is a family of small domains of unknown function found only in bacteria, and mostly in the order Bacillales and Lactobacillales. Here we describe the solution NMR or X-ray crystal structures of three representatives of this domain family, MW0776 and MW1311 from Staphyloccocus aureus and yozE from Bacillus subtilis. All three proteins adopt a four-helix motif similar to sterile alpha motif (SAM) domains. Phylogenetic analysis classifies MW1311 and yozE as functionally equivalent proteins of the UPF0346 family of unknown function, but excludes MW0776, which likely has a different biological function. Our structural characterization of the three domains supports this separation of function. The structures of MW0776, MW1311, and yozE constitute the first structural representatives from this protein domain family. PMID:22843344

  1. Functional redundancy between the transcriptional activation domains of E2A is mediated by binding to the KIX domain of CBP/p300.

    PubMed

    Denis, Christopher M; Langelaan, David N; Kirlin, Alyssa C; Chitayat, Seth; Munro, Kim; Spencer, Holly L; LeBrun, David P; Smith, Steven P

    2014-06-01

    The E-protein transcription factors play essential roles in lymphopoiesis, with E12 and E47 (hereafter called E2A) being particularly important in B cell specification and maturation. The E2A gene is also involved in a chromosomal translocation that results in the leukemogenic oncoprotein E2A-PBX1. The two activation domains of E2A, AD1 and AD2, display redundant, independent, and cooperative functions in a cell-dependent manner. AD1 of E2A functions by binding the transcriptional co-activator CBP/p300; this interaction is required in oncogenesis and occurs between the conserved ϕ-x-x-ϕ-ϕ motif in AD1 and the KIX domain of CBP/p300. However, co-activator recruitment by AD2 has not been characterized. Here, we demonstrate that the first of two conserved ϕ-x-x-ϕ-ϕ motifs within AD2 of E2A interacts at the same binding site on KIX as AD1. Mutagenesis uncovered a correspondence between the KIX-binding affinity of AD2 and transcriptional activation. Although AD2 is dispensable for oncogenesis, experimentally increasing the affinity of AD2 for KIX uncovered a latent potential to mediate immortalization of primary hematopoietic progenitors by E2A-PBX1. Our findings suggest that redundancy between the two E2A activation domains with respect to transcriptional activation and oncogenic function is mediated by binding to the same surface of the KIX domain of CBP/p300.

  2. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana.

    PubMed

    Ravi, Maruthachalam; Kwong, Pak N; Menorca, Ron M G; Valencia, Joel T; Ramahi, Joseph S; Stewart, Jodi L; Tran, Robert K; Sundaresan, Venkatesan; Comai, Luca; Chan, Simon W-L

    2010-10-01

    Centromeres control chromosome inheritance in eukaryotes, yet their DNA structure and primary sequence are hypervariable. Most animals and plants have megabases of tandem repeats at their centromeres, unlike yeast with unique centromere sequences. Centromere function requires the centromere-specific histone CENH3 (CENP-A in human), which replaces histone H3 in centromeric nucleosomes. CENH3 evolves rapidly, particularly in its N-terminal tail domain. A portion of the CENH3 histone-fold domain, the CENP-A targeting domain (CATD), has been previously shown to confer kinetochore localization and centromere function when swapped into human H3. Furthermore, CENP-A in human cells can be functionally replaced by CENH3 from distantly related organisms including Saccharomyces cerevisiae. We have used cenh3-1 (a null mutant in Arabidopsis thaliana) to replace endogenous CENH3 with GFP-tagged variants. A H3.3 tail domain-CENH3 histone-fold domain chimera rescued viability of cenh3-1, but CENH3's lacking a tail domain were nonfunctional. In contrast to human results, H3 containing the A. thaliana CATD cannot complement cenh3-1. GFP-CENH3 from the sister species A. arenosa functionally replaces A. thaliana CENH3. GFP-CENH3 from the close relative Brassica rapa was targeted to centromeres, but did not complement cenh3-1, indicating that kinetochore localization and centromere function can be uncoupled. We conclude that CENH3 function in A. thaliana, an organism with large tandem repeat centromeres, has stringent requirements for functional complementation in mitosis.

  3. Protein domain of unknown function 3233 is a translocation domain of autotransporter secretory mechanism in gamma proteobacteria.

    PubMed

    Prakash, Ananth; Yogeeshwari, S; Sircar, Sanchari; Agrawal, Shipra

    2011-01-01

    Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3(rd) of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system. PMID:22073138

  4. PDSS/IMC requirements and functional specifications

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The system (software and hardware) requirements for the Payload Development Support System (PDSS)/Image Motion Compensator (IMC) are provided. The PDSS/IMC system provides the capability for performing Image Motion Compensator Electronics (IMCE) flight software test, checkout, and verification and provides the capability for monitoring the IMC flight computer system during qualification testing for fault detection and fault isolation.

  5. Tank waste remediation system functions and requirements document

    SciTech Connect

    Carpenter, K.E

    1996-10-03

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

  6. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation

    PubMed Central

    Kruse, Janis; Meier, Doreen; Zenk, Fides; Rehders, Maren; Nellen, Wolfgang; Hammann, Christian

    2016-01-01

    ABSTRACT The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation. PMID:27416267

  7. Mapping interactions between myosin relay and converter domains that power muscle function.

    PubMed

    Kronert, William A; Melkani, Girish C; Melkani, Anju; Bernstein, Sanford I

    2014-05-01

    Intramolecular communication within myosin is essential for its function as motor, but the specific amino acid residue interactions required are unexplored within muscle cells. Using Drosophila melanogaster skeletal muscle myosin, we performed a novel in vivo molecular suppression analysis to define the importance of three relay loop amino acid residues (Ile(508), Asn(509), and Asp(511)) in communicating with converter domain residue Arg(759). We found that the N509K relay mutation suppressed defects in myosin ATPase, in vitro motility, myofibril stability, and muscle function associated with the R759E converter mutation. Through molecular modeling, we define a mechanism for this interaction and suggest why the I508K and D511K relay mutations fail to suppress R759E. Interestingly, I508K disabled motor function and myofibril assembly, suggesting that productive relay-converter interaction is essential for both processes. We conclude that the putative relay-converter interaction mediated by myosin residues 509 and 759 is critical for the biochemical and biophysical function of skeletal muscle myosin and the normal ultrastructural and mechanical properties of muscle.

  8. Dim2p, a KH-domain protein required for small ribosomal subunit synthesis

    PubMed Central

    VANROBAYS, EMMANUEL; GÉLUGNE, JEAN-PAUL; CAIZERGUES-FERRER, MICHÈLE; LAFONTAINE, DENIS L.J.

    2004-01-01

    Recent proteomic analyses are revealing the dynamics of preribosome assembly. Following cleavage at processing site A2, which generates the 20S pre-rRNA (the immediate precursor to the 18S rRNA), early RRPs (ribosomal RNA processing factors) are released in bulk from the preribosomes, and the resulting pre-40S subunits are left associated with a limited set of proteins that we refer to as the SSU RRP complex. Dim2p, a core constituent of the SSU RRP complex and conserved KH-domain containing protein, is required for pre-rRNA processing and is associated with early nucleolar and late cytoplasmic pre-rRNA species. Consistently, Dim2p shuttles between the nucle(ol)us and the cytoplasm, a trafficking that is tightly regulated by growth. The association of Dim2p with the 18S rRNA dimethyltransferase Dim1p, as well as its requirement for pre-rRNA processing at cleavage sites A1 and A2 and for 18S rRNA dimethylation, suggest that Dim2p may recruit Dim1p to nucleolar pre-rRNAs through its KH domain. PMID:15037774

  9. Boundary regularity of Nevanlinna domains and univalent functions in model subspaces

    NASA Astrophysics Data System (ADS)

    Baranov, Anton D.; Fedorovskiy, Konstantin Yu

    2011-12-01

    In the paper we study boundary regularity of Nevanlinna domains, which have appeared in problems of uniform approximation by polyanalytic polynomials. A new method for constructing Nevanlinna domains with essentially irregular nonanalytic boundaries is suggested; this method is based on finding appropriate univalent functions in model subspaces, that is, in subspaces of the form K_\\varTheta=H^2\\ominus\\varTheta H^2, where \\varTheta is an inner function. To describe the irregularity of the boundaries of the domains obtained, recent results by Dolzhenko about boundary regularity of conformal mappings are used. Bibliography: 18 titles.

  10. The Venus Fly Trap domain of the extracellular Ca2+ -sensing receptor is required for L-amino acid sensing.

    PubMed

    Mun, Hee-Chang; Franks, Alison H; Culverston, Emma L; Krapcho, Karen; Nemeth, Edward F; Conigrave, Arthur D

    2004-12-10

    We previously demonstrated that the human calcium-sensing receptor (CaR) is allosterically activated by L-amino acids (Conigrave, A. D., Quinn, S. J., and Brown, E. M. (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 4814-4819). However, the domain-based location of amino acid binding has been uncertain. We now show that the Venus Fly Trap (VFT) domain of CaR, but none of its other major domains, is required for amino acid sensing. Several constructs were informative when expressed in HEK293 cells. First, the wild-type CaR exhibited allosteric activation by L-amino acids as previously observed. Second, two CaR-mGlu chimeric receptor constructs that retained the VFT domain of CaR, one containing the extracellular Cys-rich region of CaR and the other containing the Cys-rich region of the rat metabotropic glutamate type-1 (mGlu-1) receptor, together with the rat mGlu-1 transmembrane region and C-terminal tail, retained amino acid sensing. Third, a CaR lacking residues 1-599 of the N-terminal extracellular head but retaining an intact CaR transmembrane region and a functional but truncated C terminus (headless-T903 CaR) failed to respond to L-amino acids but retained responsiveness to the type-II calcimimetic NPS R-467. Finally, a T903 CaR control that retained an intact N terminus also retained L-amino acid sensing. Taken together, the data indicate that the VFT domain of CaR is necessary for L-amino acid sensing and are consistent with the hypothesis that the VFT domain is the site of L-amino acid binding. The findings support the concept that the mGlu-1 amino acid binding site for L-glutamate is conserved as an L-amino acid binding site in its homolog, the CaR.

  11. Functional domains of the Xenopus laevis 5S gene promoter.

    PubMed Central

    Pieler, T; Oei, S L; Hamm, J; Engelke, U; Erdmann, V A

    1985-01-01

    To study the fine structure of the Xenopus laevis somatic 5S gene internal control region, we have created 15 different transversions using mutagenic oligonucleotide primers. The effects of these mutations on 5S DNA transcription in vitro as well as on stable complex formation with transcription factor TF III A and TF III C in crude nuclear extracts were analyzed. Mutations in the common class III 5' promoter element (nucleotides 50-61 in the 5S gene) interfere with transcription activity and stable complex formation whenever they contradict the tDNA box A consensus sequence. The second promoter element is defined by a major sequence block (nucleotides 80-89, box C) and two additional internal residues (70 and 71) at a distance of roughly one helical turn from both the major 3' and 5' control sequences; these two 3' elements contain the primary TF III A binding domain. The remaining nucleotides (62-69 and 71-79) when mutated do not interfere with transcription activity or factor binding and thus they constitute two spacer elements within a symmetrically structured 5S gene promoter. An increase in the relative spacing of box A and box C by insertion of 3 bp between nucleotides 66 and 67 leads to a drastic reduction in transcription activity and the ability to form a stable complex with TF III A and/or TF III C. Thus, accurate spacing is essential for the proper orientation of TF III A on 5S DNA and/or TF III C binding. Images Fig. 1. Fig. 3. Fig. 4. PMID:3004969

  12. Invariant domain watermarking using heaviside function of order alpha and fractional Gaussian field.

    PubMed

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness. PMID:25884854

  13. Invariant Domain Watermarking Using Heaviside Function of Order Alpha and Fractional Gaussian Field

    PubMed Central

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness. PMID:25884854

  14. Invariant domain watermarking using heaviside function of order alpha and fractional Gaussian field.

    PubMed

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness.

  15. Human DNA polymerase. alpha. : Predicted functional domains and relationships with viral DNA polymerases

    SciTech Connect

    Wang, T.S.F.; Wong, S.W.; Korn, D. )

    1989-01-01

    The primary sequence of human DNA polymerase {alpha} deduced from the full-length cDNA contains regions of striking similarity to sequences in replicative DNA polymerases from Escherichia coli phages PRD1 and T4, Bacillus phage {phi}19, yeast DNA polymerase I, yeast linear plasmid pGKL1, maize S1 mitochondrial DNA, herpes family viruses, vaccinia virus, and adenovirus. The conservation of these homologous regions across this vast phylogenetic expanse indicates that these prokaryotic and eukaryotic DNA polymerases may all have evolved from a common primordial gene. Based on the sequence analysis and genetic results from yeast and herpes simplex virus studies, these consensus sequences are suggested to define potential sites that subserve essential roles in the DNA polymerase reaction. Two of these conserved regions appear to participate directly in the active site required for substrate deoxynucleotide interaction. One region toward the carboxyl-terminus has the potential to be the DNA interacting domain is predicted toward the amino-terminus. The provisional assignment of these domains can be used to identify unique or dissimilar features of functionally homologous catalytic sites in viral DBA polymerases of pathogenetic significance and thereby serve to guide more rational antiviral drug design.

  16. Characterization of desnutrin functional domains: critical residues for triacylglycerol hydrolysis in cultured cells.

    PubMed

    Duncan, Robin E; Wang, Yuhui; Ahmadian, Maryam; Lu, Jennifer; Sarkadi-Nagy, Eszter; Sul, Hei Sook

    2010-02-01

    Murine desnutrin/human ATGL is a triacylglycerol (TAG) hydrolase with a predicted catalytic dyad within an alpha-beta hydrolase fold in the N-terminal region. In humans, mutations resulting in C-terminal truncation cause neutral lipid storage disease with myopathy. To identify critical functional domains, we measured TAG breakdown in cultured cells by mutated or truncated desnutrin. In vitro, C-terminally truncated desnutrin displayed an even higher apparent V(max) than the full-length form without changes in K(m), which may be explained by our finding of an interaction between the C- and N-terminal domains. In live cells, however, C-terminally truncated adenoviral desnutrin had lower TAG hydrolase activity. We investigated a role for the phosphorylation of C-terminal S406 and S430 residues but found that these were not necessary for TAG breakdown or lipid droplet localization in cells. The predicted N-terminal active sites, S47 and D166, were both critical for TAG hydrolysis in live cells and in vitro. We also identified two overlapping N-terminal motifs that predict lipid substrate binding domains, a glycine-rich motif (underlined) and an amphipathic alpha-helix (bold) within amino acid residues 10-24 (ISFAGCGFLGVYHIG). G14, F17, L18, and V20, but not G16 and G19, were important for TAG hydrolysis, suggesting a potential role for the amphipathic alpha-helix in TAG binding. This study identifies for the first time critical sites in the N-terminal region of desnutrin and reveals the requirement of the C-terminal region for TAG hydrolysis in cultured cells.

  17. Ecogenomic Perspectives on Domains of Unknown Function: Correlation-Based Exploration of Marine Metagenomes

    PubMed Central

    Buttigieg, Pier Luigi; Hankeln, Wolfgang; Kostadinov, Ivaylo; Kottmann, Renzo; Yilmaz, Pelin; Duhaime, Melissa Beth; Glöckner, Frank Oliver

    2013-01-01

    Background The proportion of conserved DNA sequences with no clear function is steadily growing in bioinformatics databases. Studies of sequence and structural homology have indicated that many uncharacterized protein domain sequences are variants of functionally described domains. If these variants promote an organism's ecological fitness, they are likely to be conserved in the genome of its progeny and the population at large. The genetic composition of microbial communities in their native ecosystems is accessible through metagenomics. We hypothesize the co-variation of protein domain sequences across metagenomes from similar ecosystems will provide insights into their potential roles and aid further investigation. Methodology/Principal findings We calculated the correlation of Pfam protein domain sequences across the Global Ocean Sampling metagenome collection, employing conservative detection and correlation thresholds to limit results to well-supported hits and associations. We then examined intercorrelations between domains of unknown function (DUFs) and domains involved in known metabolic pathways using network visualization and cluster-detection tools. We used a cautious “guilty-by-association” approach, referencing knowledge-level resources to identify and discuss associations that offer insight into DUF function. We observed numerous DUFs associated to photobiologically active domains and prevalent in the Cyanobacteria. Other clusters included DUFs associated with DNA maintenance and repair, inorganic nutrient metabolism, and sodium-translocating transport domains. We also observed a number of clusters reflecting known metabolic associations and cases that predicted functional reclassification of DUFs. Conclusion/Significance Critically examining domain covariation across metagenomic datasets can grant new perspectives on the roles and associations of DUFs in an ecological setting. Targeted attempts at DUF characterization in the laboratory or in

  18. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution.

    PubMed

    Linkeviciute, Viktorija; Rackham, Owen J L; Gough, Julian; Oates, Matt E; Fang, Hai

    2015-12-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of 'architecture plasticity potential' - the capacity to form distinct domain architectures - both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution.

  19. Function-selective domain architecture plasticity potentials in eukaryotic genome evolution

    PubMed Central

    Linkeviciute, Viktorija; Rackham, Owen J.L.; Gough, Julian; Oates, Matt E.; Fang, Hai

    2015-01-01

    To help evaluate how protein function impacts on genome evolution, we introduce a new concept of ‘architecture plasticity potential’ – the capacity to form distinct domain architectures – both for an individual domain, or more generally for a set of domains grouped by shared function. We devise a scoring metric to measure the plasticity potential for these domain sets, and evaluate how function has changed over time for different species. Applying this metric to a phylogenetic tree of eukaryotic genomes, we find that the involvement of each function is not random but highly selective. For certain lineages there is strong bias for evolution to involve domains related to certain functions. In general eukaryotic genomes, particularly animals, expand complex functional activities such as signalling and regulation, but at the cost of reducing metabolic processes. We also observe differential evolution of transcriptional regulation and a unique evolutionary role of channel regulators; crucially this is only observable in terms of the architecture plasticity potential. Our findings provide a new layer of information to understand the significance of function in eukaryotic genome evolution. A web search tool, available at http://supfam.org/Pevo, offers a wide spectrum of options for exploring functional importance in eukaryotic genome evolution. PMID:25980317

  20. EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis.

    PubMed

    Zhang, Xinchun; Pumplin, Nathan; Ivanov, Sergey; Harrison, Maria J

    2015-08-17

    In eukaryotic cells, polarized secretion mediated by exocytotic fusion of membrane vesicles with the plasma membrane is essential for spatially restricted expansion of the plasma membrane and for the delivery of molecules to specific locations at the membrane and/or cell surface. The EXOCYST complex is central to this process, and in yeast, regulation of the EXO70 subunit influences exocytosis and cargo specificity. In contrast to yeast and mammalian cells, plants have upwards of 23 EXO70 genes with largely unknown roles. During arbuscular mycorrhizal (AM) symbiosis, deposition of the plant periarbuscular membrane (PAM) around the fungal arbuscule creates an intracellular membrane interface between the symbionts. The PAM has two major membrane sub-domains, and symbiosis-specific transporter proteins are localized in the branch domain. Currently, the mechanisms and cellular machinery involved in biogenesis of the PAM are largely unknown. Here, we identify an EXO70I protein present exclusively in plants forming AM symbiosis. Medicago truncatula exo70i mutants are unable to support normal arbuscule development, and incorporation of two PAM-resident ABC transporters, STR and STR2, is limited. During arbuscule branching, EXO70I is located in spatially restricted zones adjacent to the PAM around the arbuscule hyphal tips where it interacts with Vapyrin, a plant-specific protein required for arbuscule development. We conclude that EXO70I provides a specific exocytotic capacity necessary for development of the main functional sub-domain of the PAM. Furthermore, in contrast to other eukaryotes, plant EXO70s have evolved distinct specificities and interaction partners to fulfill their specialized secretory requirements.

  1. The SANT domain of Ada2 is required for normal acetylation of histones by the yeast SAGA complex.

    PubMed

    Sterner, David E; Wang, Xun; Bloom, Melissa H; Simon, Gabriel M; Berger, Shelley L

    2002-03-01

    Transcription is regulated through chromatin remodeling and histone modification, mediated by large protein complexes. Histone and nucleosome interaction has been shown to be mediated by specific chromatin domains called bromodomains and chromodomains. Here we provide evidence for a similar function of two additional domains within the yeast SAGA complex, containing the histone acetyltransferase Gcn5. We have analyzed deletion and substitution mutations within Gcn5 and Ada2, an interacting protein within SAGA, and have identified substrate recognition functions within the SANT domain of Ada2 and regions of the histone acetyltransferase domain of Gcn5 that are distinct from catalytic function itself. These results suggest that histone and nucleosomal substrate recognition by SAGA involves multiple conserved domains and proteins, beyond those that have been previously identified. PMID:11777910

  2. Speech and language functions that require a functioning Broca's area.

    PubMed

    Davis, Cameron; Kleinman, Jonathan T; Newhart, Melissa; Gingis, Leila; Pawlak, Mikolaj; Hillis, Argye E

    2008-04-01

    A number of previous studies have indicated that Broca's area has an important role in understanding and producing syntactically complex sentences and other language functions. If Broca's area is critical for these functions, then either infarction of Broca's area or temporary hypoperfusion within this region should cause impairment of these functions, at least while the neural tissue is dysfunctional. The opportunity to identify the language functions that depend on Broca's area in a particular individual was provided by a patient with hyperacute stroke who showed selective hypoperfusion, with minimal infarct, in Broca's area, and acutely impaired production of grammatical sentences, comprehension of semantically reversible (but not non-reversible) sentences, spelling, and motor planning of speech articulation. When blood flow was restored to Broca's area, as demonstrated by repeat perfusion weighted imaging, he showed immediate recovery of these language functions. The identification of language functions that were impaired when Broca's area was dysfunctional (due to low blood flow) and recovered when Broca's area was functional again, provides evidence for the critical role of Broca's area in these language functions, at least in this individual. PMID:18325581

  3. Speech and Language Functions that Require a Functioning Broca's Area

    ERIC Educational Resources Information Center

    Davis, Cameron; Kleinman, Jonathan T.; Newhart, Melissa; Gingis, Leila; Pawlak, Mikolaj; Hillis, Argye E.

    2008-01-01

    A number of previous studies have indicated that Broca's area has an important role in understanding and producing syntactically complex sentences and other language functions. If Broca's area is critical for these functions, then either infarction of Broca's area or temporary hypoperfusion within this region should cause impairment of these…

  4. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    PubMed Central

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains. PMID:12803918

  5. Describing functional requirements for knowledge sharing communities

    NASA Technical Reports Server (NTRS)

    Garrett, Sandra; Caldwell, Barrett

    2002-01-01

    Human collaboration in distributed knowledge sharing groups depends on the functionality of information and communication technologies (ICT) to support performance. Since many of these dynamic environments are constrained by time limits, knowledge must be shared efficiently by adapting the level of information detail to the specific situation. This paper focuses on the process of knowledge and context sharing with and without mediation by ICT, as well as issues to be resolved when determining appropriate ICT channels. Both technology-rich and non-technology examples are discussed.

  6. Different Binding Properties and Function of CXXC Zinc Finger Domains in Dnmt1 and Tet1

    PubMed Central

    Meilinger, Daniela; Bultmann, Sebastian; Fellinger, Karin; Hasenöder, Stefan; Wang, Mengxi; Qin, Weihua; Söding, Johannes; Spada, Fabio; Leonhardt, Heinrich

    2011-01-01

    Several mammalian proteins involved in chromatin and DNA modification contain CXXC zinc finger domains. We compared the structure and function of the CXXC domains in the DNA methyltransferase Dnmt1 and the methylcytosine dioxygenase Tet1. Sequence alignment showed that both CXXC domains have a very similar framework but differ in the central tip region. Based on the known structure of a similar MLL1 domain we developed homology models and designed expression constructs for the isolated CXXC domains of Dnmt1 and Tet1 accordingly. We show that the CXXC domain of Tet1 has no DNA binding activity and is dispensable for catalytic activity in vivo. In contrast, the CXXC domain of Dnmt1 selectively binds DNA substrates containing unmethylated CpG sites. Surprisingly, a Dnmt1 mutant construct lacking the CXXC domain formed covalent complexes with cytosine bases both in vitro and in vivo and rescued DNA methylation patterns in dnmt1−/− embryonic stem cells (ESCs) just as efficiently as wild type Dnmt1. Interestingly, neither wild type nor ΔCXXC Dnmt1 re-methylated imprinted CpG sites of the H19a promoter in dnmt1−/− ESCs, arguing against a role of the CXXC domain in restraining Dnmt1 methyltransferase activity on unmethylated CpG sites. PMID:21311766

  7. Two functional domains in C. elegans glypican LON-2 can independently inhibit BMP-like signaling.

    PubMed

    Taneja-Bageshwar, Suparna; Gumienny, Tina L

    2012-11-01

    Glypicans are multifunctional proteoglycans with regulatory roles in several intercellular signaling pathways. Here, we examine the functional requirements for glypican regulation of bone morphogenetic protein (BMP)-mediated body length in C. elegans. We provide evidence that two parts of C. elegans glypican LON-2 can independently inhibit BMP signaling in vivo: the N-terminal furin protease product and the C-terminal region containing heparan sulfate attachment sequences. While the C-terminal protease product is dispensable for LON-2 minimal core protein activity, it does affect the localization of LON-2. Cleavage of LON-2 into two parts at the conserved furin protease site is not required for LON-2 to inhibit BMP-like signaling. The glycosyl-phosphatidylinositol (GPI) membrane anchor is also not absolutely required for LON-2 activity. Finally, we show that an RGD protein-protein interaction motif in the LON-2 N-terminal domain is necessary for LON-2 core protein activity, suggesting that LON-2 inhibits BMP signaling by acting as a scaffold for BMP and an RGD-binding protein.

  8. The macro domain protein family: structure, functions, and their potential therapeutic implications.

    PubMed

    Han, Weidong; Li, Xiaolei; Fu, Xiaobing

    2011-01-01

    Macro domains are ancient, highly evolutionarily conserved domains that are widely distributed throughout all kingdoms of life. The 'macro fold' is roughly 25kDa in size and is composed of a mixed α-β fold with similarity to the P loop-containing nucleotide triphosphate hydrolases. They function as binding modules for metabolites of NAD(+), including poly(ADP-ribose) (PAR), which is synthesized by PAR polymerases (PARPs). Although there is a high degree of sequence similarity within this family, particularly for residues that might be involved in catalysis or substrates binding, it is likely that the sequence variation that does exist among macro domains is responsible for the specificity of function of individual proteins. Recent findings have indicated that macro domain proteins are functionally promiscuous and are implicated in the regulation of diverse biological functions, such as DNA repair, chromatin remodeling and transcriptional regulation. Significant advances in the field of macro domain have occurred in the past few years, including biological insights and the discovery of novel signaling pathways. To provide a framework for understanding these recent findings, this review will provide a comprehensive overview of the known and proposed biochemical, cellular and physiological roles of the macro domain family. Recent data that indicate a critical role of macro domain regulation for the proper progression of cellular differentiation programs will be discussed. In addition, the effect of dysregulated expression of macro domain proteins will be considered in the processes of tumorigenesis and bacterial pathogenesis. Finally, a series of observations will be highlighted that should be addressed in future efforts to develop macro domains as effective therapeutic targets.

  9. Functional diversification between two related Plasmodium falciparum merozoite invasion ligands is determined by changes in the cytoplasmic domain

    PubMed Central

    Dvorin, Jeffrey D.; Bei, Amy K.; Coleman, Bradley I.; Duraisingh, Manoj T.

    2013-01-01

    Summary The pathogenesis of Plasmodium falciparum depends on efficient invasion into host erythrocytes. Parasite ligands encoded by multi-gene families interact with erythrocyte receptors. P. falciparum reticulocyte binding protein homologues (PfRhs) are expressed at the apical surface of invasive merozoites and have divergent ectodomains that are postulated to bind different erythrocyte receptors. Variant expression of these paralogues results in the use of alternative invasion pathways. Two PfRh proteins, PfRh2a and PfRh2b, are identical for 2700 N-terminal amino acids and differ only in a C-terminal 500 amino acid region, which includes a unique ectodomain, transmembrane domain and cytoplasmic domain. Despite their similarity, PfRh2b is required for a well-defined invasion pathway while PfRh2a is not required or sufficient for this pathway. Mapping the genomic region encoding these proteins revealed a recombinogenic locus with PfRh2a and PfRh2b in a head-to-head orientation. We have generated viable PfRh2a/2b chimeric parasites to identify the regions required for alternative invasion pathway utilization. We find that the differential ability to use these pathways is conferred by the cytoplasmic domains of PfRh2a and PfRh2b, not the ectodomain or transmembrane regions. Our results highlight the importance of the cytoplasmic domain for functional diversification of a major adhesive ligand family in malaria parasites. PMID:20487292

  10. [Detection of the functionally active domains in the molecule of the lethal factor of the anthrax exotoxin].

    PubMed

    Noskov, A N; Kravchenko, T B; Noskova, V P

    1996-01-01

    Three functional domains were revealed in the molecule of the lethal factor of B. anthracis. They are located in the linear structure of the molecula as follows: the associative domain occupies the area from Lys39 to Met242, the stabilizing domain from Leu517 to Lys614, and the effector domain still further to the COOH-terminal Lys mino acid.

  11. The HhH(2)/NDD Domain of the Drosophila Nod Chromokinesin-like Protein Is Required for Binding to Chromosomes in the Oocyte Nucleus

    PubMed Central

    Cui, Wei; Hawley, R. Scott

    2005-01-01

    Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9–10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes. PMID:16143607

  12. The HhH2/NDD domain of the Drosophila Nod chromokinesin-like protein is required for binding to chromosomes in the oocyte nucleus.

    PubMed

    Cui, Wei; Hawley, R Scott

    2005-12-01

    Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9-10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes. PMID:16143607

  13. Dynamic requirements for a functional protein hinge.

    PubMed

    Kempf, James G; Jung, Ju-Yeon; Ragain, Christina; Sampson, Nicole S; Loria, J Patrick

    2007-04-20

    The enzyme triosephosphate isomerase (TIM) is a model of catalytic efficiency. The 11 residue loop 6 at the TIM active site plays a major role in this enzymatic prowess. The loop moves between open and closed states, which facilitate substrate access and catalysis, respectively. The N and C-terminal hinges of loop 6 control this motion. Here, we detail flexibility requirements for hinges in a comparative solution NMR study of wild-type (WT) TIM and a quintuple mutant (PGG/GGG). The latter contained glycine substitutions in the N-terminal hinge at Val167 and Trp168, which follow the essential Pro166, and in the C-terminal hinge at Lys174, Thr175, and Ala176. Previous work demonstrated that PGG/GGG has a tenfold higher Km value and 10(3)-fold reduced k(cat) relative to WT with either d-glyceraldehyde 3-phosphate or dihyrdroxyacetone phosphate as substrate. Our NMR results explain this in terms of altered loop-6 dynamics in PGG/GGG. In the mutant, loop 6 exhibits conformational heterogeneity with corresponding motional rates <750 s(-1) that are an order of magnitude slower than the natural WT loop 6 motion. At the same time, nanosecond timescale motions of loop 6 are greatly enhanced in the mutant relative to WT. These differences from WT behavior occur in both apo PGG/GGG and in the form bound to the reaction-intermediate analog, 2-phosphoglycolate (2-PGA). In addition, as indicated by 1H, 15N and 13CO chemical-shifts, the glycine substitutions diminished the enzyme's response to ligand, and induced structural perturbations in apo and 2-PGA-bound forms of TIM that are atypical of WT. These data show that PGG/GGG exists in multiple conformations that are not fully competent for ligand binding or catalysis. These experiments elucidate an important principle of catalytic hinge design in proteins: structural rigidity is essential for focused motional freedom of active-site loops.

  14. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry

    SciTech Connect

    Sundlov, Jesse A.; Gulick, Andrew M.

    2013-08-01

    The structure of the functional interaction of NRPS adenylation and carrier protein domains, trapped with a mechanism-based inhibitor, is described. Crystals exhibit translational non-crystallographic symmetry, which challenged structure determination and refinement. The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain–carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  15. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    PubMed

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  16. Optimization of the functional domain of flat plate collectors

    NASA Astrophysics Data System (ADS)

    Ritoux, G.; Irigaray, J.-L.

    1981-12-01

    The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.

  17. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Workshop functional test... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... functional test on a suitable test bench prior to delivery. The detailed program for a functional test...

  18. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Workshop functional test... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... functional test on a suitable test bench prior to delivery. The detailed program for a functional test...

  19. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Workshop functional test... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... functional test on a suitable test bench prior to delivery. The detailed program for a functional test...

  20. Initial Report of the Cancer PROMIS Supplement Sexual Function Committee: Review of Sexual Function Measures and Domains Used in Oncology

    PubMed Central

    Jeffery, Diana D.; Tzeng, Janice P.; Keefe, Francis J.; Porter, Laura S.; Hahn, Elizabeth A.; Flynn, Kathryn E.; Reeve, Bryce B.; Weinfurt, Kevin P.

    2009-01-01

    Objective This report describes initial activities of the Cancer Patient-Reported Outcomes Measurement Information System (PROMIS) Sexual Function domain group (CaPS-SF), part of the National Institutes of Health (NIH) Roadmap Initiative to develop brief questionnaires or individually-tailored assessments of quality of life domains. Our literature review of sexual function measures used in cancer populations, and descriptions of domains found in those measures, is presented. Methods Using a consensus-driven approach, an electronic bibliographic search was conducted for articles published 1991-2007, yielding 486 articles for in-depth review. Results A total of 257 articles reported the administration of a psychometrically evaluated sexual function measure to individuals diagnosed with cancer. Apart from the UCLA Prostate Cancer Index, the International Index of Erectile Function, and the Female Sexual Function Index, the 31 identified measures have not been widely tested in cancer populations. Most measures were multidimensional and included domains related to the sexual response cycle and to general sexual satisfaction. Conclusions Our review supports the need for a flexible, psychometrically robust measure of sexual function for use in oncology settings and strongly justifies the development of the PROMIS-SF instrument. After PROMIS-SF is publicly available, cancer clinicians and researchers will have another measure to assess patient-reported sexual function outcomes in addition to the few legacy measures identified through our review. PMID:19195044

  1. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.

    PubMed

    Laurent, Clémentine; Lekeux, Gilles; Ukuwela, Ashwinie A; Xiao, Zhiguang; Charlier, Jean-Benoit; Bosman, Bernard; Carnol, Monique; Motte, Patrick; Damblon, Christian; Galleni, Moreno; Hanikenne, Marc

    2016-03-01

    PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases. PMID:26797794

  2. Metal binding to the N-terminal cytoplasmic domain of the PIB ATPase HMA4 is required for metal transport in Arabidopsis.

