NASA Technical Reports Server (NTRS)
Barnsley, Michael F.; Sloan, Alan D.
1989-01-01
Fractals are geometric or data structures which do not simplify under magnification. Fractal Image Compression is a technique which associates a fractal to an image. On the one hand, the fractal can be described in terms of a few succinct rules, while on the other, the fractal contains much or all of the image information. Since the rules are described with less bits of data than the image, compression results. Data compression with fractals is an approach to reach high compression ratios for large data streams related to images. The high compression ratios are attained at a cost of large amounts of computation. Both lossless and lossy modes are supported by the technique. The technique is stable in that small errors in codes lead to small errors in image data. Applications to the NASA mission are discussed.
Fractal images induce fractal pupil dilations and constrictions.
Moon, P; Muday, J; Raynor, S; Schirillo, J; Boydston, C; Fairbanks, M S; Taylor, R P
2014-09-01
Fractals are self-similar structures or patterns that repeat at increasingly fine magnifications. Research has revealed fractal patterns in many natural and physiological processes. This article investigates pupillary size over time to determine if their oscillations demonstrate a fractal pattern. We predict that pupil size over time will fluctuate in a fractal manner and this may be due to either the fractal neuronal structure or fractal properties of the image viewed. We present evidence that low complexity fractal patterns underlie pupillary oscillations as subjects view spatial fractal patterns. We also present evidence implicating the autonomic nervous system's importance in these patterns. Using the variational method of the box-counting procedure we demonstrate that low complexity fractal patterns are found in changes within pupil size over time in millimeters (mm) and our data suggest that these pupillary oscillation patterns do not depend on the fractal properties of the image viewed. PMID:24978815
NASA Astrophysics Data System (ADS)
Xie, Xufen; Wang, Hongyuan; Zhang, Wei
2015-11-01
This paper deals with the estimation of an in-orbit modulation transfer function (MTF) by a remote sensing image sequence, which is often difficult to measure because of a lack of suitable target images. A model is constructed which combines a fractal Brownian motion model that describes natural images stochastic fractal characteristics, with an inverse Fourier transform of an ideal remote sensing image amplitude spectrum. The model is used to decouple the blurring effect and an ideal natural image. Then, a model of MTF statistical estimation is built by standard deviation of the image sequence amplitude spectrum. Furthermore, model parameters are estimated by the ergodicity assumption of a remote sensing image sequence. Finally, the results of the statistical MTF estimation method are given and verified. The experimental results demonstrate that the method is practical and effective, and the relative deviation at the Nyquist frequency between the edge method and the method in this paper is less than 5.74%. The MTF estimation method is applicable for remote sensing image sequences and is not restricted by the characteristic target of images.
NASA Astrophysics Data System (ADS)
Jia, Peng; Cai, Dongmei; Wang, Dong
2014-11-01
A parallel blind deconvolution algorithm is presented. The algorithm contains the constraints of the point spread function (PSF) derived from the physical process of the imaging. Additionally, in order to obtain an effective restored image, the fractal energy ratio is used as an evaluation criterion to estimate the quality of the image. This algorithm is fine-grained parallelized to increase the calculation speed. Results of numerical experiments and real experiments indicate that this algorithm is effective.
Multispectral image fusion based on fractal features
NASA Astrophysics Data System (ADS)
Tian, Jie; Chen, Jie; Zhang, Chunhua
2004-01-01
Imagery sensors have been one indispensable part of the detection and recognition systems. They are widely used to the field of surveillance, navigation, control and guide, et. However, different imagery sensors depend on diverse imaging mechanisms, and work within diverse range of spectrum. They also perform diverse functions and have diverse circumstance requires. So it is unpractical to accomplish the task of detection or recognition with a single imagery sensor under the conditions of different circumstances, different backgrounds and different targets. Fortunately, the multi-sensor image fusion technique emerged as important route to solve this problem. So image fusion has been one of the main technical routines used to detect and recognize objects from images. While, loss of information is unavoidable during fusion process, so it is always a very important content of image fusion how to preserve the useful information to the utmost. That is to say, it should be taken into account before designing the fusion schemes how to avoid the loss of useful information or how to preserve the features helpful to the detection. In consideration of these issues and the fact that most detection problems are actually to distinguish man-made objects from natural background, a fractal-based multi-spectral fusion algorithm has been proposed in this paper aiming at the recognition of battlefield targets in the complicated backgrounds. According to this algorithm, source images are firstly orthogonally decomposed according to wavelet transform theories, and then fractal-based detection is held to each decomposed image. At this step, natural background and man-made targets are distinguished by use of fractal models that can well imitate natural objects. Special fusion operators are employed during the fusion of area that contains man-made targets so that useful information could be preserved and features of targets could be extruded. The final fused image is reconstructed from the
Fractal calculus involving gauge function
NASA Astrophysics Data System (ADS)
Golmankhaneh, Alireza K.; Baleanu, Dumitru
2016-08-01
Henstock-Kurzweil integral or gauge integral is the generalization of the Riemann integral. The functions which are not integrable because of singularity in the senses of Lebesgue or Riemann are gauge integrable. In this manuscript, we have generalized Fα-calculus using the gauge integral method for the integrating of the functions on fractal set subset of real-line where they have singularities. The suggested new method leads to the wider class of functions on the fractal subset of real-line that are *Fα-integrable. Using gauge function we define *Fα-derivative of functions their Fα-derivative is not exist. The reported results can be used for generalizing the fundamental theorem of Fα-calculus.
Analysis on correlation imaging based on fractal interpolation
NASA Astrophysics Data System (ADS)
Li, Bailing; Zhang, Wenwen; Chen, Qian; Gu, Guohua
2015-10-01
One fractal interpolation algorithm has been discussed in detail and the statistical self-similarity characteristics of light field have been analized in correlated experiment. For the correlation imaging experiment in condition of low sampling frequent, an image analysis approach based on fractal interpolation algorithm is proposed. This approach aims to improve the resolution of original image which contains a fewer number of pixels and highlight the image contour feature which is fuzzy. By using this method, a new model for the light field has been established. For the case of different moments of the intensity in the receiving plane, the local field division also has been established and then the iterated function system based on the experimental data set can be obtained by choosing the appropriate compression ratio under a scientific error estimate. On the basis of the iterative function, an explicit fractal interpolation function expression is given out in this paper. The simulation results show that the correlation image reconstructed by fractal interpolation has good approximations to the original image. The number of pixels of image after interpolation is significantly increased. This method will effectively solve the difficulty of image pixel deficiency and significantly improved the outline of objects in the image. The rate of deviation as the parameter has been adopted in the paper in order to evaluate objectively the effect of the algorithm. To sum up, fractal interpolation method proposed in this paper not only keeps the overall image but also increases the local information of the original image.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.
1998-01-01
Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and
Estimating fractal dimension of medical images
NASA Astrophysics Data System (ADS)
Penn, Alan I.; Loew, Murray H.
1996-04-01
Box counting (BC) is widely used to estimate the fractal dimension (fd) of medical images on the basis of a finite set of pixel data. The fd is then used as a feature to discriminate between healthy and unhealthy conditions. We show that BC is ineffective when used on small data sets and give examples of published studies in which researchers have obtained contradictory and flawed results by using BC to estimate the fd of data-limited medical images. We present a new method for estimating fd of data-limited medical images. In the new method, fractal interpolation functions (FIFs) are used to generate self-affine models of the underlying image; each model, upon discretization, approximates the original data points. The fd of each FIF is analytically evaluated. The mean of the fds of the FIFs is the estimate of the fd of the original data. The standard deviation of the fds of the FIFs is a confidence measure of the estimate. The goodness-of-fit of the discretized models to the original data is a measure of self-affinity of the original data. In a test case, the new method generated a stable estimate of fd of a rib edge in a standard chest x-ray; box counting failed to generate a meaningful estimate of the same image.
Pyramidal fractal dimension for high resolution images
NASA Astrophysics Data System (ADS)
Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2016-07-01
Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024 ×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images.
Pyramidal fractal dimension for high resolution images.
Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut
2016-07-01
Fractal analysis (FA) should be able to yield reliable and fast results for high-resolution digital images to be applicable in fields that require immediate outcomes. Triggered by an efficient implementation of FA for binary images, we present three new approaches for fractal dimension (D) estimation of images that utilize image pyramids, namely, the pyramid triangular prism, the pyramid gradient, and the pyramid differences method (PTPM, PGM, PDM). We evaluated the performance of the three new and five standard techniques when applied to images with sizes up to 8192 × 8192 pixels. By using artificial fractal images created by three different generator models as ground truth, we determined the scale ranges with minimum deviations between estimation and theory. All pyramidal methods (PM) resulted in reasonable D values for images of all generator models. Especially, for images with sizes ≥1024×1024 pixels, the PMs are superior to the investigated standard approaches in terms of accuracy and computation time. A measure for the possibility to differentiate images with different intrinsic D values did show not only that the PMs are well suited for all investigated image sizes, and preferable to standard methods especially for larger images, but also that results of standard D estimation techniques are strongly influenced by the image size. Fastest results were obtained with the PDM and PGM, followed by the PTPM. In terms of absolute D values best performing standard methods were magnitudes slower than the PMs. Concluding, the new PMs yield high quality results in short computation times and are therefore eligible methods for fast FA of high-resolution images. PMID:27475069
Chang, H T; Kuo, C J
1998-03-10
An optical parallel architecture for the random-iteration algorithm to decode a fractal image by use of iterated-function system (IFS) codes is proposed. The code value is first converted into transmittance in film or a spatial light modulator in the optical part of the system. With an optical-to-electrical converter, electrical-to-optical converter, and some electronic circuits for addition and delay, we can perform the contractive affine transformation (CAT) denoted in IFS codes. In the proposed decoding architecture all CAT's generate points (image pixels) in parallel, and these points then are joined for display purposes. Therefore the decoding speed is improved greatly compared with existing serial-decoding architectures. In addition, an error and stability analysis that considers nonperfect elements is presented for the proposed optical system. Finally, simulation results are given to validate the proposed architecture. PMID:18268718
Fractality of pulsatile flow in speckle images
NASA Astrophysics Data System (ADS)
Nemati, M.; Kenjeres, S.; Urbach, H. P.; Bhattacharya, N.
2016-05-01
The scattering of coherent light from a system with underlying flow can be used to yield essential information about dynamics of the process. In the case of pulsatile flow, there is a rapid change in the properties of the speckle images. This can be studied using the standard laser speckle contrast and also the fractality of images. In this paper, we report the results of experiments performed to study pulsatile flow with speckle images, under different experimental configurations to verify the robustness of the techniques for applications. In order to study flow under various levels of complexity, the measurements were done for three in-vitro phantoms and two in-vivo situations. The pumping mechanisms were varied ranging from mechanical pumps to the human heart for the in vivo case. The speckle images were analyzed using the techniques of fractal dimension and speckle contrast analysis. The results of these techniques for the various experimental scenarios were compared. The fractal dimension is a more sensitive measure to capture the complexity of the signal though it was observed that it is also extremely sensitive to the properties of the scattering medium and cannot recover the signal for thicker diffusers in comparison to speckle contrast.
a Type of Fractal Interpolation Functions and Their Fractional Calculus
NASA Astrophysics Data System (ADS)
Liang, Yong-Shun; Zhang, Qi
2016-05-01
Combine Chebyshev systems with fractal interpolation, certain continuous functions have been approximated by fractal interpolation functions unanimously. Local structure of these fractal interpolation functions (FIF) has been discussed. The relationship between order of Riemann-Liouville fractional calculus and Box dimension of FIF has been investigated.
Fractal image compression: A resolution independent representation for imagery
NASA Technical Reports Server (NTRS)
Sloan, Alan D.
1993-01-01
A deterministic fractal is an image which has low information content and no inherent scale. Because of their low information content, deterministic fractals can be described with small data sets. They can be displayed at high resolution since they are not bound by an inherent scale. A remarkable consequence follows. Fractal images can be encoded at very high compression ratios. This fern, for example is encoded in less than 50 bytes and yet can be displayed at resolutions with increasing levels of detail appearing. The Fractal Transform was discovered in 1988 by Michael F. Barnsley. It is the basis for a new image compression scheme which was initially developed by myself and Michael Barnsley at Iterated Systems. The Fractal Transform effectively solves the problem of finding a fractal which approximates a digital 'real world image'.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.
1999-01-01
Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images is the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimension-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.
1999-01-01
Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images of the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimensional-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.
Smitha, K A; Gupta, A K; Jayasree, R S
2015-09-01
Glioma, the heterogeneous tumors originating from glial cells, generally exhibit varied grades and are difficult to differentiate using conventional MR imaging techniques. When this differentiation is crucial in the disease prognosis and treatment, even the advanced MR imaging techniques fail to provide a higher discriminative power for the differentiation of malignant tumor from benign ones. A powerful image processing technique applied to the imaging techniques is expected to provide a better differentiation. The present study focuses on the fractal analysis of fluid attenuation inversion recovery MR images, for the differentiation of glioma. For this, we have considered the most important parameters of fractal analysis, fractal dimension and lacunarity. While fractal analysis assesses the malignancy and complexity of a fractal object, lacunarity gives an indication on the empty space and the degree of inhomogeneity in the fractal objects. Box counting method with the preprocessing steps namely binarization, dilation and outlining was used to obtain the fractal dimension and lacunarity in glioma. Statistical analysis such as one-way analysis of variance and receiver operating characteristic (ROC) curve analysis helped to compare the mean and to find discriminative sensitivity of the results. It was found that the lacunarity of low and high grade gliomas vary significantly. ROC curve analysis between low and high grade glioma for fractal dimension and lacunarity yielded 70.3% sensitivity and 66.7% specificity and 70.3% sensitivity and 88.9% specificity, respectively. The study observes that fractal dimension and lacunarity increases with an increase in the grade of glioma and lacunarity is helpful in identifying most malignant grades. PMID:26305773
Kepler mission exoplanet transit data analysis using fractal imaging
NASA Astrophysics Data System (ADS)
Dehipawala, S.; Tremberger, G.; Majid, Y.; Holden, T.; Lieberman, D.; Cheung, T.
2012-10-01
The Kepler mission is designed to survey a fist-sized patch of the sky within the Milky Way galaxy for the discovery of exoplanets, with emphasis on near Earth-size exoplanets in or near the habitable zone. The Kepler space telescope would detect the brightness fluctuation of a host star and extract periodic dimming in the lightcurve caused by exoplanets that cross in front of their host star. The photometric data of a host star could be interpreted as an image where fractal imaging would be applicable. Fractal analysis could elucidate the incomplete data limitation posed by the data integration window. The fractal dimension difference between the lower and upper halves of the image could be used to identify anomalies associated with transits and stellar activity as the buried signals are expected to be in the lower half of such an image. Using an image fractal dimension resolution of 0.04 and defining the whole image fractal dimension as the Chi-square expected value of the fractal dimension, a p-value can be computed and used to establish a numerical threshold for decision making that may be useful in further studies of lightcurves of stars with candidate exoplanets. Similar fractal dimension difference approaches would be applicable to the study of photometric time series data via the Higuchi method. The correlated randomness of the brightness data series could be used to support inferences based on image fractal dimension differences. Fractal compression techniques could be used to transform a lightcurve image, resulting in a new image with a new fractal dimension value, but this method has been found to be ineffective for images with high information capacity. The three studied criteria could be used together to further constrain the Kepler list of candidate lightcurves of stars with possible exoplanets that may be planned for ground-based telescope confirmation.
Beyond maximum entropy: Fractal Pixon-based image reconstruction
NASA Technical Reports Server (NTRS)
Puetter, Richard C.; Pina, R. K.
1994-01-01
We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other competing methods, including Goodness-of-Fit methods such as Least-Squares fitting and Lucy-Richardson reconstruction, as well as Maximum Entropy (ME) methods such as those embodied in the MEMSYS algorithms. Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME. Our past work has shown how uniform information content pixons can be used to develop a 'Super-ME' method in which entropy is maximized exactly. Recently, however, we have developed a superior pixon basis for the image, the Fractal Pixon Basis (FPB). Unlike the Uniform Pixon Basis (UPB) of our 'Super-ME' method, the FPB basis is selected by employing fractal dimensional concepts to assess the inherent structure in the image. The Fractal Pixon Basis results in the best image reconstructions to date, superior to both UPB and the best ME reconstructions. In this paper, we review the theory of the UPB and FPB pixon and apply our methodology to the reconstruction of far-infrared imaging of the galaxy M51. The results of our reconstruction are compared to published reconstructions of the same data using the Lucy-Richardson algorithm, the Maximum Correlation Method developed at IPAC, and the MEMSYS ME algorithms. The results show that our reconstructed image has a spatial resolution a factor of two better than best previous methods (and a factor of 20 finer than the width of the point response function), and detects sources two orders of magnitude fainter than other methods.
Fractal dimension of cerebral surfaces using magnetic resonance images
Majumdar, S.; Prasad, R.R.
1988-11-01
The calculation of the fractal dimension of the surface bounded by the grey matter in the normal human brain using axial, sagittal, and coronal cross-sectional magnetic resonance (MR) images is presented. The fractal dimension in this case is a measure of the convolutedness of this cerebral surface. It is proposed that the fractal dimension, a feature that may be extracted from MR images, may potentially be used for image analysis, quantitative tissue characterization, and as a feature to monitor and identify cerebral abnormalities and developmental changes.
Evaluation of Two Fractal Methods for Magnetogram Image Analysis
NASA Technical Reports Server (NTRS)
Stark, B.; Adams, M.; Hathaway, D. H.; Hagyard, M. J.
1997-01-01
Fractal and multifractal techniques have been applied to various types of solar data to study the fractal properties of sunspots as well as the distribution of photospheric magnetic fields and the role of random motions on the solar surface in this distribution. Other research includes the investigation of changes in the fractal dimension as an indicator for solar flares. Here we evaluate the efficacy of two methods for determining the fractal dimension of an image data set: the Differential Box Counting scheme and a new method, the Jaenisch scheme. To determine the sensitivity of the techniques to changes in image complexity, various types of constructed images are analyzed. In addition, we apply this method to solar magnetogram data from Marshall Space Flight Centers vector magnetograph.
Liver ultrasound image classification by using fractal dimension of edge
NASA Astrophysics Data System (ADS)
Moldovanu, Simona; Bibicu, Dorin; Moraru, Luminita
2012-08-01
Medical ultrasound image edge detection is an important component in increasing the number of application of segmentation, and hence it has been subject of many studies in the literature. In this study, we have classified the liver ultrasound images (US) combining Canny and Sobel edge detectors with fractal analysis in order to provide an indicator about of the US images roughness. We intend to provide a classification rule of the focal liver lesions as: cirrhotic liver, liver hemangioma and healthy liver. For edges detection the Canny and Sobel operators were used. Fractal analyses have been applied for texture analysis and classification of focal liver lesions according to fractal dimension (FD) determined by using the Box Counting method. To assess the performance and accuracy rate of the proposed method the contrast-to-noise (CNR) is analyzed.
Wideband Fractal Antennas for Holographic Imaging and Rectenna Applications
Bunch, Kyle J.; McMakin, Douglas L.; Sheen, David M.
2008-04-18
At Pacific Northwest National Laboratory, wideband antenna arrays have been successfully used to reconstruct three-dimensional images at microwave and millimeter-wave frequencies. Applications of this technology have included portal monitoring, through-wall imaging, and weapons detection. Fractal antennas have been shown to have wideband characteristics due to their self-similar nature (that is, their geometry is replicated at different scales). They further have advantages in providing good characteristics in a compact configuration. We discuss the application of fractal antennas for holographic imaging. Simulation results will be presented. Rectennas are a specific class of antennas in which a received signal drives a nonlinear junction and is retransmitted at either a harmonic frequency or a demodulated frequency. Applications include tagging and tracking objects with a uniquely-responding antenna. It is of interest to consider fractal rectenna because the self-similarity of fractal antennas tends to make them have similar resonance behavior at multiples of the primary resonance. Thus, fractal antennas can be suited for applications in which a signal is reradiated at a harmonic frequency. Simulations will be discussed with this application in mind.
Wideband fractal antennas for holographic imaging and rectenna applications
NASA Astrophysics Data System (ADS)
Bunch, Kyle J.; McMakin, Douglas L.; Sheen, David M.
2008-04-01
At Pacific Northwest National Laboratory, wideband antenna arrays have been successfully used to reconstruct three-dimensional images at microwave and millimeter-wave frequencies. Applications of this technology have included portal monitoring, through-wall imaging, and weapons detection. Fractal antennas have been shown to have wideband characteristics due to their self-similar nature (that is, their geometry is replicated at different scales). They further have advantages in providing good characteristics in a compact configuration. We discuss the application of fractal antennas for holographic imaging. Simulation results will be presented. Rectennas are a specific class of antennas in which a received signal drives a nonlinear junction and is retransmitted at either a harmonic frequency or a demodulated frequency. Applications include tagging and tracking objects with a uniquely-responding antenna. It is of interest to consider fractal rectenna because the self-similarity of fractal antennas tends to make them have similar resonance behavior at multiples of the primary resonance. Thus, fractal antennas can be suited for applications in which a signal is reradiated at a harmonic frequency. Simulations will be discussed with this application in mind.
Fractal image perception provides novel insights into hierarchical cognition.
Martins, M J; Fischmeister, F P; Puig-Waldmüller, E; Oh, J; Geissler, A; Robinson, S; Fitch, W T; Beisteiner, R
2014-08-01
Hierarchical structures play a central role in many aspects of human cognition, prominently including both language and music. In this study we addressed hierarchy in the visual domain, using a novel paradigm based on fractal images. Fractals are self-similar patterns generated by repeating the same simple rule at multiple hierarchical levels. Our hypothesis was that the brain uses different resources for processing hierarchies depending on whether it applies a "fractal" or a "non-fractal" cognitive strategy. We analyzed the neural circuits activated by these complex hierarchical patterns in an event-related fMRI study of 40 healthy subjects. Brain activation was compared across three different tasks: a similarity task, and two hierarchical tasks in which subjects were asked to recognize the repetition of a rule operating transformations either within an existing hierarchical level, or generating new hierarchical levels. Similar hierarchical images were generated by both rules and target images were identical. We found that when processing visual hierarchies, engagement in both hierarchical tasks activated the visual dorsal stream (occipito-parietal cortex, intraparietal sulcus and dorsolateral prefrontal cortex). In addition, the level-generating task specifically activated circuits related to the integration of spatial and categorical information, and with the integration of items in contexts (posterior cingulate cortex, retrosplenial cortex, and medial, ventral and anterior regions of temporal cortex). These findings provide interesting new clues about the cognitive mechanisms involved in the generation of new hierarchical levels as required for fractals. PMID:24699014
Chaos-based encryption for fractal image coding
NASA Astrophysics Data System (ADS)
Yuen, Ching-Hung; Wong, Kwok-Wo
2012-01-01
A chaos-based cryptosystem for fractal image coding is proposed. The Rényi chaotic map is employed to determine the order of processing the range blocks and to generate the keystream for masking the encoded sequence. Compared with the standard approach of fractal image coding followed by the Advanced Encryption Standard, our scheme offers a higher sensitivity to both plaintext and ciphertext at a comparable operating efficiency. The keystream generated by the Rényi chaotic map passes the randomness tests set by the United States National Institute of Standards and Technology, and so the proposed scheme is sensitive to the key.
Fractal Analysis of Laplacian Pyramidal Filters Applied to Segmentation of Soil Images
de Castro, J.; Méndez, A.; Tarquis, A. M.
2014-01-01
The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter a. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results. PMID:25114957
Fractal analysis of laplacian pyramidal filters applied to segmentation of soil images.
de Castro, J; Ballesteros, F; Méndez, A; Tarquis, A M
2014-01-01
The laplacian pyramid is a well-known technique for image processing in which local operators of many scales, but identical shape, serve as the basis functions. The required properties to the pyramidal filter produce a family of filters, which is unipara metrical in the case of the classical problem, when the length of the filter is 5. We pay attention to gaussian and fractal behaviour of these basis functions (or filters), and we determine the gaussian and fractal ranges in the case of single parameter a. These fractal filters loose less energy in every step of the laplacian pyramid, and we apply this property to get threshold values for segmenting soil images, and then evaluate their porosity. Also, we evaluate our results by comparing them with the Otsu algorithm threshold values, and conclude that our algorithm produce reliable test results. PMID:25114957
Fractal image analysis - Application to the topography of Oregon and synthetic images.
NASA Technical Reports Server (NTRS)
Huang, Jie; Turcotte, Donald L.
1990-01-01
Digitized topography for the state of Oregon has been used to obtain maps of fractal dimension and roughness amplitude. The roughness amplitude correlates well with variations in relief and is a promising parameter for the quantitative classification of landforms. The spatial variations in fractal dimension are low and show no clear correlation with different tectonic settings. For Oregon the mean fractal dimension from a two-dimensional spectral analysis is D = 2.586, and for a one-dimensional spectral analysis the mean fractal dimension is D = 1.487, which is close to the Brown noise value D = 1.5. Synthetic two-dimensional images have also been generated for a range of D values. For D = 2.6, the synthetic image has a mean one-dimensional spectral fractal dimension D = 1.58, which is consistent with the results for Oregon. This approach can be easily applied to any digitzed image that obeys fractal statistics.
Multi-Scale Fractal Analysis of Image Texture and Pattern
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Quattrochi, Dale A.; Luvall, Jeffrey C.
1997-01-01
Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely scale-independent. Self-similarity is a property of curves or surfaces where each part is indistinguishable from the whole. The fractal dimension D of remote sensing data yields quantitative insight on the spatial complexity and information content contained within these data. Analyses of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed(l0 to 80 meters). The forested scene behaves as one would expect-larger pixel sizes decrease the complexity of the image as individual clumps of trees are averaged into larger blocks. The increased complexity of the agricultural image with increasing pixel size results from the loss of homogeneous groups of pixels in the large fields to mixed pixels composed of varying combinations of NDVI values that correspond to roads and vegetation. The same process occur's in the urban image to some extent, but the lack of large, homogeneous areas in the high resolution NDVI image means the initially high D value is maintained as pixel size increases. The slope of the fractal dimension-resolution relationship provides indications of how image classification or feature identification will be affected by changes in sensor resolution.
ERIC Educational Resources Information Center
Jurgens, Hartmut; And Others
1990-01-01
The production and application of images based on fractal geometry are described. Discussed are fractal language groups, fractal image coding, and fractal dialects. Implications for these applications of geometry to mathematics education are suggested. (CW)
Fractal descriptors for discrimination of microscopy images of plant leaves
NASA Astrophysics Data System (ADS)
Silva, N. R.; Florindo, J. B.; Gómez, M. C.; Kolb, R. M.; Bruno, O. M.
2014-03-01
This study proposes the application of fractal descriptors method to the discrimination of microscopy images of plant leaves. Fractal descriptors have demonstrated to be a powerful discriminative method in image analysis, mainly for the discrimination of natural objects. In fact, these descriptors express the spatial arrangement of pixels inside the texture under different scales and such arrangements are directly related to physical properties inherent to the material depicted in the image. Here, we employ the Bouligand-Minkowski descriptors. These are obtained by the dilation of a surface mapping the gray-level texture. The classification of the microscopy images is performed by the well-known Support Vector Machine (SVM) method and we compare the success rate with other literature texture analysis methods. The proposed method achieved a correctness rate of 89%, while the second best solution, the Co-occurrence descriptors, yielded only 78%. This clear advantage of fractal descriptors demonstrates the potential of such approach in the analysis of the plant microscopy images.
Advanced fractal approach for unsupervised classification of SAR images
NASA Astrophysics Data System (ADS)
Pant, Triloki; Singh, Dharmendra; Srivastava, Tanuja
2010-06-01
Unsupervised classification of Synthetic Aperture Radar (SAR) images is the alternative approach when no or minimum apriori information about the image is available. Therefore, an attempt has been made to develop an unsupervised classification scheme for SAR images based on textural information in present paper. For extraction of textural features two properties are used viz. fractal dimension D and Moran's I. Using these indices an algorithm is proposed for contextual classification of SAR images. The novelty of the algorithm is that it implements the textural information available in SAR image with the help of two texture measures viz. D and I. For estimation of D, the Two Dimensional Variation Method (2DVM) has been revised and implemented whose performance is compared with another method, i.e., Triangular Prism Surface Area Method (TPSAM). It is also necessary to check the classification accuracy for various window sizes and optimize the window size for best classification. This exercise has been carried out to know the effect of window size on classification accuracy. The algorithm is applied on four SAR images of Hardwar region, India and classification accuracy has been computed. A comparison of the proposed algorithm using both fractal dimension estimation methods with the K-Means algorithm is discussed. The maximum overall classification accuracy with K-Means comes to be 53.26% whereas overall classification accuracy with proposed algorithm is 66.16% for TPSAM and 61.26% for 2DVM.
Automatic classification for pathological prostate images based on fractal analysis.
Huang, Po-Whei; Lee, Cheng-Hsiung
2009-07-01
Accurate grading for prostatic carcinoma in pathological images is important to prognosis and treatment planning. Since human grading is always time-consuming and subjective, this paper presents a computer-aided system to automatically grade pathological images according to Gleason grading system which is the most widespread method for histological grading of prostate tissues. We proposed two feature extraction methods based on fractal dimension to analyze variations of intensity and texture complexity in regions of interest. Each image can be classified into an appropriate grade by using Bayesian, k-NN, and support vector machine (SVM) classifiers, respectively. Leave-one-out and k-fold cross-validation procedures were used to estimate the correct classification rates (CCR). Experimental results show that 91.2%, 93.7%, and 93.7% CCR can be achieved by Bayesian, k-NN, and SVM classifiers, respectively, for a set of 205 pathological prostate images. If our fractal-based feature set is optimized by the sequential floating forward selection method, the CCR can be promoted up to 94.6%, 94.2%, and 94.6%, respectively, using each of the above three classifiers. Experimental results also show that our feature set is better than the feature sets extracted from multiwavelets, Gabor filters, and gray-level co-occurrence matrix methods because it has a much smaller size and still keeps the most powerful discriminating capability in grading prostate images. PMID:19164082
Log-periodic route to fractal functions.
Gluzman, S; Sornette, D
2002-03-01
Log-periodic oscillations have been found to decorate the usual power-law behavior found to describe the approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-scale invariance symmetry. For Ising or Potts spins with ferromagnetic interactions on hierarchical systems, the relative magnitude of the log-periodic corrections are usually very small, of order 10(-5). In growth processes [diffusion limited aggregation (DLA)], rupture, earthquake, and financial crashes, log-periodic oscillations with amplitudes of the order of 10% have been reported. We suggest a "technical" explanation for this 4 order-of-magnitude difference based on the property of the "regular function" g(x) embodying the effect of the microscopic degrees of freedom summed over in a renormalization group (RG) approach F(x)=g(x)+mu(-1)F(gamma x) of an observable F as a function of a control parameter x. For systems for which the RG equation has not been derived, the previous equation can be understood as a Jackson q integral, which is the natural tool for describing discrete-scale invariance. We classify the "Weierstrass-type" solutions of the RG into two classes characterized by the amplitudes A(n) of the power-law series expansion. These two classes are separated by a novel "critical" point. Growth processes (DLA), rupture, earthquake, and financial crashes thus seem to be characterized by oscillatory or bounded regular microscopic functions that lead to a slow power-law decay of A(n), giving strong log-periodic amplitudes. If in addition, the phases of A(n) are ergodic and mixing, the observable presents self-affine nondifferentiable properties. In contrast, the regular function of statistical physics models with "ferromagnetic"-type interactions at equilibrium involves unbound logarithms of polynomials of the control variable that lead to a fast exponential decay of A(n) giving weak log-periodic amplitudes and smoothed observables. PMID
ERIC Educational Resources Information Center
Osler, Thomas J.
1999-01-01
Because fractal images are by nature very complex, it can be inspiring and instructive to create the code in the classroom and watch the fractal image evolve as the user slowly changes some important parameter or zooms in and out of the image. Uses programming language that permits the user to store and retrieve a graphics image as a disk file.…
Aliasing removing of hyperspectral image based on fractal structure matching
NASA Astrophysics Data System (ADS)
Wei, Ran; Zhang, Ye; Zhang, Junping
2015-05-01
Due to the richness on high frequency components, hyperspectral image (HSI) is more sensitive to distortion like aliasing. Many methods aiming at removing such distortion have been proposed. However, seldom of them are suitable to HSI, due to low spatial resolution characteristic of HSI. Fortunately, HSI contains plentiful spectral information, which can be exploited to overcome such difficulties. Motivated by this, we proposed an aliasing removing method for HSI. The major differences between proposed and current methods is that proposed algorithm is able to utilize fractal structure information, thus the dilemma originated from low-resolution of HSI is solved. Experiments on real HSI data demonstrated subjectively and objectively that proposed method can not only remove annoying visual effect brought by aliasing, but also recover more high frequency component.
Lightning and the Heart: Fractal Behavior in Cardiac Function
BASSINGTHWAIGHTE, JAMES B.; van BEEK, J. H. G. M.
2010-01-01
Physical systems, from galactic clusters to diffusing molecules, often show fractal behavior. Likewise, living systems might often be well described by fractal algorithms. Such fractal descriptions in space and time imply that there is order in chaos, or put the other way around, chaotic dynamical systems in biology are more constrained and orderly than seen at first glance. The vascular network, the syncytium of cells, the processes of diffusion and transmembrane transport might be fractal features of the heart. These fractal features provide a basis which enables one to understand certain aspects of more global behavior such as atrial or ventricular fibrillation and perfusion heterogeneity. The heart might be regarded as a prototypical organ from these points of view. A particular example of the use of fractal geometry is in explaining myocardial flow heterogeneity via delivery of blood through an asymmetrical fractal branching network. PMID:21938081
Ising ferromagnet on a fractal family: Thermodynamical functions and scaling laws
NASA Astrophysics Data System (ADS)
Redinz, José Arnaldo; de Magalhães, Aglaé C. N.
1995-02-01
The Ising model with external magnetic field on infinitely ramified fractal lattices is studied. We derive exact expressions for the specific heat, spontaneous magnetization, and susceptibility. The critical exponents α, β, and γ corresponding to these respective thermal functions (at zero field) as well as the correlation length critical exponent ν are obtained. The hyperscaling law extended to fractals and the Rushbrooke scaling law are verified for these fractals.
Fractal analysis of scatter imaging signatures to distinguish breast pathologies
NASA Astrophysics Data System (ADS)
Eguizabal, Alma; Laughney, Ashley M.; Krishnaswamy, Venkataramanan; Wells, Wendy A.; Paulsen, Keith D.; Pogue, Brian W.; López-Higuera, José M.; Conde, Olga M.
2013-02-01
Fractal analysis combined with a label-free scattering technique is proposed for describing the pathological architecture of tumors. Clinicians and pathologists are conventionally trained to classify abnormal features such as structural irregularities or high indices of mitosis. The potential of fractal analysis lies in the fact of being a morphometric measure of the irregular structures providing a measure of the object's complexity and self-similarity. As cancer is characterized by disorder and irregularity in tissues, this measure could be related to tumor growth. Fractal analysis has been probed in the understanding of the tumor vasculature network. This work addresses the feasibility of applying fractal analysis to the scattering power map (as a physical modeling) and principal components (as a statistical modeling) provided by a localized reflectance spectroscopic system. Disorder, irregularity and cell size variation in tissue samples is translated into the scattering power and principal components magnitude and its fractal dimension is correlated with the pathologist assessment of the samples. The fractal dimension is computed applying the box-counting technique. Results show that fractal analysis of ex-vivo fresh tissue samples exhibits separated ranges of fractal dimension that could help classifier combining the fractal results with other morphological features. This contrast trend would help in the discrimination of tissues in the intraoperative context and may serve as a useful adjunct to surgeons.
Analysis of fractal dimensions of rat bones from film and digital images
NASA Technical Reports Server (NTRS)
Pornprasertsuk, S.; Ludlow, J. B.; Webber, R. L.; Tyndall, D. A.; Yamauchi, M.
2001-01-01
OBJECTIVES: (1) To compare the effect of two different intra-oral image receptors on estimates of fractal dimension; and (2) to determine the variations in fractal dimensions between the femur, tibia and humerus of the rat and between their proximal, middle and distal regions. METHODS: The left femur, tibia and humerus from 24 4-6-month-old Sprague-Dawley rats were radiographed using intra-oral film and a charge-coupled device (CCD). Films were digitized at a pixel density comparable to the CCD using a flat-bed scanner. Square regions of interest were selected from proximal, middle, and distal regions of each bone. Fractal dimensions were estimated from the slope of regression lines fitted to plots of log power against log spatial frequency. RESULTS: The fractal dimensions estimates from digitized films were significantly greater than those produced from the CCD (P=0.0008). Estimated fractal dimensions of three types of bone were not significantly different (P=0.0544); however, the three regions of bones were significantly different (P=0.0239). The fractal dimensions estimated from radiographs of the proximal and distal regions of the bones were lower than comparable estimates obtained from the middle region. CONCLUSIONS: Different types of image receptors significantly affect estimates of fractal dimension. There was no difference in the fractal dimensions of the different bones but the three regions differed significantly.
Intelligent fuzzy approach for fast fractal image compression
NASA Astrophysics Data System (ADS)
Nodehi, Ali; Sulong, Ghazali; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah; Rehman, Amjad; Saba, Tanzila
2014-12-01
Fractal image compression (FIC) is recognized as a NP-hard problem, and it suffers from a high number of mean square error (MSE) computations. In this paper, a two-phase algorithm was proposed to reduce the MSE computation of FIC. In the first phase, based on edge property, range and domains are arranged. In the second one, imperialist competitive algorithm (ICA) is used according to the classified blocks. For maintaining the quality of the retrieved image and accelerating algorithm operation, we divided the solutions into two groups: developed countries and undeveloped countries. Simulations were carried out to evaluate the performance of the developed approach. Promising results thus achieved exhibit performance better than genetic algorithm (GA)-based and Full-search algorithms in terms of decreasing the number of MSE computations. The number of MSE computations was reduced by the proposed algorithm for 463 times faster compared to the Full-search algorithm, although the retrieved image quality did not have a considerable change.
Loh, N. Duane
2012-06-20
This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.
Targets detection in smoke-screen image sequences using fractal and rough set theory
NASA Astrophysics Data System (ADS)
Yan, Xiaoke
2015-08-01
In this paper, a new algorithm for the detection of moving targets in smoke-screen image sequences is presented, which can combine three properties of pixel: grey, fractal dimensions and correlation between pixels by Rough Set. The first step is to locate and extract regions that may contain objects in an image by locally grey threshold technique. Secondly, the fractal dimensions of pixels are calculated, Smoke-Screen is done at different fractal dimensions. Finally, according to temporal and spatial correlations between different frames, the singular points can be filtered. The experimental results show that the algorithm can effectively increase detection probability and has robustness.
Zaia, Annamaria
2015-01-01
Osteoporosis represents one major health condition for our growing elderly population. It accounts for severe morbidity and increased mortality in postmenopausal women and it is becoming an emerging health concern even in aging men. Screening of the population at risk for bone degeneration and treatment assessment of osteoporotic patients to prevent bone fragility fractures represent useful tools to improve quality of life in the elderly and to lighten the related socio-economic impact. Bone mineral density (BMD) estimate by means of dual-energy X-ray absorptiometry is normally used in clinical practice for osteoporosis diagnosis. Nevertheless, BMD alone does not represent a good predictor of fracture risk. From a clinical point of view, bone microarchitecture seems to be an intriguing aspect to characterize bone alteration patterns in aging and pathology. The widening into clinical practice of medical imaging techniques and the impressive advances in information technologies together with enhanced capacity of power calculation have promoted proliferation of new methods to assess changes of trabecular bone architecture (TBA) during aging and osteoporosis. Magnetic resonance imaging (MRI) has recently arisen as a useful tool to measure bone structure in vivo. In particular, high-resolution MRI techniques have introduced new perspectives for TBA characterization by non-invasive non-ionizing methods. However, texture analysis methods have not found favor with clinicians as they produce quite a few parameters whose interpretation is difficult. The introduction in biomedical field of paradigms, such as theory of complexity, chaos, and fractals, suggests new approaches and provides innovative tools to develop computerized methods that, by producing a limited number of parameters sensitive to pathology onset and progression, would speed up their application into clinical practice. Complexity of living beings and fractality of several physio-anatomic structures suggest
NASA Astrophysics Data System (ADS)
Boychuk, T. M.; Bodnar, B. M.; Vatamanesku, L. I.
2012-01-01
For the first time the complex correlation and fractal analysis was used for the investigation of microscopic images of both tissue images and hemangioma liquids. It was proposed a physical model of description of phase distributions formation of coherent radiation, which was transformed by optical anisotropic biological structures. The phase maps of laser radiation in the boundary diffraction zone were used as the main information parameter. The results of investigating the interrelation between the values of correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts in the points of laser images of histological sections of hemangioma, hemangioma blood smears and blood plasma with vascular system pathologies. The diagnostic criteria of hemangioma nascency are determined.
NASA Astrophysics Data System (ADS)
Boychuk, T. M.; Bodnar, B. M.; Vatamanesku, L. I.
2011-09-01
For the first time the complex correlation and fractal analysis was used for the investigation of microscopic images of both tissue images and hemangioma liquids. It was proposed a physical model of description of phase distributions formation of coherent radiation, which was transformed by optical anisotropic biological structures. The phase maps of laser radiation in the boundary diffraction zone were used as the main information parameter. The results of investigating the interrelation between the values of correlation (correlation area, asymmetry coefficient and autocorrelation function excess) and fractal (dispersion of logarithmic dependencies of power spectra) parameters are presented. They characterize the coordinate distributions of phase shifts in the points of laser images of histological sections of hemangioma, hemangioma blood smears and blood plasma with vascular system pathologies. The diagnostic criteria of hemangioma nascency are determined.
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-08-01
The main purpose of this work is to explore the usefulness of fractal descriptors estimated in multi-resolution domains to characterize biomedical digital image texture. In this regard, three multi-resolution techniques are considered: the well-known discrete wavelet transform (DWT) and the empirical mode decomposition (EMD), and; the newly introduced; variational mode decomposition mode (VMD). The original image is decomposed by the DWT, EMD, and VMD into different scales. Then, Fourier spectrum based fractal descriptors is estimated at specific scales and directions to characterize the image. The support vector machine (SVM) was used to perform supervised classification. The empirical study was applied to the problem of distinguishing between normal and abnormal brain magnetic resonance images (MRI) affected with Alzheimer disease (AD). Our results demonstrate that fractal descriptors estimated in VMD domain outperform those estimated in DWT and EMD domains; and also those directly estimated from the original image.
A Lossless hybrid wavelet-fractal compression for welding radiographic images.
Mekhalfa, Faiza; Avanaki, Mohammad R N; Berkani, Daoud
2016-01-01
In this work a lossless wavelet-fractal image coder is proposed. The process starts by compressing and decompressing the original image using wavelet transformation and fractal coding algorithm. The decompressed image is removed from the original one to obtain a residual image which is coded by using Huffman algorithm. Simulation results show that with the proposed scheme, we achieve an infinite peak signal to noise ratio (PSNR) with higher compression ratio compared to typical lossless method. Moreover, the use of wavelet transform speeds up the fractal compression algorithm by reducing the size of the domain pool. The compression results of several welding radiographic images using the proposed scheme are evaluated quantitatively and compared with the results of Huffman coding algorithm. PMID:26890900
Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images
NASA Astrophysics Data System (ADS)
Cumbrera, Ramiro; Tarquis, Ana M.; Gascó, Gabriel; Millán, Humberto
2012-07-01
SummaryImage analysis could be a useful tool for investigating the spatial patterns of apparent soil moisture at multiple resolutions. The objectives of the present work were (i) to define apparent soil moisture patterns from vertical planes of Vertisol pit images and (ii) to describe the scaling of apparent soil moisture distribution using fractal parameters. Twelve soil pits (0.70 m long × 0.60 m width × 0.30 m depth) were excavated on a bare Mazic Pellic Vertisol. Six of them were excavated in April/2011 and six pits were established in May/2011 after 3 days of a moderate rainfall event. Digital photographs were taken from each Vertisol pit using a Kodak™ digital camera. The mean image size was 1600 × 945 pixels with one physical pixel ≈373 μm of the photographed soil pit. Each soil image was analyzed using two fractal scaling exponents, box counting (capacity) dimension (DBC) and interface fractal dimension (Di), and three prefractal scaling coefficients, the total number of boxes intercepting the foreground pattern at a unit scale (A), fractal lacunarity at the unit scale (Λ1) and Shannon entropy at the unit scale (S1). All the scaling parameters identified significant differences between both sets of spatial patterns. Fractal lacunarity was the best discriminator between apparent soil moisture patterns. Soil image interpretation with fractal exponents and prefractal coefficients can be incorporated within a site-specific agriculture toolbox. While fractal exponents convey information on space filling characteristics of the pattern, prefractal coefficients represent the investigated soil property as seen through a higher resolution microscope. In spite of some computational and practical limitations, image analysis of apparent soil moisture patterns could be used in connection with traditional soil moisture sampling, which always renders punctual estimates.
Time Series Analysis OF SAR Image Fractal Maps: The Somma-Vesuvio Volcanic Complex Case Study
NASA Astrophysics Data System (ADS)
Pepe, Antonio; De Luca, Claudio; Di Martino, Gerardo; Iodice, Antonio; Manzo, Mariarosaria; Pepe, Susi; Riccio, Daniele; Ruello, Giuseppe; Sansosti, Eugenio; Zinno, Ivana
2016-04-01
The fractal dimension is a significant geophysical parameter describing natural surfaces representing the distribution of the roughness over different spatial scale; in case of volcanic structures, it has been related to the specific nature of materials and to the effects of active geodynamic processes. In this work, we present the analysis of the temporal behavior of the fractal dimension estimates generated from multi-pass SAR images relevant to the Somma-Vesuvio volcanic complex (South Italy). To this aim, we consider a Cosmo-SkyMed data-set of 42 stripmap images acquired from ascending orbits between October 2009 and December 2012. Starting from these images, we generate a three-dimensional stack composed by the corresponding fractal maps (ordered according to the acquisition dates), after a proper co-registration. The time-series of the pixel-by-pixel estimated fractal dimension values show that, over invariant natural areas, the fractal dimension values do not reveal significant changes; on the contrary, over urban areas, it correctly assumes values outside the natural surfaces fractality range and show strong fluctuations. As a final result of our analysis, we generate a fractal map that includes only the areas where the fractal dimension is considered reliable and stable (i.e., whose standard deviation computed over the time series is reasonably small). The so-obtained fractal dimension map is then used to identify areas that are homogeneous from a fractal viewpoint. Indeed, the analysis of this map reveals the presence of two distinctive landscape units corresponding to the Mt. Vesuvio and Gran Cono. The comparison with the (simplified) geological map clearly shows the presence in these two areas of volcanic products of different age. The presented fractal dimension map analysis demonstrates the ability to get a figure about the evolution degree of the monitored volcanic edifice and can be profitably extended in the future to other volcanic systems with
Statistical fractal border features for MRI breast mass images
NASA Astrophysics Data System (ADS)
Penn, Alan I.; Bolinger, Lizann; Loew, Murray H.
1998-06-01
MRI has been proposed as an alternative method to mammography for detecting and staging breast cancer. Recent studies have shown that architectural features of breast masses may be useful in improving specificity. Since fractal dimension (fd) has been correlated with roughness, and border roughness is an indicator of malignancy, the fd of the mass border is a promising architectural feature for achieving improved specificity. Previous methods of estimating the fd of the mass border have been unreliable because of limited data or overlay restrictive assumptions of the fractal model. We present preliminary results of a statistical approach in which a sample space of fd estimates is generated from a family of self-affine fractal models. The fd of the mass border is then estimated from the statistics of the sample space.
Edge detection and image segmentation of space scenes using fractal analyses
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Fuller, J. J.
1992-01-01
A method was developed for segmenting images of space scenes into manmade and natural components, using fractal dimensions and lacunarities. Calculations of these parameters are presented. Results are presented for a variety of aerospace images, showing that it is possible to perform edge detections of manmade objects against natural background such as those seen in an aerospace environment.
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Sig-NganLam, Nina; Quattrochi, Dale A.
2004-01-01
The accuracy of traditional multispectral maximum-likelihood image classification is limited by the skewed statistical distributions of reflectances from the complex heterogenous mixture of land cover types in urban areas. This work examines the utility of local variance, fractal dimension and Moran's I index of spatial autocorrelation in segmenting multispectral satellite imagery. Tools available in the Image Characterization and Modeling System (ICAMS) were used to analyze Landsat 7 imagery of Atlanta, Georgia. Although segmentation of panchromatic images is possible using indicators of spatial complexity, different land covers often yield similar values of these indices. Better results are obtained when a surface of local fractal dimension or spatial autocorrelation is combined as an additional layer in a supervised maximum-likelihood multispectral classification. The addition of fractal dimension measures is particularly effective at resolving land cover classes within urbanized areas, as compared to per-pixel spectral classification techniques.
NASA Astrophysics Data System (ADS)
Tremberger, George, Jr.; Flamholz, A.; Cheung, E.; Sullivan, R.; Subramaniam, R.; Schneider, P.; Brathwaite, G.; Boteju, J.; Marchese, P.; Lieberman, D.; Cheung, T.; Holden, Todd
2007-09-01
The absorption effect of the back surface boundary of a diffuse layer was studied via laser generated reflection speckle pattern. The spatial speckle intensity provided by a laser beam was measured. The speckle data were analyzed in terms of fractal dimension (computed by NIH ImageJ software via the box counting fractal method) and weak localization theory based on Mie scattering. Bar code imaging was modeled as binary absorption contrast and scanning resolution in millimeter range was achieved for diffusive layers up to thirty transport mean free path thick. Samples included alumina, porous glass and chicken tissue. Computer simulation was used to study the effect of speckle spatial distribution and observed fractal dimension differences were ascribed to variance controlled speckle sizes. Fractal dimension suppressions were observed in samples that had thickness dimensions around ten transport mean free path. Computer simulation suggested a maximum fractal dimension of about 2 and that subtracting information could lower fractal dimension. The fractal dimension was shown to be sensitive to sample thickness up to about fifteen transport mean free paths, and embedded objects which modified 20% or more of the effective thickness was shown to be detectable. The box counting fractal method was supplemented with the Higuchi data series fractal method and application to architectural distortion mammograms was demonstrated. The use of fractals in diffusive analysis would provide a simple language for a dialog between optics experts and mammography radiologists, facilitating the applications of laser diagnostics in tissues.
Improved triangular prism methods for fractal analysis of remotely sensed images
NASA Astrophysics Data System (ADS)
Zhou, Yu; Fung, Tung; Leung, Yee
2016-05-01
Feature extraction has been a major area of research in remote sensing, and fractal feature is a natural characterization of complex objects across scales. Extending on the modified triangular prism (MTP) method, we systematically discuss three factors closely related to the estimation of fractal dimensions of remotely sensed images. They are namely the (F1) number of steps, (F2) step size, and (F3) estimation accuracy of the facets' areas of the triangular prisms. Differing from the existing improved algorithms that separately consider these factors, we simultaneously take all factors to construct three new algorithms, namely the modification of the eight-pixel algorithm, the four corner and the moving-average MTP. Numerical experiments based on 4000 generated images show their superior performances over existing algorithms: our algorithms not only overcome the limitation of image size suffered by existing algorithms but also obtain similar average fractal dimension with smaller standard deviation, only 50% for images with high fractal dimensions. In the case of real-life application, our algorithms more likely obtain fractal dimensions within the theoretical range. Thus, the fractal nature uncovered by our algorithms is more reasonable in quantifying the complexity of remotely sensed images. Despite the similar performance of these three new algorithms, the moving-average MTP can mitigate the sensitivity of the MTP to noise and extreme values. Based on the numerical and real-life case study, we check the effect of the three factors, (F1)-(F3), and demonstrate that these three factors can be simultaneously considered for improving the performance of the MTP method.
ERIC Educational Resources Information Center
Barton, Ray
1990-01-01
Presented is an educational game called "The Chaos Game" which produces complicated fractal images. Two basic computer programs are included. The production of fractal images by the Sierpinski gasket and the Chaos Game programs is discussed. (CW)
Automatic Method to Classify Images Based on Multiscale Fractal Descriptors and Paraconsistent Logic
NASA Astrophysics Data System (ADS)
Pavarino, E.; Neves, L. A.; Nascimento, M. Z.; Godoy, M. F.; Arruda, P. F.; Neto, D. S.
2015-01-01
In this study is presented an automatic method to classify images from fractal descriptors as decision rules, such as multiscale fractal dimension and lacunarity. The proposed methodology was divided in three steps: quantification of the regions of interest with fractal dimension and lacunarity, techniques under a multiscale approach; definition of reference patterns, which are the limits of each studied group; and, classification of each group, considering the combination of the reference patterns with signals maximization (an approach commonly considered in paraconsistent logic). The proposed method was used to classify histological prostatic images, aiming the diagnostic of prostate cancer. The accuracy levels were important, overcoming those obtained with Support Vector Machine (SVM) and Best- first Decicion Tree (BFTree) classifiers. The proposed approach allows recognize and classify patterns, offering the advantage of giving comprehensive results to the specialists.
NASA Technical Reports Server (NTRS)
Huang, J.; Turcotte, D. L.
1989-01-01
The concept of fractal mapping is introduced and applied to digitized topography of Arizona. It is shown that the fractal statistics satisfy the topography of the state to a good approximation. The fractal dimensions and roughness amplitudes from subregions are used to construct maps of these quantities. It is found that the fractal dimension of actual two-dimensional topography is not affected by the adding unity to the fractal dimension of one-dimensional topographic tracks. In addition, consideration is given to the production of fractal maps from synthetically derived topography.
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe
2002-05-01
Fractal geometry concerns the study of non-Euclidean geometrical figures generated by a recursive sequence of mathematical operations. These figures show self-similar features in the sense that their shape, at a certain scale, is equal to, or at least 'similar' to, the same shape of the figure at a different scale or resolution. This property of scale invariance often occurs also in some natural events. The basis of the method is the very comparison of the space covering of one of those geometrical constructions, the 'Sierpinski Carpet,' and the particles location and size distribution in the portion of surface acquired in the images. Fractal analysis method, consists in the study of the size distribution structure and disposition modalities. Such an approach was presented in this paper with reference to the characterization of airborne dust produced in working environment through the evaluation of particle size disposition and distribution over a surface. Such a behavior, in fact, was assumed to be strictly correlated with 1) material surface physical characteristics and 2) on the modalities by which the material is 'shot' on the dust sample holder (glass support). To get this goal, a 2D-Fractal extractor has been used, calibrated to different area thresholding values, as a result binary sample image changes, originating different fractal resolutions plotted for the residual background area (Richardson plot). Changing the lower size thresholding value of the 2D-Fractal extractor algorithm, means to change the starting point of fractal measurements; in such way, it has been looked for possible differences of powders in the lower dimensional classes. The rate by which the lowest part of the plot goes down to residual area equal to zero, together with fractal dimensions (low and high, depending on average material curve) and their precision (R2) of 'zero curve' (Richardson Plot with area thresholding value equal to zero, i.e. whole fractal distribution), can be used
Saremi, Saeed; Sejnowski, Terrence J.
