Science.gov

Sample records for functional genomics proteomics

  1. Functional modelling of an equine bronchoalveolar lavage fluid proteome provides experimental confirmation and functional annotation of equine genome sequences.

    PubMed

    Bright, L A; Mujahid, N; Nanduri, B; McCarthy, F M; Costa, L R R; Burgess, S C; Swiderski, C E

    2011-08-01

    The equine genome sequence enables the use of high-throughput genomic technologies in equine research, but accurate identification of expressed gene products and interpreting their biological relevance require additional structural and functional genome annotation. Here, we employ the equine genome sequence to identify predicted and known proteins using proteomics and model these proteins into biological pathways, identifying 582 proteins in normal cell-free equine bronchoalveolar lavage fluid (BALF). We improved structural and functional annotation by directly confirming the in vivo expression of 558 (96%) proteins, which were computationally predicted previously, and adding Gene Ontology (GO) annotations for 174 proteins, 108 of which lacked functional annotation. Bronchoalveolar lavage is commonly used to investigate equine respiratory disease, leading us to model the associated proteome and its biological functions. Modelling of protein functions using Ingenuity Pathway Analysis identified carbohydrate metabolism, cell-to-cell signalling, cellular function, inflammatory response, organ morphology, lipid metabolism and cellular movement as key biological processes in normal equine BALF. Comparative modelling of protein functions in normal cell-free bronchoalveolar lavage proteomes from horse, human, and mouse, performed by grouping GO terms sharing common ancestor terms, confirms conservation of functions across species. Ninety-one of 92 human GO categories and 105 of 109 mouse GO categories were conserved in the horse. Our approach confirms the utility of the equine genome sequence to characterize protein networks without antibodies or mRNA quantification, highlights the need for continued structural and functional annotation of the equine genome and provides a framework for equine researchers to aid in the annotation effort.

  2. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  3. PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

    PubMed Central

    Schlüter, Agatha; Fourcade, Stéphane; Domènech-Estévez, Enric; Gabaldón, Toni; Huerta-Cepas, Jaime; Berthommier, Guillaume; Ripp, Raymond; Wanders, Ronald J. A.; Poch, Olivier; Pujol, Aurora

    2007-01-01

    Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database () that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces cerevisiae, by gathering, updating and integrating the available genetic and functional information on peroxisomal genes. PeroxisomeDB is structured in interrelated sections ‘Genes’, ‘Functions’, ‘Metabolic pathways’ and ‘Diseases’, that include hyperlinks to selected features of NCBI, ENSEMBL and UCSC databases. We have designed graphical depictions of the main peroxisomal metabolic routes and have included updated flow charts for diagnosis. Precomputed BLAST, PSI-BLAST, multiple sequence alignment (MUSCLE) and phylogenetic trees are provided to assist in direct multispecies comparison to study evolutionary conserved functions and pathways. Highlights of the PeroxisomeDB include new tools developed for facilitating (i) identification of novel peroxisomal proteins, by means of identifying proteins carrying peroxisome targeting signal (PTS) motifs, (ii) detection of peroxisomes in silico, particularly useful for screening the deluge of newly sequenced genomes. PeroxisomeDB should contribute to the systematic characterization of the peroxisomal proteome and facilitate system biology approaches on the organelle. PMID:17135190

  4. Proteomics in the genome engineering era.

    PubMed

    Vandemoortele, Giel; Gevaert, Kris; Eyckerman, Sven

    2016-01-01

    Genome engineering experiments used to be lengthy, inefficient, and often expensive, preventing a widespread adoption of such experiments for the full assessment of endogenous protein functions. With the revolutionary clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 technology, genome engineering became accessible to the broad life sciences community and is now implemented in several research areas. One particular field that can benefit significantly from this evolution is proteomics where a substantial impact on experimental design and general proteome biology can be expected. In this review, we describe the main applications of genome engineering in proteomics, including the use of engineered disease models and endogenous epitope tagging. In addition, we provide an overview on current literature and highlight important considerations when launching genome engineering technologies in proteomics workflows.

  5. ProGeRF: Proteome and Genome Repeat Finder Utilizing a Fast Parallel Hash Function

    PubMed Central

    Moraes, Walas Jhony Lopes; Rodrigues, Thiago de Souza; Bartholomeu, Daniella Castanheira

    2015-01-01

    Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity. PMID:25811026

  6. Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction

    PubMed Central

    Peltier, Jean-Benoît; Emanuelsson, Olof; Kalume, Dário E.; Ytterberg, Jimmy; Friso, Giulia; Rudella, Andrea; Liberles, David A.; Söderberg, Linda; Roepstorff, Peter; von Heijne, Gunnar; van Wijk, Klaas J.