    PubMed

    Laurent, Clémentine; Lekeux, Gilles; Ukuwela, Ashwinie A; Xiao, Zhiguang; Charlier, Jean-Benoit; Bosman, Bernard; Carnol, Monique; Motte, Patrick; Damblon, Christian; Galleni, Moreno; Hanikenne, Marc

    2016-03-01

    PIB ATPases are metal cation pumps that transport metals across membranes. These proteins possess N- and C-terminal cytoplasmic extensions that contain Cys- and His-rich high affinity metal binding domains, which may be involved in metal sensing, metal ion selectivity and/or in regulation of the pump activity. The PIB ATPase HMA4 (Heavy Metal ATPase 4) plays a central role in metal homeostasis in Arabidopsis thaliana and has a key function in zinc and cadmium hypertolerance and hyperaccumulation in the extremophile plant species Arabidopsis halleri. Here, we examined the function and structure of the N-terminal cytoplasmic metal-binding domain of HMA4. We mutagenized a conserved CCTSE metal-binding motif in the domain and assessed the impact of the mutations on protein function and localization in planta, on metal-binding properties in vitro and on protein structure by Nuclear Magnetic Resonance spectroscopy. The two Cys residues of the motif are essential for the function, but not for localization, of HMA4 in planta, whereas the Glu residue is important but not essential. These residues also determine zinc coordination and affinity. Zinc binding to the N-terminal domain is thus crucial for HMA4 protein function, whereas it is not required to maintain the protein structure. Altogether, combining in vivo and in vitro approaches in our study provides insights towards the molecular understanding of metal transport and specificity of metal P-type ATPases.

  3. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties.

  4. A unique phenylalanine in the transmembrane domain strengthens homodimerization of the syndecan-2 transmembrane domain and functionally regulates syndecan-2.

    PubMed

    Kwon, Mi-Jung; Choi, Youngsil; Yun, Ji-Hye; Lee, Weontae; Han, Inn-Oc; Oh, Eok-Soo

    2015-02-27

    The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe(167)) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe(167) was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe(167) in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members.

  5. Frequency domain description of Kohlrausch response through a pair of Havriliak-Negami-type functions: An analysis of functional proximity

    NASA Astrophysics Data System (ADS)

    Medina, J. S.; Prosmiti, R.; Villarreal, P.; Delgado-Barrio, G.; Alemán, J. V.

    2011-12-01

    An approximation to the Fourier transform (FT) of the Kohlrausch function (stretched exponential) with shape parameter 0<β⩽1 is presented by using Havriliak-Negami-like functions. Mathematical expressions to fit their parameters α, γ, and τ, as functions of β (0<β⩽1 and 1<β<2) are given, which allows a quick identification in the frequency domain of the corresponding shape factor β. Reconstruction via fast Fourier transform of frequency approximants to time domain are shown as good substitutes in short times though biased in long ones (increasing discrepancies as β→1). The method is proposed as a template to commute time and frequency domains when analyzing complex data. Such a strategy facilitates intensive algorithmic search of parameters while adjusting the data of one or several Kohlrausch-Williams-Watts relaxations.

  6. The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis

    PubMed Central

    Guerrier, Sabrice; Coutinho-Budd, Jaeda; Sassa, Takayuki; Gresset, Aurélie; Jordan, Nicole Vincent; Cheng, Ken; Jin, Wei-Lin; Frost, Adam; Polleux, Franck

    2009-01-01

    SUMMARY During brain development, proper neuronal migration and morphogenesis is critical for the establishment of functional neural circuits. Here we report that srGAP2 negatively regulates neuronal migration and induces neurite outgrowth and branching through the ability of its F-BAR domain to induce filopodia-like membrane protrusions resembling those induced by I-BAR domains in vivo and in vitro. Previous work has suggested that in non-neuronal cells, filopodia dynamics decreases the rate of cell migration and the persistence of leading edge protrusions. srGAP2 knockdown reduces leading process branching and increases the rate of neuronal migration in vivo. Overexpression of srGAP2 or its F-BAR domain has the opposite effects, increasing leading process branching and decreasing migration. These results (1) suggest that F-BAR domains are functionally diverse and (2) highlight the functional importance of proteins directly regulating membrane deformation for proper neuronal migration and morphogenesis. PMID:19737524

  7. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...

  8. CD44 and beta3 integrin organize two functionally distinct actin-based domains in osteoclasts.

    PubMed

    Chabadel, Anne; Bañon-Rodríguez, Inmaculada; Cluet, David; Rudkin, Brian B; Wehrle-Haller, Bernhard; Genot, Elisabeth; Jurdic, Pierre; Anton, Ines M; Saltel, Frédéric

    2007-12-01

    The actin cytoskeleton of mature osteoclasts (OCs) adhering to nonmineralized substrates is organized in a belt of podosomes reminiscent of the sealing zone (SZ) found in bone resorbing OCs. In this study, we demonstrate that the belt is composed of two functionally different actin-based domains: podosome cores linked with CD44, which are involved in cell adhesion, and a diffuse cloud associated with beta3 integrin, which is involved in cell adhesion and contraction. Wiskott Aldrich Syndrome Protein (WASp) Interacting Protein (WIP)-/- OCs were devoid of podosomes, but they still exhibited actin clouds. Indeed, WIP-/- OCs show diminished expression of WASp, which is required for podosome formation. CD44 is a novel marker of OC podosome cores and the first nonintegrin receptor detected in these structures. The importance of CD44 is revealed by showing that its clustering restores podosome cores and WASp expression in WIP-/- OCs. However, although CD44 signals are sufficient to form a SZ, the presence of WIP is indispensable for the formation of a fully functional SZ.

  9. 2D Laplace-Domain Waveform Inversion of Field Data Using a Power Objective Function

    NASA Astrophysics Data System (ADS)

    Park, Eunjin; Ha, Wansoo; Chung, Wookeen; Shin, Changsoo; Min, Dong-Joo

    2013-12-01

    The wavefield in the Laplace domain has a very small amplitude except only near the source point. In order to deal with this characteristic, the logarithmic objective function has been used in many Laplace domain inversion studies. The Laplace-domain waveform inversion using the logarithmic objective function has fewer local minima than the time- or frequency domain inversion. Recently, the power objective function was suggested as an alternative to the logarithmic objective function in the Laplace domain. Since amplitudes of wavefields are very small generally, a power <1 amplifies the wavefields especially at large offset. Therefore, the power objective function can enhance the Laplace-domain inversion results. In previous studies about synthetic datasets, it is confirmed that the inversion using a power objective function shows a similar result when compared with the inversion using a logarithmic objective function. In this paper, we apply an inversion algorithm using a power objective function to field datasets. We perform the waveform inversion using the power objective function and compare the result obtained by the logarithmic objective function. The Gulf of Mexico dataset is used for the comparison. When we use a power objective function in the inversion algorithm, it is important to choose the appropriate exponent. By testing the various exponents, we can select the range of the exponent from 5 × 10-3 to 5 × 10-8 in the Gulf of Mexico dataset. The results obtained from the power objective function with appropriate exponent are very similar to the results of the logarithmic objective function. Even though we do not get better results than the conventional method, we can confirm the possibility of applying the power objective function for field data. In addition, the power objective function shows good results in spite of little difference in the amplitude of the wavefield. Based on these results, we can expect that the power objective function will

  10. δ-COP contains a helix C-terminal to its longin domain key to COPI dynamics and function

    PubMed Central

    Arakel, Eric C.; Richter, Kora P.; Clancy, Anne; Schwappach, Blanche

    2016-01-01

    Membrane recruitment of coatomer and formation of coat protein I (COPI)-coated vesicles is crucial to homeostasis in the early secretory pathway. The conformational dynamics of COPI during cargo capture and vesicle formation is incompletely understood. By scanning the length of δ-COP via functional complementation in yeast, we dissect the domains of the δ-COP subunit. We show that the μ-homology domain is dispensable for COPI function in the early secretory pathway, whereas the N-terminal longin domain is essential. We map a previously uncharacterized helix, C-terminal to the longin domain, that is specifically required for the retrieval of HDEL-bearing endoplasmic reticulum-luminal residents. It is positionally analogous to an unstructured linker that becomes helical and membrane-facing in the open form of the AP2 clathrin adaptor complex. Based on the amphipathic nature of the critical helix it may probe the membrane for lipid packing defects or mediate interaction with cargo and thus contribute to stabilizing membrane-associated coatomer. PMID:27298352

  11. Control of Assembly and Function of Glutamate Receptors by the Amino-Terminal Domain

    PubMed Central

    Hansen, Kasper B.; Furukawa, Hiro

    2010-01-01

    The extracellular amino-terminal domains (ATDs) of the ionotropic glutamate receptor subunits form a semiautonomous component of all glutamate receptors that resides distal to the membrane and controls a surprisingly diverse set of receptor functions. These functions include subunit assembly, receptor trafficking, channel gating, agonist potency, and allosteric modulation. The many divergent features of the different ionotropic glutamate receptor classes and different subunits within a class may stem from differential regulation by the amino-terminal domains. The emerging knowledge of the structure and function of the amino-terminal domains reviewed here may enable targeting of this region for the therapeutic modulation of glutamatergic signaling. Toward this end, NMDA receptor antagonists that interact with the GluN2B ATD show promise in animal models of ischemia, neuropathic pain, and Parkinson's disease. PMID:20660085

  12. Functional Specialization of Domains Tandemly Duplicated Witin 16S rRNA Methyltransferase RsmC

    SciTech Connect

    Sunita,S.; Purta, E.; Durawa, M.; Tkaczuk, K.; Swaathi, J.; Bujnicki, J.; Sivaraman, J.

    2007-01-01

    RNA methyltransferases (MTases) are important players in the biogenesis and regulation of the ribosome, the cellular machine for protein synthesis. RsmC is a MTase that catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to G1207 of 16S rRNA. Mutations of G1207 have dominant lethal phenotypes in Escherichia coli, underscoring the significance of this modified nucleotide for ribosome function. Here we report the crystal structure of E. coli RsmC refined to 2.1 Angstroms resolution, which reveals two homologous domains tandemly duplicated within a single polypeptide. We characterized the function of the individual domains and identified key residues involved in binding of rRNA and SAM, and in catalysis. We also discovered that one of the domains is important for the folding of the other. Domain duplication and subfunctionalization by complementary degeneration of redundant functions (in particular substrate binding versus catalysis) has been reported for many enzymes, including those involved in RNA metabolism. Thus, RsmC can be regarded as a model system for functional streamlining of domains accompanied by the development of dependencies concerning folding and stability.

  13. The epigenetic regulator Smchd1 contains a functional GHKL-type ATPase domain.

    PubMed

    Chen, Kelan; Dobson, Renwick C J; Lucet, Isabelle S; Young, Samuel N; Pearce, F Grant; Blewitt, Marnie E; Murphy, James M

    2016-06-15

    Structural maintenance of chromosomes flexible hinge domain containing 1 (Smchd1) is an epigenetic regulator that plays critical roles in gene regulation during development. Mutations in SMCHD1 were recently implicated in the pathogenesis of facioscapulohumeral muscular dystrophy (FSHD), although the mechanistic basis remains of outstanding interest. We have previously shown that Smchd1 associates with chromatin via its homodimeric C-terminal hinge domain, yet little is known about the function of the putative GHKL (gyrase, Hsp90, histidine kinase, MutL)-type ATPase domain at its N-terminus. To formally assess the structure and function of Smchd1's ATPase domain, we have generated recombinant proteins encompassing the predicted ATPase domain and the adjacent region. Here, we show that the Smchd1 N-terminal region exists as a monomer and adopts a conformation resembling that of monomeric full-length heat shock protein 90 (Hsp90) protein in solution, even though the two proteins share only ∼8% overall sequence identity. Despite being monomeric, the N-terminal region of Smchd1 exhibits ATPase activity, which can be antagonized by the reaction product, ADP, or the Hsp90 inhibitor, radicicol, at a nanomolar concentration. Interestingly, introduction of an analogous mutation to that identified in SMCHD1 of an FSHD patient compromised protein stability, suggesting a possible molecular basis for loss of protein function and pathogenesis. Together, these results reveal important structure-function characteristics of Smchd1 that may underpin its mechanistic action at the chromatin level. PMID:27059856

  14. De novo design and engineering of functional metal and porphyrin-binding protein domains

    NASA Astrophysics Data System (ADS)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  15. Collision Avoidance Functional Requirements for Step 1. Revision 6

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This Functional Requirements Document (FRD) describes the flow of requirements from the high level operational objectives down to the functional requirements specific to cooperative collision avoidance for high altitude, long endurance unmanned aircraft systems. These are further decomposed into performance and safety guidelines that are backed up by analysis or references to various documents or research findings. The FRD should be considered when establishing future policies, procedures, and standards pertaining to cooperative collision avoidance.

  16. Functional Characterization of Glycoprotein H Chimeras Composed of Conserved Domains of the Pseudorabies Virus and Herpes Simplex Virus 1 Homologs

    PubMed Central

    Böhm, Sebastian W.; Backovic, Marija; Klupp, Barbara G.; Rey, Felix A.; Fuchs, Walter

    2015-01-01

    ABSTRACT Membrane fusion is indispensable for entry of enveloped viruses into host cells. The conserved core fusion machinery of the Herpesviridae consists of glycoprotein B (gB) and the gH/gL complex. Recently, crystal structures of gH/gL of herpes simplex virus 2 (HSV-2) and Epstein-Barr virus and of a core fragment of pseudorabies virus (PrV) gH identified four structurally conserved gH domains. To investigate functional conservation, chimeric genes encoding combinations of individual domains of PrV and herpes simplex virus 1 (HSV-1) gH were expressed in rabbit kidney cells, and their processing and transport to the cell surface, as well as activity in fusion assays including gB, gD, and gL of PrV or HSV-1, were analyzed. Chimeric gH containing domain I of HSV-1 and domains II to IV of PrV exhibited limited fusion activity in the presence of PrV gB and gD and HSV-1 gL, but not of PrV gL. More strikingly, chimeric gH consisting of PrV domains I to III and HSV-1 domain IV exhibited considerable fusion activity together with PrV gB, gD, and gL. Replacing PrV gB with the HSV-1 protein significantly enhanced this activity. A cell line stably expressing this chimeric gH supported replication of gH-deleted PrV. Our results confirm the specificity of domain I for gL binding, demonstrate functional conservation of domain IV in two alphaherpesviruses from different genera, and indicate species-specific interactions of this domain with gB. They also suggest that gH domains II and III might form a structural and functional unit which does not tolerate major substitutions. IMPORTANCE Envelope glycoprotein H (gH) is essential for herpesvirus-induced membrane fusion, which is required for host cell entry and viral spread. Although gH is structurally conserved within the Herpesviridae, its precise role and its interactions with other components of the viral fusion machinery are not fully understood. Chimeric proteins containing domains of gH proteins from different

  17. Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII

    PubMed Central

    Poleszak, Katarzyna; Kaminska, Katarzyna H.; Dunin-Horkawicz, Stanislaw; Lupas, Andrei; Skowronek, Krzysztof J.; Bujnicki, Janusz M.

    2012-01-01

    Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence–structure–function relationships in ExoVII. PMID:22718974

  18. Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes

    PubMed Central

    Kramer-Zucker, Albrecht G.; Wiessner, Stephanie; Jensen, Abbie M.; Drummond, Iain A.

    2010-01-01

    Podocytes are specialized cells of the kidney that form the blood filtration barrier in the kidney glomerulus. The barrier function of podocytes depends upon the development of specialized cell–cell adhesion complexes called slit-diaphragms that form between podocyte foot processes surrounding glomerular blood vessels. Failure of the slit-diaphragm to form results in leakage of high molecular weight proteins into the blood filtrate and urine, a condition called proteinuria. In this work, we test whether the zebrafish pronephros can be used as an assay system for the development of glomerular function with the goal of identifying novel components of the slit-diaphragm. We first characterized the function of the zebrafish homolog of Nephrin, the disease gene associated with the congenital nephritic syndrome of the Finnish type, and Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome. Zebrafish nephrin and podocin were specifically expressed in pronephric podocytes and required for the development of pronephric podocyte cell structure. Ultrastructurally, disruption of nephrin or podocin expression resulted in a loss of slit-diaphragms at 72 and 96 h post-fertilization and failure to form normal podocyte foot processes. We also find that expression of the band 4.1/FERM domain gene mosaic eyes in podocytes is required for proper formation of slit-diaphragm cell–cell junctions. A functional assay of glomerular filtration barrier revealed that absence of normal nephrin, podocin or mosaic eyes expression results in loss of glomerular filtration discrimination and aberrant passage of high molecular weight substances into the glomerular filtrate. PMID:16102746

  19. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  20. Functional analysis of pre-mRNA splicing factor SF2/ASF structural domains.

    PubMed Central

    Cáceres, J F; Krainer, A R

    1993-01-01

    Human pre-mRNA splicing factor SF2/ASF has an activity required for general splicing in vitro and promotes utilization of proximal alternative 5' splice sites in a concentration-dependent manner by opposing hnRNP A1. We introduced selected mutations in the N-terminal RNA recognition motif (RRM) and the C-terminal Arg/Ser (RS) domain of SF2/ASF, and assayed the resulting recombinant proteins for constitutive and alternative splicing in vitro and for binding to pre-mRNA and mRNA. Mutants inactive in constitutive splicing can affect alternative splice site selection, demonstrating that these activities involve distinct molecular interactions. Specific protein-RNA contact mediated by Phe56 and Phe58 in the RNP-1 submotif of the SF2/ASF RRM are essential for constitutive splicing, although they are not required for RRM-mediated binding to pre-mRNA. The RS domain is also required for constitutive splicing activity and both Arg and Ser residues are important. Analysis of domain deletion mutants demonstrated strong synergy between the RRM and a central degenerate RRM repeat in binding to RNA. These two domains are sufficient for alternative splicing activity in the absence of an RS domain. Images PMID:8223480

  1. Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment.

    PubMed

    Francis, Sandrea M; Gas, María-Eugenia; Daugeron, Marie-Claire; Bravo, Jeronimo; Séraphin, Bertrand

    2012-11-01

    Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix-turn-helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.

  2. Structure determination of the functional domain interaction of a chimeric nonribosomal peptide synthetase from a challenging crystal with noncrystallographic translational symmetry.

    PubMed

    Sundlov, Jesse A; Gulick, Andrew M

    2013-08-01

    The nonribosomal peptide synthetases (NRPSs) are a family of modular proteins that contain multiple catalytic domains joined in a single protein. Together, these domains work to produce chemically diverse peptides, including compounds with antibiotic activity or that play a role in iron acquisition. Understanding the structural mechanisms that govern the domain interactions has been a long-standing goal. During NRPS synthesis, amino-acid substrates are loaded onto integrated carrier protein domains through the activity of NRPS adenylation domains. The structures of two adenylation domain-carrier protein domain complexes have recently been determined in an effort that required the use of a mechanism-based inhibitor to trap the domain interaction. Here, the continued analysis of these proteins is presented, including a higher resolution structure of an engineered di-domain protein containing the EntE adenylation domain fused with the carrier protein domain of its partner EntB. The protein crystallized in a novel space group in which molecular replacement and refinement were challenged by noncrystallographic pseudo-translational symmetry. The structure determination and how the molecular packing impacted the diffraction intensities are reported. Importantly, the structure illustrates that in this new crystal form the functional interface between the adenylation domain and the carrier protein domain remains the same as that observed previously. At a resolution that allows inclusion of water molecules, additional interactions are observed between the two protein domains and between the protein and its ligands. In particular, a highly solvated region that surrounds the carrier protein cofactor is described.

  3. Functional domains of the transcriptional activator NUC-1 in Neurospora crassa.

    PubMed

    Kang, S

    1993-08-25

    The NUC-1 regulatory protein directly controls the transcription of these genes and how the activity enzymes in Neurospora crassa. To understand how NUC-1 regulates the transcription of these genes and how the activity of NUC-1 is modulated by other regulatory proteins, two putative functional domains of NUC-1 were analysed: the DNA-binding domain and the regulatory domain. The DNA-binding activity of NUC-1 has not been directly demonstrated; however, results of deletion analysis, sequence analysis of the nuc-1 mutant alleles, and strong sequence similarity with the Saccharomyces cerevisiae PHO4 protein strongly suggest that the basic helix-loop-helix motif of NUC-1 forms a DNA-binding domain. Deletion and mutant analyses revealed that 39 amino acid (aa) residues (aa 463 to 501), or fewer, of NUC-1 are interacting with the negative regulatory factor(s), the PREG and/or PGOV proteins.

  4. The insulin and IGF1 receptor kinase domains are functional dimers in the activated state

    NASA Astrophysics Data System (ADS)

    Cabail, M. Zulema; Li, Shiqing; Lemmon, Eric; Bowen, Mark E.; Hubbard, Stevan R.; Miller, W. Todd

    2015-03-01

    The insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R) are highly related receptor tyrosine kinases with a disulfide-linked homodimeric architecture. Ligand binding to the receptor ectodomain triggers tyrosine autophosphorylation of the cytoplasmic domains, which stimulates catalytic activity and creates recruitment sites for downstream signalling proteins. Whether the two phosphorylated tyrosine kinase domains within the receptor dimer function independently or cooperatively to phosphorylate protein substrates is not known. Here we provide crystallographic, biophysical and biochemical evidence demonstrating that the phosphorylated kinase domains of IR and IGF1R form a specific dimeric arrangement involving an exchange of the juxtamembrane region proximal to the kinase domain. In this dimer, the active position of α-helix C in the kinase N lobe is stabilized, which promotes downstream substrate phosphorylation. These studies afford a novel strategy for the design of small-molecule IR agonists as potential therapeutic agents for type 2 diabetes.

  5. Structural similarities and functional diversity of eukaryotic discoidin-like domains.

    PubMed

    Kiedzierska, A; Smietana, K; Czepczynska, H; Otlewski, J

    2007-09-01

    The discoidin domain is a approximately 150 amino acid motif common in both eukaryotic and prokaryotic proteins. It is found in a variety of extracellular, intracellular and transmembrane multidomain proteins characterized by a considerable functional diversity, mostly involved in developmental processes. The biological role of the domain depends on its interactions with different molecules, including growth factors, phospholipids and lipids, galactose or its derivatives, and collagen. The conservation of the motif, as well as the serious physiological consequences of discoidin domain disorders underscore the importance of the fold, while the ability to accommodate such an extraordinarily broad range of ligand molecules makes it a fascinating research target. In present review we characterize the distinctive features of discoidin domains and briefly outline the biological role of this module in various eukaryotic proteins. PMID:17702679

  6. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    PubMed

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.

  7. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9

    PubMed Central

    Geraldo, Marcos Tadeu; Valente, Guilherme Targino; Nakajima, Rafael Takahiro; Martins, Cesar

    2016-01-01

    Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts. PMID:27196604

  8. Dimerization and Transactivation Domains as Candidates for Functional Modulation and Diversity of Sox9.

    PubMed

    Geraldo, Marcos Tadeu; Valente, Guilherme Targino; Nakajima, Rafael Takahiro; Martins, Cesar

    2016-01-01

    Sox9 plays an important role in a large variety of developmental pathways in vertebrates. It is composed of three domains: high-mobility group box (HMG box), dimerization (DIM) and transactivation (TAD). One of the main processes for regulation and variability of the pathways involving Sox9 is the self-gene expression regulation of Sox9. However, the subsequent roles of the Sox9 domains can also generate regulatory modulations. Studies have shown that TADs can bind to different types of proteins and its function seems to be influenced by DIM. Therefore, we hypothesized that both domains are directly associated and can be responsible for the functional variability of Sox9. We applied a method based on a broad phylogenetic context, using sequences of the HMG box domain, to ensure the homology of all the Sox9 copies used herein. The data obtained included 4,921 sequences relative to 657 metazoan species. Based on coevolutionary and selective pressure analyses of the Sox9 sequences, we observed coevolutions involving DIM and TADs. These data, along with the experimental data from literature, indicate a functional relationship between these domains. Moreover, DIM and TADs may be responsible for the functional plasticity of Sox9 because they are more tolerant for molecular changes (higher Ka/Ks ratio than the HMG box domain). This tolerance could allow a differential regulation of target genes or promote novel targets during transcriptional activation. In conclusion, we suggest that DIM and TADs functional association may regulate differentially the target genes or even promote novel targets during transcription activation mediated by Sox9 paralogs, contributing to the subfunctionalization of Sox9a and Sox9b in teleosts. PMID:27196604

  9. Functional characterization of the C-terminal domain of mouse capping enzyme.

    PubMed

    Liu, Li

    2006-01-01

    Mouse capping enzyme (Mce1) consists of two functional domains: the amino-terminal triphosphatase domain and the carboxyl-terminal guanylyltransferase (GTase) domain. The bifunctional Mce1 gene encodes 597 a.a. with a molecular weight approximately 68 kDa. Mce1 cDNA is located on chromosome 4A4 approximately 4A5 and is composed of 17 exons. To functionally characterize the C-terminus of Mce1, we generated four truncated proteins with 12, 30, 37, or 60 a.a. deletions from the C-terminus of either the wild type (Mce1) or the isolated GTase domain (211-597), respectively. Plasmid shuffling experiment with Saccharomyces cerevisiae GTase subunit gene CEG1 null mutant demonstrated that deletion mutants 211-567 and 211-585 were able to support cell viability in the presence of 5-fluoroorotic acid, whereas 211-537 and 211-560 were not. Consistent with the yeast genetic study, both 211-567 and 211-585 had significant GTase activity in vitro, while 211-537 and 211-560 that were only detected in the insoluble fraction in the bacterial expression system, were completely inactive. Overall, both in vivo and in vitro studies indicate that the functional domain of Mce1 is between a.a. 211 and 567, and the heptapeptide sequence between 561 and 567 may play an important role in the enzyme activity. PMID:16342145

  10. Time-domain representation of frequency-dependent foundation impedance functions

    USGS Publications Warehouse

    Safak, E.

    2006-01-01

    Foundation impedance functions provide a simple means to account for soil-structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.

  11. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling.

    PubMed

    Shukla, Manu Shubhdarshan; Syed, Sajad Hussain; Goutte-Gattat, Damien; Richard, John Lalith Charles; Montel, Fabien; Hamiche, Ali; Travers, Andrew; Faivre-Moskalenko, Cendrine; Bednar, Jan; Hayes, Jeffrey J; Angelov, Dimitar; Dimitrov, Stefan

    2011-04-01

    Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ∼10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a 'defective' docking domain may be a primary structural role of H2A.Bbd in chromatin.

  12. The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling

    PubMed Central

    Shukla, Manu Shubhdarshan; Syed, Sajad Hussain; Goutte-Gattat, Damien; Richard, John Lalith Charles; Montel, Fabien; Hamiche, Ali; Travers, Andrew; Faivre-Moskalenko, Cendrine; Bednar, Jan; Hayes, Jeffrey J.; Angelov, Dimitar; Dimitrov, Stefan

    2011-01-01

    Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ∼10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a ‘defective’ docking domain may be a primary structural role of H2A.Bbd in chromatin. PMID:21131284

  13. Single Expressed Glycine Receptor Domains Reconstitute Functional Ion Channels without Subunit-specific Desensitization Behavior*

    PubMed Central

    Meiselbach, Heike; Vogel, Nico; Langlhofer, Georg; Stangl, Sabine; Schleyer, Barbara; Bahnassawy, Lamia'a; Sticht, Heinrich; Breitinger, Hans-Georg; Becker, Cord-Michael; Villmann, Carmen

    2014-01-01

    Cys loop receptors are pentameric arrangements of independent subunits that assemble into functional ion channels. Each subunit shows a domain architecture. Functional ion channels can be reconstituted even from independent, nonfunctional subunit domains, as shown previously for GlyRα1 receptors. Here, we demonstrate that this reconstitution is not restricted to α1 but can be transferred to other members of the Cys loop receptor family. A nonfunctional GlyR subunit, truncated at the intracellular TM3–4 loop by a premature stop codon, can be complemented by co-expression of the missing tail portion of the receptor. Compared with α1 subunits, rescue by domain complementation was less efficient when GlyRα3 or the GABAA/C subunit ρ1 was used. If truncation disrupted an alternative splicing cassette within the intracellular TM3–4 loop of α3 subunits, which also regulates receptor desensitization, functional rescue was not possible. When α3 receptors were restored by complementation using domains with and without the spliced insert, no difference in desensitization was found. In contrast, desensitization properties could even be transferred between α1/α3 receptor chimeras harboring or lacking the α3 splice cassette proving that functional rescue depends on the integrity of the alternative splicing cassette in α3. Thus, an intact α3 splicing cassette in the TM3–4 loop environment is indispensable for functional rescue, and the quality of receptor restoration can be assessed from desensitization properties. PMID:25143388

  14. The Tetramerization Domain Potentiates Kv4 Channel Function by Suppressing Closed-State Inactivation

    PubMed Central

    Tang, Yi-Quan; Zhou, Jing-Heng; Yang, Fan; Zheng, Jie; Wang, KeWei

    2014-01-01

    A-type Kv4 potassium channels undergo a conformational change toward a nonconductive state at negative membrane potentials, a dynamic process known as pre-open closed states or closed-state inactivation (CSI). CSI causes inhibition of channel activity without the prerequisite of channel opening, thus providing a dynamic regulation of neuronal excitability, dendritic signal integration, and synaptic plasticity at resting. However, the structural determinants underlying Kv4 CSI remain largely unknown. We recently showed that the auxiliary KChIP4a subunit contains an N-terminal Kv4 inhibitory domain (KID) that directly interacts with Kv4.3 channels to enhance CSI. In this study, we utilized the KChIP4a KID to probe key structural elements underlying Kv4 CSI. Using fluorescence resonance energy transfer two-hybrid mapping and bimolecular fluorescence complementation-based screening combined with electrophysiology, we identified the intracellular tetramerization (T1) domain that functions to suppress CSI and serves as a receptor for the binding of KID. Disrupting the Kv4.3 T1-T1 interaction interface by mutating C110A within the C3H1 motif of T1 domain facilitated CSI and ablated the KID-mediated enhancement of CSI. Furthermore, replacing the Kv4.3 T1 domain with the T1 domain from Kv1.4 (without the C3H1 motif) or Kv2.1 (with the C3H1 motif) resulted in channels functioning with enhanced or suppressed CSI, respectively. Taken together, our findings reveal a novel (to our knowledge) role of the T1 domain in suppressing Kv4 CSI, and that KChIP4a KID directly interacts with the T1 domain to facilitate Kv4.3 CSI, thus leading to inhibition of channel function. PMID:25185545

  15. Domain Engineering

    NASA Astrophysics Data System (ADS)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  16. Functions & Requirements for Debris Removal System Project A-2

    SciTech Connect

    PRECECHTEL, D.R.

    1999-12-29

    This revision of the Functions and Requirements Document updates the approved Functions and Requirements for Debris Removal Subproject WHC-SD-SNF-FRD-009, Rev. 0. It has been revised in its entirety to reflect the current scope of work for Debris Removal as canisters and lids under the K Basin Projects work breakdown structure (WBS). In this revision the canisters and lids will be consider debris and a new set of Functions and Requirements have been developed to remove the canisters and lids from the basin.

  17. BIM-Mediated Membrane Insertion of the BAK Pore Domain Is an Essential Requirement for Apoptosis

    PubMed Central

    Weber, Kathrin; Harper, Nicholas; Schwabe, John; Cohen, Gerald M.

    2013-01-01

    Summary BAK activation represents a key step during apoptosis, but how it converts into a mitochondria-permeabilizing pore remains unclear. By further delineating the structural rearrangements involved, we reveal that BAK activation progresses through a series of independent steps: BH3-domain exposure, N-terminal change, oligomerization, and membrane insertion. Employing a “BCL-XL-addiction” model, we show that neutralization of BCL-XL by the BH3 mimetic ABT-737 resulted in death only when cells were reconstituted with BCL-XL:BAK, but not BCL-2/ BCL-XL:BIM complexes. Although this resembles the indirect model, release of BAK from BCL-XL did not result in spontaneous adoption of the pore conformation. Commitment to apoptosis required association of the direct activator BIM with oligomeric BAK promoting its conversion to a membrane-inserted pore. The sequential nature of this cascade provides multiple opportunities for other BCL-2 proteins to interfere with or promote BAK activation and unites aspects of the indirect and direct activation models. PMID:24120870

  18. N-terminal Domains Elicit Formation of Functional Pmel17 Amyloid Fibrils*

    PubMed Central

    Watt, Brenda; van Niel, Guillaume; Fowler, Douglas M.; Hurbain, Ilse; Luk, Kelvin C.; Stayrook, Steven E.; Lemmon, Mark A.; Raposo, Graça; Shorter, James; Kelly, Jeffery W.; Marks, Michael S.

    2009-01-01

    Pmel17 is a transmembrane protein that mediates the early steps in the formation of melanosomes, the subcellular organelles of melanocytes in which melanin pigments are synthesized and stored. In melanosome precursor organelles, proteolytic fragments of Pmel17 form insoluble, amyloid-like fibrils upon which melanins are deposited during melanosome maturation. The mechanism(s) by which Pmel17 becomes competent to form amyloid are not fully understood. To better understand how amyloid formation is regulated, we have defined the domains within Pmel17 that promote fibril formation in vitro. Using purified recombinant fragments of Pmel17, we show that two regions, an N-terminal domain of unknown structure and a downstream domain with homology to a polycystic kidney disease-1 repeat, efficiently form amyloid in vitro. Analyses of fibrils formed in melanocytes confirm that the polycystic kidney disease-1 domain forms at least part of the physiological amyloid core. Interestingly, this same domain is also required for the intracellular trafficking of Pmel17 to multivesicular compartments within which fibrils begin to form. Although a domain of imperfect repeats (RPT) is required for fibril formation in vivo and is a component of fibrils in melanosomes, RPT is not necessary for fibril formation in vitro and in isolation is unable to adopt an amyloid fold in a physiologically relevant time frame. These data define the structural core of Pmel17 amyloid, imply that the RPT domain plays a regulatory role in timing amyloid conversion, and suggest that fibril formation might be physically linked with multivesicular body sorting. PMID:19840945

  19. Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding

    SciTech Connect

    Zhai Q.; Robinson H.; Landesman M. B.; Sundquist W. I.; Hill C. P.

    2011-12-01

    Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NC{sup Gag} protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements. We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding. Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.

  20. The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function

    PubMed Central

    Weiner, Joshua J.; Han, Lanlan; Peterson, Francis C.; Volkman, Brian F.; Silvaggi, Nicholas R.; Ulijasz, Andrew T.