2016-01-01
Natural images are scale invariant with structures at all length scales. We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs. We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153
Saremi, Saeed; Sejnowski, Terrence J
2016-05-01
Natural images are scale invariant with structures at all length scales.We formulated a geometric view of scale invariance in natural images using percolation theory, which describes the behavior of connected clusters on graphs.We map images to the percolation model by defining clusters on a binary representation for images. We show that critical percolating structures emerge in natural images and study their scaling properties by identifying fractal dimensions and exponents for the scale-invariant distributions of clusters. This formulation leads to a method for identifying clusters in images from underlying structures as a starting point for image segmentation. PMID:26415153
Fractal methods for extracting artificial objects from the unmanned aerial vehicle images
NASA Astrophysics Data System (ADS)
Markov, Eugene
2016-04-01
Unmanned aerial vehicles (UAVs) have become used increasingly in earth surface observations, with a special interest put into automatic modes of environmental control and recognition of artificial objects. Fractal methods for image processing well detect the artificial objects in digital space images but were not applied previously to the UAV-produced imagery. Parameters of photography, on-board equipment, and image characteristics differ considerably for spacecrafts and UAVs. Therefore, methods that work properly with space images can produce different results for the UAVs. In this regard, testing the applicability of fractal methods for the UAV-produced images and determining the optimal range of parameters for these methods represent great interest. This research is dedicated to the solution of this problem. Specific features of the earth's surface images produced with UAVs are described in the context of their interpretation and recognition. Fractal image processing methods for extracting artificial objects are described. The results of applying these methods to the UAV images are presented.
Plant Identification Based on Leaf Midrib Cross-Section Images Using Fractal Descriptors
da Silva, Núbia Rosa; Florindo, João Batista; Gómez, María Cecilia; Rossatto, Davi Rodrigo; Kolb, Rosana Marta; Bruno, Odemir Martinez
2015-01-01
The correct identification of plants is a common necessity not only to researchers but also to the lay public. Recently, computational methods have been employed to facilitate this task, however, there are few studies front of the wide diversity of plants occurring in the world. This study proposes to analyse images obtained from cross-sections of leaf midrib using fractal descriptors. These descriptors are obtained from the fractal dimension of the object computed at a range of scales. In this way, they provide rich information regarding the spatial distribution of the analysed structure and, as a consequence, they measure the multiscale morphology of the object of interest. In Biology, such morphology is of great importance because it is related to evolutionary aspects and is successfully employed to characterize and discriminate among different biological structures. Here, the fractal descriptors are used to identify the species of plants based on the image of their leaves. A large number of samples are examined, being 606 leaf samples of 50 species from Brazilian flora. The results are compared to other imaging methods in the literature and demonstrate that fractal descriptors are precise and reliable in the taxonomic process of plant species identification. PMID:26091501
Differential Diagnosis: Shape and Function, Fractal Tools in the Pathology Lab.
Bianciardi, Giorgio
2015-10-01
Fractal analysis is a useful objective tool in describing complexity of shapes and signals providing information for understanding pathological changes. We present fractal approaches and software used in our pathology laboratory to analyze shapes of tumors in tissues and cells, to evaluate the microvessel network complexity in hereditary diseases or the complexity of the surface of blood cells in atherosclerosis-linked condition, as well to analyze function in vasculopathic subjects by chaotic analysis of electrocardiographic signals, in order to perform differential diagnosis. The fractal parameters appear to converge towards distinct values in pathological conditions compared to healthy, approaching the characteristics values of a percolation process or the diffusion-limited aggregation process, respectively: a bifurcation that allows to support the diagnostic process of the pathologist in his daily work. These methods, presented here as a kind of a cookbook ready for the pathologist, are low cost and not time consuming. PMID:26375935
Radial distribution function for hard spheres in fractal dimensions: A heuristic approximation
NASA Astrophysics Data System (ADS)
Santos, Andrés; de Haro, Mariano López
2016-06-01
Analytic approximations for the radial distribution function, the structure factor, and the equation of state of hard-core fluids in fractal dimension d (1 ≤d ≤3 ) are developed as heuristic interpolations from the knowledge of the exact and Percus-Yevick results for the hard-rod and hard-sphere fluids, respectively. In order to assess their value, such approximate results are compared with those of recent Monte Carlo simulations and numerical solutions of the Percus-Yevick equation for a fractal dimension [M. Heinen et al., Phys. Rev. Lett. 115, 097801 (2015), 10.1103/PhysRevLett.115.097801], a good agreement being observed.
Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis
Lahmiri, Salim; Boukadoum, Mounir
2013-01-01
We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD. PMID:24967286
a New Class of Fractal Interpolation Surfaces Based on Functional Values
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Vijender, N.
2016-02-01
Fractal interpolation is a modern technique for fitting of smooth/non-smooth data. Based on only functional values, we develop two types of 𝒞1-rational fractal interpolation surfaces (FISs) on a rectangular grid in the present paper that contain scaling factors in both directions and two types of positive real parameters which are referred as shape parameters. The graphs of these 𝒞1-rational FISs are the attractors of suitable rational iterated function systems (IFSs) in ℝ3 which use a collection of rational IFSs in the x-direction and y-direction and hence these FISs are self-referential in nature. Using upper bounds of the interpolation error of the x-direction and y-direction fractal interpolants along the grid lines, we study the convergence results of 𝒞1-rational FISs toward the original function. A numerical illustration is provided to explain the visual quality of our rational FISs. An extra feature of these fractal surface schemes is that it allows subsequent interactive alteration of the shape of the surfaces by changing the scaling factors and shape parameters.
A formal link of anticipatory mental imaging with fractal features of biological time
NASA Astrophysics Data System (ADS)
Bounias, Michel; Bonaly, André
2001-06-01
Previous works have supported the proposition that biological organisms are endowed with perceptive functions based of fixed points in mental chaining sequences (Bounias and Bonaly, 1997). Former conjectures proposed that memory could be fractal (Dubois, 1990; Bonaly, 1989, 1994) and that the biological time, standing at the intersection of the arrows of past events and of future events, exhibit some similarity with the construction of a Koch-like structure (Bonaly, 2000). A formal examination of the biological system of perception let now appear that the perception of time occurs at the intersection of two consecutive fixed point sequences. Therefore, time-flow is mapped by sequences of fixed points of which each is the convergence value of sequences of neuronal configurations. Since the latter are indexed by the ordered sequences of closed Poincaré sections determining the physical arrow of time (Bonaly and Bounias, 1995), there exists a surjective Lipschitz-Hölder mapping of physical time onto system-perceived time. The succession of consecutive fixed points of the perceptive sequence in turn constitute a sequence whose properties account for the apparent continuity of time-perception, in the same time as they fulfill the basically nonlinearity of time as a general parameter. A generator polygon is shown to be constituted by four sides: (i) the interval between two consecutive bursts of perceptions provides the base, with a projection paralleling the arrow of physical time; (ii) the top is constituted by the sequence of repeated fixed points accounting for the mental image got from the first burst, and further maintained up to the formation of the next fixed point; (iii) the first lateral side is the difference (Lk-1 to Lk) between the measure (L) of neuronal chains leading to the first image a(uk), and: (iv) the second lateral side is the difference of measure between Lk and Lk+1. The equation of the system is therefore of the incursive type, and this
NASA Astrophysics Data System (ADS)
Ahammer, Helmut; DeVaney, Trevor T. J.
2004-03-01
The boundary of a fractal object, represented in a two-dimensional space, is theoretically a line with an infinitely small width. In digital images this boundary or contour is limited to the pixel resolution of the image and the width of the line commonly depends on the edge detection algorithm used. The Minkowski dimension was evaluated by using three different edge detection algorithms (Sobel, Roberts, and Laplace operator). These three operators were investigated because they are very widely used and because their edge detection result is very distinct concerning the line width. Very common fractals (Sierpinski carpet and Koch islands) were investigated as well as the binary images from a cancer invasion assay taken with a confocal laser scanning microscope. The fractal dimension is directly proportional to the width of the contour line and the fact, that in practice very often the investigated objects are fractals only within a limited resolution range is considered too.
NASA Astrophysics Data System (ADS)
Liang, Yingjie; Ye, Allen Q.; Chen, Wen; Gatto, Rodolfo G.; Colon-Perez, Luis; Mareci, Thomas H.; Magin, Richard L.
2016-10-01
Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the
Multi-modal multi-fractal boundary encoding in object-based image compression
NASA Astrophysics Data System (ADS)
Schmalz, Mark S.
2006-08-01
The compact representation of region boundary contours is key to efficient representation and compression of digital images using object-based compression (OBC). In OBC, regions are coded in terms of their texture, color, and shape. Given the appropriate representation scheme, high compression ratios (e.g., 500:1 <= CR <= 2,500:1) have been reported for selected images. Because a region boundary is often represented with more parameters than the region contents, it is crucial to maximize the boundary compression ratio by reducing these parameters. Researchers have elsewhere shown that cherished boundary encoding techniques such as chain coding, simplicial complexes, or quadtrees, to name but a few, are inadequate to support OBC within the aforementioned CR range. Several existing compression standards such as MPEG support efficient boundary representation, but do not necessarily support OBC at CR >= 500:1 . Siddiqui et al. exploited concepts from fractal geometry to encode and compress region boundaries based on fractal dimension, reporting CR = 286.6:1 in one test. However, Siddiqui's algorithm is costly and appears to contain ambiguities. In this paper, we first discuss fractal dimension and OBC compression ratio, then enhance Siddiqui's algorithm, achieving significantly higher CR for a wide variety of boundary types. In particular, our algorithm smoothes a region boundary B, then extracts its inflection or control points P, which are compactly represented. The fractal dimension D is computed locally for the detrended B. By appropriate subsampling, one efficiently segments disjoint clusters of D values subject to a preselected tolerance, thereby partitioning B into a multifractal. This is accomplished using four possible compression modes. In contrast, previous researchers have characterized boundary variance with one fractal dimension, thereby producing a monofractal. At its most complex, the compressed representation contains P, a spatial marker, and a D value
Fractal analyses of osseous healing using Tuned Aperture Computed Tomography images
Seyedain, Ali; Webber, Richard L.; Nair, Umadevi P.; Piesco, Nicholas P.; Agarwal, Sudha; Mooney, Mark P.; Gröndahl, Hans-Göran
2016-01-01
The aim of this study was to evaluate osseous healing in mandibular defects using fractal analyses on conventional radiographs and tuned aperture computed tomography (TACT; OrthoTACT, Instrumentarium Imaging, Helsinki, Finland) images. Eighty test sites on the inferior margins of rabbit mandibles were subject to lesion induction and treated with one of the following: no treatment (controls); osteoblasts only; polymer matrix only; or osteoblast-polymer matrix (OPM) combination. Images were acquired using conventional radiography and TACT, including unprocessed TACT (TACT-U) and iteratively restored TACT (TACT-IR). Healing was followed up over time and images acquired at 3, 6, 9, and 12 weeks post-surgery. Fractal dimension (FD) was computed within regions of interest in the defects using the TACT workbench. Results were analyzed for effects produced by imaging modality, treatment modality, time after surgery and lesion location. Histomorphometric data were available to assess ground truth. Significant differences (p < 0.0001) were noted based on imaging modality with TACT-IR recording the highest mean fractal dimension (MFD), followed by TACT-U and conventional images, in that order. Sites treated with OPM recorded the highest MFDs among all treatment modalities (p < 0.0001). The highest MFD based on time was recorded at 3 weeks and differed significantly with 12 weeks (p < 0.035). Correlation of FD with results of histomorphometric data was high (r = 0.79; p < 0.001). The FD computed on TACT-IR showed the highest correlation with histomorphometric data, thus establishing the fact TACT is a more efficient and accurate imaging modality for quantification of osseous changes within healing bony defects. PMID:11519567
Beyond maximum entropy: Fractal pixon-based image reconstruction
NASA Technical Reports Server (NTRS)
Puetter, R. C.; Pina, R. K.
1994-01-01
We have developed a new Bayesian image reconstruction method that has been shown to be superior to the best implementations of other methods, including Goodness-of-Fit (e.g. Least-Squares and Lucy-Richardson) and Maximum Entropy (ME). Our new method is based on the concept of the pixon, the fundamental, indivisible unit of picture information. Use of the pixon concept provides an improved image model, resulting in an image prior which is superior to that of standard ME.
Fractal evaluation of drug amorphicity from optical and scanning electron microscope images
NASA Astrophysics Data System (ADS)
Gavriloaia, Bogdan-Mihai G.; Vizireanu, Radu C.; Neamtu, Catalin I.; Gavriloaia, Gheorghe V.
2013-09-01
Amorphous materials are metastable, more reactive than the crystalline ones, and have to be evaluated before pharmaceutical compound formulation. Amorphicity is interpreted as a spatial chaos, and patterns of molecular aggregates of dexamethasone, D, were investigated in this paper by using fractal dimension, FD. Images having three magnifications of D were taken from an optical microscope, OM, and with eight magnifications, from a scanning electron microscope, SEM, were analyzed. The average FD for pattern irregularities of OM images was 1.538, and about 1.692 for SEM images. The FDs of the two kinds of images are less sensitive of threshold level. 3D images were shown to illustrate dependence of FD of threshold and magnification level. As a result, optical image of single scale is enough to characterize the drug amorphicity. As a result, the OM image at a single scale is enough to characterize the amorphicity of D.
Zone Specific Fractal Dimension of Retinal Images as Predictor of Stroke Incidence
Kumar, Dinesh Kant; Hao, Hao; Unnikrishnan, Premith; Kawasaki, Ryo; Mitchell, Paul
2014-01-01
Fractal dimensions (FDs) are frequently used for summarizing the complexity of retinal vascular. However, previous techniques on this topic were not zone specific. A new methodology to measure FD of a specific zone in retinal images has been developed and tested as a marker for stroke prediction. Higuchi's fractal dimension was measured in circumferential direction (FDC) with respect to optic disk (OD), in three concentric regions between OD boundary and 1.5 OD diameter from its margin. The significance of its association with future episode of stroke event was tested using the Blue Mountain Eye Study (BMES) database and compared against spectrum fractal dimension (SFD) and box-counting (BC) dimension. Kruskal-Wallis analysis revealed FDC as a better predictor of stroke (H = 5.80, P = 0.016, α = 0.05) compared with SFD (H = 0.51, P = 0.475, α = 0.05) and BC (H = 0.41, P = 0.520, α = 0.05) with overall lower median value for the cases compared to the control group. This work has shown that there is a significant association between zone specific FDC of eye fundus images with future episode of stroke while this difference is not significant when other FD methods are employed. PMID:25485298
Zone specific fractal dimension of retinal images as predictor of stroke incidence.
Aliahmad, Behzad; Kumar, Dinesh Kant; Hao, Hao; Unnikrishnan, Premith; Che Azemin, Mohd Zulfaezal; Kawasaki, Ryo; Mitchell, Paul
2014-01-01
Fractal dimensions (FDs) are frequently used for summarizing the complexity of retinal vascular. However, previous techniques on this topic were not zone specific. A new methodology to measure FD of a specific zone in retinal images has been developed and tested as a marker for stroke prediction. Higuchi's fractal dimension was measured in circumferential direction (FDC) with respect to optic disk (OD), in three concentric regions between OD boundary and 1.5 OD diameter from its margin. The significance of its association with future episode of stroke event was tested using the Blue Mountain Eye Study (BMES) database and compared against spectrum fractal dimension (SFD) and box-counting (BC) dimension. Kruskal-Wallis analysis revealed FDC as a better predictor of stroke (H = 5.80, P = 0.016, α = 0.05) compared with SFD (H = 0.51, P = 0.475, α = 0.05) and BC (H = 0.41, P = 0.520, α = 0.05) with overall lower median value for the cases compared to the control group. This work has shown that there is a significant association between zone specific FDC of eye fundus images with future episode of stroke while this difference is not significant when other FD methods are employed. PMID:25485298
Using fractal compression scheme to embed a digital signature into an image
NASA Astrophysics Data System (ADS)
Puate, Joan; Jordan, Frederic D.
1997-01-01
With the increase in the number of digital networks and recording devices, digital images appear to be a material, especially still images, whose ownership is widely threatened due to the availability of simple, rapid and perfect duplication and distribution means. It is in this context that several European projects are devoted to finding a technical solution which, as it applies to still images, introduces a code or watermark into the image data itself. This watermark should not only allow one to determine the owner of the image, but also respect its quality and be difficult to revoke. An additional requirement is that the code should be retrievable by the only mean of the protected information. In this paper, we propose a new scheme based on fractal coding and decoding. In general terms, a fractal coder exploits the spatial redundancy within the image by establishing a relationship between its different parts. We describe a way to use this relationship as a means of embedding a watermark. Tests have been performed in order to measure the robustness of the technique against JPEG conversion and low pass filtering. In both cases, very promising results have been obtained.
Landmine detection using IR image segmentation by means of fractal dimension analysis
NASA Astrophysics Data System (ADS)
Abbate, Horacio A.; Gambini, Juliana; Delrieux, Claudio; Castro, Eduardo H.
2009-05-01
This work is concerned with buried landmines detection by long wave infrared images obtained during the heating or cooling of the soil and a segmentation process of the images. The segmentation process is performed by means of a local fractal dimension analysis (LFD) as a feature descriptor. We use two different LFD estimators, box-counting dimension (BC), and differential box counting dimension (DBC). These features are computed in a per pixel basis, and the set of features is clusterized by means of the K-means method. This segmentation technique produces outstanding results, with low computational cost.
Bells Galore: Oscillations and circle-map dynamics from space-filling fractal functions
Puente, C.E.; Cortis, A.; Sivakumar, B.
2008-10-15
The construction of a host of interesting patterns over one and two dimensions, as transformations of multifractal measures via fractal interpolating functions related to simple affine mappings, is reviewed. It is illustrated that, while space-filling fractal functions most commonly yield limiting Gaussian distribution measures (bells), there are also situations (depending on the affine mappings parameters) in which there is no limit. Specifically, the one-dimensional case may result in oscillations between two bells, whereas the two-dimensional case may give rise to unexpected circle map dynamics of an arbitrary number of two-dimensional circular bells. It is also shown that, despite the multitude of bells over two dimensions, whose means dance making regular polygons or stars inscribed on a circle, the iteration of affine maps yields exotic kaleidoscopes that decompose such an oscillatory pattern in a way that is similar to the many cases that converge to a single bell.
Badea, Alexandru Florin; Lupsor Platon, Monica; Crisan, Maria; Cattani, Carlo; Badea, Iulia; Pierro, Gaetano; Sannino, Gianpaolo; Baciut, Grigore
2013-01-01
The geometry of some medical images of tissues, obtained by elastography and ultrasonography, is characterized in terms of complexity parameters such as the fractal dimension (FD). It is well known that in any image there are very subtle details that are not easily detectable by the human eye. However, in many cases like medical imaging diagnosis, these details are very important since they might contain some hidden information about the possible existence of certain pathological lesions like tissue degeneration, inflammation, or tumors. Therefore, an automatic method of analysis could be an expedient tool for physicians to give a faultless diagnosis. The fractal analysis is of great importance in relation to a quantitative evaluation of "real-time" elastography, a procedure considered to be operator dependent in the current clinical practice. Mathematical analysis reveals significant discrepancies among normal and pathological image patterns. The main objective of our work is to demonstrate the clinical utility of this procedure on an ultrasound image corresponding to a submandibular diffuse pathology. PMID:23762183
Radial distribution function for hard spheres in fractal dimensions: A heuristic approximation.
Santos, Andrés; de Haro, Mariano López
2016-06-01
Analytic approximations for the radial distribution function, the structure factor, and the equation of state of hard-core fluids in fractal dimension d (1≤d≤3) are developed as heuristic interpolations from the knowledge of the exact and Percus-Yevick results for the hard-rod and hard-sphere fluids, respectively. In order to assess their value, such approximate results are compared with those of recent Monte Carlo simulations and numerical solutions of the Percus-Yevick equation for a fractal dimension [M. Heinen et al., Phys. Rev. Lett. 115, 097801 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.097801], a good agreement being observed. PMID:27415227
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Das, Nandan K.; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2014-02-01
The objective of the present work is to diagnose pre-cancer by wavelet transform and multi-fractal de-trended fluctuation analysis of DIC images of normal and different grades of cancer tissues. Our DIC imaging and fluctuation analysis methods (Discrete and continuous wavelet transform, MFDFA) confirm the ability to diagnose and detect the early stage of cancer in cervical tissue.
Azevedo-Marques, P M; Spagnoli, H F; Frighetto-Pereira, L; Menezes-Reis, R; Metzner, G A; Rangayyan, R M; Nogueira-Barbosa, M H
2015-08-01
Fractures with partial collapse of vertebral bodies are generically referred to as "vertebral compression fractures" or VCFs. VCFs can have different etiologies comprising trauma, bone failure related to osteoporosis, or metastatic cancer affecting bone. VCFs related to osteoporosis (benign fractures) and to cancer (malignant fractures) are commonly found in the elderly population. In the clinical setting, the differentiation between benign and malignant fractures is complex and difficult. This paper presents a study aimed at developing a system for computer-aided diagnosis to help in the differentiation between malignant and benign VCFs in magnetic resonance imaging (MRI). We used T1-weighted MRI of the lumbar spine in the sagittal plane. Images from 47 consecutive patients (31 women, 16 men, mean age 63 years) were studied, including 19 malignant fractures and 54 benign fractures. Spectral and fractal features were extracted from manually segmented images of 73 vertebral bodies with VCFs. The classification of malignant vs. benign VCFs was performed using the k-nearest neighbor classifier with the Euclidean distance. Results obtained show that combinations of features derived from Fourier and wavelet transforms, together with the fractal dimension, were able to obtain correct classification rate up to 94.7% with area under the receiver operating characteristic curve up to 0.95. PMID:26736364
Evaluation of super-resolution imager with binary fractal test target
NASA Astrophysics Data System (ADS)
Landeau, Stéphane
2014-10-01
Today, new generation of powerful non-linear image processing are used for real time super-resolution or noise reduction. Optronic imagers with such features are becoming difficult to assess, because spatial resolution and sensitivity are now related to scene content. Many algorithms include regularization process, which usually reduces image complexity to enhance spread edges or contours. Small important scene details can be then deleted by this kind of processing. In this paper, a binary fractal test target is presented, with a structured clutter pattern and an interesting autosimilarity multi-scale property. The apparent structured clutter of this test target gives a trade-off between a white noise, unlikely in real scenes, and very structured targets like MTF targets. Together with the fractal design of the target, an assessment method has been developed to evaluate automatically the non-linear effects on the acquired and processed image of the imager. The calculated figure of merit is to be directly comparable to the linear Fourier MTF. For this purpose the Haar wavelet elements distributed spatially and at different scales on the target are assimilated to the sine Fourier cycles at different frequencies. The probability of correct resolution indicates the ability to read correct Haar contrast among all Haar wavelet elements with a position constraint. For the method validation, a simulation of two different imager types has been done, a well-sampled linear system and an under-sampled one, coupled with super-resolution or noise reduction algorithms. The influence of the target contrast on the figures of merit is analyzed. Finally, the possible introduction of this new figure of merit in existing analytical range performance models, such as TRM4 (Fraunhofer IOSB) or NVIPM (NVESD) is discussed. Benefits and limitations of the method are also compared to the TOD (TNO) evaluation method.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Emerson, Charles W.; Lam, Nina Siu-Ngan; Laymon, Charles A.
1997-01-01
The Image Characterization And Modeling System (ICAMS) is a public domain software package that is designed to provide scientists with innovative spatial analytical tools to visualize, measure, and characterize landscape patterns so that environmental conditions or processes can be assessed and monitored more effectively. In this study ICAMS has been used to evaluate how changes in fractal dimension, as a landscape characterization index, and resolution, are related to differences in Landsat images collected at different dates for the same area. Landsat Thematic Mapper (TM) data obtained in May and August 1993 over a portion of the Great Basin Desert in eastern Nevada were used for analysis. These data represent contrasting periods of peak "green-up" and "dry-down" for the study area. The TM data sets were converted into Normalized Difference Vegetation Index (NDVI) images to expedite analysis of differences in fractal dimension between the two dates. These NDVI images were also resampled to resolutions of 60, 120, 240, 480, and 960 meters from the original 30 meter pixel size, to permit an assessment of how fractal dimension varies with spatial resolution. Tests of fractal dimension for two dates at various pixel resolutions show that the D values in the August image become increasingly more complex as pixel size increases to 480 meters. The D values in the May image show an even more complex relationship to pixel size than that expressed in the August image. Fractal dimension for a difference image computed for the May and August dates increase with pixel size up to a resolution of 120 meters, and then decline with increasing pixel size. This means that the greatest complexity in the difference images occur around a resolution of 120 meters, which is analogous to the operational domain of changes in vegetation and snow cover that constitute differences between the two dates.
NASA Astrophysics Data System (ADS)
Popescu, Dan P.; Flueraru, Costel; Mao, Youxin; Chang, Shoude; Sowa, Michael G.
2010-02-01
Two methods for analyzing OCT images of arterial tissues are tested. These methods are applied toward two types of samples: segments of arteries collected from atherosclerosis-prone Watanabe heritable hyper-lipidemic rabbits and pieces of porcine left descending coronary arteries without atherosclerosis. The first method is based on finding the attenuation coefficients for the OCT signal that propagates through various regions of the tissue. The second method involves calculating the fractal dimensions of the OCT signal textures in the regions of interest identified within the acquired images. A box-counting algorithm is used for calculating the fractal dimensions. Both parameters, the attenuation coefficient as well as the fractal dimension correlate very well with the anatomical features of both types of samples.
Medical image retrieval and analysis by Markov random fields and multi-scale fractal dimension.
Backes, André Ricardo; Gerhardinger, Leandro Cavaleri; Batista Neto, João do Espírito Santo; Bruno, Odemir Martinez
2015-02-01
Many Content-based Image Retrieval (CBIR) systems and image analysis tools employ color, shape and texture (in a combined fashion or not) as attributes, or signatures, to retrieve images from databases or to perform image analysis in general. Among these attributes, texture has turned out to be the most relevant, as it allows the identification of a larger number of images of a different nature. This paper introduces a novel signature which can be used for image analysis and retrieval. It combines texture with complexity extracted from objects within the images. The approach consists of a texture segmentation step, modeled as a Markov Random Field process, followed by the estimation of the complexity of each computed region. The complexity is given by a Multi-scale Fractal Dimension. Experiments have been conducted using an MRI database in both pattern recognition and image retrieval contexts. The results show the accuracy of the proposed method in comparison with other traditional texture descriptors and also indicate how the performance changes as the level of complexity is altered. PMID:25586375
Medical image retrieval and analysis by Markov random fields and multi-scale fractal dimension
NASA Astrophysics Data System (ADS)
Backes, André Ricardo; Cavaleri Gerhardinger, Leandro; do Espírito Santo Batista Neto, João; Martinez Bruno, Odemir
2015-02-01
Many Content-based Image Retrieval (CBIR) systems and image analysis tools employ color, shape and texture (in a combined fashion or not) as attributes, or signatures, to retrieve images from databases or to perform image analysis in general. Among these attributes, texture has turned out to be the most relevant, as it allows the identification of a larger number of images of a different nature. This paper introduces a novel signature which can be used for image analysis and retrieval. It combines texture with complexity extracted from objects within the images. The approach consists of a texture segmentation step, modeled as a Markov Random Field process, followed by the estimation of the complexity of each computed region. The complexity is given by a Multi-scale Fractal Dimension. Experiments have been conducted using an MRI database in both pattern recognition and image retrieval contexts. The results show the accuracy of the proposed method in comparison with other traditional texture descriptors and also indicate how the performance changes as the level of complexity is altered.
NASA Astrophysics Data System (ADS)
Yang, Y.; Li, H. T.; Han, Y. S.; Gu, H. Y.
2015-06-01
Image segmentation is the foundation of further object-oriented image analysis, understanding and recognition. It is one of the key technologies in high resolution remote sensing applications. In this paper, a new fast image segmentation algorithm for high resolution remote sensing imagery is proposed, which is based on graph theory and fractal net evolution approach (FNEA). Firstly, an image is modelled as a weighted undirected graph, where nodes correspond to pixels, and edges connect adjacent pixels. An initial object layer can be obtained efficiently from graph-based segmentation, which runs in time nearly linear in the number of image pixels. Then FNEA starts with the initial object layer and a pairwise merge of its neighbour object with the aim to minimize the resulting summed heterogeneity. Furthermore, according to the character of different features in high resolution remote sensing image, three different merging criterions for image objects based on spectral and spatial information are adopted. Finally, compared with the commercial remote sensing software eCognition, the experimental results demonstrate that the efficiency of the algorithm has significantly improved, and the result can maintain good feature boundaries.
Fractal dimensions of wave functions and local spectral measures on the Fibonacci chain
NASA Astrophysics Data System (ADS)
Macé, Nicolas; Jagannathan, Anuradha; Piéchon, Frédéric
2016-05-01
We present a theoretical framework for understanding the wave functions and spectrum of an extensively studied paradigm for quasiperiodic systems, namely the Fibonacci chain. Our analytical results, which are obtained in the limit of strong modulation of the hopping amplitudes, are in good agreement with published numerical data. In the perturbative limit, we show a symmetry of wave functions under permutation of site and energy indices. We compute the wave-function renormalization factors and from them deduce analytical expressions for the fractal exponents corresponding to individual wave functions, as well as their global averages. The multifractality of wave functions is seen to appear at next-to-leading order in ρ . Exponents for the local spectral density are given, in extremely good accord with numerical calculations. Interestingly, our analytical results for exponents are observed to describe the system rather well even for values of ρ well outside the domain of applicability of perturbation theory.
Kamiya, Akira; Takahashi, Tatsuhisa
2007-06-01
The branching systems in our body (vascular and bronchial trees) and those in the environment (plant trees and river systems) are characterized by a fractal nature: the self-similarity in the bifurcation pattern. They increase their branch density toward terminals according to a power function with the exponent called fractal dimension (D). From a stochastic model based-on this feature, we formulated the fractal-based integrals to calculate such morphological parameters as aggregated branch length, surface area, and content volume for any given range of radius (r). It was followed by the derivation of branch number and cross-sectional area, by virtue of the logarithmic sectioning of the r axis and of the branch radius-length relation also given by a power function of r with an exponent (alpha). These derivatives allowed us to quantify various hydrodynamic parameters of vascular and bronchial trees as fluid conduit systems, including the individual branch flow rate, mean flow velocity, wall shear rate and stress, internal pressure, and circumferential tension. The validity of these expressions was verified by comparing the outcomes with actual data measured in vivo in the vascular beds. From additional analyses of the terminal branch number, we found a simple equation relating the exponent (m) of the empirical power law (Murray's so-called cube law) to the other exponents as (m=D+alpha). Finally, allometric studies of mammalian vascular trees revealed uniform and scale-independent distributions of terminal arterioles in organs, which afforded an infarct index, reflecting the severity of tissue damage following arterial infarction. PMID:17347385
Mossotti, Victor G.; Eldeeb, A. Raouf
2000-01-01
Turcotte, 1997, and Barton and La Pointe, 1995, have identified many potential uses for the fractal dimension in physicochemical models of surface properties. The image-analysis program described in this report is an extension of the program set MORPH-I (Mossotti and others, 1998), which provided the fractal analysis of electron-microscope images of pore profiles (Mossotti and Eldeeb, 1992). MORPH-II, an integration of the modified kernel of the program MORPH-I with image calibration and editing facilities, was designed to measure the fractal dimension of the exposed surfaces of stone specimens as imaged in cross section in an electron microscope.
Characterizing Hyperspectral Imagery (AVIRIS) Using Fractal Technique
NASA Technical Reports Server (NTRS)
Qiu, Hong-Lie; Lam, Nina Siu-Ngan; Quattrochi, Dale
1997-01-01
With the rapid increase in hyperspectral data acquired by various experimental hyperspectral imaging sensors, it is necessary to develop efficient and innovative tools to handle and analyze these data. The objective of this study is to seek effective spatial analytical tools for summarizing the spatial patterns of hyperspectral imaging data. In this paper, we (1) examine how fractal dimension D changes across spectral bands of hyperspectral imaging data and (2) determine the relationships between fractal dimension and image content. It has been documented that fractal dimension changes across spectral bands for the Landsat-TM data and its value [(D)] is largely a function of the complexity of the landscape under study. The newly available hyperspectral imaging data such as that from the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) which has 224 bands, covers a wider spectral range with a much finer spectral resolution. Our preliminary result shows that fractal dimension values of AVIRIS scenes from the Santa Monica Mountains in California vary between 2.25 and 2.99. However, high fractal dimension values (D > 2.8) are found only from spectral bands with high noise level and bands with good image quality have a fairly stable dimension value (D = 2.5 - 2.6). This suggests that D can also be used as a summary statistics to represent the image quality or content of spectral bands.
ERIC Educational Resources Information Center
Esbenshade, Donald H., Jr.
1991-01-01
Develops the idea of fractals through a laboratory activity that calculates the fractal dimension of ordinary white bread. Extends use of the fractal dimension to compare other complex structures as other breads and sponges. (MDH)
Generalized functional formulation for multi-fractal representation of basin hydraulic geometry
NASA Astrophysics Data System (ADS)
Kim, JongChun; Paik, Kyungrock
2015-04-01
Natural rivers exhibit power-functional variability in their width, depth, and velocity with flow discharge (Leopold and Maddock, 1953). This relation named hydraulic geometry has been empirically supported by many field studies across the world (e.g., Leopold et al., 1964; Stall and Fok, 1968). The relationship appears either at a fixed cross-section, showing temporal variability, or along a downstream direction across an entire basin, showing spatial variability, the latter named downstream or basin hydraulic geometry. Theoretical studies that attempt to explain the power-law phenomenon (fractal), have assumed that the watershed is homogeneous hydrologically and geologically. Nevertheless, real watersheds are often subject to spatially heterogeneous conditions, due to various reasons including partial area storm coverage (Sólyom and Tucker, 2004) and transmission losses on bed and banks (Lane et al., 1997). In this setting, hydraulic geometry relationships are likely to deviate from monotonic power-law relationship and to follow rather more complex multi-fractal characteristics. In fact, deviation from single power-law was reported for at-a-station relationship of midwest rivers in US (Dodov and Foufoula-Georgiou, 2004). In the case of downstream variation, we identify significant multi-fractal characteristics over the Colorado River basin where strong heterogeneity in geological and hydrological settings presents. Conventional power-law hydraulic geometry relationships cannot express the functional variability for these cases. Motivated by this fact, we generalize the hydraulic geometry functional formulation in this study to express multi-fractal relationships. To do so, we couple the formulation of Paik and Kumar (2004), which generalized at-a-station and downstream relationships, with the formulation of Dodov and Foufoula-Georgiou (2004) which was proposed for multi-scaling in at-a-station relationship. The proposed formulation is successfully evaluated with
Electronic states on a fractal: Exact Green's-function renormalization approach
NASA Astrophysics Data System (ADS)
Andrade, R. F. S.; Schellnhuber, H. J.
1991-12-01
A nontrivial tight-binding model for electron dynamics on the fractal Koch curve is investigated within the framework of the Green's-function formalism. The key result is the construction of a multiple exact renormalization group that allows one to derive all the rather unusual properties of the model. This group is generated by four nonequivalent decimation operations, which define distinct transformation rules for the 48 relevant parameters to be renormalized. The calculation of the density of states confirms the crucial results that were obtained recently using transfer-matrix methods: local self-affinity, dense gap structure, and singular electronic levels with infinite degeneracy. This demonstrates that the Green's-function approach is not inferior to other techniques even in topologically one-dimensional situations.
Functional Magnetic Resonance Imaging
ERIC Educational Resources Information Center
Voos, Avery; Pelphrey, Kevin
2013-01-01
Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…
Functional imaging and endoscopy
Zhang, Jian-Guo; Liu, Hai-Feng
2011-01-01
The emergence of endoscopy for the diagnosis of gastrointestinal diseases and the treatment of gastrointestinal diseases has brought great changes. The mere observation of anatomy with the imaging mode using modern endoscopy has played a significant role in this regard. However, increasing numbers of endoscopies have exposed additional deficiencies and defects such as anatomically similar diseases. Endoscopy can be used to examine lesions that are difficult to identify and diagnose. Early disease detection requires that substantive changes in biological function should be observed, but in the absence of marked morphological changes, endoscopic detection and diagnosis are difficult. Disease detection requires not only anatomic but also functional imaging to achieve a comprehensive interpretation and understanding. Therefore, we must ask if endoscopic examination can be integrated with both anatomic imaging and functional imaging. In recent years, as molecular biology and medical imaging technology have further developed, more functional imaging methods have emerged. This paper is a review of the literature related to endoscopic optical imaging methods in the hopes of initiating integration of functional imaging and anatomical imaging to yield a new and more effective type of endoscopy. PMID:22090783
Micro and MACRO Fractals Generated by Multi-Valued Dynamical Systems
NASA Astrophysics Data System (ADS)
Banakh, T.; Novosad, N.
2014-08-01
Given a multi-valued function Φ : X \\mumap X on a topological space X we study the properties of its fixed fractal \\malteseΦ, which is defined as the closure of the orbit Φω(*Φ) = ⋃n∈ωΦn(*Φ) of the set *Φ = {x ∈ X : x ∈ Φ(x)} of fixed points of Φ. A special attention is paid to the duality between micro-fractals and macro-fractals, which are fixed fractals \\maltese Φ and \\maltese {Φ -1} for a contracting compact-valued function Φ : X \\mumap X on a complete metric space X. With help of algorithms (described in this paper) we generate various images of macro-fractals which are dual to some well-known micro-fractals like the fractal cross, the Sierpiński triangle, Sierpiński carpet, the Koch curve, or the fractal snowflakes. The obtained images show that macro-fractals have a large-scale fractal structure, which becomes clearly visible after a suitable zooming.
NASA Astrophysics Data System (ADS)
Mosquera Lopez, Clara; Agaian, Sos
2013-02-01
Prostate cancer detection and staging is an important step towards patient treatment selection. Advancements in digital pathology allow the application of new quantitative image analysis algorithms for computer-assisted diagnosis (CAD) on digitized histopathology images. In this paper, we introduce a new set of features to automatically grade pathological images using the well-known Gleason grading system. The goal of this study is to classify biopsy images belonging to Gleason patterns 3, 4, and 5 by using a combination of wavelet and fractal features. For image classification we use pairwise coupling Support Vector Machine (SVM) classifiers. The accuracy of the system, which is close to 97%, is estimated through three different cross-validation schemes. The proposed system offers the potential for automating classification of histological images and supporting prostate cancer diagnosis.
FRACTAL DIMENSION OF GALAXY ISOPHOTES
Thanki, Sandip; Rhee, George; Lepp, Stephen E-mail: grhee@physics.unlv.edu
2009-09-15
In this paper we investigate the use of the fractal dimension of galaxy isophotes in galaxy classification. We have applied two different methods for determining fractal dimensions to the isophotes of elliptical and spiral galaxies derived from CCD images. We conclude that fractal dimension alone is not a reliable tool but that combined with other parameters in a neural net algorithm the fractal dimension could be of use. In particular, we have used three parameters to segregate the ellipticals and lenticulars from the spiral galaxies in our sample. These three parameters are the correlation fractal dimension D {sub corr}, the difference between the correlation fractal dimension and the capacity fractal dimension D {sub corr} - D {sub cap}, and, thirdly, the B - V color of the galaxy.
NASA Astrophysics Data System (ADS)
Shahi Ferdows, Mohammad; Ramazi, Hamidreza
2015-12-01
The selection of a suitable membership function and its parameters plays a critical role in the integration of layer information by the fuzzy method. In this paper, parameters of membership function for induced polarization (IP) and resistivity (RS) data (in the Hamyj copper deposit) have been determined by the threshold parameter of IP and resistivity data, already determined by expert opinion or drilling data. The Hamyj deposit is located about 80 km west of Birjand city, South Khorasan province, Iran. In this area, resistivity and induced polarization data have been surveyed by dipole-dipole array. In this paper, outlier-induced polarization data have been corrected by the Doerffel method and then IP and resistivity data have been inversed by the Newton and Gauss-Newton methods. The threshold of the IP data is recognized by statistical (gap statistic) and fractal (concentration-area) methods. The determined threshold by the fractal method is higher than the gap statistic. These two thresholds have been used to determine the S-shape function for the IP data. The thresholds of the RS data are recognized by the fractal method. These two thresholds have been used to determine the Z-shape function for the RS data. The integration of geoelectrical layer information has been carried out by the Gama method. Finally, the best drilling points were proposed based on fuzzy modelling for the area. The results show that the optimum exploration borehole is located at a depth of 25 m.
Fractal funcitons and multiwavelets
Massopust, P.R.
1997-04-01
This paper reviews how elements from the theory of fractal functions are employed to construct scaling vectors and multiwavelets. Emphasis is placed on the one-dimensional case, however extensions to IR{sup m} are indicated.
ERIC Educational Resources Information Center
Simoson, Andrew J.
2009-01-01
This article presents a fun activity of generating a double-minded fractal image for a linear algebra class once the idea of rotation and scaling matrices are introduced. In particular the fractal flip-flops between two words, depending on the level at which the image is viewed. (Contains 5 figures.)
Image analysis of human corneal endothelial cells based on fractal theory
NASA Astrophysics Data System (ADS)
Zhang, Zhi; Luo, Qingming; Zeng, Shaoqun; Zhang, Xinyu; Huang, Dexiu; Chen, Weiguo
1999-09-01
A fast method is developed to quantitatively characterize the shape of human corneal endothelial cells with fractal theory and applied to analyze microscopic photographs of human corneal endothelial cells. The results show that human corneal endothelial cells possess the third characterization parameter-- fractal dimension, besides another two characterization parameter (its size and shape). Compared with tradition method, this method has many advantages, such as automatism, speediness, parallel processing and can be used to analyze large numbers of endothelial cells, the obtained values are statistically significant, it offers a new approach for clinic diagnosis of endothelial cells.
Characterization of branch complexity by fractal analyses and detect plant functional adaptations
Alados, C.L.; Escos, J.; Emlen, J.M.; Freeman, D.C.
1999-01-01
The comparison between complexity in the sense of space occupancy (box-counting fractal dimension Dc and information dimension DI ) and heterogeneity in the sense of space distribution (average evenness index and evenness variation coefficient JCV) were investigated in mathematical fractal objects and natural branch ¯ J structures. In general, increased fractal dimension was paired with low heterogeneity. Comparisons between branch architecture in Anthyllis cytisoides under different slope exposure and grazing impact revealed that branches were more complex and more homogeneously distributed for plants on northern exposures than southern, while grazing had no impact during a wet year. Developmental instability was also investigated by the statistical noise of the allometric relation between internode length and node order. In conclusion, our study demonstrated that fractal dimension of branch structure can be used to analyze the structural organization of plants, especially if we consider not only fractal dimension but also shoot distribution within the canopy (lacunarity). These indexes together with developmental instability analyses are good indicators of growth responses to the environment.
Fractal Feature Analysis Of Beef Marblingpatterns
NASA Astrophysics Data System (ADS)
Chen, Kunjie; Qin, Chunfang
The purpose of this study is to investigate fractal behavior of beef marbling patterns and to explore relationships between fractal dimensions and marbling scores. Authors firstly extracted marbling images from beef rib-eye crosssection images using computer image processing technologies and then implemented the fractal analysis on these marbling images based on the pixel covering method. Finally box-counting fractal dimension (BFD) and informational fractal dimension (IFD) of one hundred and thirty-five beef marbling images were calculated and plotted against the beef marbling scores. The results showed that all beef marbling images exhibit fractal behavior over the limited range of scales accessible to analysis. Furthermore, their BFD and IFD are closely related to the score of beef marbling, suggesting that fractal analyses can provide us a potential tool to calibrate the score of beef marbling.
Garrison, J.R., Jr.; Pearn, W.C.; von Rosenberg, D. W. )
1992-01-01
In this paper reservoir rock/pore systems are considered natural fractal objects and modeled as and compared to the regular fractal Menger Sponge and Sierpinski Carpet. The physical properties of a porous rock are, in part, controlled by the geometry of the pore system. The rate at which a fluid or electrical current can travel through the pore system of a rock is controlled by the path along which it must travel. This path is a subset of the overall geometry of the pore system. Reservoir rocks exhibit self-similarity over a range of length scales suggesting that fractal geometry offers a means of characterizing these complex objects. The overall geometry of a rock/pore system can be described, conveniently and concisely, in terms of effective fractal dimensions. The rock/pore system is modeled as the fractal Menger Sponge. A cross section through the rock/pore system, such as an image of a thin-section of a rock, is modeled as the fractal Sierpinski Carpet, which is equivalent to the face of the Menger Sponge.
NASA Astrophysics Data System (ADS)
Raupov, Dmitry S.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Kornilin, Dmitry V.; Zakharov, Valery P.; Khramov, Alexander G.
2016-04-01
Optical coherence tomography (OCT) is usually employed for the measurement of tumor topology, which reflects structural changes of a tissue. We investigated the possibility of OCT in detecting changes using a computer texture analysis method based on Haralick texture features, fractal dimension and the complex directional field method from different tissues. These features were used to identify special spatial characteristics, which differ healthy tissue from various skin cancers in cross-section OCT images (B-scans). Speckle reduction is an important pre-processing stage for OCT image processing. In this paper, an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in OCT images was used. The Haralick texture feature set includes contrast, correlation, energy, and homogeneity evaluated in different directions. A box-counting method is applied to compute fractal dimension of investigated tissues. Additionally, we used the complex directional field calculated by the local gradient methodology to increase of the assessment quality of the diagnosis method. The complex directional field (as well as the "classical" directional field) can help describe an image as set of directions. Considering to a fact that malignant tissue grows anisotropically, some principal grooves may be observed on dermoscopic images, which mean possible existence of principal directions on OCT images. Our results suggest that described texture features may provide useful information to differentiate pathological from healthy patients. The problem of recognition melanoma from nevi is decided in this work due to the big quantity of experimental data (143 OCT-images include tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevi). We have sensitivity about 90% and specificity about 85%. Further research is warranted to determine how this approach may be used to select the regions of interest automatically.
2006-01-01
Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be
Fractal characterization of wear-erosion surfaces
Rawers, J.; Tylczak, J.
1999-12-01
Wear erosion is a complex phenomenon resulting in highly distorted and deformed surface morphologies. Most wear surface features have been described only qualitatively. In this study wear surfaces features were quantified using fractal analysis. The ability to assign numerical values to wear-erosion surfaces makes possible mathematical expressions that will enable wear mechanisms to be predicted and understood. Surface characterization came from wear-erosion experiments that included varying the erosive materials, the impact velocity, and the impact angle. Seven fractal analytical techniques were applied to micrograph images of wear-erosion surfaces. Fourier analysis was the most promising. Fractal values obtained were consistent with visual observations and provided a unique wear-erosion parameter unrelated to wear rate. In this study stainless steel was evaluated as a function of wear erosion conditions.
The Use of Fractals for the Study of the Psychology of Perception:
NASA Astrophysics Data System (ADS)
Mitina, Olga V.; Abraham, Frederick David
The present article deals with perception of time (subjective assessment of temporal intervals), complexity and aesthetic attractiveness of visual objects. The experimental research for construction of functional relations between objective parameters of fractals' complexity (fractal dimension and Lyapunov exponent) and subjective perception of their complexity was conducted. As stimulus material we used the program based on Sprott's algorithms for the generation of fractals and the calculation of their mathematical characteristics. For the research 20 fractals were selected which had different fractal dimensions that varied from 0.52 to 2.36, and the Lyapunov exponent from 0.01 to 0.22. We conducted two experiments: (1) A total of 20 fractals were shown to 93 participants. The fractals were displayed on the screen of a computer for randomly chosen time intervals ranging from 5 to 20 s. For each fractal displayed, the participant responded with a rating of the complexity and attractiveness of the fractal using ten-point scale with an estimate of the duration of the presentation of the stimulus. Each participant also answered the questions of some personality tests (Cattell and others). The main purpose of this experiment was the analysis of the correlation between personal characteristics and subjective perception of complexity, attractiveness, and duration of fractal's presentation. (2) The same 20 fractals were shown to 47 participants as they were forming on the screen of the computer for a fixed interval. Participants also estimated subjective complexity and attractiveness of fractals. The hypothesis on the applicability of the Weber-Fechner law for the perception of time, complexity and subjective attractiveness was confirmed for measures of dynamical properties of fractal images.
Target Detection Using Fractal Geometry
NASA Technical Reports Server (NTRS)
Fuller, J. Joseph
1991-01-01
The concepts and theory of fractal geometry were applied to the problem of segmenting a 256 x 256 pixel image so that manmade objects could be extracted from natural backgrounds. The two most important measurements necessary to extract these manmade objects were fractal dimension and lacunarity. Provision was made to pass the manmade portion to a lookup table for subsequent identification. A computer program was written to construct cloud backgrounds of fractal dimensions which were allowed to vary between 2.2 and 2.8. Images of three model space targets were combined with these backgrounds to provide a data set for testing the validity of the approach. Once the data set was constructed, computer programs were written to extract estimates of the fractal dimension and lacunarity on 4 x 4 pixel subsets of the image. It was shown that for clouds of fractal dimension 2.7 or less, appropriate thresholding on fractal dimension and lacunarity yielded a 64 x 64 edge-detected image with all or most of the cloud background removed. These images were enhanced by an erosion and dilation to provide the final image passed to the lookup table. While the ultimate goal was to pass the final image to a neural network for identification, this work shows the applicability of fractal geometry to the problems of image segmentation, edge detection and separating a target of interest from a natural background.
Fractal metrology for biogeosystems analysis
NASA Astrophysics Data System (ADS)
Torres-Argüelles, V.; Oleschko, K.; Tarquis, A. M.; Korvin, G.; Gaona, C.; Parrot, J.-F.; Ventura-Ramos, E.
2010-06-01
The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes. In the present research, this pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate'' Clay) and compared in terms of roughness of the gray-intensity distribution (the measurand) quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them and to the measurement function which best fits to the experimental results. Some of the applied techniques are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of all these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM). We show the usefulness of FM through a case study of soil physical and chemical degradation applying the selected toolbox to describe and compare the main structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.
Fractal electronic devices: simulation and implementation.
Fairbanks, M S; McCarthy, D N; Scott, S A; Brown, S A; Taylor, R P
2011-09-01
Many natural structures have fractal geometries that exhibit useful functional properties. These properties, which exploit the recurrence of patterns at increasingly small scales, are often desirable in applications and, consequently, fractal geometry is increasingly employed in diverse technologies ranging from radio antennae to storm barriers. In this paper, we explore the application of fractal geometry to electrical devices. First, we lay the foundations for the implementation of fractal devices by considering diffusion-limited aggregation (DLA) of atomic clusters. Under appropriate growth conditions, atomic clusters of various elements form fractal patterns driven by DLA. We perform a fractal analysis of both simulated and physical devices to determine their spatial scaling properties and demonstrate their potential as fractal circuit elements. Finally, we simulate conduction through idealized and DLA fractal devices and show that their fractal scaling properties generate novel, nonlinear conduction properties in response to depletion by electrostatic gates. PMID:21841218
Fractal electronic devices: simulation and implementation
NASA Astrophysics Data System (ADS)
Fairbanks, M. S.; McCarthy, D. N.; Scott, S. A.; Brown, S. A.; Taylor, R. P.
2011-09-01
Many natural structures have fractal geometries that exhibit useful functional properties. These properties, which exploit the recurrence of patterns at increasingly small scales, are often desirable in applications and, consequently, fractal geometry is increasingly employed in diverse technologies ranging from radio antennae to storm barriers. In this paper, we explore the application of fractal geometry to electrical devices. First, we lay the foundations for the implementation of fractal devices by considering diffusion-limited aggregation (DLA) of atomic clusters. Under appropriate growth conditions, atomic clusters of various elements form fractal patterns driven by DLA. We perform a fractal analysis of both simulated and physical devices to determine their spatial scaling properties and demonstrate their potential as fractal circuit elements. Finally, we simulate conduction through idealized and DLA fractal devices and show that their fractal scaling properties generate novel, nonlinear conduction properties in response to depletion by electrostatic gates.
Texture Analysis In Cytology Using Fractals
NASA Astrophysics Data System (ADS)
Basu, Santanu; Barba, Joseph; Chan, K. S.
1990-01-01
We present some preliminary results of a study aimed to assess the actual effectiveness of fractal theory in the area of medical image analysis for texture description. The specific goal of this research is to utilize "fractal dimension" to discriminate between normal and cancerous human cells. In particular, we have considered four types of cells namely, breast, bronchial, ovarian and uterine. A method based on fractal Brownian motion theory is employed to compute the "fractal dimension" of cells. Experiments with real images reveal that the range of scales over which the cells exhibit fractal property can be used as the discriminatory feature to identify cancerous cells.
Functional magnetic resonance imaging.
Buchbinder, Bradley R
2016-01-01
Functional magnetic resonance imaging (fMRI) maps the spatiotemporal distribution of neural activity in the brain under varying cognitive conditions. Since its inception in 1991, blood oxygen level-dependent (BOLD) fMRI has rapidly become a vital methodology in basic and applied neuroscience research. In the clinical realm, it has become an established tool for presurgical functional brain mapping. This chapter has three principal aims. First, we review key physiologic, biophysical, and methodologic principles that underlie BOLD fMRI, regardless of its particular area of application. These principles inform a nuanced interpretation of the BOLD fMRI signal, along with its neurophysiologic significance and pitfalls. Second, we illustrate the clinical application of task-based fMRI to presurgical motor, language, and memory mapping in patients with lesions near eloquent brain areas. Integration of BOLD fMRI and diffusion tensor white-matter tractography provides a road map for presurgical planning and intraoperative navigation that helps to maximize the extent of lesion resection while minimizing the risk of postoperative neurologic deficits. Finally, we highlight several basic principles of resting-state fMRI and its emerging translational clinical applications. Resting-state fMRI represents an important paradigm shift, focusing attention on functional connectivity within intrinsic cognitive networks. PMID:27432660
Matsueda, Hiroaki; Lee, Ching Hua
2015-03-10
We examine singular value spectrum of a class of two-dimensional fractal images. We find that the spectra can be mapped onto entanglement spectra of free fermions in one dimension. This exact mapping tells us that the singular value decomposition is a way of detecting a holographic relation between classical and quantum systems.
Fractal Metrology for biogeosystems analysis
NASA Astrophysics Data System (ADS)
Torres-Argüelles, V.; Oleschko, K.; Tarquis, A. M.; Korvin, G.; Gaona, C.; Parrot, J.-F.; Ventura-Ramos, E.
2010-11-01
The solid-pore distribution pattern plays an important role in soil functioning being related with the main physical, chemical and biological multiscale and multitemporal processes of this complex system. In the present research, we studied the aggregation process as self-organizing and operating near a critical point. The structural pattern is extracted from the digital images of three soils (Chernozem, Solonetz and "Chocolate" Clay) and compared in terms of roughness of the gray-intensity distribution quantified by several measurement techniques. Special attention was paid to the uncertainty of each of them measured in terms of standard deviation. Some of the applied methods are known as classical in the fractal context (box-counting, rescaling-range and wavelets analyses, etc.) while the others have been recently developed by our Group. The combination of these techniques, coming from Fractal Geometry, Metrology, Informatics, Probability Theory and Statistics is termed in this paper Fractal Metrology (FM). We show the usefulness of FM for complex systems analysis through a case study of the soil's physical and chemical degradation applying the selected toolbox to describe and compare the structural attributes of three porous media with contrasting structure but similar clay mineralogy dominated by montmorillonites.
Fractal analysis for assessing tumour grade in microscopic images of breast tissue
NASA Astrophysics Data System (ADS)
Tambasco, Mauro; Costello, Meghan; Newcomb, Chris; Magliocco, Anthony M.
2007-03-01
In 2006, breast cancer is expected to continue as the leading form of cancer diagnosed in women, and the second leading cause of cancer mortality in this group. A method that has proven useful for guiding the choice of treatment strategy is the assessment of histological tumor grade. The grading is based upon the mitosis count, nuclear pleomorphism, and tubular formation, and is known to be subject to inter-observer variability. Since cancer grade is one of the most significant predictors of prognosis, errors in grading can affect patient management and outcome. Hence, there is a need to develop a breast cancer-grading tool that is minimally operator dependent to reduce variability associated with the current grading system, and thereby reduce uncertainty that may impact patient outcome. In this work, we explored the potential of a computer-based approach using fractal analysis as a quantitative measure of cancer grade for breast specimens. More specifically, we developed and optimized computational tools to compute the fractal dimension of low- versus high-grade breast sections and found them to be significantly different, 1.3+/-0.10 versus 1.49+/-0.10, respectively (Kolmogorov-Smirnov test, p<0.001). These results indicate that fractal dimension (a measure of morphologic complexity) may be a useful tool for demarcating low- versus high-grade cancer specimens, and has potential as an objective measure of breast cancer grade. Such prognostic value could provide more sensitive and specific information that would reduce inter-observer variability by aiding the pathologist in grading cancers.
NASA Technical Reports Server (NTRS)
Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.
1992-01-01
Results are presented of a preliminary investigation of the fractal nature of the plan-view shapes of lava flows in Hawaii (based on field measurements and aerial photographs), as well as in Idaho and the Galapagos Islands (using aerial photographs only). The shapes of the lava flow margins are found to be fractals: lava flow shape is scale-invariant. This observation suggests that nonlinear forces are operating in them because nonlinear systems frequently produce fractals. A'a and pahoehoe flows can be distinguished by their fractal dimensions (D). The majority of the a'a flows measured have D between 1.05 and 1.09, whereas the pahoehoe flows generally have higher D (1.14-1.23). The analysis is extended to other planetary bodies by measuring flows from orbital images of Venus, Mars, and the moon. All are fractal and have D consistent with the range of terrestrial a'a and have D consistent with the range of terrestrial a'a and pahoehoe values.
NASA Technical Reports Server (NTRS)
Lam, Nina Siu-Ngan; Qiu, Hong-Lie; Quattrochi, Dale A.; Emerson, Charles W.; Arnold, James E. (Technical Monitor)
2001-01-01
The rapid increase in digital data volumes from new and existing sensors necessitates the need for efficient analytical tools for extracting information. We developed an integrated software package called ICAMS (Image Characterization and Modeling System) to provide specialized spatial analytical functions for interpreting remote sensing data. This paper evaluates the three fractal dimension measurement methods: isarithm, variogram, and triangular prism, along with the spatial autocorrelation measurement methods Moran's I and Geary's C, that have been implemented in ICAMS. A modified triangular prism method was proposed and implemented. Results from analyzing 25 simulated surfaces having known fractal dimensions show that both the isarithm and triangular prism methods can accurately measure a range of fractal surfaces. The triangular prism method is most accurate at estimating the fractal dimension of higher spatial complexity, but it is sensitive to contrast stretching. The variogram method is a comparatively poor estimator for all of the surfaces, particularly those with higher fractal dimensions. Similar to the fractal techniques, the spatial autocorrelation techniques are found to be useful to measure complex images but not images with low dimensionality. These fractal measurement methods can be applied directly to unclassified images and could serve as a tool for change detection and data mining.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Sabyasachi; Das, Nandan K.; Pradhan, Asima; Ghosh, Nirmalya; Panigrahi, Prasanta K.
2014-05-01
DIC (Differential Interference Contrast Image) images of cervical pre-cancer tissues are taken from epithelium region, on which wavelet transform and multi-fractal analysis are applied. Discrete wavelet transform (DWT) through Daubechies basis are done for identifying fluctuations over polynomial trends for clear characterization and differentiation of tissues. A systematic investigation of denoised images is carried out through the continuous Morlet wavelet. The scalogram reveals the changes in coefficient peak values from grade-I to grade-III. Wavelet normalized energy plots are computed in order to show the difference of periodicity among different grades of cancerous tissues. Using the multi-fractal de-trended fluctuation analysis (MFDFA), it is observed that the values of Hurst exponent and width of singularity spectrum decrease as cancer progresses from grade-I to grade-III tissue.
Entanglement entropy on fractals
NASA Astrophysics Data System (ADS)
Faraji Astaneh, Amin
2016-03-01
We use the heat kernel method to calculate the entanglement entropy for a given entangling region on a fractal. The leading divergent term of the entropy is obtained as a function of the fractal dimension as well as the walk dimension. The power of the UV cutoff parameter is (generally) a fractional number, which, indeed, is a certain combination of these two indices. This exponent is known as the spectral dimension. We show that there is a novel log-periodic oscillatory behavior in the expression of entropy which has root in the complex dimension of the fractal. We finally indicate that the holographic calculation in a certain hyperscaling-violating bulk geometry yields the same leading term for the entanglement entropy, if one identifies the effective dimension of the hyperscaling-violating theory with the spectral dimension of the fractal. We provide additional support by comparing the behavior of the thermal entropy in terms of the temperature, computed for two geometries, the fractal geometry and the hyperscaling-violating background.
Fractal dynamics of earthquakes
Bak, P.; Chen, K.
1995-05-01
Many objects in nature, from mountain landscapes to electrical breakdown and turbulence, have a self-similar fractal spatial structure. It seems obvious that to understand the origin of self-similar structures, one must understand the nature of the dynamical processes that created them: temporal and spatial properties must necessarily be completely interwoven. This is particularly true for earthquakes, which have a variety of fractal aspects. The distribution of energy released during earthquakes is given by the Gutenberg-Richter power law. The distribution of epicenters appears to be fractal with dimension D {approx} 1--1.3. The number of after shocks decay as a function of time according to the Omori power law. There have been several attempts to explain the Gutenberg-Richter law by starting from a fractal distribution of faults or stresses. But this is a hen-and-egg approach: to explain the Gutenberg-Richter law, one assumes the existence of another power-law--the fractal distribution. The authors present results of a simple stick slip model of earthquakes, which evolves to a self-organized critical state. Emphasis is on demonstrating that empirical power laws for earthquakes indicate that the Earth`s crust is at the critical state, with no typical time, space, or energy scale. Of course the model is tremendously oversimplified; however in analogy with equilibrium phenomena they do not expect criticality to depend on details of the model (universality).
Brain imaging and brain function
Sokoloff, L.
1985-01-01
This book is a survey of the applications of imaging studies of regional cerebral blood flow and metabolism to the investigation of neurological and psychiatric disorders. Contributors review imaging techniques and strategies for measuring regional cerebral blood flow and metabolism, for mapping functional neural systems, and for imaging normal brain functions. They then examine the applications of brain imaging techniques to the study of such neurological and psychiatric disorders as: cerebral ischemia; convulsive disorders; cerebral tumors; Huntington's disease; Alzheimer's disease; depression and other mood disorders. A state-of-the-art report on magnetic resonance imaging of the brain and central nervous system rounds out the book's coverage.
Mesh generation/refinement using fractal concepts and iterated function systems
NASA Technical Reports Server (NTRS)
Bova, S. W.; Carey, G. F.
1992-01-01
A novel method of mesh generation is proposed which is based on the use of fractal concepts to derive contractive, affine transformations. The transformations are constructed in such a manner that the attractors of the resulting maps are a union of the points, lines and surfaces in the domain. In particular, the mesh nodes may be generated recursively as a sequence of points which are obtained by applying the transformations to a coarse background mesh constructed from the given boundary data. A Delaunay triangulation or similar edge connection approach can then be performed on the resulting set of nodes in order to generate the mesh. Local refinement of an existing mesh can also be performed using the procedure. The method is easily extended to three dimensions, in which case the Delaunay triangulation is replaced by an analogous 3D tesselation.
Waliszewski, Przemyslaw
2016-01-01
The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken’s embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed
Waliszewski, Przemyslaw
2016-01-01
The subjective evaluation of tumor aggressiveness is a cornerstone of the contemporary tumor pathology. A large intra- and interobserver variability is a known limiting factor of this approach. This fundamental weakness influences the statistical deterministic models of progression risk assessment. It is unlikely that the recent modification of tumor grading according to Gleason criteria for prostate carcinoma will cause a qualitative change and improve significantly the accuracy. The Gleason system does not allow the identification of low aggressive carcinomas by some precise criteria. The ontological dichotomy implies the application of an objective, quantitative approach for the evaluation of tumor aggressiveness as an alternative. That novel approach must be developed and validated in a manner that is independent of the results of any subjective evaluation. For example, computer-aided image analysis can provide information about geometry of the spatial distribution of cancer cell nuclei. A series of the interrelated complexity measures characterizes unequivocally the complex tumor images. Using those measures, carcinomas can be classified into the classes of equivalence and compared with each other. Furthermore, those measures define the quantitative criteria for the identification of low- and high-aggressive prostate carcinomas, the information that the subjective approach is not able to provide. The co-application of those complexity measures in cluster analysis leads to the conclusion that either the subjective or objective classification of tumor aggressiveness for prostate carcinomas should comprise maximal three grades (or classes). Finally, this set of the global fractal dimensions enables a look into dynamics of the underlying cellular system of interacting cells and the reconstruction of the temporal-spatial attractor based on the Taken's embedding theorem. Both computer-aided image analysis and the subsequent fractal synthesis could be performed
Lung cancer-a fractal viewpoint.
Lennon, Frances E; Cianci, Gianguido C; Cipriani, Nicole A; Hensing, Thomas A; Zhang, Hannah J; Chen, Chin-Tu; Murgu, Septimiu D; Vokes, Everett E; Vannier, Michael W; Salgia, Ravi
2015-11-01
Fractals are mathematical constructs that show self-similarity over a range of scales and non-integer (fractal) dimensions. Owing to these properties, fractal geometry can be used to efficiently estimate the geometrical complexity, and the irregularity of shapes and patterns observed in lung tumour growth (over space or time), whereas the use of traditional Euclidean geometry in such calculations is more challenging. The application of fractal analysis in biomedical imaging and time series has shown considerable promise for measuring processes as varied as heart and respiratory rates, neuronal cell characterization, and vascular development. Despite the advantages of fractal mathematics and numerous studies demonstrating its applicability to lung cancer research, many researchers and clinicians remain unaware of its potential. Therefore, this Review aims to introduce the fundamental basis of fractals and to illustrate how analysis of fractal dimension (FD) and associated measurements, such as lacunarity (texture) can be performed. We describe the fractal nature of the lung and explain why this organ is particularly suited to fractal analysis. Studies that have used fractal analyses to quantify changes in nuclear and chromatin FD in primary and metastatic tumour cells, and clinical imaging studies that correlated changes in the FD of tumours on CT and/or PET images with tumour growth and treatment responses are reviewed. Moreover, the potential use of these techniques in the diagnosis and therapeutic management of lung cancer are discussed. PMID:26169924
Lung cancer—a fractal viewpoint
Lennon, Frances E.; Cianci, Gianguido C.; Cipriani, Nicole A.; Hensing, Thomas A.; Zhang, Hannah J.; Chen, Chin-Tu; Murgu, Septimiu D.; Vokes, Everett E.; W. Vannier, Michael; Salgia, Ravi
2016-01-01
Fractals are mathematical constructs that show self-similarity over a range of scales and non-integer (fractal) dimensions. Owing to these properties, fractal geometry can be used to efficiently estimate the geometrical complexity, and the irregularity of shapes and patterns observed in lung tumour growth (over space or time), whereas the use of traditional Euclidean geometry in such calculations is more challenging. The application of fractal analysis in biomedical imaging and time series has shown considerable promise for measuring processes as varied as heart and respiratory rates, neuronal cell characterization, and vascular development. Despite the advantages of fractal mathematics and numerous studies demonstrating its applicability to lung cancer research, many researchers and clinicians remain unaware of its potential. Therefore, this Review aims to introduce the fundamental basis of fractals and to illustrate how analysis of fractal dimension (FD) and associated measurements, such as lacunarity (texture) can be performed. We describe the fractal nature of the lung and explain why this organ is particularly suited to fractal analysis. Studies that have used fractal analyses to quantify changes in nuclear and chromatin FD in primary and metastatic tumour cells, and clinical imaging studies that correlated changes in the FD of tumours on CT and/or PET images with tumour growth and treatment responses are reviewed. Moreover, the potential use of these techniques in the diagnosis and therapeutic management of lung cancer are discussed. PMID:26169924
Fractal Trigonometric Polynomials for Restricted Range Approximation
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.
2016-05-01
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
Investigation into How 8th Grade Students Define Fractals
ERIC Educational Resources Information Center
Karakus, Fatih
2015-01-01
The analysis of 8th grade students' concept definitions and concept images can provide information about their mental schema of fractals. There is limited research on students' understanding and definitions of fractals. Therefore, this study aimed to investigate the elementary students' definitions of fractals based on concept image and concept…
A Brief Historical Introduction to Fractals and Fractal Geometry
ERIC Educational Resources Information Center
Debnath, Lokenath
2006-01-01
This paper deals with a brief historical introduction to fractals, fractal dimension and fractal geometry. Many fractals including the Cantor fractal, the Koch fractal, the Minkowski fractal, the Mandelbrot and Given fractal are described to illustrate self-similar geometrical figures. This is followed by the discovery of dynamical systems and…
NASA Technical Reports Server (NTRS)
Huikuri, H. V.; Makikallio, T. H.; Peng, C. K.; Goldberger, A. L.; Hintze, U.; Moller, M.
2000-01-01
BACKGROUND: Preliminary data suggest that the analysis of R-R interval variability by fractal analysis methods may provide clinically useful information on patients with heart failure. The purpose of this study was to compare the prognostic power of new fractal and traditional measures of R-R interval variability as predictors of death after acute myocardial infarction. METHODS AND RESULTS: Time and frequency domain heart rate (HR) variability measures, along with short- and long-term correlation (fractal) properties of R-R intervals (exponents alpha(1) and alpha(2)) and power-law scaling of the power spectra (exponent beta), were assessed from 24-hour Holter recordings in 446 survivors of acute myocardial infarction with a depressed left ventricular function (ejection fraction fractal measures of R-R interval variability were significant univariate predictors of all-cause mortality. Reduced short-term scaling exponent alpha(1) was the most powerful R-R interval variability measure as a predictor of all-cause mortality (alpha(1) <0.75, relative risk 3.0, 95% confidence interval 2.5 to 4.2, P<0.001). It remained an independent predictor of death (P<0.001) after adjustment for other postinfarction risk markers, such as age, ejection fraction, NYHA class, and medication. Reduced alpha(1) predicted both arrhythmic death (P<0.001) and nonarrhythmic cardiac death (P<0.001). CONCLUSIONS: Analysis of the fractal characteristics of short-term R-R interval dynamics yields more powerful prognostic information than the traditional measures of HR variability among patients with depressed left ventricular function after an acute myocardial infarction.
Jiang, Hong; Zhong, Jianguang; DeBuc, Delia Cabrera; Tao, Aizhu; Xu, Zhe; Lam, Byron L.; Liu, Che; Wang, Jianhua
2014-01-01
Purpose To develop, test and validate functional slit lamp biomicroscopy (FSLB) for generating non-invasive bulbar conjunctival microvascular perfusion maps (nMPMs) and assessing morphometry and hemodyanmics. Methods FSLB was adapted from a traditional slit-lamp microscope by attaching a digital camera to image the bulbar conjunctiva to create nMPMs and measure venular blood flow hemodyanmics. High definition images with a large field of view were obtained on the temporal bulbar conjunctiva for creating nMPMs. A high imaging rate of 60 frame per second and a ~210× high magnification were achieved using the camera inherited high speed setting and movie crop function, for imaging hemodyanmics. Custom software was developed to segment bulbar conjunctival nMPMs for further fractal analysis and quantitatively measure blood vessel diameter, blood flow velocity and flow rate. Six human subjects were imaged before and after 6 hours of wearing contact lenses. Monofractal and multifractal analyses were performed to quantify fractality of the nMPMs. Results The mean bulbar conjunctival vessel diameter was 18.8 ± 2.7 μm at baseline and increased to 19.6 ± 2.4 μm after 6 hours of lens wear (P = 0.020). The blood flow velocity was increased from 0.60 ± 0.12 mm/s to 0.88 ± 0.21 mm/s (P = 0.001). The blood flow rate was also increased from 129.8 ± 59.9 pl/s to 207.2 ± 81.3 pl/s (P = 0.001). Bulbar conjunctival nMPMs showed the intricate details of the bulbar conjunctival microvascular network. At baseline, fractal dimension was 1.63 ± 0.05 and 1.71 ± 0.03 analyzed by monofractal and multifractal analysis, respectively. Significant increases in fractal dimensions were found after 6 hours of lens wear (P < 0.05). Conclusions Microvascular network’s fractality, morphometry and hemodyanmics of the human bulbar conjunctiva can be measured easily and reliably using FSLB. The alternations of the fractal dimensions, morphometry and hemodyanmics during contact lens wear may
NASA Astrophysics Data System (ADS)
Boichuk, T. M.; Bachinskiy, V. T.; Vanchuliak, O. Ya.; Minzer, O. P.; Garazdiuk, M.; Motrich, A. V.
2014-08-01
This research presents the results of investigation of laser polarization fluorescence of biological layers (histological sections of the myocardium). The polarized structure of autofluorescence imaging layers of biological tissues was detected and investigated. Proposed the model of describing the formation of polarization inhomogeneous of autofluorescence imaging biological optically anisotropic layers. On this basis, analytically and experimentally tested to justify the method of laser polarimetry autofluorescent. Analyzed the effectiveness of this method in the postmortem diagnosis of infarction. The objective criteria (statistical moments) of differentiation of autofluorescent images of histological sections myocardium were defined. The operational characteristics (sensitivity, specificity, accuracy) of these technique were determined.
NASA Astrophysics Data System (ADS)
Muto, Jun; Nakatani, Tsurugi; Nishikawa, Osamu; Nagahama, Hiroyuki
2015-05-01
The size distributions of particle in pulverized rocks from the San Andreas fault and the Arima-Takatsuki Tectonic Line were measured. The rocks are characterized by the development of opening mode fractures with an apparent lack of shear. Fragments in the rocks in both fault zones show a fractal size distribution down to the micron scale. Fractal dimensions, dependent on mineral type, decrease from 2.92 to 1.97 with increasing distance normal to the fault core. The fractal dimensions of the rocks are higher than those of both natural and experimentally created fault gouges measured in previous studies. Moreover, the dimensions are higher than the theoretically estimated upper fractal limit under confined comminution. Dimensions close to 3.0 have been reported in impact loading experiments. The observed characteristics indicate that pulverization is likely to have occurred by a dynamic stress pulse with instantaneous volumetric expansion, possibly during seismic rupture propagation similar to impact loading.
NASA Astrophysics Data System (ADS)
Wuorinen, Charles
2015-03-01
Any of the arts may produce exemplars that have fractal characteristics. There may be fractal painting, fractal poetry, and the like. But these will always be specific instances, not necessarily displaying intrinsic properties of the art-medium itself. Only music, I believe, of all the arts possesses an intrinsically fractal character, so that its very nature is fractally determined. Thus, it is reasonable to assert that any instance of music is fractal...
NASA Astrophysics Data System (ADS)
Muzy, J. F.; Bacry, E.; Arneodo, A.
1993-02-01
Several attempts have been made recently to generalize the multifractal formalism, originally introduced for singular measures, to fractal signals. We report on a systematic comparison between the structure-function approach, pioneered by Parisi and Frisch [in 2 Proceedings of the International School on Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi, and G. Parisi (North-Holland, Amsterdam, 1985), p. 84] to account for the multifractal nature of fully developed turbulent signals, and an alternative method we have developed within the framework of the wavelet-transform analysis. We comment on the intrinsic limitations of the structure-function approach; this technique has fundamental drawbacks and does not provide a full characterization of the singularities of a signal in many cases. We demonstrate that our method, based on the wavelet-transform modulus-maxima representation, works in most situations and is likely to be the ground of a unified multifractal description of self-affine distributions. Our theoretical considerations are both illustrated on pedagogical examples and supported by numerical simulations.
Fractal analysis: A new remote sensing tool for lava flows
NASA Technical Reports Server (NTRS)
Bruno, B. C.; Taylor, G. J.; Rowland, S. K.; Lucey, P. G.; Self, S.
1992-01-01
Many important quantitative parameters have been developed that relate to the rheology and eruption and emplacement mechanics of lavas. This research centers on developing additional, unique parameters, namely the fractal properties of lava flows, to add to this matrix of properties. There are several methods of calculating the fractal dimension of a lava flow margin. We use the 'structured walk' or 'divider' method. In this method, we measure the length of a given lava flow margin by walking rods of different lengths along the margin. Since smaller rod lengths transverse more smaller-scaled features in the flow margin, the apparent length of the flow outline will increase as the length of the measuring rod decreases. By plotting the apparent length of the flow outline as a function of the length of the measuring rod on a log-log plot, fractal behavior can be determined. A linear trend on a log-log plot indicates that the data are fractal. The fractal dimension can then be calculated from the slope of the linear least squares fit line to the data. We use this 'structured walk' method to calculate the fractal dimension of many lava flows using a wide range of rod lengths, from 1/8 to 16 meters, in field studies of the Hawaiian islands. We also use this method to calculate fractal dimensions from aerial photographs of lava flows, using lengths ranging from 20 meters to over 2 kilometers. Finally, we applied this method to orbital images of extraterrestrial lava flows on Venus, Mars, and the Moon, using rod lengths up to 60 kilometers.
Functional imaging in lung cancer
Harders, S W; Balyasnikowa, S; Fischer, B M
2014-01-01
Lung cancer represents an increasingly frequent cancer diagnosis worldwide. An increasing awareness on smoking cessation as an important mean to reduce lung cancer incidence and mortality, an increasing number of therapy options and a steady focus on early diagnosis and adequate staging have resulted in a modestly improved survival. For early diagnosis and precise staging, imaging, especially positron emission tomography combined with CT (PET/CT), plays an important role. Other functional imaging modalities such as dynamic contrast-enhanced CT (DCE-CT) and diffusion-weighted MR imaging (DW-MRI) have demonstrated promising results within this field. The purpose of this review is to provide the reader with a brief and balanced introduction to these three functional imaging modalities and their current or potential application in the care of patients with lung cancer. PMID:24289258
Fractal signatures in the aperiodic Fibonacci grating.
Verma, Rupesh; Banerjee, Varsha; Senthilkumaran, Paramasivam
2014-05-01
The Fibonacci grating (FbG) is an archetypal example of aperiodicity and self-similarity. While aperiodicity distinguishes it from a fractal, self-similarity identifies it with a fractal. Our paper investigates the outcome of these complementary features on the FbG diffraction profile (FbGDP). We find that the FbGDP has unique characteristics (e.g., no reduction in intensity with increasing generations), in addition to fractal signatures (e.g., a non-integer fractal dimension). These make the Fibonacci architecture potentially useful in image forming devices and other emerging technologies. PMID:24784044
NASA Technical Reports Server (NTRS)
Makikallio, T. H.; Hoiber, S.; Kober, L.; Torp-Pedersen, C.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.
1999-01-01
A number of new methods have been recently developed to quantify complex heart rate (HR) dynamics based on nonlinear and fractal analysis, but their value in risk stratification has not been evaluated. This study was designed to determine whether selected new dynamic analysis methods of HR variability predict mortality in patients with depressed left ventricular (LV) function after acute myocardial infarction (AMI). Traditional time- and frequency-domain HR variability indexes along with short-term fractal-like correlation properties of RR intervals (exponent alpha) and power-law scaling (exponent beta) were studied in 159 patients with depressed LV function (ejection fraction <35%) after an AMI. By the end of 4-year follow-up, 72 patients (45%) had died and 87 (55%) were still alive. Short-term scaling exponent alpha (1.07 +/- 0.26 vs 0.90 +/- 0.26, p <0.001) and power-law slope beta (-1.35 +/- 0.23 vs -1.44 +/- 0.25, p <0.05) differed between survivors and those who died, but none of the traditional HR variability measures differed between these groups. Among all analyzed variables, reduced scaling exponent alpha (<0.85) was the best univariable predictor of mortality (relative risk 3.17, 95% confidence interval 1.96 to 5.15, p <0.0001), with positive and negative predictive accuracies of 65% and 86%, respectively. In the multivariable Cox proportional hazards analysis, mortality was independently predicted by the reduced exponent alpha (p <0.001) after adjustment for several clinical variables and LV function. A short-term fractal-like scaling exponent was the most powerful HR variability index in predicting mortality in patients with depressed LV function. Reduction in fractal correlation properties implies more random short-term HR dynamics in patients with increased risk of death after AMI.
Fractal analysis of Mesoamerican pyramids.
Burkle-Elizondo, Gerardo; Valdez-Cepeda, Ricardo David
2006-01-01
A myth of ancient cultural roots was integrated into Mesoamerican cult, and the reference to architecture denoted a depth religious symbolism. The pyramids form a functional part of this cosmovision that is centered on sacralization. The space architecture works was an expression of the ideological necessities into their conception of harmony. The symbolism of the temple structures seems to reflect the mathematical order of the Universe. We contemplate two models of fractal analysis. The first one includes 16 pyramids. We studied a data set that was treated as a fractal profile to estimate the Df through variography (Dv). The estimated Fractal Dimension Dv = 1.383 +/- 0.211. In the second one we studied a data set to estimate the Dv of 19 pyramids and the estimated Fractal Dimension Dv = 1.229 +/- 0.165. PMID:16393505
Functional imaging for regenerative medicine.
Leahy, Martin; Thompson, Kerry; Zafar, Haroon; Alexandrov, Sergey; Foley, Mark; O'Flatharta, Cathal; Dockery, Peter
2016-01-01
In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of
Microbialites on Mars: a fractal analysis of the Athena's microscopic images
NASA Astrophysics Data System (ADS)
Bianciardi, G.; Rizzo, V.; Cantasano, N.
2015-10-01
The Mars Exploration Rovers investigated Martian plains where laminated sedimentary rocks are present. The Athena morphological investigation [1] showed microstructures organized in intertwined filaments of microspherules: a texture we have also found on samples of terrestrial (biogenic) stromatolites and other microbialites and not on pseudo-abiogenicstromatolites. We performed a quantitative image analysis in order to compare 50 microbialites images with 50 rovers (Opportunity and Spirit) ones (approximately 30,000/30,000 microstructures). Contours were extracted and morphometric indexes obtained: geometric and algorithmic complexities, entropy, tortuosity, minimum and maximum diameters. Terrestrial and Martian textures resulted multifractals. Mean values and confidence intervals from the Martian images overlapped perfectly with those from terrestrial samples. The probability of this occurring by chance was less than 1/28, p<0.004. Our work show the evidence of a widespread presence of microbialites in the Martian outcroppings: i.e., the presence of unicellular life on the ancient Mars, when without any doubt, liquid water flowed on the Red Planet.
Fractal Characterization of Hyperspectral Imagery
NASA Technical Reports Server (NTRS)
Qiu, Hon-Iie; Lam, Nina Siu-Ngan; Quattrochi, Dale A.; Gamon, John A.
1999-01-01
Two Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral images selected from the Los Angeles area, one representing urban and the other, rural, were used to examine their spatial complexity across their entire spectrum of the remote sensing data. Using the ICAMS (Image Characterization And Modeling System) software, we computed the fractal dimension values via the isarithm and triangular prism methods for all 224 bands in the two AVIRIS scenes. The resultant fractal dimensions reflect changes in image complexity across the spectral range of the hyperspectral images. Both the isarithm and triangular prism methods detect unusually high D values on the spectral bands that fall within the atmospheric absorption and scattering zones where signature to noise ratios are low. Fractal dimensions for the urban area resulted in higher values than for the rural landscape, and the differences between the resulting D values are more distinct in the visible bands. The triangular prism method is sensitive to a few random speckles in the images, leading to a lower dimensionality. On the contrary, the isarithm method will ignore the speckles and focus on the major variation dominating the surface, thus resulting in a higher dimension. It is seen where the fractal curves plotted for the entire bandwidth range of the hyperspectral images could be used to distinguish landscape types as well as for screening noisy bands.
Print protection using high-frequency fractal noise
NASA Astrophysics Data System (ADS)
Mahmoud, Khaled W.; Blackledge, Jonathon M.; Datta, Sekharjit; Flint, James A.
2004-06-01
All digital images are band-limited to a degree that is determined by a spatial extent of the point spread function; the bandwidth of the image being determined by the optical transfer function. In the printing industry, the limit is determined by the resolution of the printed material. By band limiting the digital image in such away that the printed document maintains its fidelity, it is possible to use the out-of-band frequency space to introduce low amplitude coded data that remains hidden in the image. In this way, a covert signature can be embedded into an image to provide a digital watermark, which is sensitive to reproduction. In this paper a high frequency fractal noise is used as a low amplitude signal. A statistically robust solution to the authentication of printed material using high-fractal noise is proposed here which is based on cross-entropy metrics to provide a statistical confidence test. The fractal watermark is based on application of self-affine fields, which is suitable for documents containing high degree of texture. In principle, this new approach will allow batch tracking to be performed using coded data that has been embedded into the high frequency components of the image whose statistical characteristics are dependent on the printer/scanner technology. The details of this method as well as experimental results are presented.
Multiscale differential fractal feature with application to target detection
NASA Astrophysics Data System (ADS)
Shi, Zelin; Wei, Ying; Huang, Shabai
2004-07-01
A multiscale differential fractal feature of an image is proposed and a small target detection method from complex nature clutter is presented. Considering the speciality that the fractal features of man-made objects change much more violently than that of nature's when the scale is varied, fractal features at multiple scales used for distinguishing man-made target from nature clutter should have more advantages over standard fractal dimensions. Multiscale differential fractal dimensions are deduced from typical fractal model and standard covering-blanket method is improved and used to estimate multiscale fractal dimensions. A multiscale differential fractal feature is defined as the variation of fractal dimensions between two scales at a rational scale range. It can stand out the fractal feature of man-made object from natural clutters much better than the fractal dimension by standard covering-blanket method. Meanwhile, the calculation and the storage amount are reduced greatly, they are 4/M and 2/M that of the standard covering-blanket method respectively (M is scale). In the image of multiscale differential fractal feature, local gray histogram statistical method is used for target detection. Experiment results indicate that this method is suitable for both kinds background of land and sea. It also can be appropriate in both kinds of infrared and TV images, and can detect small targets from a single frame correctly. This method is with high speed and is easy to be implemented.
Dynamic imaging of brain function
Hyder, Fahmeed
2013-01-01
In recent years, there have been unprecedented methodological advances in the dynamic imaging of brain activities. Electrophysiological, optical, and magnetic resonance methods now allow mapping of functional activation (or deactivation) by measurement of neuronal activity (e.g., membrane potential, ion flux, neurotransmitter flux), energy metabolism (e.g., glucose consumption, oxygen consumption, creatine kinase flux), and functional hyperemia (e.g., blood oxygenation, blood flow, blood volume). Properties of the glutamatergic synapse are used as a model to reveal activities at the nerve terminal and their associated changes in energy demand and blood flow. This approach reveals that each method measures different tissue- and/or cell-specific components with specified spatiotemporal resolution. While advantages and disadvantages of different methods are apparent and often used to supersede one another in terms of specificity and/or sensitivity, no particular technique is the optimal dynamic brain imaging method because each method is unique in some respect. Because the demand for energy substrates is a fundamental requirement for function, energy-based methods may allow quantitative dynamic imaging in vivo. However there are exclusive neurobiological insights gained by combining some of these different dynamic imaging techniques. PMID:18839085
Magnetohydrodynamics of fractal media
Tarasov, Vasily E.
2006-05-15
The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over the fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal media are derived from the fractional generalization of integral Maxwell equations and integral hydrodynamics (balance) equations. Possible equilibrium states for these equations are considered.
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485
Fractal Structure in Human Cerebellum Measured by MRI
NASA Astrophysics Data System (ADS)
Zhang, Luduan; Yue, Guang; Brown, Robert; Liu, Jingzhi
2003-10-01
Fractal dimension has been used to quantify the structures of a wide range of objects in biology and medicine. We measured fractal dimension of human cerebellum (CB) in magnetic resonance images of 24 healthy young subjects (12 men, 12 women). CB images were resampled to a series of image sets with different three-dimensional resolutions. At each resolution, the skeleton of the CB white matter was obtained and the number of pixels belonging to the skeleton was determined. Fractal dimension of the CB skeleton was calculated using the box-counting method. The results indicated that the CB skeleton is a highly fractal structure, with a fractal dimension of 2.57+/-0.01. No significant difference in the CB fractal dimension was observed between men and women. Fractal dimension may serve as a quantitative index for structural complexity of the CB at its developmental, degenerative, or evolutionary stages.
Mossotti, Victor G.; Eldeeb, A. Raouf; Oscarson, Robert
1998-01-01
MORPH-I is a set of C-language computer programs for the IBM PC and compatible minicomputers. The programs in MORPH-I are used for the fractal analysis of scanning electron microscope and electron microprobe images of pore profiles exposed in cross-section. The program isolates and traces the cross-sectional profiles of exposed pores and computes the Richardson fractal dimension for each pore. Other programs in the set provide for image calibration, display, and statistical analysis of the computed dimensions for highly complex porous materials. Requirements: IBM PC or compatible; minimum 640 K RAM; mathcoprocessor; SVGA graphics board providing mode 103 display.
Diffraction from fractal grating Cantor sets
NASA Astrophysics Data System (ADS)
Golmankhaneh, Alireza K.; Baleanu, D.
2016-08-01
In this paper, we have generalized the Fα-calculus by suggesting Fourier and Laplace transformations of the function with support of the fractals set which are the subset of the real line. Using this generalization, we have found the diffraction fringes from the fractal grating Cantor sets.
a New Construction of the Fractal Interpolation Surface
NASA Astrophysics Data System (ADS)
Ri, Songil
2015-10-01
In this paper, we introduce a new construction of the fractal interpolation surface (FIS) using an even more general iterated function systems (IFS) which can generate self-affine and non self-affine fractal surfaces. Here we present the general types of fractal surfaces that are based on nonlinear IFSs.
Estimation of Surface Soil Moisture Using Fractal
NASA Astrophysics Data System (ADS)
Chen, Yen Chang; He, Chun Hsuan
2016-04-01
This study establishes the relationship between surface soil moisture and fractal dimension. The surface soil moisture is one of important factors in the hydrological cycle of surface evaporation. It could be used in many fields, such as reservoir management, early drought warning systems, irrigation scheduling and management, and crop yield estimations. Soil surface cracks due to dryness can be used to describe drought conditions. Soil cracking phenomenon and moisture have a certain relationship, thus this study makes used the fractal theory to interpret the soil moisture represented by soil cracks. The fractal dimension of surface soil cracking is a measure of the surface soil moisture. Therefore fractal dimensions can also be used to indicate how dry of the surface soil is. This study used the sediment in the Shimen Reservoir to establish the fractal dimension and soil moisture relation. The soil cracking is created under the control of temperature and thickness of surface soil layers. The results show the increase in fractal dimensions is accompanied by a decreases in surface soil moisture. However the fractal dimensions will approach a constant even the soil moisture continually decreases. The sigmoid function is used to fit the relation of fractal dimensions and surface soil moistures. The proposed method can be successfully applied to estimate surface soil moisture. Only a photo taken from the field is needed and is sufficient to provide the fractal dimension. Consequently, the surface soil moisture can be estimated quickly and accurately.
Fractals in art and nature: why do we like them?
NASA Astrophysics Data System (ADS)
Spehar, Branka; Taylor, Richard P.
2013-03-01
Fractals have experienced considerable success in quantifying the visual complexity exhibited by many natural patterns, and continue to capture the imagination of scientists and artists alike. Fractal patterns have also been noted for their aesthetic appeal, a suggestion further reinforced by the discovery that the poured patterns of the American abstract painter Jackson Pollock are also fractal, together with the findings that many forms of art resemble natural scenes in showing scale-invariant, fractal-like properties. While some have suggested that fractal-like patterns are inherently pleasing because they resemble natural patterns and scenes, the relation between the visual characteristics of fractals and their aesthetic appeal remains unclear. Motivated by our previous findings that humans display a consistent preference for a certain range of fractal dimension across fractal images of various types we turn to scale-specific processing of visual information to understand this relationship. Whereas our previous preference studies focused on fractal images consisting of black shapes on white backgrounds, here we extend our investigations to include grayscale images in which the intensity variations exhibit scale invariance. This scale-invariance is generated using a 1/f frequency distribution and can be tuned by varying the slope of the rotationally averaged Fourier amplitude spectrum. Thresholding the intensity of these images generates black and white fractals with equivalent scaling properties to the original grayscale images, allowing a direct comparison of preferences for grayscale and black and white fractals. We found no significant differences in preferences between the two groups of fractals. For both set of images, the visual preference peaked for images with the amplitude spectrum slopes from 1.25 to 1.5, thus confirming and extending the previously observed relationship between fractal characteristics of images and visual preference.
Surface topography characterization of automotive cylinder liner surfaces using fractal methods
NASA Astrophysics Data System (ADS)
Lawrence K, Deepak; Ramamoorthy, B.
2013-09-01
This paper explores the use of fractal approaches for the possible characterization of automotive cylinder bore surface topography by employing methods such as differential box counting method, power spectral method and structure function method. Three stage plateau honing experiments were conducted to manufacture sixteen cylinder liner surfaces with different surface topographies, for the study. The three fractal methods are applied on the image data obtained using a computer vision system and 3-D profile data obtained using vertical scanning white light interferometer from the cylinder liner surfaces. The computed fractal parameters (fractal dimension and topothesy) are compared and correlated with the measured 3-D Abbott-Firestone curve parameters (Sk, Spk, Svk, Sr1 and Sr2) that are currently used for the surface topography characterization cylinder liner surfaces. The analyses of the results indicated that the fractal dimension (D) computed using the vision data as well as 3-D profile data by employing three different fractal methods consistantly showed a negative correlation with the functional surface topographical parameters that represents roughness at peak (Spk),core (Sk) and valley (Svk) regions and positive correlation with the upper bearing area (Sr1) and lower bearing area (Sr2) of the automotive of cylinder bore surface.
Fractal kinetics in drug release from finite fractal matrices
NASA Astrophysics Data System (ADS)
Kosmidis, Kosmas; Argyrakis, Panos; Macheras, Panos
2003-09-01
We have re-examined the random release of particles from fractal polymer matrices using Monte Carlo simulations, a problem originally studied by Bunde et al. [J. Chem. Phys. 83, 5909 (1985)]. A certain population of particles diffuses on a fractal structure, and as particles reach the boundaries of the structure they are removed from the system. We find that the number of particles that escape from the matrix as a function of time can be approximated by a Weibull (stretched exponential) function, similar to the case of release from Euclidean matrices. The earlier result that fractal release rates are described by power laws is correct only at the initial stage of the release, but it has to be modified if one is to describe in one picture the entire process for a finite system. These results pertain to the release of drugs, chemicals, agrochemicals, etc., from delivery systems.
Quantitating the subtleties of microglial morphology with fractal analysis
Karperien, Audrey; Ahammer, Helmut; Jelinek, Herbert F.
2013-01-01
It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between “ramified resting” and “activated amoeboid” has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology. PMID:23386810
Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI
NASA Astrophysics Data System (ADS)
Katsaloulis, P.; Ghosh, A.; Philippe, A. C.; Provata, A.; Deriche, R.
2012-05-01
In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.
NASA Astrophysics Data System (ADS)
Chacón-Cardona, C. A.; Casas-Miranda, R. A.
2014-10-01
Recent works about large structure in the universe put in doubt the homogeneity transition almost universally accepted, (Joyce et al.2005), (Gaite 2007), (Chacón-Cardona & Casas-Miranda 2012). In the present work we develop theoretically the density contrast for the spherical collapse of an over-density of dark matter which evolve in a inhomogeneous universe inside a fractal cosmology presented by (Bondi 1947).
Chaos, Fractals, and Polynomials.
ERIC Educational Resources Information Center
Tylee, J. Louis; Tylee, Thomas B.
1996-01-01
Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)
Multiresolution processing for fractal analysis of airborne remotely sensed data
NASA Technical Reports Server (NTRS)
Jaggi, S.; Quattrochi, D.; Lam, N.
1992-01-01
Images acquired by NASA's Calibrated Airborne Multispectral Scanner are used to compute the fractal dimension as a function of spatial resolution. Three methods are used to determine the fractal dimension: Shelberg's (1982, 1983) line-divider method, the variogram method, and the triangular prism method. A description of these methods and the result of applying these methods to a remotely-sensed image is also presented. The scanner data was acquired over western Puerto Rico in January, 1990 over land and water. The aim is to study impacts of man-induced changes on land that affect sedimentation into the near-shore environment. The data were obtained over the same area at three different pixel sizes: 10 m, 20 m, and 30 m.
Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri
2015-01-01
Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and
Shirazinodeh, Alireza; Noubari, Hossein Ahmadi; Rabbani, Hossein; Dehnavi, Alireza Mehri
2015-01-01
Recent studies on wavelet transform and fractal modeling applied on mammograms for the detection of cancerous tissues indicate that microcalcifications and masses can be utilized for the study of the morphology and diagnosis of cancerous cases. It is shown that the use of fractal modeling, as applied to a given image, can clearly discern cancerous zones from noncancerous areas. In this paper, for fractal modeling, the original image is first segmented into appropriate fractal boxes followed by identifying the fractal dimension of each windowed section using a computationally efficient two-dimensional box-counting algorithm. Furthermore, using appropriate wavelet sub-bands and image Reconstruction based on modified wavelet coefficients, it is shown that it is possible to arrive at enhanced features for detection of cancerous zones. In this paper, we have attempted to benefit from the advantages of both fractals and wavelets by introducing a new algorithm. By using a new algorithm named F1W2, the original image is first segmented into appropriate fractal boxes, and the fractal dimension of each windowed section is extracted. Following from that, by applying a maximum level threshold on fractal dimensions matrix, the best-segmented boxes are selected. In the next step, the segmented Cancerous zones which are candidates are then decomposed by utilizing standard orthogonal wavelet transform and db2 wavelet in three different resolution levels, and after nullifying wavelet coefficients of the image at the first scale and low frequency band of the third scale, the modified reconstructed image is successfully utilized for detection of breast cancer regions by applying an appropriate threshold. For detection of cancerous zones, our simulations indicate the accuracy of 90.9% for masses and 88.99% for microcalcifications detection results using the F1W2 method. For classification of detected mictocalcification into benign and malignant cases, eight features are identified and
Routes to fractality and entropy in Liesegang systems.
Kalash, Leen; Sultan, Rabih
2014-06-01
Liesegang bands are formed when solutions of co-precipitate ions interdiffuse in a 1D gel matrix. In a recent study [R. F. Sultan, Acta. Mech. Sin. 27, 119 (2011)], Liesegang patterns have been characterized as fractal structures. In addition to experimentally obtained patterns, geometric Liesegang patterns were constructed in conformity with the well-known empirical laws. Both mathematical fractal dimensions and box count dimensions for images of PbF2 and PbI2 Liesegang patterns have been calculated. Liesegang patterns can also be described by the entropy state function, and categorized as more or less ordered structures. We revisit the relation between entropy and fractal dimension, and apply it to simulated geometrical Liesegang patterns. We have resort to three different routes for the estimation of the entropy of a Liesegang pattern. The HarFA software enabled the calculation of the Hausdorff dimension and the topological entropy, then the information dimension and the Shannon entropy. In a third pathway, analytical calculations were carried out by estimating the probability of occurrence of a fractal element or coverage. The product of Shannon entropy and Boltzmann constant yields the thermodynamic entropy. The values for PbF2 and PbI2 Liesegang patterns attained the order of magnitude of the reported Third Law entropies, but yet remained lower, in conformity with the more ordered Liesegang structures. PMID:24985435
Routes to fractality and entropy in Liesegang systems
Kalash, Leen; Sultan, Rabih
2014-06-01
Liesegang bands are formed when solutions of co-precipitate ions interdiffuse in a 1D gel matrix. In a recent study [R. F. Sultan, Acta. Mech. Sin. 27, 119 (2011)], Liesegang patterns have been characterized as fractal structures. In addition to experimentally obtained patterns, geometric Liesegang patterns were constructed in conformity with the well-known empirical laws. Both mathematical fractal dimensions and box count dimensions for images of PbF{sub 2} and PbI{sub 2} Liesegang patterns have been calculated. Liesegang patterns can also be described by the entropy state function, and categorized as more or less ordered structures. We revisit the relation between entropy and fractal dimension, and apply it to simulated geometrical Liesegang patterns. We have resort to three different routes for the estimation of the entropy of a Liesegang pattern. The HarFA software enabled the calculation of the Hausdorff dimension and the topological entropy, then the information dimension and the Shannon entropy. In a third pathway, analytical calculations were carried out by estimating the probability of occurrence of a fractal element or coverage. The product of Shannon entropy and Boltzmann constant yields the thermodynamic entropy. The values for PbF{sub 2} and PbI{sub 2} Liesegang patterns attained the order of magnitude of the reported Third Law entropies, but yet remained lower, in conformity with the more ordered Liesegang structures.
Routes to fractality and entropy in Liesegang systems
NASA Astrophysics Data System (ADS)
Kalash, Leen; Sultan, Rabih
2014-06-01
Liesegang bands are formed when solutions of co-precipitate ions interdiffuse in a 1D gel matrix. In a recent study [R. F. Sultan, Acta. Mech. Sin. 27, 119 (2011)], Liesegang patterns have been characterized as fractal structures. In addition to experimentally obtained patterns, geometric Liesegang patterns were constructed in conformity with the well-known empirical laws. Both mathematical fractal dimensions and box count dimensions for images of PbF2 and PbI2 Liesegang patterns have been calculated. Liesegang patterns can also be described by the entropy state function, and categorized as more or less ordered structures. We revisit the relation between entropy and fractal dimension, and apply it to simulated geometrical Liesegang patterns. We have resort to three different routes for the estimation of the entropy of a Liesegang pattern. The HarFA software enabled the calculation of the Hausdorff dimension and the topological entropy, then the information dimension and the Shannon entropy. In a third pathway, analytical calculations were carried out by estimating the probability of occurrence of a fractal element or coverage. The product of Shannon entropy and Boltzmann constant yields the thermodynamic entropy. The values for PbF2 and PbI2 Liesegang patterns attained the order of magnitude of the reported Third Law entropies, but yet remained lower, in conformity with the more ordered Liesegang structures.
Is a chaotic multi-fractal approach for rainfall possible?
NASA Astrophysics Data System (ADS)
Sivakumar, Bellie
2001-04-01
Applications of the ideas gained from fractal theory to characterize rainfall have been one of the most exciting areas of research in recent times. The studies conducted thus far have nearly unanimously yielded positive evidence regarding the existence of fractal behaviour in rainfall. The studies also revealed the insufficiency of the mono-fractal approaches to characterizing the rainfall process in time and space and, hence, the necessity for multi-fractal approaches. The assumption behind multi-fractal approaches for rainfall is that the variability of the rainfall process could be directly modelled as a stochastic (or random) turbulent cascade process, since such stochastic cascade processes were found to generically yield multi-fractals. However, it has been observed recently that multi-fractal approaches might provide positive evidence of a multi-fractal nature not only in stochastic processes but also in, for example, chaotic processes. The purpose of the present study is to investigate the presence of both chaotic and fractal behaviours in the rainfall process to consider the possibility of using a chaotic multi-fractal approach for rainfall characterization. For this purpose, daily rainfall data observed at the Leaf River basin in Mississippi are studied, and only temporal analysis is carried out. The autocorrelation function, the power spectrum, the empirical probability distribution function, and the statistical moment scaling function are used as indicators to investigate the presence of fractal, whereas the presence of chaos is investigated by employing the correlation dimension method. The results from the fractal identification methods indicate that the rainfall data exhibit multi-fractal behaviour. The correlation dimension method yields a low dimension, suggesting the presence of chaotic behaviour. The existence of both multi-fractal and chaotic behaviours in the rainfall data suggests the possibility of a chaotic multi-fractal approach for
ERIC Educational Resources Information Center
Fraboni, Michael; Moller, Trisha
2008-01-01
Fractal geometry offers teachers great flexibility: It can be adapted to the level of the audience or to time constraints. Although easily explained, fractal geometry leads to rich and interesting mathematical complexities. In this article, the authors describe fractal geometry, explain the process of iteration, and provide a sample exercise.…
Fractal-based wideband invisibility cloak
NASA Astrophysics Data System (ADS)
Cohen, Nathan; Okoro, Obinna; Earle, Dan; Salkind, Phil; Unger, Barry; Yen, Sean; McHugh, Daniel; Polterzycki, Stefan; Shelman-Cohen, A. J.
2015-03-01
A wideband invisibility cloak (IC) at microwave frequencies is described. Using fractal resonators in closely spaced (sub wavelength) arrays as a minimal number of cylindrical layers (rings), the IC demonstrates that it is physically possible to attain a `see through' cloaking device with: (a) wideband coverage; (b) simple and attainable fabrication; (c) high fidelity emulation of the free path; (d) minimal side scattering; (d) a near absence of shadowing in the scattering. Although not a practical device, this fractal-enabled technology demonstrator opens up new opportunities for diverted-image (DI) technology and use of fractals in wideband optical, infrared, and microwave applications.
ERIC Educational Resources Information Center
Marks-Tarlow, Terry
2010-01-01
In this article, the author draws on contemporary science to illuminate the relationship between early play experiences, processes of self-development, and the later emergence of the fractal self. She argues that orientation within social space is a primary function of early play and developmentally a two-step process. With other people and with…
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
Multiplexing of encrypted data using fractal masks.
Barrera, John F; Tebaldi, Myrian; Amaya, Dafne; Furlan, Walter D; Monsoriu, Juan A; Bolognini, Néstor; Torroba, Roberto
2012-07-15
In this Letter, we present to the best of our knowledge a new all-optical technique for multiple-image encryption and multiplexing, based on fractal encrypting masks. The optical architecture is a joint transform correlator. The multiplexed encrypted data are stored in a photorefractive crystal. The fractal parameters of the key can be easily tuned to lead to a multiplexing operation without cross talk effects. Experimental results that support the potential of the method are presented. PMID:22825170
A comparison of the fractal and JPEG algorithms
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Shahshahani, M.
1991-01-01
A proprietary fractal image compression algorithm and the Joint Photographic Experts Group (JPEG) industry standard algorithm for image compression are compared. In every case, the JPEG algorithm was superior to the fractal method at a given compression ratio according to a root mean square criterion and a peak signal to noise criterion.
Foucher, F.; Mounaim-Rousselle, C.
2005-11-01
The burning rate in the vicinity of a piston is estimated from a fractal analysis. The fractal parameters are determined from laser sheet tomography flame images for methane-air mixtures with three equivalence ratios (1, 0.9, 0.8) in a transparent spark-ignition engine. Two imaging configurations were used: five horizontal planes placed at different distances from the piston (0, 1, 2, 3, and 5 mm) and a vertical one passed through the center of the combustion chamber. The methodology proposed by Foucher et al. [F. Foucher, S. Burnel, C. Mounaim-Rousselle, Proc. Combust. Inst. 29 (2002) 751-757] allows the effect of cyclic variations to be avoided. The fractal formulation is modified to take into account the flame-piston distance and flame quenching. Far from the piston, evolution of the fractal dimension versus q{sup '}/S{sub L}{sup 0} is found to be in good agreement with literature results. Near the piston, the fractal dimension evolves significantly when the distance is about twice the integral length scale and tends toward 2, the fractal dimension of a laminar flame front. The quenching ratio parameter Q{sub R} is introduced to consider the quenching of the flame by the piston. Finally, the burning rate is determined as a function of the distance between the wall and the mean flame contour and compared to a flame density approach, and similar results are found.
Novel optical password security technique based on optical fractal synthesizer
NASA Astrophysics Data System (ADS)
Wu, Kenan; Hu, Jiasheng; Wu, Xu
2009-06-01
A novel optical security technique for safeguarding user passwords based on an optical fractal synthesizer is proposed. A validating experiment has been carried out. In the proposed technique, a user password is protected by being converted to a fractal image. When a user sets up a new password, the password is transformed into a fractal pattern, and the fractal pattern is stored in authority. If the user is online-validated, his or her password is converted to a fractal pattern again to compare with the previous stored fractal pattern. The converting process is called the fractal encoding procedure, which consists of two steps. First, the password is nonlinearly transformed to get the parameters for the optical fractal synthesizer. Then the optical fractal synthesizer is operated to generate the output fractal image. The experimental result proves the validity of our method. The proposed technique bridges the gap between digital security systems and optical security systems and has many advantages, such as high security level, convenience, flexibility, hyper extensibility, etc. This provides an interesting optical security technique for the protection of digital passwords.