    2015-01-01

    Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains. PMID:25875291

  1. Statistics and frequency-domain moveout for multiple-taper receiver functions

    NASA Astrophysics Data System (ADS)

    Park, J.; Levin, V.

    2016-10-01

    The multiple-taper correlation (MTC) algorithm for the estimation of teleseismic receiver functions (RFs) has desirable statistical properties. This paper presents several adaptations to the MTC algorithm that exploit its frequency-domain uncertainty estimates to generate stable RFs that include moveout corrections for deeper interfaces. Narrow-band frequency averaging implicit in spectral cross-correlation restricts the MTC-based RF estimates to resolve Ps converted phases only at short delay times, appropriate to the upper 100 km of Earth's lithosphere. The Ps conversions from deeper interfaces can be reconstructed by the MTC algorithm in two ways. Event cross-correlation computes a cross-correlation of single-taper spectrum estimates for a cluster of events rather than for a set of eigenspectrum estimates of a single P coda. To extend the reach of the algorithm, pre-stack moveout corrections in the frequency domain preserves the formal uncertainties of the RF estimates, which are used to weight RF stacks. Moving-window migration retains the multiple-taper approach, but cross-correlates the P-polarized motion with time-delayed SH and SV motion to focus on a Ps phase of interest. The frequency-domain uncertainties of bin-averaged RFs do not translate directly into the time domain. A jackknife over data records in each bin stack offers uncertainty estimates in the time domain while preserving uncertainty weighting in the frequency-domain RF stack.

  2. An Examination of the Domain of Multivariable Functions Using the Pirie-Kieren Model

    ERIC Educational Resources Information Center

    Sengul, Sare; Yildiz, Sevda Goktepe

    2016-01-01

    The aim of this study is to employ the Pirie-Kieren model so as to examine the understandings relating to the domain of multivariable functions held by primary school mathematics preservice teachers. The data obtained was categorized according to Pirie-Kieren model and demonstrated visually in tables and bar charts. The study group consisted of…

  3. School-Aged Children Born Preterm: Review of Functioning across Multiple Domains and Guidelines for Assessment

    ERIC Educational Resources Information Center

    Dempsey, Allison G.; Keller-Margulis, Milena; Mire, Sarah; Abrahamson, Catherine; Dutt, Sonia; Llorens, Ashlie; Payan, Anita

    2015-01-01

    Children born preterm are at risk for developmental deficits across multiple functional domains. As the rate of survival for preterm infants increases due to medical advancements, a greater understanding is needed for how to meet the needs of this growing population in schools. Because approximately 50-70% of children born preterm require…

  4. Collegiate Mathematics Students' Misconceptions of Domain and Zeros of Rational Functions

    ERIC Educational Resources Information Center

    Dotson, Geraldine Ting

    2009-01-01

    A new 12 item research questionnaire was developed specifically to assess collegiate mathematics students' concept image of domain and zeros of rational functions. The study was designed to validate Tall and Vinner's (1981) cognitive model. Support was found for the hypothesis that students' mathematical experience influences their growth, with…

  5. Frequency-Domain Green's Functions for Radar Waves in Heterogeneous 2.5D Media

    EPA Science Inventory

    Green’s functions for radar waves propagating in heterogeneous media may be calculated in the frequency domain using a hybrid of two numerical methods. The model is defined in the Cartesian coordinate system, and its electromagnetic properties may vary in the x and z directions, ...

  6. DLC1 Activation Requires Lipid Interaction through a Polybasic Region Preceding the RhoGAP Domain

    PubMed Central

    Erlmann, Patrik; Schmid, Simone; Horenkamp, Florian A.; Geyer, Matthias; Pomorski, Thomas G.

    2009-01-01

    Deleted in Liver Cancer 1 (DLC1) is a GTPase-activating protein (GAP) with specificity for RhoA, RhoB, and RhoC that is frequently deleted in various tumor types. By inactivating these small GTPases, DLC1 controls actin cytoskeletal remodeling and biological processes such as cell migration and proliferation. Here we provide evidence that DLC1 binds to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) through a previously unrecognized polybasic region (PBR) adjacent to its RhoGAP domain. Importantly, PI(4,5)P2-containing membranes are shown to stimulate DLC1 GAP activity in vitro. In living cells, a DLC1 mutant lacking an intact PBR inactivated Rho signaling less efficiently and was severely compromised in suppressing cell spreading, directed migration, and proliferation. We therefore propose that PI(4,5)P2 is an important cofactor in DLC1 regulation in vivo and that the PBR is essential for the cellular functions of the protein. PMID:19710422

  7. The SAH domain extends the functional length of the myosin lever

    PubMed Central

    Baboolal, Thomas G.; Sakamoto, Takeshi; Forgacs, Eva; White, Howard D.; Jackson, Scott M.; Takagi, Yasuharu; Farrow, Rachel E.; Molloy, Justin E.; Knight, Peter J.; Sellers, James R.; Peckham, Michelle

    2009-01-01

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5–2IQ). Electron microscopy of this chimera (Myo5–2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5–6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5–6IQ but much greater than for Myo5–2IQ. Myo5–2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5–6IQ in in-vitro single molecule assays. In comparison, Myo5–2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5–6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins. PMID:20018767

  8. The SAH domain extends the functional length of the myosin lever.

    PubMed

    Baboolal, Thomas G; Sakamoto, Takeshi; Forgacs, Eva; White, Howard D; Jackson, Scott M; Takagi, Yasuharu; Farrow, Rachel E; Molloy, Justin E; Knight, Peter J; Sellers, James R; Peckham, Michelle

    2009-12-29

    Stable, single alpha-helix (SAH) domains are widely distributed in the proteome, including in myosins, but their functions are unknown. To test whether SAH domains can act as levers, we replaced four of the six calmodulin-binding IQ motifs in the levers of mouse myosin 5a (Myo5) with the putative SAH domain of Dictyostelium myosin MyoM of similar length. The SAH domain was inserted between the IQ motifs and the coiled coil in a Myo5 HMM construct in which the levers were truncated from six to two IQ motifs (Myo5-2IQ). Electron microscopy of this chimera (Myo5-2IQ-SAH) showed the SAH domain was straight and 17 nm long as predicted, restoring the truncated lever to the length of wild-type (Myo5-6IQ). The powerstroke (of 21.5 nm) measured in the optical trap was slightly less than that for Myo5-6IQ but much greater than for Myo5-2IQ. Myo5-2IQ-SAH moved processively along actin at physiological ATP concentrations with similar stride and run lengths to Myo5-6IQ in in-vitro single molecule assays. In comparison, Myo5-2IQ is not processive under these conditions. Solution biochemical experiments indicated that the rear head did not mechanically gate the rate of ADP release from the lead head, unlike Myo5-6IQ. These data show that the SAH domain can form part of a functional lever in myosins, although its mechanical stiffness might be lower. More generally, we conclude that SAH domains can act as stiff structural extensions in aqueous solution and this structural role may be important in other proteins. PMID:20018767

  9. Structure reveals function of the dual variable domain immunoglobulin (DVD-Ig™) molecule

    PubMed Central

    Jakob, Clarissa G.; Edalji, Rohinton; Judge, Russell A.; DiGiammarino, Enrico; Li, Yingchun; Gu, Jijie; Ghayur, Tariq

    2013-01-01

    Several bispecific antibody-based formats have been developed over the past 25 years in an effort to produce a new generation of immunotherapeutics that target two or more disease mechanisms simultaneously. One such format, the dual-variable domain immunoglobulin (DVD-Ig™), combines the target binding domains of two monoclonal antibodies via flexible naturally occurring linkers, which yields a tetravalent IgG - like molecule. We report the structure of an interleukin (IL)12-IL18 DVD-Ig™ Fab (DFab) fragment with IL18 bound to the inner variable domain (VD) that reveals the remarkable flexibility of the DVD-Ig™ molecule and how the DVD-Ig™ format can function to bind four antigens simultaneously. An understanding of how the inner variable domain retains function is of critical importance for designing DVD-Ig™ molecules, and for better understanding of the flexibility of immunoglobulin variable domains and linkers, which may aid in the design of improved bi- and multi-specific biologics in general. PMID:23549062

  10. The charged region of Hsp90 modulates the function of the N-terminal domain

    PubMed Central

    Scheibel, Thomas; Siegmund, Heiko Ingo; Jaenicke, Rainer; Ganz, Peter; Lilie, Hauke; Buchner, Johannes

    1999-01-01

    Hsp90, an abundant heat shock protein that is highly expressed even under physiological conditions, is involved in the folding of key molecules of the cellular signal transduction system such as kinases and steroid receptors. It seems to contain two chaperone sites differing in substrate specificity. Binding of ATP or the antitumor drug geldanamycin alters the substrate affinity of the N-terminal chaperone site, whereas both substances show no influence on the C-terminal one. In wild-type Hsp90 the fragments containing the chaperone sites are connected by a highly charged linker of various lengths in different organisms. As this linker region represents the most striking difference between bacterial and eukaryotic Hsp90s, it may be involved in a gain of function of eukaryotic Hsp90s. Here, we have analyzed a fragment of yeast Hsp90 consisting of the N-terminal domain and the charged region (N272) in comparison with the isolated N-terminal domain (N210). We show that the charged region causes an increase in the affinity of the N-terminal domain for nonnative protein and establishes a crosstalk between peptide and ATP binding. Thus, the binding of peptide to N272 decreases its affinity for ATP and geldanamycin, whereas the ATP-binding properties of the monomeric N-terminal domain N210 are not influenced by peptide binding. We propose that the charged region connecting the two chaperone domains plays an important role in regulating chaperone function of Hsp90. PMID:9990018

  11. Structure-Function Analysis of the Mcl-1 Protein Identifies a Novel Senescence-regulating Domain.

    PubMed

    Demelash, Abeba; Pfannenstiel, Lukas W; Tannenbaum, Charles S; Li, Xiaoxia; Kalady, Matthew F; DeVecchio, Jennifer; Gastman, Brian R

    2015-09-01

    Unlike other antiapoptotic Bcl-2 family members, Mcl-1 also mediates resistance to cancer therapy by uniquely inhibiting chemotherapy-induced senescence (CIS). In general, Bcl-2 family members regulate apoptosis at the level of the mitochondria through a common prosurvival binding groove. Through mutagenesis, we determined that Mcl-1 can inhibit CIS even in the absence of its apoptotically important mitochondrion-localizing domains. This finding prompted us to generate a series of Mcl-1 deletion mutants from both the N and C termini of the protein, including one that contained a deletion of all of the Bcl-2 homology domains, none of which impacted anti-CIS capabilities. Through subsequent structure-function analyses of Mcl-1, we identified a previously uncharacterized loop domain responsible for the anti-CIS activity of Mcl-1. The importance of the loop domain was confirmed in multiple tumor types, two in vivo models of senescence, and by demonstrating that a peptide mimetic of the loop domain can effectively inhibit the anti-CIS function of Mcl-1. The results from our studies appear to be highly translatable because we discerned an inverse relationship between the expression of Mcl-1 and of various senescence markers in cancerous human tissues. In summary, our findings regarding the unique structural properties of Mcl-1 provide new approaches for targeted cancer therapy. PMID:26205817

  12. Chimeric hERG channels containing a tetramerization domain are functional and stable.

    PubMed

    Hausammann, Georg J; Grütter, Markus G

    2013-12-23

    Biochemical and detailed structural information of human ether-a-go-go-related gene (hERG) potassium channels are scarce but are a prerequisite to understand the unwanted interactions of hERG with drugs and the effect of mutations that lead to long QT syndrome. Despite the huge interest in hERG, to our knowledge, procedures that provide a purified, functional, and tetrameric hERG channel are not available. Here, we describe hybrid hERG molecules, termed chimeric hERG channels, in which the N-terminal Per-Arnt-Sim (PAS) domain is deleted and the C-terminal C-linker as well as the cyclic nucleotide binding domain (CNBD) portion is replaced by an artificial tetramerization domain. These chimeric hERG channels can be overexpressed in HEK cells, solubilized in detergent, and purified as tetramers. When expressed in Xenopus laevis oocytes, the chimeric channels exhibit efficient trafficking to the cell surface, whereas a hERG construct lacking the PAS and C-linker/CNBD domains is retained in the cytoplasm. The chimeric hERG channels retain essential hERG functions such as voltage-dependent gating and inhibition by astemizole and the scorpion toxin BeKm-1. The chimeric channels are thus powerful tools for helping to understand the contribution of the cytoplasmic hERG domains to the gating process and are suitable for in vitro biochemical and structural studies. PMID:24325597

  13. Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty.

    PubMed

    Chen, Yen-Shan; Racca, Joseph D; Sequeira, Paul W; Phillips, Nelson B; Weiss, Michael A

    2013-08-13

    The male program of therian mammals is determined by Sry, a transcription factor encoded by the Y chromosome. Specific DNA binding is mediated by a high mobility group (HMG) box. Expression of Sry in the gonadal ridge activates a Sox9-dependent gene regulatory network leading to testis formation. A subset of Sry alleles in superfamily Muroidea (order Rodentia) is remarkable for insertion of an unstable DNA microsatellite, most commonly encoding (as in mice) a CAG repeat-associated glutamine-rich domain. We provide evidence, based on an embryonic pre-Sertoli cell line, that this domain functions at a threshold length as a genetic capacitor to facilitate accumulation of variation elsewhere in the protein, including the HMG box. The glutamine-rich domain compensates for otherwise deleterious substitutions in the box and absence of nonbox phosphorylation sites to ensure occupancy of DNA target sites. Such compensation enables activation of a male transcriptional program despite perturbations to the box. Whereas human SRY requires nucleocytoplasmic shuttling and coupled phosphorylation, mouse Sry contains a defective nuclear export signal analogous to a variant human SRY associated with inherited sex reversal. We propose that the rodent glutamine-rich domain has (i) fostered accumulation of cryptic intragenic variation and (ii) enabled unmasking of such variation due to DNA replicative slippage. This model highlights genomic contingency as a source of protein novelty at the edge of developmental ambiguity and may underlie emergence of non-Sry-dependent sex determination in the radiation of Muroidea. PMID:23901118

  14. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence.

    PubMed

    Krishnan, Sushma; Petchiappan, Anushya; Singh, Albel; Bhatt, Apoorva; Chatterji, Dipankar

    2016-10-01

    Persistent R-loops lead to replicative stress due to RNA polymerase stalling and DNA damage. RNase H enzymes facilitate the organisms to survive in the hostile condition by removing these R-loops. MS_RHII-RSD was previously identified to be the second (p)ppGpp synthetase in Mycobacterium smegmatis. The unique presence of an additional RNase HII domain raises an important question regarding the significance of this bifunctional protein. In this report, we demonstrate its ability to hydrolyze R-loops in Escherichia coli exposed to UV stress. MS_RHII-RSD gene expression was upregulated under UV stress, and this gene deleted strain showed increased R-loop accumulation as compared to the wild type. The domains in isolation are known to be inactive, and the full length protein is required for its function. Domain interdependence studies using active site mutants reveal the necessity of a hexamer form with high alpha helical content. In previous studies, bacterial RNase type HI has been mainly implicated in R-loop hydrolysis, but in this study, the RNase HII domain containing protein showed the activity. The prospective of this differential RNase HII activity is discussed. This is the first report to implicate a (p)ppGpp synthetase protein in R-loop-induced stress response.

  15. Structural Requirements for Biological Activity of the Ninth and Tenth FIII Domains of Human Fibronectin*

    PubMed Central

    Grant, Richard P.; Spitzfaden, Claus; Altroff, Harri; Campbell, Iain D.; Mardon, Helen J.

    2006-01-01

    The ninth and tenth type III domains of fibronectin each contain specific cell binding sequences, RGD in FIII10 and PHSRN in FIII9, that act synergistically in mediating cell adhesion. We investigated the relationship between domain-domain orientation and synergistic adhesive activity of the FIII9 and FIII10 pair of domains. The interdomain interaction of the FIII9–10 pair was perturbed by introduction of short flexible linkers between the FIII9 and FIII10 domains. Incremental extensions of the interdomain link between FIII9 and FIII10 reduced the initial cell attachment, but had a much more pronounced effect on the downstream cell adhesion events of spreading and phosphorylation of focal adhesion kinase. The extent of disruption of cell adhesion depended upon the length of the interdomain linker. Nuclear magnetic resonance spectroscopy of the wild type and mutant FIII9–10 proteins demonstrated that the structure of the RGD-containing loop is unaffected by domain-domain interactions. We conclude that integrin-mediated cell adhesion to the central cell binding domain of fibronectin depends not only upon specific interaction sites, but also on the relative orientation of these sites. These data have implications for the molecular mechanisms by which integrin-ligand interactions are achieved. PMID:9045628

  16. THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)

    EPA Science Inventory

    A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...

  17. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  18. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin.

    PubMed

    Bhat, M A; Rios, J C; Lu, Y; Garcia-Fresco, G P; Ching, W; St Martin, M; Li, J; Einheber, S; Chesler, M; Rosenbluth, J; Salzer, J L; Bellen, H J

    2001-05-01

    Myelinated fibers are organized into distinct domains that are necessary for saltatory conduction. These domains include the nodes of Ranvier and the flanking paranodal regions where glial cells closely appose and form specialized septate-like junctions with axons. These junctions contain a Drosophila Neurexin IV-related protein, Caspr/Paranodin (NCP1). Mice that lack NCP1 exhibit tremor, ataxia, and significant motor paresis. In the absence of NCP1, normal paranodal junctions fail to form, and the organization of the paranodal loops is disrupted. Contactin is undetectable in the paranodes, and K(+) channels are displaced from the juxtaparanodal into the paranodal domains. Loss of NCP1 also results in a severe decrease in peripheral nerve conduction velocity. These results show a critical role for NCP1 in the delineation of specific axonal domains and the axon-glia interactions required for normal saltatory conduction. PMID:11395000

  19. In situ dissection of RNA functional subunits by domain-specific chromatin isolation by RNA purification (dChIRP).

    PubMed

    Quinn, Jeffrey J; Chang, Howard Y

    2015-01-01

    Here we describe domain-specific chromatin isolation by RNA purification (dChIRP), a technique for dissecting the functional domains of a target RNA in situ. For an RNA of interest, dChIRP can identify domain-level intramolecular and intermolecular RNA-RNA, RNA-protein, and RNA-DNA interactions and maps the RNA's genomic binding sites with higher precision than domain-agnostic methods. We illustrate how this technique has been applied to the roX1 lncRNA to resolve its domain-level architecture, discover its protein- and chromatin-interacting domains, and map its occupancy on the X chromosome.

  20. FEDERAL FACILITY COMPLIANCE AGREEMENT (FFCA) STACK ISOLATION PROJECT FUNCTIONS & REQUIREMENTS

    SciTech Connect

    TRANBARGER, R.K.

    2003-12-16

    This document delineates the functions and requirements for the FFCA Stack Isolation Project for the 244-A, 244-BX, 244-5, and 244-TX DCRTs. The isolation of each ventilation system and stack includes the electrical, instrumentation, and mechanical isolation of the ventilation system and the installation of primary and annulus breather filters to provide passive ventilation to meet the FFCA requirements.

  1. The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation.

    PubMed

    Saint, Malika; Sawhney, Sonal; Sinha, Ishani; Singh, Rana Pratap; Dahiya, Rashmi; Thakur, Anushikha; Siddharthan, Rahul; Natarajan, Krishnamurthy

    2014-05-01

    A common function of the TFIID and SAGA complexes, which are recruited by transcriptional activators, is to deliver TBP to promoters to stimulate transcription. Neither the relative contributions of the five shared TBP-associated factor (TAF) subunits in TFIID and SAGA nor the requirement for different domains in shared TAFs for transcriptional activation is well understood. In this study, we uncovered the essential requirement for the highly conserved C-terminal region (CRD) of Taf9, a shared TAF, for transcriptional activation in yeast. Transcriptome profiling performed under Gcn4-activating conditions showed that the Taf9 CRD is required for induced expression of ∼9% of the yeast genome. The CRD was not essential for the Taf9-Taf6 interaction, TFIID or SAGA integrity, or Gcn4 interaction with SAGA in cell extracts. Microarray profiling of a SAGA mutant (spt20Δ) yielded a common set of genes induced by Spt20 and the Taf9 CRD. Chromatin immunoprecipitation (ChIP) assays showed that, although the Taf9 CRD mutation did not impair Gcn4 occupancy, the occupancies of TFIID, SAGA, and the preinitiation complex were severely impaired at several promoters. These results suggest a crucial role for the Taf9 CRD in genome-wide transcription and highlight the importance of conserved domains, other than histone fold domains, as a common determinant for TFIID and SAGA functions.

  2. Convolutions of Rayleigh functions and their application to semi-linear equations in circular domains

    NASA Astrophysics Data System (ADS)

    Varlamov, Vladimir

    2007-03-01

    Rayleigh functions [sigma]l([nu]) are defined as series in inverse powers of the Bessel function zeros [lambda][nu],n[not equal to]0, where ; [nu] is the index of the Bessel function J[nu](x) and n=1,2,... is the number of the zeros. Convolutions of Rayleigh functions with respect to the Bessel index, are needed for constructing global-in-time solutions of semi-linear evolution equations in circular domains [V. Varlamov, On the spatially two-dimensional Boussinesq equation in a circular domain, Nonlinear Anal. 46 (2001) 699-725; V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424]. The study of this new family of special functions was initiated in [V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424], where the properties of R1(m) were investigated. In the present work a general representation of Rl(m) in terms of [sigma]l([nu]) is deduced. On the basis of this a representation for the function R2(m) is obtained in terms of the [psi]-function. An asymptotic expansion is computed for R2(m) as m-->[infinity]. Such asymptotics are needed for establishing function spaces for solutions of semi-linear equations in bounded domains with periodicity conditions in one coordinate. As an example of application of Rl(m) a forced Boussinesq equationutt-2b[Delta]ut=-[alpha][Delta]2u+[Delta]u+[beta][Delta](u2)+f with [alpha],b=const>0 and [beta]=const[set membership, variant]R is considered in a unit disc with homogeneous boundary and initial data. Construction of its global-in-time solutions involves the use of the functions R1(m) and R2(m) which are responsible for the nonlinear smoothing effect.

  3. Arsenic at very low concentrations alters glucocorticoid receptor (GR)-mediated gene activation but not GR-mediated gene repression: complex dose-response effects are closely correlated with levels of activated GR and require a functional GR DNA binding domain.

    PubMed

    Bodwell, Jack E; Kingsley, Lauren A; Hamilton, Joshua W

    2004-08-01

    Arsenic (As) contamination of drinking water is considered a principal environmental health threat throughout the world. Chronic intake is associated with an increased risk of cancer, diabetes, and cardiovascular disease, and recent studies suggest increased health risks at levels as low as 5-10 ppb. We report here that 0.05-1 microM (6-120 ppb) As showed stimulatory effects on glucocorticoid receptor (GR)-mediated gene activation in rat EDR3 hepatoma cells of both the endogenous tyrosine aminotransferase (TAT) gene and the reporter genes containing TAT glucocorticoid response elements. At slightly higher concentrations (1-3 microM), the effects of As became inhibitory. Thus, over this narrow concentration range, the effects of As changed from a 2- to 4-fold stimulation to a greater than 2-fold suppression in activity. Interestingly, the inhibitory effect of GR on both AP1- and NF-kappa B-mediated gene activation was not affected by As. The magnitude of GR stimulation and inhibition by As was highly dependent on the cellular level of hormone-activated GR. Mutational deletion studies indicated that the central DNA binding domain (DBD) of GR is the minimal region required for the As effect and does not require free sulfhydryls. Point mutations located within the DBD that have known structural consequences significantly altered the GR response to As. In particular, point mutations in the DBD that confer a DNA-bound GR confirmation abolished the low dose As stimulatory effect but enhanced the inhibitory response, further indicating that the DBD is important for mediating these As effects. PMID:15310238

  4. Disgust trait modulates frontal-posterior coupling as a function of disgust domain

    PubMed Central

    de Jong, Peter J.; Renken, Remco J.; Georgiadis, Janniko R.

    2013-01-01

    Following the two-stage model of disgust, ‘core disgust’ (e.g. elicited by rotten food) is extended to stimuli that remind us of our animal nature ‘AR disgust’ (e.g. mutilations, animalistic instincts). There is ample evidence that core and AR represent distinct domains of disgust elicitors. Moreover, people show large differences in their tendency to respond with disgust to potential disgust elicitors (propensity), as well as in their appraisal of experiencing disgust (sensitivity). Thus these traits may be important moderators of people's response patterns. Here, we aimed to find brain mechanisms associated with these distinct disgust domains and traits, as well as the interaction between them. The right ventrolateral occipitotemporal cortex, which preferentially responded to visual AR, was functionally coupled to the middle cingulate cortex (MCC), thalamus and prefrontal cortex (medial, dorsolateral), as a function of disgust domain. Coupling with the anterior part of MCC was modulated by disgust ‘propensity’, which was strongest during AR. Coupling with anterior insula and ventral premotor cortex was weaker, but relied fully on this domain–trait interaction. Disgust ‘sensitivity’ modulated left anterior insula activity irrespective of domain, and did not affect functional connectivity. Thus a frontal-posterior network that interacts with disgust ‘propensity’ dissects AR and core disgust. PMID:22258801

  5. 33 CFR 157.12f - Workshop functional test requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CARRYING OIL IN BULK Design, Equipment, and Installation § 157.12f Workshop functional test requirements... the specific design of equipment. A completed workshop certificate including the delivery test...; (2) A check of the correct function of the signal processor and the recording equipment...

  6. Identifying Similarities in Cognitive Subtest Functional Requirements: An Empirical Approach

    ERIC Educational Resources Information Center

    Frisby, Craig L.; Parkin, Jason R.

    2007-01-01

    In the cognitive test interpretation literature, a Rational/Intuitive, Indirect Empirical, or Combined approach is typically used to construct conceptual taxonomies of the functional (behavioral) similarities between subtests. To address shortcomings of these approaches, the functional requirements for 49 subtests from six individually…

  7. The Rho GTPase-activating proteins RGA-3 and RGA-4 are required to set the initial size of PAR domains in Caenorhabditis elegans one-cell embryos.

    PubMed

    Schonegg, Stephanie; Constantinescu, Alexandru T; Hoege, Carsten; Hyman, Anthony A

    2007-09-18

    Caenorhabditis elegans embryos establish cortical domains of PAR proteins of reproducible size before asymmetric cell division. The ways in which the size of these domains is set remain unknown. Here we identify the GTPase-activating proteins (GAPs) RGA-3 and RGA-4, which regulate the activity of the small GTPase RHO-1. rga-3/4(RNAi) embryos have a hypercontractile cortex, and the initial relative size of their anterior and posterior PAR domains is altered. Thus, RHO-1 activity appears to control the level of cortical contractility and concomitantly the size of cortical domains. These data support the idea that in C. elegans embryos the initial size of the PAR domains is set by regulating the contractile activity of the acto-myosin cytoskeleton through the activity of RHO-1. RGA-3/4 have functions different from CYK-4, the other known GAP required for the first cell division, showing that different GAPs cooperate to control the activity of the acto-myosin cytoskeleton in the first cell division of C. elegans embryos.

  8. Homotypic vacuole fusion in yeast requires organelle acidification and not the V-ATPase membrane domain.

    PubMed

    Coonrod, Emily M; Graham, Laurie A; Carpp, Lindsay N; Carr, Tom M; Stirrat, Laura; Bowers, Katherine; Bryant, Nia J; Stevens, Tom H

    2013-11-25

    Studies of homotypic vacuole-vacuole fusion in the yeast Saccharomyces cerevisiae have been instrumental in determining the cellular machinery required for eukaryotic membrane fusion and have implicated the vacuolar H(+)-ATPase (V-ATPase). The V-ATPase is a multisubunit, rotary proton pump whose precise role in homotypic fusion is controversial. Models formulated from in vitro studies suggest that it is the proteolipid proton-translocating pore of the V-ATPase that functions in fusion, with further studies in worms, flies, zebrafish, and mice appearing to support this model. We present two in vivo assays and use a mutant V-ATPase subunit to establish that it is the H(+)-translocation/vacuole acidification function, rather than the physical presence of the V-ATPase, that promotes homotypic vacuole fusion in yeast. Furthermore, we show that acidification of the yeast vacuole in the absence of the V-ATPase rescues vacuole-fusion defects. Our results clarify the in vivo requirements of acidification for membrane fusion.

  9. Mediating effects of the ICF domain of function and the gross motor function measure on the ICF domains of activity, and participation in children with cerebral palsy.

    PubMed

    Lee, Byoung-Hee; Kim, Yu-Mi; Jeong, Goo-Churl

    2015-10-01

    [Purpose] This study aimed to evaluate the mediating effect of gross motor function, measured using the Gross Motor Function Measure (GMFM) and of general function, measured using the International Classification of Functioning, Disability and Health-Child and Youth Check List (ICF-CY), on the ICF domains of activity and participation in children with cerebral palsy (CP). [Subjects] Ninety-five children with CP, from Seoul, Korea, participated in the study. [Methods] The GMFM was administered in its entirety to patients without orthoses or mobility aids. The ICF-CY was used to evaluate the degree of disability and health of subjects. [Results] GMFM score and ICF-CY function were negatively correlated to ICF-CY activity and participation. ICF-CY partially mediated the effects of the GMFM on activity and participation. [Conclusion] When establishing a treatment plan for a child with CP, limitations in activity and participation, as described by the ICF-CY, should be considered in addition to the child's physical abilities and development. In addition, the treatment plan should focus on increasing the child's activity and participation level, as well as his/her physical level.

  10. Structural and functional characterization of an atypical activation domain in erythroid Krüppel-like factor (EKLF)

    PubMed Central

    Mas, Caroline; Lussier-Price, Mathieu; Soni, Shefali; Morse, Thomas; Arseneault, Geneviève; Di Lello, Paola; Lafrance-Vanasse, Julien; Bieker, James J.; Omichinski, James G.

    2011-01-01

    Erythroid Krüppel-like factor (EKLF) plays an important role in erythroid development by stimulating β-globin gene expression. We have examined the details by which the minimal transactivation domain (TAD) of EKLF (EKLFTAD) interacts with several transcriptional regulatory factors. We report that EKLFTAD displays homology to the p53TAD and, like the p53TAD, can be divided into two functional subdomains (EKLFTAD1 and EKLFTAD2). Based on sequence analysis, we found that EKLFTAD2 is conserved in KLF2, KLF4, KLF5, and KLF15. In addition, we demonstrate that EKLFTAD2 binds the amino-terminal PH domain of the Tfb1/p62 subunit of TFIIH (Tfb1PH/p62PH) and four domains of CREB-binding protein/p300. The solution structure of the EKLFTAD2/Tfb1PH complex indicates that EKLFTAD2 binds Tfb1PH in an extended conformation, which is in contrast to the α-helical conformation seen for p53TAD2 in complex with Tfb1PH. These studies provide detailed mechanistic information into EKLFTAD functions as well as insights into potential interactions of the TADs of other KLF proteins. In addition, they suggest that not only have acidic TADs evolved so that they bind using different conformations on a common target, but that transitioning from a disordered to a more ordered state is not a requirement for their ability to bind multiple partners. PMID:21670263

  11. Engineered allosteric mutants of the integrin alphaMbeta2 I domain: structural and functional studies.

    PubMed Central

    McCleverty, Clare J; Liddington, Robert C

    2003-01-01

    The alpha-I domain, found in the alpha-subunit of the leucocyte integrins such as alphaMbeta2 and alphaLbeta2, switches between the open and closed tertiary conformations, reflecting the high- and low-affinity ligand-binding states of the integrin that are required for regulated cell adhesion and migration. In the present study we show, by using point mutations and engineered disulphide bonds, that ligand affinity can be reduced or increased allosterically by altering the equilibrium between the closed and open states. We determined equilibrium constants for the binding of two ligands, fibrinogen and intercellular cell-adhesion molecule 1, to the alphaM-I domain by surface plasmon resonance, and determined crystal structures of a low-affinity mutant. Locking the domain in the open conformation increases affinity by a factor of no greater than 10, consistent with a closely balanced equilibrium between the two conformations in the absence of ligand. This behaviour contrasts with that of the unliganded alphaL-I domain, for which the equilibrium lies strongly in favour of the closed conformation. These results suggest significant differences in the way the parent integrins regulate I domain conformation and hence ligand affinity. PMID:12611591

  12. A Protein Domain Co-Occurrence Network Approach for Predicting Protein Function and Inferring Species Phylogeny

    PubMed Central

    Wang, Zheng; Zhang, Xue-Cheng; Le, Mi Ha; Xu, Dong; Stacey, Gary; Cheng, Jianlin

    2011-01-01

    Protein Domain Co-occurrence Network (DCN) is a biological network that has not been fully-studied. We analyzed the properties of the DCNs of H. sapiens, S. cerevisiae, C. elegans, D. melanogaster, and 15 plant genomes. These DCNs have the hallmark features of scale-free networks. We investigated the possibility of using DCNs to predict protein and domain functions. Based on our experiment conducted on 66 randomly selected proteins, the best of top 3 predictions made by our DCN-based aggregated neighbor-counting method achieved a semantic similarity score of 0.81 to the actual Gene Ontology terms of the proteins. Moreover, the top 3 predictions using neighbor-counting, χ2, and a SVM-based method achieved an accuracy of 66%, 59%, and 61%, respectively, when used to predict specific Gene Ontology terms of human target domains. These predictions on average had a semantic similarity score of 0.82, 0.80, and 0.79 to the actual Gene Ontology terms, respectively. We also used DCNs to predict whether a domain is an enzyme domain, and our SVM-based and neighbor-inference method correctly classified 79% and 77% of the target domains, respectively. When using DCNs to classify a target domain into one of the six enzyme classes, we found that, as long as there is one EC number available in the neighboring domains, our SVM-based and neighboring-counting method correctly classified 92.4% and 91.9% of the target domains, respectively. Furthermore, we benchmarked the performance of using DCNs to infer species phylogenies on six different combinations of 398 single-chromosome prokaryotic genomes. The phylogenetic tree of 54 prokaryotic taxa generated by our DCNs-alignment-based method achieved a 93.45% similarity score compared to the Bergey's taxonomy. In summary, our studies show that genome-wide DCNs contain rich information that can be effectively used to decipher protein function and reveal the evolutionary relationship among species. PMID:21455299

  13. Stability of a pinned magnetic domain wall as a function of its internal configuration

    NASA Astrophysics Data System (ADS)

    Montaigne, F.; Duluard, A.; Briones, J.; Lacour, D.; Hehn, M.; Childress, J. R.

    2015-01-01

    It is shown that there are many stable configurations for a domain wall pinned by a notch along a magnetic stripe. The stability of several of these configurations is investigated numerically as a function of the thickness of the magnetic film. The depinning mechanism depends on the structure of the domain wall and on the thickness of the magnetic film. In the case of a spin-valve structure, it appears that the stray fields emerging from the hard layer at the notch location influence the stability of the micromagnetic configuration. Different depinning mechanisms are thus observed for the same film thickness depending on the magnetization orientation of the propagating domain. This conclusion qualitatively explains experimental magnetoresistance measurements.

  14. The functional integrity of the serpin domain of C1-inhibitor depends on the unique N-terminal domain, as revealed by a pathological mutant.

    PubMed

    Bos, Ineke G A; Lubbers, Yvonne T P; Roem, Dorina; Abrahams, Jan Pieter; Hack, C Erik; Eldering, Eric

    2003-08-01

    C1-inhibitor (C1-Inh) is a serine protease inhibitor (serpin) with a unique, non-conserved N-terminal domain of unknown function. Genetic deficiency of C1-Inh causes hereditary angioedema. A novel type of mutation (Delta 3) in exon 3 of the C1-Inh gene, resulting in deletion of Asp62-Thr116 in this unique domain, was encountered in a hereditary angioedema pedigree. Because the domain is supposedly not essential for inhibitory activity, the unexpected loss-of-function of this deletion mutant was further investigated. The Delta 3 mutant and three additional mutants starting at Pro76, Gly98, and Ser115, lacking increasing parts of the N-terminal domain, were produced recombinantly. C1-Inh76 and C1-Inh98 retained normal conformation and interaction kinetics with target proteases. In contrast, C1-Inh115 and Delta 3, which both lack the connection between the serpin and the non-serpin domain via two disulfide bridges, were completely non-functional because of a complex-like and multimeric conformation, as demonstrated by several criteria. The Delta 3 mutant also circulated in multimeric form in plasma from affected family members. The C1-Inh mutant reported here is unique in that deletion of an entire amino acid stretch from a domain not shared by other serpins leads to a loss-of-function. The deletion in the unique N-terminal domain results in a "multimerization phenotype" of C1-Inh, because of diminished stability of the central beta-sheet. This phenotype, as well as the location of the disulfide bridges between the serpin and the non-serpin domain of C1-Inh, suggests that the function of the N-terminal region may be similar to one of the effects of heparin in antithrombin III, maintenance of the metastable serpin conformation.

  15. UML Profiles for Design Decisions and Non-Functional Requirements

    SciTech Connect

    Zhu, Liming; Gorton, Ian

    2007-06-30

    A software architecture is composed of a collection of design decisions. Each design decision helps or hinders certain Non-Functional Requirements (NFR). Current software architecture views focus on expressing components and connectors in the system. Design decisions and their relationships with non-functional requirements are often captured in separate design documentation, not explicitly expressed in any views. This disassociation makes architecture comprehension and architecture evolution harder. In this paper, we propose a UML profile for modeling design decisions and an associated UML profile for modeling non-functional requirements in a generic way. The two UML profiles treat design decisions and nonfunctional requirements as first-class elements. Modeled design decisions always refer to existing architectural elements and thus maintain traceability between the two. We provide a mechanism for checking consistency over this traceability. An exemplar is given as

  16. Fine-tuning function: correlation of hinge domain interactions with functional distinctions between LacI and PurR.

    PubMed

    Swint-Kruse, Liskin; Larson, Christopher; Pettitt, B Montgomery; Matthews, Kathleen Shive

    2002-04-01

    LacI and PurR are highly homologous proteins. Their functional units are homodimers, with an N-terminal DNA binding domain that comprises the helix-turn-helix (HTH), N-linker, and hinge regions from both monomers. Hinge structural changes are known to occur upon DNA dissociation but are difficult to monitor experimentally. The initial steps of hinge unfolding were therefore examined using molecular dynamics simulations, utilizing a truncated, chimeric protein comprising the LacI HTH/N-linker and PurR hinge. A terminal Gly-Cys-Gly was added to allow "dimerization" through disulfide bond formation. Simulations indicate that differences in LacI and PurR hinge primary sequence affect the quaternary structure of the hinge x hinge' interface. However, these alternate hinge orientations would be sterically restricted by the core domain. These results prompted detailed comparison of recently available DNA-bound structures for LacI and truncated LacI(1-62) with the PurR structure. Examination revealed that different N-linker and hinge contacts to the core domain of the partner monomer (which binds effector molecule) affect the juxtapositions of the HTH, N-linker, and hinge regions in the DNA binding domain. In addition, the two full-length repressors exhibit significant differences in the interactions between the core and the C-linker connection to the DNA binding domain. Both linkers and the hinge have been implicated in the allosteric response of these repressors. Intriguingly, one functional difference between these two proteins is that they exhibit opposite allosteric response to effector. Simulations and observed structural distinctions are correlated with mutational analysis and sequence information from the LacI/GalR family to formulate a mechanism for fine-tuning individual repressor function.

  17. Exploring functional roles of TRPV1 intracellular domains with unstructured peptide-insertion screening

    PubMed Central

    Ma, Linlin; Yang, Fan; Vu, Simon; Zheng, Jie

    2016-01-01

    TRPV1 is a polymodal nociceptor for diverse physical and chemical stimuli that interact with different parts of the channel protein. Recent cryo-EM studies revealed detailed channel structures, opening the door for mapping structural elements mediating activation by each stimulus. Towards this goal, here we have combined unstructured peptide-insertion screening (UPS) with electrophysiological and fluorescence recordings to explore structural and functional roles of the intracellular regions of TRPV1 in mediating various activation stimuli. We found that most of the tightly packed protein regions did not tolerate structural perturbation by UPS when tested, indicating that structural integrity of the intracellular region is critical. In agreement with previous reports, Ca2+-dependent desensitization is strongly dependent on both intracellular N- and C-terminal domains; insertions of an unstructured peptide between these domains and the transmembrane core domain nearly eliminated Ca2+-dependent desensitization. In contrast, channel activations by capsaicin, low pH, divalent cations, and even heat are mostly intact in mutant channels containing the same insertions. These observations suggest that the transmembrane core domain of TRPV1, but not the intracellular domains, is responsible for sensing these stimuli. PMID:27666400

  18. Functional Equivalence of Retroviral MA Domains in Facilitating Psi RNA Binding Specificity by Gag

    PubMed Central

    Rye-McCurdy, Tiffiny; Olson, Erik D.; Liu, Shuohui; Binkley, Christiana; Reyes, Joshua-Paolo; Thompson, Brian R.; Flanagan, John M.; Parent, Leslie J.; Musier-Forsyth, Karin

    2016-01-01

    Retroviruses specifically package full-length, dimeric genomic RNA (gRNA) even in the presence of a vast excess of cellular RNA. The “psi” (Ψ) element within the 5′-untranslated region (5′UTR) of gRNA is critical for packaging through interaction with the nucleocapsid (NC) domain of Gag. However, in vitro Gag binding affinity for Ψ versus non-Ψ RNAs is not significantly different. Previous salt-titration binding assays revealed that human immunodeficiency virus type 1 (HIV-1) Gag bound to Ψ RNA with high specificity and relatively few charge interactions, whereas binding to non-Ψ RNA was less specific and involved more electrostatic interactions. The NC domain was critical for specific Ψ binding, but surprisingly, a Gag mutant lacking the matrix (MA) domain was less effective at discriminating Ψ from non-Ψ RNA. We now find that Rous sarcoma virus (RSV) Gag also effectively discriminates RSV Ψ from non-Ψ RNA in a MA-dependent manner. Interestingly, Gag chimeras, wherein the HIV-1 and RSV MA domains were swapped, maintained high binding specificity to cognate Ψ RNAs. Using Ψ RNA mutant constructs, determinants responsible for promoting high Gag binding specificity were identified in both systems. Taken together, these studies reveal the functional equivalence of HIV-1 and RSV MA domains in facilitating Ψ RNA selectivity by Gag, as well as Ψ elements that promote this selectivity. PMID:27657107

  19. Crystal Structure of a Functional Dimer of the PhoQ Sensor Domain

    SciTech Connect

    Cheung, J.; Bingman, C; Reyngold, M; Hendrickson, W; Waldburger, C

    2008-01-01

    The PhoP-PhoQ two-component system is a well studied bacterial signaling system that regulates virulence and stress response. Catalytic activity of the histidine kinase sensor protein PhoQ is activated by low extracellular concentrations of divalent cations such as Mg{sup 2+}, and subsequently the response regulator PhoP is activated in turn through a classic phosphotransfer pathway that is typical in such systems. The PhoQ sensor domains of enteric bacteria contain an acidic cluster of residues (EDDDDAE) that has been implicated in direct binding to divalent cations. We have determined crystal structures of the wild-type Escherichia coli PhoQ periplasmic sensor domain and of a mutant variant in which the acidic cluster was neutralized to conservative uncharged residues (QNNNNAQ). The PhoQ domain structure is similar to that of DcuS and CitA sensor domains, and this PhoQ-DcuS-CitA (PDC) sensor fold is seen to be distinct from the superficially similar PAS domain fold. Analysis of the wild-type structure reveals a dimer that allows for the formation of a salt bridge across the dimer interface between Arg-50' and Asp-179 and with nickel ions bound to aspartate residues in the acidic cluster. The physiological importance of the salt bridge to in vivo PhoQ function has been confirmed by mutagenesis. The mutant structure has an alternative, non-physiological dimeric association.

  20. The Dc-Module of Doublecortin: Dynamics, Domain Boundaries, and Functional Implications

    SciTech Connect

    Cierpicki,T.; Kim, M.; Cooper, D.; Derewenda, U.; Bushweller, J.; Derwenda, Z.

    2007-01-01

    The doublecortin-like (DC) domains, which usually occur in tandem, constitute novel microtubule-binding modules. They were first identified in doublecortin (DCX), a protein expressed in migrating neurons, and in the doublecortin-like kinase (DCLK). They are also found in other proteins, including the RP1 gene product which-when mutated-causes a form of inherited blindness. We previously reported an X-ray structure of the N-terminal DC domain of DCLK (N-DCLK), and a solution structure of an analogous module of human doublecortin (N-DCX). These studies showed that the DC domain has a tertiary fold closely reminiscent of ubiquitin and similar to several GTPase-binding domains. We now report an X-ray structure of a mutant of N-DCX, in which the C-terminal fragment (residues 139-147) unexpectedly shows an altered, 'open' conformation. However, heteronuclear NMR data show that this C-terminal fragment is only transiently open in solution, and assumes a predominantly 'closed' conformation. While the 'open' conformation may be artificially stabilized by crystal packing interactions, the observed switching between the 'open' and 'closed' conformations, which shortens the linker between the two DC-domains by {approx}20 A, is likely to be of functional importance in the control of tubulin polymerization and microtubule bundling by doublecortin.

  1. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    NASA Astrophysics Data System (ADS)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  2. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.

    PubMed

    Mao, Hailiang; Sun, Shengyuan; Yao, Jialing; Wang, Chongrong; Yu, Sibin; Xu, Caiguo; Li, Xianghua; Zhang, Qifa

    2010-11-01

    Grain yield in many cereal crops is largely determined by grain size. Here we report the genetic and molecular characterization of GS3, a major quantitative trait locus for grain size. It functions as a negative regulator of grain size and organ size. The wild-type isoform is composed of four putative domains: a plant-specific organ size regulation (OSR) domain in the N terminus, a transmembrane domain, a tumor necrosis factor receptor/nerve growth factor receptor (TNFR/NGFR) family cysteine-rich domain, and a von Willebrand factor type C (VWFC) in the C terminus. These domains function differentially in grain size regulation. The OSR domain is both necessary and sufficient for functioning as a negative regulator. The wild-type allele corresponds to medium grain. Loss of function of OSR results in long grain. The C-terminal TNFR/NGFR and VWFC domains show an inhibitory effect on the OSR function; loss-of-function mutations of these domains produced very short grain. This study linked the functional domains of the GS3 protein to natural variation of grain size in rice. PMID:20974950

  3. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    PubMed Central

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  4. Functional analysis of TPM domain containing Rv2345 of Mycobacterium tuberculosis identifies its phosphatase activity.

    PubMed

    Sinha, Avni; Eniyan, Kandasamy; Sinha, Swati; Lynn, Andrew Michael; Bajpai, Urmi

    2015-07-01

    Mycobacterium tuberculosis (Mtb) is the causal agent of tuberculosis, the second largest infectious disease. With the rise of multi-drug resistant strains of M. tuberculosis, serious challenge lies ahead of us in treating the disease. The availability of complete genome sequence of Mtb has improved the scope for identifying new proteins that would not only further our understanding of biology of the organism but could also serve to discover new drug targets. In this study, Rv2345, a hypothetical membrane protein of M. tuberculosis H37Rv, which is reported to be a putative ortholog of ZipA cell division protein has been assigned function through functional annotation using bioinformatics tools followed by experimental validation. Sequence analysis showed Rv2345 to have a TPM domain at its N-terminal region and predicted it to have phosphatase activity. The TPM domain containing region of Rv2345 was cloned and expressed using pET28a vector in Escherichia coli and purified by Nickel affinity chromatography. The purified TPM domain was tested in vitro and our results confirmed it to have phosphatase activity. The enzyme activity was first checked and optimized with pNPP as substrate, followed by using ATP, which was also found to be used as substrate by the purified protein. Hence sequence analysis followed by in vitro studies characterizes TPM domain of Rv2345 to contain phosphatase activity.

  5. The rod domain is not essential for the function of plectin in maintaining tissue integrity

    PubMed Central

    Ketema, Mirjam; Secades, Pablo; Kreft, Maaike; Nahidiazar, Leila; Janssen, Hans; Jalink, Kees; de Pereda, Jose M.; Sonnenberg, Arnoud

    2015-01-01

    Epidermolysis bullosa simplex associated with late-onset muscular dystrophy (EBS-MD) is an autosomal recessive disorder resulting from mutations in the plectin gene. The majority of these mutations occur within the large exon 31 encoding the central rod domain and leave the production of a low-level rodless plectin splice variant unaffected. To investigate the function of the rod domain, we generated rodless plectin mice through conditional deletion of exon 31. Rodless plectin mice develop normally without signs of skin blistering or muscular dystrophy. Plectin localization and hemidesmosome organization are unaffected in rodless plectin mice. However, superresolution microscopy revealed a closer juxtaposition of the C-terminus of plectin to the integrin β4 subunit in rodless plectin keratinocytes. Wound healing occurred slightly faster in rodless plectin mice than in wild-type mice, and keratinocytes migration was increased in the absence of the rod domain. The faster migration of rodless plectin keratinocytes is not due to altered biochemical properties because, like full-length plectin, rodless plectin is a dimeric protein. Our data demonstrate that rodless plectin can functionally compensate for the loss of full-length plectin in mice. Thus the low expression level of plectin rather than the absence of the rod domain dictates the development of EBS-MD. PMID:25971800

  6. Activation of p115-RhoGEF requires direct association of Gα13 and the Dbl homology domain.

    PubMed

    Chen, Zhe; Guo, Liang; Hadas, Jana; Gutowski, Stephen; Sprang, Stephen R; Sternweis, Paul C

    2012-07-20

    RGS-containing RhoGEFs (RGS-RhoGEFs) represent a direct link between the G(12) class of heterotrimeric G proteins and the monomeric GTPases. In addition to the canonical Dbl homology (DH) and pleckstrin homology domains that carry out the guanine nucleotide exchange factor (GEF) activity toward RhoA, these RhoGEFs also possess RGS homology (RH) domains that interact with activated α subunits of G(12) and G(13). Although the GEF activity of p115-RhoGEF (p115), an RGS-RhoGEF, can be stimulated by Gα(13), the exact mechanism of the stimulation has remained unclear. Using combined studies with small angle x-ray scattering, biochemistry, and mutagenesis, we identify an additional binding site for activated Gα(13) in the DH domain of p115. Small angle x-ray scattering reveals that the helical domain of Gα(13) docks onto the DH domain, opposite to the surface of DH that binds RhoA. Mutation of a single tryptophan residue in the α3b helix of DH reduces binding to activated Gα(13) and ablates the stimulation of p115 by Gα(13). Complementary mutations at the predicted DH-binding site in the αB-αC loop of the helical domain of Gα(13) also affect stimulation of p115 by Gα(13). Although the GAP activity of p115 is not required for stimulation by Gα(13), two hydrophobic motifs in RH outside of the consensus RGS box are critical for this process. Therefore, the binding of Gα(13) to the RH domain facilitates direct association of Gα(13) to the DH domain to regulate its exchange activity. This study provides new insight into the mechanism of regulation of the RGS-RhoGEF and broadens our understanding of G protein signaling.

  7. Sox100B, a Drosophila group E Sox-domain gene, is required for somatic testis differentiation.

    PubMed

    Nanda, S; DeFalco, T J; Loh, S Hui Yong; Phochanukul, N; Camara, N; Van Doren, M; Russell, S

    2009-01-01

    Sex determination mechanisms are thought to evolve rapidly and show little conservation among different animal species. For example, the critical gene on the Y chromosome, SRY, that determines sex in most mammals, is not found in other animals. However, a related Sox domain transcription factor, SOX9, is also required for testis development in mammals and exhibits male-specific gonad expression in other vertebrate species. Previously, we found that the Drosophila orthologue of SOX9, Sox100B, is expressed male-specifically during gonad development. We now investigate the function of Sox100B and find, strikingly, that Sox100B is essential for testis development in Drosophila. In Sox100B mutants, the adult testis is severely reduced and fails to interact with other parts of the reproductive tract, which are themselves unaffected. While a testis initially forms in Sox100B mutants, it fails to undergo proper morphogenesis during pupal stages, likely due to defects in the pigment cells. In contrast, no substantive defects are observed in ovary development in Sox100B mutant females. Thus, as is observed in mammals, a Sox9 homolog is essential for sex-specific gonad development in Drosophila, suggesting that the molecular mechanisms regulating sexually dimorphic gonad development may be more conserved than previously suspected.

  8. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes

    SciTech Connect

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E.

    2010-11-15

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  9. Domain organization in Candida glabrata THI6, a bifunctional enzyme required for thiamin biosynthesis in eukaryotes.

    PubMed

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P; Ealick, Steven E

    2010-11-16

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 Å apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5β-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  10. Phosphatidylserine exposure is required for ADAM17 sheddase function

    PubMed Central

    Sommer, Anselm; Kordowski, Felix; Büch, Joscha; Maretzky, Thorsten; Evers, Astrid; Andrä, Jörg; Düsterhöft, Stefan; Michalek, Matthias; Lorenzen, Inken; Somasundaram, Prasath; Tholey, Andreas; Sönnichsen, Frank D.; Kunzelmann, Karl; Heinbockel, Lena; Nehls, Christian; Gutsmann, Thomas; Grötzinger, Joachim; Bhakdi, Sucharit; Reiss, Karina

    2016-01-01

    ADAM17, a prominent member of the ‘Disintegrin and Metalloproteinase' (ADAM) family, controls vital cellular functions through cleavage of transmembrane substrates. Here we present evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase activity. PS exposure is tightly coupled to substrate shedding provoked by diverse ADAM17 activators. PS dependency is demonstrated in the following: (a) in Raji cells undergoing apoptosis; (b) in mutant PSA-3 cells with manipulatable PS content; and (c) in Scott syndrome lymphocytes genetically defunct in their capacity to externalize PS in response to intracellular Ca2+ elevation. Soluble phosphorylserine but not phosphorylcholine inhibits substrate cleavage. The isolated membrane proximal domain (MPD) of ADAM17 binds to PS but not to phosphatidylcholine liposomes. A cationic PS-binding motif is identified in this domain, replacement of which abrogates liposome-binding and renders the protease incapable of cleaving its substrates in cells. We speculate that surface-exposed PS directs the protease to its targets where it then executes its shedding function. PMID:27161080

  11. Genome-wide analysis of enzyme structure-function combination across three domains of life.

    PubMed

    Zhang, Ziding; Tang, Yu-Rong

    2007-01-01

    To investigate diverse enzyme structure-function combination (SFC) types in different species, 34 different genome sequences were annotated using the protein catalytic domain database SCOPEC (http://www.enzome.com/enzome/), in which both the structure and function for each entry are known. Annotated enzymes with catalytic domains from the same SCOP superfamily are considered to have an identical structure. Annotated enzymes sharing the identical three-digit EC number are considered to have the same enzymatic function. Results reveal that the different SFC types for enzymes identified in archaea, bacteria and eukaryota are 137, 300 and 313, respectively. About 80% of the SFCs identified in archaea can be consistently found in bacteria and eukaryota species, whereas 28% and 35% combination types in bacteria and eukaryota respectively are unique to their corresponding groups. The number of functions per structure and the number of structures per function for the annotated sequences were measured in different species. Furthermore, a new concept was proposed to represent enzymatic structures as a functional similarity network. Thus, the current study will be helpful to enhance the global view on the evolution of enzymatic structure and function.

  12. Using the structure-function linkage database to characterize functional domains in enzymes.

    PubMed

    Brown, Shoshana; Babbitt, Patricia

    2014-12-12

    The Structure-Function Linkage Database (SFLD; http://sfld.rbvi.ucsf.edu/) is a Web-accessible database designed to link enzyme sequence, structure, and functional information. This unit describes the protocols by which a user may query the database to predict the function of uncharacterized enzymes and to correct misannotated functional assignments. The information in this unit is especially useful in helping a user discriminate functional capabilities of a sequence that is only distantly related to characterized sequences in publicly available databases.

  13. Understanding the role of mirror neurons in action understanding will require more than a domain-general account.

    PubMed

    Martin, Alia; Santos, Laurie R

    2014-04-01

    Cook et al. propose that mirror neurons emerge developmentally through a domain-general associative mechanism. We argue that experience-sensitivity does not rule out an adaptive or genetic argument for mirror neuron function, and that current evidence suggests that mirror neurons are more specialized than the authors' account would predict. We propose that future work integrate behavioral and neurophysiological techniques used with primates to examine the proposed functions of mirror neurons in action understanding.

  14. The dimerization domain in DapE enzymes is required for catalysis.

    PubMed

    Nocek, Boguslaw; Starus, Anna; Makowska-Grzyska, Magdalena; Gutierrez, Blanca; Sanchez, Stephen; Jedrzejczak, Robert; Mack, Jamey C; Olsen, Kenneth W; Joachimiak, Andrzej; Holz, Richard C

    2014-01-01

    The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.

  15. What is the minimal vestibular function required for compensation?

    NASA Technical Reports Server (NTRS)

    Black, F. O.; Wade, S. W.; Nashner, L. M.

    1996-01-01

    Living with an uncompensated, abnormal vestibular system requires oppressive modification of life style and often prevents return to work and activities of daily living. Patients with vestibular abnormalities were studied to determine the minimal residual vestibular function required to achieve compensation. Three groups of patients with (a) complete unilateral loss of vestibular function with normal horizontal canal-vestibulo-ocular (HCVOR) function in the opposite ear, (b) complete unilateral loss with abnormal HCVOR function in the opposite ear, and (c) bilateral reduction of vestibular function from aminoglycoside toxicity underwent vestibuloocular (VOR), optokinetic (OKN), visual-VOR (VVOR), and computerized dynamic posturography (CDP) tests before and after therapeutic procedures. Results suggest that a minimal VOR response amplitude must be present for compensation of VVOR function to occur. The roles of VOR and OKN phase shifts in vestibular compensation are more complicated and require further study. Compensation of vestibulospinal function does not necessarily accompany VOR or VVOR compensation. Ascending and descending vestibular compensatory mechanisms may involve different spatial sensory inputs. Results of these studies have important implications for the diagnosis and treatment of patients with vestibular disorders, including selection and monitoring of patients for therapeutic regimens such as vestibular nerve section and streptomycin therapy.

  16. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain.

    PubMed Central

    Tornow, J; Zeng, X; Gao, W; Santangelo, G M

    1993-01-01

    In Saccharomyces cerevisiae, efficient expression of glycolytic and translational component genes requires two DNA binding proteins, RAP1 (which binds to UASRPG) and GCR1 (which binds to the CT box). We generated deletions in GCR1 to test the validity of several different models for GCR1 function. We report here that the C-terminal half of GCR1, which includes the domain required for DNA binding to the CT box in vitro, can be removed without affecting GCR1-dependent transcription of either the glycolytic gene ADH1 or the translational component genes TEF1 and TEF2. We have also identified an activation domain within a segment of the GCR1 protein (the N-terminal third) that is essential for in vivo function. RAP1 and GCR1 can be co-immunoprecipitated from whole cell extracts, suggesting that they form a complex in vivo. The data are most consistent with a model in which GCR1 is attracted to DNA through contact with RAP1. Images PMID:8508768

  17. Differential function of the two nucleotide binding domains on cystic fibrosis transmembrane conductance regulator.

    PubMed

    Nagel, G

    1999-12-01

    The genetic disease cystic fibrosis is caused by defects in the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR). CFTR belongs to the family of ABC transporters. In contrast to most other members of this family which transport substrates actively across a membrane, the main function of CFTR is to regulate passive flux of substrates across the plasma membrane. Chloride channel activity of CFTR is dependent on protein phosphorylation and presence of nucleoside triphosphates. From electrophysiological studies of CFTR detailed models of its regulation by phosphorylation and nucleotide interaction have evolved. These investigations provide ample evidence that ATP hydrolysis is crucial for CFTR gating. It becomes apparent that the two nucleotide binding domains on CFTR not only diverge strongly in sequence, but also in function. Based on previous models and taking into account new data from pre-steady-state experiments, a refined model for the action of nucleotides at two nucleotide binding domains was recently proposed.

  18. Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors

    PubMed Central

    Hopf, Thomas A.; Morinaga, Satoshi; Ihara, Sayoko; Touhara, Kazushige; Marks, Debora S.; Benton, Richard

    2015-01-01

    Insect Odorant Receptors (ORs) comprise an enormous protein family that translates environmental chemical signals into neuronal electrical activity. These heptahelical receptors are proposed to function as ligand-gated ion channels and/or to act metabotropically as G protein-coupled receptors (GPCRs). Resolving their signalling mechanism has been hampered by the lack of tertiary structural information and primary sequence similarity to other proteins. We use amino acid evolutionary covariation across these ORs to define restraints on structural proximity of residue pairs, which permit de novo generation of three-dimensional models. The validity of our analysis is supported by the location of functionally important residues in highly constrained regions of the protein. Importantly, insect OR models exhibit a distinct transmembrane domain packing arrangement to that of canonical GPCRs, establishing the structural unrelatedness of these receptor families. The evolutionary couplings and models predict odour binding and ion conduction domains, and provide a template for rationale structure-activity dissection. PMID:25584517

  19. Boundary values of functions in a Sobolev space with Muckenhoupt weight on some non-Lipschitz domains

    SciTech Connect

    Tyulenev, A I

    2014-08-01

    This paper gives an explicit description of the traces of functions in a weighted Sobolev space (with local Muckenhoupt weight) on the domain lying between two graphs of Lipschitz functions and on the complement of the closure of this domain. Bibliography: 11 titles.

  20. A flavin-mononucleotide-binding site in Hansenula anomala nicked flavocytochrome b2, requiring the association of two domains.

    PubMed

    Gervais, M; Labeyrie, F; Risler, Y; Vergnes, O

    1980-10-01

    Previous experiments in our laboratory with Saccharomyces cervisiae flavocytochrom b2 indicated that both fragments alpha and beta of the enzyme after cleavage by yeast proteases are required to form the flavin site. More detailed experiments have not been carried out on the nicked Hansenula anomala enzyme obtained by tryptic cleavage. A method has been devised that gives a quantitative separation in 4 M urea of beta, and alpha with its heme still bound. The characteristics of the various species: isolated alpha and beta and mixed alpha + beta were studied in 4 M urea and after elimination of this reagent by dialysis in the presence of FMN and 2-mercaptoethanol. Several methods, including heme spectroscopy, tryptophan fluorescence, sedimentation studies, and titration of bound flavin, were used. The results indicate that isolated alpha and beta have a folded globular structure after renaturation. The flavin binding to the alpha + beta mixture was important (50-100%) with recovery of the flavodehydrogenase activity. In contrast, binding was not detectable (< 0.5%, Kf > 10 mM) for isolated alpha and beta. As far as mononucleotide binding is concerned, such a cooperative requirement for two folding domains has never been reported in other enzymes. The present results are discussed together with others obtained in our laboratory which demonstrate that, as deduced from their sensitivity to trypsin, the structure of S. cerevisiae and H. anomala flavocytochrome b2 protomers is triglobular 'n-x-beta' (n and x combined within alpha). The tetramer assembly, which remains intact as a nicked enzyme (alpha beta)4 after the first trypsin cleavage, is broken down following a second cleavage of the chain into four cytochrome cores (n) and a functional T-flavodehydrogenase entity, a tetramer of the type (x beta)4. PMID:7439181

  1. Affinity and specificity requirements for the first Src homology 3 domain of the Crk proteins.

    PubMed Central

    Knudsen, B S; Zheng, J; Feller, S M; Mayer, J P; Burrell, S K; Cowburn, D; Hanafusa, H

    1995-01-01

    The specificity of SH3 domain complex formation plays an important role in determining signal transduction events. We have previously identified a highly specific interaction between the first CrkSH3 domain [CrkSH3(1)] and proline-rich sequences in the guanine nucleotide exchange factor C3G. A 10 amino acid peptide derived from the first proline-rich sequence (P3P4P5A6L7P8P9K10K11R12) bound with a Kd of 1.89 +/- 0.06 microM and fully retained the high affinity and unique selectivity for the CrkSH3(1) domain. Mutational analysis showed that P5, P8, L7 and K10 are critical for high affinity binding. A conservative mutation, K10R, significantly decreased the affinity for the CrkSH3(1) domain while increasing the affinity for Grb2. Comparative binding studies with the K10R and K10A mutant peptides to c-Crk and v-Crk further suggested that K10 binds via a charge-dependent and a charge-independent interaction to the RT loop of the CrkSH3(1) domain. Besides determining important structural features necessary for high affinity and specificity binding to the CrkSH3(1) domain, our results also demonstrate that a conservative mutation in a single amino acid can significantly alter the specificity of an SH3 binding peptide. Images PMID:7774577

  2. Space Tug avionics definition study. Volume 2: Avionics functional requirements

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Flight and ground operational phases of the tug/shuttle system are analyzed to determine the general avionics support functions that are needed during each of the mission phases and sub-phases. Each of these general support functions is then expanded into specific avionics system requirements, which are then allocated to the appropriate avionics subsystems. This process is then repeated at the next lower level of detail where these subsystem requirements are allocated to each of the major components that comprise a subsystem.

  3. Differential Contributions of Nonmuscle Myosin II Isoforms and Functional Domains to Stress Fiber Mechanics.

    PubMed

    Chang, Ching-Wei; Kumar, Sanjay

    2015-09-04

    While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual SFs. SF retraction dynamics associated with MIIA and MIIB suppression qualitatively phenocopy our earlier measurements in the setting of Rho kinase (ROCK) and myosin light chain kinase (MLCK) inhibition, respectively. Furthermore, fluorescence imaging and photobleaching recovery reveal that MIIA and MIIB are enriched in and more stably localize to ROCK- and MLCK-controlled central and peripheral SFs, respectively. Additional domain-mapping studies surprisingly reveal that deletion of the head domain speeds SF retraction, which we ascribe to reduced drag from actomyosin crosslinking and frictional losses. We propose a model in which ROCK/MIIA and MLCK/MIIB functionally regulate common pools of SFs, with MIIA crosslinking and motor functions jointly contributing to SF retraction dynamics and cellular traction forces.

  4. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold

    PubMed Central

    Zhang, Hua; Zhu, Fan; Yang, Tiandi; Ding, Lei; Zhou, Meixian; Li, Jingzhi; Haslam, Stuart M; Dell, Anne; Erlandsen, Heidi; Wu, Hui

    2014-01-01

    More than 33,000 glycosyltransferases have been identified. Structural studies, however, have only revealed two distinct glycosyltransferase (GT) folds, GT-A and GT-B. Here we report a 1.34 Å resolution X-ray crystallographic structure of a previously uncharacterized “domain of unknown function” 1792 (DUF1792) and show that the domain adopts a new fold and is required for glycosylation of a family of serine-rich repeat streptococcal adhesins. Biochemical studies reveal that the domain is a glucosyltransferase, and it catalyzes the transfer of glucose to the branch point of the hexasaccharide O-linked to the serine-rich repeat of the bacterial adhesin, Fap1 of Streptococcus parasanguinis. DUF1792 homologs from both Gram-positive and Gram-negative bacteria also exhibit the activity. Thus DUF1792 represents a new family of glycosyltransferases, so we designate it as a GT-D glycosyltransferase fold. As the domain is highly conserved in bacteria and not found in eukaryotes, it can be explored as a new antibacterial target. PMID:25023666

  5. A Conserved C-Terminal Domain of the Aspergillus fumigatus Developmental Regulator MedA Is Required for Nuclear Localization, Adhesion and Virulence

    PubMed Central

    Al Abdallah, Qusai; Choe, Se-In; Campoli, Paolo; Baptista, Stefanie; Gravelat, Fabrice N.; Lee, Mark J.; Sheppard, Donald C.

    2012-01-01

    MedA is a developmental regulator that is conserved in the genome of most filamentous fungi. In the pathogenic fungus Aspergillus fumigatus MedA regulates conidiogenesis, adherence to host cells, and pathogenicity. The mechanism by which MedA governs these phenotypes remains unknown. Although the nuclear import of MedA orthologues has been reported in other fungi, no nuclear localization signal, DNA-binding domain or other conserved motifs have been identified within MedA. In this work, we performed a deletion analysis of MedA and identified a novel domain within the C-terminal region of the protein, designated MedA346–557, that is necessary and sufficient for nuclear localization of MedA. We further demonstrate that MedA nuclear localization is required for the function of MedA. Surprisingly, expression of the minimal nuclear localization fragment MedA346–557 alone was sufficient to restore conidogenesis, biofilm formation and virulence to the medA mutant strain. Collectively these results suggest that MedA functions in the regulation of transcription, and that the MedA346–557 domain is both necessary and sufficient to mediate MedA function. PMID:23185496

  6. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response.

    PubMed

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-10-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  7. Orbit targeting specialist function: Level C formulation requirements

    NASA Technical Reports Server (NTRS)

    Dupont, A.; Mcadoo, S.; Jones, H.; Jones, A. K.; Pearson, D.

    1978-01-01

    A definition of the level C requirements for onboard maneuver targeting software is provided. Included are revisions of the level C software requirements delineated in JSC IN 78-FM-27, Proximity Operations Software; Level C Requirements, dated May 1978. The software supports the terminal phase midcourse (TPM) maneuver, braking and close-in operations as well as supporting computation of the rendezvous corrective combination maneuver (NCC), and the terminal phase initiation (TPI). Specific formulation is contained here for the orbit targeting specialist function including the processing logic, linkage, and data base definitions for all modules. The crew interface with the software is through the keyboard and the ORBIT-TGT display.