Hexagonal and Pentagonal Fractal Multiband Antennas
NASA Technical Reports Server (NTRS)
Tang, Philip W.; Wahid, Parveen
2005-01-01
Multiband dipole antennas based on hexagonal and pentagonal fractals have been analyzed by computational simulations and functionally demonstrated in experiments on prototypes. These antennas are capable of multiband or wide-band operation because they are subdivided into progressively smaller substructures that resonate at progressively higher frequencies by virtue of their smaller dimensions. The novelty of the present antennas lies in their specific hexagonal and pentagonal fractal configurations and the resonant frequencies associated with them. These antennas are potentially applicable to a variety of multiband and wide-band commercial wireless-communication products operating at different frequencies, including personal digital assistants, cellular telephones, pagers, satellite radios, Global Positioning System receivers, and products that combine two or more of the aforementioned functions. Perhaps the best-known prior multiband antenna based on fractal geometry is the Sierpinski triangle antenna (also known as the Sierpinski gasket), shown in the top part of the figure. In this antenna, the scale length at each iteration of the fractal is half the scale length of the preceding iteration, yielding successive resonant frequencies related by a ratio of about 2. The middle and bottom parts of the figure depict the first three iterations of the hexagonal and pentagonal fractals along with typical dipole-antenna configuration based on the second iteration. Successive resonant frequencies of the hexagonal fractal antenna have been found to be related by a ratio of about 3, and those of the pentagonal fractal antenna by a ratio of about 2.59.
New Horizons for Imaging Lymphatic Function
Sharma, Ruchi; Wendt, Juliet A.; Rasmussen, John C.; Adams, Kristen E.; Marshall, Milton V.; Sevick-Muraca, Eva M.
2011-01-01
In this review, we provide a comprehensive summary of noninvasive imaging modalities used clinically for the diagnosis of lymphatic diseases, new imaging agents for assessing lymphatic architecture and cancer status of lymph nodes, and emerging near-infrared (NIR) fluorescent optical imaging technologies and agents for functional lymphatic imaging. Given the promise of NIR optical imaging, we provide example results of functional lymphatic imaging in mice, swine, and humans, showing the ability of this technology to quantify lymph velocity and frequencies of propulsion resulting from the contractility of lymphatic structures. PMID:18519956
Sporadically Fractal Basin Boundaries of Chaotic Systems
Hunt, B.R.; Ott, E.; Rosa, E. Jr.
1999-05-01
We demonstrate a new type of basin boundary for typical chaotic dynamical systems. For the case of a two dimensional map, this boundary has the character of the graph of a function that is smooth and differentiable except on a set of fractal dimensions less than one. In spite of the basin boundary being smooth {open_quotes}almost everywhere,{close_quotes} its fractal dimension exceeds one (implying degradation of one{close_quote}s ability to predict the attractor an orbit approaches in the presence of small initial condition uncertainty). We call such a boundary {ital sporadically fractal}. {copyright} {ital 1999} {ital The American Physical Society}
Multi-resolution processing for fractal analysis of airborne remotely sensed data
NASA Technical Reports Server (NTRS)
Jaggi, S.; Quattrochi, D.; Lam, N.
1992-01-01
Fractal geometry is increasingly becoming a useful tool for modeling natural phenomenon. As an alternative to Euclidean concepts, fractals allow for a more accurate representation of the nature of complexity in natural boundaries and surfaces. Since they are characterized by self-similarity, an ideal fractal surface is scale-independent; i.e. at different scales a fractal surface looks the same. This is not exactly true for natural surfaces. When viewed at different spatial resolutions parts of natural surfaces look alike in a statistical manner and only for a limited range of scales. Images acquired by NASA's Thermal Infrared Multispectral Scanner are used to compute the fractal dimension as a function of spatial resolution. Three methods are used to determine the fractal dimension - Schelberg's line-divider method, the variogram method, and the triangular prism method. A description of these methods and the results of applying these methods to a remotely-sensed image is also presented. Five flights were flown in succession at altitudes of 2 km (low), 6 km (mid), 12 km (high), and then back again at 6 km and 2 km. The area selected was the Ross Barnett reservoir near Jackson, Mississippi. The mission was flown during the predawn hours of 1 Feb. 1992. Radiosonde data was collected for that duration to profile the characteristics of the atmosphere. This corresponds to 3 different pixel sizes - 5m, 15m, and 30m. After, simulating different spatial sampling intervals within the same image for each of the 3 image sets, the results are cross-correlated to compare the extent of detail and complexity that is obtained when data is taken at lower spatial intervals.
Edges of Saturn's rings are fractal.
Li, Jun; Ostoja-Starzewski, Martin
2015-01-01
The images recently sent by the Cassini spacecraft mission (on the NASA website http://saturn.jpl.nasa.gov/photos/halloffame/) show the complex and beautiful rings of Saturn. Over the past few decades, various conjectures were advanced that Saturn's rings are Cantor-like sets, although no convincing fractal analysis of actual images has ever appeared. Here we focus on four images sent by the Cassini spacecraft mission (slide #42 "Mapping Clumps in Saturn's Rings", slide #54 "Scattered Sunshine", slide #66 taken two weeks before the planet's Augus't 200'9 equinox, and slide #68 showing edge waves raised by Daphnis on the Keeler Gap) and one image from the Voyager 2' mission in 1981. Using three box-counting methods, we determine the fractal dimension of edges of rings seen here to be consistently about 1.63 ~ 1.78. This clarifies in what sense Saturn's rings are fractal. PMID:25883885
Exploring Fractals in the Classroom.
ERIC Educational Resources Information Center
Naylor, Michael
1999-01-01
Describes an activity involving six investigations. Introduces students to fractals, allows them to study the properties of some famous fractals, and encourages them to create their own fractal artwork. Contains 14 references. (ASK)
Functional Imaging for Prostate Cancer: Therapeutic Implications
Aparici, Carina Mari; Seo, Youngho
2012-01-01
Functional radionuclide imaging modalities, now commonly combined with anatomical imaging modalities CT or MRI (SPECT/CT, PET/CT, and PET/MRI) are promising tools for the management of prostate cancer particularly for therapeutic implications. Sensitive detection capability of prostate cancer using these imaging modalities is one issue; however, the treatment of prostate cancer using the information that can be obtained from functional radionuclide imaging techniques is another challenging area. There are not many SPECT or PET radiotracers that can cover the full spectrum of the management of prostate cancer from initial detection, to staging, prognosis predictor, and all the way to treatment response assessment. However, when used appropriately, the information from functional radionuclide imaging improves, and sometimes significantly changes, the whole course of the cancer management. The limitations of using SPECT and PET radiotracers with regards to therapeutic implications are not so much different from their limitations solely for the task of detecting prostate cancer; however, the specific imaging target and how this target is reliably imaged by SPECT and PET can potentially make significant impact in the treatment of prostate cancer. Finally, while the localized prostate cancer is considered manageable, there is still significant need for improvement in noninvasive imaging of metastatic prostate cancer, in treatment guidance, and in response assessment from functional imaging including radionuclide-based techniques. In this review article, we present the rationale of using functional radionuclide imaging and the therapeutic implications for each of radionuclide imaging agent that have been studied in human subjects. PMID:22840598
Fractals: To Know, to Do, to Simulate.
ERIC Educational Resources Information Center
Talanquer, Vicente; Irazoque, Glinda
1993-01-01
Discusses the development of fractal theory and suggests fractal aggregates as an attractive alternative for introducing fractal concepts. Describes methods for producing metallic fractals and a computer simulation for drawing fractals. (MVL)
Hands-On Fractals and the Unexpected in Mathematics
ERIC Educational Resources Information Center
Gluchoff, Alan
2006-01-01
This article describes a hands-on project in which unusual fractal images are produced using only a photocopy machine and office supplies. The resulting images are an example of the contraction mapping principle.
Functional Magnetic Resonance Imaging and Pediatric Anxiety
ERIC Educational Resources Information Center
Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew
2008-01-01
The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…
Fractal Geometry of Architecture
NASA Astrophysics Data System (ADS)
Lorenz, Wolfgang E.
In Fractals smaller parts and the whole are linked together. Fractals are self-similar, as those parts are, at least approximately, scaled-down copies of the rough whole. In architecture, such a concept has also been known for a long time. Not only architects of the twentieth century called for an overall idea that is mirrored in every single detail, but also Gothic cathedrals and Indian temples offer self-similarity. This study mainly focuses upon the question whether this concept of self-similarity makes architecture with fractal properties more diverse and interesting than Euclidean Modern architecture. The first part gives an introduction and explains Fractal properties in various natural and architectural objects, presenting the underlying structure by computer programmed renderings. In this connection, differences between the fractal, architectural concept and true, mathematical Fractals are worked out to become aware of limits. This is the basis for dealing with the problem whether fractal-like architecture, particularly facades, can be measured so that different designs can be compared with each other under the aspect of fractal properties. Finally the usability of the Box-Counting Method, an easy-to-use measurement method of Fractal Dimension is analyzed with regard to architecture.
FAST TRACK COMMUNICATION: Weyl law for fat fractals
NASA Astrophysics Data System (ADS)
Spina, María E.; García-Mata, Ignacio; Saraceno, Marcos
2010-10-01
It has been conjectured that for a class of piecewise linear maps the closure of the set of images of the discontinuity has the structure of a fat fractal, that is, a fractal with positive measure. An example of such maps is the sawtooth map in the elliptic regime. In this work we analyze this problem quantum mechanically in the semiclassical regime. We find that the fraction of states localized on the unstable set satisfies a modified fractal Weyl law, where the exponent is given by the exterior dimension of the fat fractal.
GENERATING FRACTAL PATTERNS BY USING p-CIRCLE INVERSION
NASA Astrophysics Data System (ADS)
Ramírez, José L.; Rubiano, Gustavo N.; Zlobec, Borut Jurčič
2015-10-01
In this paper, we introduce the p-circle inversion which generalizes the classical inversion with respect to a circle (p = 2) and the taxicab inversion (p = 1). We study some basic properties and we also show the inversive images of some basic curves. We apply this new transformation to well-known fractals such as Sierpinski triangle, Koch curve, dragon curve, Fibonacci fractal, among others. Then we obtain new fractal patterns. Moreover, we generalize the method called circle inversion fractal be means of the p-circle inversion.
Fractal dimension analyses of lava surfaces and flow boundaries
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.
1993-01-01
An improved method of estimating fractal surface dimensions has been developed. The accuracy of this method is illustrated using artificially generated fractal surfaces. A slightly different from usual concept of linear dimension is developed, allowing a direct link between that and the corresponding surface dimension estimate. These methods are applied to a series of images of lava flows, representing a variety of physical and chemical conditions. These include lavas from California, Idaho, and Hawaii, as well as some extraterrestrial flows. The fractal surface dimension estimations are presented, as well as the fractal line dimensions where appropriate.
The use of fractal dimension for texture classification
Dixon, K.E.
1989-04-01
This paper addresses the idea of using fractal dimension as a measure of image texture. The computation of the fractal dimension of a grey-scale image and also of the ''fractal signature'' of the image is presented. Two methods of scanning the image for these calculations are introduced: a line scan and a window scan. Several subsets of features extracted from the calculations are investigated as features for classification of the texture. Results from various classification experiments are presented. 5 refs., 8 tabs.
The topology of fractal universes
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1988-01-01
It is shown how the genus per unit volume of isodensity surfaces in general nonlinear universes is related to the entire hierarchy of correlation functions. The general relation between the correlation function, the probability distribution of densities at several points, and the probability distributions of density and its derivatives at a point are given. Formulas for the area and genus per unit volume of isodensity surfaces are presented. As an application, after first reviewing the case of Gaussian fields, analytic results are reported for one particular example of a thoroughly nonlinear universe, Mandelbrot's Rayleigh-Levy random-walk fractal. While this fractal bears little resemblance to the real universe of galaxies, it possesses the singular and theoretically interesting property that in it cluster-cluster correlations are identically equal to galaxy-galaxy correlations to all orders.
Fractals, malware, and data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Potter, Andrew N.; Williams, Deborah; Handley, James W.
2012-06-01
We examine the hypothesis that the decision boundary between malware and non-malware is fractal. We introduce a novel encoding method derived from text mining for converting disassembled programs first into opstrings and then filter these into a reduced opcode alphabet. These opcodes are enumerated and encoded into real floating point number format and used for characterizing frequency of occurrence and distribution properties of malware functions to compare with non-malware functions. We use the concept of invariant moments to characterize the highly non-Gaussian structure of the opcode distributions. We then derive Data Model based classifiers from identified features and interpolate and extrapolate the parameter sample space for the derived Data Models. This is done to examine the nature of the parameter space classification boundary between families of malware and the general non-malware category. Preliminary results strongly support the fractal boundary hypothesis, and a summary of our methods and results are presented here.
Fractal analysis of yeast cell optical speckle
NASA Astrophysics Data System (ADS)
Flamholz, A.; Schneider, P. S.; Subramaniam, R.; Wong, P. K.; Lieberman, D. H.; Cheung, T. D.; Burgos, J.; Leon, K.; Romero, J.
2006-02-01
Steady state laser light propagation in diffuse media such as biological cells generally provide bulk parameter information, such as the mean free path and absorption, via the transmission profile. The accompanying optical speckle can be analyzed as a random spatial data series and its fractal dimension can be used to further classify biological media that show similar mean free path and absorption properties, such as those obtained from a single population. A population of yeast cells can be separated into different portions by centrifuge, and microscope analysis can be used to provide the population statistics. Fractal analysis of the speckle suggests that lower fractal dimension is associated with higher cell packing density. The spatial intensity correlation revealed that the higher cell packing gives rise to higher refractive index. A calibration sample system that behaves similar as the yeast samples in fractal dimension, spatial intensity correlation and diffusion was selected. Porous silicate slabs with different refractive index values controlled by water content were used for system calibration. The porous glass as well as the yeast random spatial data series fractal dimension was found to depend on the imaging resolution. The fractal method was also applied to fission yeast single cell fluorescent data as well as aging yeast optical data; and consistency was demonstrated. It is concluded that fractal analysis can be a high sensitivity tool for relative comparison of cell structure but that additional diffusion measurements are necessary for determining the optimal image resolution. Practical application to dental plaque bio-film and cam-pill endoscope images was also demonstrated.
Taxonomy of Individual Variations in Aesthetic Responses to Fractal Patterns.
Spehar, Branka; Walker, Nicholas; Taylor, Richard P
2016-01-01
In two experiments, we investigate group and individual preferences in a range of different types of patterns with varying fractal-like scaling characteristics. In Experiment 1, we used 1/f filtered grayscale images as well as their thresholded (black and white) and edges only counterparts. Separate groups of observers viewed different types of images varying in slope of their amplitude spectra. Although with each image type, the groups exhibited the "universal" pattern of preference for intermediate amplitude spectrum slopes, we identified 4 distinct sub-groups in each case. Sub-group 1 exhibited a typical peak preference for intermediate amplitude spectrum slopes ("intermediate"; approx. 50%); sub-group 2 exhibited a linear increase in preference with increasing amplitude spectrum slope ("smooth"; approx. 20%), while sub-group 3 exhibited a linear decrease in preference as a function of the amplitude spectrum slope ("sharp"; approx. 20%). Sub-group 4 revealed no significant preference ("other"; approx. 10%). In Experiment 2, we extended the range of different image types and investigated preferences within the same observers. We replicate the results of our first experiment and show that individual participants exhibit stable patterns of preference across a wide range of image types. In both experiments, Q-mode factor analysis identified two principal factors that were able to explain more than 80% of interindividual variations in preference across all types of images, suggesting a highly similar dimensional structure of interindividual variations in preference for fractal-like scaling characteristics. PMID:27458365
Clinical applications of functional MR imaging.
Belyaev, Artem S; Peck, Kyung K; Brennan, Nicole M Petrovich; Holodny, Andrei I
2013-05-01
Functional magnetic resonance (fMR) imaging for neurosurgical planning has become the standard of care in centers where it is available. Although paradigms to measure eloquent cortices are not yet standardized, simple tasks elicit reliable maps for planning neurosurgical procedures. A patient-specific paradigm design will refine the usability of fMR imaging for prognostication and recovery of function. Certain pathologic conditions and technical issues limit the interpretation of fMR imaging maps in clinical use and should be considered carefully. However, fMR imaging for neurosurgical planning continues to provide insights into how the brain works and how it responds to pathologic insults. PMID:23642553
Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin
2016-01-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders. PMID:27217194
Namazi, Hamidreza; Kulish, Vladimir V; Akrami, Amin
2016-01-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the 'complex' visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders. PMID:27217194
NASA Astrophysics Data System (ADS)
Namazi, Hamidreza; Kulish, Vladimir V.; Akrami, Amin
2016-05-01
One of the major challenges in vision research is to analyze the effect of visual stimuli on human vision. However, no relationship has been yet discovered between the structure of the visual stimulus, and the structure of fixational eye movements. This study reveals the plasticity of human fixational eye movements in relation to the ‘complex’ visual stimulus. We demonstrated that the fractal temporal structure of visual dynamics shifts towards the fractal dynamics of the visual stimulus (image). The results showed that images with higher complexity (higher fractality) cause fixational eye movements with lower fractality. Considering the brain, as the main part of nervous system that is engaged in eye movements, we analyzed the governed Electroencephalogram (EEG) signal during fixation. We have found out that there is a coupling between fractality of image, EEG and fixational eye movements. The capability observed in this research can be further investigated and applied for treatment of different vision disorders.
Fractal Analysis of Cervical Intraepithelial Neoplasia
Fabrizii, Markus; Moinfar, Farid; Jelinek, Herbert F.; Karperien, Audrey; Ahammer, Helmut
2014-01-01
Introduction Cervical intraepithelial neoplasias (CIN) represent precursor lesions of cervical cancer. These neoplastic lesions are traditionally subdivided into three categories CIN 1, CIN 2, and CIN 3, using microscopical criteria. The relation between grades of cervical intraepithelial neoplasia (CIN) and its fractal dimension was investigated to establish a basis for an objective diagnosis using the method proposed. Methods Classical evaluation of the tissue samples was performed by an experienced gynecologic pathologist. Tissue samples were scanned and saved as digital images using Aperio scanner and software. After image segmentation the box counting method as well as multifractal methods were applied to determine the relation between fractal dimension and grades of CIN. A total of 46 images were used to compare the pathologist's neoplasia grades with the predicted groups obtained by fractal methods. Results Significant or highly significant differences between all grades of CIN could be found. The confusion matrix, comparing between pathologist's grading and predicted group by fractal methods showed a match of 87.1%. Multifractal spectra were able to differentiate between normal epithelium and low grade as well as high grade neoplasia. Conclusion Fractal dimension can be considered to be an objective parameter to grade cervical intraepithelial neoplasia. PMID:25302712
Functional imaging in tumor-associated lymphatics
NASA Astrophysics Data System (ADS)
Kwon, Sunkuk; Sevick-Muraca, Eva M.
2011-03-01
The lymphatic system plays an important role in cancer cell dissemination; however whether lymphatic drainage pathways and function change during tumor progression and metastasis remains to be elucidated. In this report, we employed a non-invasive, dynamic near-infrared (NIR) fluorescence imaging technique for functional lymphatic imaging. Indocyanine green (ICG) was intradermally injected into tumor-free mice and mice bearing C6/LacZ rat glioma tumors in the tail or hindlimb. Our imaging data showed abnormal lymphatic drainage pathways and reduction/loss of lymphatic contractile function in mice with lymph node (LN) metastasis, indicating that cancer metastasis to the draining LNs is accompanied by transient changes of the lymphatic architectural network and its function. Therefore, functional lymphatic imaging may provide a role in the clinical staging of cancer.
Fractal structures and processes
Bassingthwaighte, J.B.; Beard, D.A.; Percival, D.B.; Raymond, G.M.
1996-06-01
Fractals and chaos are closely related. Many chaotic systems have fractal features. Fractals are self-similar or self-affine structures, which means that they look much of the same when magnified or reduced in scale over a reasonably large range of scales, at least two orders of magnitude and preferably more (Mandelbrot, 1983). The methods for estimating their fractal dimensions or their Hurst coefficients, which summarize the scaling relationships and their correlation structures, are going through a rapid evolutionary phase. Fractal measures can be regarded as providing a useful statistical measure of correlated random processes. They also provide a basis for analyzing recursive processes in biology such as the growth of arborizing networks in the circulatory system, airways, or glandular ducts. {copyright} {ital 1996 American Institute of Physics.}
Molecular and Functional Imaging of Internet Addiction
Zhu, Yunqi; Zhang, Hong; Tian, Mei
2015-01-01
Maladaptive use of the Internet results in Internet addiction (IA), which is associated with various negative consequences. Molecular and functional imaging techniques have been increasingly used for analysis of neurobiological changes and neurochemical correlates of IA. This review summarizes molecular and functional imaging findings on neurobiological mechanisms of IA, focusing on magnetic resonance imaging (MRI) and nuclear imaging modalities including positron emission tomography (PET) and single photon emission computed tomography (SPECT). MRI studies demonstrate that structural changes in frontal cortex are associated with functional abnormalities in Internet addicted subjects. Nuclear imaging findings indicate that IA is associated with dysfunction of the brain dopaminergic systems. Abnormal dopamine regulation of the prefrontal cortex (PFC) could underlie the enhanced motivational value and uncontrolled behavior over Internet overuse in addicted subjects. Further investigations are needed to determine specific changes in the Internet addictive brain, as well as their implications for behavior and cognition. PMID:25879023
Functional imaging of the musculoskeletal system
2015-01-01
Functional imaging, which provides information of how tissues function rather than structural information, is well established in neuro- and cardiac imaging. Many musculoskeletal structures, such as ligaments, fascia and mineralized bone, have by definition a mainly structural role and clearly don’t have the same functional capacity as the brain, heart, liver or kidney. The main functionally responsive musculoskeletal tissues are the bone marrow, muscle and nerve and, as such, magnetic resonance (MR) functional imaging has primarily addressed these areas. Proton or phosphorus spectroscopy, other fat quantification techniques, perfusion imaging, BOLD imaging, diffusion and diffusion tensor imaging (DTI) are the main functional techniques applied. The application of these techniques in the musculoskeletal system has mainly been research orientated where they have already greatly enhanced our understanding of marrow physiology, muscle physiology and neural function. Going forwards, they will have a greater clinical impact helping to bridge the disconnect often seen between structural appearances and clinical symptoms, allowing a greater understanding of disease processes and earlier recognition of disease, improving prognostic prediction and optimizing the monitoring of treatment effect. PMID:26029633
Tutte polynomial in functional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
García-Castillón, Marlly V.
2015-09-01
Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.
SPECT functional brain imaging. Technical considerations.
Devous, M D
1995-07-01
The technical aspects of functional brain single-photon emission computed tomography (SPECT) imaging, referring primarily to the most common SPECT brain function measure--regional cerebral blood flow--are reviewed. SPECT images of regional cerebral blood flow are influenced by a number of factors unrelated to pathology, including tomographic quality, radiopharmaceuticals, environmental conditions at the time of radiotracer administration, characteristics of the subject (e.g., age, sex), image presentation, and image processing techniques. Modern SPECT scans yield excellent image quality, and instrumentation continues to improve. The armamentarium of regional cerebral blood flow and receptor radiopharmaceuticals is rapidly expanding. Standards regarding the environment for patient imaging and image presentation are emerging. However, there is still much to learn about the circumstances for performances and evaluation of SPECT functional brain imaging. Challenge tests, primarily established in cerebrovascular disease (i.e., the acetazolamide test), offer great promise in defining the extent and nature of disease, as well as predicting therapeutic responses. Clearly, SPECT brain imaging is a powerful clinical and research tool. However, SPECT will only achieve its full potential in the management of patients with cerebral pathology through close cooperation among members of the nuclear medicine, neurology, psychiatry, neurosurgery, and internal medicine specialties. PMID:7626833
NASA Astrophysics Data System (ADS)
Mandal, Prantik; Rodkin, Mikhail V.
2011-11-01
We use precisely located aftershocks of the 2001 Mw7.7 Bhuj earthquake (2001-2009) to explore the structure of the Kachchh seismic zone by mapping the 3-D distributions of b-value, fractal dimension (D) and seismic velocities. From frequency-magnitude analysis, we find that the catalog is complete above Mw = 3.0. Thus, we analyze 2159 aftershocks with Mw ≥ 3.0 to estimate the 3-D distribution of b-value and fractal dimensions using maximum-likelihood and spatial correlation dimension approaches, respectively. Our results show an area of high b-, D- and Vp/Vs ratio values at 15-35 km depth in the main rupture zone (MRZ), while relatively low b- and D values characterize the surrounding rigid regions and Gedi fault (GF) zone. We propose that higher material heterogeneities in the vicinity of the MRZ and/or circulation of deep aqueous fluid/volatile CO 2 is the main cause of the increased b-, D- and Vp/Vs ratio values at 15-35 km depth. Seismic velocity images also show some low velocity zones continuing in to the deep lower crust, supporting the existence of circulation of deep aqueous fluid / volatile CO 2 in the region (probably released from the eclogitasation of olivine rich lower crustal rocks). The presence of number of high and low velocity patches further reveals the heterogeneous and fractured nature of the MRZ. Interestingly, we observe that Aki (1981)'s relation (D = 2b) is not valid for the spatial b-D correlation of the events in the GF (D 2 = 1.2b) zone. However, the events in the MRZ (D 2 = 1.7b) show a fair agreement with the D = 2b relationship while the earthquakes associated with the remaining parts of the aftershock zone (D 2 = 1.95b) show a strong correlation with the Aki (1981)'s relationship. Thus, we infer that the remaining parts of the aftershock zone are probably behaving like locked un-ruptured zones, where larger stresses accumulate. We also propose that deep fluid involvement may play a key role in generating seismic activity in the
Fractal analysis of DNA sequence data
Berthelsen, C.L.
1993-01-01
DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the [open quote]sandbox method[close quote]. Analysis of 164 human DNA sequences compared to three types of control sequences (random, base-content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than to invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.
Fractal Analysis of DNA Sequence Data
NASA Astrophysics Data System (ADS)
Berthelsen, Cheryl Lynn
DNA sequence databases are growing at an almost exponential rate. New analysis methods are needed to extract knowledge about the organization of nucleotides from this vast amount of data. Fractal analysis is a new scientific paradigm that has been used successfully in many domains including the biological and physical sciences. Biological growth is a nonlinear dynamic process and some have suggested that to consider fractal geometry as a biological design principle may be most productive. This research is an exploratory study of the application of fractal analysis to DNA sequence data. A simple random fractal, the random walk, is used to represent DNA sequences. The fractal dimension of these walks is then estimated using the "sandbox method." Analysis of 164 human DNA sequences compared to three types of control sequences (random, base -content matched, and dimer-content matched) reveals that long-range correlations are present in DNA that are not explained by base or dimer frequencies. The study also revealed that the fractal dimension of coding sequences was significantly lower than sequences that were primarily noncoding, indicating the presence of longer-range correlations in functional sequences. The multifractal spectrum is used to analyze fractals that are heterogeneous and have a different fractal dimension for subsets with different scalings. The multifractal spectrum of the random walks of twelve mitochondrial genome sequences was estimated. Eight vertebrate mtDNA sequences had uniformly lower spectra values than did four invertebrate mtDNA sequences. Thus, vertebrate mitochondria show significantly longer-range correlations than do invertebrate mitochondria. The higher multifractal spectra values for invertebrate mitochondria suggest a more random organization of the sequences. This research also includes considerable theoretical work on the effects of finite size, embedding dimension, and scaling ranges.
Electromagnetic fields in fractal continua
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Mena, Baltasar; Patiño, Julián; Morales, Daniel
2013-04-01
Fractal continuum electrodynamics is developed on the basis of a model of three-dimensional continuum ΦD3⊂E3 with a fractal metric. The generalized forms of Maxwell equations are derived employing the local fractional vector calculus related to the Hausdorff derivative. The difference between the fractal continuum electrodynamics based on the fractal metric of continua with Euclidean topology and the electrodynamics in fractional space Fα accounting the fractal topology of continuum with the Euclidean metric is outlined. Some electromagnetic phenomena in fractal media associated with their fractal time and space metrics are discussed.
Subband/transform functions for image processing
NASA Technical Reports Server (NTRS)
Glover, Daniel
1993-01-01
Functions for image data processing written for use with the MATLAB(TM) software package are presented. These functions provide the capability to transform image data with block transformations (such as the Walsh Hadamard) and to produce spatial frequency subbands of the transformed data. Block transforms are equivalent to simple subband systems. The transform coefficients are reordered using a simple permutation to give subbands. The low frequency subband is a low resolution version of the original image, while the higher frequency subbands contain edge information. The transform functions can be cascaded to provide further decomposition into more subbands. If the cascade is applied to all four of the first stage subbands (in the case of a four band decomposition), then a uniform structure of sixteen bands is obtained. If the cascade is applied only to the low frequency subband, an octave structure of seven bands results. Functions for the inverse transforms are also given. These functions can be used for image data compression systems. The transforms do not in themselves produce data compression, but prepare the data for quantization and compression. Sample quantization functions for subbands are also given. A typical compression approach is to subband the image data, quantize it, then use statistical coding (e.g., run-length coding followed by Huffman coding) for compression. Contour plots of image data and subbanded data are shown.
NASA Astrophysics Data System (ADS)
Subramaniam, Raji; Sullivan, R.; Schneider, P. S.; Flamholz, A.; Cheung, E.; Tremberger, G., Jr.; Wong, P. K.; Lieberman, D. H.; Cheung, T. D.; Garcia, F.; Bewry, N.; Yee, A.
2006-10-01
Images of packaged raw chicken purchased in neighborhood supermarkets were captured via a digital camera in laboratory and home settings. Each image contained the surface reflectivity information of the chicken tissue. The camera's red, green and blue light signals fluctuated and each spectral signal exhibited a random series across the surface. The Higuchi method, where the length of each increment in time (or spatial) lag is plotted against the lag, was used to explore the fractal property of the random series. (Higuchi, T., "Approach to an irregular time series on the basis of fractal theory", Physica D, vol 31, 277-283, 1988). The fractal calculation algorithm was calibrated with the Weierstrass function. The standard deviation and fractal dimension were shown to correlate with the time duration that a package was left at room temperature within a 24-hour period. Comparison to packaged beef results suggested that the time dependence could be due microbial spoilage. The fractal dimension results in this study were consistent with those obtained from yeast cell, mammalian cell and bacterial cell studies. This analysis method can be used to detect the re-refrigeration of a "left-out" package of chicken. The extension to public health issues such as consumer shopping is also discussed.
Functional cardiac imaging: positron emission tomography
Mullani, N.A.; Gould, K.L.
1984-02-01
Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures.
Multimodal Imaging of Dynamic Functional Connectivity
Tagliazucchi, Enzo; Laufs, Helmut
2015-01-01
The study of large-scale functional interactions in the human brain with functional magnetic resonance imaging (fMRI) extends almost to the first applications of this technology. Due to historical reasons and preconceptions about the limitations of this brain imaging method, most studies have focused on assessing connectivity over extended periods of time. It is now clear that fMRI can resolve the temporal dynamics of functional connectivity, like other faster imaging techniques such as electroencephalography and magnetoencephalography (albeit on a different temporal scale). However, the indirect nature of fMRI measurements can hinder the interpretability of the results. After briefly summarizing recent advances in the field, we discuss how the simultaneous combination of fMRI with electrophysiological activity measurements can contribute to a better understanding of dynamic functional connectivity in humans both during rest and task, wakefulness, and other brain states. PMID:25762977
Modeling of functional brain imaging data
NASA Astrophysics Data System (ADS)
Horwitz, Barry
1999-03-01
The richness and complexity of data sets obtained from functional neuroimaging studies of human cognitive behavior, using techniques such as positron emission tomography and functional magnetic resonance imaging, have until recently not been exploited by computational neural modeling methods. In this article, following a brief introduction to functional neuroimaging methodology, two neural modeling approaches for use with functional brain imaging data are described. One, which uses structural equation modeling, examines the effective functional connections between various brain regions during specific cognitive tasks. The second employs large-scale neural modeling to relate functional neuroimaging signals in multiple, interconnected brain regions to the underlying neurobiological time-varying activities in each region. These two modeling procedures are illustrated using a visual processing paradigm.
Fractal Property in the Light Curve of BL Lac Object S5 0716 + 714
NASA Astrophysics Data System (ADS)
Ou, J. W.; Zheng, Y. G.
2014-09-01
In this paper, we compile the historical R-band data of S5 0716 + 714 from literature and obtain its fractal dimension by using a fractal method and then simulate the data with the Weierstrass-Mandelbrot (W-M) function. It is considered that the light curve has a fractal property.
The role of the circadian system in fractal neurophysiological control
Pittman-Polletta, Benjamin R.; Scheer, Frank A.J.L.; Butler, Matthew P.; Shea, Steven A.; Hu, Kun
2013-01-01
Many neurophysiological variables such as heart rate, motor activity, and neural activity are known to exhibit intrinsic fractal fluctuations - similar temporal fluctuation patterns at different time scales. These fractal patterns contain information about health, as many pathological conditions are accompanied by their alteration or absence. In physical systems, such fluctuations are characteristic of critical states on the border between randomness and order, frequently arising from nonlinear feedback interactions between mechanisms operating on multiple scales. Thus, the existence of fractal fluctuations in physiology challenges traditional conceptions of health and disease, suggesting that high levels of integrity and adaptability are marked by complex variability, not constancy, and are properties of a neurophysiological network, not individual components. Despite the subject's theoretical and clinical interest, the neurophysiological mechanisms underlying fractal regulation remain largely unknown. The recent discovery that the circadian pacemaker (suprachiasmatic nucleus) plays a crucial role in generating fractal patterns in motor activity and heart rate sheds an entirely new light on both fractal control networks and the function of this master circadian clock, and builds a bridge between the fields of circadian biology and fractal physiology. In this review, we sketch the emerging picture of the developing interdisciplinary field of fractal neurophysiology by examining the circadian system’s role in fractal regulation. PMID:23573942
Fractal frontiers in cardiovascular magnetic resonance: towards clinical implementation.
Captur, Gabriella; Karperien, Audrey L; Li, Chunming; Zemrak, Filip; Tobon-Gomez, Catalina; Gao, Xuexin; Bluemke, David A; Elliott, Perry M; Petersen, Steffen E; Moon, James C
2015-01-01
Many of the structures and parameters that are detected, measured and reported in cardiovascular magnetic resonance (CMR) have at least some properties that are fractal, meaning complex and self-similar at different scales. To date however, there has been little use of fractal geometry in CMR; by comparison, many more applications of fractal analysis have been published in MR imaging of the brain.This review explains the fundamental principles of fractal geometry, places the fractal dimension into a meaningful context within the realms of Euclidean and topological space, and defines its role in digital image processing. It summarises the basic mathematics, highlights strengths and potential limitations of its application to biomedical imaging, shows key current examples and suggests a simple route for its successful clinical implementation by the CMR community.By simplifying some of the more abstract concepts of deterministic fractals, this review invites CMR scientists (clinicians, technologists, physicists) to experiment with fractal analysis as a means of developing the next generation of intelligent quantitative cardiac imaging tools. PMID:26346700
Spatial Pattern of Biological Soil Crust with Fractal Geometry
NASA Astrophysics Data System (ADS)
Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana M.
2015-04-01
Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. This study focus on characterize the spatial arrangements of the BSC based on image analysis and fractal concepts. To this end, RGB images of different types of biological soil crust where taken, each image corresponding to an area of 3.6 cm2 with a resolution of 1024x1024 pixels. For each image and channel, mass dimension and entropy were calculated. Preliminary results indicate that fractal methods are useful to describe changes associated to different types of BSC. Further research is necessary to apply these methodologies to several situations.
ERIC Educational Resources Information Center
Clark, Garry
1999-01-01
Reports on a mathematical investigation of fractals and highlights the thinking involved, problem solving strategies used, generalizing skills required, the role of technology, and the role of mathematics. (ASK)
Persistence intervals of fractals
NASA Astrophysics Data System (ADS)
Máté, Gabriell; Heermann, Dieter W.
2014-07-01
Objects and structures presenting fractal like behavior are abundant in the world surrounding us. Fractal theory provides a great deal of tools for the analysis of the scaling properties of these objects. We would like to contribute to the field by analyzing and applying a particular case of the theory behind the P.H. dimension, a concept introduced by MacPherson and Schweinhart, to seek an intuitive explanation for the relation of this dimension and the fractality of certain objects. The approach is based on recently elaborated computational topology methods and it proves to be very useful for investigating scaling hidden in dimensions lower than the “native” dimension in which the investigated object is embedded. We demonstrate the applicability of the method with two examples: the Sierpinski gasket-a traditional fractal-and a two dimensional object composed of short segments arranged according to a circular structure.
ERIC Educational Resources Information Center
Bannon, Thomas J.
1991-01-01
Discussed are several different transformations based on the generation of fractals including self-similar designs, the chaos game, the koch curve, and the Sierpinski Triangle. Three computer programs which illustrate these concepts are provided. (CW)
Functional Imaging in Hereditary Dystonia
Carbon, Maren; Argyelan, Miklos; Eidelberg, David
2015-01-01
Background Impaired cortical inhibiton and maladaptive cortical plasticity are functional hallmarks of sporadic focal dystonias. Whether or not these mechanisms translate to generalized dystonias and whether these features reflect state or trait characteristics is a topic of research in hereditary dystonias. Methods We present a series of studies using a multitracer approach with positron emission tomography (PET) and diffusion tensor MRI (DTI) in the DYT1 and the DYT6 genotype. Results In these hereditary dystonias maladaptive motor cortical plasticity was present as a state characteristic. As a trait characteristic neuroplastic changes were also found in secondary motor cortices and in multimodal association regions. Consistent abnormalities of resting regional brain metabolism were additionally found in interconnected elements of cortico-striatal-pallido-thalamocortical (CSPTC) and related cerebellar-thalamo-cortical circuits. Changes in specific subsets of these regions have been found to relate to genotype, phenotype, or both. Thus, a penetrance-related metabolic network was characterized by increases in the pre-supplementary motor area (pre-SMA) and parietal association areas, associated with relative reductions in the cerebellum, brainstem, and ventral thalamus. By contrast, genotype-specific abnormalities were localized to the basal ganglia, SMA and cerebellum. In both genotypes, the striatal metabolic abnormalities were paralleled by genotype-specific reductions in D2 receptor availability. Moreover, DTI studies disclosed microstructural changes within CSPTC and related cerebellar pathways. These disruptions may represent the main intrinsic abnormality underlying cortical downstream effects, such as increased sensorimotor responsivity. Conclusions These studies are consistent with the view of primary torsion dystonia as a neurodevelopmental circuit disorder involving CSPTC and related cerebellar pathways. PMID:20590810
Fractal Dimension in Epileptic EEG Signal Analysis
NASA Astrophysics Data System (ADS)
Uthayakumar, R.
Fractal Analysis is the well developed theory in the data analysis of non-linear time series. Especially Fractal Dimension is a powerful mathematical tool for modeling many physical and biological time signals with high complexity and irregularity. Fractal dimension is a suitable tool for analyzing the nonlinear behaviour and state of the many chaotic systems. Particularly in analysis of chaotic time series such as electroencephalograms (EEG), this feature has been used to identify and distinguish specific states of physiological function.Epilepsy is the main fatal neurological disorder in our brain, which is analyzed by the biomedical signal called Electroencephalogram (EEG). The detection of Epileptic seizures in the EEG Signals is an important tool in the diagnosis of epilepsy. So we made an attempt to analyze the EEG in depth for knowing the mystery of human consciousness. EEG has more fluctuations recorded from the human brain due to the spontaneous electrical activity. Hence EEG Signals are represented as Fractal Time Series.The algorithms of fractal dimension methods have weak ability to the estimation of complexity in the irregular graphs. Divider method is widely used to obtain the fractal dimension of curves embedded into a 2-dimensional space. The major problem is choosing initial and final step length of dividers. We propose a new algorithm based on the size measure relationship (SMR) method, quantifying the dimensional behaviour of irregular rectifiable graphs with minimum time complexity. The evidence for the suitability (equality with the nature of dimension) of the algorithm is illustrated graphically.We would like to demonstrate the criterion for the selection of dividers (minimum and maximum value) in the calculation of fractal dimension of the irregular curves with minimum time complexity. For that we design a new method of computing fractal dimension (FD) of biomedical waveforms. Compared to Higuchi's algorithm, advantages of this method include
Image sharpness function based on edge feature
NASA Astrophysics Data System (ADS)
Jun, Ni
2009-11-01
Autofocus technique has been widely used in optical tracking and measure system, but it has problem that when the autofocus device should to work. So, no-reference image sharpness assessment has become an important issue. A new Sharpness Function that can estimate current frame image be in focus or not is proposed in this paper. According to current image whether in focus or not and choose the time of auto focus automatism. The algorithm measures object typical edge and edge direction, and then get image local kurtosis information to determine the degree of image sharpness. It firstly select several grads points cross the edge line, secondly calculates edge sharpness value and get the cure of the kurtosis, according the measure precision of optical-equipment, a threshold value will be set beforehand. If edge kurtosis value is more than threshold, it can conclude current frame image is in focus. Otherwise, it is out of focus. If image is out of focus, optics system then takes autofocus program. This algorithm test several thousands of digital images captured from optical tracking and measure system. The results show high correlation with subjective sharpness assessment for s images of sky object.
Rheological and fractal hydrodynamics of aerobic granules.
Tijani, H I; Abdullah, N; Yuzir, A; Ujang, Zaini
2015-06-01
The structural and hydrodynamic features for granules were characterized using settling experiments, predefined mathematical simulations and ImageJ-particle analyses. This study describes the rheological characterization of these biologically immobilized aggregates under non-Newtonian flows. The second order dimensional analysis defined as D2=1.795 for native clusters and D2=1.099 for dewatered clusters and a characteristic three-dimensional fractal dimension of 2.46 depicts that these relatively porous and differentially permeable fractals had a structural configuration in close proximity with that described for a compact sphere formed via cluster-cluster aggregation. The three-dimensional fractal dimension calculated via settling-fractal correlation, U∝l(D) to characterize immobilized granules validates the quantitative measurements used for describing its structural integrity and aggregate complexity. These results suggest that scaling relationships based on fractal geometry are vital for quantifying the effects of different laminar conditions on the aggregates' morphology and characteristics such as density, porosity, and projected surface area. PMID:25836036
Functional MR Imaging in Chest Malignancies.
Broncano, Jordi; Luna, Antonio; Sánchez-González, Javier; Alvarez-Kindelan, Antonio; Bhalla, Sanjeev
2016-02-01
With recent advances in MR imaging, its application in the thorax has been feasible. The performance of both morphologic and functional techniques in the evaluation of thoracic malignances has improved not only differentiation from benign etiologies but also treatment monitoring based on a multiparametric approach. Several MR imaging-derived parameters have been described as potential biomarkers linked with prognosis and survival. Therefore, an integral approach with a nonradiating and noninvasive technique could be an optimal alternative for evaluating those patients. PMID:26613879
``the Human BRAIN & Fractal quantum mechanics''
NASA Astrophysics Data System (ADS)
Rosary-Oyong, Se, Glory
In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.
Fractal characterization of wear-erosion surfaces
Rawers, James C.; Tylczak, Joseph H.
1999-12-01
Wear erosion is a complex phenomenon resulting in highly distorted and deformed surface morphologies. Most wear surface features have been described only qualitatively. In this study wear surfaces features were quantified using fractal analysis. The ability to assign numerical values to wear-erosion surfaces makes possible mathematical expressions that will enable wear mechanisms to be predicted and understood. Surface characterization came from wear-erosion experiments that included varying the erosive materials, the impact velocity, and the impact angle. Seven fractal analytical techniques were applied to micrograph images of wear-erosion surfaces. Fourier analysis was the most promising. Fractal values obtained were consistent with visual observations and provided a unique wear-erosion parameter unrelated to wear rate.
Functionalized gold nanorods for molecular optoacoustic imaging
NASA Astrophysics Data System (ADS)
Eghtedari, Mohammad; Oraevsky, Alexander; Conjusteau, Andre; Copland, John A.; Kotov, Nicholas A.; Motamedi, Massoud
2007-02-01
The development of gold nanoparticles for molecular optoacoustic imaging is a very promising area of research and development. Enhancement of optoacoustic imaging for molecular detection of tumors requires the engineering of nanoparticles with geometrical and molecular features that can enhance selective targeting of malignant cells while optimizing the sensitivity of optoacoustic detection. In this article, cylindrical gold nanoparticles (i.e. gold nanorods) were fabricated with a plasmon resonance frequency in the near infra-red region of the spectrum, where deep irradiation of tissue is possible using an Alexandrite laser. Gold nanorods (Au-NRs) were functionalized by covalent attachment of Poly(ethylene glycol) to enhance their biocompatibility. These particles were further functionalized with the aim of targeting breast cancer cells using monoclonal antibodies that binds to Her2/neu receptors, which are over expressed on the surface of breast cancer cells. A custom Laser Optoacoustic Imaging System (LOIS) was designed and employed to image nanoparticle-targeted cancer cells in a phantom and PEGylated Au-NRs that were injected subcutaneously into a nude mouse. The results of our experiments show that functionalized Au-NRs with a plasmon resonance frequency at near infra-red region of the spectrum can be detected and imaged in vivo using laser optoacoustic imaging system.
Milovanovic, Petar; Djuric, Marija; Rakocevic, Zlatko
2012-01-01
There is an increasing interest in bone nano-structure, the ultimate goal being to reveal the basis of age-related bone fragility. In this study, power spectral density (PSD) data and fractal dimensions of the mineralized bone matrix were extracted from atomic force microscope topography images of the femoral neck trabeculae. The aim was to evaluate age-dependent differences in the mineralized matrix of human bone and to consider whether these advanced nano-descriptors might be linked to decreased bone remodeling observed by some authors and age-related decline in bone mechanical competence. The investigated bone specimens belonged to a group of young adult women (n = 5, age: 20–40 years) and a group of elderly women (n = 5, age: 70–95 years) without bone diseases. PSD graphs showed the roughness density distribution in relation to spatial frequency. In all cases, there was a fairly linear decrease in magnitude of the power spectra with increasing spatial frequencies. The PSD slope was steeper in elderly individuals (−2.374 vs. −2.066), suggesting the dominance of larger surface morphological features. Fractal dimension of the mineralized bone matrix showed a significant negative trend with advanced age, declining from 2.467 in young individuals to 2.313 in the elderly (r = 0.65, P = 0.04). Higher fractal dimension in young women reflects domination of smaller mineral grains, which is compatible with the more freshly remodeled structure. In contrast, the surface patterns in elderly individuals were indicative of older tissue age. Lower roughness and reduced structural complexity (decreased fractal dimension) of the interfibrillar bone matrix in the elderly suggest a decline in bone toughness, which explains why aged bone is more brittle and prone to fractures. PMID:22946475
Adolescent body image and psychosocial functioning.
Davison, Tanya E; McCabe, Marita P
2006-02-01
Researchers have highlighted the significance of a poor body image in the development of dysfunctional eating but have systematically investigated few other outcomes. The authors examined the relationships between different aspects of body image and psychosocial functioning. Participants were 245 boys and 173 girls from Grades 8 and 9 (M age = 13.92 years, SD = 0.69 years). Respondents completed measures of physical attractiveness, body satisfaction, body image importance, body image behaviors, appearance comparison, social physique anxiety, self-esteem, depression, anxiety, and same-sex and opposite-sex relations. Whereas girls tended to report a more negative body image than did boys, the relevance of body image to self-esteem was similar for boys and girls. Concern about others' evaluation of their bodies was especially important in understanding low female self-esteem, whereas for boys, ratings of general attractiveness most strongly predicted self-esteem. The authors found a negative body image to be unrelated to symptoms of negative affect but to be strongly associated with poor opposite-sex peer relationships, especially among boys. A negative body image also affected same-sex relations among girls. PMID:16480119
Functional and Dysfunctional Sensorimotor Anatomy and Imaging.
Ulmer, John L; Klein, Andrew P; Mark, Leighton P; Tuna, Ibrahim; Agarwal, Mohit; DeYoe, Edgar
2015-06-01
The sensorimotor system of the human brain and body is fundamental only in its central role in our daily lives. On further examination, it is a system with intricate and complex anatomical, physiological, and functional relationships. Sensorimotor areas including primary sensorimotor, premotor, supplementary motor, and higher order somatosensory cortices are critical for function and can be localized at routine neuroimaging with a familiarity of sulcal and gyral landmarks. Likewise, a thorough understanding of the functions and dysfunctions of these areas can empower the neuroradiologist and lead to superior imaging search patterns, diagnostic considerations, and patient care recommendations in daily clinical practice. Presurgical functional brain mapping of the sensorimotor system may be necessary in scenarios with distortion of anatomical landmarks, multiplanar localization, homunculus localization, congenital brain anomalies, informing diffusion tensor imaging interpretations, and localizing nonvisible targets. PMID:26233857
Functional-metabolic imaging of neuroblastoma.
Sharp, S E; Parisi, M T; Gelfand, M J; Yanik, G A; Shulkin, B L
2013-03-01
Neuroblastoma is the third most common malignant solid tumor of childhood. It originates from primitive neural crest cells of the sympathetic nervous system. Many imaging procedures help guide therapy and predict outcomes. Anatomic imaging methods, such as CT and MRI, are most useful for evaluation of the primary tumor mass and nearby involved lymph nodes. Functional imaging tracers, such as [123I]MIBG, [18F]FDG, and [99mTc]MDP, are used to assess the extent of disease and to search for distant metastases. [123I]MIBG is the principal functional imaging tracer for the detection and monitoring of neuroblastoma. [18F]FDG PET/CT is an alternative that is valuable in tumors with poor or no MIBG-uptake. [99mTc]MDP bone scans may be useful to assess cortical bone metastases. This article will review the use of [123I]MIBG and other functional imaging agents for the management of patients with neuroblastoma. PMID:23474631
Building Fractal Models with Manipulatives.
ERIC Educational Resources Information Center
Coes, Loring
1993-01-01
Uses manipulative materials to build and examine geometric models that simulate the self-similarity properties of fractals. Examples are discussed in two dimensions, three dimensions, and the fractal dimension. Discusses how models can be misleading. (Contains 10 references.) (MDH)
Fractal Patterns and Chaos Games
ERIC Educational Resources Information Center
Devaney, Robert L.
2004-01-01
Teachers incorporate the chaos game and the concept of a fractal into various areas of the algebra and geometry curriculum. The chaos game approach to fractals provides teachers with an opportunity to help students comprehend the geometry of affine transformations.
Functional lumen imaging of the gastrointestinal tract.
Lottrup, Christian; Gregersen, Hans; Liao, Donghua; Fynne, Lotte; Frøkjær, Jens Brøndum; Krogh, Klaus; Regan, Julie; Kunwald, Peter; McMahon, Barry P
2015-10-01
This nonsystematic review aims to describe recent developments in the use of functional lumen imaging in the gastrointestinal tract stimulated by the introduction of the functional lumen imaging probe. When ingested food in liquid and solid form is transported along the gastrointestinal tract, sphincters provide an important role in the flow and control of these contents. Inadequate function of sphincters is the basis of many gastrointestinal diseases. Despite this, traditional methods of sphincter diagnosis and measurement such as fluoroscopy, manometry, and the barostat are limited in what they can tell us. It has long been thought that measurement of sphincter function through resistance to distension is a better approach, now more commonly known as distensibility testing. The functional lumen imaging probe is the first medical measurement device that purports in a practical way to provide geometric profiling and measurement of distensibility in sphincters. With use of impedance planimetry, an axial series of cross-sectional areas and pressure in a catheter-mounted allantoid bag are used for the calculation of distensibility parameters. The technique has been trialed in many valvular areas of the gastrointestinal tract, including the upper esophageal sphincter, the esophagogastric junction, and the anorectal region. It has shown potential in the biomechanical assessment of sphincter function and characterization of swallowing disorders, gastroesophageal reflux disease, eosinophilic esophagitis, achalasia, and fecal incontinence. From this early work, the functional lumen imaging technique has the potential to contribute to a better and more physiological understanding of narrowing regions in the gastrointestinal tract in general and sphincters in particular. PMID:25980822
NASA Astrophysics Data System (ADS)
Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga
2016-04-01
The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, i&tacute;s still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muuḱil Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoiŕ models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mes&hacute; cells was designed and calibrated in the studied area. The statistically sound power law relations were
NASA Astrophysics Data System (ADS)
Oleshko, Klaudia; de Jesús Correa López, María; Romero, Alejandro; Ramírez, Victor; Pérez, Olga
2016-04-01
The effectiveness of fractal toolbox to capture the scaling or fractal probability distribution, and simply fractal statistics of main hydrocarbon reservoir attributes, was highlighted by Mandelbrot (1995) and confirmed by several researchers (Zhao et al., 2015). Notwithstanding, after more than twenty years, it's still common the opinion that fractals are not useful for the petroleum engineers and especially for Geoengineering (Corbett, 2012). In spite of this negative background, we have successfully applied the fractal and multifractal techniques to our project entitled "Petroleum Reservoir as a Fractal Reactor" (2013 up to now). The distinguishable feature of Fractal Reservoir is the irregular shapes and rough pore/solid distributions (Siler, 2007), observed across a broad range of scales (from SEM to seismic). At the beginning, we have accomplished the detailed analysis of Nelson and Kibler (2003) Catalog of Porosity and Permeability, created for the core plugs of siliciclastic rocks (around ten thousand data were compared). We enriched this Catalog by more than two thousand data extracted from the last ten years publications on PoroPerm (Corbett, 2012) in carbonates deposits, as well as by our own data from one of the PEMEX, Mexico, oil fields. The strong power law scaling behavior was documented for the major part of these data from the geological deposits of contrasting genesis. Based on these results and taking into account the basic principles and models of the Physics of Fractals, introduced by Per Back and Kan Chen (1989), we have developed new software (Muukíl Kaab), useful to process the multiscale geological and geophysical information and to integrate the static geological and petrophysical reservoir models to dynamic ones. The new type of fractal numerical model with dynamical power law relations among the shapes and sizes of mesh' cells was designed and calibrated in the studied area. The statistically sound power law relations were established
Random sequential adsorption on fractals
NASA Astrophysics Data System (ADS)
Ciesla, Michal; Barbasz, Jakub
2012-07-01
Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions.
Random sequential adsorption on fractals.