  8. Targeting Cell Membrane Lipid Rafts by Stoichiometric Functionalization of Gold Nanoparticles With a Sphingolipid-Binding Domain Peptide.

    PubMed

    Paramelle, David; Nieves, Daniel; Brun, Benjamin; Kraut, Rachel S; Fernig, David G

    2015-04-22

    A non-membrane protein-based nanoparticle agent for the tracking of lipid rafts on live cells is produced by stoichiometric functionalization of gold nanoparticles with a previously characterized sphingolipid- and cell membrane microdomain-binding domain peptide (SBD). The SBD peptide is inserted in a self-assembled monolayer of peptidol and alkane thiol ethylene glycol, on gold nanoparticles surface. The stoichiometric functionalization of nanoparticles with the SBD peptide, essential for single molecule tracking, is achieved by means of non-affinity nanoparticle purification. The SBD-nanoparticles have remarkable long-term resistance to electrolyte-induced aggregation and ligand-exchange and have no detectable non-specific binding to live cells. Binding and diffusion of SBD-nanoparticles bound to the membrane of live cells is measured by real-time photothermal microscopy and shows the dynamics of sphingolipid-enriched microdomains on cells membrane, with evidence for clustering, splitting, and diffusion over time of the SBD-nanoparticle labeled membrane domains. The monofunctionalized SBD-nanoparticle is a promising targeting agent for the tracking of lipid rafts independently of their protein composition and the labelling requires no prior modification of the cells. This approach has potential for further functionalization of the particles to manipulate the organization of, or targeting to microdomains that control signaling events and thereby lead to novel diagnostics and therapeutics.

  9. Coupling Unbiased Mutagenesis to High-throughput DNA Sequencing Uncovers Functional Domains in the Ndc80 Kinetochore Protein of Saccharomyces cerevisiae

    PubMed Central

    Tien, Jerry F.; Fong, Kimberly K.; Umbreit, Neil T.; Payen, Celia; Zelter, Alex; Asbury, Charles L.; Dunham, Maitreya J.; Davis, Trisha N.

    2013-01-01

    During mitosis, kinetochores physically link chromosomes to the dynamic ends of spindle microtubules. This linkage depends on the Ndc80 complex, a conserved and essential microtubule-binding component of the kinetochore. As a member of the complex, the Ndc80 protein forms microtubule attachments through a calponin homology domain. Ndc80 is also required for recruiting other components to the kinetochore and responding to mitotic regulatory signals. While the calponin homology domain has been the focus of biochemical and structural characterization, the function of the remainder of Ndc80 is poorly understood. Here, we utilized a new approach that couples high-throughput sequencing to a saturating linker-scanning mutagenesis screen in Saccharomyces cerevisiae. We identified domains in previously uncharacterized regions of Ndc80 that are essential for its function in vivo. We show that a helical hairpin adjacent to the calponin homology domain influences microtubule binding by the complex. Furthermore, a mutation in this hairpin abolishes the ability of the Dam1 complex to strengthen microtubule attachments made by the Ndc80 complex. Finally, we defined a C-terminal segment of Ndc80 required for tetramerization of the Ndc80 complex in vivo. This unbiased mutagenesis approach can be generally applied to genes in S. cerevisiae to identify functional properties and domains. PMID:23833183

  10. An engineering time-domain model for curve squeal: Tangential point-contact model and Green's functions approach

    NASA Astrophysics Data System (ADS)

    Zenzerovic, I.; Kropp, W.; Pieringer, A.

    2016-08-01

    Curve squeal is a strong tonal sound that may arise when a railway vehicle negotiates a tight curve. In contrast to frequency-domain models, time-domain models are able to capture the nonlinear and transient nature of curve squeal. However, these models are computationally expensive due to requirements for fine spatial and time discretization. In this paper, a computationally efficient engineering model for curve squeal in the time-domain is proposed. It is based on a steady-state point-contact model for the tangential wheel/rail contact and a Green's functions approach for wheel and rail dynamics. The squeal model also includes a simple model of sound radiation from the railway wheel from the literature. A validation of the tangential point-contact model against Kalker's transient variational contact model reveals that the point-contact model performs well within the squeal model up to at least 5 kHz. The proposed squeal model is applied to investigate the influence of lateral creepage, friction and wheel/rail contact position on squeal occurrence and amplitude. The study indicates a significant influence of the wheel/rail contact position on squeal frequencies and amplitudes. Friction and lateral creepage show an influence on squeal occurrence and amplitudes, but this is only secondary to the influence of the contact position.

  11. Potential DNA binding and nuclease functions of ComEC domains characterized in silico

    PubMed Central

    Baker, James A.; Simkovic, Felix; Taylor, Helen M.C.

    2016-01-01

    ABSTRACT Bacterial competence, which can be natural or induced, allows the uptake of exogenous double stranded DNA (dsDNA) into a competent bacterium. This process is known as transformation. A multiprotein assembly binds and processes the dsDNA to import one strand and degrade another yet the underlying molecular mechanisms are relatively poorly understood. Here distant relationships of domains in Competence protein EC (ComEC) of Bacillus subtilis (Uniprot: P39695) were characterized. DNA‐protein interactions were investigated in silico by analyzing models for structural conservation, surface electrostatics and structure‐based DNA binding propensity; and by data‐driven macromolecular docking of DNA to models. Our findings suggest that the DUF4131 domain contains a cryptic DNA‐binding OB fold domain and that the β‐lactamase‐like domain is the hitherto cryptic competence nuclease. Proteins 2016; 84:1431–1442. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27318187

  12. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis.

    PubMed

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-07-15

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals. PMID:26062937

  13. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis

    PubMed Central

    Liu, Zhenyi; Brunskill, Eric; Varnum-Finney, Barbara; Zhang, Chi; Zhang, Andrew; Jay, Patrick Y.; Bernstein, Irv; Morimoto, Mitsuru; Kopan, Raphael

    2015-01-01

    Although Notch1 and Notch2 are closely related paralogs and function through the same canonical signaling pathway, they contribute to different outcomes in some cell and disease contexts. To understand the basis for these differences, we examined in detail mice in which the Notch intracellular domains (N1ICD and N2ICD) were swapped. Our data indicate that strength (defined here as the ultimate number of intracellular domain molecules reaching the nucleus, integrating ligand-mediated release and nuclear translocation) and duration (half-life of NICD-RBPjk-MAML-DNA complexes, integrating cooperativity and stability dependent on shared sequence elements) are the factors that underlie many of the differences between Notch1 and Notch2 in all the contexts we examined, including T-cell development, skin differentiation and carcinogenesis, the inner ear, the lung and the retina. We were able to show that phenotypes in the heart, endothelium, and marginal zone B cells are attributed to haploinsufficiency but not to intracellular domain composition. Tissue-specific differences in NICD stability were most likely caused by alternative scissile bond choices by tissue-specific γ-secretase complexes following the intracellular domain swap. Reinterpretation of clinical findings based on our analyses suggests that differences in outcome segregating with Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch signals. PMID:26062937

  14. Characterization of the Functional Domain of β2-Microglobulin from the Asian Seabass, Lates calcarifer

    PubMed Central

    Mohd-Padil, Hirzahida; Tajul-Arifin, Khairina; Mohd-Adnan, Adura

    2010-01-01

    Background β2-Microglobulin (β2M) is the light chain of major histocompatibility class I (MHC I) that binds non-covalently with the α heavy chain. Both proteins attach to the antigen peptide, presenting a complex to the T cell to be destroyed via the immune mechanism. Methodology/Principal Findings In this study, a cDNA sequence encoding β2M in the Asian seabass (Lates calcarifer) was identified and analyzed using in silico approaches to predict and characterize its functional domain. The β2M cDNA contains an open reading frame (ORF) of 351 bases with a coding capacity of 116 amino acids. A large portion of the protein consists of the IG constant domain (IGc1), similar to β2M sequences from other species studied thus far. Alignment of the IGc1 domains of β2M from L. calcarifer and other species shows a high degree of overall conservation. Seven amino acids were found to be conserved across taxa whereas conservation between L. calcarifer and other fish species was restricted to 14 amino acids at identical conserved positions. Conclusion/Significance As the L. calcarifer β2M protein analyzed in this study contains a functional domain similar to that of β2M proteins in other species, it can be postulated that the β2M proteins from L. calcarifer and other organisms are derived from a common ancestor and thus have a similar immune function. Interestingly, fish β2M genes could also be classified according to the ecological habitat of the species, i.e. whether it is from a freshwater, marine or euryhaline environment. PMID:20949082

  15. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  16. Human CD4 Metastability Is a Function of the Allosteric Disulfide Bond in Domain 2.

    PubMed

    Owen, Gavin R; Channell, Jennifer A; Forsyth, V Trevor; Haertlein, Michael; Mitchell, Edward P; Capovilla, Alexio; Papathanasopoulos, Maria; Cerutti, Nichole M

    2016-04-19

    CD4 is expressed on the surface of specific leukocytes where it plays a key role in the activation of immunostimulatory T-cells and acts as a primary receptor for HIV-1 entry. CD4 has four ecto-domains (D1-D4) of which D1, D2, and D4 contain disulfide bonds. Although disulfide bonds commonly serve structural or catalytic functions, a rare class of disulfide bonds possessing unusually high dihedral strain energy and a relative ease of reduction can impact protein function by shuffling their redox state. D2 of CD4 possesses one such "allosteric" disulfide. While it is becoming accepted that redox exchange of the D2 allosteric disulfide plays an essential role in regulating CD4 activity, the biophysical consequences of its reduction remain incompletely understood. By analyzing the hydrodynamic volume, secondary structure, and thermal stability of the reduced and nonreduced forms of the single D1 and D2 domains, as well as the various redox isomers of two domain CD4, we have shown that ablation of the allosteric disulfide bond in domain 2 results in both a favorable structural collapse and an increase in the stability of CD4. Conversely, ablating the structural disulfide of D1 results in destabilizing structural rearrangements in CD4. These findings expand our understanding of the mechanisms by which oxidoreduction of the D2 allosteric disulfide regulates CD4 function; they reveal the intrinsic disulfide-dependent metastability of D2 and illustrate that redox shuffling of the allosteric disulfide results in previously undescribed conformational changes in CD4 that are likely important for its interaction with its protein partners. PMID:27009680

  17. An Amphiphysin-Like Domain in Fus2p Is Required for Rvs161p Interaction and Cortical Localization.

    PubMed

    Stein, Richard A; Smith, Jean A; Rose, Mark D

    2016-02-01

    Cell-cell fusion fulfils essential roles in fertilization, development and tissue repair. In the budding yeast, Saccharomyces cerevisiae, fusion between two haploid cells of opposite mating type generates the diploid zygote. Fus2p is a pheromone-induced protein that regulates cell wall removal during mating. Fus2p shuttles from the nucleus to localize at the shmoo tip, bound to Rvs161p, an amphiphysin. However, Rvs161p independently binds a second amphiphysin, Rvs167p, playing an essential role in endocytosis. To understand the basis of the Fus2p-Rvs161p interaction, we analyzed Fus2p structural domains. A previously described N-terminal domain (NTD) is necessary and sufficient to regulate nuclear/cytoplasmic trafficking of Fus2p. The Dbl homology domain (DBH) binds GTP-bound Cdc42p; binding is required for cell fusion, but not localization. We identified an approximately 200 amino acid region of Fus2p that is both necessary and sufficient for Rvs161p binding. The Rvs161p binding domain (RBD) contains three predicted alpha-helices; structural modeling suggests that the RBD adopts an amphiphysin-like structure. The RBD contains a 13-amino-acid region, conserved with Rvs161p and other amphiphysins, which is essential for binding. Mutations in the RBD, predicted to affect membrane binding, abolish cell fusion without affecting Rvs161p binding. We propose that Fus2p/Rvs161p form a novel heterodimeric amphiphysin required for cell fusion. Rvs161p binding is required but not sufficient for Fus2p localization. Mutations in the C-terminal domain (CTD) of Fus2p block localization, but not Rvs161p binding, causing a significant defect in cell fusion. We conclude that the Fus2p CTD mediates an additional, Rvs161p-independent interaction at the shmoo tip. PMID:26681517

  18. Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast

    PubMed Central

    Montano, Sherwin P.; Coté, Marie L.; Fingerman, Ian; Pierce, Michael; Vershon, Andrew K.; Georgiadis, Millie M.

    2002-01-01

    Ndt80 is a transcriptional activator required for meiosis in the yeast Saccharomyces cerevisiae. Here, we report the crystal structure at 2.3 Å resolution of the DNA-binding domain of Ndt80 experimentally phased by using the anomalous and isomorphous signal from a single ordered Se atom per molecule of 272-aa residues. The structure reveals a single ≈32-kDa domain with a distinct fold comprising a β-sandwich core elaborated with seven additional β-sheets and three short α-helices. Inspired by the structure, we have performed a mutational analysis and defined a DNA-binding motif in this domain. The DNA-binding domain of Ndt80 is homologous to a number of proteins from higher eukaryotes, and the residues that we have shown are required for DNA binding by Ndt80 are highly conserved among this group of proteins. These results suggest that Ndt80 is the defining member of a previously uncharacterized family of transcription factors, including the human protein (C11orf9), which has been shown to be highly expressed in invasive or metastatic tumor cells. PMID:12384578

  19. Functional Requirements for Bibliographic Records: An Investigation of Two Prototypes

    ERIC Educational Resources Information Center

    Pisanski, Jan; Zumer, Maja

    2007-01-01

    Purpose: This paper aims to establish how the Functional Requirements for Bibliographic Records (FRBR) conceptual model, which holds a lot of potential in theory, works in practice. It also aims to identify, and if possible, give solutions to problems found in two of the existing prototypes. Design/methodology/approach: An independent evaluation…

  20. Functional consequences of exchanging domains between LacI and PurR are mediated by the intervening linker sequence.

    PubMed

    Tungtur, Sudheer; Egan, Susan M; Swint-Kruse, Liskin

    2007-07-01

    Homologue function can be differentiated by changing residues that affect binding sites or long-range interactions. LacI and PurR are two proteins that represent the LacI/GalR family (>500 members) of bacterial transcription regulators. All members have distinct DNA-binding and regulatory domains linked by approximately 18 amino acids. Each homologue has specificity for different DNA and regulatory effector ligands; LacI and PurR also exhibit differences in allosteric communication between DNA and effector binding sites. A comparative study of LacI and PurR suggested that alterations in the interface between the regulatory domain and linker are important for differentiating their functions. Four residues (equivalent to LacI positions 48, 55, 58, and 61) appear particularly important for creating a unique interface and were predicted to be necessary for allosteric regulation. However, nearby residues in the linker interact with DNA ligand. Thus, differences observed in interactions between linker and regulatory domain may be the cause of altered function or an effect of the two proteins binding different DNA ligands. To separate these possibilities, we created a chimeric protein with the LacI DNA-binding domain/linker and the PurR regulatory domain (LLhP). If the interface requires homologue-specific interactions in order to propagate the signal from effector binding, then LLhP repression should not be allosterically regulated by effector binding. Experiments show that LLhP is capable of repression from lacO1 and, contrary to expectation, allosteric response is intact. Further, restoring the potential for PurR-like interactions via substitutions in the LLhP linker tends to diminish repression. These effects are especially pronounced for residues 58 and 61. Clearly, binding affinity of LLhP for the lacO1 DNA site is sensitive to long-range changes in the linker. This result also raises the possibility that mutations at positions 58 and 61 co-evolved with changes in

  1. Modulation of complement regulatory function and measles virus receptor function by the serine-threonine-rich domains of membrane cofactor protein (CD46).

    PubMed Central

    Iwata, K; Seya, T; Ueda, S; Ariga, H; Nagasawa, S

    1994-01-01

    Three major membrane cofactor protein (MCP) phenotypes with different serine-threonine (ST)-rich regions, namely STc (L-phenotype), STBC (H or U phenotype) and STABC, and the MCP without the ST domain (delta ST) were expressed in Chinese hamster ovary (CHO) cells by transfecting the respective cDNAs. The expressed molecules migrated with a larger molecular mass on SDS/PAGE than those expected from their amino acid sequences. O-Glycanase digestion showed that this was due to O-linked sugar chains. The apparent sugar contents in each ST segment were compatible with their serine and threonine contents in the ST regions. The functional properties of these phenotypes as inhibitors of human complement (C) and receptors of measles virus (MV) were compared. The classical pathway-dependent CHO cell lysis by human C was more effectively suppressed by the expressed delta ST and STC than by the STABC and STBC phenotypes, although the difference was not so prominent. In contrast, alternative C pathway-dependent CHO-cell lysis was most effectively suppressed by the STABC phenotype and was only slightly blocked by the ST-deleted mutant. MV infection occurred with all of the phenotypes, but the infectious dose required to cause the same level of syncytium formation was 100-times higher in large ST (STABC and STBC) than in small ST (STC and delta ST) phenotypes. Thus, the ST domain serves as a functional modulator in MCP: MCP with a large ST domain having high O-linked sugar contents is favourable to the effective suppression of both the alternative C pathway-mediated cytolysis and MV infection, whereas MCP with a small ST domain is favourable to the suppression of the classical C pathway. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 PMID:7998929

  2. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  3. Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1

    PubMed Central

    Daubner, Gerrit M.; Brümmer, Anneke; Tocchini, Cristina; Gerhardy, Stefan; Ciosk, Rafal; Zavolan, Mihaela; Allain, Frédéric H.-T.

    2014-01-01

    The STAR family comprises ribonucleic acid (RNA)-binding proteins that play key roles in RNA-regulatory processes. RNA recognition is achieved by a KH domain with an additional α-helix (QUA2) that seems to extend the RNA-binding surface to six nucleotides for SF1 (Homo sapiens) and seven nucleotides for GLD-1 (Caenorhabditis elegans). To understand the structural basis of this probable difference in specificity, we determined the solution structure of GLD-1 KH-QUA2 with the complete consensus sequence identified in the tra-2 gene. Compared to SF1, the GLD-1 KH-QUA2 interface adopts a different conformation resulting indeed in an additional sequence-specific binding pocket for a uracil at the 5′end. The functional relevance of this binding pocket is emphasized by our bioinformatics analysis showing that GLD-1 binding sites with this 5′end uracil are more predictive for the functional response of the messenger RNAs to gld-1 knockout. We further reveal the importance of the KH-QUA2 interface in vitro and that its alteration in vivo affects the level of translational repression dependent on the sequence of the GLD-1 binding motif. In conclusion, we demonstrate that the QUA2 domain distinguishes GLD-1 from other members of the STAR family and contributes more generally to the modulation of RNA-binding affinity and specificity of KH domain containing proteins. PMID:24838563

  4. Osmosensing and scaffolding functions of the oligomeric four-transmembrane domain osmosensor Sho1

    PubMed Central

    Tatebayashi, Kazuo; Yamamoto, Katsuyoshi; Nagoya, Miho; Takayama, Tomomi; Nishimura, Akiko; Sakurai, Megumi; Momma, Takashi; Saito, Haruo

    2015-01-01

    The yeast high osmolarity glycerol (HOG) pathway activates the Hog1 MAP kinase, which coordinates adaptation to high osmolarity conditions. Here we demonstrate that the four-transmembrane (TM) domain protein Sho1 is an osmosensor in the HKR1 sub-branch of the HOG pathway. Crosslinking studies indicate that Sho1 forms planar oligomers of the dimers-of-trimers architecture by dimerizing at the TM1/TM4 interface and trimerizing at the TM2/TM3 interface. High external osmolarity induces structural changes in the Sho1 TM domains and Sho1 binding to the cytoplasmic adaptor protein Ste50, which leads to Hog1 activation. Besides its osmosensing function, the Sho1 oligomer serves as a scaffold. By binding to the TM proteins Opy2 and Hkr1 at the TM1/TM4 and TM2/TM3 interface, respectively, Sho1 forms a multi-component signalling complex that is essential for Hog1 activation. Our results illuminate how the four TM domains of Sho1 dictate the oligomer structure as well as its osmosensing and scaffolding functions. PMID:25898136

  5. Functional requirements for a central research imaging data repository.

    PubMed

    Franke, Thomas; Gruetz, Romanus; Dickmann, Frank

    2013-01-01

    The current situation at many university medical centers regarding the management of biomedical research imaging data leaves much to be desired. In contrast to the recommendations of the German Research Foundation (DFG) and the German Council of Sciences and Humanities regarding the professional management of research data, there are commonly many individual data pools for research data in each institute and the management remains the responsibility of the researcher. A possible solution for this situation would be to install local central repositories for biomedical research imaging data. In this paper, we developed a scenario based on abstracted use-cases for institutional research undertakings as well as collaborative biomedical research projects and analyzed the functional requirements that a local repository would have to fulfill. We determined eight generic categories of functional requirements, which can be viewed as a basic guideline for the minimum functionality of a central repository for biomedical research imaging data.

  6. Approximate analytical time-domain Green's functions for the Caputo fractional wave equation.

    PubMed

    Kelly, James F; McGough, Robert J

    2016-08-01

    The Caputo fractional wave equation [Geophys. J. R. Astron. Soc. 13, 529-539 (1967)] models power-law attenuation and dispersion for both viscoelastic and ultrasound wave propagation. The Caputo model can be derived from an underlying fractional constitutive equation and is causal. In this study, an approximate analytical time-domain Green's function is derived for the Caputo equation in three dimensions (3D) for power law exponents greater than one. The Green's function consists of a shifted and scaled maximally skewed stable distribution multiplied by a spherical spreading factor 1/(4πR). The approximate one dimensional (1D) and two dimensional (2D) Green's functions are also computed in terms of stable distributions. Finally, this Green's function is decomposed into a loss component and a diffraction component, revealing that the Caputo wave equation may be approximated by a coupled lossless wave equation and a fractional diffusion equation. PMID:27586735

  7. SMP-domain proteins at membrane contact sites: Structure and function.

    PubMed

    Reinisch, Karin M; De Camilli, Pietro

    2016-08-01

    SMP-domains are found in proteins that localize to membrane contact sites. Elucidation of the properties of these proteins gives clues as to the molecular bases underlying processes that occur at such sites. Described here are recent discoveries concerning the structure, function, and regulation of the Extended-Synaptotagmin proteins and ERMES complex subunits, SMP-domain proteins at endoplasmic reticulum (ER)-plasma membrane and ER-mitochondrial contacts, respectively. They act as tethers contributing to the architecture of these sites and as lipid transporters that convey glycerolipids between apposed membranes. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.

  8. A Fast Method of Transforming Relaxation Functions Into the Frequency Domain

    PubMed Central

    Mopsik, Frederick I.

    1999-01-01

    The limits to the error due to truncation of the numeric integration of the one-sided Laplace transform of a relaxation function in the time domain into its equivalent frequency domain are established. Separate results are given for large and small ω. These results show that, for a given ω, only a restricted range of time samples is needed to perform the computation to a given accuracy. These results are then combined with a known error estimate for integration by cubic splines to give a good estimate for the number of points needed to perform the computation to a given accuracy. For a given data window between t1 and t2, the computation time is shown to be proportional to ln(t1/t2).

  9. Multiple domains in the Crumbs Homolog 2a (Crb2a) protein are required for regulating rod photoreceptor size

    PubMed Central

    2010-01-01

    Background Vertebrate retinal photoreceptors are morphologically complex cells that have two apical regions, the inner segment and the outer segment. The outer segment is a modified cilium and is continuously regenerated throughout life. The molecular and cellular mechanisms that underlie vertebrate photoreceptor morphogenesis and the maintenance of the outer segment are largely unknown. The Crumbs (Crb) complex is a key regulator of apical membrane identity and size in epithelia and in Drosophila photoreceptors. Mutations in the human gene CRUMBS HOMOLOG 1 (CRB1) are associated with early and severe vision loss. Drosophila Crumbs and vertebrate Crb1 and Crumbs homolog 2 (Crb2) proteins are structurally similar, all are single pass transmembrane proteins with a large extracellular domain containing multiple laminin- and EGF-like repeats and a small intracellular domain containing a FERM-binding domain and a PDZ-binding domain. In order to begin to understand the role of the Crb family of proteins in vertebrate photoreceptors we generated stable transgenic zebrafish in which rod photoreceptors overexpress full-length Crb2a protein and several other Crb2a constructs engineered to lack specific domains. Results We examined the localization of Crb2a constructs and their effects on rod morphology. We found that only the full-length Crb2a protein approximated the normal localization of Crb2a protein apical to adherens junctions in the photoreceptor inner segment. Several Crb2a construct proteins localized abnormally to the outer segment and one construct localized abnormally to the cell body. Overexpression of full-length Crb2a greatly increased inner segment size while expression of several other constructs increased outer segment size. Conclusions Our observations suggest that particular domains in Crb2a regulate its localization and thus may regulate its regionalized function. Our results also suggest that the PDZ-binding domain in Crb2a might bring a protein(s) into

  10. Transrepressive function of TLX requires the histone demethylase LSD1.

    PubMed

    Yokoyama, Atsushi; Takezawa, Shinichiro; Schüle, Roland; Kitagawa, Hirochika; Kato, Shigeaki

    2008-06-01

    TLX is an orphan nuclear receptor (also called NR2E1) that regulates the expression of target genes by functioning as a constitutive transrepressor. The physiological significance of TLX in the cytodifferentiation of neural cells in the brain is known. However, the corepressors supporting the transrepressive function of TLX have yet to be identified. In this report, Y79 retinoblastoma cells were subjected to biochemical techniques to purify proteins that interact with TLX, and we identified LSD1 (also called KDM1), which appears to form a complex with CoREST and histone deacetylase 1. LSD1 interacted with TLX directly through its SWIRM and amine oxidase domains. LSD1 potentiated the transrepressive function of TLX through its histone demethylase activity as determined by a luciferase assay using a genomically integrated reporter gene. LSD1 and TLX were recruited to a TLX-binding site in the PTEN gene promoter, accompanied by the demethylation of H3K4me2 and deacetylation of H3. Knockdown of either TLX or LSD1 derepressed expression of the endogenous PTEN gene and inhibited cell proliferation of Y79 cells. Thus, the present study suggests that LSD1 is a prime corepressor for TLX. PMID:18391013

  11. The domain structure of Helicobacter pylori DnaB helicase: the N-terminal domain can be dispensable for helicase activity whereas the extreme C-terminal region is essential for its function

    PubMed Central

    Nitharwal, Ram Gopal; Paul, Subhankar; Dar, Ashraf; Choudhury, Nirupam Roy; Soni, Rajesh K; Prusty, Dhaneswar; Sinha, Sukrat; Kashav, Tara; Mukhopadhyay, Gauranga; Chaudhuri, Tapan Kumar; Gourinath, Samudrala; Dhar, Suman Kumar

    2007-01-01

    Hexameric DnaB type replicative helicases are essential for DNA strand unwinding along with the direction of replication fork movement. These helicases in general contain an amino terminal domain and a carboxy terminal domain separated by a linker region. Due to the lack of crystal structure of a full-length DnaB like helicase, the domain structure and function of these types of helicases are not clear. We have reported recently that Helicobacter pylori DnaB helicase is a replicative helicase in vitro and it can bypass Escherichia coli DnaC activity in vivo. Using biochemical, biophysical and genetic complementation assays, here we show that though the N-terminal region of HpDnaB is required for conformational changes between C6 and C3 rotational symmetry, it is not essential for in vitro helicase activity and in vivo function of the protein. Instead, an extreme carboxy terminal region and an adjacent unique 34 amino acid insertion region were found to be essential for HpDnaB activity suggesting that these regions are important for proper folding and oligomerization of this protein. These results confer great potential in understanding the domain structures of DnaB type helicases and their related function. PMID:17430964

  12. Site-directed mutants of human RECQ1 reveal functional importance of the zinc binding domain.

    PubMed

    Sami, Furqan; Gary, Ronald K; Fang, Yayin; Sharma, Sudha

    2016-08-01

    RecQ helicases are a highly conserved family of ATP-dependent DNA-unwinding enzymes with key roles in DNA replication and repair in all kingdoms of life. The RECQ1 gene encodes the most abundant RecQ homolog in humans. We engineered full-length RECQ1 harboring point mutations in the zinc-binding motif (amino acids 419-480) within the conserved RecQ-specific-C-terminal (RQC) domain known to be critical for diverse biochemical and cellular functions of RecQ helicases. Wild-type RECQ1 contains a zinc ion. Substitution of three of the four conserved cysteine residues that coordinate zinc severely impaired the ATPase and DNA unwinding activities but retained DNA binding and single strand DNA annealing activities. Furthermore, alteration of these residues attenuated zinc binding and significantly changed the overall conformation of full-length RECQ1 protein. In contrast, substitution of cysteine residue at position 471 resulted in a wild-type like RECQ1 protein. Differential contribution of the conserved cysteine residues to the structure and functions of the RECQ1 protein is also inferred by homology modeling. Overall, our results indicate that the zinc binding motif in the RQC domain of RECQ1 is a key structural element that is essential for the structure-functions of RECQ1. Given the recent association of RECQ1 mutations with breast cancer, these results will contribute to understanding the molecular basis of RECQ1 functions in cancer etiology. PMID:27248010

  13. Structural Basis and Function of XRN2-Binding by XTB Domains

    PubMed Central

    Richter, Hannes; Katic, Iskra; Gut, Heinz; Großhans, Helge

    2016-01-01

    The ribonuclease XRN2 is an essential player in RNA metabolism. In Caenorhabditis elegans, XRN2 functions with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with otherwise unrelated mammalian proteins. Here, we characterize structure and function of an XTBD – XRN2 complex. Although XTBD stably interconnects two XRN2 domains through numerous interacting residues, mutation of a single critical residue suffices to disrupt XTBD – XRN2 complexes in vitro, and recapitulates paxt-1 null mutant phenotypes in vivo. Demonstrating conservation of function, vertebrate XTBD-containing proteins bind XRN2 in vitro, and human CDKN2AIPNL (C2AIL) can substitute for PAXT-1 in vivo. In vertebrates, where three distinct XTBD-containing proteins exist, XRN2 may partition to distinct stable heterodimeric complexes, likely differing in subcellular localization or function. In C. elegans, complex formation with the unique PAXT-1 serves to preserve the stability of XRN2 in the absence of substrate. PMID:26779609

  14. Dimerization of the DYT6 dystonia protein, THAP1, requires residues within the coiled-coil domain.

    PubMed

    Sengel, Cem; Gavarini, Sophie; Sharma, Nutan; Ozelius, Laurie J; Bragg, D Cristopher

    2011-09-01

    Thanatos-associated [THAP] domain-containing apoptosis-associated protein 1 (THAP1) is a DNA-binding protein that has been recently associated with DYT6 dystonia, a hereditary movement disorder involving sustained, involuntary muscle contractions. A large number of dystonia-related mutations have been identified in THAP1 in diverse patient populations worldwide. Previous reports have suggested that THAP1 oligomerizes with itself via a C-terminal coiled-coil domain, raising the possibility that DYT6 mutations in this region might affect this interaction. In this study, we examined the ability of wild-type THAP1 to bind itself and the effects on this interaction of the following disease mutations: C54Y, F81L, ΔF132, T142A, I149T, Q154fs180X, and A166T. The results confirmed that wild-type THAP1 associated with itself and most of the DYT6 mutants tested, except for the Q154fs180X variant, which loses most of the coiled-coil domain because of a frameshift at position 154. However, deletion of C-terminal residues after position 166 produced a truncated variant of THAP1 that was able to bind the wild-type protein. The interaction of THAP1 with itself therefore required residues within a 13-amino acid region (aa 154-166) of the coiled-coil domain. Further inspection of this sequence revealed elements highly consistent with previous descriptions of leucine zippers, which serve as dimerization domains in other transcription factor families. Based on this similarity, a structural model was generated to predict how hydrophobic residues in this region may mediate dimerization. These observations offer additional insight into the role of the coiled-coil domain in THAP1, which may facilitate future analyses of DYT6 mutations in this region. PMID:21752024

  15. Study of the arrangement of the functional domains along the yeast cytoplasmic aspartyl-tRNA synthetase.

    PubMed

    Prevost, G; Eriani, G; Kern, D; Dirheimer, G; Gangloff, J

    1989-03-15

    Aspartyl-tRNA synthetase from yeast (AspRS) was screened for functional domains by measuring the effect of two types of amino acid mutations on its catalytic properties: (a) insertion of a dipeptide or a tetrapeptide along the polypeptide chain, (b) deletion of various lengths from the enzyme C-terminal. It was shown that insertion mutations significantly affect the kinetic properties of AspRS only when occurring in the second quarter of the molecule and the two centrally located mutations even inactivate the enzyme completely. Analysis of kinetic data strongly suggests that, in fact, all the observed activity modifications result from alteration of the activation reaction rate constant, kappa cat only. This led to the conclusion that the domain involved in aspartic acid activation should be located in the second quarter of the molecule. Furthermore, a deletion mutant with a modification of the last five amino acid residues was isolated. This mutant is fully active in the activation step, but has lost 80% of the wild-type aminoacylation activity. This involvement of the C-terminus in acylation implies that it has to be folded towards strategic regions of the enzyme, thus favouring conformations required for catalysis or maintaining the tRNA in a functional position.

  16. Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1.

    PubMed

    Tang, Ce Mun; Chye, Mee-Len; Ramalingam, Sathishkumar; Ouyang, Shi-Wen; Zhao, Kai-Jun; Ubhayasekera, Wimal; Mowbray, Sherry L

    2004-09-01

    We previously isolated a Brassica juncea cDNA encoding BjCHI1, a novel chitinase with two chitin-binding domains. Synthesis of its mRNA is induced by wounding, methyl jasmonate treatment, Aspergillus niger infection and caterpillar (Pieris rapae) feeding, suggesting that the protein has a role in defense. In that it possesses two chitin-binding domains, BjCHI1 resembles the precursor of Urtica dioica agglutinin but unlike that protein, BjCHI1 retains its chitinase catalytic domain after post-translational processing. To explore the properties of multi-domain BjCHI1, we have expressed recombinant BjCHI1 and two derivatives, which lack one (BjCHI2) or both (BjCHI3) chitin-binding domains, as secreted proteins in Pichia pastoris. Recombinant BjCHI1 and BjCHI2, showed apparent molecular masses on SDS-PAGE larger than calculated, and could be deglycosylated using alpha-mannosidase. Recombinant BjCHI3, without the proline/threonine-rich linker region containing predicted O-glycosylation sites, did not appear to be processed by alpha-mannosidase. BjCHI1's ability to agglutinate rabbit erythrocytes is unique among known chitinases. Both chitin-binding domains are essential for agglutination; this property is absent in recombinant BjCHI2 and BjCHI3. To identify potential catalytic residues, we generated site-directed mutations in recombinant BjCHI3. Mutation E212A showed the largest effect, exhibiting 0% of wild-type specific activity. H211N and R361A resulted in considerable (>91%) activity loss, implying these charged residues are also important in catalysis. E234A showed 36% retention of activity and substitution Y269D, 50%. The least affected mutants were E349A and D360A, with 73% and 68% retention, respectively. Like Y269, E349 and D360 are possibly involved in substrate binding rather than catalysis. PMID:15604744

  17. Advanced flight deck/crew station simulator functional requirements

    NASA Technical Reports Server (NTRS)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  18. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology.

    PubMed Central

    Katsani, K R; Hajibagheri, M A; Verrijzer, C P

    1999-01-01

    The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation. PMID:9927429

  19. Instrumentation of broadband frequency domain thermoreflectance for measuring thermal conductivity accumulation functions.

    PubMed

    Regner, K T; Majumdar, S; Malen, J A

    2013-06-01

    This paper describes the instrumentation for broadband frequency domain thermoreflectance (BB-FDTR), a novel, continuous wave laser technique for measuring the thermal conductivity accumulation function. The thermal conductivity accumulation function describes cumulative contributions to the bulk thermal conductivity of a material from energy carriers with different mean free paths. It can be used to map reductions in thermal conductivity in nano-devices, which arise when the dimensions of the device are commensurate to the mean free path of energy carriers. BB-FDTR uses high frequency surface temperature modulation to generate non-diffusive phonon transport realized through a reduction in the perceived thermal conductivity. By controlling the modulation frequency it is possible to reconstruct the thermal conductivity accumulation function. A unique heterodyning technique is used to down-convert the signal, therein improving our signal to noise ratio and enabling results over a broader range of modulation frequencies (200 kHz-200 MHz) and hence mean free paths.

  20. Identification, modeling, and characterization studies of Tetrahymena thermophila myosin FERM domains suggests a conserved core fold but functional differences.

    PubMed

    Martin, Che L; Singh, Shaneen M

    2015-11-01

    Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins. PMID:26492945

  1. Identification, modeling, and characterization studies of Tetrahymena thermophila myosin FERM domains suggests a conserved core fold but functional differences.

    PubMed

    Martin, Che L; Singh, Shaneen M

    2015-11-01

    Myosins (MYO) define a superfamily of motor proteins which facilitate movement along cytoskeletal actin filaments in an ATP-dependent manner. To date, over 30 classes of myosin have been defined that vary in their roles and distribution across different taxa. The multidomain tail of myosin is responsible for the observed functional differences in different myosin classes facilitating differential binding to different cargos. One domain found in this region, the FERM domain, is found in several diverse proteins and is involved in many biological functions ranging from cell adhesion and actin-driven cytoskeleton assembly to cell signaling. Recently, new classes of unconventional myosin have been identified in Tetrahymena thermophila. In this study, we have identified, modeled, and characterized eight FERM domains from the unconventional T. thermophila myosins as their complete functional MyTH4-FERM cassettes. Our results reveal notable sequence, structural, and electrostatic differences between T. thermophila and other characterized FERM domains. Specifically, T. thermophila FERM domains contain helical inserts or extensions, which contribute to significant differences in surface electrostatic profiles of T. thermophila myosin FERMs when compared to the conventional FERM domains. Analyses of the modeled domains reveal differences in key functional residues as well as phosphoinositide-binding signatures and affinities. The work presented here broadens the scope of our understanding of myosin classes and their inherent functions, and provides a platform for experimentalists to design rational experimental studies to test the functional roles for T. thermophila myosins.

  2. Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process

    PubMed Central

    Treeck, Moritz; Zacherl, Sonja; Herrmann, Susann; Cabrera, Ana; Kono, Maya; Struck, Nicole S.; Engelberg, Klemens; Haase, Silvia; Frischknecht, Friedrich; Miura, Kota; Spielmann, Tobias; Gilberger, Tim W.

    2009-01-01

    A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies. PMID:19283086

  3. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues.

  4. Functional Requirements for Information Resource Provenance on the Web

    SciTech Connect

    McCusker, James P.; Lebo, Timothy; Graves, Alvaro; Difranzo, Dominic; Pinheiro da Silva, Paulo; McGuinness, Deborah L.

    2012-06-19

    We provide a means to formally explain the relationship between HTTP URLs and the representations returned when they are requested. According to existing World Wide Web architecture, the URL serves as an identier for a semiotic referent while the document returned via HTTP serves as a representation of the same referent. This begins with two sides of a semiotic triangle; the third side is the relationship between the URL and the representation received. We complete this description by extending the library science resource model Functional Requirements for Bibliographic Resources (FRBR) with cryptographic message and content digests to create a Functional Requirements for Information Resources (FRIR). We show how applying the FRIR model to HTTP GET and POST transactions disambiguates the many relationships between a given URL and all representations received from its request, provides fine-grained explanations that are complementary to existing explanations of web resources, and integrates easily into the emerging W3C provenance standard.

  5. Quality functions for requirements engineering in system development methods.

    PubMed

    Johansson, M; Timpka, T

    1996-01-01

    Based on a grounded theory framework, this paper analyses the quality characteristics for methods to be used for requirements engineering in the development of medical decision support systems (MDSS). The results from a Quality Function Deployment (QFD) used to rank functions connected to user value and a focus group study were presented to a validation focus group. The focus group studies take advantage of a group process to collect data for further analyses. The results describe factors considered by the participants as important in the development of methods for requirements engineering in health care. Based on the findings, the content which, according to the user a MDSS method should support is established. PMID:8947891

  6. Quantitative interaction mapping reveals an extended UBX domain in ASPL that disrupts functional p97 hexamers

    PubMed Central

    Arumughan, Anup; Roske, Yvette; Barth, Carolin; Forero, Laura Lleras; Bravo-Rodriguez, Kenny; Redel, Alexandra; Kostova, Simona; McShane, Erik; Opitz, Robert; Faelber, Katja; Rau, Kirstin; Mielke, Thorsten; Daumke, Oliver; Selbach, Matthias; Sanchez-Garcia, Elsa; Rocks, Oliver; Panáková, Daniela; Heinemann, Udo; Wanker, Erich E.

    2016-01-01

    Interaction mapping is a powerful strategy to elucidate the biological function of protein assemblies and their regulators. Here, we report the generation of a quantitative interaction network, directly linking 14 human proteins to the AAA+ ATPase p97, an essential hexameric protein with multiple cellular functions. We show that the high-affinity interacting protein ASPL efficiently promotes p97 hexamer disassembly, resulting in the formation of stable p97:ASPL heterotetramers. High-resolution structural and biochemical studies indicate that an extended UBX domain (eUBX) in ASPL is critical for p97 hexamer disassembly and facilitates the assembly of p97:ASPL heterotetramers. This spontaneous process is accompanied by a reorientation of the D2 ATPase domain in p97 and a loss of its activity. Finally, we demonstrate that overproduction of ASPL disrupts p97 hexamer function in ERAD and that engineered eUBX polypeptides can induce cell death, providing a rationale for developing anti-cancer polypeptide inhibitors that may target p97 activity. PMID:27762274

  7. Isolation and characterization of mutants affecting functional domains of ColE1 RNAI.

    PubMed

    Dooley, T P; Tamm, J; Polisky, B

    1985-11-01

    The control of DNA replication initiation in the plasmid ColE1 is mediated by RNAI, a 108 nucleotide plasmid-encoded RNA that is entirely complementary to the 5'-terminal region of the replication primer RNA. RNAI acts in trans to inhibit primer maturation. Previously, we constructed a plasmid in which the ColE1 RNAI was separated from the primer and placed under transcriptional control of the Serratia marcesens tryptophan promoter. This plasmid provides RNAI in trans in vivo and mediates ColE1-type incompatibility. To determine the critical structural and functional domains of RNAI, we have undertaken a mutational analysis of the RNAI gene carried by this plasmid. We have selected mutants that no longer mediate ColE1-type incompatibility in trans. From the DNA sequences of 18 mutants we have identified mutations at nine new sites in RNAI. In addition, we have determined the secondary structural features of several mutant RNAI species and compared them to wild-type RNAI. Analysis of these mutations has revealed several key features of RNAI secondary structure and function. The domains of RNAI identified in this work which are essential for its function are: the single-stranded loop regions; the integrity of the double-stranded stems; and the single-stranded 5' terminus.

  8. Seventh Graders' Academic Achievement, Creativity, and Ability to Construct a Cross-Domain Concept Map--A Brain Function Perspective

    ERIC Educational Resources Information Center

    Yeh, Yu-Chu

    2004-01-01

    This study proposes an interactive model of "cross-domain" concept mapping with an emphasis on brain functions, and it further investigates the relationships between academic achievement, creative thinking, and cross-domain concept mapping. Sixty-nine seventh graders participated in this study which employed two 50-minute instructional sessions.…

  9. Assessment of the Social Functions and Vitality of the Yi Language from the Perspective of Its Domains of Use

    ERIC Educational Resources Information Center

    Suhua, Hu

    2008-01-01

    In general, the vitality and social functions of a language are assessed in connection with such indices as the language's intergenerational transmission, the absolute number of speakers and proportion of speakers in the population, its present domains of use, its development within diverse domains of use, and the availability of its educational…

  10. Dissection of the locus control function located on the chicken lysozyme gene domain in transgenic mice.

    PubMed Central

    Bonifer, C; Yannoutsos, N; Krüger, G; Grosveld, F; Sippel, A E

    1994-01-01

    The entire chicken lysozyme gene locus including all known cis-regulatory sequences and the 5' and 3' matrix attachment sites defining the borders of the DNase I sensitive chromatin domain, is expressed at a high level and independent of its chromosomal position in macrophages of transgenic mice. It was concluded that the lysozyme gene locus carries a locus control function. We analysed several cis-regulatory deletion mutants to investigate their influence on tissue specificity and level of expression. Position independent expression of the gene is lost whenever one of the upstream tissue specific enhancer regions is deleted, although tissue specific expression is usually retained. Deletion of the domain border fragments has no influence on copy number dependency of expression. However, without these regions an increased incidence of ectopic expression is observed. This suggests that the domain border fragments may help to suppress transgene expression in inappropriate tissues. We conclude, that position independent expression of the lysozyme gene is not controlled by a single specific region of the locus but is the result of the concerted action of several tissue specific upstream regulatory DNA elements with the promoter. Images PMID:7937146

  11. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators.

    PubMed

    Rekdal, C; Sjøttem, E; Johansen, T

    2000-12-22

    SPBP (stromelysin-1 platelet-derived growth factor-responsive element binding protein) was originally cloned from a cDNA expression library by virtue of its ability to bind to a platelet-derived growth factor-responsive element in the human stromelysin-1 promoter. A 937-amino acid-long protein was deduced from a 3995-nucleotide murine cDNA sequence. By analyses of both human and murine cDNAs, we now show that SPBP is twice as large as originally found. The human SPBP gene contains six exons and is located on chromosome 22q13.1-13.3. Two isoforms differing in their C termini are expressed due to alternative splicing. PCR analyses of multitissue cDNA panels showed that SPBP is expressed in most tissues except for ovary and prostate. Functional mapping revealed that SPBP is a nuclear, multidomain protein containing an N-terminal region with transactivating ability, a novel type of DNA-binding domain containing an AT hook motif, and a bipartite nuclear localization signal as well as a C-terminal zinc finger domain. This type of zinc finger domain is also found in the trithorax family of chromatin-based transcriptional regulator proteins. Using cotransfection experiments, we find that SPBP enhances the transcriptional activity of various transcription factors such as c-Jun, Ets1, Sp1, and Pax6. Hence, SPBP seems to act as a transcriptional coactivator. PMID:10995766

  12. Structural Conservation and Functional Diversity of the Poxvirus Immune Evasion (PIE) Domain Superfamily.

    PubMed

    Nelson, Christopher A; Epperson, Megan L; Singh, Sukrit; Elliott, Jabari I; Fremont, Daved H

    2015-08-28

    Poxviruses encode a broad array of proteins that serve to undermine host immune defenses. Structural analysis of four of these seemingly unrelated proteins revealed the recurrent use of a conserved beta-sandwich fold that has not been observed in any eukaryotic or prokaryotic protein. Herein we propose to call this unique structural scaffolding the PIE (Poxvirus Immune Evasion) domain. PIE domain containing proteins are abundant in chordopoxvirinae, with our analysis identifying 20 likely PIE subfamilies among 33 representative genomes spanning 7 genera. For example, cowpox strain Brighton Red appears to encode 10 different PIEs: vCCI, A41, C8, M2, T4 (CPVX203), and the SECRET proteins CrmB, CrmD, SCP-1, SCP-2, and SCP-3. Characterized PIE proteins all appear to be nonessential for virus replication, and all contain signal peptides for targeting to the secretory pathway. The PIE subfamilies differ primarily in the number, size, and location of structural embellishments to the beta-sandwich core that confer unique functional specificities. Reported ligands include chemokines, GM-CSF, IL-2, MHC class I, and glycosaminoglycans. We expect that the list of ligands and receptors engaged by the PIE domain will grow as we come to better understand how this versatile structural architecture can be tailored to manipulate host responses to infection.

  13. Time domain investigation of transceiver functions using a known reference target.

    PubMed

    Feuillade, C; Meredith, R W; Chotiros, N P; Clay, C S

    2002-12-01

    During August 1998, a bottom scattering tank experiment was performed at the Applied Research Laboratory, University of Texas to measure wideband acoustic reverberation from multiple objects (e.g., cobbles and pebbles) placed on a sediment simulation of the sea floor. In preparation for processing and analyzing the experimental data, time domain scattering measurements made with stainless steel and glass balls suspended in the water column were used to calibrate the sonar transceiver system by deconvolving the theoretical impulse response for steel and glass spheres, obtained via the Faran elastic sphere scattering model, from the scattered time signals. It is the analysis of these calibration measurements which forms the subject of this paper. Results show the critical importance of accurate input-output system calibrations for time domain sound scattering research, and successfully demonstrate a time domain method for accurately calibrating the complete sonar transceiver function, i.e., both the amplitude and time dependence, using a known reference target. The work has implications for boundary and volume scattering applications.

  14. Structure of the Spt16 Middle Domain Reveals Functional Features of the Histone Chaperone FACT*

    PubMed Central

    Kemble, David J.; Whitby, Frank G.; Robinson, Howard; McCullough, Laura L.; Formosa, Tim; Hill, Christopher P.

    2013-01-01

    The histone chaperone FACT is an essential and abundant heterodimer found in all eukaryotes. Here we report a crystal structure of the middle domain of the large subunit of FACT (Spt16-M) to reveal a double pleckstrin homology architecture. This structure was found previously in the Pob3-M domain of the small subunit of FACT and in the related histone chaperone Rtt106, although Spt16-M is distinguished from these structures by the presence of an extended α-helix and a C-terminal addition. Consistent with our finding that the double pleckstrin homology structure is common to these three histone chaperones and reports that Pob3 and Rtt106 double pleckstrin homology domains bind histones H3-H4, we also find that Spt16-M binds H3-H4 with low micromolar affinity. Our structure provides a framework for interpreting a large body of genetic data regarding the physiological functions of FACT, including the identification of potential interaction surfaces for binding histones or other proteins. PMID:23417676

  15. A comparison of hydrologic and functional trait domains from floodplain landscapes in Michigan and Maryland

    NASA Astrophysics Data System (ADS)

    Van Appledorn, M.; Baker, M. E.

    2013-12-01

    Riparian forest ecosystems are ecologically important areas strongly influenced by hydrologic processes. Although studies from different regions suggest that variation in flood dynamics structures plant communities within and among watersheds, we still lack the ability to predict biotic responses to different flow regimes. Functional traits have the potential to yield insight into community structuring mechanisms not apparent without controlled experimentation, and may lead to region-specific improvement of conservation and restoration practices. The objectives of this study are to 1) quantify patterns of flood dynamics and functional trait distributions for riparian forests across two disparate regions (Maryland and Michigan's lower peninsula), and 2) compare trait-environment domains to evaluate the transferability of inter-regional riparian studies. Flood frequency, intensity and duration were characterized using long-term USGS gauge data for over 200 Maryland and Michigan rivers. Species lists were obtained from riparian inventories throughout Maryland and Michigan's lower peninsula and were related to functional traits representing growth, competition, regenerative processes, and adaptive strategies for disturbance resistance and resilience. We found that floods in Maryland tend to be less frequent and more energetically intense than in Michigan, where high baseflow yields lead to longer duration floods and less tractive power. In contrast with the hydrologic domains, functional trait distributions had a high degree of overlap between Maryland and Michigan. Species from both regions comprised each of the 9 functional groups represented by the combined sample, and both regions had similar measures of functional diversity (FDis MD = 0.143, FDis MI = 0.161). Trait distributions suggest that the states have comparable trait pools despite distinct species composition and environmental settings. This study demonstrates that regional shifts in environmental domains

  16. Disability in adolescents with chronic pain: Patterns and predictors across different domains of functioning.

    PubMed

    Gauntlett-Gilbert, Jeremy; Eccleston, Christopher

    2007-09-01

    Many children and adolescents experience recurrent pain, but only a few become disabled by it. Research has established that higher pain intensity and worse depression seem to predict poorer functioning in this population. Parent and family variables have been minimally researched. This study investigated functional disability, social/adaptive functioning and school attendance in a population of highly disabled adolescents and their parents seeking help for chronic pain. Adolescents (N=110) were assessed using the Bath Adolescent Pain Questionnaire [BAPQ; Eccleston C, Jordan A, McCracken LM, Sleed M, Connell H, Clinch J. The Bath Adolescent Pain Questionnaire (BAPQ): Development and preliminary psychometric evaluation of an instrument to assess the impact of chronic pain on adolescents. Pain 2005;118:263-70], a multidimensional instrument designed for a pain population. Pain intensity and depression predicted functional disability. However, social/adaptive functioning was associated with different variables, including parent factors, and school attendance showed no association with pain intensity or anxiety. The results emphasise the need to measure multiple domains of functioning, and show that the connections between pain, physical disability and adaptive functioning are looser than might be predicted.

  17. Special functions arising in the study of semi-linear equations in circular domains

    NASA Astrophysics Data System (ADS)

    Varlamov, Vladimir

    2007-05-01

    Rayleigh functions are defined by the formulawhere are zeros of the Bessel function J[nu](x) and n=1,2,3,..., is the number of the zero. These functions appear in the classical problems of vibrating circular membranes, heat conduction in cylinders and diffraction through circular apertures. In the present paper it is shown that a new family of special functions, convolutions of Rayleigh functions with respect to the Bessel index,arises in constructing solutions of semi-linear evolution equations in circular domains (see also [V. Varlamov, Convolution of Rayleigh functions with respect to the Bessel index, J. Math. Anal. Appl. 306 (2005) 413-424]). As an example of its application a forced Cahn-Hilliard equation is considered in a unit disc with homogeneous boundary and initial conditions. Construction of its global-in-time solutions involves the use of R1(m) and R2(m). A general representation of Rl(m) is deduced and on the basis of that a particular result for R2(m) is obtained convenient for computing its asymptotics as m-->[infinity]. The latter issue is important for establishing a function space to which a solution of the corresponding problem belongs.

  18. Time Domain Identification of an Optimal Control Pilot Model with Emphasis on the Objective Function

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1982-01-01

    A method for the identification of the pilot's control compensation using time domain techniques is proposed. From this information we hope to infer a quadratic cost function, supported by the data, that represents a reasonable expression for the pilot's control objective in the task being performed, or an inferred piloting strategy. The objectives for this method are: (1) obtain a better understanding of the fundamental piloting techniques in complex tasks, such as landing approach; (2) the development of a metric measurable in simulations and flight test that correlate with subjective pilot opinion; and (3) to further validate pilot models and pilot vehicle analysis methods.

  19. Nucleosome distortion as a possible mechanism of transcription activation domain function.

    PubMed

    Erkina, Tamara Y; Erkine, Alexandre M

    2016-01-01

    After more than three decades since the discovery of transcription activation domains (ADs) in gene-specific activators, the mechanism of their function remains enigmatic. The widely accepted model of direct recruitment by ADs of co-activators and basal transcriptional machinery components, however, is not always compatible with the short size yet very high degree of sequence randomness and intrinsic structural disorder of natural and synthetic ADs. In this review, we formulate the basis for an alternative and complementary model, whereby sequence randomness and intrinsic structural disorder of ADs are necessary for transient distorting interactions with promoter nucleosomes, triggering promoter nucleosome translocation and subsequently gene activation. PMID:27679670

  20. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8.

    PubMed

    Leclère, Lucas; Bause, Markus; Sinigaglia, Chiara; Steger, Julia; Rentzsch, Fabian

    2016-05-15

    The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella. PMID:26989171

  1. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8

    PubMed Central

    Leclère, Lucas; Bause, Markus; Sinigaglia, Chiara; Steger, Julia; Rentzsch, Fabian

    2016-01-01

    ABSTRACT The development of the oral pole in cnidarians and the posterior pole in bilaterians is regulated by canonical Wnt signaling, whereas a set of transcription factors, including Six3/6 and FoxQ2, controls aboral development in cnidarians and anterior identity in bilaterians. However, it is poorly understood how these two patterning systems are initially set up in order to generate correct patterning along the primary body axis. Investigating the early steps of aboral pole formation in the sea anemone Nematostella vectensis, we found that, at blastula stage, oral genes are expressed before aboral genes and that Nvβ-catenin regulates both oral and aboral development. In the oral hemisphere, Nvβ-catenin specifies all subdomains except the oral-most, NvSnailA-expressing domain, which is expanded upon Nvβ-catenin knockdown. In addition, Nvβ-catenin establishes the aboral patterning system by promoting the expression of NvSix3/6 at the aboral pole and suppressing the Wnt receptor NvFrizzled5/8 at the oral pole. NvFrizzled5/8 expression thereby gets restricted to the aboral domain. At gastrula stage, NvSix3/6 and NvFrizzled5/8 are both expressed in the aboral domain, but they have opposing activities, with NvSix3/6 maintaining and NvFrizzled5/8 restricting the size of the aboral domain. At planula stage, NvFrizzled5/8 is required for patterning within the aboral domain and for regulating the size of the apical organ by modulation of a previously characterized FGF feedback loop. Our findings suggest conserved roles for Six3/6 and Frizzled5/8 in aboral/anterior development and reveal key functions for Nvβ-catenin in the patterning of the entire oral-aboral axis of Nematostella. PMID:26989171

  2. Adapting ORAP to wind plants : industry value and functional requirements.

    SciTech Connect

    Not Available

    2010-08-01

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  3. Pegylation of fibronectin and its functional domains: Effect on stability and biological activity

    NASA Astrophysics Data System (ADS)

    Zhang, Chen

    Delayed wound healing in many chronic wounds has been linked to the lack of extracellular matrix (ECM) support and the degradation of fibronectin (FN) by an abnormally high protease level. The ECM provides physical and chemical cues that direct tissue growth and development while FN is a key ECM protein that attracts and binds different molecules and cells. The goal of my study is creating an ECM analogue based on a composite of polyethylene glycol (PEG) hydrogels and FN binding domains and stabilizing FN against proteolytic degradation by conjugating it to PEG. The work presented here shows a two-prong approach by which the problem of ECM degradation and deficiency chronic wound healing can be addressed. The first approach for addressing ECM deficiency is through a scaffold design methodology. The novelty of the scaffold approach is that it uses the cell-binding domains of FN instead of the often-used RGD peptide. I demonstrate that a PEG hydrogel with the cell-binding domain produces a more robust biological response in cells than a PEG hydrogel with the RGD peptide. I also demonstrate that varying different functional domains of FN can be used to controllably stimulate multiple biological responses. The second approach demonstrates a method by which FN, a key ECM protein, is stabilized against proteolytic degradation without perturbing its activity. These studies of creating PEG-FN conjugates are the first of their kind. Collectively, the data that I present in this thesis will lead to novel therapeutic methods for treating chronic wounds.

  4. Functional Analysis of the Bacteriophage T4 Rad50 Homolog (gp46) Coiled-coil Domain.

    PubMed

    Barfoot, Tasida; Herdendorf, Timothy J; Behning, Bryanna R; Stohr, Bradley A; Gao, Yang; Kreuzer, Kenneth N; Nelson, Scott W

    2015-09-25

    Rad50 and Mre11 form a complex involved in the detection and processing of DNA double strand breaks. Rad50 contains an anti-parallel coiled-coil with two absolutely conserved cysteine residues at its apex. These cysteine residues serve as a dimerization domain and bind a Zn(2+) cation in a tetrathiolate coordination complex known as the zinc-hook. Mutation of the zinc-hook in bacteriophage T4 is lethal, indicating the ability to bind Zn(2+) is critical for the functioning of the MR complex. In vitro, we found that complex formation between Rad50 and a peptide corresponding to the C-terminal domain of Mre11 enhances the ATPase activity of Rad50, supporting the hypothesis that the coiled-coil is a major conduit for communication between Mre11 and Rad50. We constructed mutations to perturb this domain in the bacteriophage T4 Rad50 homolog. Deletion of the Rad50 coiled-coil and zinc-hook eliminates Mre11 binding and ATPase activation but does not affect its basal activity. Mutation of the zinc-hook or disruption of the coiled-coil does not affect Mre11 or DNA binding, but their activation of Rad50 ATPase activity is abolished. Although these mutants excise a single nucleotide at a normal rate, they lack processivity and have reduced repetitive exonuclease rates. Restricting the mobility of the coiled-coil eliminates ATPase activation and repetitive exonuclease activity, but the ability to support single nucleotide excision is retained. These results suggest that the coiled-coiled domain adopts at least two conformations throughout the ATPase/nuclease cycle, with one conformation supporting enhanced ATPase activity and processivity and the other supporting nucleotide excision.

  5. Transiently populated intermediate functions as a branching point of the FF domain folding pathway.

    PubMed

    Korzhnev, Dmitry M; Religa, Tomasz L; Kay, Lewis E

    2012-10-30

    Studies of protein folding and the intermediates that are formed along the folding pathway provide valuable insights into the process by which an unfolded ensemble forms a functional native conformation. However, because intermediates on folding pathways can serve as initiation points of aggregation (implicated in a number of diseases), their characterization assumes an even greater importance. Establishing the role of such intermediates in folding, misfolding, and aggregation remains a major challenge due to their often low populations and short lifetimes. We recently used NMR relaxation dispersion methods and computational techniques to determine an atomic resolution structure of the folding intermediate of a small protein module--the FF domain--with an equilibrium population of 2-3% and a millisecond lifetime, 25 °C. Based on this structure a variant FF domain has been designed in which the native state is selectively destabilized by removing the carboxyl-terminal helix in the native structure to produce a highly populated structural mimic of the intermediate state. Here, we show via solution NMR studies of the designed mimic that the mimic forms distinct conformers corresponding to monomeric and dimeric (K(d) = 0.2 mM) forms of the protein. The conformers exchange on the seconds timescale with a monomer association rate of 1.1 · 10(4) M(-1) s(-1) and with a region responsible for dimerization localized to the amino-terminal residues of the FF domain. This study establishes the FF domain intermediate as a central player in both folding and misfolding pathways and illustrates how incomplete folding can lead to the formation of higher-order structures.

  6. Dimerization of the DYT6 dystonia protein, THAP1, requires residues within the coiled-coil domain

    PubMed Central

    Sengel, Cem; Gavarini, Sophie; Sharma, Nutan; Ozelius, Laurie J.; Bragg, D. Cristopher

    2011-01-01

    THAP1 is a DNA binding protein that has been recently associated with DYT6 dystonia, a hereditary movement disorder involving sustained, involuntary muscle contractions. A large number of dystonia-related mutations have been identified in THAP1 in diverse patient populations worldwide. Previous reports have suggested that THAP1 oligomerizes with itself via a C-terminal coiled-coil domain, raising the possibility that DYT6 mutations in this region might affect this interaction. In this study we examined the ability of wild-type THAP1 to bind itself and the effects on this interaction of the following disease mutations: C54Y, F81L, ΔF132, T142A, I149T, Q154fs180X, and A166T. The results confirmed that wild-type THAP1 associated with itself and most of the DYT6 mutants tested, except for the Q154fs180X variant, which loses most of the coiled-coil domain due to a frameshift at position 154. However, deletion of C-terminal residues after position 166 produced a truncated variant of THAP1 that was able to bind the wild-type protein. The interaction of THAP1 with itself therefore required residues within a 13-amino acid region (aa 154–166) of the coiled-coil domain. Further inspection of this sequence revealed elements highly consistent with previous descriptions of leucine zippers, which serve as dimerization domains in other transcription factor families. Based on this similarity, a structural model was generated to predict how hydrophobic residues in this region may mediate dimerization. These observations offer additional insight into the role of the coiled-coil domain in THAP1, which may facilitate future analyses of DYT6 mutations in this region. PMID:21752024

  7. Key Functional Regions in the Histone Variant H2A.Z C-Terminal Docking Domain

    PubMed Central

    Wang, Alice Y.; Aristizabal, Maria J.; Ryan, Colm; Krogan, Nevan J.; Kobor, Michael S.

    2011-01-01

    The incorporation of histone variants into nucleosomes represents one way of altering the chromatin structure to accommodate diverse functions. Histone variant H2A.Z has specific roles in gene regulation, heterochromatin boundary formation, and genomic integrity. The precise features required for H2A.Z to function and specify an identity different from canonical H2A remain to be fully explored. Analysis of the C-terminal docking domain of H2A.Z in Saccharomyces cerevisiae using epistatic miniarray profile (E-MAP) uncovered nuanced requirements of the H2A.Z C-terminal region for cell growth when additional genes were compromised. Moreover, the H2A.Z(1–114) truncation, lacking the last 20 amino acids of the protein, did not support regular H2A.Z functions, such as resistance to genotoxic stress, restriction of heterochromatin in its native context, GAL1 gene activation, and chromatin anchoring. The corresponding region of H2A could fully rescue the strong defects caused by loss of this functionally essential region in the C terminus of H2A.Z. Despite the dramatic reduction in function, the H2A.Z(1–114) truncation still bound the H2A.Z deposition complex SWR1-C, the histone chaperone Chz1, and histone H2B. These data are consistent with a model in which retaining the variant in chromatin after its deposition by SWR1-C is a crucial determinant of its function. PMID:21791612

  8. The C-terminal Kinase and ERK-binding Domains of Drosophila S6KII (RSK) Are Required for Phosphorylation of the Protein and Modulation of Circadian Behavior*

    PubMed Central

    Tangredi, Michelle M.; Ng, Fanny S.; Jackson, F. Rob

    2012-01-01

    A detailed structure/function analysis of Drosophila p90 ribosomal S6 kinase (S6KII) or its mammalian homolog RSK has not been performed in the context of neuronal plasticity or behavior. We previously reported that S6KII is required for normal circadian periodicity. Here we report a site-directed mutagenesis of S6KII and analysis of mutants, in vivo, that identifies functional domains and phosphorylation sites critical for the regulation of circadian period. We demonstrate, for the first time, a role for the S6KII C-terminal kinase that is independent of its known role in activation of the N-terminal kinase. Both S6KII C-terminal kinase activity and its ERK-binding domain are required for wild-type circadian period and normal phosphorylation status of the protein. In contrast, the N-terminal kinase of S6KII is dispensable for modulation of circadian period and normal phosphorylation of the protein. We also show that particular sites of S6KII phosphorylation, Ser-515 and Thr-732, are essential for normal circadian behavior. Surprisingly, the phosphorylation of S6KII residues, in vivo, does not follow a strict sequential pattern, as implied by certain cell-based studies of mammalian RSK protein. PMID:22447936

  9. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells.

    PubMed

    Sparks, Avis E; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-05-20

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity. PMID:27048654

  10. Functional Domains of Autoimmune Regulator (AIRE) Modulate INS-VNTR Transcription in Human Thymic Epithelial Cells.

    PubMed

    Sparks, Avis E; Chen, Chiachen; Breslin, Mary B; Lan, Michael S

    2016-05-20

    INS-VNTR (insulin-variable number of tandem repeats) and AIRE (autoimmune regulator) have been associated with the modulation of insulin gene expression in thymus, which is essential to induce either insulin tolerance or the development of insulin autoimmunity and type 1 diabetes. We sought to analyze whether each functional domain of AIRE is critical for the activation of INS-VNTR in human thymic epithelial cells. Twelve missense or nonsense mutations in AIRE and two chimeric AIRE constructs were generated. A luciferase reporter assay and a pulldown assay using biotinylated INS-class I VNTR probe were performed to examine the transactivation and binding activities of WT, mutant, and chimeric AIREs on the INS-VNTR promoter. Confocal microscopy analysis was performed for WT or mutant AIRE cellular localization. We found that all of the AIRE mutations resulted in loss of transcriptional activation of INS-VNTR except mutant P252L. Using WT/mutant AIRE heterozygous forms to modulate the INS-VNTR target revealed five mutations (R257X, G228W, C311fsX376, L397fsX478, and R433fsX502) that functioned in a dominant negative fashion. The LXXLL-3 motif is identified for the first time to be essential for DNA binding to INS-VNTR, whereas the intact PHD1, PHD2, LXXLL-3, and LXXLL-4 motifs were important for successful transcriptional activation. AIRE nuclear localization in the human thymic epithelial cell line was disrupted by mutations in the homogenously staining region domain and the R257X mutation in the PHD1 domain. This study supports the notion that AIRE mutation could specifically affect human insulin gene expression in thymic epithelial cells through INS-VNTR and subsequently induce either insulin tolerance or autoimmunity.

  11. The complex regulatory function of the ligand-binding domain of the inositol 1,4,5-trisphosphate receptor.

    PubMed

    Devogelaere, Benoit; Verbert, Leen; Parys, Jan B; Missiaen, Ludwig; De Smedt, Humbert

    2008-01-01

    The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) can be divided in three functionally distinct regions: a ligand-binding domain, a modulatory domain and a channel domain. Numerous regulatory mechanisms including inter- and intra-molecular protein-protein interactions and phosphorylation events act via these domains to regulate the function of the IP(3)R. Regulation at the level of the ligand-binding domain primarily affects the affinity for IP(3). The extent of IP(3)-induced Ca(2+) release (IICR) is, however, not only determined by the affinity for IP(3) but also by the effectiveness of the coupling between ligand binding and channel opening. As a result, regulation as well as malfunction of IICR may be affected by both steps in the activation mechanism. The 3D structures of the two subdomains of the ligand-binding domain have recently been determined by X-ray diffraction analysis. This allows a more detailed molecular explanation of the regulatory events situated at the ligand-binding domain of the IP(3)R. In this review, we will focus on recent structural and functional data on the ligand-binding domain that have extended and clarified the view on the molecular mechanisms of IP(3)R regulation.