Ciesla, Michal; Barbasz, Jakub
2012-07-28
Irreversible adsorption of spheres on flat collectors having dimension d < 2 is studied. Molecules are adsorbed on Sierpinski's triangle and carpet-like fractals (1 < d < 2), and on general Cantor set (d < 1). Adsorption process is modeled numerically using random sequential adsorption (RSA) algorithm. The paper concentrates on measurement of fundamental properties of coverages, i.e., maximal random coverage ratio and density autocorrelation function, as well as RSA kinetics. Obtained results allow to improve phenomenological relation between maximal random coverage ratio and collector dimension. Moreover, simulations show that, in general, most of known dimensional properties of adsorbed monolayers are valid for non-integer dimensions. PMID:22852643
Izhaky, David; Nelson, Darin A; Burgansky-Eliash, Zvia; Grinvald, Amiram
2009-07-01
The Retinal Function Imager (RFI; Optical Imaging, Rehovot, Israel) is a unique, noninvasive multiparameter functional imaging instrument that directly measures hemodynamic parameters such as retinal blood-flow velocity, oximetric state, and metabolic responses to photic activation. In addition, it allows capillary perfusion mapping without any contrast agent. These parameters of retinal function are degraded by retinal abnormalities. This review delineates the development of these parameters and demonstrates their clinical applicability for noninvasive detection of retinal function in several modalities. The results suggest multiple clinical applications for early diagnosis of retinal diseases and possible critical guidance of their treatment. PMID:19763751
Edge extraction of optical subaperture based on fractal dimension method
NASA Astrophysics Data System (ADS)
Wang, Yunqi; Hui, Mei; Liu, Ming; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin
2015-09-01
Optical synthetic aperture imaging technology is an effective approach to increase the aperture diameter of optical system for purpose of improving resolution. In optical synthetic aperture imaging system, the edge is more complex than that of traditional optical imaging system, and the relatively large size of the gaps between the subapertures makes cophasing a difficult problem. So it is significant to extract edge phase of each subaperture for achieving phase stitching and avoiding the loss of effective frequency. Fractal dimension as a measure feature of image surface irregularities can statistically evaluate the complexity which is consistent with human visual image perception of rough surface texture. Therefore, fractal dimension provides a powerful tool to describe surface characteristics of image and can be applied to edge extraction. In our research, the box-counting dimension was used to calculate fractal dimension of the whole image. Then the calculated fractal dimension is mapped to grayscale image. The region with large fractal dimension represents a sharper change of the gray scale in original image, which was accurately extracted as the edge region. Subaperture region and interference fringe edge was extracted from interference pattern of optical subaperture, which has laid the foundation for the subaperture edge phase detection in the future work.
Fractal and Multifractal Analysis of Human Gait
NASA Astrophysics Data System (ADS)
Muñoz-Diosdado, A.; del Río Correa, J. L.; Angulo-Brown, F.
2003-09-01
We carried out a fractal and multifractal analysis of human gait time series of young and old individuals, and adults with three illnesses that affect the march: The Parkinson's and Huntington's diseases and the amyotrophic lateral sclerosis (ALS). We obtained cumulative plots of events, the correlation function, the Hurst exponent and the Higuchi's fractal dimension of these time series and found that these fractal markers could be a factor to characterize the march, since we obtained different values of these quantities for youths and adults and they are different also for healthy and ill persons and the most anomalous values belong to ill persons. In other physiological signals there is complexity lost related with the age and the illness, in the case of the march the opposite occurs. The multifractal analysis could be also a useful tool to understand the dynamics of these and other complex systems.
Problems of Geophysics that Inspired Fractal Geometry
NASA Astrophysics Data System (ADS)
Mandelbrot, B. B.
2001-12-01
Fractal geometry arose when the speaker used then esoteric mathematics and the concept of invariance as a tool to understand diverse ``down-to-earth'' practical needs. The first step consisted in using discontinuous functions to represent the variation of speculative prices. The next several steps consisted in introducing infinite-range (global) dependence to handle data from geophysics, beginning with hydrology (and also again in finance). This talk will detail the speaker's debt and gratitude toward several specialists from diverse areas of geophysics who had the greatest impact on fractal geometry in its formative period.
A Tutorial Review on Fractal Spacetime and Fractional Calculus
NASA Astrophysics Data System (ADS)
He, Ji-Huan
2014-11-01
This tutorial review of fractal-Cantorian spacetime and fractional calculus begins with Leibniz's notation for derivative without limits which can be generalized to discontinuous media like fractal derivative and q-derivative of quantum calculus. Fractal spacetime is used to elucidate some basic properties of fractal which is the foundation of fractional calculus, and El Naschie's mass-energy equation for the dark energy. The variational iteration method is used to introduce the definition of fractional derivatives. Fractal derivative is explained geometrically and q-derivative is motivated by quantum mechanics. Some effective analytical approaches to fractional differential equations, e.g., the variational iteration method, the homotopy perturbation method, the exp-function method, the fractional complex transform, and Yang-Laplace transform, are outlined and the main solution processes are given.
NASA Astrophysics Data System (ADS)
Cael, B. B.; Lambert, Bennett; Bisson, Kelsey
2015-11-01
Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.
Pond fractals in a tidal flat.
Cael, B B; Lambert, Bennett; Bisson, Kelsey
2015-11-01
Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces. PMID:26651668
Functional magnetic resonance imaging of the lung.
Biederer, J; Heussel, C P; Puderbach, M; Wielpuetz, M O
2014-02-01
Beyond being a substitute for X-ray, computed tomography, and scintigraphy, magnetic resonance imaging (MRI) inherently combines morphologic and functional information more than any other technology. Lung perfusion: The most established method is first-pass contrast-enhanced imaging with bolus injection of gadolinium chelates and time-resolved gradient-echo (GRE) sequences covering the whole lung (1 volume/s). Images are evaluated visually or semiquantitatively, while absolute quantification remains challenging due to the nonlinear relation of T1-shortening and contrast material concentration. Noncontrast-enhanced perfusion imaging is still experimental, either based on arterial spin labeling or Fourier decomposition. The latter is used to separate high- and low-frequency oscillations of lung signal related to the effects of pulsatile blood flow. Lung ventilation: Using contrast-enhanced first-pass perfusion, lung ventilation deficits are indirectly identified by hypoxic vasoconstriction. More direct but still experimental approaches use either inhalation of pure oxygen, an aerosolized contrast agent, or hyperpolarized noble gases. Fourier decomposition MRI based on the low-frequency lung signal oscillation allows for visualization of ventilation without any contrast agent. Respiratory mechanics: Time-resolved series with high background signal such as GRE or steady-state free precession visualize the movement of chest wall, diaphragm, mediastinum, lung tissue, tracheal wall, and tumor. The assessment of volume changes allows drawing conclusions on regional ventilation. With this arsenal of functional imaging capabilities at high spatial and temporal resolution but without radiation burden, MRI will find its role in regional functional lung analysis and will therefore overcome the sensitivity of global lung function analysis for repeated short-term treatment monitoring. PMID:24481761
[Recent progress of research and applications of fractal and its theories in medicine].
Cai, Congbo; Wang, Ping
2014-10-01
Fractal, a mathematics concept, is used to describe an image of self-similarity and scale invariance. Some organisms have been discovered with the fractal characteristics, such as cerebral cortex surface, retinal vessel structure, cardiovascular network, and trabecular bone, etc. It has been preliminarily confirmed that the three-dimensional structure of cells cultured in vitro could be significantly enhanced by bionic fractal surface. Moreover, fractal theory in clinical research will help early diagnosis and treatment of diseases, reducing the patient's pain and suffering. The development process of diseases in the human body can be expressed by the fractal theories parameter. It is of considerable significance to retrospectively review the preparation and application of fractal surface and its diagnostic value in medicine. This paper gives an application of fractal and its theories in the medical science, based on the research achievements in our laboratory. PMID:25764741
Fractal dimensions of sinkholes
NASA Astrophysics Data System (ADS)
Reams, Max W.
1992-05-01
Sinkhole perimeters are probably fractals ( D=1.209-1.558) for sinkholes with areas larger than 10,000 m 2, based on area-perimeter plots of digitized data from karst surfaces developed on six geologic units in the United States. The sites in Florida, Kentucky, Indiana and Missouri were studied using maps with a scale of 1:24, 000. Size-number distributions of sinkhole perimeters and areas may also be fractal, although data for small sinkholes is needed for verification. Studies based on small-scale maps are needed to evaluate the number and roughness of small sinkhole populations.
NASA Astrophysics Data System (ADS)
Cheng, Qiuming
2016-04-01
Singularity theory states that extreme geo-processes result in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval. The products (e.g. mass density and energy density) caused by extreme geo-processes depict singularity without the ordinary derivative and antiderivative (integration) properties. Based on the definition of fractal density, the density measured in fractal dimensional space, in the current paper the author is proposing several operations including fractal derivative and fractal integral to analyze singularity of fractal density. While the ordinary derivative including fractional derivatives as a fundamental tool measuring the sensitivity of change of function (quantity as dependent variable) with change of another quantity as independent variable, the changes are measured in the ordinary space with additive property, fractal derivative (antiderivative) measures the ratio of changes of two quantities measured in fractal space-fractal dimensional space. For example, if the limit of ratio of increment of quantity (Δf) over the associated increment of time (Δtα) measured in α - dimensional space approaches to a finite value, then the limit is referred a α-dimensional fractal derivative of function fand denoted as f' = lim Δf--= df- α Δt→0 Δtα dtα According to the definition of the fractal derivative the ordinary derivative becomes the special case if the space becomes non-fractal space with α value as an integer. In the rest of the paper we demonstrate that fractal density concept and fractal derivative can be applied in describing singularity property of products caused by extreme or avalanche events. The extreme earth-thermal processes such as hydrothermal mineralization occurred in the earth crust, heat flow over ocean ridges, igneous activities or juvenile crust grows, originated from cascade earth dynamics (mantle convection, plate tectonics, and continent crust grow etc.) were analyzed
Fractal Physiology and the Fractional Calculus: A Perspective
West, Bruce J.
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a
Fractal physiology and the fractional calculus: a perspective.
West, Bruce J
2010-01-01
This paper presents a restricted overview of Fractal Physiology focusing on the complexity of the human body and the characterization of that complexity through fractal measures and their dynamics, with fractal dynamics being described by the fractional calculus. Not only are anatomical structures (Grizzi and Chiriva-Internati, 2005), such as the convoluted surface of the brain, the lining of the bowel, neural networks and placenta, fractal, but the output of dynamical physiologic networks are fractal as well (Bassingthwaighte et al., 1994). The time series for the inter-beat intervals of the heart, inter-breath intervals and inter-stride intervals have all been shown to be fractal and/or multifractal statistical phenomena. Consequently, the fractal dimension turns out to be a significantly better indicator of organismic functions in health and disease than the traditional average measures, such as heart rate, breathing rate, and stride rate. The observation that human physiology is primarily fractal was first made in the 1980s, based on the analysis of a limited number of datasets. We review some of these phenomena herein by applying an allometric aggregation approach to the processing of physiologic time series. This straight forward method establishes the scaling behavior of complex physiologic networks and some dynamic models capable of generating such scaling are reviewed. These models include simple and fractional random walks, which describe how the scaling of correlation functions and probability densities are related to time series data. Subsequently, it is suggested that a proper methodology for describing the dynamics of fractal time series may well be the fractional calculus, either through the fractional Langevin equation or the fractional diffusion equation. A fractional operator (derivative or integral) acting on a fractal function, yields another fractal function, allowing us to construct a fractional Langevin equation to describe the evolution of a
Electromagnetic inverse applications for functional brain imaging
Wood, C.C.
1997-10-01
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addresses an important mathematical and computational problem in functional brain imaging, namely the electromagnetic {open_quotes}inverse problem.{close_quotes} Electromagnetic brain imaging techniques, magnetoencephalography (MEG) and electroencephalography (EEG), are based on measurements of electrical potentials and magnetic fields at hundreds of locations outside the human head. The inverse problem is the estimation of the locations, magnitudes, and time-sources of electrical currents in the brain from surface measurements. This project extends recent progress on the inverse problem by combining the use of anatomical constraints derived from magnetic resonance imaging (MRI) with Bayesian and other novel algorithmic approaches. The results suggest that we can achieve significant improvements in the accuracy and robustness of inverse solutions by these two approaches.
The Classification of HEp-2 Cell Patterns Using Fractal Descriptor.
Xu, Rudan; Sun, Yuanyuan; Yang, Zhihao; Song, Bo; Hu, Xiaopeng
2015-07-01
Indirect immunofluorescence (IIF) with HEp-2 cells is considered as a powerful, sensitive and comprehensive technique for analyzing antinuclear autoantibodies (ANAs). The automatic classification of the HEp-2 cell images from IIF has played an important role in diagnosis. Fractal dimension can be used on the analysis of image representing and also on the property quantification like texture complexity and spatial occupation. In this study, we apply the fractal theory in the application of HEp-2 cell staining pattern classification, utilizing fractal descriptor firstly in the HEp-2 cell pattern classification with the help of morphological descriptor and pixel difference descriptor. The method is applied to the data set of MIVIA and uses the support vector machine (SVM) classifier. Experimental results show that the fractal descriptor combining with morphological descriptor and pixel difference descriptor makes the precisions of six patterns more stable, all above 50%, achieving 67.17% overall accuracy at best with relatively simple feature vectors. PMID:26011888
Imaging the genetics of executive function.
Greene, Ciara M; Braet, Wouter; Johnson, Katherine A; Bellgrove, Mark A
2008-09-01
Recent advances in neuroimaging technologies have allowed ever more detailed studies of the human brain. The combination of neuroimaging techniques with genetics may provide a more sensitive measure of the influence of genetic variants on cognitive function than behavioural measures alone. Here we present a review of functional magnetic resonance imaging (fMRI) studies of genetic links to executive functions, focusing on sustained attention, working memory and response inhibition. In addition to studies in the normal population, we also address findings from three clinical populations: schizophrenia, ADHD and autism spectrum disorders. While the findings in the populations studied do not always converge, they all point to the usefulness of neuroimaging techniques such as fMRI as potential endophenotypes for parsing the genetic aetiology of executive function. PMID:18178303
Electroencephalographic imaging of higher brain function
NASA Technical Reports Server (NTRS)
Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.
1999-01-01
High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.
Taxonomy of Individual Variations in Aesthetic Responses to Fractal Patterns
Spehar, Branka; Walker, Nicholas; Taylor, Richard P.
2016-01-01
In two experiments, we investigate group and individual preferences in a range of different types of patterns with varying fractal-like scaling characteristics. In Experiment 1, we used 1/f filtered grayscale images as well as their thresholded (black and white) and edges only counterparts. Separate groups of observers viewed different types of images varying in slope of their amplitude spectra. Although with each image type, the groups exhibited the “universal” pattern of preference for intermediate amplitude spectrum slopes, we identified 4 distinct sub-groups in each case. Sub-group 1 exhibited a typical peak preference for intermediate amplitude spectrum slopes (“intermediate”; approx. 50%); sub-group 2 exhibited a linear increase in preference with increasing amplitude spectrum slope (“smooth”; approx. 20%), while sub-group 3 exhibited a linear decrease in preference as a function of the amplitude spectrum slope (“sharp”; approx. 20%). Sub-group 4 revealed no significant preference (“other”; approx. 10%). In Experiment 2, we extended the range of different image types and investigated preferences within the same observers. We replicate the results of our first experiment and show that individual participants exhibit stable patterns of preference across a wide range of image types. In both experiments, Q-mode factor analysis identified two principal factors that were able to explain more than 80% of interindividual variations in preference across all types of images, suggesting a highly similar dimensional structure of interindividual variations in preference for fractal-like scaling characteristics. PMID:27458365
ERIC Educational Resources Information Center
Camp, Dane R.
1991-01-01
After introducing the two-dimensional Koch curve, which is generated by simple recursions on an equilateral triangle, the process is extended to three dimensions with simple recursions on a regular tetrahedron. Included, for both fractal sequences, are iterative formulae, illustrations of the first several iterations, and a sample PASCAL program.…
ERIC Educational Resources Information Center
Marks, Tim K.
1992-01-01
Presents a three-lesson unit that uses fractal geometry to measure the coastline of Massachusetts. Two lessons provide hands-on activities utilizing compass and grid methods to perform the measurements and the third lesson analyzes and explains the results of the activities. (MDH)
Hsü, K J; Hsü, A J
1990-01-01
Music critics have compared Bach's music to the precision of mathematics. What "mathematics" and what "precision" are the questions for a curious scientist. The purpose of this short note is to suggest that the mathematics is, at least in part, Mandelbrot's fractal geometry and the precision is the deviation from a log-log linear plot. PMID:11607061
Flames in fractal grid generated turbulence
NASA Astrophysics Data System (ADS)
Goh, K. H. H.; Geipel, P.; Hampp, F.; Lindstedt, R. P.
2013-12-01
Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values ∼0.1 and ∼0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration.
A Fractal Perspective on Scale in Geography
NASA Astrophysics Data System (ADS)
Jiang, Bin; Brandt, S.
2016-06-01
Scale is a fundamental concept that has attracted persistent attention in geography literature over the past several decades. However, it creates enormous confusion and frustration, particularly in the context of geographic information science, because of scale-related issues such as image resolution, and the modifiable areal unit problem (MAUP). This paper argues that the confusion and frustration mainly arise from Euclidean geometric thinking, with which locations, directions, and sizes are considered absolute, and it is time to reverse this conventional thinking. Hence, we review fractal geometry, together with its underlying way of thinking, and compare it to Euclidean geometry. Under the paradigm of Euclidean geometry, everything is measurable, no matter how big or small. However, geographic features, due to their fractal nature, are essentially unmeasurable or their sizes depend on scale. For example, the length of a coastline, the area of a lake, and the slope of a topographic surface are all scale-dependent. Seen from the perspective of fractal geometry, many scale issues, such as the MAUP, are inevitable. They appear unsolvable, but can be dealt with. To effectively deal with scale-related issues, we introduce topological and scaling analyses based on street-related concepts such as natural streets, street blocks, and natural cities. We further contend that spatial heterogeneity, or the fractal nature of geographic features, is the first and foremost effect of two spatial properties, because it is general and universal across all scales. Keywords: Scaling, spatial heterogeneity, conundrum of length, MAUP, topological analysis
Fractal characteristics of fracture morphology of steels irradiated with high-energy ions
NASA Astrophysics Data System (ADS)
Xian, Yongqiang; Liu, Juan; Zhang, Chonghong; Chen, Jiachao; Yang, Yitao; Zhang, Liqing; Song, Yin
2015-06-01
A fractal analysis of fracture surfaces of steels (a ferritic/martensitic steel and an oxide-dispersion-strengthened ferritic steel) before and after the irradiation with high-energy ions is presented. Fracture surfaces were acquired from a tensile test and a small-ball punch test (SP). Digital images of the fracture surfaces obtained from scanning electron microscopy (SEM) were used to calculate the fractal dimension (FD) by using the pixel covering method. Boundary of binary image and fractal dimension were determined with a MATLAB program. The results indicate that fractal dimension can be an effective parameter to describe the characteristics of fracture surfaces before and after irradiation. The rougher the fracture surface, the larger the fractal dimension. Correlation of the change of fractal dimension with the embrittlement of the irradiated steels is discussed.
Structural and functional brain imaging in schizophrenia.
Cleghorn, J M; Zipursky, R B; List, S J
1991-01-01
We present an evaluation of the contribution of structural and functional brain imaging to our understanding of schizophrenia. Methodological influences on the validity of the data generated by these new technologies include problems with measurement and clinical and anatomic heterogeneity. These considerations greatly affect the interpretation of the data generated by these technologies. Work in these fields to date, however, has produced strong evidence which suggests that schizophrenia is a disease which involves abnormalities in the structure and function of many brain areas. Structural brain imaging studies of schizophrenia using computed tomography (CT) and magnetic resonance imaging (MRI) are reviewed and their contribution to current theories of the pathogenesis of schizophrenia are discussed. Positron emission tomography (PET) studies of brain metabolic activity and dopamine receptor binding in schizophrenia are summarized and the critical questions raised by these studies are outlined. Future studies in these fields have the potential to yield critical insights into the pathophysiology of schizophrenia; new directions for studies of schizophrenia using these technologies are identified. PMID:1911736
Functional MRI Using Regularized Parallel Imaging Acquisition
Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.
2013-01-01
Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694
Fractal geometry for atmospheric correction and canopy simulation
NASA Astrophysics Data System (ADS)
Tornow, Carmen
1996-06-01
Global climate modeling needs a good parameterization of the vegetative surface. Two of the main important parameters are the leaf area index (LAI) and the fraction of absorbed photosynthetically active radiation (FPAR). In order to derive these values from space and airborne spectral radiance measurements one needs information on the actual atmospheric state as well as good canopy models. First we have developed a retrieval method for the optical depth to perform an atmospheric correction of remote sensing data. The atmospheric influence reduces the global image contrast and acts as a low pass filter. We found that the autocorrelation function [ACF(lambda )(h)] of the image depends on the global image contrast C and on the fractal dimension s. Using multiple regression the spectral optical depth in the visible range can be estimated from C and s with an absolute accuracy of 0.021. This method was applied and tested for a number of rural TM scenes. Atmospheric correction allows us to calculate the canopy reflectance from the image data. The relationships between the canopy reflectance and LAI or FPAR can be determined from canopy radiative transfer modeling. Row and shadowing effects influence the bi-directional reflectance distribution function (BRDF) since the leaves and stems are real 3D objects. In order to use a ray tracer for 3D radiative transfer simulation the canopy should be described by simple shapes (discs, cylinders) and polygones. Lindenmayer systems which are based on the ideas of fractal geometry allow the construction of plants and trees in this way. We have created simple artificial plants and arranged them into rows to study shadowing and row effects and compute the BRDF in various spectral channels.
The chaotic atom model via a fractal approximation of motion
NASA Astrophysics Data System (ADS)
Agop, M.; Nica, P.; Gurlui, S.; Focsa, C.; Magop, D.; Borsos, Z.
2011-10-01
A new model of the atom is built based on a complete and detailed nonlinear dynamics analysis (complete time series, Poincaré sections, complete phase space, Lyapunov exponents, bifurcation diagrams and fractal analysis), through the correlation of the chaotic-stochastic model with a fractal one. Some specific mechanisms that ensure the atom functionality are proposed: gun, chaotic gun and multi-gun effects for the excited states (the classical analogue of quantum absorption) and the fractalization of the trajectories for the stationary states (a natural way of introducing the quantification).
SEVEN TOPICS IN FUNCTIONAL MAGNETIC RESONANCE IMAGING
BANDETTINI, PETER A.
2010-01-01
Functional MRI (fMRI) is a non-invasive brain imaging methodology that started in 1991 and allows human brain activation to be imaged at high resolution within only a few minutes. Because it has extremely high sensitivity, is relatively easy to implement, and can be performed on most standard clinical MRI scanners. It continues to grow at an explosive rate throughout the world. Over the years, at any given time, fMRI has been defined by only a handful of major topics that have been the focus of researchers using and developing the methodology. In this review, I attempt to take a snapshot of the field of fMRI as it is in mid-2009 by discussing the seven topics that I feel are most on the minds of fMRI researchers. The topics are, in no particular order or grouping: (1) Clinical impact, (2) Utilization of individual functional maps, (3) fMRI signal interpretation, (4) Pattern effect mapping and decoding, (5) Endogenous oscillations, (6) MRI technology, and (7) Alternative functional contrast mechanisms. Most of these topics are highly interdependent, each advancing as the others advance. While most fMRI involves applications towards clinical or neuroscience questions, all applications are fundamentally dependent on advances in basic methodology as well as advances in our understanding of the relationship between neuronal activity and fMRI signal changes. This review neglects almost completely an in-depth discussion of applications. Rather the discussions are on the methods and interpretation. PMID:19938211
Infrared Imaging System for Studying Brain Function
NASA Technical Reports Server (NTRS)
Mintz, Frederick; Mintz, Frederick; Gunapala, Sarath
2007-01-01
A proposed special-purpose infrared imaging system would be a compact, portable, less-expensive alternative to functional magnetic resonance imaging (fMRI) systems heretofore used to study brain function. Whereas a typical fMRI system fills a large room, and must be magnetically isolated, this system would fit into a bicycle helmet. The system would include an assembly that would be mounted inside the padding in a modified bicycle helmet or other suitable headgear. The assembly would include newly designed infrared photodetectors and data-acquisition circuits on integrated-circuit chips on low-thermal-conductivity supports in evacuated housings (see figure) arranged in multiple rows and columns that would define image coordinates. Each housing would be spring-loaded against the wearer s head. The chips would be cooled by a small Stirling Engine mounted contiguous to, but thermally isolated from, the portions of the assembly in thermal contact with the wearer s head. Flexible wires or cables for transmitting data from the aforementioned chips would be routed to an integrated, multichannel transmitter and thence through the top of the assembly to a patch antenna on the outside of the helmet. The multiple streams of data from the infrared-detector chips would be sent to a remote site, where they would be processed, by software, into a three-dimensional display of evoked potentials that would represent firing neuronal bundles and thereby indicate locations of neuronal activity associated with mental or physical activity. The 3D images will be analogous to current fMRI images. The data would also be made available, in real-time, for comparison with data in local or internationally accessible relational databases that already exist in universities and research centers. Hence, this system could be used in research on, and for the diagnosis of response from the wearer s brain to physiological, psychological, and environmental changes in real time. The images would also be
Fractal dimension based corneal fungal infection diagnosis
NASA Astrophysics Data System (ADS)
Balasubramanian, Madhusudhanan; Perkins, A. Louise; Beuerman, Roger W.; Iyengar, S. Sitharama
2006-08-01
We present a fractal measure based pattern classification algorithm for automatic feature extraction and identification of fungus associated with an infection of the cornea of the eye. A white-light confocal microscope image of suspected fungus exhibited locally linear and branching structures. The pixel intensity variation across the width of a fungal element was gaussian. Linear features were extracted using a set of 2D directional matched gaussian-filters. Portions of fungus profiles that were not in the same focal plane appeared relatively blurred. We use gaussian filters of standard deviation slightly larger than the width of a fungus to reduce discontinuities. Cell nuclei of cornea and nerves also exhibited locally linear structure. Cell nuclei were excluded by their relatively shorter lengths. Nerves in the cornea exhibited less branching compared with the fungus. Fractal dimensions of the locally linear features were computed using a box-counting method. A set of corneal images with fungal infection was used to generate class-conditional fractal measure distributions of fungus and nerves. The a priori class-conditional densities were built using an adaptive-mixtures method to reflect the true nature of the feature distributions and improve the classification accuracy. A maximum-likelihood classifier was used to classify the linear features extracted from test corneal images as 'normal' or 'with fungal infiltrates', using the a priori fractal measure distributions. We demonstrate the algorithm on the corneal images with culture-positive fungal infiltrates. The algorithm is fully automatic and will help diagnose fungal keratitis by generating a diagnostic mask of locations of the fungal infiltrates.
Fractal Particles: Titan's Thermal Structure and IR Opacity
NASA Technical Reports Server (NTRS)
McKay, C. P.; Rannou, P.; Guez, L.; Young, E. F.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
Titan's haze particles are the principle opacity at solar wavelengths. Most past work in modeling these particles has assumed spherical particles. However, observational evidence strongly favors fractal shapes for the haze particles. We consider the implications of fractal particles for the thermal structure and near infrared opacity of Titan's atmosphere. We find that assuming fractal particles with the optical properties based on laboratory tholin material and with a production rate that allows for a match to the geometric albedo results in warmer troposphere and surface temperatures compared to spherical particles. In the near infrared (1-3 microns) the predicted opacity of the fractal particles is up to a factor of two less than for spherical particles. This has implications for the ability of Cassini to image Titan's surface at 1 micron.
Fractal Analysis of Gas Diffusion in Porous Nanofibers
NASA Astrophysics Data System (ADS)
Xiao, Boqi; Fan, Jintu; Wang, Zongchi; Cai, Xin; Zhao, Xige
2015-02-01
In this study, with the consideration of pore size distribution and tortuosity of capillaries, the analytical model for gas diffusivity of porous nanofibers is derived based on fractal theory. The proposed fractal model for the normalized gas diffusivity (De/D0) is found to be a function of the porosity, the area fractal dimensions of pore and the fractal dimension of tortuous capillaries. It is found that the normalized gas diffusivity decreases with increasing of the tortuosity fractal dimension. However, the normalized gas diffusivity is positively correlated with the porosity. The prediction of the proposed fractal model for porous nanofibers with porosity less than 0.75 is highly consistent with the experimental and analytical results found in the literature. The model predictions are compared with the previously reported experimental data, and are in good agreement between the model predictions and experimental data is found. The validity of the present model is thus verified. Every parameter of the proposed formula of calculating the normalized gas diffusivity has clear physical meaning. The proposed fractal model can reveal the physical mechanisms of gas diffusion in porous nanofibers.
Ramakrishnan; Sadana
1998-12-15
The diffusion-limited binding kinetics of antigen (analyte) in solution to antibody (receptor) immobilized on a biosensor surface is analyzed within a fractal framework. Most of the data presented are adequately described by a single-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot ("Scientific Graphing Procedure, User's Manual," Jandel Scientific, San Rafael, CA, 1993). A couple of examples of a dual-fractal analysis are also presented. It is of interest to note that the binding rate coefficient and the fractal dimension both exhibit changes in the same direction for the analyte-receptor systems analyzed. Binding rate coefficient expressions as a function of the fractal dimension developed for the analyte-receptor binding systems indicate the high sensitivity of the binding rate coefficient on the fractal dimension when both a single- and a dual-fractal analysis are used. For example, for a single-fractal analysis and for the binding of cell surface proteins from Helicobacter pylori strain in solution to sialyl-(alpha-2,3)-lactose-conjugated (20 mol%) polyacrylamide immobilized on a resonant mirror biosensor (S. Hirmo et al., Anal. Biochem. 257, 63, 1998), the order of dependence of the binding rate coefficient, k, on the fractal dimension, Df, was 14.15. The fractional order of dependence of the binding rate coefficient(s) on the fractal dimension(s) further reinforces the fractal nature of the system. The binding rate coefficient(s) expressions developed as a function of the fractal dimension(s) are of particular value since they provide a means to better control biosensor performance by linking it to the heterogeneity on the surface and further emphasize in a quantitative sense the importance of the nature of the surface in biosensor performance. Copyright 1998 Academic Press. PMID:9845690
Turbulence on a Fractal Fourier Set.
Lanotte, Alessandra S; Benzi, Roberto; Malapaka, Shiva K; Toschi, Federico; Biferale, Luca
2015-12-31
A novel investigation of the nature of intermittency in incompressible, homogeneous, and isotropic turbulence is performed by a numerical study of the Navier-Stokes equations constrained on a fractal Fourier set. The robustness of the energy transfer and of the vortex stretching mechanisms is tested by changing the fractal dimension D from the original three dimensional case to a strongly decimated system with D=2.5, where only about 3% of the Fourier modes interact. This is a unique methodology to probe the statistical properties of the turbulent energy cascade, without breaking any of the original symmetries of the equations. While the direct energy cascade persists, deviations from the Kolmogorov scaling are observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the codimension of the fractal set E(k)∼k(-5/3+3-D) explains the results. At small scales, the intermittency of the vorticity field is observed to be quasisingular as a function of the fractal mode reduction, leading to an almost Gaussian statistics already at D∼2.98. These effects must be connected to a genuine modification in the triad-to-triad nonlinear energy transfer mechanism. PMID:26764993
Fractals in geology and geophysics
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1989-01-01
The definition of a fractal distribution is that the number of objects N with a characteristic size greater than r scales with the relation N of about r exp -D. The frequency-size distributions for islands, earthquakes, fragments, ore deposits, and oil fields often satisfy this relation. This application illustrates a fundamental aspect of fractal distributions, scale invariance. The requirement of an object to define a scale in photograhs of many geological features is one indication of the wide applicability of scale invariance to geological problems; scale invariance can lead to fractal clustering. Geophysical spectra can also be related to fractals; these are self-affine fractals rather than self-similar fractals. Examples include the earth's topography and geoid.
Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.
2012-09-15
Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.
Imaging Functional Nucleic Acid Delivery to Skin.
Kaspar, Roger L; Hickerson, Robyn P; González-González, Emilio; Flores, Manuel A; Speaker, Tycho P; Rogers, Faye A; Milstone, Leonard M; Contag, Christopher H
2016-01-01
Monogenic skin diseases arise from well-defined single gene mutations, and in some cases a single point mutation. As the target cells are superficial, these diseases are ideally suited for treatment by nucleic acid-based therapies as well as monitoring through a variety of noninvasive imaging technologies. Despite the accessibility of the skin, there remain formidable barriers for functional delivery of nucleic acids to the target cells within the dermis and epidermis. These barriers include the stratum corneum and the layered structure of the skin, as well as more locally, the cellular, endosomal and nuclear membranes. A wide range of technologies for traversing these barriers has been described and moderate success has been reported for several approaches. The lessons learned from these studies include the need for combinations of approaches to facilitate nucleic acid delivery across these skin barriers and then functional delivery across the cellular and nuclear membranes for expression (e.g., reporter genes, DNA oligonucleotides or shRNA) or into the cytoplasm for regulation (e.g., siRNA, miRNA, antisense oligos). The tools for topical delivery that have been evaluated include chemical, physical and electrical methods, and the development and testing of each of these approaches has been greatly enabled by imaging tools. These techniques allow delivery and real time monitoring of reporter genes, therapeutic nucleic acids and also triplex nucleic acids for gene editing. Optical imaging is comprised of a number of modalities based on properties of light-tissue interaction (e.g., scattering, autofluorescence, and reflectance), the interaction of light with specific molecules (e.g., absorbtion, fluorescence), or enzymatic reactions that produce light (bioluminescence). Optical imaging technologies operate over a range of scales from macroscopic to microscopic and if necessary, nanoscopic, and thus can be used to assess nucleic acid delivery to organs, regions, cells
Functional optical imaging at the microscopic level
Salazar Vázquez, Beatriz Y.; Hightower, Ciel Makena; Sapuppo, Francesca; Tartakovsky, Daniel M.; Intaglietta, Marcos
2010-01-01
Functional microscopic imaging of in vivo tissues aims at characterizing parameters at the level of the unitary cellular components under normal conditions, in the presence of blood flow, to understand and monitor phenomena that lead to maintaining homeostatic balance. Of principal interest are the setting of shear stress on the endothelium; formation of the plasma layer, where the balance between nitric oxide production and scavenging is established; and formation of the oxygen gradients that determine the distribution of oxygen from blood into the tissue. Optical techniques that enable the analysis of functional microvascular processes are the measurement of blood vessel dimensions by image shearing, the photometric analysis of the extent of the plasma layer, the dual-slit methodology for measuring blood flow velocity, and the direct measurement of oxygen concentration in blood and tissue. Each of these technologies includes the development of paired, related mathematical approaches that enable characterizing the transport properties of the blood tissue system. While the technology has been successful in analyzing the living tissue in experimental conditions, deployment to clinical settings remains an elusive goal, due to the difficulty of obtaining optical access to the depth of the tissue. PMID:20210428
NASA Astrophysics Data System (ADS)
Latka, Miroslaw; Glaubic-Latka, Marta; Latka, Dariusz; West, Bruce J.
2004-04-01
We study the middle cerebral artery blood flow velocity (MCAfv) in humans using transcranial Doppler ultrasonography (TCD). Scaling properties of time series of the axial flow velocity averaged over a cardiac beat interval may be characterized by two exponents. The short time scaling exponent (STSE) determines the statistical properties of fluctuations of blood flow velocities in short-time intervals while the Hurst exponent describes the long-term fractal properties. In many migraineurs the value of the STSE is significantly reduced and may approach that of the Hurst exponent. This change in dynamical properties reflects the significant loss of short-term adaptability and the overall hyperexcitability of the underlying cerebral blood flow control system. We call this effect fractal rigidity.
Fractal polyzirconosiloxane cluster coatings
Sugama, T.
1992-08-01
Fractal polyzirconosiloxane (PZS) cluster films were prepared through the hydrolysis-polycondensation-pyrolysis synthesis of two-step HCl acid-NaOH base catalyzed sol precursors consisting of N-[3-(triethoxysilyl)propyl]-4,5-dihydroimidazole, Zr(OC{sub 3}H{sub 7}){sub 4}, methanol, and water. When amorphous PZSs were applied to aluminum as protective coatings against NaCl-induced corrosion, the effective film was that derived from the sol having a pH near the isoelectric point in the positive zeta potential region. The following four factors played an important role in assembling the protective PZS coating films: (1) a proper rate of condensation, (2) a moderate ratio of Si-O-Si to Si-O-Zr linkages formed in the PZS network, (3) hydrophobic characteristics, and (4) a specific microstructural geometry, in which large fractal clusters were linked together.
Fractal polyzirconosiloxane cluster coatings
Sugama, T.
1992-01-01
Fractal polyzirconosiloxane (PZS) cluster films were prepared through the hydrolysis-polycondensation-pyrolysis synthesis of two-step HCl acid-NaOH base catalyzed sol precursors consisting of N-(3-(triethoxysilyl)propyl)-4,5-dihydroimidazole, Zr(OC{sub 3}H{sub 7}){sub 4}, methanol, and water. When amorphous PZSs were applied to aluminum as protective coatings against NaCl-induced corrosion, the effective film was that derived from the sol having a pH near the isoelectric point in the positive zeta potential region. The following four factors played an important role in assembling the protective PZS coating films: (1) a proper rate of condensation, (2) a moderate ratio of Si-O-Si to Si-O-Zr linkages formed in the PZS network, (3) hydrophobic characteristics, and (4) a specific microstructural geometry, in which large fractal clusters were linked together.
Suganthi, S S; Pradhap, S Singh Allmin; Ramakrishnan, S
2015-01-01
Observing and classifying the indirect immunofluorescence patterns on HEp-2 cells can help in detecting Anti-Nuclear-Antibodies. A computer algorithm to perform this function can lead to a more standardized, faster and accurate diagnosis of auto-immune diseases such as systemic lupus erythematosus, sjogrens syndrome, and rheumatoid arthritis. In this paper, HEp-2 staining patterns are classified using segmentation based fractal texture features. The images used for this experimentation are obtained from a publicly available database. The features extracted from a cell image is used to classify it into homogenous, fine speckled, coarse speckled, centromere and nucleolus. The cell images are segmented using the ground truth mask provided in the database. Adaptive histogram equalization is applied to the segmented images for contrast enhancement. Three features namely mean intensity, area and Hausdorff fractal dimension of the border are extracted for 8 different Otsu threshold levels. Finally, the 24 features thus extracted are fed to a support vector machine with Gaussian radial basis function kernel. It is observed that the overall accuracy of classification is 65.17%. The accuracy is greatly dependent on scaling and distribution of the features given to SVM. It appears that the segmentation based fractal texture features and SVM could help to build a robust automated diagnosis tool for auto-immune diseases. PMID:25996738
Wang Xujing; Becker, Frederick F.; Gascoyne, Peter R. C.
2010-12-15
The scale-invariant property of the cytoplasmic membrane of biological cells is examined by applying the Minkowski-Bouligand method to digitized scanning electron microscopy images of the cell surface. The membrane is found to exhibit fractal behavior, and the derived fractal dimension gives a good description of its morphological complexity. Furthermore, we found that this fractal dimension correlates well with the specific membrane dielectric capacitance derived from the electrorotation measurements. Based on these findings, we propose a new fractal single-shell model to describe the dielectrics of mammalian cells, and compare it with the conventional single-shell model (SSM). We found that while both models fit with experimental data well, the new model is able to eliminate the discrepancy between the measured dielectric property of cells and that predicted by the SSM.
The Calculation of Fractal Dimension in the Presence of Non-Fractal Clutter
NASA Technical Reports Server (NTRS)
Herren, Kenneth A.; Gregory, Don A.
1999-01-01
The area of information processing has grown dramatically over the last 50 years. In the areas of image processing and information storage the technology requirements have far outpaced the ability of the community to meet demands. The need for faster recognition algorithms and more efficient storage of large quantities of data has forced the user to accept less than lossless retrieval of that data for analysis. In addition to clutter that is not the object of interest in the data set, often the throughput requirements forces the user to accept "noisy" data and to tolerate the clutter inherent in that data. It has been shown that some of this clutter, both the intentional clutter (clouds, trees, etc) as well as the noise introduced on the data by processing requirements can be modeled as fractal or fractal-like. Traditional methods using Fourier deconvolution on these sources of noise in frequency space leads to loss of signal and can, in many cases, completely eliminate the target of interest. The parameters that characterize fractal-like noise (predominately the fractal dimension) have been investigated and a technique to reduce or eliminate noise from real scenes has been developed. Examples of clutter reduced images are presented.
Fractal multifiber microchannel plates
NASA Technical Reports Server (NTRS)
Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.
1992-01-01
The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.
NASA Astrophysics Data System (ADS)
Martin, Demetri
2015-03-01
Demetri Maritn prepared this palindromic poem as his project for Michael Frame's fractal geometry class at Yale. Notice the first, fourth, and seventh words in the second and next-to-second lines are palindromes, the first two and last two lines are palindromes, the middle line, "Be still if I fill its ebb" minus its last letter is a palindrome, and the entire poem is a palindrome...
NASA Astrophysics Data System (ADS)
Burdzy, Krzysztof; Hołyst, Robert; Pruski, Łukasz
2013-05-01
We investigate a process of random walks of a point particle on a two-dimensional square lattice of size n×n with periodic boundary conditions. A fraction p⩽20% of the lattice is occupied by holes (p represents macroporosity). A site not occupied by a hole is occupied by an obstacle. Upon a random step of the walker, a number of obstacles, M, can be pushed aside. The system approaches equilibrium in (nlnn)2 steps. We determine the distribution of M pushed in a single move at equilibrium. The distribution F(M) is given by Mγ where γ=-1.18 for p=0.1, decreasing to γ=-1.28 for p=0.01. Irrespective of the initial distribution of holes on the lattice, the final equilibrium distribution of holes forms a fractal with fractal dimension changing from a=1.56 for p=0.20 to a=1.42 for p=0.001 (for n=4,000). The trace of a random walker forms a distribution with expected fractal dimension 2.
Darwinian Evolution and Fractals
NASA Astrophysics Data System (ADS)
Carr, Paul H.
2009-05-01
Did nature's beauty emerge by chance or was it intelligently designed? Richard Dawkins asserts that evolution is blind aimless chance. Michael Behe believes, on the contrary, that the first cell was intelligently designed. The scientific evidence is that nature's creativity arises from the interplay between chance AND design (laws). Darwin's ``Origin of the Species,'' published 150 years ago in 1859, characterized evolution as the interplay between variations (symbolized by dice) and the natural selection law (design). This is evident in recent discoveries in DNA, Madelbrot's Fractal Geometry of Nature, and the success of the genetic design algorithm. Algorithms for generating fractals have the same interplay between randomness and law as evolution. Fractal statistics, which are not completely random, characterize such phenomena such as fluctuations in the stock market, the Nile River, rainfall, and tree rings. As chaos theorist Joseph Ford put it: God plays dice, but the dice are loaded. Thus Darwin, in discovering the evolutionary interplay between variations and natural selection, was throwing God's dice!
Fractals in physiology and medicine
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.; West, Bruce J.
1987-01-01
The paper demonstrates how the nonlinear concepts of fractals, as applied in physiology and medicine, can provide an insight into the organization of such complex structures as the tracheobronchial tree and heart, as well as into the dynamics of healthy physiological variability. Particular attention is given to the characteristics of computer-generated fractal lungs and heart and to fractal pathologies in these organs. It is shown that alterations in fractal scaling may underlie a number of pathophysiological disturbances, including sudden cardiac death syndromes.
Fractals in biology and medicine
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Ossadnik, S. M.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
Our purpose is to describe some recent progress in applying fractal concepts to systems of relevance to biology and medicine. We review several biological systems characterized by fractal geometry, with a particular focus on the long-range power-law correlations found recently in DNA sequences containing noncoding material. Furthermore, we discuss the finding that the exponent alpha quantifying these long-range correlations ("fractal complexity") is smaller for coding than for noncoding sequences. We also discuss the application of fractal scaling analysis to the dynamics of heartbeat regulation, and report the recent finding that the normal heart is characterized by long-range "anticorrelations" which are absent in the diseased heart.
Dimension of fractal basin boundaries
Park, B.S.
1988-01-01
In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.
Using fractal analysis of thermal signatures for thyroid disease evaluation
NASA Astrophysics Data System (ADS)
Gavriloaia, Gheorghe; Sofron, Emil; Gavriloaia, Mariuca-Roxana; Ghemigean, Adina-Mariana
2010-11-01
The skin is the largest organ of the body and it protects against heat, light, injury and infection. Skin temperature is an important parameter for diagnosing diseases. Thermal analysis is non-invasive, painless, and relatively inexpensive, showing a great potential research. Since the thyroid regulates metabolic rate it is intimately connected to body temperature, more than, any modification of its function generates a specific thermal image on the neck skin. The shapes of thermal signatures are often irregular in size and shape. Euclidean geometry is not able to evaluate their shape for different thyroid diseases, and fractal geometry is used in this paper. Different thyroid diseases generate different shapes, and their complexity are evaluated by specific mathematical approaches, fractal analysis, in order to the evaluate selfsimilarity and lacunarity. Two kinds of thyroid diseases, hyperthyroidism and papillary cancer are analyzed in this paper. The results are encouraging and show the ability to continue research for thermal signature to be used in early diagnosis of thyroid diseases.
Is the human left ventricle partially a fractal pump?
NASA Astrophysics Data System (ADS)
Moore, Brandon; Dasi, Lakshmi
2011-11-01
Ventricular systolic and diastolic dysfunctions represent a large portion of healthcare problems in the United States. Many of these problems are caused and/or characterized by their altered fluid-structure mechanics. The structure of the left ventricle in particular is complex with time dependent multi-scale geometric complexity. At relatively small scales, one facet that is still not well understood is the role of trabeculae in the pumping function of the left ventricle. We utilize fractal geometry tools to help characterize the complexity of the inner surface of the left ventricle at different times during the cardiac cycle. A high-resolution three dimensional model of the time dependent ventricular geometry was constructed from computed tomography (CT) images in a human. The scale dependent fractal dimension of the ventricle was determined using the box-counting algorithm over the cardiac cycle. It is shown that the trabeculae may indeed play an integral role in the biomechanics of pumping by regulating the mechanical leverage available to the cardiac muscle fibers.
Fractal analysis of narwhal space use patterns.
Laidre, Kristin L; Heide-Jørgensen, Mads P; Logsdon, Miles L; Hobbs, Roderick C; Dietz, Rune; VanBlaricom, Glenn R
2004-01-01
Quantifying animal movement in response to a spatially and temporally heterogeneous environment is critical to understanding the structural and functional landscape influences on population viability. Generalities of landscape structure can easily be extended to the marine environment, as marine predators inhabit a patchy, dynamic system, which influences animal choice and behavior. An innovative use of the fractal measure of complexity, indexing the linearity of movement paths over replicate temporal scales, was applied to satellite tracking data collected from narwhals (Monodon monoceros) (n = 20) in West Greenland and the eastern Canadian high Arctic. Daily movements of individuals were obtained using polar orbiting satellites via the ARGOS data location and collection system. Geographic positions were filtered to obtain a daily good quality position for each whale. The length of total pathway was measured over seven different temporal length scales (step lengths), ranging from one day to one week, and a seasonal mean was calculated. Fractal dimension (D) was significantly different between seasons, highest during summer (D = 1.61, SE 0.04) and winter (D = 1.69, SE 0.06) when whales made convoluted movements in focal areas. Fractal dimension was lowest during fall (D = 1.34, SE 0.03) when whales were migrating south ahead of the forming sea ice. There were no significant effects of size category or sex on fractal dimension by season. The greater linearity of movement during the migration period suggests individuals do not intensively forage on patchy resources until they arrive at summer or winter sites. The highly convoluted movements observed during summer and winter suggest foraging or searching efforts in localized areas. Significant differences between the fractal dimensions on two separate wintering grounds in Baffin Bay suggest differential movement patterns in response to the dynamics of sea ice. PMID:16351924
Characterisation of human non-proliferative diabetic retinopathy using the fractal analysis
Ţălu, Ştefan; Călugăru, Dan Mihai; Lupaşcu, Carmen Alina
2015-01-01
AIM To investigate and quantify changes in the branching patterns of the retina vascular network in diabetes using the fractal analysis method. METHODS This was a clinic-based prospective study of 172 participants managed at the Ophthalmological Clinic of Cluj-Napoca, Romania, between January 2012 and December 2013. A set of 172 segmented and skeletonized human retinal images, corresponding to both normal (24 images) and pathological (148 images) states of the retina were examined. An automatic unsupervised method for retinal vessel segmentation was applied before fractal analysis. The fractal analyses of the retinal digital images were performed using the fractal analysis software ImageJ. Statistical analyses were performed for these groups using Microsoft Office Excel 2003 and GraphPad InStat software. RESULTS It was found that subtle changes in the vascular network geometry of the human retina are influenced by diabetic retinopathy (DR) and can be estimated using the fractal geometry. The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is slightly lower than the corresponding values of mild non-proliferative DR (NPDR) images (segmented and skeletonized versions). The average of fractal dimensions D for the normal images (segmented and skeletonized versions) is higher than the corresponding values of moderate NPDR images (segmented and skeletonized versions). The lowest values were found for the corresponding values of severe NPDR images (segmented and skeletonized versions). CONCLUSION The fractal analysis of fundus photographs may be used for a more complete undeTrstanding of the early and basic pathophysiological mechanisms of diabetes. The architecture of the retinal microvasculature in diabetes can be quantitative quantified by means of the fractal dimension. Microvascular abnormalities on retinal imaging may elucidate early mechanistic pathways for microvascular complications and distinguish patients with DR from
Fractal analysis of Xylella fastidiosa biofilm formation
NASA Astrophysics Data System (ADS)
Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.
2009-07-01
We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.
Fractal analysis of bone structure with applications to osteoporosis and microgravity effects
Acharya, R.S.; Swarnarkar, V.; Krishnamurthy, R.; Hausman, E.; LeBlanc, A.; Lin, C.; Shackelford, L.
1995-12-31
The authors characterize the trabecular structure with the aid of fractal dimension. The authors use Alternating Sequential filters to generate a nonlinear pyramid for fractal dimension computations. The authors do not make any assumptions of the statistical distributions of the underlying fractal bone structure. The only assumption of the scheme is the rudimentary definition of self similarity. This allows them the freedom of not being constrained by statistical estimation schemes. With mathematical simulations, the authors have shown that the ASF methods outperform other existing methods for fractal dimension estimation. They have shown that the fractal dimension remains the same when computed with both the X-Ray images and the MRI images of the patella. They have shown that the fractal dimension of osteoporotic subjects is lower than that of the normal subjects. In animal models, the authors have shown that the fractal dimension of osteoporotic rats was lower than that of the normal rats. In a 17 week bedrest study, they have shown that the subject`s prebedrest fractal dimension is higher than that of the postbedrest fractal dimension.
Simulation of geological surfaces using fractals
Yfantis, E.A.; Flatman, G.T.; Englund, E.J.
1988-08-01
Methods suggests in the past for simulated ore concentration or pollution concentration over an area of interest, subject to the condition that the simulated surface is passing through specifying points, are based on the assumption of normality. A new method is introduced here which is a generalization of the subdivision method used in fractals. This method is based on the construction of a fractal plane-to-line function f(x, y, R, e, u), where (x, y) is in (a, b) x (c, d), R is the autocorrelation function, e is the resolution limit, and u is a random real function on (-l, l). The simulation using fractals escapes from any distribution assumptions of the data. The given network of points is connected to form quadrilaterals; each one of the quadrilaterals is split based on ways which are extensions of the well-known subdivision method. The quadrilaterals continue to split and grow until resolution obtained in both x and y directions is smaller than a prespecified resolution. If the x coordinate of the ith quadrilateral is in (a/sub i/, b/sub i/) and the y coordinate is in (c/sub i/, d/sub i/), the growth of this quadrilateral is a function of (b/sub i/ - a/sub i/) and (d/sub i/ - c/sub i/); the quadrilateral could grow toward the positive or negative z axis with equal probability forming four new quadrilaterals having a common vertex.
Fractal analysis of permeability near the wall in porous media
NASA Astrophysics Data System (ADS)
Liang, Mingchao; Yu, Boming; Li, Li; Yang, Shanshan; Zou, Mingqing
2014-01-01
In this paper, a fractal model for permeability of porous media is proposed based on Tamayol and Bahrami's method and the fractal theory for porous media. The proposed model is expressed as a function of the mean particle diameter, the length along the macroscopic pressure drop in the medium, porosity, fractal dimensions for pore space and tortuous capillaries, and the ratio of the minimum pore size to the maximum pore size. The relationship between the permeability near the wall and the dimensionless distance from the wall under different conditions is discussed in detail. The predictions by the present fractal model are in good agreement with available experimental data. The present results indicate that the present model may have the potential in comprehensively understanding the mechanisms of flow near the wall in porous media.
Static friction between rigid fractal surfaces
NASA Astrophysics Data System (ADS)
Alonso-Marroquin, Fernando; Huang, Pengyu; Hanaor, Dorian A. H.; Flores-Johnson, E. A.; Proust, Gwénaëlle; Gan, Yixiang; Shen, Luming
2015-09-01
Using spheropolygon-based simulations and contact slope analysis, we investigate the effects of surface topography and atomic scale friction on the macroscopically observed friction between rigid blocks with fractal surface structures. From our mathematical derivation, the angle of macroscopic friction is the result of the sum of the angle of atomic friction and the slope angle between the contact surfaces. The latter is obtained from the determination of all possible contact slopes between the two surface profiles through an alternative signature function. Our theory is validated through numerical simulations of spheropolygons with fractal Koch surfaces and is applied to the description of frictional properties of Weierstrass-Mandelbrot surfaces. The agreement between simulations and theory suggests that for interpreting macroscopic frictional behavior, the descriptors of surface morphology should be defined from the signature function rather than from the slopes of the contacting surfaces.
Fractal Segmentation and Clustering Analysis for Seismic Time Slices
NASA Astrophysics Data System (ADS)
Ronquillo, G.; Oleschko, K.; Korvin, G.; Arizabalo, R. D.
2002-05-01
Fractal analysis has become part of the standard approach for quantifying texture on gray-tone or colored images. In this research we introduce a multi-stage fractal procedure to segment, classify and measure the clustering patterns on seismic time slices from a 3-D seismic survey. Five fractal classifiers (c1)-(c5) were designed to yield standardized, unbiased and precise measures of the clustering of seismic signals. The classifiers were tested on seismic time slices from the AKAL field, Cantarell Oil Complex, Mexico. The generalized lacunarity (c1), fractal signature (c2), heterogeneity (c3), rugosity of boundaries (c4) and continuity resp. tortuosity (c5) of the clusters are shown to be efficient measures of the time-space variability of seismic signals. The Local Fractal Analysis (LFA) of time slices has proved to be a powerful edge detection filter to detect and enhance linear features, like faults or buried meandering rivers. The local fractal dimensions of the time slices were also compared with the self-affinity dimensions of the corresponding parts of porosity-logs. It is speculated that the spectral dimension of the negative-amplitude parts of the time-slice yields a measure of connectivity between the formation's high-porosity zones, and correlates with overall permeability.
Robust Sierpiński triangle fractals on symmetry-mismatched Ag(100).
Zhang, Xue; Li, Na; Liu, Liwei; Gu, Gaochen; Li, Chao; Tang, Hao; Peng, Lianmao; Hou, Shimin; Wang, Yongfeng
2016-08-18
Sierpiński triangle fractals were constructed on both Ag(111) and symmetry-mismatched fourfold Ag(100) surfaces through chemical reaction between H3PH molecules and Fe atoms under vacuum. Density functional theory calculations revealed that the fractals were stabilized by the strong coordination interaction between Fe and O atoms. In comparison, pure H3PH molecules formed fractals via moderately strong hydrogen bonds only on Ag(111), not on Ag(100). PMID:27498982
The fractal structure of the mitochondrial genomes
NASA Astrophysics Data System (ADS)
Oiwa, Nestor N.; Glazier, James A.