  12. The structure of the cyanobactin domain of unknown function from PatG in the patellamide gene cluster

    PubMed Central

    Mann, Greg; Koehnke, Jesko; Bent, Andrew F.; Graham, Rachael; Houssen, Wael; Jaspars, Marcel; Schwarz-Linek, Uli; Naismith, James H.

    2014-01-01

    Patellamides are members of the cyanobactin family of ribosomally synthesized and post-translationally modified cyclic peptide natural products, many of which, including some patellamides, are biologically active. A detailed mechanistic understanding of the biosynthetic pathway would enable the construction of a biotechnological ‘toolkit’ to make novel analogues of patellamides that are not found in nature. All but two of the protein domains involved in patellamide biosynthesis have been characterized. The two domains of unknown function (DUFs) are homologous to each other and are found at the C-termini of the multi-domain proteins PatA and PatG. The domain sequence is found in all cyanobactin-biosynthetic pathways characterized to date, implying a functional role in cyanobactin biosynthesis. Here, the crystal structure of the PatG DUF domain is reported and its binding interactions with plausible substrates are investigated. PMID:25484206

  13. Cognitive Functioning in Space Exploration Missions: A Human Requirement

    NASA Technical Reports Server (NTRS)

    Fiedler, Edan; Woolford, Barbara

    2005-01-01

    Solving cognitive issues in the exploration missions will require implementing results from both Human Behavior and Performance, and Space Human Factors Engineering. Operational and research cognitive requirements need to reflect a coordinated management approach with appropriate oversight and guidance from NASA headquarters. First, this paper will discuss one proposed management method that would combine the resources of Space Medicine and Space Human Factors Engineering at JSC, other NASA agencies, the National Space Biomedical Research Institute, Wyle Labs, and other academic or industrial partners. The proposed management is based on a Human Centered Design that advocates full acceptance of the human as a system equal to other systems. Like other systems, the human is a system with many subsystems, each of which has strengths and limitations. Second, this paper will suggest ways to inform exploration policy about what is needed for optimal cognitive functioning of the astronaut crew, as well as requirements to ensure necessary assessment and intervention strategies for the human system if human limitations are reached. Assessment strategies will include clinical evaluation and fitness-to-perform evaluations. Clinical intervention tools and procedures will be available to the astronaut and space flight physician. Cognitive performance will be supported through systematic function allocation, task design, training, and scheduling. Human factors requirements and guidelines will lead to well-designed information displays and retrieval systems that reduce crew time and errors. Means of capturing process, design, and operational requirements to ensure crew performance will be discussed. Third, this paper will describe the current plan of action, and future challenges to be resolved before a lunar or Mars expedition. The presentation will include a proposed management plan for research, involvement of various organizations, and a timetable of deliverables.

  14. Evidence-Based Structural Model of the Staphylococcal Repressor Protein: Separation of Functions into Different Domains

    PubMed Central

    Nyíri, Kinga; Kőhegyi, Bianka; Micsonai, András; Kardos, József; Vertessy, Beata G.

    2015-01-01

    Horizontal transfer of mobile genetic elements within Staphylococci is of high biomedical significance as such elements are frequently responsible for virulence and toxic effects. Staphylococcus-encoded repressor proteins regulate the replication of these mobile genetic elements that are located within the so-called pathogenicity islands. Here, we report structural and functional characterization of one such repressor protein, namely the Stl protein encoded by the pathogenicity island SaPIbov1. We create a 3D structural model and based on this prediction, we investigate the different functionalities of truncated and point mutant constructs. Results suggest that a helix-turn-helix motif governs the interaction of the Stl protein with its cognate DNA site: point mutations within this motif drastically decrease DNA-binding ability, whereas the interaction with the Stl-binding partner protein dUTPase is unperturbed by these point mutations. The 3D model also suggested the potential independent folding of a carboxy-terminal domain. This suggestion was fully verified by independent experiments revealing that the carboxy-terminal domain does not bind to DNA but is still capable of binding to and inhibiting dUTPase. A general model is proposed, which suggests that among the several structurally different repressor superfamilies Stl-like Staphylococcal repressor proteins belong to the helix-turn-helix transcription factor group and the HTH motif is suggested to reside within N-terminal segment. PMID:26414067

  15. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  16. Functional changes appropriate for determining mineral element requirements.

    PubMed

    Lukaski, H C; Penland, J G

    1996-09-01

    One factor limiting efforts to determine human requirements for dietary intakes of mineral elements has been the unavailability of acceptable standards for evaluating the effects of marginal and mild deficiencies. Traditional approaches, such as growth, longevity, chemical balance and measurement of concentrations of minerals in plasma or serum and cellular components of the blood, have not been sensitive indicators of mineral nutriture. One alternative that has been shown to be responsive to graded dietary mineral intake is the evaluation of functional responses to specific challenges or stressors. Aberrant responses, either exaggerated or attenuated, to controlled stressors have been observed in a variety of physiological, psychological and immunological parameters when mineral intakes have been suboptimal by conventional standards, compared with adequate responses. In comparison to static biochemical approaches for assessment of mineral nutritional status, functional tests may be sensitive and responsive to alterations in mineral intake in adult humans. Dynamic functional measures complement static biochemical measures and reflect the net effect of deficiencies on integrated biological systems. The application of some of these types of dynamic evaluations of function may be a useful and productive approach for proposing mineral element intakes to optimize human health and biological function and performance.

  17. Lymphatic function is required prenatally for lung inflation at birth

    PubMed Central

    Jakus, Zoltán; Gleghorn, Jason P.; Enis, David R.; Sen, Aslihan; Chia, Stephanie; Liu, Xi; Rawnsley, David R.; Yang, Yiqing; Hess, Paul R.; Zou, Zhiying; Yang, Jisheng; Guttentag, Susan H.; Nelson, Celeste M.

    2014-01-01

    Mammals must inflate their lungs and breathe within minutes of birth to survive. A key regulator of neonatal lung inflation is pulmonary surfactant, a lipoprotein complex which increases lung compliance by reducing alveolar surface tension (Morgan, 1971). Whether other developmental processes also alter lung mechanics in preparation for birth is unknown. We identify prenatal lymphatic function as an unexpected requirement for neonatal lung inflation and respiration. Mice lacking lymphatic vessels, due either to loss of the lymphangiogenic factor CCBE1 or VEGFR3 function, appear cyanotic and die shortly after birth due to failure of lung inflation. Failure of lung inflation is not due to reduced surfactant levels or altered development of the lung but is associated with an elevated wet/dry ratio consistent with edema. Embryonic studies reveal active lymphatic function in the late gestation lung, and significantly reduced total lung compliance in late gestation embryos that lack lymphatics. These findings reveal that lymphatic vascular function plays a previously unrecognized mechanical role in the developing lung that prepares it for inflation at birth. They explain respiratory failure in infants with congenital pulmonary lymphangiectasia, and suggest that inadequate late gestation lymphatic function may also contribute to respiratory failure in premature infants. PMID:24733830

  18. A stream function-vorticity finite element formulation for Navier-Stokes equations in multi-connected domain

    NASA Astrophysics Data System (ADS)

    Mizukami, A.

    1983-09-01

    It is pointed out that the conventional stream function-vorticity (psi-omega) finite element formulation for Navier-Stokes equations entails the difficulty that the no-slip boundary conditions cannot be introduced directly. Without this difficulty, the discretized equations for psi and omega can be solved simultaneously. Reference is made to studies by Fix (1976), who used Lagrange multipliers, and Ikenouchi and Kumura (1974), who employed the method of selecting the weighting functions suitable to the boundary conditions. The latter ideas were subsequently developed by Campion-Renson and Crochet (1978). This method is reconsidered here from the viewpoint that the Galerkin method is the orthogonal projection of the residual to the space spanned by the linearly independent basis functions of approximate solutions. A stream function-vorticity finite element formulation for Navier-Stokes equations is presented which does not require an iterative procedure for satisfying the boundary conditions. It is shown that this formulation confers a considerable advantage in solving the flow problems in a multiconnected domain.

  19. The C/H3 Domain of p300 Is Required to Protect VRK1 and VRK2 from their Downregulation Induced by p53

    PubMed Central

    Valbuena, Alberto; Blanco, Sandra; Vega, Francisco M.; Lazo, Pedro A.

    2008-01-01

    Background The vaccinia-related kinase 1 (VRK1) protein, an activator of p53, can be proteolytically downregulated by an indirect mechanism, which requires p53-dependent transcription. Principal Findings In this work we have biochemically characterized the contribution of several p53 transcriptional cofactors with acetyl transferase activity to the induction of VRK1 downregulation that was used as a functional assay. Downregulation of VRK1 induced by p53 is prevented in a dose dependent manner by either p300 or CBP, but not by PCAF, used as transcriptional co-activators, suggesting that p53 has a different specificity depending on the relative level of these transcriptional cofactors. This inhibition does not require p53 acetylation, since a p53 acetylation mutant also induces VRK1 downregulation. PCAF can not revert the VRK1 protection effect of p300, indicating that these two proteins do not compete for a common factor needed to induce VRK1 downregulation. The protective effect is also induced by the C/H3 domain of p300, a region implicated in binding to several transcription factors and SV40 large T antigen; but the protective effect is lost when a mutant C/H3Del33 is used. The protective effect is a consequence of direct binding of the C/H3 domain to the transactivation domain of p53. A similar downregulatory effect can also be detected with VRK2 protein. Conclusions/Significance Specific p53-dependent effects are determined by the availability and ratios of its transcriptional cofactors. Specifically, the downregulation of VRK1/VRK2 protein levels, as a consequence of p53 accumulation, is thus dependent on the levels of the p300/CBP protein available for transcriptional complexes, since in this context this cofactor functions as a repressor of the effect. These observations point to the relevance of knowing the cofactor levels in order to determine one effect or another. PMID:18612383

  20. Functional Requirements for Continuation Period Equipment and Drilling

    SciTech Connect

    Sweeney, J.J.

    2000-06-20

    For geophysical measurements, creating a functional requirement based on finding a specific-sized target at a specific depth is difficult because of the wide variation of subsurface and surface geologic conditions that can be encountered. An alternative approach used in this paper is to specify functional requirements based on what is needed to search for the effects of a given target within a reasonable background of environmental or geological variation (noise). There is a gap between what the state-of-the-art expert with a large amount of experience can be expected to accomplish and what a non-expert inspector with limited experience can do. There are also limitations because of the Treaty environment (equipment certification, transparency, managed access, etc.); thus, for OSI, we must opt for pragmatic approach. Equipment must be easy to use, rugged, and functional over a wide range of environmental conditions. Equipment should consist of commercially available technology. Well-established operational procedures should be used for taking measurements, reducing data, and presenting data, with software mostly provided by the manufacturer along with the equipment. Equipment should be used in conjunction with WGB-approved position-finding equipment capable of relative position determinations pertinent to the type of equipment and measurement.

  1. Frequency-domain Green's functions for radar waves in heterogeneous 2.5D media

    USGS Publications Warehouse

    Ellefsen, K.J.; Croize, D.; Mazzella, A.T.; McKenna, J.R.

    2009-01-01

    Green's functions for radar waves propagating in heterogeneous 2.5D media might be calculated in the frequency domain using a hybrid method. The model is defined in the Cartesian coordinate system, and its electromagnetic properties might vary in the x- and z-directions, but not in the y-direction. Wave propagation in the x- and z-directions is simulated with the finite-difference method, and wave propagation in the y-direction is simulated with an analytic function. The absorbing boundaries on the finite-difference grid are perfectly matched layers that have been modified to make them compatible with the hybrid method. The accuracy of these numerical Greens functions is assessed by comparing them with independently calculated Green's functions. For a homogeneous model, the magnitude errors range from -4.16% through 0.44%, and the phase errors range from -0.06% through 4.86%. For a layered model, the magnitude errors range from -2.60% through 2.06%, and the phase errors range from -0.49% through 2.73%. These numerical Green's functions might be used for forward modeling and full waveform inversion. ?? 2009 Society of Exploration Geophysicists. All rights reserved.

  2. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions

    PubMed Central

    Pacheco, Jonathan; Dominguez, Laura; Bohórquez-Hernández, A.; Asanov, Alexander; Vaca, Luis

    2016-01-01

    STIM1 and Orai1 are the main components of a widely conserved Calcium influx pathway known as store-operated calcium entry (SOCE). STIM1 is a calcium sensor, which oligomerizes and activates Orai channels when calcium levels drop inside the endoplasmic reticulum (ER). The series of molecular rearrangements that STIM1 undergoes until final activation of Orai1 require the direct exposure of the STIM1 domain known as SOAR (Stim Orai Activating Region). In addition to these complex molecular rearrangements, other constituents like lipids at the plasma membrane, play critical roles orchestrating SOCE. PI(4,5)P2 and enriched cholesterol microdomains have been shown as important signaling platforms that recruit the SOCE machinery in steps previous to Orai1 activation. However, little is known about the molecular role of cholesterol once SOCE is activated. In this study we provide clear evidence that STIM1 has a cholesterol-binding domain located inside the SOAR region and modulates Orai1 channels. We demonstrate a functional association of STIM1 and SOAR to cholesterol, indicating a close proximity of SOAR to the inner layer of the plasma membrane. In contrast, the depletion of cholesterol induces the SOAR detachment from the plasma membrane and enhances its association to Orai1. These results are recapitulated with full length STIM1. PMID:27459950

  3. Kalirin 7 is required for synaptic structure and function

    PubMed Central

    Ma, Xin-Ming; Kiraly, Drew D.; Gaier, Eric D.; Wang, Yanping; Kim, Eun-Ji; Levine, Eric S.; Eipper, Betty A.; Mains, Richard E.

    2008-01-01

    Rho GTPases activated by GDP/GTP exchange factors (GEFs) play key roles in the developing and adult nervous system. Kalirin-7 (Kal7), the predominant adult splice form of the multifunctional Kalirin RhoGEF, includes a PDZ binding domain and localizes to the postsynaptic side of excitatory synapses. In vitro studies demonstrated that overexpression of Kal7 increased dendritic spine density whereas reduced expression of endogenous Kal7 decreased spine density. To evaluate the role of Kal7 in vivo, mice lacking the terminal exon unique to Kal7 were created. Mice lacking both copies of the Kal7 exon (Kal7KO) grew and reproduced normally. Golgi impregnation and electron microscopy revealed decreased hippocampal spine density in Kal7KO mice. Behaviorally, Kal7KO mice showed decreased anxiety-like behavior in the elevated zero maze and impaired acquisition of a passive avoidance task, but normal behavior in open field, object recognition and radial arm maze tasks. Kal7KO mice were deficient in hippocampal long-term potentiation. Western blot analysis confirmed the absence of Kal7 and revealed compensatory increases in larger Kalirin isoforms. PSDs purified from the cortices of Kal7KO mice showed a deficit in Cdk5, a kinase known to phosphorylate Kal7 and play an essential role in synaptic function. The early stages of excitatory synaptic development proceeded normally in cortical neurons prepared from Kal7KO mice, with decreased excitatory synapses apparent only after 21 days in vitro. Expression of exogenous Kal7 in Kal7KO neurons rescued this deficit. Kal7 plays an essential role in synaptic structure and function, affecting a subset of cognitive processes. PMID:19020030

  4. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence.

    PubMed

    Rumyantsev, Konstantin A; Shcherbakova, Daria M; Zakharova, Natalia I; Emelyanov, Alexander V; Turoverov, Konstantin K; Verkhusha, Vladislav V

    2015-01-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes. PMID:26679720

  5. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    NASA Astrophysics Data System (ADS)

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-12-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes.

  6. LIA4 Encodes a Chromoshadow Domain Protein Required for Genomewide DNA Rearrangements in Tetrahymena thermophila

    PubMed Central

    Horrell, Scott A.

    2014-01-01

    Extensive DNA elimination occurs as part of macronuclear differentiation during Tetrahymena sexual reproduction. The identification of sequences to excise is guided by a specialized RNA interference (RNAi) machinery that targets the methylation of histone H3 lysine 9 (K9) and K27 on chromatin associated with these internal eliminated sequences (IESs). This modified chromatin is reorganized into heterochromatic subnuclear foci, which is a hallmark of their subsequent elimination. Here, we demonstrate that Lia4, a chromoshadow domain-containing protein, is an essential component in this DNA elimination pathway. LIA4 knockout (ΔLIA4) lines fail to excise IESs from their developing somatic genome and arrest at a late stage of conjugation. Lia4 acts after RNAi-guided heterochromatin formation, as both H3K9 and H3K27 methylation are established. Nevertheless, without LIA4, these cells fail to form the heterochromatic foci associated with DNA rearrangement, and Lia4 accumulates in the foci, indicating that Lia4 plays a key role in their structure. These data indicate a critical role for Lia4 in organizing the nucleus during Tetrahymena macronuclear differentiation. PMID:25084866

  7. Minimal domain of bacterial phytochrome required for chromophore binding and fluorescence

    PubMed Central

    Rumyantsev, Konstantin A.; Shcherbakova, Daria M.; Zakharova, Natalia I.; Emelyanov, Alexander V.; Turoverov, Konstantin K.; Verkhusha, Vladislav V.

    2015-01-01

    Fluorescent proteins (FP) are used to study various biological processes. Recently, a series of near-infrared (NIR) FPs based on bacterial phytochromes was developed. Finding ways to improve NIR FPs is becoming progressively important. By applying rational design and molecular evolution we have engineered R. palustris bacterial phytochrome into a single-domain NIR FP of 19.6 kDa, termed GAF-FP, which is 2-fold and 1.4-fold smaller than bacterial phytochrome-based NIR FPs and GFP-like proteins, respectively. Engineering of GAF-FP involved a substitution of 15% of its amino acids and a deletion of the knot structure. GAF-FP covalently binds two tetrapyrrole chromophores, biliverdin (BV) and phycocyanobilin (PCB). With the BV chromophore GAF-FP absorbs at 635 nm and fluoresces at 670 nm. With the PCB chromophore GAF-FP becomes blue-shifted and absorbs at 625 nm and fluoresces at 657 nm. The GAF-FP structure has a high tolerance to small peptide insertions. The small size of GAF-FP and its additional absorbance band in the violet range has allowed for designing a chimeric protein with Renilla luciferase. The chimera exhibits efficient non-radiative energy transfer from luciferase to GAF-FP, resulting in NIR bioluminescence. This study opens the way for engineering of small NIR FPs and NIR luciferases from bacterial phytochromes. PMID:26679720

  8. The Functional Requirements and Design Basis for Information Barriers

    SciTech Connect

    Fuller, James L.

    2012-05-01

    This report summarizes the results of the Information Barrier Working Group workshop held at Sandia National Laboratory in Albuquerque, NM, February 2-4, 1999. This workshop was convened to establish the functional requirements associated with warhead radiation signature information barriers, to identify the major design elements of any such system or approach, and to identify a design basis for each of these major elements. Such information forms the general design basis to be used in designing, fabricating, and evaluating the complete integrated systems developed for specific purposes.

  9. Functional requirements document for measuring emissions of airborne radioactive materials

    SciTech Connect

    Criddle, J.D. Jr.

    1994-09-01

    This document states the functional requirements and procedures for systems making measurements of radioactive airborne emissions from facilities at the Hanford Site. The following issues are addressed in this document: Definition of the program objectives; Selection of the overall approach to collecting the samples; Sampling equipment design; Sampling equipment maintenance, and quality assurance issues. The intent of this document is to assist WHC in demonstrating a high quality of air emission measurements with verified system performance based on documented system design, testing, inspection, and maintenance.

  10. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2016-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  11. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  12. Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.

    2015-01-01

    The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  13. Accurate Detection of Adenylation Domain Functions in Nonribosomal Peptide Synthetases by an Enzyme-linked Immunosorbent Assay System Using Active Site-directed Probes for Adenylation Domains.

    PubMed

    Ishikawa, Fumihiro; Miyamoto, Kengo; Konno, Sho; Kasai, Shota; Kakeya, Hideaki

    2015-12-18

    A significant gap exists between protein engineering and enzymes used for the biosynthesis of natural products, largely because there is a paucity of strategies that rapidly detect active-site phenotypes of the enzymes with desired activities. Herein, we describe a proof-of-concept study of an enzyme-linked immunosorbent assay (ELISA) system for the adenylation (A) domains in nonribosomal peptide synthetases (NRPSs) using a combination of active site-directed probes coupled to a 5'-O-N-(aminoacyl)sulfamoyladenosine scaffold with a biotin functionality that immobilizes probe molecules onto a streptavidin-coated solid support. The recombinant NRPSs have a C-terminal His-tag motif that is targeted by an anti-6×His mouse antibody as the primary antibody and a horseradish peroxidase-linked goat antimouse antibody as the secondary antibody. These probes can selectively capture the cognate A domains by ligand-directed targeting. In addition, the ELISA technique detected A domains in the crude cell-free homogenates from the Escherichia coli expression systems. When coupled with a chromogenic substrate, the antibody-based ELISA technique can visualize probe-protein binding interactions, which provides accurate readouts of the A-domain functions in NRPS enzymes. To assess the ELISA-based engineering of the A domains of NRPSs, we reprogramed 2,3-dihydroxybenzoic acid (DHB)-activating enzyme EntE toward salicylic acid (Sal)-activating enzymes and investigated a correlation between binding properties for probe molecules and enzyme catalysts. We generated a mutant of EntE that displayed negligible loss in the kcat/Km value with the noncognate substrate Sal and a corresponding 48-fold decrease in the kcat/Km value with the cognate substrate DHB. The resulting 26-fold switch in substrate specificity was achieved by the replacement of a Ser residue in the active site of EntE with a Cys toward the nonribosomal codes of Sal-activating enzymes. Bringing a laboratory ELISA technique

  14. Multiple functions of sushi domain containing 2 (SUSD2) in breast tumorigenesis.

    PubMed

    Watson, Allison P; Evans, Rick L; Egland, Kristi A

    2013-01-01

    Routinely used therapies are not adequate to treat the heterogeneity of breast cancer, and consequently, more therapeutic targets are desperately needed. To identify novel targets, we generated a breast cancer cDNA library enriched for genes that encode membrane and secreted proteins. From this library we identified SUSD2 (Sushi Domain Containing 2), which encodes an 822-amino acid protein containing a transmembrane domain and functional domains inherent to adhesion molecules. Previous studies describe the mouse homolog, Susd2, but there are no studies on the human gene associated with breast cancer. Immunohistochemical analysis of human breast tissues showed weak or no expression of SUSD2 in normal epithelial cells, with the endothelial lining of vessels staining positive for SUSD2. However, staining was observed in pathologic breast lesions and in lobular and ductal carcinomas. SUSD2 interacts with galectin-1 (Gal-1), a 14-kDa secreted protein that is synthesized by carcinoma cells and promotes tumor immune evasion, angiogenesis, and metastasis. Interestingly, we found that localization of Gal-1 on the surface of cells is dependent on the presence of SUSD2. Various phenotype assays indicate that SUSD2 increases the invasion of breast cancer cells and contributes to a potential immune evasion mechanism through induction of apoptosis of Jurkat T cells. Using a syngeneic mouse model, we observed accelerated tumor formation and decreased survival in mice with tumors expressing Susd2. We found significantly fewer CD4 tumor infiltrating lymphocytes in mice with tumors expressing Susd2. Together, our findings provide evidence that SUSD2 may represent a promising therapeutic target for breast cancer.

  15. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor*

    PubMed Central

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W.; Kaplan, David L.; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-01-01

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities. PMID:26702058

  16. Recombinant Collagen Engineered to Bind to Discoidin Domain Receptor Functions as a Receptor Inhibitor.

    PubMed

    An, Bo; Abbonante, Vittorio; Xu, Huifang; Gavriilidou, Despoina; Yoshizumi, Ayumi; Bihan, Dominique; Farndale, Richard W; Kaplan, David L; Balduini, Alessandra; Leitinger, Birgit; Brodsky, Barbara

    2016-02-26

    A bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases. Insertion of the DDR-binding sequence from human collagen III into bacterial collagen led to specific receptor binding. However, even at the highest testable concentrations, the construct was unable to stimulate DDR autophosphorylation. The recombinant collagen expressed in Escherichia coli does not contain hydroxyproline (Hyp), and complementary synthetic peptide studies showed that replacement of Hyp by Pro at the critical Gly-Val-Met-Gly-Phe-Hyp position decreased the DDR-binding affinity and consequently required a higher concentration for the induction of receptor activation. The ability of the recombinant bacterial collagen to bind the DDRs without inducing kinase activation suggested it could interfere with the interactions between animal collagen and the DDRs, and such an inhibitory role was confirmed in vitro and with a cell migration assay. This study illustrates that recombinant collagen can complement synthetic peptides in investigating structure-activity relationships, and this system has the potential for the introduction or inhibition of specific biological activities.

  17. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks.

    PubMed

    Southall, Stacey M; Wong, Poon-Sheng; Odho, Zain; Roe, S Mark; Wilson, Jon R

    2009-01-30

    The mixed-lineage leukemia protein MLL1 is a transcriptional regulator with an essential role in early development and hematopoiesis. The biological function of MLL1 is mediated by the histone H3K4 methyltransferase activity of the carboxyl-terminal SET domain. We have determined the crystal structure of the MLL1 SET domain in complex with cofactor product AdoHcy and a histone H3 peptide. This structure indicates that, in order to form a well-ordered active site, a highly variable but essential component of the SET domain must be repositioned. To test this idea, we compared the effect of the addition of MLL complex members on methyltransferase activity and show that both RbBP5 and Ash2L but not Wdr5 stimulate activity. Additionally, we have determined the effect of posttranslational modifications on histone H3 residues downstream and upstream from the target lysine and provide a structural explanation for why H3T3 phosphorylation and H3K9 acetylation regulate activity. PMID:19187761

  18. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition.

    PubMed

    Ogi, Hiroo; Goto, Greicy H; Ghosh, Avik; Zencir, Sevil; Henry, Everett; Sugimoto, Katsunori

    2015-10-01

    Two large phosphatidylinositol 3-kinase-related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins.

  19. Single-stranded DNA-binding proteins: multiple domains for multiple functions.

    PubMed

    Dickey, Thayne H; Altschuler, Sarah E; Wuttke, Deborah S

    2013-07-01

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins.

  20. Single-Stranded DNA-Binding Proteins: Multiple Domains for Multiple Functions

    PubMed Central

    Dickey, Thayne H.; Altschuler, Sarah E.; Wuttke, Deborah S.

    2013-01-01

    The recognition of single-stranded DNA (ssDNA) is integral to myriad cellular functions. In eukaryotes, ssDNA is present stably at the ends of chromosomes and at some promoter elements. Furthermore, it is formed transiently by several cellular processes including telomere synthesis, transcription, and DNA replication, recombination, and repair. To coordinate these diverse activities, a variety of proteins have evolved to bind ssDNA in a manner specific to their function. Here, we review the recognition of ssDNA through the analysis of high-resolution structures of proteins in complex with ssDNA. This functionally diverse set of proteins arises from a limited set of structural motifs that can be modified and arranged to achieve distinct activities, including a range of ligand specificities. We also investigate the ways in which these domains interact in the context of large multidomain proteins/complexes. These comparisons reveal the structural features that define the range of functions exhibited by these proteins. PMID:23823326

  1. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants

    PubMed Central

    Sharma, Manisha; Pandey, Girdhar K.

    2016-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein–protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  2. Expansion and Function of Repeat Domain Proteins During Stress and Development in Plants.

    PubMed

    Sharma, Manisha; Pandey, Girdhar K

    2015-01-01

    The recurrent repeats having conserved stretches of amino acids exists across all domains of life. Subsequent repetition of single sequence motif and the number and length of the minimal repeating motifs are essential characteristics innate to these proteins. The proteins with tandem peptide repeats are essential for providing surface to mediate protein-protein interactions for fundamental biological functions. Plants are enriched in tandem repeat containing proteins typically distributed into various families. This has been assumed that the occurrence of multigene repeats families in plants enable them to cope up with adverse environmental conditions and allow them to rapidly acclimatize to these conditions. The evolution, structure, and function of repeat proteins have been studied in all kingdoms of life. The presence of repeat proteins is particularly profuse in multicellular organisms in comparison to prokaryotes. The precipitous expansion of repeat proteins in plants is presumed to be through internal tandem duplications. Several repeat protein gene families have been identified in plants. Such as Armadillo (ARM), Ankyrin (ANK), HEAT, Kelch-like repeats, Tetratricopeptide (TPR), Leucine rich repeats (LRR), WD40, and Pentatricopeptide repeats (PPR). The structure and functions of these repeat proteins have been extensively studied in plants suggesting a critical role of these repeating peptides in plant cell physiology, stress and development. In this review, we illustrate the structural, functional, and evolutionary prospects of prolific repeat proteins in plants. PMID:26793205

  3. Hepadnavirus infection requires interaction between the viral pre-S domain and a specific hepatocellular receptor.

    PubMed

    Klingmüller, U; Schaller, H

    1993-12-01

    To better define the molecules involved in the initial interaction between hepadnaviruses and hepatocytes, we performed binding and infectivity studies with the duck hepatitis B virus (DHBV) and cultured primary duck hepatocytes. In competition experiments with naturally occurring subviral particles containing DHBV surface proteins, these DNA-free particles were found to interfere with viral infectivity if used at sufficiently high concentrations. In direct binding saturation experiments with radiolabelled subviral particles, a biphasic titration curve containing a saturable component was obtained. Quantitative evaluation of both the binding and the infectivity data indicates that the duck hepatocyte presents about 10(4) high-affinity binding sites for viral and subviral particles. Binding to these productive sites may be preceded by reversible virus attachment to a large number of less specific, nonsaturable primary binding sites. To identify which of the viral envelope proteins is responsible for hepatocyte-specific attachment, subviral particles containing only one of the two DHBV surface proteins were produced in Saccharomyces cerevisiae. In infectivity competition experiments, only particles containing the large pre-S/S protein were found to markedly reduce the efficiency of DHBV infection, while particles containing the small S protein had only a minor effect. Similarly, physical binding of radiolabelled serum-derived subviral particles to primary duck hepatocytes was inhibited well only by the yeast-derived pre-S/S particles. Together, these results strongly support the notion that hepadnaviral infection is initiated by specific attachment of the pre-S domain of the large DHBV envelope protein to a limited number of hepatocellular binding sites.

  4. Identification of a domain required for autoproteolytic cleavage of murine coronavirus gene A polyprotein.

    PubMed Central

    Baker, S C; Shieh, C K; Soe, L H; Chang, M F; Vannier, D M; Lai, M M

    1989-01-01

    The 5'-most gene of the murine coronavirus genome, gene A, is presumed to encode viral RNA-dependent RNA polymerase. It has previously been shown that the N-terminal portion of this gene product is cleaved into a protein of 28 kilodaltons (p28). To further understand the mechanism of synthesis of the p28 protein, cDNA clones representing the 5'-most 5.3 kilobases of murine coronavirus mouse hepatitis virus strain JHM were sequenced and subcloned into pT7 vectors from which RNAs were transcribed and translated in vitro. The sequence was found to encode a single long open reading frame continuing from near the 5' terminus of the genome. Although p28 is encoded from the first 1 kilobase at the 5' end of the genome, translation of in vitro-transcribed RNAs indicated that this protein was not detected unless the product of the entire 5.3-kilobase region was synthesized. Translation of RNAs of 3.9 kilobases or smaller yielded proteins which contained the p28 sequence, but p28 was not cleaved. This suggests that the sequence in the region between 3.9 and 5.3 kilobases from the 5' end of the genomic RNA is essential for proteolytic cleavage and contains autoproteolytic activity. The p28 protein could not be cleaved from the smaller primary translation products of gene A, even in the presence of the larger autocleaving protein. Cleavage of the p28 protein was inhibited by addition of the protease inhibitor ZnCl2. This study thus identified a protein domain essential for autoproteolytic cleavage of the gene A polyprotein. Images PMID:2547993

  5. Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement

    PubMed Central

    Gallagher, Kimberly L.; Benfey, Philip N.

    2009-01-01

    Summary Transcription factor movement is well established in plants. Since the initial report of KNOTTED movement, more than a dozen transcription factors have been shown to move in plants. However, the developmental significance of movement is not known. Using the SHORT-ROOT (SHR) transcription factor as a tool for studying cell-to-cell trafficking, we show that movement of SHR from its site of synthesis is necessary for normal development of the Arabidopsis root. We identify multiple regions of SHR that are required for intra-and intercellular movement of SHR, including a region that is necessary for movement but not activity. We made the surprising discovery that the capacity for intercellular movement may be conserved among other GRAS family proteins. Finally, we provide evidence that movement requires both cytoplasmic and nuclear localization, strongly suggesting a mechanistic link between nuclear transport and cell-to-cell movement. PMID:19000160

  6. Image denoising in bidimensional empirical mode decomposition domain: the role of Student's probability distribution function.

    PubMed

    Lahmiri, Salim

    2016-03-01

    Hybridisation of the bi-dimensional empirical mode decomposition (BEMD) with denoising techniques has been proposed in the literature as an effective approach for image denoising. In this Letter, the Student's probability density function is introduced in the computation of the mean envelope of the data during the BEMD sifting process to make it robust to values that are far from the mean. The resulting BEMD is denoted tBEMD. In order to show the effectiveness of the tBEMD, several image denoising techniques in tBEMD domain are employed; namely, fourth order partial differential equation (PDE), linear complex diffusion process (LCDP), non-linear complex diffusion process (NLCDP), and the discrete wavelet transform (DWT). Two biomedical images and a standard digital image were considered for experiments. The original images were corrupted with additive Gaussian noise with three different levels. Based on peak-signal-to-noise ratio, the experimental results show that PDE, LCDP, NLCDP, and DWT all perform better in the tBEMD than in the classical BEMD domain. It is also found that tBEMD is faster than classical BEMD when the noise level is low. When it is high, the computational cost in terms of processing time is similar. The effectiveness of the presented approach makes it promising for clinical applications. PMID:27222723

  7. Function of the ATR N-terminal domain revealed by an ATM/ATR chimera

    SciTech Connect

    Chen Xinping; Zhao Runxiang; Glick, Gloria G.; Cortez, David . E-mail: david.cortez@vanderbilt.edu

    2007-05-01

    The ATM and ATR kinases function at the apex of checkpoint signaling pathways. These kinases share significant sequence similarity, phosphorylate many of the same substrates, and have overlapping roles in initiating cell cycle checkpoints. However, they sense DNA damage through distinct mechanisms. ATR primarily senses single stranded DNA (ssDNA) through its interaction with ATRIP, and ATM senses double strand breaks through its interaction with Nbs1. We determined that the N-terminus of ATR contains a domain that binds ATRIP. Attaching this domain to ATM allowed the fusion protein (ATM*) to bind ATRIP and associate with RPA-coated ssDNA. ATM* also gained the ability to localize efficiently to stalled replication forks as well as double strand breaks. Despite having normal kinase activity when tested in vitro and being phosphorylated on S1981 in vivo, ATM* is defective in checkpoint signaling and does not complement cellular deficiencies in either ATM or ATR. These data indicate that the N-terminus of ATR is sufficient to bind ATRIP and to promote localization to sites of replication stress.

  8. Functional domains of the HK97 capsid maturation protease and the mechanisms of protein encapsidation

    PubMed Central

    Duda, Robert L.; Oh, Bonnie; Hendrix, Roger W.

    2013-01-01

    Tailed dsDNA bacteriophages and herpesviruses build capsids by co-assembling a major capsid protein with an internal scaffolding protein which then exits from the assembled structure either intact or after digestion in situ by a protease. In bacteriophage HK97, the 102 residue N-terminal delta domain of the major capsid protein is also removed by proteolysis after assembly and appears to perform the scaffolding function. We describe the HK97 protease that carries out these maturation cleavages. Insertion mutations at 7 sites in the protease gene produced mutant proteins that assemble into proheads, and those in the N-terminal two thirds were enzymatically inactive. Plasmid-expressed protease was rapidly cleaved in vivo, but was stabilized by co-expression with the delta domain. Purified protease was found to be active during the assembly of proheads in vitro. Heterologous fusions to the intact protease or to C-terminal fragments targeted fusion proteins into proheads. We confirm that the catalytic activity resides in the N-terminal 2/3 of the protease polypeptide and suggest that the C-terminal 1/5 of the protein contains a capsid targeting signal. The implications of this arrangement are compared to capsid targeting systems in other phages, herpesviruses, and encapsulins. PMID:23688818

  9. A fast lattice Green's function method for solving viscous incompressible flows on unbounded domains

    NASA Astrophysics Data System (ADS)

    Liska, Sebastian; Colonius, Tim

    2016-07-01

    A computationally efficient method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. The method formally discretizes the incompressible Navier-Stokes equations on an unbounded staggered Cartesian grid. Operations are limited to a finite computational domain through a lattice Green's function technique. This technique obtains solutions to inhomogeneous difference equations through the discrete convolution of source terms with the fundamental solutions of the discrete operators. The differential algebraic equations describing the temporal evolution of the discrete momentum equation and incompressibility constraint are numerically solved by combining an integrating factor technique for the viscous term and a half-explicit Runge-Kutta scheme for the convective term. A projection method that exploits the mimetic and commutativity properties of the discrete operators is used to efficiently solve the system of equations that arises in each stage of the time integration scheme. Linear complexity, fast computation rates, and parallel scalability are achieved using recently developed fast multipole methods for difference equations. The accuracy and physical fidelity of solutions are verified through numerical simulations of vortex rings.

  10. The double-stranded RNA binding domain of human Dicer functions as a nuclear localization signal.

    PubMed

    Doyle, Michael; Badertscher, Lukas; Jaskiewicz, Lukasz; Güttinger, Stephan; Jurado, Sabine; Hugenschmidt, Tabea; Kutay, Ulrike; Filipowicz, Witold

    2013-09-01

    Dicer is a key player in microRNA (miRNA) and RNA interference (RNAi) pathways, processing miRNA precursors and double-stranded RNA into ∼21-nt-long products ultimately triggering sequence-dependent gene silencing. Although processing of substrates in vertebrate cells occurs in the cytoplasm, there is growing evidence suggesting Dicer is also present and functional in the nucleus. To address this possibility, we searched for a nuclear localization signal (NLS) in human Dicer and identified its C-terminal double-stranded RNA binding domain (dsRBD) as harboring NLS activity. We show that the dsRBD-NLS can mediate nuclear import of a reporter protein via interaction with importins β, 7, and 8. In the context of full-length Dicer, the dsRBD-NLS is masked. However, duplication of the dsRBD localizes the full-length protein to the nucleus. Furthermore, deletion of the N-terminal helicase domain results in partial accumulation of Dicer in the nucleus upon leptomycin B treatment, indicating that CRM1 contributes to nuclear export of Dicer. Finally, we demonstrate that human Dicer has the ability to shuttle between the nucleus and the cytoplasm. We conclude that Dicer is a shuttling protein whose steady-state localization is cytoplasmic.

  11. Protein requirements: from nitrogen balance to functional impact.

    PubMed

    Reeds, P J; Hutchens, T W

    1994-09-01

    Today because of tools capable of probing the details of metabolism, we are able to study the utilization of amino acids in specific, physiologically important processes. Such information may lead to recommended dietary allowances for each amino acid specific for subpopulations and perhaps individuals. These new findings identify the metabolic end-products of some amino acids as crucial intermediates in the maintenance of a variety of physiological functions that bear no direct relationship to protein metabolism. The precursor amino acids for these intermediate compounds are either non-essential or conditionally essential and thus may play a specific, non-protein, role in amino acid requirements in individuals close to nitrogen equilibrium. Another exciting area arises from the marked dissimilarity between the amino acid composition of milk proteins and other body proteins, suggesting that some milk proteins may have evolved to serve unique functions through specific digestion products. Such products may be important in micronutrient absorption in the neonate. Thus, amino acid requirements appear to reach beyond the tradition areas of nitrogen and protein metabolism. PMID:8089745

  12. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression

    PubMed Central

    Oda, Shun-ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J.; Halfmann, Peter; Bornholdt, Zachary A.; Abelson, Dafna M.; Armbrust, Tammy; Stahelin, Robert V.; Kawaoka, Yoshihiro

    2015-01-01

    ABSTRACT Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. IMPORTANCE Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. PMID:26656687

  13. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase

    PubMed Central

    Qiu, Shihong; Ogino, Minako; Luo, Ming

    2015-01-01

    ABSTRACT Viruses have various mechanisms to duplicate their genomes and produce virus-specific mRNAs. Negative-strand RNA viruses encode their own polymerases to perform each of these processes. For the nonsegmented negative-strand RNA viruses, the polymerase is comprised of the large polymerase subunit (L) and the phosphoprotein (P). L proteins from members of the Rhabdoviridae, Paramyxoviridae, and Filoviridae share sequence and predicted secondary structure homology. Here, we present the structure of the N-terminal domain (conserved region I) of the L protein from a rhabdovirus, vesicular stomatitis virus, at 1.8-Å resolution. The strictly and strongly conserved residues in this domain cluster in a single area of the protein. Serial mutation of these residues shows that many of the amino acids are essential for viral transcription but not for mRNA capping. Three-dimensional alignments show that this domain shares structural homology with polymerases from other viral families, including segmented negative-strand RNA and double-stranded RNA (dsRNA) viruses. IMPORTANCE Negative-strand RNA viruses include a diverse set of viral families that infect animals and plants, causing serious illness and economic impact. The members of this group of viruses share a set of functionally conserved proteins that are essential to their replication cycle. Among this set of proteins is the viral polymerase, which performs a unique set of reactions to produce genome- and subgenome-length RNA transcripts. In this article, we study the polymerase of vesicular stomatitis virus, a member of the rhabdoviruses, which has served in the past as a model to study negative-strand RNA virus replication. We have identified a site in the N-terminal domain of the polymerase that is essential to viral transcription and that shares sequence homology with members of the paramyxoviruses and the filoviruses. Newly identified sites such as that described here could prove to be useful targets in the

  14. Structural insights into the functional role of the Hcn sub-domain of the receptor-binding domain of the botulinum neurotoxin mosaic serotype C/D

    PubMed Central

    Zhang, Yanfeng; Gardberg, Anna; Edwards, Thomas E.; Sankaran, Banumathi; Robinson, Howard; Varnum, Susan M.; Buchko, Garry W.

    2013-01-01

    Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ~50 kDa, heavy-chain receptor-binding module (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell’s membrane is well documented and occurs via specific intermolecular interactions with the C-terminal sub-domain, Hcc, of BoNT-HCR. The N-terminal sub-domain of BoNT-HCR, Hcn, comprises ~50% of BoNT-HCR and adopts a β-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been indentified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD-HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) moiety bound in a hydrophobic cleft between β-strands in the β-sheet jelly fold roll of the Hcn sub-domain. The PG4 moeity is completely engulfed in the cleft, making numerous hydrophobic (Y932, S959, W966, and D1042) and hydrophilic (S935, W977, L979, N1013, and I1066) contacts with the protein’s side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD-HCR. In the crystal structure of a similar protein, BoNT/D-HCR, a sialic acid molecule was observed bound to the equivalent residues suggesting that

  15. Structural Insights into the Functional Role of the Hcn Sub-domain of the Receptor-Binding Domain of the Botulinum Neurotoxin Mosaic Serotype C/D

    SciTech Connect

    Zhang, Yanfeng; Gardberg, Anna; Edwards, Tom E.; Sankaran, Banumathi; Robinson, Howard; Varnum, Susan M.; Buchko, Garry W.

    2013-07-01

    Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ~50 kDa, heavy-chain receptor-binding module (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell’s membrane is well documented and occurs via specific intermolecular interactions with the C-terminal sub-domain, Hcc, of BoNT-HCR. The N-terminal sub-domain of BoNT-HCR, Hcn, comprises ~50% of BoNT-HCR and adopts a B-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been indentified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD-HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) molecule bound in an hydrophobic cleft between B-strands in the B-sheet jelly fold roll of the Hcn sub-domain. The molecule is completely engulfed in the cleft, making numerous hydrophobic (Y932, S959, W966, and D1042) and hydrophilic (S935, W977, L979, N1013, and I1066) contacts with the protein’s side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD-HCR. In the crystal structure of a similar protein, BoNT/D-HCR, a sialic acid

  16. The Haloferax volcanii FtsY Homolog Is Critical for Haloarchaeal Growth but Does Not Require the A Domain

    PubMed Central

    Haddad, Alex; Rose, R. Wesley; Pohlschröder, Mechthild

    2005-01-01

    The targeting of many Sec substrates to the membrane-associated translocation pore requires the cytoplasmic signal recognition particle (SRP). In Eukarya and Bacteria it has been shown that membrane docking of the SRP-substrate complex occurs via the universally conserved SRP receptor (Srα/β and FtsY, respectively). While much has been learned about the archaeal SRP in recent years, few studies have examined archaeal Srα/FtsY homologs. In the present study the FtsY homolog of Haloferax volcanii was characterized in its native host. Disruption of the sole chromosomal copy of ftsY in H. volcanii was possible only under conditions where either the full-length haloarchaeal FtsY or an amino-terminally truncated version of this protein lacking the A domain, was expressed in trans. Subcellular fractionation analysis of H. volcanii ftsY deletion strains expressing either one of the complementing proteins revealed that in addition to a cytoplasmic pool, both proteins cofractionate with the haloarchaeal cytoplasmic membrane. Moreover, membrane localization of the universally conserved SRP subunit SRP54, the key binding partner of FtsY, was detected in both H. volcanii strains. These analyses suggest that the H. volcanii FtsY homolog plays a crucial role but does not require its A domain for haloarchaeal growth. PMID:15937164

  17. Functional conservation of cold shock domains in bacteria and higher plants.

    PubMed

    Nakaminami, Kentaro; Karlson, Dale T; Imai, Ryozo

    2006-06-27

    In Escherichia coli, a family of cold shock proteins (CSPs) function as transcription antiterminators or translational enhancers at low temperature by destabilizing RNA secondary structure. A wheat nucleic acid-binding protein (WCSP1) was found to contain a cold shock domain (CSD) bearing high similarity to E. coli cold shock proteins. In the present study, a series of mutations were introduced into WCSP1, and its functionality was investigated by using in vivo and in vitro assays in the context of functional conservation with E. coli CSPs. Constitutive expression of WT WCSP1 in an E. coli cspA, cspB, cspE, cspG quadruple deletion mutant complemented its cold-sensitive phenotype, suggesting that WCSP1 shares a function with E. coli CSPs for cold adaptation. In addition, transcription antitermination activity was demonstrated for WCSP1 by using an E. coli strain that has a hairpin loop upstream of a chloramphenicol resistance gene. In vitro dsDNA melting assays clearly demonstrated that WCSP1 melts dsDNA, an activity that was positively correlated to the ability to bind ssDNA. When mutations were introduced at critical residues within the consensus RNA binding motifs (RNP1 and RNP2) of WCSP1, it failed to melt dsDNA. Studies with WCSP1-GFP fusion proteins documented patterns that are consistent with ER and nuclear localization. In vivo and in vitro functional analyses, coupled with subcellular localization data, suggest that WCSP1 may function as a RNA chaperone to destabilize secondary structure and is involved in the regulation of translation under low temperature.

  18. A domain of the insulin receptor required for endocytosis in rat fibroblasts.

    PubMed

    Thies, R S; Webster, N J; McClain, D A

    1990-06-15

    -regulate after long exposure to saturating concentrations of insulin. We conclude that the 16th exon encodes a domain necessary for ligand-dependent endocytosis. PMID:2161833

  19. Variable region domain exchange influences the functional properties of IgG.

    PubMed

    Morrison, S L; Porter, S B; Trinh, K R; Wims, L A; Denham, J; Oi, V T

    1998-03-15

    In the present study we have characterized a family of anti-dansyl Abs with the variable region of the heavy chain on human Ckappa and the variable region of the light chain on different human gamma constant regions (creating inside-out molecules). Although fully assembled molecules were secreted, this variable region exchange slowed the kinetics of Ab assembly. Although the variable region exchange does not lead to a detectable change in the microenvironment of the combining site, it did alter the kinetic parameters of binding to immobilized Ag, slowing both the on and off rates. When effector functions were evaluated, inside-out IgG1 and IgG3 were more effective in complement-mediated cytolysis than their wild-type counterparts. Variable region domain exchange may be one approach to obtaining Abs of identical specificity with altered binding characteristics.

  20. v-SNARE transmembrane domains function as catalysts for vesicle fusion.

    PubMed

    Dhara, Madhurima; Yarzagaray, Antonio; Makke, Mazen; Schindeldecker, Barbara; Schwarz, Yvonne; Shaaban, Ahmed; Sharma, Satyan; Böckmann, Rainer A; Lindau, Manfred; Mohrmann, Ralf; Bruns, Dieter

    2016-01-01

    Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion.

  1. v-SNARE transmembrane domains function as catalysts for vesicle fusion.

    PubMed

    Dhara, Madhurima; Yarzagaray, Antonio; Makke, Mazen; Schindeldecker, Barbara; Schwarz, Yvonne; Shaaban, Ahmed; Sharma, Satyan; Böckmann, Rainer A; Lindau, Manfred; Mohrmann, Ralf; Bruns, Dieter

    2016-01-01

    Vesicle fusion is mediated by an assembly of SNARE proteins between opposing membranes, but it is unknown whether transmembrane domains (TMDs) of SNARE proteins serve mechanistic functions that go beyond passive anchoring of the force-generating SNAREpin to the fusing membranes. Here, we show that conformational flexibility of synaptobrevin-2 TMD is essential for efficient Ca(2+)-triggered exocytosis and actively promotes membrane fusion as well as fusion pore expansion. Specifically, the introduction of helix-stabilizing leucine residues within the TMD region spanning the vesicle's outer leaflet strongly impairs exocytosis and decelerates fusion pore dilation. In contrast, increasing the number of helix-destabilizing, ß-branched valine or isoleucine residues within the TMD restores normal secretion but accelerates fusion pore expansion beyond the rate found for the wildtype protein. These observations provide evidence that the synaptobrevin-2 TMD catalyzes the fusion process by its structural flexibility, actively setting the pace of fusion pore expansion. PMID:27343350

  2. Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing

    PubMed Central

    Szymczyna, Blair R.; Bowman, John; McCracken, Susan; Pineda-Lucena, Antonio; Lu, Ying; Cox, Brian; Lambermon, Mark; Graveley, Brenton R.; Arrowsmith, Cheryl H.; Blencowe, Benjamin J.

    2003-01-01

    The PWI motif is a highly conserved domain of unknown function in the SRm160 splicing and 3′-end cleavage-stimulatory factor, as well as in several other known or putative pre-mRNA processing components. We show here that the PWI motif is a new type of RNA/DNA-binding domain that has an equal preference for single- and double-stranded nucleic acids. Deletion of the motif prevents SRm160 from binding RNA and stimulating 3′-end cleavage, and its substitution with a heterologous RNA-binding domain restores these functions. The NMR solution structure of the SRm160-PWI motif reveals a novel, four-helix bundle and represents the first example of an α-helical fold that can bind single-stranded (ss)RNA. Structure-guided mutagenesis indicates that the same surface is involved in RNA and DNA binding and requires the cooperative action of a highly conserved, adjacent basic region. Thus, the PWI motif is a novel type of nucleic acid-binding domain that likely has multiple important functions in pre-mRNA processing, including SRm160-dependent stimulation of 3′-end formation. PMID:12600940

  3. Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains*

    PubMed Central

    Smith, Kathryn D.; Gordon, Patricia B.; Rivetta, Alberto; Allen, Kenneth E.; Berbasova, Tetyana; Slayman, Clifford; Strobel, Scott A.

    2015-01-01

    Fluoride is a ubiquitous environmental toxin with which all biological species must cope. A recently discovered family of fluoride export (FEX) proteins protects organisms from fluoride toxicity by removing it from the cell. We show here that FEX proteins in Saccharomyces cerevisiae function as ion channels that are selective for fluoride over chloride and that these proteins are constitutively expressed at the yeast plasma membrane. Continuous expression is in contrast to many other toxin exporters in yeast, and this, along with the fact that two nearly duplicate proteins are encoded in the yeast genome, suggests that the threat posed by fluoride ions is frequent and detrimental. Structurally, eukaryotic FEX proteins consist of two homologous four-transmembrane helix domains folded into an antiparallel dimer, where the orientation of the two domains is fixed by a single transmembrane linker helix. Using phylogenetic sequence conservation as a guide, we have identified several functionally important residues. There is substantial functional asymmetry in the effect of mutation at corresponding sites in the two domains. Specifically, mutations to residues in the C-terminal domain proved significantly more detrimental to function than did similar mutations in the N-terminal domain. Our data suggest particular residues that may be important to anion specificity, most notably the necessity of a positive charge near the end of TMH1 in the C-terminal domain. It is possible that a cationic charge at this location may create an electrostatic well for fluoride ions entering the channel from the cytoplasm. PMID:26055717

  4. The time domain moving Green function of a railway track and its application to wheel-rail interactions

    NASA Astrophysics Data System (ADS)

    Sheng, X.; Xiao, X.; Zhang, S.

    2016-09-01

    When dealing with wheel-rail interactions for a high-speed train using the time domain Green function of a railway track, it would be more reasonable to use the moving Green function associated with a reference frame moving with the train, since observed from this frame wheel/rail forces are stationary. In this paper, the time domain moving Green function of a railway track as an infinitely long periodic structure is defined, derived, discussed and applied. The moving Green function is defined as the Fourier transform, from the load frequency domain to the time domain, of the response of the rail due to a moving harmonic load. The response of the rail due to a moving harmonic load is calculated using the Fourier transform-based method. A relationship is established between the moving Green function and the conventional impulse response function of the track. Properties of the moving Green function are then explored which can largely simplify the calculation of the Green function. And finally, the moving Green function is applied to deal with interactions between wheels and a track with or without rail dampers, allowing non-linearity in wheel-rail contact and demonstrating the effect of the rail dampers.

  5. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  6. Systematic Identification of Novel Protein Domain Families Associated with Nuclear Functions

    PubMed Central

    Doerks, Tobias; Copley, Richard R.; Schultz, Jörg; Ponting, Chris P.; Bork, Peer

    2002-01-01

    A systematic computational analysis of protein sequences containing known nuclear domains led to the identification of 28 novel domain families. This represents a 26% increase in the starting set of 107 known nuclear domain families used for the analysis. Most of the novel domains are present in all major eukaryotic lineages, but 3 are species specific. For about 500 of the 1200 proteins that contain these new domains, nuclear localization could be inferred, and for 700, additional features could be predicted. For example, we identified a new domain, likely to have a role downstream of the unfolded protein response; a nematode-specific signalling domain; and a widespread domain, likely to be a noncatalytic homolog of ubiquitin-conjugating enzymes. PMID:11779830

  7. Functional Connectivity in Multiple Cortical Networks Is Associated with Performance Across Cognitive Domains in Older Adults

    PubMed Central

    Shaw, Emily E.; Schultz, Aaron P.; Sperling, Reisa A.

    2015-01-01

    Abstract Intrinsic functional connectivity MRI has become a widely used tool for measuring integrity in large-scale cortical networks. This study examined multiple cortical networks using Template-Based Rotation (TBR), a method that applies a priori network and nuisance component templates defined from an independent dataset to test datasets of interest. A priori templates were applied to a test dataset of 276 older adults (ages 65–90) from the Harvard Aging Brain Study to examine the relationship between multiple large-scale cortical networks and cognition. Factor scores derived from neuropsychological tests represented processing speed, executive function, and episodic memory. Resting-state BOLD data were acquired in two 6-min acquisitions on a 3-Tesla scanner and processed with TBR to extract individual-level metrics of network connectivity in multiple cortical networks. All results controlled for data quality metrics, including motion. Connectivity in multiple large-scale cortical networks was positively related to all cognitive domains, with a composite measure of general connectivity positively associated with general cognitive performance. Controlling for the correlations between networks, the frontoparietal control network (FPCN) and executive function demonstrated the only significant association, suggesting specificity in this relationship. Further analyses found that the FPCN mediated the relationships of the other networks with cognition, suggesting that this network may play a central role in understanding individual variation in cognition during aging. PMID:25827242

  8. Structure-Function relationships using the Cirrus Spectral Domain Optical Coherence Tomograph and Standard Automated Perimetry

    PubMed Central

    Leite, Mauro T.; Zangwill, Linda M.; Weinreb, Robert N.; Rao, Harsha L.; Alencar, Luciana M.; Medeiros, Felipe A.

    2012-01-01

    Purpose To evaluate the relationship between glaucomatous structural damage assessed by the Cirrus Spectral Domain OCT (SDOCT) and functional loss as measured by standard automated perimetry (SAP). Methods Four hundred twenty two eyes (78 healthy, 210 suspects, 134 glaucomatous) of 250 patients were recruited from the longitudinal Diagnostic Innovations in Glaucoma Study (DIGS) and from the African Descent and Glaucoma Evaluation Study (ADAGES). All eyes underwent testing with the Cirrus SDOCT and SAP within a 6-month period. The relationship between parapapillary retinal nerve fiber layer thickness (RNFL) sectors and corresponding topographic SAP locations was evaluated using locally weighted scatterplot smoothing (LOWESS) and regression analysis. SAP sensitivity values were evaluated using both linear as well as logarithmic scales. We also tested the fit of a model (Hood) for structure-function relationship in glaucoma. Results Structure was significantly related to function for all but the nasal thickness sector. The relationship was strongest for superotemporal RNFL thickness and inferonasal sensitivity (R2 = 0.314, P<0.001). The Hood model fitted the data relatively well with 88% of the eyes inside the 95% confidence interval predicted by the model. Conclusion RNFL thinning measured by the Cirrus SDOCT was associated with correspondent visual field loss in glaucoma. PMID:21952500

  9. Tissue distribution and functional analysis of Sushi domain-containing protein 4.

    PubMed

    Tu, Zhidan; Cohen, Mark; Bu, Hong; Lin, Feng

    2010-05-01

    Sushi domain-containing protein 4 (SUSD4) was a hypothetical cell surface protein whose tissue distribution and function were completely unknown. However, recent microarray-based studies have identified deletions of SUSD4 gene in patients with autism or Fryns syndrome, both of which are genetic diseases with severe abnormal neurological development and/or functions. In this article, we described the cloning, expression, refolding, tissue distribution, and functional analysis of this novel protein. Using polyclonal antibodies generated by immunizing chickens with the recombinant SUSD4, we found that SUSD4 is detectable in murine brains, eyes, spinal cords, and testis but not other tissues. In brains, SUSD4 is highly expressed in the white matter on oligodendrocytes/axons, and in eyes, it is exclusively expressed on the photoreceptor outer segments. In in vitro complement assays, SUSD4 augments the alternative but not the classical pathway of complement activation at the C3 convertase step. In in vivo studies, knocking down SUSD4 expression in zebrafish markedly increases ratios of mortality and developmental abnormality. These results provide the first insight into the important physiological roles of SUSD4 and could help to better understand the pathogenesis of autism and Fryns syndrome.

  10. The neurobiology of oppositional defiant disorder and conduct disorder: altered functioning in three mental domains.

    PubMed

    Matthys, Walter; Vanderschuren, Louk J M J; Schutter, Dennis J L G

    2013-02-01

    This review discusses neurobiological studies of oppositional defiant disorder and conduct disorder within the conceptual framework of three interrelated mental domains: punishment processing, reward processing, and cognitive control. First, impaired fear conditioning, reduced cortisol reactivity to stress, amygdala hyporeactivity to negative stimuli, and altered serotonin and noradrenaline neurotransmission suggest low punishment sensitivity, which may compromise the ability of children and adolescents to make associations between inappropriate behaviors and forthcoming punishments. Second, sympathetic nervous system hyporeactivity to incentives, low basal heart rate associated with sensation seeking, orbitofrontal cortex hyporeactiviy to reward, and altered dopamine functioning suggest a hyposensitivity to reward. The associated unpleasant emotional state may make children and adolescents prone to sensation-seeking behavior such as rule breaking, delinquency, and substance abuse. Third, impairments in executive functions, especially when motivational factors are involved, as well as structural deficits and impaired functioning of the paralimbic system encompassing the orbitofrontal and cingulate cortex, suggest impaired cognitive control over emotional behavior. In the discussion we argue that more insight into the neurobiology of oppositional defiance disorder and conduct disorder may be obtained by studying these disorders separately and by paying attention to the heterogeneity of symptoms within each disorder.

  11. PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function

    SciTech Connect

    Jobert, Laure; Argentini, Manuela; Tora, Laszlo

    2009-04-15

    TAF15 (formerly TAF{sub II}68) is a nuclear RNA-binding protein that is associated with a distinct population of TFIID and RNA polymerase II complexes. TAF15 harbours an N-terminal activation domain, an RNA recognition motif (RRM) and many Arg-Gly-Gly (RGG) repeats at its C-terminal end. The N-terminus of TAF15 serves as an essential transforming domain in the fusion oncoprotein created by chromosomal translocation in certain human chondrosarcomas. Post-transcriptional modifications (PTMs) of proteins are known to regulate their activity, however, nothing is known on how PTMs affect TAF15 function. Here we demonstrate that endogenous human TAF15 is methylated in vivo at its numerous RGG repeats. Furthermore, we identify protein arginine N-methyltransferase 1 (PRMT1) as a TAF15 interactor and the major PRMT responsible for its methylation. In addition, the RGG repeat-containing C-terminus of TAF15 is responsible for the shuttling between the nucleus and the cytoplasm and the methylation of RGG repeats affects the subcellular localization of TAF15. The methylation of TAF15 by PRMT1 is required for the ability of TAF15 to positively regulate the expression of the studied endogenous TAF15-target genes. Our findings demonstrate that arginine methylation of TAF15 by PRMT1 is a crucial event determining its proper localization and gene regulatory function.

  12. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability

    PubMed Central

    Gigova, Andriana; Duggimpudi, Sujitha; Pollex, Tim; Schaefer, Matthias

    2014-01-01

    In all three domains of life ribosomal RNAs are extensively modified at functionally important sites of the ribosome. These modifications are believed to fine-tune the ribosome structure for optimal translation. However, the precise mechanistic effect of modifications on ribosome function remains largely unknown. Here we show that a cluster of methylated nucleotides in domain IV of 25S rRNA is critical for integrity of the large ribosomal subunit. We identified the elusive cytosine-5 methyltransferase for C2278 in yeast as Rcm1 and found that a combined loss of cytosine-5 methylation at C2278 and ribose methylation at G2288 caused dramatic ribosome instability, resulting in loss of 60S ribosomal subunits. Structural and biochemical analyses revealed that this instability was caused by changes in the structure of 25S rRNA and a consequent loss of multiple ribosomal proteins from the large ribosomal subunit. Our data demonstrate that individual RNA modifications can strongly affect structure of large ribonucleoprotein complexes. PMID:25125595

  13. The zinc finger and C-terminal domains of MTA proteins are required for FOG-2-mediated transcriptional repression via the NuRD complex.

    PubMed

    Roche, Andrea E; Bassett, Brett J; Samant, Sadhana A; Hong, Wei; Blobel, Gerd A; Svensson, Eric C

    2008-02-01

    FOG-2 is a transcriptional co-regulator that is required for cardiac morphogenesis as mice deficient in this factor die during mid-gestation of cardiac malformations. FOG-2 interacts with GATA4 to attenuate GATA4-dependent gene expression. The first 12 amino acids of FOG-2 (the FOG Repression Motif) are necessary to mediate this repression. To determine the mechanism by which the FOG Repression Motif functions, we identified 7 polypeptides from rat cardiac nuclear extracts that co-purified with a GST-FOG-2 fusion protein. All proteins identified are members of the NuRD nucleosome remodeling complex. Using in vitro binding and co-immunoprecipitation assays, we demonstrate that Metastasis-Associated proteins (MTA)-1, 2 and 3 and Retinoblastoma binding proteins RbAp46 and RbAp48 interact with FOG-2, but not with a mutant form of FOG-2 that is unable to repress transcription. Furthermore, we define a novel domain located in the C-terminal portion of MTA-1 that mediates the FOG-2/MTA-1 interaction. We also demonstrate that knockdown of MTA protein expression dramatically impairs the ability of FOG-2 to repress GATA4 activity. Finally, we show that the zinc finger domain of MTA-1 is required for FOG-2-mediated transcriptional repression and that this domain interacts with RbAp46 and RbAp48 subunits of the NuRD complex. Together, these results demonstrate the importance of FOG-2/MTA/RbAp interactions for FOG-2-mediated transcriptional repression and further define the molecular interactions between the FOG Repression Motif and the NuRD complex.

  14. Functional Dissection of the PE Domain Responsible for Translocation of PE_PGRS33 across the Mycobacterial Cell Wall

    PubMed Central

    Cascioferro, Alessandro; Donà, Valentina; Delogu, Giovanni; Palù, Giorgio; Bitter, Wilbert; Manganelli, Riccardo

    2011-01-01

    PE are peculiar exported mycobacterial proteins over-represented in pathogenic mycobacterial species. They are characterized by an N-terminal domain of about 110 amino acids (PE domain) which has been demonstrated to be responsible for their export and localization. In this paper, we characterize the PE domain of PE_PGRS33 (PERv1818c), one of the best characterized PE proteins. We constructed several mutated proteins in which portions of the PE domain were deleted or subjected to defined mutations. These proteins were expressed in different mycobacterial species and their localization was characterized. We confirmed that the PE domain is essential for PE_PGRS33 surface localization, and demonstrated that a PE domain lacking its first 30 amino acids loses its function. However, single amino acid substitutions in two regions extremely well conserved within the N-terminal domain of all PE proteins had some effect on the stability of PE_PGRS33, but not on its localization. Using Mycobacterium marinum we could show that the type VII secretion system ESX-5 is essential for PE_PGRS33 export. Moreover, in M. marinum, but not in Mycobacterium bovis BCG and in Mycobacterium tuberculosis, the PE domain of PE_PGRS33 is processed and secreted into the culture medium when expressed in the absence of the PGRS domain. Finally, using chimeric proteins in which different portions of the PERv1818c domain were fused to the N-terminus of the green fluorescent protein, we could hypothesize that the first 30 amino acids of the PE domain contain a sequence that allows protein translocation. PMID:22110736

  15. Requirement of calcium binding, myristoylation, and protein-protein interaction for the Copine BON1 function in Arabidopsis.

    PubMed

    Li, Yongqing; Gou, Mingyue; Sun, Qi; Hua, Jian

    2010-09-24

    Copines are highly conserved proteins with lipid-binding activities found in animals, plants, and protists. They contain two calcium-dependent phospholipid binding C2 domains at the amino terminus and a VWA domain at the carboxyl terminus. The biological roles of most copines are not understood and the biochemical properties required for their functions are largely unknown. The Arabidopsis copine gene BON1/CPN1 is a negative regulator of cell death and defense responses. Here we probed the potential biochemical activities of BON1 through mutagenic studies. We found that mutations of aspartates in the C2 domains did not alter plasma membrane localization but compromised BON1 activity. Mutation at putative myristoylation residue glycine 2 altered plasma membrane localization of BON1 and rendered BON1 inactive. Mass spectrometry analysis of BON1 further suggests that the N-peptide of BON1 is modified. Furthermore, mutations that affect the interaction between BON1 and its functional partner BAP1 abolished BON1 function. This analysis reveals an unanticipated regulation of copine protein localization and function by calcium and lipid modification and suggests an important role in protein-protein interaction for the VWA domain of copines.

  16. [Role of the α-helical domains in the functioning of ATP-dependent Lon protease of Escherichia coli].

    PubMed

    Andrianova, A G; Kudzhaev, A M; Serova, O V; Dergousova, N I; Rotanova, T V

    2014-01-01

    Homooligomeric ATP-dependent LonA proteases are bifunctional enzymes belonging to the superfamily of AAA+ proteins. Their subunits are formed by five successively connected domains: N-terminal (N), α-helical (HI(CC)), nucleotide binding (NB), the second α-helical (H) and proteolytic (P). The presence of the inserted HI(CC) domain defines the uniqueness of LonA proteases among AAA+ proteins. The role of α-helical domains in the LonA protease functioning is investigated on the example of E. coli Lon protease (Ec-Lon). A comparative study of properties of the intact Ec-Lon and its mutants of Lon-R164A and Lon-R542A with the substitutions of arginine residues located in similar positions in the HI(CC) and H domains is carried out. The H domain is shown to play a crucial role for the ATP hydrolysis and enzyme binding to the target protein. HI(CC) domain does not have a fundamental significance for the catalytic properties of the enzyme. However, it affects the functioning of Lon ATPase and peptidase sites and is involved in maintaining the enzyme stability. The participation of HI(CC) domain in formation of the spatial structures of LonA proteases and/or formation of their complexes with DNA is suggested.

  17. Functional analysis of conserved aromatic amino acids in the discoidin domain of Paenibacillus β-1,3-glucanase

    PubMed Central

    2009-01-01

    The 190-kDa Paenibacillus β-1,3-glucanase (LamA) contains a catalytic module of the glycoside hydrolase family 16 (GH16) and several auxiliary domains. Of these, a discoidin domain (DS domain), present in both eukaryotic and prokaryotic proteins with a wide variety of functions, exists at the carboxyl-terminus. To better understand the bacterial DS domain in terms of its structure and function, this domai