2002-08-01
The mitochondrial DNA genome has a definite multifractal structure. We show that loops, hairpins and inverted palindromes are responsible for this self-similarity. We can thus establish a definite relation between the function of subsequences and their fractal dimension. Intriguingly, protein coding DNAs also exhibit palindromic structures, although they do not appear in the sequence of amino acids. These structures may reflect the stabilization and transcriptional control of DNA or the control of posttranscriptional editing of mRNA.
Electromagnetism on anisotropic fractal media
NASA Astrophysics Data System (ADS)
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
NASA Astrophysics Data System (ADS)
Brothers, Harlan J.
2015-03-01
Benoit Mandelbrot always had a strong feeling that music could be viewed from a fractal perspective. However, without our eyes to guide us, how do we gain this perspective? Here we discuss precisely what it means to say that a piece of music is fractal.
Relationship between Fractal Dimension and Agreeability of Facial Imagery
NASA Astrophysics Data System (ADS)
Oyama-Higa, Mayumi; Miao, Tiejun; Ito, Tasuo
2007-11-01
Why do people feel happy and good or equivalently empathize more, with smiling face imageries than with ones of expressionless face? To understand what the essential factors are underlying imageries in relating to the feelings, we conducted an experiment by 84 subjects asked to estimate the degree of agreeability about expressionless and smiling facial images taken from 23 young persons to whom the subjects were no any pre-acquired knowledge. Images were presented one at a time to each subject who was asked to rank agreeability on a scale from 1 to 10. Fractal dimensions of facial images were obtained in order to characterize the complexity of the imageries by using of two types of fractal analysis methods, i.e., planar and cubic analysis methods, respectively. The results show a significant difference in the fractal dimension values between expressionless faces and smiling ones. Furthermore, we found a well correlation between the degree of agreeability and fractal dimensions, implying that the fractal dimension optically obtained in relation to complexity in imagery information is useful to characterize the psychological processes of cognition and awareness.
Preprocessing functions for computed radiography images in a PACS environment
NASA Astrophysics Data System (ADS)
McNitt-Gray, Michael F.; Pietka, Ewa; Huang, H. K.
1992-05-01
In a picture archiving and communications system (PACS), images are acquired from several modalities including computed radiography (CR). This modality has unique image characteristics and presents several problems that need to be resolved before the image is available for viewing at a display workstation. A set of preprocessing functions have been applied to all CR images in a PACS environment to enhance the display of images. The first function reformats CR images that are acquired with different plate sizes to a standard size for display. Another function removes the distracting white background caused by the collimation used at the time of exposure. A third function determines the orientation of each image and rotates those images that are in nonstandard positions into a standard viewing position. Another function creates a default look-up table based on the gray levels actually used by the image (instead of allocated gray levels). Finally, there is a function which creates (for chest images only) the piece-wise linear look-up tables that can be applied to enhance different tissue densities. These functions have all been implemented in a PACS environment. Each of these functions have been very successful in improving the viewing conditions of CR images and contribute to the clinical acceptance of PACS by reducing the effort required to display CR images.
Application of fractal dimensions to study the structure of flocs formed in lime softening process.
Vahedi, Arman; Gorczyca, Beata
2011-01-01
The use of fractal dimensions to study the internal structure and settling of flocs formed in lime softening process was investigated. Fractal dimensions of flocs were measured directly on floc images and indirectly from their settling velocity. An optical microscope with a motorized stage was used to measure the fractal dimensions of lime softening flocs directly on their images in 2 and 3D space. The directly determined fractal dimensions of the lime softening flocs were 1.11-1.25 for floc boundary, 1.82-1.99 for cross-sectional area and 2.6-2.99 for floc volume. The fractal dimension determined indirectly from the flocs settling rates was 1.87 that was different from the 3D fractal dimension determined directly on floc images. This discrepancy is due to the following incorrect assumptions used for fractal dimensions determined from floc settling rates: linear relationship between square settling velocity and floc size (Stokes' Law), Euclidean relationship between floc size and volume, constant fractal dimensions and one primary particle size describing entire population of flocs. Floc settling model incorporating variable floc fractal dimensions as well as variable primary particle size was found to describe the settling velocity of large (>50 μm) lime softening flocs better than Stokes' Law. Settling velocities of smaller flocs (<50 μm) could still be quite well predicted by Stokes' Law. The variation of fractal dimensions with lime floc size in this study indicated that two mechanisms are involved in the formation of these flocs: cluster-cluster aggregation for small flocs (<50 μm) and diffusion-limited aggregation for large flocs (>50 μm). Therefore, the relationship between the floc fractal dimension and floc size appears to be determined by floc formation mechanisms. PMID:20937512
A Fractal Analysis Approach for the Evaluation of Hybridization Kinetics in Biosensors.
Sadana, Ajit; Ramakrishnan, Anand
2001-02-01
The diffusion-limited hybridization kinetics of analyte in solution to a receptor immobilized on a biosensor or immunosensor surface is analyzed within a fractal framework. The data may be analyzed by a single- or a dual-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot (Sigmaplot, Scientific Graphing Software, User's Manual, Jandel Scientific, CA, 1993). It is of interest to note that the binding rate coefficient and the fractal dimension both exhibit changes, in general, in the same direction for both the single-fractal and the dual-fractal analysis examples presented. The binding rate coefficient expression developed as a function of the analyte concentration in solution and the fractal dimension is of particular value since it provides a means to better control biosensor or immunosensor performance. Copyright 2001 Academic Press. PMID:11161484
Vector calculus in non-integer dimensional space and its applications to fractal media
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
Analysis of Fractional Flow for Transient Two-Phase Flow in Fractal Porous Medium
NASA Astrophysics Data System (ADS)
Lu, Ting; Duan, Yonggang; Fang, Quantang; Dai, Xiaolu; Wu, Jinsui
2016-03-01
Prediction of fractional flow in fractal porous medium is important for reservoir engineering and chemical engineering as well as hydrology. A physical conceptual fractional flow model of transient two-phase flow is developed in fractal porous medium based on the fractal characteristics of pore-size distribution and on the approximation that porous medium consist of a bundle of tortuous capillaries. The analytical expression for fractional flow for wetting phase is presented, and the proposed expression is the function of structural parameters (such as tortuosity fractal dimension, pore fractal dimension, maximum and minimum diameters of capillaries) and fluid properties (such as contact angle, viscosity and interfacial tension) in fractal porous medium. The sensitive parameters that influence fractional flow and its derivative are formulated, and their impacts on fractional flow are discussed.
NASA Astrophysics Data System (ADS)
Doyle, Michael D.; Rabin, Harold; Suri, Jasjit S.
1991-04-01
Atechnique is proposed which uses fractal analysis for the non- traumatic and non-invasive quantification of trabecular bone density in the mandible using standard dental radiographs. Binary images of trabecular bone patterns are derived from digitized radiographic images. Fractal analysis is then used to calculate the Hausdorif dimension (D) of the binary image patterns. Variations in D calculated with this method can be correlated with known cases of systemic osteoporosis to establish normal and abnormal ranges for the value of D.
Self-organized one-atom thick fractal nanoclusters via field-induced atomic transport
NASA Astrophysics Data System (ADS)
Batabyal, R.; Mahato, J. C.; Das, Debolina; Roy, Anupam; Dev, B. N.
2013-08-01
We report on the growth of a monolayer thick fractal nanostructures of Ag on flat-top Ag islands, grown on Si(111). Upon application of a voltage pulse at an edge of the flat-top Ag island from a scanning tunneling microscope tip, Ag atoms climb from the edge onto the top of the island. These atoms aggregate to form precisely one-atom thick nanostructures of fractal nature. The fractal (Hausdorff) dimension, DH = 1.75 ± 0.05, of this nanostructure has been determined by analyzing the morphology of the growing nanocluster, imaged by scanning tunneling microscopy, following the application of the voltage pulse. This value of the fractal dimension is consistent with the diffusion limited aggregation (DLA) model. We also determined two other fractal dimensions based on perimeter-radius-of-gyration (DP) and perimeter-area (D'P) relationship. Simulations of the DLA process, with varying sticking probability, lead to different cluster morphologies [P. Meakin, Phys. Rev. A 27, 1495 (1983)]; however, the value of DH is insensitive to this difference in morphology. We suggest that the morphology can be characterized by additional fractal dimension(s) DP and/or D'P, besides DH. We also show that within the DLA process DP = DH [C. Amitrano et al., Phys. Rev. A 40, 1713 (1989)] is only a special case; in general, DP and DH can be unequal. Characterization of fractal morphology is important for fractals in nanoelectronics, as fractal morphology would determine the electron transport behavior.
Fractal Plate Reconstructions, Incorporating Asymmetric Spreading and Kinematics
NASA Astrophysics Data System (ADS)
Pilger, R.
2011-12-01
Accretionary plate boundaries - spreading centers and associated transform faults - possess fractal structure like coastlines. Their apparent length demonstrates self-similarity over a range of scales, maximizing multiplicity (entropy) in a recursive chaotic process. Further, optimal, combined oceanic plate reconstructions, incorporating asymmetric accretion over a range of ages produce fractal structure. The minimum fractal configuration as a function of the reconstruction parameters approximates the Lagrangian constraint (the information) in the maximum entropy formalism. The optimal fractal spectrum itself represents maximum entropy of the reconstructed data describing the spreading center for the preferred rotation parameters. Because fractals are intrinsically discontinuous (and analytic derivatives are unavailable), conventional non-linear least squares approaches are inapplicable. Instead, derivative-free, iterative conjugate gradient and simplex algorithms are utilized. In order to allow for kinematic calculations and integrated reconstructions of diverse data ages, parameters are spline-interpolated, rate-normalized, pseudo-vectors. The new formalism provides a unique fitting criterion and algorithm for simultaneous plate and spreading-center reconstruction and kinematics. It also provides a fractal template for reconstructions of other tectonic types.
Analysis of permeability for transient two-phase flow in fractal porous media
NASA Astrophysics Data System (ADS)
Tan, Xiao-Hua; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Guang-Dong; Zhang, Lie-Hui
2014-03-01
A relative permeability model for transient two-phase flow in fractal porous media is derived based on the fractal characteristics of pore size distribution and the assumption that porous media consists of capillary bundles. The functions in this model are tortuosity fractal dimension, pore fractal dimension, and maximum and minimum pore diameters. Every parameter has clear physical meaning without the use of empirical constants. Good agreement between model predictions and experimental data is obtained, the sensitive parameters that influence the relative permeability are specified and their effects on relative permeability are discussed.
A tutorial introduction to adaptive fractal analysis
Riley, Michael A.; Bonnette, Scott; Kuznetsov, Nikita; Wallot, Sebastian; Gao, Jianbo
2012-01-01
The authors present a tutorial description of adaptive fractal analysis (AFA). AFA utilizes an adaptive detrending algorithm to extract globally smooth trend signals from the data and then analyzes the scaling of the residuals to the fit as a function of the time scale at which the fit is computed. The authors present applications to synthetic mathematical signals to verify the accuracy of AFA and demonstrate the basic steps of the analysis. The authors then present results from applying AFA to time series from a cognitive psychology experiment on repeated estimation of durations of time to illustrate some of the complexities of real-world data. AFA shows promise in dealing with many types of signals, but like any fractal analysis method there are special challenges and considerations to take into account, such as determining the presence of linear scaling regions. PMID:23060804
Fractal characteristics for binary noise radar waveform
NASA Astrophysics Data System (ADS)
Li, Bing C.
2016-05-01
Noise radars have many advantages over conventional radars and receive great attentions recently. The performance of a noise radar is determined by its waveforms. Investigating characteristics of noise radar waveforms has significant value for evaluating noise radar performance. In this paper, we use binomial distribution theory to analyze general characteristics of binary phase coded (BPC) noise waveforms. Focusing on aperiodic autocorrelation function, we demonstrate that the probability distributions of sidelobes for a BPC noise waveform depend on the distances of these sidelobes to the mainlobe. The closer a sidelobe to the mainlobe, the higher the probability for this sidelobe to be a maximum sidelobe. We also develop Monte Carlo framework to explore the characteristics that are difficult to investigate analytically. Through Monte Carlo experiments, we reveal the Fractal relationship between the code length and the maximum sidelobe value for BPC waveforms, and propose using fractal dimension to measure noise waveform performance.
Design and application of quick computation program on fractal dimension of land-use types
NASA Astrophysics Data System (ADS)
Mei, Xin; Wang, Quanfang; Wang, Qian; Liu, Junyi
2009-07-01
Now the fractal dimension of Land Use Types is often calculated by using raster data as the raw data, but quite a number of spatial data is stored as vector data in fact. If these data are converted to images to calculate fractal dimension, perhaps some pixels with inaccurate grey value will result from the "GRID" structure of raster data. And the precision of fractal dimension calculated on raster Data is closely related to the size of pixel and Grid image.In view of this, In this paper, a computation program of the fractal dimension for 2D vector data based on Windows platform has been designed by using Visual Csharp. This program has been successfully applied to land-use data of the middle Qinling Mountains and the southeast of Hubei Province in China.in the 1990s. The results show that the program is a convenient, reliable and precise method of fractal dimension for 2D Vector Data.
Functional cardiac imaging by random access microscopy
Crocini, Claudia; Coppini, Raffaele; Ferrantini, Cecilia; Pavone, Francesco S.; Sacconi, Leonardo
2014-01-01
Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells. PMID:25368580
Imaging the wave functions of adsorbed molecules
Lüftner, Daniel; Ules, Thomas; Reinisch, Eva Maria; Koller, Georg; Soubatch, Serguei; Tautz, F. Stefan; Ramsey, Michael G.; Puschnig, Peter
2014-01-01
The basis for a quantum-mechanical description of matter is electron wave functions. For atoms and molecules, their spatial distributions and phases are known as orbitals. Although orbitals are very powerful concepts, experimentally only the electron densities and -energy levels are directly observable. Regardless whether orbitals are observed in real space with scanning probe experiments, or in reciprocal space by photoemission, the phase information of the orbital is lost. Here, we show that the experimental momentum maps of angle-resolved photoemission from molecular orbitals can be transformed to real-space orbitals via an iterative procedure which also retrieves the lost phase information. This is demonstrated with images obtained of a number of orbitals of the molecules pentacene (C22H14) and perylene-3,4,9,10-tetracarboxylic dianhydride (C24H8O6), adsorbed on silver, which are in excellent agreement with ab initio calculations. The procedure requires no a priori knowledge of the orbitals and is shown to be simple and robust. PMID:24344291
Dynamics of fractal cluster colloidal gels with embedded active Janus particles
NASA Astrophysics Data System (ADS)
Solomon, Michael; Szakasits, Megan; Zhang, Wenxuan
We find that fractal cluster gels of colloids in which platinum-coated Janus particles have been embedded exhibit enhanced mobility when the Janus particles are made active by the addition of hydrogen peroxide. Gelation is induced through addition of a divalent salt, magnesium chloride, to an initially stable suspension of Janus and polystyrene colloids, each of size about 1 micron. After the gels have been created, the embedded Janus colloids are activated by hydrogen peroxide, which is delivered to the system through a porous hydrogel membrane. We vary the ratio of active to passive colloids in the gels from about 1:20 to 1:8. Changes in structure and dynamics are visualized by two channel confocal laser scanning microscopy. By image analysis, we determine the particle positions and compute the mean squared displacement (MSD) of all particles in the gel. We measure the mobility enhancement in the fractal gels as a function of hydrogen peroxide concentration and Janus particle concentration and discuss the results in terms of the force provided by each active particle to the fractal gel network.
Functional and molecular image guidance in radiotherapy treatment planning optimization.
Das, Shiva K; Ten Haken, Randall K
2011-04-01
Functional and molecular imaging techniques are increasingly being developed and used to quantitatively map the spatial distribution of parameters, such as metabolism, proliferation, hypoxia, perfusion, and ventilation, onto anatomically imaged normal organs and tumor. In radiotherapy optimization, these imaging modalities offer the promise of increased dose sparing to high-functioning subregions of normal organs or dose escalation to selected subregions of the tumor as well as the potential to adapt radiotherapy to functional changes that occur during the course of treatment. The practical use of functional/molecular imaging in radiotherapy optimization must take into cautious consideration several factors whose influences are still not clearly quantified or well understood including patient positioning differences between the planning computed tomography and functional/molecular imaging sessions, image reconstruction parameters and techniques, image registration, target/normal organ functional segmentation, the relationship governing the dose escalation/sparing warranted by the functional/molecular image intensity map, and radiotherapy-induced changes in the image intensity map over the course of treatment. The clinical benefit of functional/molecular image guidance in the form of improved local control or decreased normal organ toxicity has yet to be shown and awaits prospective clinical trials addressing this issue. PMID:21356479
Inverted fractal analysis of TiOx thin layers grown by inverse pulsed laser deposition
NASA Astrophysics Data System (ADS)
Égerházi, L.; Smausz, T.; Bari, F.
2013-08-01
Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed fD = 1.83 ± 0.01 for TiOx layers grown at 5-50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of fD not only confirms the fractal structure of TiOx IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.
Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis
NASA Astrophysics Data System (ADS)
He, Hong-di; Wang, Jun-li; Wei, Hai-rui; Ye, Cheng; Ding, Yi
2016-02-01
In this paper, we investigate the fractal behavior of traffic volume in urban expressway based on a newly developed adaptive fractal analysis (AFA), which has a number of advantages over traditional method of detrended fluctuation analysis (DFA). Before fractal analysis, autocorrelation function was first adopted on traffic volume data and the long-range correlation behavior was found to be existed in both on-ramp and off-ramp situations. Then AFA as well as DFA was applied to further examine the fractal behavior. The results showed that the multifractality and the long-range anti-persistent behavior existed on both on-ramp and off-ramp. Additionally, multifractal analysis on weekdays and weekends are performed respectively and the results show that the degree of multifractality on weekdays is higher than that on weekends, implying that long-range correlation behaviors were more obvious on weekdays. Finally, the source of multifractality is examined with randomly shuffled and the surrogated series. Long-range correlation behaviors are identified in both on-ramp and off-ramp situations and fat-tail distributions were found to make little in the contributions of multifractality.
Functional Calcium Imaging in Developing Cortical Networks
Dawitz, Julia; Kroon, Tim; Hjorth, J.J. Johannes; Meredith, Rhiannon M.
2011-01-01
A hallmark pattern of activity in developing nervous systems is spontaneous, synchronized network activity. Synchronized activity has been observed in intact spinal cord, brainstem, retina, cortex and dissociated neuronal culture preparations. During periods of spontaneous activity, neurons depolarize to fire single or bursts of action potentials, activating many ion channels. Depolarization activates voltage-gated calcium channels on dendrites and spines that mediate calcium influx. Highly synchronized electrical activity has been measured from local neuronal networks using field electrodes. This technique enables high temporal sampling rates but lower spatial resolution due to integrated read-out of multiple neurons at one electrode. Single cell resolution of neuronal activity is possible using patch-clamp electrophysiology on single neurons to measure firing activity. However, the ability to measure from a network is limited to the number of neurons patched simultaneously, and typically is only one or two neurons. The use of calcium-dependent fluorescent indicator dyes has enabled the measurement of synchronized activity across a network of cells. This technique gives both high spatial resolution and sufficient temporal sampling to record spontaneous activity of the developing network. A key feature of newly-forming cortical and hippocampal networks during pre- and early postnatal development is spontaneous, synchronized neuronal activity (Katz & Shatz, 1996; Khaziphov & Luhmann, 2006). This correlated network activity is believed to be essential for the generation of functional circuits in the developing nervous system (Spitzer, 2006). In both primate and rodent brain, early electrical and calcium network waves are observed pre- and postnatally in vivo and in vitro (Adelsberger et al., 2005; Garaschuk et al., 2000; Lamblin et al., 1999). These early activity patterns, which are known to control several developmental processes including neuronal differentiation
Fractal texture analysis of the healing process after bone loss.
Borowska, Marta; Szarmach, Janusz; Oczeretko, Edward
2015-12-01
Radiological assessment of treatment effectiveness of guided bone regeneration (GBR) method in postresectal and postcystal bone loss cases, observed for one year. Group of 25 patients (17 females and 8 males) who underwent root resection with cystectomy were evaluated. The following combination therapy of intraosseous deficits was used, consisting of bone augmentation with xenogenic material together with covering regenerative membranes and tight wound closure. The bone regeneration process was estimated, comparing the images taken on the day of the surgery and 12 months later, by means of Kodak RVG 6100 digital radiography set. The interpretation of the radiovisiographic image depends on the evaluation ability of the eye looking at it, which leaves a large margin of uncertainty. So, several texture analysis techniques were developed and used sequentially on the radiographic image. For each method, the results were the mean from the 25 images. These methods compute the fractal dimension (D), each one having its own theoretic basis. We used five techniques for calculating fractal dimension: power spectral density method, triangular prism surface area method, blanket method, intensity difference scaling method and variogram analysis. Our study showed a decrease of fractal dimension during the healing process after bone loss. We also found evidence that various methods of calculating fractal dimension give different results. During the healing process after bone loss, the surfaces of radiographic images became smooth. The result obtained show that our findings may be of great importance for diagnostic purpose. PMID:26362075
Anatomic and functional imaging of tagged molecules in animals
Weisenberger, Andrew G.; Majewski, Stanislaw; Paulus, Michael J.; Gleason, Shaun S.
2007-04-24
A novel functional imaging system for use in the imaging of unrestrained and non-anesthetized small animals or other subjects and a method for acquiring such images and further registering them with anatomical X-ray images previously or subsequently acquired. The apparatus comprises a combination of an IR laser profilometry system and gamma, PET and/or SPECT, imaging system, all mounted on a rotating gantry, that permits simultaneous acquisition of positional and orientational information and functional images of an unrestrained subject that are registered, i.e. integrated, using image processing software to produce a functional image of the subject without the use of restraints or anesthesia. The functional image thus obtained can be registered with a previously or subsequently obtained X-ray CT image of the subject. The use of the system described herein permits functional imaging of a subject in an unrestrained/non-anesthetized condition thereby reducing the stress on the subject and eliminating any potential interference with the functional testing that such stress might induce.
Trabecular Bone Mechanical Properties and Fractal Dimension
NASA Technical Reports Server (NTRS)
Hogan, Harry A.
1996-01-01
Countermeasures for reducing bone loss and muscle atrophy due to extended exposure to the microgravity environment of space are continuing to be developed and improved. An important component of this effort is finite element modeling of the lower extremity and spinal column. These models will permit analysis and evaluation specific to each individual and thereby provide more efficient and effective exercise protocols. Inflight countermeasures and post-flight rehabilitation can then be customized and targeted on a case-by-case basis. Recent Summer Faculty Fellowship participants have focused upon finite element mesh generation, muscle force estimation, and fractal calculations of trabecular bone microstructure. Methods have been developed for generating the three-dimensional geometry of the femur from serial section magnetic resonance images (MRI). The use of MRI as an imaging modality avoids excessive exposure to radiation associated with X-ray based methods. These images can also detect trabecular bone microstructure and architecture. The goal of the current research is to determine the degree to which the fractal dimension of trabecular architecture can be used to predict the mechanical properties of trabecular bone tissue. The elastic modulus and the ultimate strength (or strain) can then be estimated from non-invasive, non-radiating imaging and incorporated into the finite element models to more accurately represent the bone tissue of each individual of interest. Trabecular bone specimens from the proximal tibia are being studied in this first phase of the work. Detailed protocols and procedures have been developed for carrying test specimens through all of the steps of a multi-faceted test program. The test program begins with MRI and X-ray imaging of the whole bones before excising a smaller workpiece from the proximal tibia region. High resolution MRI scans are then made and the piece further cut into slabs (roughly 1 cm thick). The slabs are X-rayed again
Exterior dimension of fat fractals
NASA Technical Reports Server (NTRS)
Grebogi, C.; Mcdonald, S. W.; Ott, E.; Yorke, J. A.
1985-01-01
Geometric scaling properties of fat fractal sets (fractals with finite volume) are discussed and characterized via the introduction of a new dimension-like quantity which is called the exterior dimension. In addition, it is shown that the exterior dimension is related to the 'uncertainty exponent' previously used in studies of fractal basin boundaries, and it is shown how this connection can be exploited to determine the exterior dimension. Three illustrative applications are described, two in nonlinear dynamics and one dealing with blood flow in the body. Possible relevance to porous materials and ballistic driven aggregation is also noted.
Functional brain imaging of trigeminal neuralgia.
Moisset, Xavier; Villain, Nicolas; Ducreux, Denis; Serrie, Alain; Cunin, Gérard; Valade, Dominique; Calvino, Bernard; Bouhassira, Didier
2011-02-01
We used functional magnetic resonance imaging (fMRI) to analyze changes in brain activity associated with stimulation of the cutaneous trigger zone in patients with classic trigeminal neuralgia (CTN). Fifteen consecutive patients with CTN in the second or third division of the nerve, were included in this study. The fMRI paradigm consisted of light tactile stimuli of the trigger zone and the homologous contralateral area. Stimulation of the affected side induced pain in seven patients, but was not painful in eight patients on the day of the experiment. Painful stimuli were associated with significantly increased activity in the spinal trigeminal nucleus (SpV), thalamus, primary and secondary somatosensory cortices (S1, S2), anterior cingulate cortex (ACC), insula, premotor/motor cortex, prefrontal areas, putamen, hippocampus and brainstem. Nonpainful stimulation of the trigger zone activated all but three of these structures (SpV, brainstem and ACC). After a successful surgical treatment, activation induced by stimulation of the operated side was confined to S1 and S2. Our data demonstrate the pathological hyperexcitability of the trigeminal nociceptive system, including the second order trigeminal sensory neurons during evoked attacks of CTN. Such sensitization may depend on pain modulatory systems involving both the brainstem (i.e. periaqueductal gray and adjacent structures) and interconnected cortical structures (i.e. ACC). The fact that large portions of the classical 'pain neuromatrix' were also activated during nonpainful stimulation of the trigger zone, could reflect a state of maintained sensitization of the trigeminal nociceptive systems in CTN. PMID:20609605
Optical imaging of fast, dynamic neurophysiological function.
Rector, D. M.; Carter, K. M.; Yao, X.; George, J. S.
2002-01-01
Fast evoked responses were imaged from rat dorsal medulla and whisker barrel cortex. To investigate the biophysical mechanisms involved, fast optical responses associated with isolated crustacean nerve stimulation were recorded using birefringence and scattered light. Such studies allow optimization of non-invasive imaging techniques being developed for use in humans.
Map of fluid flow in fractal porous medium into fractal continuum flow.
Balankin, Alexander S; Elizarraraz, Benjamin Espinoza
2012-05-01
This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided. PMID:23004869
Map of fluid flow in fractal porous medium into fractal continuum flow
NASA Astrophysics Data System (ADS)
Balankin, Alexander S.; Elizarraraz, Benjamin Espinoza
2012-05-01
This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow ds is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.
Overcoming Resistance with Fractals. A New Way to Teach Elementary Circuits.
ERIC Educational Resources Information Center
Ching, W. K.; And Others
1994-01-01
Students construct a Sierpinski gasket from resistors and measure its resistance as a function of size. Provides a brief review of what it means geometrically for the Sierpinski gasket to be fractal, followed by an explanation of how to analyze the electrical resistance on a gasket to find its fractal behavior. (MVL)
Fractality of light's darkness.
O'Holleran, Kevin; Dennis, Mark R; Flossmann, Florian; Padgett, Miles J
2008-02-01
Natural light fields are threaded by lines of darkness. For monochromatic light, the phenomenon is familiar in laser speckle, i.e., the black points that appear in the scattered light. These black points are optical vortices that extend as lines throughout the volume of the field. We establish by numerical simulations, supported by experiments, that these vortex lines have the fractal properties of a Brownian random walk. Approximately 73% of the lines percolate through the optical beam, the remainder forming closed loops. Our statistical results are similar to those of vortices in random discrete lattice models of cosmic strings, implying that the statistics of singularities in random optical fields exhibit universal behavior. PMID:18352372
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Klafter, Joseph
2008-09-01
The Central Limit Theorem (CLT) and Extreme Value Theory (EVT) study, respectively, the stochastic limit-laws of sums and maxima of sequences of independent and identically distributed (i.i.d.) random variables via an affine scaling scheme. In this research we study the stochastic limit-laws of populations of i.i.d. random variables via nonlinear scaling schemes. The stochastic population-limits obtained are fractal Poisson processes which are statistically self-similar with respect to the scaling scheme applied, and which are characterized by two elemental structures: (i) a universal power-law structure common to all limits, and independent of the scaling scheme applied; (ii) a specific structure contingent on the scaling scheme applied. The sum-projection and the maximum-projection of the population-limits obtained are generalizations of the classic CLT and EVT results - extending them from affine to general nonlinear scaling schemes.
Controlling Molecular Growth between Fractals and Crystals on Surfaces.
Zhang, Xue; Li, Na; Gu, Gao-Chen; Wang, Hao; Nieckarz, Damian; Szabelski, Paweł; He, Yang; Wang, Yu; Xie, Chao; Shen, Zi-Yong; Lü, Jing-Tao; Tang, Hao; Peng, Lian-Mao; Hou, Shi-Min; Wu, Kai; Wang, Yong-Feng
2015-12-22
Recent studies demonstrate that simple functional molecules, which usually form two-dimensional (2D) crystal structures when adsorbed on solid substrates, are also able to self-assemble into ordered openwork fractal aggregates. To direct and control the growth of such fractal supramolecules, it is necessary to explore the conditions under which both fractal and crystalline patterns develop and coexist. In this contribution, we study the coexistence of Sierpiński triangle (ST) fractals and 2D molecular crystals that were formed by 4,4″-dihydroxy-1,1':3',1″-terphenyl molecules on Au(111) in ultrahigh vacuum. Growth competition between the STs and 2D crystals was realized by tuning substrate and molecular surface coverage and changing the functional groups of the molecular building block. Density functional theory calculations and Monte Carlo simulations are used to characterize the process. Both experimental and theoretical results demonstrate the possibility of steering the surface self-assembly to generate fractal and nonfractal structures made up of the same molecular building block. PMID:26502984
Three-Dimensional Surface Parameters and Multi-Fractal Spectrum of Corroded Steel
Shanhua, Xu; Songbo, Ren; Youde, Wang
2015-01-01
To study multi-fractal behavior of corroded steel surface, a range of fractal surfaces of corroded surfaces of Q235 steel were constructed by using the Weierstrass-Mandelbrot method under a high total accuracy. The multi-fractal spectrum of fractal surface of corroded steel was calculated to study the multi-fractal characteristics of the W-M corroded surface. Based on the shape feature of the multi-fractal spectrum of corroded steel surface, the least squares method was applied to the quadratic fitting of the multi-fractal spectrum of corroded surface. The fitting function was quantitatively analyzed to simplify the calculation of multi-fractal characteristics of corroded surface. The results showed that the multi-fractal spectrum of corroded surface was fitted well with the method using quadratic curve fitting, and the evolution rules and trends were forecasted accurately. The findings can be applied to research on the mechanisms of corroded surface formation of steel and provide a new approach for the establishment of corrosion damage constitutive models of steel. PMID:26121468
Thermodynamics of Photons on Fractals
Akkermans, Eric; Dunne, Gerald V.; Teplyaev, Alexander
2010-12-03
A thermodynamical treatment of a massless scalar field (a photon) confined to a fractal spatial manifold leads to an equation of state relating pressure to internal energy, PV{sub s}=U/d{sub s}, where d{sub s} is the spectral dimension and V{sub s} defines the 'spectral volume'. For regular manifolds, V{sub s} coincides with the usual geometric spatial volume, but on a fractal this is not necessarily the case. This is further evidence that on a fractal, momentum space can have a different dimension than position space. Our analysis also provides a natural definition of the vacuum (Casimir) energy of a fractal. We suggest ways that these unusual properties might be probed experimentally.
Anomalous Diffusion in Fractal Globules
NASA Astrophysics Data System (ADS)
Tamm, M. V.; Nazarov, L. I.; Gavrilov, A. A.; Chertovich, A. V.
2015-05-01
The fractal globule state is a popular model for describing chromatin packing in eukaryotic nuclei. Here we provide a scaling theory and dissipative particle dynamics computer simulation for the thermal motion of monomers in the fractal globule state. Simulations starting from different entanglement-free initial states show good convergence which provides evidence supporting the existence of a unique metastable fractal globule state. We show monomer motion in this state to be subdiffusive described by ⟨X2(t )⟩˜tαF with αF close to 0.4. This result is in good agreement with existing experimental data on the chromatin dynamics, which makes an additional argument in support of the fractal globule model of chromatin packing.
Fractal Character of Titania Nanoparticles Formed by Laser Ablation
Musaev, O.; Midgley, A; Wrobel, J; Yan, J; Kruger, M
2009-01-01
Titania nanoparticles were fabricated by laser ablation of polycrystalline rutile in water at room temperature. The resulting nanoparticles were analyzed with x-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electron micrograph image of deposited nanoparticles demonstrates fractal properties.
Functional calcium imaging in zebrafish lateral-line hair cells.
Zhang, Q X; He, X J; Wong, H C; Kindt, K S
2016-01-01
Sensory hair-cell development, function, and regeneration are fundamental processes that are challenging to study in mammalian systems. Zebrafish are an excellent alternative model to study hair cells because they have an external auxiliary organ called the lateral line. The hair cells of the lateral line are easily accessible, which makes them suitable for live, function-based fluorescence imaging. In this chapter, we describe methods to perform functional calcium imaging in zebrafish lateral-line hair cells. We compare genetically encoded calcium indicators that have been used previously to measure calcium in lateral-line hair cells. We also outline equipment required for calcium imaging and compare different imaging systems. Lastly, we discuss how to set up optimal imaging parameters and how to process and visualize calcium signals. Overall, using these methods, in vivo calcium imaging is a powerful tool to examine sensory hair-cell function in an intact organism. PMID:27263415
Dynamic Ultrasound Imaging Applications to Quantify Musculoskeletal Function
Sikdar, Siddhartha; Wei, Qi; Cortes, Nelson
2014-01-01
Advances in imaging methods have led to new capability to study muscle and tendon motion in vivo. Direct measurements of muscle and tendon kinematics using imaging may lead to improved understanding of musculoskeletal function. This review presents quantitative ultrasound methods for muscle dynamics that can be used to assess in vivo musculoskeletal function when integrated with other conventional biomechanical measurements. PMID:24949846
Functional MR imaging as a new paradigm for image guidance.
Assumpcao, Lia; Choti, Michael; Pawlik, Timothy M; Gecshwind, Jean-Francois; Kamel, Ihab R
2009-11-01
Guidance and monitoring of locoregional minimally invasive treatment for primary or secondary liver tumor are critical to ensuring success and efficacy of therapy. In this article, we review advanced MR imaging techniques, including MR spectroscopy, diffusion and perfusion MR imaging, which can provide essential in vivo physiologic and metabolic information. These innovative imaging techniques can provide potential additional criteria to assess tumor response in addition to the accepted yet often limited Response Evaluation Criteria in Solid Tumors (RECIST) and the European Association for the Study of the Liver (EASL) criteria, which are based on decrease of tumor size and lesion enhancement, respectively. In this article, we also discuss the role of tumor size and enhancement in addition to apparent diffusion coefficient (ADC) findings after radiofrequency ablation (RFA), transarterial chemoembolization (TACE), and radioembolization. PMID:19048335
A Novel Fractal Coding Method Based on M-J Sets
Sun, Yuanyuan; Xu, Rudan; Chen, Lina; Kong, Ruiqing; Hu, Xiaopeng
2014-01-01
In this paper, we present a novel fractal coding method with the block classification scheme based on a shared domain block pool. In our method, the domain block pool is called dictionary and is constructed from fractal Julia sets. The image is encoded by searching the best matching domain block with the same BTC (Block Truncation Coding) value in the dictionary. The experimental results show that the scheme is competent both in encoding speed and in reconstruction quality. Particularly for large images, the proposed method can avoid excessive growth of the computational complexity compared with the traditional fractal coding algorithm. PMID:25010686
Fractal dynamics of bioconvective patterns
NASA Technical Reports Server (NTRS)
Noever, David A.
1991-01-01
Biologically generated cellular patterns, sometimes called bioconvective patterns, are found to cluster into aggregates which follow fractal growth dynamics akin to diffusion-limited aggregation (DLA) models. The pattern formed is self-similar with fractal dimension of 1.66 +/-0.038. Bioconvective DLA branching results from thermal roughening which shifts the balance between ordering viscous forces and disordering cell motility and random diffusion. The phase diagram for pattern morphology includes DLA, boundary spokes, random clusters, and reverse clusters.
Subband/Transform MATLAB Functions For Processing Images
NASA Technical Reports Server (NTRS)
Glover, D.
1995-01-01
SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.
Evolution of Fractal Parameters through Development Stage of Soil Crust
NASA Astrophysics Data System (ADS)
Ospina, Abelardo; Florentino, Adriana; Tarquis, Ana Maria
2016-04-01
Soil surface characteristics are subjected to changes driven by several interactions between water, air, biotic and abiotic components. One of the examples of such interactions is provided through biological soil crusts (BSC) in arid and semi-arid environments. BSC are communities composed of cyanobacteria, fungi, mosses, lichens, algae and liverworts covering the soil surface and play an important role in ecosystem functioning. The characteristics and formation of these BSC influence the soil hydrological balance, control the mass of eroded sediment, increase stability of soil surface, and influence plant productivity through the modification of nitrogen and carbon cycle. The site of this work is located at Quibor and Ojo de Agua (Lara state, Venezuela). The Quibor Depression in Venezuela is a major agricultural area being at semi-arid conditions and limited drainage favor the natural process of salinization. Additionally, the extension and intensification of agriculture has led to over-exploitation of groundwater in the past 30 years (Méndoza et al., 2013). The soil microbial crust develops initially on physical crusts which are mainly generated since wetting and drying, being a recurrent feature in the Quíbor arid zone. The microbiotic crust is organic, composed of macro organisms (bryophytes and lichens) and microorganisms (cyanobacteria, fungi algae, etc.); growing on the ground, forming a thickness no greater than 3 mm. For further details see Toledo and Florentino (2009). This study focus on characterize the development stage of the BSC based on image analysis. To this end, grayscale images of different types of biological soil crust at different stages where taken, each image corresponding to an area of 12.96 cm2 with a resolution of 1024x1024 pixels (Ospina et al., 2015). For each image lacunarity and fractal dimension through the differential box counting method were calculated. These were made with the software ImageJ/Fraclac (Karperien, 2013
Functional imaging of the brain using computed tomography.
Berninger, W H; Axel, L; Norman, D; Napel, S; Redington, R W
1981-03-01
Data from rapid-sequence CT scans of the same cross section, obtained following bolus injection of contrast material, were analyzed by functional imaging. The information contained in a large number of images can be compressed into one or two gray-scale images which can be evaluated both qualitatively and quantitatively. The computational techniques are described and applied to the generation of images depicting bolus transit time, arrival time, peak time, and effective width. PMID:7465851
Generating Text from Functional Brain Images
Pereira, Francisco; Detre, Greg; Botvinick, Matthew
2011-01-01
Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., “Apartment’’) while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., “door,” “window” for “Apartment’’). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602
Generating text from functional brain images.
Pereira, Francisco; Detre, Greg; Botvinick, Matthew
2011-01-01
Recent work has shown that it is possible to take brain images acquired during viewing of a scene and reconstruct an approximation of the scene from those images. Here we show that it is also possible to generate text about the mental content reflected in brain images. We began with images collected as participants read names of concrete items (e.g., "Apartment'') while also seeing line drawings of the item named. We built a model of the mental semantic representation of concrete concepts from text data and learned to map aspects of such representation to patterns of activation in the corresponding brain image. In order to validate this mapping, without accessing information about the items viewed for left-out individual brain images, we were able to generate from each one a collection of semantically pertinent words (e.g., "door," "window" for "Apartment''). Furthermore, we show that the ability to generate such words allows us to perform a classification task and thus validate our method quantitatively. PMID:21927602
Enhanced perceptual distance functions and indexing for image replica recognition.
Qamra, Arun; Meng, Yan; Chang, Edward Y
2005-03-01
The proliferation of digital images and the widespread distribution of digital data that has been made possible by the Internet has increased problems associated with copyright infringement on digital images. Watermarking schemes have been proposed to safeguard copyrighted images, but watermarks are vulnerable to image processing and geometric distortions and may not be very effective. Thus, the content-based detection of pirated images has become an important application. In this paper, we discuss two important aspects of such a replica detection system: distance functions for similarity measurement and scalability. We extend our previous work on perceptual distance functions, which proposed the Dynamic Partial Function (DPF), and present enhanced techniques that overcome the limitations of DPF. These techniques include the Thresholding, Sampling, and Weighting schemes. Experimental evaluations show superior performance compared to DPF and other distance functions. We then address the issue of using these perceptual distance functions to efficiently detect replicas in large image data sets. The problem of indexing is made challenging by the high-dimensionality and the nonmetric nature of the distance functions. We propose using Locality Sensitive Hashing (LSH) to index images while using the above perceptual distance functions and demonstrate good performance through empirical studies on a very large database of diverse images. PMID:15747793
Fractal geometry-based classification approach for the recognition of lung cancer cells
NASA Astrophysics Data System (ADS)
Xia, Deshen; Gao, Wenqing; Li, Hua
1994-05-01
This paper describes a new fractal geometry based classification approach for the recognition of lung cancer cells, which is used in the health inspection for lung cancers, because cancer cells grow much faster and more irregularly than normal cells do, the shape of the segmented cancer cells is very irregular and considered as a graph without characteristic length. We use Texture Energy Intensity Rn to do fractal preprocessing to segment the cells from the image and to calculate the fractal dimention value for extracting the fractal features, so that we can get the figure characteristics of different cancer cells and normal cells respectively. Fractal geometry gives us a correct description of cancer-cell shapes. Through this method, a good recognition of Adenoma, Squamous, and small cancer cells can be obtained.
Ugurbil, Kamil
2016-10-01
When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574313
Analysis of fractal electrodes for efficient neural stimulation
Golestanirad, Laleh; Elahi, Behzad; Molina, Alberto; Mosig, Juan R.; Pollo, Claudio; Chen, Robert; Graham, Simon J.
2013-01-01
Planar electrodes are increasingly used in therapeutic neural stimulation techniques such as functional electrical stimulation, epidural spinal cord stimulation (ESCS), and cortical stimulation. Recently, optimized electrode geometries have been shown to increase the efficiency of neural stimulation by increasing the variation of current density on the electrode surface. In the present work, a new family of modified fractal electrode geometries is developed to enhance the efficiency of neural stimulation. It is shown that a promising approach in increasing the neural activation function is to increase the “edginess” of the electrode surface, a concept that is explained and quantified by fractal mathematics. Rigorous finite element simulations were performed to compute electric potential produced by proposed modified fractal geometries. The activation of 256 model axons positioned around the electrodes was then quantified, showing that modified fractal geometries required a 22% less input power while maintaining the same level of neural activation. Preliminary in vivo experiments investigating muscle evoked potentials due to median nerve stimulation showed encouraging results, supporting the feasibility of increasing neural stimulation efficiency using modified fractal geometries. PMID:23874290
Towards a More General Type of Univariate Constrained Interpolation with Fractal Splines
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Viswanathan, P.; Reddy, K. M.
2015-09-01
Recently, in [Electron. Trans. Numer. Anal. 41 (2014) 420-442] authors introduced a new class of rational cubic fractal interpolation functions with linear denominators via fractal perturbation of traditional nonrecursive rational cubic splines and investigated their basic shape preserving properties. The main goal of the current paper is to embark on univariate constrained fractal interpolation that is more general than what was considered so far. To this end, we propose some strategies for selecting the parameters of the rational fractal spline so that the interpolating curves lie strictly above or below a prescribed linear or a quadratic spline function. Approximation property of the proposed rational cubic fractal spine is broached by using the Peano kernel theorem as an interlude. The paper also provides an illustration of background theory, veined by examples.
Functional knee assessment with advanced imaging.
Amano, Keiko; Li, Qi; Ma, C Benjamin
2016-06-01
The purpose of anterior cruciate ligament (ACL) reconstruction is to restore the native stability of the knee joint and to prevent further injury to meniscus and cartilage, yet studies have suggested that joint laxity remains prevalent in varying degrees after ACL reconstruction. Imaging can provide measurements of translational and rotational motions of the tibiofemoral joint that may be too small to detect in routine physical examinations. Various imaging modalities, including fluoroscopy, computed tomography (CT), and magnetic resonance imaging (MRI), have emerged as powerful methods in measuring the minute details involved in joint biomechanics. While each technique has its own strengths and limitations, they have all enhanced our understanding of the knee joint under various stresses and movements. Acquiring the knowledge of the complex and dynamic motions of the knee after surgery would help lead to improved surgical techniques and better patient outcomes. PMID:27052009
Estimating variability in functional images using a synthetic resampling approach
Maitra, R.; O`Sullivan, F.
1996-12-31
Functional imaging of biologic parameters like in vivo tissue metabolism is made possible by Positron Emission Tomography (PET). Many techniques, such as mixture analysis, have been suggested for extracting such images from dynamic sequences of reconstructed PET scans. Methods for assessing the variability in these functional images are of scientific interest. The nonlinearity of the methods used in the mixture analysis approach makes analytic formulae for estimating variability intractable. The usual resampling approach is infeasible because of the prohibitive computational effort in simulating a number of sinogram. datasets, applying image reconstruction, and generating parametric images for each replication. Here we introduce an approach that approximates the distribution of the reconstructed PET images by a Gaussian random field and generates synthetic realizations in the imaging domain. This eliminates the reconstruction steps in generating each simulated functional image and is therefore practical. Results of experiments done to evaluate the approach on a model one-dimensional problem are very encouraging. Post-processing of the estimated variances is seen to improve the accuracy of the estimation method. Mixture analysis is used to estimate functional images; however, the suggested approach is general enough to extend to other parametric imaging methods.
Quantitative Functional Morphology by Imaging Flow Cytometry.
Vorobjev, Ivan A; Barteneva, Natasha S
2016-01-01
This chapter describes advantages and limitations of imaging flow cytometry (IFC) based on Imagestream instrumentation using a hybrid approach of morphometric measurement and quantitation of multiparametric fluorescent intensities' distribution in cells and particles. Brief comparison is given of IFC with conventional flow cytometry and fluorescent microscopy. Some future directions of the IFC technology are described and discussed. PMID:27460234
Small-angle scattering from fat fractals
NASA Astrophysics Data System (ADS)
Anitas, Eugen M.
2014-06-01
A number of experimental small-angle scattering (SAS) data are characterized by a succession of power-law decays with arbitrarily decreasing values of scattering exponents. To describe such data, here we develop a new theoretical model based on 3D fat fractals (sets with fractal structure, but nonzero volume) and show how one can extract structural information about the underlying fractal structure. We calculate analytically the monodisperse and polydisperse SAS intensity (fractal form factor and structure factor) of a newly introduced model of fat fractals and study its properties in momentum space. The system is a 3D deterministic mass fractal built on an extension of the well-known Cantor fractal. The model allows us to explain a succession of power-law decays and respectively, of generalized power-law decays (GPLD; superposition of maxima and minima on a power-law decay) with arbitrarily decreasing scattering exponents in the range from zero to three. We show that within the model, the present analysis allows us to obtain the edges of all the fractal regions in the momentum space, the number of fractal iteration and the fractal dimensions and scaling factors at each structural level in the fractal. We applied our model to calculate an analytical expression for the radius of gyration of the fractal. The obtained quantities characterizing the fat fractal are correlated to variation of scaling factor with the iteration number.
Hyper-Fractal Analysis: A visual tool for estimating the fractal dimension of 4D objects
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Grossu, I.; Felea, D.; Besliu, C.; Jipa, Al.; Esanu, T.; Bordeianu, C. C.; Stan, E.
2013-04-01
This work presents a new version of a Visual Basic 6.0 application for estimating the fractal dimension of images and 3D objects (Grossu et al. (2010) [1]). The program was extended for working with four-dimensional objects stored in comma separated values files. This might be of interest in biomedicine, for analyzing the evolution in time of three-dimensional images. New version program summaryProgram title: Hyper-Fractal Analysis (Fractal Analysis v03) Catalogue identifier: AEEG_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEG_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 745761 No. of bytes in distributed program, including test data, etc.: 12544491 Distribution format: tar.gz Programming language: MS Visual Basic 6.0 Computer: PC Operating system: MS Windows 98 or later RAM: 100M Classification: 14 Catalogue identifier of previous version: AEEG_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 831-832 Does the new version supersede the previous version? Yes Nature of problem: Estimating the fractal dimension of 4D images. Solution method: Optimized implementation of the 4D box-counting algorithm. Reasons for new version: Inspired by existing applications of 3D fractals in biomedicine [3], we extended the optimized version of the box-counting algorithm [1, 2] to the four-dimensional case. This might be of interest in analyzing the evolution in time of 3D images. The box-counting algorithm was extended in order to support 4D objects, stored in comma separated values files. A new form was added for generating 2D, 3D, and 4D test data. The application was tested on 4D objects with known dimension, e.g. the Sierpinski hypertetrahedron gasket, Df=ln(5)/ln(2) (Fig. 1). The algorithm could be extended, with minimum effort, to
Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.
2012-01-01
The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285
On the response function separability of hyperspectral imaging systems
NASA Astrophysics Data System (ADS)
Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran
2015-05-01
Hyperspectral imaging systems effectively collect information across the spectral and two spatial dimensions by employing three main components: the front lens, the light-diffraction element and a camera. Imperfections in these components introduce spectral and spatial dependent distortions in the recorded hyperspectral image. These can be characterized by a 3D response function that is subsequently used to remove distortions and enhance the resolution of the recorded images by deconvolution. The majority of existing characterization methods assume spatial and spectral separability of the 3D response function. In this way, the complex problem of 3D response function characterization is reduced to independent characterizations of the three orthogonal response function components. However, if the 3D response function is non-separable, such characterization can lead to poor response function estimates, and hence inaccurate and distorted results of the subsequent deconvolution-based calibration and image enhancement. In this paper, we evaluate the influence of the spatial response function non-separability on the results of the calibration by deconvolution. For this purpose, a novel procedure for direct measurement of the 2D spatial response function is proposed along with a quantitative measure of the spatial response function non-separability. The quality of deconvolved images is assessed in terms of full width at half maximum (FWHM) and step edge overshoot magnitude observed in the deconvolved images of slanted edges, images of biological slides, and 1951 USAF resolution test chart. Results show that there are cases, when nonseparability of the system response function is significant and should be considered by the deconvolution-based calibration and image enhancement methods.
Fractal prediction model of thermal contact conductance of rough surfaces
NASA Astrophysics Data System (ADS)
Ji, Cuicui; Zhu, Hua; Jiang, Wei
2013-01-01
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.
Energy and Laplacian on Hanoi-type fractal quantum graphs
NASA Astrophysics Data System (ADS)
Alonso-Ruiz, Patricia; Kelleher, Daniel J.; Teplyaev, Alexander
2016-04-01
This article studies potential theory and spectral analysis on compact metric spaces, which we refer to as fractal quantum graphs. These spaces can be represented as a (possibly infinite) union of one-dimensional intervals and a totally disconnected (possibly uncountable) compact set, which roughly speaking represents the set of junction points. Classical quantum graphs and fractal spaces such as the Hanoi attractor are included among them. We begin with proving the existence of a resistance form on the Hanoi attractor, and go on to establish heat kernel estimates and upper and lower bounds on the eigenvalue counting function of Laplacians corresponding to weakly self-similar measures on the Hanoi attractor. These estimates and bounds rely heavily on the relation between the length and volume scaling factors of the fractal. We then state and prove a necessary and sufficient condition for the existence of a resistance form on a general fractal quantum graph. Finally, we extend our spectral results to a large class of weakly self-similar fractal quantum graphs.
The topological insulator in a fractal space
Song, Zhi-Gang; Zhang, Yan-Yang; Li, Shu-Shen
2014-06-09
We investigate the band structures and transport properties of a two-dimensional model of topological insulator, with a fractal edge or a fractal bulk. A fractal edge does not affect the robust transport even when the fractal pattern has reached the resolution of the atomic-scale, because the bulk is still well insulating against backscattering. On the other hand, a fractal bulk can support the robust transport only when the fractal resolution is much larger than a critical size. Smaller resolution of bulk fractal pattern will lead to remarkable backscattering and localization, due to strong couplings of opposite edge states on narrow sub-edges which appear almost everywhere in the fractal bulk.
Analysis of fractals with combined partition
NASA Astrophysics Data System (ADS)
Dedovich, T. G.; Tokarev, M. V.
2016-03-01
The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.
Fractal dimension in nonhyperbolic chaotic scattering
NASA Technical Reports Server (NTRS)
Lau, Yun-Tung; Finn, John M.; Ott, Edward
1991-01-01
In chaotic scattering there is a Cantor set of input-variable values of zero Lebesgue measure (i.e., zero total length) on which the scattering function is singular. For cases where the dynamics leading to chaotic scattering is nonhyperbolic (e.g., there are Kolmogorov-Arnol'd-Moser tori), the nature of this singular set is fundamentally different from that in the hyperbolic case. In particular, for the nonhyperbolic case, although the singular set has zero total length, strong evidence is presented to show that its fractal dimension is 1.
Functional Imaging and Related Techniques: An Introduction for Rehabilitation Researchers
Crosson, Bruce; Ford, Anastasia; McGregor, Keith M.; Meinzer, Marcus; Cheshkov, Sergey; Li, Xiufeng; Walker-Batson, Delaina; Briggs, Richard W.
2010-01-01
Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques. PMID:20593321
The fractal aggregation of asphaltenes.
Hoepfner, Michael P; Fávero, Cláudio Vilas Bôas; Haji-Akbari, Nasim; Fogler, H Scott
2013-07-16
This paper discusses time-resolved small-angle neutron scattering results that were used to investigate asphaltene structure and stability with and without a precipitant added in both crude oil and model oil. A novel approach was used to isolate the scattering from asphaltenes that are insoluble and in the process of aggregating from those that are soluble. It was found that both soluble and insoluble asphaltenes form fractal clusters in crude oil and the fractal dimension of the insoluble asphaltene clusters is higher than that of the soluble clusters. Adding heptane also increases the size of soluble asphaltene clusters without modifying the fractal dimension. Understanding the process of insoluble asphaltenes forming fractals with higher fractal dimensions will potentially reveal the microscopic asphaltene destabilization mechanism (i.e., how a precipitant modifies asphaltene-asphaltene interactions). It was concluded that because of the polydisperse nature of asphaltenes, no well-defined asphaltene phase stability envelope exists and small amounts of asphaltenes precipitated even at dilute precipitant concentrations. Asphaltenes that are stable in a crude oil-precipitant mixture are dispersed on the nanometer length scale. An asphaltene precipitation mechanism is proposed that is consistent with the experimental findings. Additionally, it was found that the heptane-insoluble asphaltene fraction is the dominant source of small-angle scattering in crude oil and the previously unobtainable asphaltene solubility at low heptane concentrations was measured. PMID:23808932
Renal relevant radiology: renal functional magnetic resonance imaging.
Ebrahimi, Behzad; Textor, Stephen C; Lerman, Lilach O
2014-02-01
Because of its noninvasive nature and provision of quantitative measures of a wide variety of physiologic parameters, functional magnetic resonance imaging (MRI) shows great potential for research and clinical applications. Over the past decade, application of functional MRI extended beyond detection of cerebral activity, and techniques for abdominal functional MRI evolved. Assessment of renal perfusion, glomerular filtration, interstitial diffusion, and parenchymal oxygenation turned this modality into an essential research and potentially diagnostic tool. Variations in many renal physiologic markers can be detected using functional MRI before morphologic changes become evident in anatomic magnetic resonance images. Moreover, the framework of functional MRI opened a window of opportunity to develop novel pathophysiologic markers. This article reviews applications of some well validated functional MRI techniques, including perfusion, diffusion-weighted imaging, and blood oxygen level-dependent MRI, as well as some emerging new techniques such as magnetic resonance elastography, which might evolve into clinically useful tools. PMID:24370767
Placental morphologic and functional imaging in high-risk pregnancies.
Gudmundsson, Saemundur; Dubiel, Mariusz; Sladkevicius, Povilas
2009-08-01
The placenta is vital for fetal growth and development. Improvement in ultrasound and magnetic resonance imaging have improved our understanding of placental morphology that can be important as in the case of placental accrete/percreta. Functional imaging is presently mainly performed by the use of Doppler ultrasound and can give information on placental perfusion, which can be vital for clinical diagnosis. This review summarizes the present knowledge on placental imaging and it's clinical value in high-risk pregnancies. PMID:19631087
Power-law hereditariness of hierarchical fractal bones.
Deseri, Luca; Di Paola, Mario; Zingales, Massimiliano; Pollaci, Pietro
2013-12-01
In this paper, the authors introduce a hierarchic fractal model to describe bone hereditariness. Indeed, experimental data of stress relaxation or creep functions obtained by compressive/tensile tests have been proved to be fit by power law with real exponent 0 ⩽ β ⩽1. The rheological behavior of the material has therefore been obtained, using the Boltzmann-Volterra superposition principle, in terms of real order integrals and derivatives (fractional-order calculus). It is shown that the power laws describing creep/relaxation of bone tissue may be obtained by introducing a fractal description of bone cross-section, and the Hausdorff dimension of the fractal geometry is then related to the exponent of the power law. PMID:23836622
Fractal dimension of microbead assemblies used for protein detection
Hecht, Ariel; Commiskey, Patrick; Lazaridis, Filippos; Argyrakis, Panos
2014-01-01
We use fractal analysis to calculate the protein concentration in a rotating magnetic assembly of microbeads of size 1μm, which has optimized parameters of sedimentation, binding sites and magnetic volume. We utilize the original Forrest-Witten method, but due to the relatively small number of bead particles, which is of the order of 500, we use a large number of origins and also a large number of algorithm iterations. We find a value of the fractal dimension in the range 1.70–1.90, as a function of the thrombin concentration, which plays the role of binding the microbeads together. This is in good agreement with previous results from magnetorotation studies. The calculation of the fractal dimension using multiple points of reference can be used for any assembly with a relatively small number of particles. PMID:25195559
Fractal mechanisms in the electrophysiology of the heart
NASA Technical Reports Server (NTRS)
Goldberger, A. L.
1992-01-01
The mathematical concept of fractals provides insights into complex anatomic branching structures that lack a characteristic (single) length scale, and certain complex physiologic processes, such as heart rate regulation, that lack a single time scale. Heart rate control is perturbed by alterations in neuro-autonomic function in a number of important clinical syndromes, including sudden cardiac death, congestive failure, cocaine intoxication, fetal distress, space sickness and physiologic aging. These conditions are associated with a loss of the normal fractal complexity of interbeat interval dynamics. Such changes, which may not be detectable using conventional statistics, can be quantified using new methods derived from "chaos theory.".
Nonlinear dynamics, fractals, cardiac physiology and sudden death
NASA Technical Reports Server (NTRS)
Goldberger, Ary L.
1987-01-01
The authors propose a diametrically opposite viewpoint to the generally accepted tendency of equating healthy function with order and disease with chaos. With regard to the question of sudden cardiac death and chaos, it is suggested that certain features of dynamical chaos related to fractal structure and fractal dynamics may be important organizing principles in normal physiology and that certain pathologies, including ventricular fibrillation, represent a class of 'pathological periodicities'. Some laboratory work bearing on the relation of nonlinear analysis to physiological and pathophysiological data is briefly reviewed, with tentative theories and models described in reference to the mechanism of ventricular fibrillation.
Hermann, Philipp; Mrkvička, Tomáš; Mattfeldt, Torsten; Minárová, Mária; Helisová, Kateřina; Nicolis, Orietta; Wartner, Fabian; Stehlík, Milan
2015-08-15
Fractals are models of natural processes with many applications in medicine. The recent studies in medicine show that fractals can be applied for cancer detection and the description of pathological architecture of tumors. This fact is not surprising, as due to the irregular structure, cancerous cells can be interpreted as fractals. Inspired by Sierpinski carpet, we introduce a flexible parametric model of random carpets. Randomization is introduced by usage of binomial random variables. We provide an algorithm for estimation of parameters of the model and illustrate theoretical and practical issues in generation of Sierpinski gaskets and Hausdorff measure calculations. Stochastic geometry models can also serve as models for binary cancer images. Recently, a Boolean model was applied on the 200 images of mammary cancer tissue and 200 images of mastopathic tissue. Here, we describe the Quermass-interaction process, which can handle much more variations in the cancer data, and we apply it to the images. It was found out that mastopathic tissue deviates significantly stronger from Quermass-interaction process, which describes interactions among particles, than mammary cancer tissue does. The Quermass-interaction process serves as a model describing the tissue, which structure is broken to a certain level. However, random fractal model fits well for mastopathic tissue. We provide a novel discrimination method between mastopathic and mammary cancer tissue on the basis of complex wavelet-based self-similarity measure with classification rates more than 80%. Such similarity measure relates to Hurst exponent and fractional Brownian motions. The R package FractalParameterEstimation is developed and introduced in the paper. PMID:25847279
A Fractal Nature for Polymerized Laminin
Hochman-Mendez, Camila; Cantini, Marco; Moratal, David; Salmeron-Sanchez, Manuel; Coelho-Sampaio, Tatiana
2014-01-01
Polylaminin (polyLM) is a non-covalent acid-induced nano- and micro-structured polymer of the protein laminin displaying distinguished biological properties. Polylaminin stimulates neuritogenesis beyond the levels achieved by ordinary laminin and has been shown to promote axonal regeneration in animal models of spinal cord injury. Here we used confocal fluorescence microscopy (CFM), scanning electron microscopy (SEM) and atomic force microscopy (AFM) to characterize its three-dimensional structure. Renderization of confocal optical slices of immunostained polyLM revealed the aspect of a loose flocculated meshwork, which was homogeneously stained by the antibody. On the other hand, an ordinary matrix obtained upon adsorption of laminin in neutral pH (LM) was constituted of bulky protein aggregates whose interior was not accessible to the same anti-laminin antibody. SEM and AFM analyses revealed that the seed unit of polyLM was a flat polygon formed in solution whereas the seed structure of LM was highly heterogeneous, intercalating rod-like, spherical and thin spread lamellar deposits. As polyLM was visualized at progressively increasing magnifications, we observed that the morphology of the polymer was alike independently of the magnification used for the observation. A search for the Hausdorff dimension in images of the two matrices showed that polyLM, but not LM, presented fractal dimensions of 1.55, 1.62 and 1.70 after 1, 8 and 12 hours of adsorption, respectively. Data in the present work suggest that the intrinsic fractal nature of polymerized laminin can be the structural basis for the fractal-like organization of basement membranes in the neurogenic niches of the central nervous system. PMID:25296244
Applications of Fractal Analytical Techniques in the Estimation of Operational Scale
NASA Technical Reports Server (NTRS)
Emerson, Charles W.; Quattrochi, Dale A.
2000-01-01
The observational scale and the resolution of remotely sensed imagery are essential considerations in the interpretation process. Many atmospheric, hydrologic, and other natural and human-influenced spatial phenomena are inherently scale dependent and are governed by different physical processes at different spatial domains. This spatial and operational heterogeneity constrains the ability to compare interpretations of phenomena and processes observed in higher spatial resolution imagery to similar interpretations obtained from lower resolution imagery. This is a particularly acute problem, since longterm global change investigations will require high spatial resolution Earth Observing System (EOS), Landsat 7, or commercial satellite data to be combined with lower resolution imagery from older sensors such as Landsat TM and MSS. Fractal analysis is a useful technique for identifying the effects of scale changes on remotely sensed imagery. The fractal dimension of an image is a non-integer value between two and three which indicates the degree of complexity in the texture and shapes depicted in the image. A true fractal surface exhibits self-similarity, a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution, and the slope of the fractal dimension-resolution relationship would be zero. Most geographical phenomena, however, are not self-similar at all scales, but they can be modeled by a stochastic fractal in which the scaling properties of the image exhibit patterns that can be described by statistics such as area-perimeter ratios and autocovariances. Stochastic fractal sets relax the self-similarity assumption and measure many scales and
A New Fractal Model of Chromosome and DNA Processes
NASA Astrophysics Data System (ADS)
Bouallegue, K.
Dynamic chromosome structure remains unknown. Can fractals and chaos be used as new tools to model, identify and generate a structure of chromosomes?Fractals and chaos offer a rich environment for exploring and modeling the complexity of nature. In a sense, fractal geometry is used to describe, model, and analyze the complex forms found in nature. Fractals have also been widely not only in biology but also in medicine. To this effect, a fractal is considered an object that displays self-similarity under magnification and can be constructed using a simple motif (an image repeated on ever-reduced scales).It is worth noting that the problem of identifying a chromosome has become a challenge to find out which one of the models it belongs to. Nevertheless, the several different models (a hierarchical coiling, a folded fiber, and radial loop) have been proposed for mitotic chromosome but have not reached a dynamic model yet.This paper is an attempt to solve topological problems involved in the model of chromosome and DNA processes. By combining the fractal Julia process and the numerical dynamical system, we have finally found out four main points. First, we have developed not only a model of chromosome but also a model of mitosis and one of meiosis. Equally important, we have identified the centromere position through the numerical model captured below. More importantly, in this paper, we have discovered the processes of the cell divisions of both mitosis and meiosis. All in all, the results show that this work could have a strong impact on the welfare of humanity and can lead to a cure of genetic diseases.
Fractal discrimination of MRI breast masses using multiple segmentations
NASA Astrophysics Data System (ADS)
Penn, Alan I.; Thompson, Scott F.; Schnall, Mitchell D.; Loew, Murray H.; Bolinger, Lizann
2000-06-01
Fractal dimension (fd) of lesion borders has been proposed as a feature to discriminate between malignant and benign masses on MR breast images. The fd value is computed using a sample space of fractal models, an approach that reduces sensitivity to signal noise and image variability. The user specifies a rectangular region of interest (ROI) around the mass and the algorithm generates a segmentation zone from the ROI. Fractal models are constructed on multiple threshold intensity contours within the segmentation zone. Preliminary results show that the combination of statistical fd feature and expert-observer interpretations improves separation of benign from malignant breast masses when compared to expert-observer interpretations alone. The statistical fd feature has been incorporated into a prototype computer-aided-diagnosis (CAD) system that outputs the following to assist the diagnostician in determining clinical action: (1) A likelihood-of-cancer measure computed from fd and reader interpretations, (2) A binary categorical value indicating whether a test case is fd- highly suspicious or fd-inconclusive, (3) The ROI with portions of the mass border with the most cancer-like fractal characteristics highlighted.
Fractal characterization of fracture surfaces in concrete
Saouma, V.E.; Barton, C.C.; Gamaleldin, N.A.
1990-01-01
Fractal geometry is used to characterize the roughness of cracked concrete surfaces through a specially built profilometer, and the fractal dimension is subsequently correlated to the fracture toughness and direction of crack propagation. Preliminary results indicate that the fracture surface is indeed fractal over two orders of magnitudes with a dimension of approximately 1.20. ?? 1990.
Fractal analysis of time varying data
Vo-Dinh, Tuan; Sadana, Ajit
2002-01-01
Characteristics of time varying data, such as an electrical signal, are analyzed by converting the data from a temporal domain into a spatial domain pattern. Fractal analysis is performed on the spatial domain pattern, thereby producing a fractal dimension D.sub.F. The fractal dimension indicates the regularity of the time varying data.
Fractal Electronic Circuits Assembled From Nanoclusters
NASA Astrophysics Data System (ADS)
Fairbanks, M. S.; McCarthy, D.; Taylor, R. P.; Brown, S. A.
2009-07-01
Many patterns in nature can be described using fractal geometry. The effect of this fractal character is an array of properties that can include high internal connectivity, high dispersivity, and enhanced surface area to volume ratios. These properties are often desirable in applications and, consequently, fractal geometry is increasingly employed in technologies ranging from antenna to storm barriers. In this paper, we explore the application of fractal geometry to electrical circuits, inspired by the pervasive fractal structure of neurons in the brain. We show that, under appropriate growth conditions, nanoclusters of Sb form into islands on atomically flat substrates via a process close to diffusion-limited aggregation (DLA), establishing fractal islands that will form the basis of our fractal circuits. We perform fractal analysis of the islands to determine the spatial scaling properties (characterized by the fractal dimension, D) of the proposed circuits and demonstrate how varying growth conditions can affect D. We discuss fabrication approaches for establishing electrical contact to the fractal islands. Finally, we present fractal circuit simulations, which show that the fractal character of the circuit translates into novel, non-linear conduction properties determined by the circuit's D value.
Hemodynamic responses to functional activation accessed by optical imaging
NASA Astrophysics Data System (ADS)
Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming
2006-01-01
A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.
Imaging and functional assessment of bioresorbable scaffolds.
Pighi, Michele; Tanguay, Jean F; L'allier, Philippe L
2016-08-01
Bioresorbable vascular scaffolds (BRS) are novel devices designed to provide transient vessel support to drug-delivery capability without the potential long-term limitations of metallic drug-eluting stents. The technology, heralded as the latest revolution in the field of percutaneous coronary intervention, could overcome many of the long-term safety concerns associated with metallic stents and possibly even convey a further clinical benefit. However, despite its theoretical advantages, the safety and efficacy of the first generation BRS remain unclear in all-comer patient populations. Invasive imaging modalities and methodologies were developed to guide BRS implantation and monitor the interaction between the scaffold and the vessel at long-term follow-up. These tools are helpful to avoid some of the pitfalls associated with BRS implantation and may improve the clinical outcome of these devices. The present review aims to report the most recent data regarding multi-imaging modalities as guidance and follow-up of coronary interventions involving the use of BRS. PMID:27195663
[Fractal analysis of liver fibrosis].
Soda, G; Nardoni, S; Bosco, D; Grizzi, F; Dioguardi, N; Melis, M
2003-04-01
This study realized by two different study groups use of Fractal geometry to quantify the complex collagen deposition during chronic liver disease. Thirty standard needle liver biopsy specimens were obtained from patients with chronic HCV-related disease. Three mu-thick sections were cut and stained by means of Picrosirius stain, in order to visualise collagen matrix. The degree of fibrosis was measured using a quantitative scoring system based on the computer-assisted evaluation of the fractal dimension of the deposited collagen surface. The obtained results by both study groups, show that the proposed method is reproducible, rapid and inexpensive. The complex distribution of its collagenous components can be quantified using a single numerical score. This study demonstrated that it is possible to quantify the collagen's irregularity in an objective manner, and that the study of the fractal properties of the collagen shapes is likely to reveal more about its structure and the complex behaviour of its development. PMID:12768879
Calculation of multi-fractal dimensions in spin chains
Atas, Y. Y.; Bogomolny, E.
2014-01-01
It was demonstrated in Atas & Bogomolny (2012 Phys. Rev. E 86, 021104) that the ground-state wave functions for a large variety of one-dimensional spin- models are multi-fractals in the natural spin-z basis. We present here the details of analytical derivations and numerical confirmations of this statement. PMID:24344342
On the Fundamental Theorem of Calculus for Fractal Sets
NASA Astrophysics Data System (ADS)
Bongiorno, Donatella; Corrao, Giuseppa
2015-04-01
The aim of this paper is to formulate the best version of the Fundamental theorem of Calculus for real functions on a fractal subset of the real line. In order to do that an integral of Henstock-Kurzweil type is introduced.
Fractal Universe and Quantum Gravity
Calcagni, Gianluca
2010-06-25
We propose a field theory which lives in fractal spacetime and is argued to be Lorentz invariant, power-counting renormalizable, ultraviolet finite, and causal. The system flows from an ultraviolet fixed point, where spacetime has Hausdorff dimension 2, to an infrared limit coinciding with a standard four-dimensional field theory. Classically, the fractal world where fields live exchanges energy momentum with the bulk with integer topological dimension. However, the total energy momentum is conserved. We consider the dynamics and the propagator of a scalar field. Implications for quantum gravity, cosmology, and the cosmological constant are discussed.
Abbott, Bree D; Barber, Bonnie L
2010-01-01
Perceptions of the body are not restricted to the way the body "looks"; they may also extend to the way the body "functions". This research explores body image among male and female adolescents using the Embodied Image Scale (EIS), which incorporates body function into body image. Adolescents (N=1526, male=673, female=853) aged 12-17 (M=13.83, SD=1.02), from 26 Western Australian high schools were surveyed. Information was gathered on pubertal timing, body mass index (BMI) and body image. Participants reported significantly higher value of, behavioral-investment in, and satisfaction with the functional dimension of the body compared to the aesthetic dimension. After controlling for age, pubertal timing, and BMI, females reported significantly higher aesthetic values and aesthetic behavioral-investment, and lower aesthetic satisfaction, functional values, functional behavioral-investment and functional satisfaction than male participants. Grade, pubertal timing and BMI category differences were also explored. PMID:19945925
Texture descriptor combining fractal dimension and artificial crawlers
NASA Astrophysics Data System (ADS)
Gonçalves, Wesley Nunes; Machado, Bruno Brandoli; Bruno, Odemir Martinez
2014-02-01
Texture is an important visual attribute used to describe images. There are many methods available for texture analysis. However, they do not capture the detail richness of the image surface. In this paper, we propose a new method to describe textures using the artificial crawler model. This model assumes that agents can interact with the environment and each other. Since this swarm system alone does not achieve a good discrimination, we developed a new method to increase the discriminatory power of artificial crawlers, together with the fractal dimension theory. Here, we estimated the fractal dimension by the Bouligand-Minkowski method due to its precision in quantifying structural properties of images. We validate our method on two texture datasets and the experimental results reveal that our method leads to highly discriminative textural features. The results indicate that our method can be used in different texture applications.
Optical multipolar spread functions of an aplanatic imaging system
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Toury, Timothée
2016-07-01
The electromagnetic field near the focus of a perfect imaging system is calculated for different multipolar sources that play an important role in the radiation of nanostructures. Those multipoles are the exact and extended multipoles occurring in electrodynamics. The theory of diffraction of vector waves is reviewed rigorously for a dipolar radiation and applied to the imaging of multipolar sources. Different geometries are considered in order to connect with experiments and the multipolar spread functions are given in a ready-to-use format up to the octupolar order, in the general case and in the paraxial approximation. Defocus imaging is finally considered to provide a first step toward multipolar imaging.
Image-based modeling of lung structure and function
Tawhai, Merryn H.; Lin, Ching-Long
2010-01-01
Current state-of-the-art in image-based modeling allows derivation of patient-specific models of the lung, lobes, airways, and pulmonary vascular trees. The application of traditional engineering analyses of fluid and structural mechanics to image-based subject-specific models has the potential to provide new insight into structure-function relationships in the individual via functional interpretation that complements imaging and experimental studies. Three major issues that are encountered in studies of air flow through the bronchial airways are the representation of airway geometry, the imposition of physiological boundary conditions, and the treatment of turbulence. Here we review some efforts to resolve each of these issues, with particular focus on image-based models that have been developed to simulate air flow from the mouth to the terminal bronchiole, and subjected to physiologically meaningful boundary conditions via image registration and soft tissue mechanics models. PMID:21105146
Regional lung function and mechanics using image registration
NASA Astrophysics Data System (ADS)
Ding, Kai
The main function of the respiratory system is gas exchange. Since many disease or injury conditions can cause biomechanical or material property changes that can alter lung function, there is a great interest in measuring regional lung function and mechanics. In this thesis, we present a technique that uses multiple respiratory-gated CT images of the lung acquired at different levels of inflation with both breath-hold static scans and retrospectively reconstructed 4D dynamic scans, along with non-rigid 3D image registration, to make local estimates of lung tissue function and mechanics. We validate our technique using anatomical landmarks and functional Xe-CT estimated specific ventilation. The major contributions of this thesis include: (1) developing the registration derived regional expansion estimation approach in breath-hold static scans and dynamic 4DCT scans, (2) developing a method to quantify lobar sliding from image registration derived displacement field, (3) developing a method for measurement of radiation-induced pulmonary function change following a course of radiation therapy, (4) developing and validating different ventilation measures in 4DCT. The ability of our technique to estimate regional lung mechanics and function as a surrogate of the Xe-CT ventilation imaging for the entire lung from quickly and easily obtained respiratory-gated images, is a significant contribution to functional lung imaging because of the potential increase in resolution, and large reductions in imaging time, radiation, and contrast agent exposure. Our technique may be useful to detect and follow the progression of lung disease such as COPD, may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy.
Evaluation of ventricular function with gated cardiac magnetic resonance imaging.
Osbakken, M; Yuschok, T
1986-01-01
To determine the feasibility of using planar images obtained with gated cardiac magnetic resonance imaging (MRI) techniques to evaluate ventricular contractile function, cardiac chamber volume (V), and ejection fraction (EF) were calculated using MR images obtained in five previously catheterized patients. Patients were imaged with a .15-Tesla 55-cm bore magnet using the ECG to gate the images. Spin echo pulse sequences (30/500, TE/TR) were used to produce images in the transverse (T), coronal (C), and sagittal (S) planes at end diastole (ED) and end systole (ES). Slice thickness was 1.5 cm, with 2-mm resolution. A calibration grid was imaged in each plane to determine correction factors. Cardiac chamber areas were determined via planimetry. An area-length-volume algorithm was used to obtain EDV and ESV. Three combinations of biplane images in ES and ED were used (T/C, T/S, C/S). Volume data were used to calculate EF. Contrast ventriculogram volumes tended to be greater than MRI volumes, but EFs were similar with both techniques. In conclusion, gated cardiac MR images can be used to evaluate the ventricular function parameters of volume and ejection fraction. PMID:3731263
Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status
Zhou, Hai Ying; Chen, Tian Wu; Zhang, Xiao Ming
2016-01-01
Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper. PMID:26925411
Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status.
Zhou, Hai Ying; Chen, Tian Wu; Zhang, Xiao Ming
2016-01-01
Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper. PMID:26925411
Roughness Perception of Haptically Displayed Fractal Surfaces
NASA Technical Reports Server (NTRS)
Costa, Michael A.; Cutkosky, Mark R.; Lau, Sonie (Technical Monitor)
2000-01-01
Surface profiles were generated by a fractal algorithm and haptically rendered on a force feedback joystick, Subjects were asked to use the joystick to explore pairs of surfaces and report to the experimenter which of the surfaces they felt was rougher. Surfaces were characterized by their root mean square (RMS) amplitude and their fractal dimension. The most important factor affecting the perceived roughness of the fractal surfaces was the RMS amplitude of the surface. When comparing surfaces of fractal dimension 1.2-1.35 it was found that the fractal dimension was negatively correlated with perceived roughness.
Single cell correlation fractal dimension of chromatin
Récamier, Vincent; Izeddin, Ignacio; Bosanac, Lana; Dahan, Maxime; Proux, Florence; Darzacq, Xavier
2014-01-01
Chromatin is a major nuclear component, and it is an active matter of debate to understand its different levels of spatial organization, as well as its implication in gene regulation. Measurements of nuclear chromatin compaction were recently used to understand how DNA is folded inside the nucleus and to detect cellular dysfunctions such as cancer. Super-resolution imaging opens new possibilities to measure chromatin organization in situ. Here, we performed a direct measure of chromatin compaction at the single cell level. We used histone H2B, one of the 4 core histone proteins forming the nucleosome, as a chromatin density marker. Using photoactivation localization microscopy (PALM) and adaptive optics, we measured the three-dimensional distribution of H2B with nanometric resolution. We computed the distribution of distances between every two points of the chromatin structure, namely the Ripley K(r) distribution. We found that the K(r) distribution of H2B followed a power law, leading to a precise measurement of the correlation fractal dimension of chromatin of 2.7. Moreover, using photoactivable GFP fused to H2B, we observed dynamic evolution of chromatin sub-regions compaction. As a result, the correlation fractal dimension of chromatin reported here can be interpreted as a dynamically maintained non-equilibrium state. PMID:24637833
Endoscopic device for functional imaging of the retina
NASA Astrophysics Data System (ADS)
Barriga, Simon; Lohani, Sweyta; Martell, Bret; Soliz, Peter; Ts'o, Dan
2011-03-01
Non-invasive imaging of retinal function based on the recording of spatially distributed reflectance changes evoked by visual stimuli has to-date been performed primarily using modified commercial fundus cameras. We have constructed a prototype retinal functional imager, using a commercial endoscope (Storz) for the frontend optics, and a low-cost back-end that includes the needed dichroic beam splitter to separate the stimulus path from the imaging path. This device has been tested to demonstrate its performance for the delivery of adequate near infrared (NIR) illumination, intensity of the visual stimulus and reflectance return in the imaging path. The current device was found to be capable of imaging reflectance changes of 0.1%, similar to that observable using the modified commercial fundus camera approach. The visual stimulus (a 505nm spot of 0.5secs) was used with an interrogation illumination of 780nm, and a sequence of imaged captured. At each pixel, the imaged signal was subtracted and normalized by the baseline reflectance, so that the measurement was ΔR/R. The typical retinal activity signal observed had a ΔR/R of 0.3-1.0%. The noise levels were measured when no stimulus was applied and found to vary between +/- 0.05%. Functional imaging has been suggested as a means to provide objective information on retina function that may be a preclinical indicator of ocular diseases, such as age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy. The endoscopic approach promises to yield a significantly more economical retinal functional imaging device that would be clinically important.
NASA Astrophysics Data System (ADS)
Matson, Charles L.; Fox, Marsha; Hege, E. Keith; Hluck, Laura; Drummond, Jack; Harvey, David
1997-05-01
Speckle imaging techniques have been shown to mitigate atmospheric-resolution limits, allowing near-diffraction-limited images to be reconstructed. Few images of extended objects reconstructed by use of these techniques have been published, and most of these results are for relatively bright objects. We present image reconstructions of an orbiting Molniya 3 spacecraft from data collected by use of a 2.3-m ground-based telescope. The apparent brightness of the satellite was 15th visual magnitude. Power-spectrum and bispectrum speckle imaging techniques are used prior to image reconstruction to ameliorate atmospheric blurring. We discuss how these images, although poorly resolved, can be used to provide information on the satellite s functional status. It is shown that our previously published optimal algorithms produce a higher-quality image than do conventional speckle imaging methods.
Contrast sensitivity function calibration based on image quality prediction
NASA Astrophysics Data System (ADS)
Han, Yu; Cai, Yunze
2014-11-01
Contrast sensitivity functions (CSFs) describe visual stimuli based on their spatial frequency. However, CSF calibration is limited by the size of the sample collection and this remains an open issue. In this study, we propose an approach for calibrating CSFs that is based on the hypothesis that a precise CSF model can accurately predict image quality. Thus, CSF calibration is regarded as the inverse problem of image quality prediction according to our hypothesis. A CSF could be calibrated by optimizing the performance of a CSF-based image quality metric using a database containing images with known quality. Compared with the traditional method, this would reduce the work involved in sample collection dramatically. In the present study, we employed three image databases to optimize some existing CSF models. The experimental results showed that the performance of a three-parameter CSF model was better than that of other models. The results of this study may be helpful in CSF and image quality research.
Wavelet smoothing of functional magnetic resonance images: a preliminary report
NASA Astrophysics Data System (ADS)
Lucier, Bradley J.
2003-11-01
Functional (time-dependent) Magnetic Resonance Imaging can be used to determine which parts of the brain are active during various limited activities; these parts of the brain are called activation regions. In this preliminary study we describe some experiments that are suggested from the following questions: Does one get improved results by analyzing the complex image data rather than just the real magnitude image data? Does wavelet shrinkage smoothing improve images? Should one smooth in time as well as within and between slices? If so, how should one model the relationship between time smoothness (or correlations) and spatial smoothness (or correlations). The measured data is really the Fourier coefficients of the complex image---should we remove noise in the Fourier domain before computing the complex images? In this preliminary study we describe some experiments related to these questions.
Functional MR imaging of the female pelvis.
Koyama, Takashi; Togashi, Kaori
2007-06-01
Recent developments in MR techniques have magnified the roles and potential of MRI in the female pelvis. This article reviews the techniques and clinical applications of functional MRI (fMRI) of the female pelvis, including cine MRI, diffusion-weighted MRI (DWI), and dynamic contrast-enhanced (DCE)-MRI. Cine MRI is a useful tool for evaluating uterine contractility, including sustained contraction and peristalsis, in a variety of conditions and gynecologic disorders, and for evaluating pelvic-floor weakness. DWI can demonstrate abnormal signals in pathologic foci based on differences in molecular diffusion. It also enables the quantitative evaluation of the apparent diffusion coefficient (ADC), which may be useful for distinguishing malignant from benign tissues and monitoring therapeutic outcome. DCE-MRI has the potential to improve tumor detection and local staging, and can also provide quantitative information about perfusion of the tumor, which may be useful for both monitoring therapeutic effects and predicting therapeutic outcome. Understanding the roles played by functional MR techniques in the female pelvic region is beneficial not only for determining clinical applications, but also for developing further investigations with MRI. PMID:17520731
Fractal Theory for Permeability Prediction, Venezuelan and USA Wells
NASA Astrophysics Data System (ADS)
Aldana, Milagrosa; Altamiranda, Dignorah; Cabrera, Ana
2014-05-01
Inferring petrophysical parameters such as permeability, porosity, water saturation, capillary pressure, etc, from the analysis of well logs or other available core data has always been of critical importance in the oil industry. Permeability in particular, which is considered to be a complex parameter, has been inferred using both empirical and theoretical techniques. The main goal of this work is to predict permeability values on different wells using Fractal Theory, based on a method proposed by Pape et al. (1999). This approach uses the relationship between permeability and the geometric form of the pore space of the rock. This method is based on the modified equation of Kozeny-Carman and a fractal pattern, which allows determining permeability as a function of the cementation exponent, porosity and the fractal dimension. Data from wells located in Venezuela and the United States of America are analyzed. Employing data of porosity and permeability obtained from core samples, and applying the Fractal Theory method, we calculated the prediction equations for each well. At the beginning, this was achieved by training with 50% of the data available for each well. Afterwards, these equations were tested inferring over 100% of the data to analyze possible trends in their distribution. This procedure gave excellent results in all the wells in spite of their geographic distance, generating permeability models with the potential to accurately predict permeability logs in the remaining parts of the well for which there are no core samples, using even porority logs. Additionally, empirical models were used to determine permeability and the results were compared with those obtained by applying the fractal method. The results indicated that, although there are empirical equations that give a proper adjustment, the prediction results obtained using fractal theory give a better fit to the core reference data.
Functional oesophago-gastric junction imaging
McMahon, Barry P; Drewes, Asbjørn Mohr; Gregersen, Hans
2006-01-01
Despite its role in disease there is still no definitive method to assess oesophago-gastric junction competence (OGJ). Traditionally the OGJ has been assessed using manometry with lower oesophageal sphincter pressure as the indicator. More recently this has been shown not to be a very reliable marker of sphincter function and competence against reflux. Disorders such as gastro-oesophageal reflux disease and to a lesser extend achalasia still effects a significant number of patients. This review looks at using a new technique known as impedance planimetry to profile the geometry and pressure in the OGJ during distension of a bag. The data gathered can be reconstructed into a dynamic representation of OGJ action. This has been shown to provide a useful representation of the OGJ and to show changes to the competence of the OGJ in terms of compliance and distensibility as a result of endoluminal therapy. PMID:16718804
Exploring Fractal Geometry with Children.
ERIC Educational Resources Information Center
Vacc, Nancy Nesbitt
1999-01-01
Heightens the awareness of elementary school teachers, teacher educators, and teacher-education researchers of possible applications of fractal geometry with children and, subsequently, initiates discussion about the appropriateness of including this new mathematics in the elementary curriculum. Presents activities for exploring children's…
Fractal statistics of cloud fields
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; Joseph, Joachim H.
1989-01-01
Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) data, with 80 and 30 m spatial resolution, respectively, have been employed to study the spatial structure of boundary-layer and intertropical convergence zone (ITCZ) clouds. The probability distributions of cloud areas and cloud perimeters are found to approximately follow a power-law, with a different power (i.e., fractal dimension) for each cloud type. They are better approximated by a double power-law behavior, indicating a change in the fractal dimension at a characteristic size which depends upon cloud type. The fractal dimension also changes with threshold. The more intense cloud areas are found to have a higher perimeter fractal dimension, perhaps indicative of the increased turbulence at cloud top. A detailed picture of the inhomogeneous spatial structure of various cloud types will contribute to a better understanding of basic cloud processes, and also has implications for the remote sensing of clouds, for their effects on remote sensing of other parameters, and for the parameterization of clouds in general circulation models, all of which rely upon plane-parallel radiative transfer algorithms.
Development of contrast-enhanced rodent imaging using functional CT
NASA Astrophysics Data System (ADS)
Liang, Yun; Stantz, Keith M.; Krishnamurthi, Ganapathy; Steinmetz, Rosemary; Hutchins, Gary D.
2003-05-01
Micro-computed tomography (microCT) is capable of obtaining high-resolution images of skeletal tissues. However its image contrast among soft tissues remains inadequate for tumor detection. High speed functional computed tomography will be needed to image tumors by employing x-ray contrast medium. The functional microCT development will not only facilitate the image contrast enhancement among different tissues but also provide information of tumor physiology. To demonstrate the feasibility of functional CT in mouse imaging, sequential computed tomography is performed in mice after contrast material administration using a high-speed clinical CT scanner. Although the resolution of the clinical scanner is not sufficient to dissolve the anatomic details of rodents, bulky physiological parameters in major organs such as liver, kidney, pancreas, and ovaries (testicular) can be examined. For data analysis, a two-compartmental model is employed and implemented to characterize the tissue physiological parameters (regional blood flow, capillary permeability, and relative compartment volumes.) The measured contrast dynamics in kidneys are fitted with the compartmental model to derive the kidney tissue physiology. The study result suggests that it is feasible to extract mouse tissue physiology using functional CT imaging technology.
Lin, Lian-Yu; Su, Mao-Yuan M.; Pham, Van-Truong; Tran, Thi-Thao; Wang, Yung-Hung; Tseng, Wen-Yih I.; Lo, Men-Tzung; Lin, Jiunn-Lee
2016-01-01
Left ventricular (LV) trabeculation has been studied in certain forms of cardiomyopathy. However, the changes of LV endocardial trabeculation during the remodeling process leading to heart failure (HF) are unclear. Seventy-four patients with systolic heart failure (SHF), 65 with heart failure with preserved ejection fraction (HFpEF) and 61 without HF were prospectively enrolled. All subjects received magnetic resonance imaging (MRI) study including cine, T1 and late gadolinium enhancement (LGE) images. Trabecular-papillary muscle (TPM) mass, fractal dimension (FD) and extracellular volume (ECV) were derived. The results showed that TPM mass index was higher in patients with SHF than that in patients with HFpEF and non-HF. The TPM mass-LV mass ratio (TPMm/LVM) was higher in SHF group than that in HFpEF and non-HF. FD was not different among groups. The presence of LGE was inversely associated with TPM mass index and TPMm/LVM while the ECV were positively associated with TPMm/LVM. The FD was positively associated with LV chamber size. In conclusion, TPM increases in patients with SHF and are probably related to myocardial cell hypertrophy and fibrotic repair during remodeling. The FD increases with the dilatation of LV chamber but remain unchanged with the deterioration of LV function. PMID:26876005
Lin, Lian-Yu; Su, Mao-Yuan M; Pham, Van-Truong; Tran, Thi-Thao; Wang, Yung-Hung; Tseng, Wen-Yih I; Lo, Men-Tzung; Lin, Jiunn-Lee
2016-01-01
Left ventricular (LV) trabeculation has been studied in certain forms of cardiomyopathy. However, the changes of LV endocardial trabeculation during the remodeling process leading to heart failure (HF) are unclear. Seventy-four patients with systolic heart failure (SHF), 65 with heart failure with preserved ejection fraction (HFpEF) and 61 without HF were prospectively enrolled. All subjects received magnetic resonance imaging (MRI) study including cine, T1 and late gadolinium enhancement (LGE) images. Trabecular-papillary muscle (TPM) mass, fractal dimension (FD) and extracellular volume (ECV) were derived. The results showed that TPM mass index was higher in patients with SHF than that in patients with HFpEF and non-HF. The TPM mass-LV mass ratio (TPMm/LVM) was higher in SHF group than that in HFpEF and non-HF. FD was not different among groups. The presence of LGE was inversely associated with TPM mass index and TPMm/LVM while the ECV were positively associated with TPMm/LVM. The FD was positively associated with LV chamber size. In conclusion, TPM increases in patients with SHF and are probably related to myocardial cell hypertrophy and fibrotic repair during remodeling. The FD increases with the dilatation of LV chamber but remain unchanged with the deterioration of LV function. PMID:26876005
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Parra, Carlos
2003-11-01
We propose formal analytical models for identification of tumors in medical images based on the hypothesis that the tumors have a fractal (self-similar) growth behavior. Therefore, the images of these tumors may be characterized as Fractional Brownian motion (fBm) processes with a fractal dimension (D) that is distinctly different than that of the image of the surrounding tissue. In order to extract the desired features that delineate different tissues in a MR image, we study multiresolution signal decomposition and its relation to fBm. The fBm has proven successful to modeling a variety of physical phenomena and non-stationary processes, such as medical images, that share essential properties such as self-similarity, scale invariance and fractal dimension (D). We have developed the theoretical framework that combines wavelet analysis with multiresolution fBm to compute D.
Zueva, Marina V
2015-01-01
The theory that ties normal functioning and pathology of the brain and visual system with the spatial-temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Non-linear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a non-linear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult's neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author's theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered. PMID:26236232
Zueva, Marina V.
2015-01-01
The theory that ties normal functioning and pathology of the brain and visual system with the spatial–temporal structure of the visual and other sensory stimuli is described for the first time in the present study. The deficit of fractal complexity of environmental influences can lead to the distortion of fractal complexity in the visual pathways of the brain and abnormalities of development or aging. The use of fractal light stimuli and fractal stimuli of other modalities can help to restore the functions of the brain, particularly in the elderly and in patients with neurodegenerative disorders or amblyopia. Non-linear dynamics of these physiological processes have a strong base of evidence, which is seen in the impaired fractal regulation of rhythmic activity in aged and diseased brains. From birth to old age, we live in a non-linear world, in which objects and processes with the properties of fractality and non-linearity surround us. Against this background, the evolution of man took place and all periods of life unfolded. Works of art created by man may also have fractal properties. The positive influence of music on cognitive functions is well-known. Insufficiency of sensory experience is believed to play a crucial role in the pathogenesis of amblyopia and age-dependent diseases. The brain is very plastic in its early development, and the plasticity decreases throughout life. However, several studies showed the possibility to reactivate the adult’s neuroplasticity in a variety of ways. We propose that a non-linear structure of sensory information on many spatial and temporal scales is crucial to the brain health and fractal regulation of physiological rhythms. Theoretical substantiation of the author’s theory is presented. Possible applications and the future research that can experimentally confirm or refute the theoretical concept are considered. PMID:26236232
Analysis of soil images applying Laplacian Pyramidal techniques
NASA Astrophysics Data System (ADS)
Ballesteros, F.; de Castro, J.; Tarquis, A. M.; Méndez, A.
2012-04-01
The Laplacian pyramid is a technique for image encoding in which local operators of many scales but identical shape are the basis functions. Our work describes some properties of the filters of the Laplacian pyramid. Specially, we pay attention to Gaussian and fractal behaviour of these filters, and we determine the normal and fractal ranges in the case of single parameter filters, while studying the influence of these filters in soil image processing. One usual property of any image is that neighboring pixels are highly correlated. This property makes inefficient to represent the image directly in terms of the pixel values, because most of the encoded information would be redundant. Burt and Adelson designed a technique, named Laplacian pyramid, for removing image correlation which combines features of predictive and transform methods. This technique is non causal, and its computations are simple and local. The predicted value for each pixel is computed as a local weighted average, using a unimodal weighting function centred on the pixel itself. Pyramid construction is equivalent to convolving the original image with a set of weighting functions determined by a parameter that defines the filter. According to the parameter values, these filters have a behaviour that goes from the Gaussian shape to the fractal. Previous works only analyze Gaussian filters, but we determine the Gaussian and fractal intervals and study the energy of the Laplacian pyramid images according to the filter types. The different behaviour, qualitatively, involves a significant change in statistical characteristics at different levels of iteration, especially the fractal case, which can highlight specific information from the images. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. AGL2010-21501/AGR is greatly appreciated.
Skin Depth of Electromagnetic Wave through Fractal Crustal Rocks
NASA Astrophysics Data System (ADS)
Takahara, Kazutaka; Muto, Jun; Nagahama, Hiroyuki
Skin depth of electromagnetic (EM) wave depends on frequency of EM wave ν and electrical properties of rocks and minerals. Previous studies have theoretically assumed that the skin depth Lα(ν) can be expressed as a function of frequency ν by Lα(ν) ∝ ν -φ and φ = 1 at high frequency or φ = 1/2 at low frequency. Based on fractal theory of rocks, we point out that the frequency exponent φ reflects internal fractal structures (i.e., occupancy, distribution and connectivity) of dielectric/conductive matrices of rocks such as pores, cracks, grain boundaries, inclusions and various fluids. Laboratory measurements of dielectric constant and conductivity of granite and previous studies on various rocks as a function of frequency show that φ is an exponent ranging from 1/4 to 1. By extrapolation of the skin depth by laboratory measurements at a given frequency into at other frequencies, the skin depth with variation in φ becomes longer or shorter than that by previous studies. Moreover, at a given frequency, the skin depth decreases with increasing a fractal dimension of fracture systems (decreasing φ). Thus, the skin depth of EM wave through the crust for detecting seismo-EM radiations and through rock salt domes for detecting ultra-high energy neutrinos depends on fractal structures of dielectric/conductive matrices in heterogeneous crust.
Directional region control of the thermal fractal diffusion of a space body
NASA Astrophysics Data System (ADS)
Qiao, Wei; Sun, Jie; Liu, Shu-Tang
2015-05-01
We present a directional region control (DRC) model of thermal diffusion fractal growth with active heat diffusion in three-dimensional space. This model can be applied to predict the space body heat fractal growth and study its directional region control. When the nonlinear interference term and the inner heat source term are generalized functions, the relationship between the particle aggregation probability and the interference terms can be obtained using the norm theory. We can then predict the aggregation form of particles in different regions. When the nonlinear interference terms in the model are expressed as a trigonometric function and its composite function, our simulations show that the DRC method of thermal fractal diffusion is effective and has reference value for the directional control of actual fractal growth systems. Project supported by the National Natural Science Foundation of China (Grant Nos. 61273088, 61473173, and 61473174).
Current Status of Functional Imaging in Eating Disorders
Frank, Guido K.W.; Kaye, Walter H.
2013-01-01
Eating Disorders are complex psychiatric problems that involve biologic and psychological factors. Brain imaging studies provide insights how functionally connected brain networks may contribute to disturbed eating behavior, resulting in food refusal and altered body weight, but also body preoccupations and heightened anxiety. In this article we review the current state of brain imaging in eating disorders, and how such techniques may help identify pathways that could be important in the treatment of those often detrimental disorders. PMID:22532388
Electromagnetic field of fractal distribution of charged particles
Tarasov, Vasily E.
2005-08-15
Electric and magnetic fields of fractal distribution of charged particles are considered. The fractional integrals are used to describe fractal distribution. The fractional integrals are considered as approximations of integrals on fractals. Using the fractional generalization of integral Maxwell equation, the simple examples of the fields of homogeneous fractal distribution are considered. The electric dipole and quadrupole moments for fractal distribution are derived.
Image-Based Evaluation of Vascular Function and Hemodynamics
Lee, Jongmin
2013-01-01
The noticeable characteristics of the blood vascular structure are the inconsistent viscosity of blood and the stiffness of the vascular wall. If we can control these two factors, we can solve more problems related to hemodynamics and vascular wall function. Understanding the properties of hemodynamics and vascular wall function may provide more information applicable to clinical practice for cardiovascular disease. The bedside techniques evaluating vascular function usually measure indirect parameters. In contrast, some medical imaging techniques provide clear and direct depictions of functional cardiovascular characteristics. In this review, image-based evaluation of hemodynamic and vascular wall functions is discussed from the perspective of blood flow velocity, flow volume, flow pattern, peripheral vascular resistance, intraluminal pressure, vascular wall stress, and wall stiffness. PMID:26587430
Functional imaging of tumor vascular network in small animal models
NASA Astrophysics Data System (ADS)
Kalchenko, Vyacheslav; Madar-Balakirski, Noa; Kuznetsov, Yuri; Meglinski, Igor; Harmelin, Alon
2011-07-01
In current report we present synchronized in vivo imaging of tumor vascular network and tumor microenvironment obtained by combined use of Dynamic Light Scattering Imaging, Spectrally Enhanced Microscopy, and Fluorescence Intravital Microscopy. Dynamic Light Scattering Imaging is used for functional imaging of the vascular network and blood microcirculation. Spectrally Enhanced Microscopy provides information regarding blood vessel topography. Fluorescence Intravital Microscopy is used for imaging of tumor microvasculature and tumor microenvironment. These well known modalities have been comprehensively validated in the past and are widely used in various bio-medical applications. As shown here, their combined application has great potential for studies of vascular biology. This multi-modal non-invasive diagnostic technique expands our current capacity to investigate blood microcirculation and tumor angiogenesis in vivo, thereby contributing to the development of cancer research and treatment.
Functional MRI studies of human vision on a clinical imager
George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C.; Sanders, J.; Maclin, E.; Belliveau, J.W.; Caprihan, A.
1992-09-01
During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response.
Functional MRI studies of human vision on a clinical imager
George, J.S.; Lewine, J.D.; Aine, C.J.; van Hulsteyn, D.; Wood, C.C. ); Sanders, J.; Maclin, E. ); Belliveau, J.W. ); Caprihan, A. )
1992-01-01
During the past decade, Magnetic Resonance Imaging (MRI) has become the method of choice for imaging the anatomy of the human brain. Recently, Belliveau and colleagues have reported the use of echo planar magnetic resonance imaging (EPI) to image patterns of neural activity. Here, we report functional MR imaging in response to visual stimulation without the use of contrast agents, and without the extensive hardware modifications required for EPI. Regions of activity were observed near the expected locations of V1, V2 and possibly V3 and another active region was observed near the parietal-occipital sulcus on the superior surface of the cerebrum. These locations are consistent with sources observed in neuromagnetic studies of the human visual response.
Advances in multimodality molecular imaging of bone structure and function
Lambers, Floor M; Kuhn, Gisela; Müller, Ralph
2012-01-01
The skeleton is important to the body as a source of minerals and blood cells and provides a structural framework for strength, mobility and the protection of organs. Bone diseases and disorders can have deteriorating effects on the skeleton, but the biological processes underlying anatomical changes in bone diseases occurring in vivo are not well understood, mostly due to the lack of appropriate analysis techniques. Therefore, there is ongoing research in the development of novel in vivo imaging techniques and molecular markers that might help to gain more knowledge of these pathological pathways in animal models and patients. This perspective provides an overview of the latest developments in molecular imaging applied to bone. It emphasizes that multimodality imaging, the combination of multiple imaging techniques encompassing different image modalities, enhances the interpretability of data, and is imperative for the understanding of the biological processes and the associated changes in bone structure and function relationships in vivo. PMID:27127622
Predicting beauty: fractal dimension and visual complexity in art.
Forsythe, A; Nadal, M; Sheehy, N; Cela-Conde, C J; Sawey, M
2011-02-01
Visual complexity has been known to be a significant predictor of preference for artistic works for some time. The first study reported here examines the extent to which perceived visual complexity in art can be successfully predicted using automated measures of complexity. Contrary to previous findings the most successful predictor of visual complexity was Gif compression. The second study examined the extent to which fractal dimension could account for judgments of perceived beauty. The fractal dimension measure accounts for more of the variance in judgments of perceived beauty in visual art than measures of visual complexity alone, particularly for abstract and natural images. Results also suggest that when colour is removed from an artistic image observers are unable to make meaningful judgments as to its beauty. PMID:21241285
Functional requirements for a central research imaging data repository.
Franke, Thomas; Gruetz, Romanus; Dickmann, Frank
2013-01-01
The current situation at many university medical centers regarding the management of biomedical research imaging data leaves much to be desired. In contrast to the recommendations of the German Research Foundation (DFG) and the German Council of Sciences and Humanities regarding the professional management of research data, there are commonly many individual data pools for research data in each institute and the management remains the responsibility of the researcher. A possible solution for this situation would be to install local central repositories for biomedical research imaging data. In this paper, we developed a scenario based on abstracted use-cases for institutional research undertakings as well as collaborative biomedical research projects and analyzed the functional requirements that a local repository would have to fulfill. We determined eight generic categories of functional requirements, which can be viewed as a basic guideline for the minimum functionality of a central repository for biomedical research imaging data. PMID:23920564
Sensitivity analysis of near-infrared functional lymphatic imaging
NASA Astrophysics Data System (ADS)
Weiler, Michael; Kassis, Timothy; Dixon, J. Brandon
2012-06-01
Near-infrared imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, yet the imaging capabilities of this approach have yet to be quantitatively characterized. We seek to quantify its capabilities as a diagnostic tool for lymphatic disease. Imaging is performed in a tissue phantom for sensitivity analysis and in hairless rats for in vivo testing. To demonstrate the efficacy of this imaging approach to quantifying immediate functional changes in lymphatics, we investigate the effects of a topically applied nitric oxide (NO) donor glyceryl trinitrate ointment. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being 150 μg/mL ICG and 60 g/L albumin. ICG fluorescence can be detected at a concentration of 150 μg/mL as deep as 6 mm with our system, but spatial resolution deteriorates below 3 mm, skewing measurements of vessel geometry. NO treatment slows lymphatic transport, which is reflected in increased transport time, reduced packet frequency, reduced packet velocity, and reduced effective contraction length. NIR imaging may be an alternative to invasive procedures measuring lymphatic function in vivo in real time.
Enhancing images with Intensity-Dependent Spread functions
NASA Technical Reports Server (NTRS)
Reese, Greg
1992-01-01
The theory of Intensity-Dependent Spread functions (IDS), a model of the human visual system proposed by Cornsweet (1985), is applied to image enhancement. An artificial image is examined which illustrates the characteristics of IDS processing and shows how the theoretical results translate into visual effects. Examples of realistic scenes that have been enhanced by IDS are presented. The system is shown to be particularly useful for bringing out detail in regions of low-contrast images. IDS can be readily implemented on a parallel computer.
Light scattering by a reentrant fractal surface.
Mendoza-Suárez, A; Méndez, E R
1997-05-20
Recently, rigorous numerical techniques for treating light scattering problems with one-dimensional rough surfaces have been developed. In their usual formulation, these techniques are based on the solution of two coupled integral equations and are applicable only to surfaces whose profiles can be described by single-valued functions of a coordinate in the mean plane of the surface. In this paper we extend the applicability of the integral equation method to surfaces with multivalued profiles. A procedure for finding a parametric description of a given profile is described, and the scattering equations are established within the framework of this formalism. We then present some results of light scattering from a sequence of one-dimensional flat surfaces with defects in the form of triadic Koch curves. Beyond a certain order of the prefractal, the scattering patterns become stationary (within the numerical accuracy of the method). It can then be argued that the results obtained correspond to a surface with a fractal structure. These constitute, to our knowledge, the first rigorous calculations of light scattering from a reentrant fractal surface. PMID:18253371
Functional imaging of small tissue volumes with diffuse optical tomography
NASA Astrophysics Data System (ADS)
Klose, Alexander D.; Hielscher, Andreas H.
2006-03-01
Imaging of dynamic changes in blood parameters, functional brain imaging, and tumor imaging are the most advanced application areas of diffuse optical tomography (DOT). When dealing with the image reconstruction problem one is faced with the fact that near-infrared photons, unlike X-rays, are highly scattered when they traverse biological tissue. Image reconstruction schemes are required that model the light propagation inside biological tissue and predict measurements on the tissue surface. By iteratively changing the tissue-parameters until the predictions agree with the real measurements, a spatial distribution of optical properties inside the tissue is found. The optical properties can be related to the tissue oxygenation, inflammation, or to the fluorophore concentration of a biochemical marker. If the model of light propagation is inaccurate, the reconstruction process will lead to an inaccurate result as well. Here, we focus on difficulties that are encountered when DOT is employed for functional imaging of small tissue volumes, for example, in cancer studies involving small animals, or human finger joints for early diagnosis of rheumatoid arthritis. Most of the currently employed image reconstruction methods rely on the diffusion theory that is an approximation to the equation of radiative transfer. But, in the cases of small tissue volumes and tissues that contain low scattering regions diffusion theory has been shown to be of limited applicability Therefore, we employ a light propagation model that is based on the equation of radiative transfer, which promises to overcome the limitations.
NASA Astrophysics Data System (ADS)
Wei, Wei; Cai, Jianchao; Hu, Xiangyun; Han, Qi; Liu, Shuang; Zhou, Yingfang
2016-08-01
A theoretical effective thermal conductivity model for nanofluids is derived based on fractal distribution characteristics of nanoparticle aggregation. Considering two different mechanisms of heat conduction including particle aggregation and convention, the model is expressed as a function of the fractal dimension and concentration. In the model, the change of fractal dimension is related to the variation of aggregation shape. The theoretical computations of the developed model provide a good agreement with the experimental results, which may serve as an effective approach for quantitatively estimating the effective thermal conductivity of nanofluids.
Fractal patterns of fractures in granites
NASA Astrophysics Data System (ADS)
Velde, B.; Dubois, J.; Moore, D.; Touchard, G.
1991-05-01
Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: (1) The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). (2) Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. (3) Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis.
Fractal patterns of fractures in granites
Velde, B.; Dubois, J.; Moore, D.; Touchard, G.
1991-01-01
Fractal measurements using the Cantor's dust method in a linear one-dimensional analysis mode were made on the fracture patterns revealed on two-dimensional, planar surfaces in four granites. This method allows one to conclude that: 1. (1)|The fracture systems seen on two-dimensional surfaces in granites are consistent with the part of fractal theory that predicts a repetition of patterns on different scales of observation, self similarity. Fractal analysis gives essentially the same values of D on the scale of kilometres, metres and centimetres (five orders of magnitude) using mapped, surface fracture patterns in a Sierra Nevada granite batholith (Mt. Abbot quadrangle, Calif.). 2. (2)|Fractures show the same fractal values at different depths in a given batholith. Mapped fractures (main stage ore veins) at three mining levels (over a 700 m depth interval) of the Boulder batholith, Butte, Mont. show the same fractal values although the fracture disposition appears to be different at different levels. 3. (3)|Different sets of fracture planes in a granite batholith, Central France, and in experimental deformation can have different fractal values. In these examples shear and tension modes have the same fractal values while compressional fractures follow a different fractal mode of failure. The composite fracture patterns are also fractal but with a different, median, fractal value compared to the individual values for the fracture plane sets. These observations indicate that the fractal method can possibly be used to distinguish fractures of different origins in a complex system. It is concluded that granites fracture in a fractal manner which can be followed at many scales. It appears that fracture planes of different origins can be characterized using linear fractal analysis. ?? 1991.
NASA Astrophysics Data System (ADS)
Tilg, Bernhard; Modre, Robert; Fischer, Gerald; Hanser, Friedrich; Messnarz, Bernd; Schocke, Michael F. H.; Kremser, Christian; Roithinger, Franz
2002-04-01
Inverse electrocardiography has been developing for several years. By coupling electrocardiographic mapping and 3D+time anatomical data, the electrical excitation sequence can be imaged completely noninvasively in the human heart. In this study, a bidomain theory based surface heart model activation time imaging approach was applied to single beat data of atrial and ventricular depolarization. For sinus and paced rhythms, the sites of early activation and the areas with late activation were estimated with sufficient accuracy. In particular for focal arrhythmias, this model-based imaging approach might allow the guidance and evaluation of antiarrhythmic interventions, for instance, in case of catheter ablation or drug therapy.
Fractal analysis of the hierarchic structure of fossil coal surface
Alekseev, A.D.; Vasilenko, T.A.; Kirillov, A.K.
2008-05-15
The fractal analysis is described as method of studying images of surface of fossil coal, one of the natural sorbent, with the aim of determining its structural surface heterogeneity. The deformation effect as a reduction in the dimensions of heterogeneity boundaries is considered. It is shown that the theory of nonequilibrium dynamic systems permits to assess a formation level of heterogeneities involved into a sorbent composition by means of the Hurst factor.
Probe and object function reconstruction in incoherent stem imaging
Nellist, P.D.; Pennycook, S.J.
1996-09-01
Using the phase-object approximation it is shown how an annular dark- field (ADF) detector in a scanning transmission electron microscope (STEM) leads to an image which can be described by an incoherent model. The point spread function is found to be simply the illuminating probe intensity. An important consequence of this is that there is no phase problem in the imaging process, which allows various image processing methods to be applied directly to the image intensity data. Using an image of a GaAs<110>, the probe intensity profile is reconstructed, confirming the existence of a 1.3 {Angstrom} probe in a 300kV STEM. It is shown that simply deconvolving this reconstructed probe from the image data does not improve its interpretability because the dominant effects of the imaging process arise simply from the restricted resolution of the microscope. However, use of the reconstructed probe in a maximum entropy reconstruction is demonstrated, which allows information beyond the resolution limit to be restored and does allow improved image interpretation.
A simultaneous multimodal imaging system for tissue functional parameters
NASA Astrophysics Data System (ADS)
Ren, Wenqi; Zhang, Zhiwu; Wu, Qiang; Zhang, Shiwu; Xu, Ronald
2014-02-01
Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis and therapy in many clinical applications such as wound healing. However, many existing clinical practices and multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative, non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.
New developments in paediatric cardiac functional ultrasound imaging.
de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia
2014-07-01
Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed. PMID:27277901
Hyperpolarized Xenon-129 Magnetic Resonance Imaging of Functional Lung Microstructure
NASA Astrophysics Data System (ADS)
Dregely, Isabel
Hyperpolarized 129Xe (HXe) is a non-invasive contrast agent for lung magnetic resonance imaging (MRI), which upon inhalation follows the functional pathway of oxygen in the lung by dissolving into lung tissue structures and entering the blood stream. HXe MRI therefore provides unique opportunities for functional lung imaging of gas exchange which occurs from alveolar air spaces across the air-blood boundary into parenchymal tissue. However challenges in acquisition speed and signal-to-noise ratio have limited the development of a HXe imaging biomarker to diagnose lung disease. This thesis addresses these challenges by introducing parallel imaging to HXe MRI. Parallel imaging requires dedicated hardware. This work describes design, implementation, and characterization of a 32-channel phased-array chest receive coil with an integrated asymmetric birdcage transmit coil tuned to the HXe resonance on a 3 Tesla MRI system. Using the newly developed human chest coil, a functional HXe imaging method, multiple exchange time xenon magnetization transfer contrast (MXTC) is implemented. MXTC dynamically encodes HXe gas exchange into the image contrast. This permits two parameters to be derived regionally which are related to gas-exchange functionality by characterizing tissue-to-alveolar-volume ratio and alveolar wall thickness in the lung parenchyma. Initial results in healthy subjects demonstrate the sensitivity of MXTC by quantifying the subtle changes in lung microstructure in response to orientation and lung inflation. Our results in subjects with lung disease show that the MXTC-derived functional tissue density parameter exhibits excellent agreement with established imaging techniques. The newly developed dynamic parameter, which characterizes the alveolar wall, was elevated in subjects with lung disease, most likely indicating parenchymal inflammation. In light of these observations we believe that MXTC has potential as a biomarker for the regional quantification of 1
NASA Technical Reports Server (NTRS)
Jaggi, S.; Quattrochi, Dale A.; Lam, Nina S.-N.
1993-01-01
Fractal geometry is increasingly becoming a useful tool for modeling natural phenomena. As an alternative to Euclidean concepts, fractals allow for a more accurate representation of the nature of complexity in natural boundaries and surfaces. The purpose of this paper is to introduce and implement three algorithms in C code for deriving fractal measurement from remotely sensed data. These three methods are: the line-divider method, the variogram method, and the triangular prism method. Remote-sensing data acquired by NASA's Calibrated Airborne Multispectral Scanner (CAMS) are used to compute the fractal dimension using each of the three methods. These data were obtained as a 30 m pixel spatial resolution over a portion of western Puerto Rico in January 1990. A description of the three methods, their implementation in PC-compatible environment, and some results of applying these algorithms to remotely sensed image data are presented.
Design and implementation of non-linear image processing functions for CMOS image sensor
NASA Astrophysics Data System (ADS)
Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel
2012-11-01
Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.
Dynamic contrast-enhanced magnetic resonance imaging: definitive imaging of placental function?
Chalouhi, G E; Deloison, B; Siauve, N; Aimot, S; Balvay, D; Cuenod, C A; Ville, Y; Clément, O; Salomon, L J
2011-02-01
The placenta constitutes a complex circulatory interface between the mother and fetus, but the relationship between the maternal and fetal circulation is still very difficult to study in vivo. There is growing evidence that magnetic resonance imaging (MRI) is useful and safe during pregnancy, and MRI is increasingly used for fetal and placental anatomical imaging. MRI functional imaging is now a modern obstetric tool and has the potential to provide new insights into the physiology of the human placenta. Placental perfusion has been studied during the first pass of an MR contrast agent, by arterial spin labeling, diffusion imaging, T1 and T2 relaxation time measurement using echo-planar imaging, and by a combination of magnetization transfer with established stereological methods. The BOLD (blood oxygen level-dependent) effect offers new perspectives for functional MRI evaluation of the placenta. PMID:20851065
Feature extraction algorithm for space targets based on fractal theory
NASA Astrophysics Data System (ADS)
Tian, Balin; Yuan, Jianping; Yue, Xiaokui; Ning, Xin
2007-11-01
In order to offer a potential for extending the life of satellites and reducing the launch and operating costs, satellite servicing including conducting repairs, upgrading and refueling spacecraft on-orbit become much more frequently. Future space operations can be more economically and reliably executed using machine vision systems, which can meet real time and tracking reliability requirements for image tracking of space surveillance system. Machine vision was applied to the research of relative pose for spacecrafts, the feature extraction algorithm was the basis of relative pose. In this paper fractal geometry based edge extraction algorithm which can be used in determining and tracking the relative pose of an observed satellite during proximity operations in machine vision system was presented. The method gets the gray-level image distributed by fractal dimension used the Differential Box-Counting (DBC) approach of the fractal theory to restrain the noise. After this, we detect the consecutive edge using Mathematical Morphology. The validity of the proposed method is examined by processing and analyzing images of space targets. The edge extraction method not only extracts the outline of the target, but also keeps the inner details. Meanwhile, edge extraction is only processed in moving area to reduce computation greatly. Simulation results compared edge detection using the method which presented by us with other detection methods. The results indicate that the presented algorithm is a valid method to solve the problems of relative pose for spacecrafts.
The generalized 20/80 law using probabilistic fractals applied to petroleum field size
Crovelli, R.A.
1995-01-01
Fractal properties of the Pareto probability distribution are used to generalize "the 20/80 law." The 20/80 law is a heuristic law that has evolved over the years into the following rule of thumb for many populations: 20 percent of the population accounts for 80 percent of the total value. The general p100/q100 law in probabilistic form is defined with q as a function of p, where p is the population proportion and q is the proportion of total value. Using the Pareto distribution, the p100/q100 law in fractal form is derived with the parameter q being a fractal, where q unexpectedly possesses the scale invariance property. The 20/80 law is a special case of the p100/q100 law in fractal form. The p100/q100 law in fractal form is applied to petroleum fieldsize data to obtain p and q such that p100% of the oil fields greater than any specified scale or size in a geologic play account for q100% of the total oil of the fields. The theoretical percentages of total resources of oil using the fractal q are extremely close to the empirical percentages from the data using the statistic q. Also, the empirical scale invariance property of the statistic q for the petroleum fieldsize data is in excellent agreement with the theoretical scale invariance property of the fractal q. ?? 1995 Oxford University Press.
Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm
Bossard, Jeremy A.; Lin, Lan; Werner, Douglas H.
2016-01-01
Ordered and chaotic superlattices have been identified in Nature that give rise to a variety of colours reflected by the skin of various organisms. In particular, organisms such as silvery fish possess superlattices that reflect a broad range of light from the visible to the UV. Such superlattices have previously been identified as ‘chaotic’, but we propose that apparent ‘chaotic’ natural structures, which have been previously modelled as completely random structures, should have an underlying fractal geometry. Fractal geometry, often described as the geometry of Nature, can be used to mimic structures found in Nature, but deterministic fractals produce structures that are too ‘perfect’ to appear natural. Introducing variability into fractals produces structures that appear more natural. We suggest that the ‘chaotic’ (purely random) superlattices identified in Nature are more accurately modelled by multi-generator fractals. Furthermore, we introduce fractal random Cantor bars as a candidate for generating both ordered and ‘chaotic’ superlattices, such as the ones found in silvery fish. A genetic algorithm is used to evolve optimal fractal random Cantor bars with multiple generators targeting several desired optical functions in the mid-infrared and the near-infrared. We present optimized superlattices demonstrating broadband reflection as well as single and multiple pass bands in the near-infrared regime. PMID:26763335
Evolving random fractal Cantor superlattices for the infrared using a genetic algorithm.
Bossard, Jeremy A; Lin, Lan; Werner, Douglas H
2016-01-01
Ordered and chaotic superlattices have been identified in Nature that give rise to a variety of colours reflected by the skin of various organisms. In particular, organisms such as silvery fish possess superlattices that reflect a broad range of light from the visible to the UV. Such superlattices have previously been identified as 'chaotic', but we propose that apparent 'chaotic' natural structures, which have been previously modelled as completely random structures, should have an underlying fractal geometry. Fractal geometry, often described as the geometry of Nature, can be used to mimic structures found in Nature, but deterministic fractals produce structures that are too 'perfect' to appear natural. Introducing variability into fractals produces structures that appear more natural. We suggest that the 'chaotic' (purely random) superlattices identified in Nature are more accurately modelled by multi-generator fractals. Furthermore, we introduce fractal random Cantor bars as a candidate for generating both ordered and 'chaotic' superlattices, such as the ones found in silvery fish. A genetic algorithm is used to evolve optimal fractal random Cantor bars with multiple generators targeting several desired optical functions in the mid-infrared and the near-infrared. We present optimized superlattices demonstrating broadband reflection as well as single and multiple pass bands in the near-infrared regime. PMID:26763335
Launching the chaotic realm of iso-fractals: A short remark
O'Schmidt, Nathan; Katebi, Reza; Corda, Christian
2015-03-10
In this brief note, we introduce the new, emerging sub-discipline of iso-fractals by highlighting and discussing the preliminary results of recent works. First, we note the abundance of fractal, chaotic, non-linear, and self-similar structures in nature while emphasizing the importance of studying such systems because fractal geometry is the language of chaos. Second, we outline the iso-fractal generalization of the Mandelbrot set to exemplify the newly generated Mandelbrot iso-sets. Third, we present the cutting-edge notion of dynamic iso-spaces and explain how a mathematical space can be iso-topically lifted with iso-unit functions that (continuously or discretely) change; in the discrete case examples, we mention that iteratively generated sequences like Fibonacci’s numbers and (the complex moduli of) Mandelbrot’s numbers can supply a deterministic chain of iso-units to construct an ordered series of (magnified and/or de-magnified) iso-spaces that are locally iso-morphic. Fourth, we consider the initiation of iso-fractals with Inopin’s holographic ring (IHR) topology and fractional statistics for 2D and 3D iso-spaces. In total, the reviewed iso-fractal results are a significant improvement over traditional fractals because the application of Santilli’s iso-mathematics arms us an extra degree of freedom for attacking problems in chaos. Finally, we conclude by proposing some questions and ideas for future research work.
NASA Astrophysics Data System (ADS)
Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E.; Bertoldo, Alessandra
2015-02-01
Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders.
Squarcina, Letizia; De Luca, Alberto; Bellani, Marcella; Brambilla, Paolo; Turkheimer, Federico E; Bertoldo, Alessandra
2015-02-21
Fractal geometry can be used to analyze shape and patterns in brain images. With this study we use fractals to analyze T1 data of patients affected by schizophrenia or bipolar disorder, with the aim of distinguishing between healthy and pathological brains using the complexity of brain structure, in particular of grey matter, as a marker of disease. 39 healthy volunteers, 25 subjects affected by schizophrenia and 11 patients affected by bipolar disorder underwent an MRI session. We evaluated fractal dimension of the brain cortex and its substructures, calculated with an algorithm based on the box-count algorithm. We modified this algorithm, with the aim of avoiding the segmentation processing step and using all the information stored in the image grey levels. Moreover, to increase sensitivity to local structural changes, we computed a value of fractal dimension for each slice of the brain or of the particular structure. To have reference values in comparing healthy subjects with patients, we built a template by averaging fractal dimension values of the healthy volunteers data. Standard deviation was evaluated and used to create a confidence interval. We also performed a slice by slice t-test to assess the difference at slice level between the three groups. Consistent average fractal dimension values were found across all the structures in healthy controls, while in the pathological groups we found consistent differences, indicating a change in brain and structures complexity induced by these disorders. PMID:25633275
Microtopographic Inspection and Fractal Analysis of Skin Neoplasia
NASA Astrophysics Data System (ADS)
Costa, Manuel F. M.; Hipolito, Alberto Valencia; Gutierrez, Gustavo Fidel; Chanona, Jorge; Gallegos, Eva Ramón
2008-04-01
Early detection of skin cancer is fundamental to a successful treatment. Changes in the shape, including the relief, of skin lesions are an indicator of a possible malignity. Optical microtopographic inspection of skin lesions can be used to identify diagnostic patterns of benign and malign skin' lesions. Statistical parameters like the mean roughness (Ra) may allow the discrimination between different types of lesions and degree of malignity. Fractal analysis of bi-dimensional and 3D images of skin lesions can validate or complement that assessment by calculation of its fractal dimensions (FD). On the study herein reported the microtopographic inspection of the skin lesions were performed using the optical triangulation based microtopographer developed at the Physics Department of the University of Minho, MICROTOP.03.MFC. The patients that participated in this research work were men and women older than 15 years with the clinical and histopathology diagnoses of: melanoma, basocellular carcinoma, epidermoide carcinoma, actinic keratosis, keratoacantosis and benign nevus. Latex impressions of the lesions were taken and microtopographically analyzed. Characteristic information for each type of studied lesion was obtained. For melanoma it was observed that on the average these tumors present an increased roughness of around 67 percent compared to the roughness of the healthy skin. This feature allows the distinction from other tumors as basocellular carcinoma (were the roughness increase was in the average of 49 percent) and benign lesions as the epidermoide cyst (37 percent) or the seborrhea keratosis (4 percent). Tumor size and roughness are directly proportional to the grade of malignality. The characterization of the fractal geometry of 2D (histological slides) and 3D images of skin lesions was performed by obtaining its FD evaluated by means of the Box counting method. Results obtained showed that the average fractal dimension of histological slide images (FDh
Functional DNA Nanomaterials for Sensing and Imaging in Living Cells
Torabi, Seyed-Fakhreddin; Lu, Yi
2014-01-01
Recent developments in integrating high selectivity of functional DNA, such as DNAzyme and aptamers, with efficient DNA delivery into cells by gold nanoparticles or superior near-infrared optical properties of upconversion nanoparticles are reviewed. Their applications in sensing and imaging small organic metabolites, toxins, metal ions, pH, DNA, RNA, proteins, and pathogens are summarized. The advantages and future directions of these functional DNA materials are discussed. PMID:24468446
NASA Astrophysics Data System (ADS)
Gao, Wei; Zakharov, Valery P.; Myakinin, Oleg O.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Kornilin, Dmitry V.
2015-07-01
Optical coherence tomography (OCT) is usually employed for the measurement of retinal thickness characterizing the structural changes of tissue. However, fractal dimension (FD) could also character the structural changes of tissue. Therefore, fractal dimension changes may provide further information regarding cellular layers and early damage in ocular diseases. We investigated the possibility of OCT in detecting changes in fractal dimension from layered retinal structures. OCT images were obtained from diabetic patients without retinopathy (DM, n = 38 eyes) or mild diabetic retinopathy (MDR, n = 43 eyes) and normal healthy subjects (Controls, n = 74 eyes). Fractal dimension was calculated using the differentiate box counting methodology. We evaluated the usefulness of quantifying fractal dimension of layered structures in the detection of retinal damage. Generalized estimating equations considering within-subject intereye relations were used to test for differences between the groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of fractal dimension to discriminate between the eyes of DM, MDR and healthy eyes. Significant decreases of fractal dimension were observed in all layers in the MDR eyes compared with controls except in the inner nuclear layer (INL). Significant decreases of fractal dimension were also observed in all layers in the MDR eyes compared with DM eyes. The highest area under receiver operating characteristic curve (AUROC) values estimated for fractal dimension were observed for the outer plexiform layer (OPL) and outer segment photoreceptors (OS) when comparing MDR eyes with controls. The highest AUROC value estimated for fractal dimension were also observed for the retinal nerve fiber layer (RNFL) and OS when comparing MDR eyes with DM eyes. Our results suggest that fractal dimension of the intraretinal layers may provide useful
Fractal Reference Signals in Pulse-Width Modulation
NASA Technical Reports Server (NTRS)
Lurie, Boris; Lurie, Helen
2005-01-01
A report proposes the use of waveforms having fractal shapes reminiscent of sawteeth (in contradistinction to conventional regular sawtooth waveforms) as reference signals for pulse-width modulation in control systems for thrusters of spacecraft flying in formation. Fractal reference signals may also be attractive in some terrestrial control systems - especially those in which pulse-width modulation is used for precise control of electric motors. The report asserts that the use of fractal reference signals would enable the synchronous control of several variables of a spacecraft formation, such that consumption of propellant would be minimized, intervals between thruster firings would be long (as preferred for performing scientific observations), and delays in controlling large-thrust maneuvers for retargeting would be minimized. The report further asserts that whereas different controllers would be needed for different modes of operation if conventional pulsewidth modulation were used, the use of fractal reference signals would enable the same controller to function nearly optimally in all regimes of operation, so that only this one controller would be needed.
Promise of new imaging technologies for assessing ovarian function
Singh, Jaswant; Adams, Gregg P.; Pierson, Roger A.
2010-01-01
Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction. PMID:12818654
Adaptive sigmoid function bihistogram equalization for image contrast enhancement
NASA Astrophysics Data System (ADS)
Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe
2015-09-01
Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.
Ultrasound strain imaging for quantification of tissue function: cardiovascular applications
NASA Astrophysics Data System (ADS)
de Korte, Chris L.; Lopata, Richard G. P.; Hansen, Hendrik H. G.
2013-03-01
With ultrasound imaging, the motion and deformation of tissue can be measured. Tissue can be deformed by applying a force on it and the resulting deformation is a function of its mechanical properties. Quantification of this resulting tissue deformation to assess the mechanical properties of tissue is called elastography. If the tissue under interrogation is actively deforming, the deformation is directly related to its function and quantification of this deformation is normally referred as `strain imaging'. Elastography can be used for atherosclerotic plaques characterization, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. We developed radio frequency (RF) based ultrasound methods to assess the deformation at higher resolution and with higher accuracy than commercial methods using conventional image data (Tissue Doppler Imaging and 2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so 1D. We further extended this method to multiple directions and further improved precision by using compounding of data acquired at multiple beam steered angles. In arteries, the presence of vulnerable plaques may lead to acute events like stroke and myocardial infarction. Consequently, timely detection of these plaques is of great diagnostic value. Non-invasive ultrasound strain compounding is currently being evaluated as a diagnostic tool to identify the vulnerability of plaques. In the heart, we determined the strain locally and at high resolution resulting in a local assessment in contrary to conventional global functional parameters like cardiac output or shortening fraction.
Fractal applications to complex crustal problems
NASA Technical Reports Server (NTRS)
Turcotte, Donald L.
1989-01-01
Complex scale-invariant problems obey fractal statistics. The basic definition of a fractal distribution is that the number of objects with a characteristic linear dimension greater than r satisfies the relation N = about r exp -D where D is the fractal dimension. Fragmentation often satisfies this relation. The distribution of earthquakes satisfies this relation. The classic relationship between the length of a rocky coast line and the step length can be derived from this relation. Power law relations for spectra can also be related to fractal dimensions. Topography and gravity are examples. Spectral techniques can be used to obtain maps of fractal dimension and roughness amplitude. These provide a quantitative measure of texture analysis. It is argued that the distribution of stress and strength in a complex crustal region, such as the Alps, is fractal. Based on this assumption, the observed frequency-magnitude relation for the seismicity in the region can be derived.
Method for non-referential defect characterization using fractal encoding and active contours
Gleason, Shaun S.; Sari-Sarraf, Hamed
2007-05-15
A method for identification of anomalous structures, such as defects, includes the steps of providing a digital image and applying fractal encoding to identify a location of at least one anomalous portion of the image. The method does not require a reference image to identify the location of the anomalous portion. The method can further include the step of initializing an active contour based on the location information obtained from the fractal encoding step and deforming an active contour to enhance the boundary delineation of the anomalous portion.
TOPICAL REVIEW: Multimodality imaging of structure and function
NASA Astrophysics Data System (ADS)
Townsend, D. W.
2008-02-01
Historically, medical devices to image either anatomical structure or functional processes have developed along somewhat independent paths. The recognition that combining images from different modalities can nevertheless offer significant diagnostic advantages gave rise to sophisticated software techniques to coregister structure and function. Recently, alternatives to retrospective software-based fusion have become available through instrumentation that combines two imaging modalities within a single device, an approach that has since been termed hardware fusion. As a result, following their recent introduction into the clinic, combined PET/CT and SPECT/CT devices are now playing an increasingly important role in the diagnosis and staging of human disease. Recently, although limited to the brain, the first clinical MR scanner with a PET insert, a technically-challenging design, has been undergoing evaluation. This review will follow the development of multimodality instrumentation for clinical use from conception to present-day technology and assess the status and future potential for such devices.
Live-Animal Imaging of Renal Function by Multiphoton Microscopy
Dunn, Kenneth W.; Sutton, Timothy A.; Sandoval, Ruben M.
2015-01-01
Intravital microscopy, microscopy of living animals, is a powerful research technique that combines the resolution and sensitivity found in microscopic studies of cultured cells with the relevance and systemic influences of cells in the context of the intact animal. The power of intravital microscopy has recently been extended with the development of multiphoton fluorescence microscopy systems capable of collecting optical sections from deep within the kidney at subcellular resolution, supporting high-resolution characterizations of the structure and function of glomeruli, tubules, and vasculature in the living kidney. Fluorescent probes are administered to an anesthetized, surgically prepared animal, followed by image acquisition for up to 3 hr. Images are transferred via a high-speed network to specialized computer systems for digital image analysis. This general approach can be used with different combinations of fluorescent probes to evaluate processes such as glomerular permeability, proximal tubule endocytosis, microvascular flow, vascular permeability, mitochondrial function, and cellular apoptosis/necrosis. PMID:23042524
Fuzzy fractals, chaos, and noise
Zardecki, A.
1997-05-01
To distinguish between chaotic and noisy processes, the authors analyze one- and two-dimensional chaotic mappings, supplemented by the additive noise terms. The predictive power of a fuzzy rule-based system allows one to distinguish ergodic and chaotic time series: in an ergodic series the likelihood of finding large numbers is small compared to the likelihood of finding them in a chaotic series. In the case of two dimensions, they consider the fractal fuzzy sets whose {alpha}-cuts are fractals, arising in the context of a quadratic mapping in the extended complex plane. In an example provided by the Julia set, the concept of Hausdorff dimension enables one to decide in favor of chaotic or noisy evolution.
Modulation-transfer-function analysis for sampled image systems
NASA Technical Reports Server (NTRS)
Park, S. K.; Kaczynski, M.-A.; Schowengerdt, R.
1984-01-01
Sampling generally causes the response of a digital imaging system to be locally shift-variant and not directly amenable to Modulation Transfer Function (MTF) analysis. However, this paper demonstrates that a meaningful system response can be calculated by averaging over an ensemble of point-source system inputs to yield an MTF which accounts for the combined effects of image formation, sampling, and image reconstruction. As an illustration, the MTF of the Landsat MSS system is analyzed to reveal an average effective instantaneous field of view which is significantly larger than the commonly accepted value, particularly in the along-track direction where undersampling contributes markedly to an MTF reduction and resultant increase in image blur.
The Assessment of Neurological Systems with Functional Imaging
ERIC Educational Resources Information Center
Eidelberg, David
2007-01-01
In recent years a number of multivariate approaches have been introduced to map neural systems in health and disease. In this review, we focus on spatial covariance methods applied to functional imaging data to identify patterns of regional activity associated with behavior. In the rest state, this form of network analysis can be used to detect…
Functional Connectivity Magnetic Resonance Imaging Classification of Autism
ERIC Educational Resources Information Center
Anderson, Jeffrey S.; Nielsen, Jared A.; Froehlich, Alyson L.; DuBray, Molly B.; Druzgal, T. Jason; Cariello, Annahir N.; Cooperrider, Jason R.; Zielinski, Brandon A.; Ravichandran, Caitlin; Fletcher, P. Thomas; Alexander, Andrew L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.
2011-01-01
Group differences in resting state functional magnetic resonance imaging connectivity between individuals with autism and typically developing controls have been widely replicated for a small number of discrete brain regions, yet the whole-brain distribution of connectivity abnormalities in autism is not well characterized. It is also unclear…
Fractal superconductivity near localization threshold
Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.
2010-07-15
We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical
Functional Nanoscale Imaging of Synaptic Vesicle Cycling with Superfast Fixation.
Schikorski, Thomas
2016-01-01
Functional imaging is the measurement of structural changes during an ongoing physiological process over time. In many cases, functional imaging has been implemented by tracking a fluorescent signal in live imaging sessions. Electron microscopy, however, excludes live imaging which has hampered functional imaging approaches on the ultrastructural level. This barrier was broken with the introduction of superfast fixation. Superfast fixation is capable of stopping and fixing membrane traffic at sufficient speed to capture a physiological process at a distinct functional state. Applying superfast fixation at sequential time points allows tracking of membrane traffic in a step-by-step fashion.This technique has been applied to track labeled endocytic vesicles at central synapses as they pass through the synaptic vesicle cycle. At synapses, neurotransmitter is released from synaptic vesicles (SVs) via fast activity-dependent exocytosis. Exocytosis is coupled to fast endocytosis that retrieves SVs components from the plasma membrane shortly after release. Fluorescent FM dyes that bind to the outer leaflet of the plasma membrane enter the endocytic vesicle during membrane retrieval and remain trapped in endocytic vesicles have been widely used to study SV exo-endocytic cycling in live imaging sessions. FM dyes can also be photoconverted into an electron-dense diaminobenzidine polymer which allows the investigation of SV cycling in the electron microscope. The combination of FM labeling with superfast fixation made it possible to track the fine structure of endocytic vesicles at 1 s intervals. Because this combination is not specialized to SV cycling, many other cellular processes can be studied. Furthermore, the technique is easy to set up and cost effective.This chapter describes activity-dependent FM dye labeling of SVs in cultured hippocampal neurons, superfast microwave-assisted fixation, photoconversion of the fluorescent endocytic vesicles, and the analysis of
Ghosh, Subrata; Dutta, Mrinal; Ray, Kanad; Fujita, Daisuke; Bandyopadhyay, Anirban
2016-06-01
We introduce a new class of fractal reaction kinetics wherein two or more distinct fractal structures are synthesized as parts of a singular cascade reaction in a single chemical beaker. Two examples: sphere ↔ spiral & triangle ↔ square fractals, grow 10(6) orders from a single dendrimer (8 nm) to the visible scale. PMID:27166589
Phase transfer function based method to alleviate image artifacts in wavefront coding imaging system
NASA Astrophysics Data System (ADS)
Mo, Xutao; Wang, Jinjiang
2013-09-01
Wavefront coding technique can extend the depth of filed (DOF) of the incoherent imaging system. Several rectangular separable phase masks (such as cubic type, exponential type, logarithmic type, sinusoidal type, rational type, et al) have been proposed and discussed, because they can extend the DOF up to ten times of the DOF of ordinary imaging system. But according to the research on them, researchers have pointed out that the images are damaged by the artifacts, which usually come from the non-linear phase transfer function (PTF) differences between the PTF used in the image restoration filter and the PTF related to real imaging condition. In order to alleviate the image artifacts in imaging systems with wavefront coding, an optimization model based on the PTF was proposed to make the PTF invariance with the defocus. Thereafter, an image restoration filter based on the average PTF in the designed depth of field was introduced along with the PTF-based optimization. The combination of the optimization and the image restoration proposed can alleviate the artifacts, which was confirmed by the imaging simulation of spoke target. The cubic phase mask (CPM) and exponential phase mask (EPM) were discussed as example.
Fractal analysis reveals reduced complexity of retinal vessels in CADASIL.
Cavallari, Michele; Falco, Teresa; Frontali, Marina; Romano, Silvia; Bagnato, Francesca; Orzi, Francesco
2011-01-01
The Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) affects mainly small cerebral arteries and leads to disability and dementia. The relationship between clinical expression of the disease and progression of the microvessel pathology is, however, uncertain as we lack tools for imaging brain vessels in vivo. Ophthalmoscopy is regarded as a window into the cerebral microcirculation. In this study we carried out an ophthalmoscopic examination in subjects with CADASIL. Specifically, we performed fractal analysis of digital retinal photographs. Data are expressed as mean fractal dimension (mean-D), a parameter that reflects complexity of the retinal vessel branching. Ten subjects with genetically confirmed diagnosis of CADASIL and 10 sex and age-matched control subjects were enrolled. Fractal analysis of retinal digital images was performed by means of a computer-based program, and the data expressed as mean-D. Brain MRI lesion volume in FLAIR and T1-weighted images was assessed using MIPAV software. Paired t-test was used to disclose differences in mean-D between CADASIL and control groups. Spearman rank analysis was performed to evaluate potential associations between mean-D values and both disease duration and disease severity, the latter expressed as brain MRI lesion volumes, in the subjects with CADASIL. The results showed that mean-D value of patients (1.42±0.05; mean±SD) was lower than control (1.50±0.04; p = 0.002). Mean-D did not correlate with disease duration nor with MRI lesion volumes of the subjects with CADASIL. The findings suggest that fractal analysis is a sensitive tool to assess changes of retinal vessel branching, likely reflecting early brain microvessel alterations, in CADASIL patients. PMID:21556373
Electrodynamic properties of fractal clusters
NASA Astrophysics Data System (ADS)
Maksimenko, V. V.; Zagaynov, V. A.; Agranovski, I. E.
2014-07-01
An influence of interference on a character of light interaction both with individual fractal cluster (FC) consisting of nanoparticles and with agglomerates of such clusters is investigated. Using methods of the multiple scattering theory, effective dielectric permeability of a micron-size FC composed of non-absorbing nanoparticles is calculated. The cluster could be characterized by a set of effective dielectric permeabilities. Their number coincides with the number of particles, where space arrangement in the cluster is correlated. If the fractal dimension is less than some critical value and frequency corresponds to the frequency of the visible spectrum, then the absolute value of effective dielectric permeability becomes very large. This results in strong renormalization (decrease) of the incident radiation wavelength inside the cluster. The renormalized photons are cycled or trapped inside the system of multi-scaled cavities inside the cluster. A lifetime of a photon localized inside an agglomerate of FCs is a macroscopic value allowing to observe the stimulated emission of the localized light. The latter opens up a possibility for creation of lasers without inverse population of energy levels. Moreover, this allows to reconsider problems of optical cloaking of macroscopic objects. One more feature of fractal structures is a possibility of unimpeded propagation of light when any resistance associated with scattering disappears.
The fractal dimensions of the spatial distribution of young open clusters in the solar neighbourhood
NASA Astrophysics Data System (ADS)
de La Fuente Marcos, R.; de La Fuente Marcos, C.
2006-06-01
Context: .Fractals are geometric objects with dimensionalities that are not integers. They play a fundamental role in the dynamics of chaotic systems. Observation of fractal structure in both the gas and the star-forming sites in galaxies suggests that the spatial distribution of young open clusters should follow a fractal pattern, too. Aims: .Here we investigate the fractal pattern of the distribution of young open clusters in the Solar Neighbourhood using a volume-limited sample from WEBDA and a multifractal analysis. By counting the number of objects inside spheres of different radii centred on clusters, we study the homogeneity of the distribution. Methods: .The fractal dimension D of the spatial distribution of a volume-limited sample of young open clusters is determined by analysing different moments of the count-in-cells. The spectrum of the Minkowski-Bouligand dimension of the distribution is studied as a function of the parameter q. The sample is corrected for dynamical effects. Results: .The Minkowski-Bouligand dimension varies with q in the range 0.71-1.77, therefore the distribution of young open clusters is fractal. We estimate that the average value of the fractal dimension is < D> = 1.7± 0.2 for the distribution of young open clusters studied. Conclusions: .The spatial distribution of young open clusters in the Solar Neighbourhood exhibits multifractal structure. The fractal dimension is time-dependent, increasing over time. The values found are consistent with the fractal dimension of star-forming sites in other spiral galaxies.
Stability limits for bioconvective fractals - Microgravity prospects
NASA Technical Reports Server (NTRS)
Noever, David A.
1992-01-01
Fractal objects are delicate aggregates which show self-similar behavior and vanishing density for increasing length scales. In practice real fractals in nature however possess only a limited region of verifiable self-similarity. As natural fractal objects increase in size, they become easier to disrupt mechanically. Herein the effects of thermal vibrations and gravity are investigated as deforming forces on fractal aggregation. Example calculations are carried out on a biological fractal formed from the surface aggregation of various cells such as alga and bacteria. For typical cell parameters, the predicted diameter of this so-called 'bioconvective' fractal agrees well with the observed limits of about 5 cm. On earth, this size represents an experimental maximum for finding bioconvective fractal objects. To extend this size range of fractals available for statistical study, a reduced gravity environment offers one way to achieve larger fractals. For these enhanced sizes, the present scaling predicts that microgravity can yield up to a 35-fold improvement in extending statistical resolution.
Some problems in fractal differential equations
NASA Astrophysics Data System (ADS)
Su, Weiyi
2016-06-01
Based upon the fractal calculus on local fields, or p-type calculus, or Gibbs-Butzer calculus ([1],[2]), we suggest a constructive idea for "fractal differential equations", beginning from some special examples to a general theory. However, this is just an original idea, it needs lots of later work to support. In [3], we show example "two dimension wave equations with fractal boundaries", and in this note, other examples, as well as an idea to construct fractal differential equations are shown.
Order-fractal transitions in abstract paintings
NASA Astrophysics Data System (ADS)
de la Calleja, E. M.; Cervantes, F.; de la Calleja, J.
2016-08-01
In this study, we determined the degree of order for 22 Jackson Pollock paintings using the Hausdorff-Besicovitch fractal dimension. Based on the maximum value of each multi-fractal spectrum, the artworks were classified according to the year in which they were painted. It has been reported that Pollock's paintings are fractal and that this feature was more evident in his later works. However, our results show that the fractal dimension of these paintings ranges among values close to two. We characterize this behavior as a fractal-order transition. Based on the study of disorder-order transition in physical systems, we interpreted the fractal-order transition via the dark paint strokes in Pollock's paintings as structured lines that follow a power law measured by the fractal dimension. We determined self-similarity in specific paintings, thereby demonstrating an important dependence on the scale of observations. We also characterized the fractal spectrum for the painting entitled Teri's Find. We obtained similar spectra for Teri's Find and Number 5, thereby suggesting that the fractal dimension cannot be rejected completely as a quantitative parameter for authenticating these artworks.
Principles of functional magnetic resonance imaging: application to auditory neuroscience.
Cacace, A T; Tasciyan, T; Cousins, J P
2000-05-01
Functional imaging based on magnetic resonance methods is a new research frontier for exploring a wide range of central nervous system (CNS) functions, including information processing in sensory, motor, cognitive, and linguistic systems. Being able to localize and study human brain function in vivo, in relatively high resolution and in a noninvasive manner, makes this a technique of unparalleled importance. In order to appreciate and fully understand this area of investigation, a tutorial covering basic aspects of this methodology is presented. We introduce functional magnetic resonance imaging (fMRI) by providing an overview of the studies of different sensory systems in response to modality-specific stimuli, followed by an outline of other areas that have potential clinical relevance to the medical, cognitive, and communicative sciences. The discussion then focuses on the basic principles of magnetic resonance methods including magnetic resonance imaging, MR spectroscopy, fMRI, and the potential role that MR technology may play in understanding a wide range of auditory functions within the CNS, including tinnitus-related activity. Because the content of the material found herein might be unfamiliar to some, we provide a broad range of background and review articles to serve as a technical resource. PMID:10821504
NASA Astrophysics Data System (ADS)
Westphal, Volker
Optical Coherence Tomography (OCT) is a noninvasive optical imaging technique that allows high-resolution cross-sectional imaging of tissue microstructure, achieving a spatial resolution of about 10 mum. OCT is similar to B-mode ultrasound (US) except that it uses infrared light instead of ultrasound. In contrast to US, no coupling gel is needed, simplifying the image acquisition. Furthermore, the fiber optic implementation of OCT is compatible with endoscopes. In recent years, the transition from slow imaging, bench-top systems to real-time clinical systems has been under way. This has lead to a variety of applications, namely in ophthalmology, gastroenterology, dermatology and cardiology. First, this dissertation will demonstrate that OCT is capable of imaging and differentiating clinically relevant tissue structures in the gastrointestinal tract. A careful in vitro correlation study between endoscopic OCT images and corresponding histological slides was performed. Besides structural imaging, OCT systems were further developed for functional imaging, as for example to visualize blood flow. Previously, imaging flow in small vessels in real-time was not possible. For this research, a new processing scheme similar to real-time Doppler in US was introduced. It was implemented in dedicated hardware to allow real-time acquisition and overlayed display of blood flow in vivo. A sensitivity of 0.5mm/s was achieved. Optical coherence microscopy (OCM) is a variation of OCT, improving the resolution even further to a few micrometers. Advances made in the OCT scan engine for the Doppler setup enabled real-time imaging in vivo with OCM. In order to generate geometrical correct images for all the previous applications in real-time, extensive image processing algorithms were developed. Algorithms for correction of distortions due to non-telecentric scanning, nonlinear scan mirror movements, and refraction were developed and demonstrated. This has led to interesting new
Human brain activity with functional NIR optical imager
NASA Astrophysics Data System (ADS)
Luo, Qingming
2001-08-01
In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.
Linear constraint minimum variance beamformer functional magnetic resonance inverse imaging
Lin, Fa-Hsuan; Witzel, Thomas; Zeffiro, Thomas A.; Belliveau, John W.
2011-01-01
Accurate estimation of the timing of neural activity is required to fully model the information flow among functionally specialized regions whose joint activity underlies perception, cognition and action. Attempts to detect the fine temporal structure of task-related activity would benefit from functional imaging methods allowing higher sampling rates. Spatial filtering techniques have been used in magnetoencephalography source imaging applications. In this work, we use the linear constraint minimal variance (LCMV) beamformer localization method to reconstruct single-shot volumetric functional magnetic resonance imaging (fMRI) data using signals acquired simultaneously from all channels of a high density radio-frequency (RF) coil array. The LCMV beamformer method generalizes the existing volumetric magnetic resonance inverse imaging (InI) technique, achieving higher detection sensitivity while maintaining whole-brain spatial coverage and 100 ms temporal resolution. In this paper, we begin by introducing the LCMV reconstruction formulation and then quantitatively assess its performance using both simulated and empirical data. To demonstrate the sensitivity and inter-subject reliability of volumetric LCMV InI, we employ an event-related design to probe the spatial and temporal properties of task-related hemodynamic signal modulations in primary visual cortex. Compared to minimum-norm estimate (MNE) reconstructions, LCMV offers better localization accuracy and superior detection sensitivity. Robust results from both single subject and group analyses demonstrate the excellent sensitivity and specificity of volumetric InI in detecting the spatial and temporal structure of task-related brain activity. PMID:18672071
Intrinsic signal imaging of brain function using a small implantable CMOS imaging device
NASA Astrophysics Data System (ADS)
Haruta, Makito; Sunaga, Yoshinori; Yamaguchi, Takahiro; Takehara, Hironari; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun
2015-04-01
A brain functional imaging technique over a long period is important to understand brain functions related to animal behavior. We have developed a small implantable CMOS imaging device for measuring brain activity in freely moving animals. This device is composed of a CMOS image sensor chip and LEDs for illumination. In this study, we demonstrated intrinsic signal imaging of blood flow using the device with a green LED light source at a peak wavelength of 535 nm, which corresponds to one of the absorption spectral peaks of blood cells. Brain activity increases regional blood flow. The device light weight of about 0.02 g makes it possible to stably measure brain activity through blood flow over a long period. The device has successfully measured the intrinsic signal related to sensory stimulation on the primary somatosensory cortex.
Modulation transfer function measurement technique for image sensor arrays
NASA Astrophysics Data System (ADS)
Jin, Hui; Jiang, Huilin; Zhang, XiaoHui
2010-08-01
A new technique is demonstrated for measurement of modulation transfer function (MTF) on image sensor arrays. Fourier analysis of a low frequency bar target pattern is used to extract MTF at odd harmonics of a target pattern frequency up to and beyond Nyquist. The technique is particularly useful for linear image arrays (either conventional linescan or time-delay- integration devices) where conventional slanted-edge technique is not always applicable. The technique is well suited to simple implementation and can provide live presentation of the MTF curve, which helps to ensure optimal alignment conditions are achieved. Detailed analysis of the technique and demonstration of experimental results are presented.
Fractal analysis of radiologists' visual scanning pattern in screening mammography
NASA Astrophysics Data System (ADS)
Alamudun, Folami T.; Yoon, Hong-Jun; Hudson, Kathy; Morin-Ducote, Garnetta; Tourassi, Georgia
2015-03-01
Several researchers have investigated radiologists' visual scanning patterns with respect to features such as total time examining a case, time to initially hit true lesions, number of hits, etc. The purpose of this study was to examine the complexity of the radiologists' visual scanning pattern when viewing 4-view mammographic cases, as they typically do in clinical practice. Gaze data were collected from 10 readers (3 breast imaging experts and 7 radiology residents) while reviewing 100 screening mammograms (24 normal, 26 benign, 50 malignant). The radiologists' scanpaths across the 4 mammographic views were mapped to a single 2-D image plane. Then, fractal analysis was applied on the composite 4- view scanpaths. For each case, the complexity of each radiologist's scanpath was measured using fractal dimension estimated with the box counting method. The association between the fractal dimension of the radiologists' visual scanpath, case pathology, case density, and radiologist experience was evaluated using fixed effects ANOVA. ANOVA showed that the complexity of the radiologists' visual search pattern in screening mammography is dependent on case specific attributes (breast parenchyma density and case pathology) as well as on reader attributes, namely experience level. Visual scanning patterns are significantly different for benign and malignant cases than for normal cases. There is also substantial inter-observer variability which cannot be explained only by experience level.
Fractal dimension and mechanism of aggregation of apple juice particles.
Benítez, E I; Lozano, J E; Genovese, D B
2010-04-01
Turbidity of freshly squeezed apple juice is produced by a polydisperse suspension of particles coming from the cellular tissue. After precipitation of coarse particles by gravity, only fine-colloidal particles remain in suspension. Aggregation of colloidal particles leads to the formation of fractal structures. The fractal dimension is a measure of the internal density of these aggregates and depends on their mechanism of aggregation. Digitized images of primary particles and aggregates of depectinized, diafiltered cloudy apple juice were obtained by scanning electron microscopy (SEM). Average radius of the primary particles was found to be a = 40 ± 11 nm. Maximum radius of the aggregates, R(L), ranged between 250 and 7750 nm. Fractal dimension of the aggregates was determined by analyzing SEM images with the variogram method, obtaining an average value of D(f) = 2.3 ± 0.1. This value is typical of aggregates formed by rapid flocculation or diffusion limited aggregation. Diafiltration process was found to reduce the average size and polydispersity of the aggregates, determined by photon correlation spectroscopy. Average gyration radius of the aggregates before juice diafiltration was found to be R(g) = 629 ± 87 nm. Average number of primary particles per aggregate was calculated to be N = 1174. PMID:21339133
Point spread functions and deconvolution of ultrasonic images.
Dalitz, Christoph; Pohle-Fröhlich, Regina; Michalk, Thorsten
2015-03-01
This article investigates the restoration of ultrasonic pulse-echo C-scan images by means of deconvolution with a point spread function (PSF). The deconvolution concept from linear system theory (LST) is linked to the wave equation formulation of the imaging process, and an analytic formula for the PSF of planar transducers is derived. For this analytic expression, different numerical and analytic approximation schemes for evaluating the PSF are presented. By comparing simulated images with measured C-scan images, we demonstrate that the assumptions of LST in combination with our formula for the PSF are a good model for the pulse-echo imaging process. To reconstruct the object from a C-scan image, we compare different deconvolution schemes: the Wiener filter, the ForWaRD algorithm, and the Richardson-Lucy algorithm. The best results are obtained with the Richardson-Lucy algorithm with total variation regularization. For distances greater or equal twice the near field distance, our experiments show that the numerically computed PSF can be replaced with a simple closed analytic term based on a far field approximation. PMID:25768819
Sharma, Rakesh; Sharma, Avdhesh
2004-01-01
Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities. PMID:15125779
Integrated quantitative fractal polarimetric analysis of monolayer lung cancer cells
NASA Astrophysics Data System (ADS)
Shrestha, Suman; Zhang, Lin; Quang, Tri; Farrahi, Tannaz; Narayan, Chaya; Deshpande, Aditi; Na, Ying; Blinzler, Adam; Ma, Junyu; Liu, Bo; Giakos, George C.
2014-05-01
Digital diagnostic pathology has become one of the most valuable and convenient advancements in technology over the past years. It allows us to acquire, store and analyze pathological information from the images of histological and immunohistochemical glass slides which are scanned to create digital slides. In this study, efficient fractal, wavelet-based polarimetric techniques for histological analysis of monolayer lung cancer cells will be introduced and different monolayer cancer lines will be studied. The outcome of this study indicates that application of fractal, wavelet polarimetric principles towards the analysis of squamous carcinoma and adenocarcinoma cancer cell lines may be proved extremely useful in discriminating among healthy and lung cancer cells as well as differentiating among different lung cancer cells.
Imaging regional renal function parameters using radionuclide tracers
NASA Astrophysics Data System (ADS)
Qiao, Yi
A compartmental model is given for evaluating kidney function accurately and noninvasively. This model is cast into a parallel multi-compartment structure and each pixel region (picture element) of kidneys is considered as a single kidney compartment. The loss of radionuclide tracers from the blood to the kidney and from the kidney to the bladder are modelled in great detail. Both the uptake function and the excretion function of the kidneys can be evaluated pixel by pixel, and regional diagnostic information on renal function is obtained. Gamma Camera image data are required by this model and a screening test based renal function measurement is provided. The regional blood background is subtracted from the kidney region of interest (ROI) and the kidney regional rate constants are estimated analytically using the Kuhn-Pucker multiplier method in convex programming by considering the input/output behavior of the kidney compartments. The detailed physiological model of the peripheral compartments of the system, which is not available for most radionuclide tracers, is not required in the determination of the kidney regional rate constants and the regional blood background factors within the kidney ROI. Moreover, the statistical significance of measurements is considered to assure the improved statistical properties of the estimated kidney rate constants. The relations between various renal function parameters and the kidney rate constants are established. Multiple renal function measurements can be found from the renal compartmental model. The blood radioactivity curve and the regional (or total) radiorenogram determining the regional (or total) summed behavior of the kidneys are obtained analytically with the consideration of the statistical significance of measurements using convex programming methods for a single peripheral compartment system. In addition, a new technique for the determination of 'initial conditions' in both the blood compartment and the kidney
Single- and dual-fractal analysis of hybridization binding kinetics: biosensor applications.
Sadana, A; Vo-Dinh, T
1998-01-01
The diffusion-limited hybridization kinetics of analyte in solution to a receptor immobilized on a biosensor or immunosensor surface is analyzed within a fractal framework. The data may be analyzed by a single- or a dual-fractal analysis. This was indicated by the regression analysis provided by Sigmaplot. It is of interest to note that the binding rate coefficient and the fractal dimension both exhibit changes in the same direction for both the single-fractal and the dual-fractal analysis examples presented. For example, for a single-fractal analysis and for the hybridization of 10 nM 16CFl (oligonucleotide) to 16B immobilized via sulfosuccinimidyl-6-(biotinamido)hexanoate and streptavidin using chemical and thermal regeneration (Abel, A. P.; Weller, M. G.; Duveneck, G. L.; Ehrat, M. Widmer, H. M. Anal. Chem. 1996, 68, 2905-2912), an increase in the fractal dimension, Df from 1.211 (chemical regeneration) to 1.394 (thermal regeneration), leads to an increase in the binding rate coefficient, k, from 86.53 (chemical regeneration) to 100.0 (thermal regeneration). An increase in the degree of heterogeneity on the biosensor surface leads to an increase in the binding rate coefficient. When a dual-fractal analysis was utilized, an increase in the fractal dimension value from Df1 to Df2 leads to an increase in the binding rate coefficient value from k1 to k2. The fractional order of dependence of the binding rate coefficient, k1, on (a) the analyte (rRNA) concentration in solution and (b) on the fractal dimension, Df1, for the hybridization kinetics to detect Listeria species (Fliss, R.; St-Laurent, M.; Emond, E.; Simard, R. E.; Lemieux, R.; Ettriki, A.; Pandian, S. Appl. Microbiol. Biotechnol. 1995, 43, 717-724.) further reinforces the fractal nature of the system. The binding rate coefficient(s) expressions developed as a function of the analyte concentration in solution and the fractal dimension are of particular value since they provide a means to better control of
Analysis of Texture Using the Fractal Model
NASA Technical Reports Server (NTRS)
Navas, William; Espinosa, Ramon Vasquez
1997-01-01
Properties such as the fractal dimension (FD) can be used for feature extraction and classification of regions within an image. The FD measures the degree of roughness of a surface, so this number is used to characterize a particular region, in order to differentiate it from another. There are two basic approaches discussed in the literature to measure FD: the blanket method, and the box counting method. Both attempt to measure FD by estimating the change in surface area with respect to the change in resolution. We tested both methods but box counting resulted computationally faster and gave better results. Differential Box Counting (DBC) was used to segment a collage containing three textures. The FD is independent of directionality and brightness so five features were used derived from the original image to account for directionality and gray level biases. FD can not be measured on a point, so we use a window that slides across the image giving values of FD to the pixel on the center of the window. Windowing blurs the boundaries of adjacent classes, so an edge-preserving, feature-smoothing algorithm is used to improve classification within segments and to make the boundaries sharper. Segmentation using DBC was 90.8910 accurate.
Functional laser speckle imaging of cerebral blood flow under hypothermia
NASA Astrophysics Data System (ADS)
Li, Minheng; Miao, Peng; Zhu, Yisheng; Tong, Shanbao
2011-08-01
Hypothermia can unintentionally occur in daily life, e.g., in cardiovascular surgery or applied as therapeutics in the neurosciences critical care unit. So far, the temperature-induced spatiotemporal responses of the neural function have not been fully understood. In this study, we investigated the functional change in cerebral blood flow (CBF), accompanied with neuronal activation, by laser speckle imaging (LSI) during hypothermia. Laser speckle images from Sprague-Dawley rats (n = 8, male) were acquired under normothermia (37°C) and moderate hypothermia (32°C). For each animal, 10 trials of electrical hindpaw stimulation were delivered under both temperatures. Using registered laser speckle contrast analysis and temporal clustering analysis (TCA), we found a delayed response peak and a prolonged response window under hypothermia. Hypothermia also decreased the activation area and the amplitude of the peak CBF. The combination of LSI and TCA is a high-resolution functional imaging method to investigate the spatiotemporal neurovascular coupling in both normal and pathological brain functions.
Functional imaging of the lungs with gas agents.
Kruger, Stanley J; Nagle, Scott K; Couch, Marcus J; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B
2016-02-01
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children. PMID:26218920