    2002-01-01

    Experimental proteome analysis was combined with a genome-wide prediction screen to characterize the protein content of the thylakoid lumen of Arabidopsis chloroplasts. Soluble thylakoid proteins were separated by two-dimensional electrophoresis and identified by mass spectrometry. The identities of 81 proteins were established, and N termini were sequenced to validate localization prediction. Gene annotation of the identified proteins was corrected by experimental data, and an interesting case of alternative splicing was discovered. Expression of a surprising number of paralogs was detected. Expression of five isomerases of different classes suggests strong (un)folding activity in the thylakoid lumen. These isomerases possibly are connected to a network of peripheral and lumenal proteins involved in antioxidative response, including peroxiredoxins, m-type thioredoxins, and a lumenal ascorbate peroxidase. Characteristics of the experimentally identified lumenal proteins and their orthologs were used for a genome-wide prediction of the lumenal proteome. Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases. Thus, prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress. Many of the predicted lumenal proteins must be present at concentrations at least 10,000-fold lower than proteins of the photosynthetic apparatus. PMID:11826309

  7. Genomics and proteomics in cancer.

    PubMed

    Baak, J P A; Path, F R C; Hermsen, M A J A; Meijer, G; Schmidt, J; Janssen, E A M

    2003-06-01

    Cancer development is driven by the accumulation of DNA changes in the approximately 40000 chromosomal genes. In solid tumours, chromosomal numerical/structural aberrations are common. DNA repair defects may lead to genome-wide genetic instability, which can drive further cancer progression. The genes code the actual players in the cellular processes, the 100000-10 million proteins, which in (pre)malignant cells can also be altered in a variety of ways. Over the past decade, our knowledge of the human genome and Genomics (the study of the human genome) in (pre)malignancies has increased enormously and Proteomics (the analysis of the protein complement of the genome) has taken off as well. Both will play an increasingly important role. In this article, a short description of the essential molecular biological cell processes is given. Important genomic and proteomic research methods are described and illustrated. Applications are still limited, but the evidence so far is exciting. Will genomics replace classical diagnostic or prognostic procedures? In breast cancers, the gene expression array is stronger than classical criteria, but in endometrial hyperplasia, quantitative morphological features are more cost-effective than genetic testing. It is still too early to make strong statements, the more so because it is expected that genomics and proteomics will expand rapidly. However, it is likely that they will take a central place in the understanding, diagnosis, monitoring and treatment of (pre)cancers of many different sites.

  8. Integrated Molecular Signature of Disease: Analysis of Influenza Virus-Infected Macaques through Functional Genomics and Proteomics

    SciTech Connect

    Baas, T.; Baskin, C. R.; Diamond, Deborah L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T. M.; Thomas, M. J.; Carter, V. S.; Teal, T. H.; Van Hoven, N.; Proll, Sean; Jacobs, Jon M.; Caldwell, Z.; Gritsenko, Marina A.; Hukkanen, R.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-11-01

    Recent outbreaks of avian influenza in humans have stressed the need for an improved non-human primate model of influenza pathogenesis. In order to develop our macaque model, we expanded our in vivo and functional genomics experiments: We focused on the innate immune response at day 2 post-inoculation and on gene expression in affected lung tissue with viral genetic material present; finally, we sought to identify signature genes for early infection in whole blood. For these purposes, we infected six pigtailed macaques with 107 TCID50 of influenza A/Texas/36/91 virus and three control animals with a sham inoculate. We sacrificed one control and two experimental animals at day 2, 4, and 7 and lung tissue was harvested for pathology, gene expression profiling, and proteomics. Additionally, blood was collected for genomics every other day from each animal until its endpoint. Gross and microscopic pathology, immunohistochemistry, viral gene expression by arrays and/or quantitative real-time RT-PCR confirmed successful yet mild infection in all experimental animals. Genomic experiments were performed using second generation macaque-specific oligonucleotide arrays and high-throughput proteomics revealed host response to infection at the protein level. Our data showed dramatic differences in gene expression within the same influenza-induced lesion based on the presence or absence of viral mRNA. We also identified genes tightly co-regulated in peripheral white blood cells and in lung tissue at day 2 post-inoculation. This latter finding opens the possibility of using gene expression arrays on whole blood to detect infection after exposure but prior to onset of symptoms or shedding.

  9. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome.

    PubMed

    O'Connell, Grant C; Nichols, Cody; Guo, Ge; Croston, Tara L; Thapa, Dharendra; Hollander, John M; Pistilli, Emidio E

    2015-11-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.

  10. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome

    PubMed Central

    O'Connell, Grant C.; Nichols, Cody; Guo, Ge; Croston, Tara L.; Thapa, Dharendra; Hollander, John M.; Pistilli, Emidio E.

    2016-01-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occur independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome. PMID:26458787

  11. Algal Functional Annotation Tool from the DOE-UCLA Institute for Genomics and Proteomics

    DOE Data Explorer

    Lopez, David

    The Algal Functional Annotation Tool is a bioinformatics resource to visualize pathway maps, identify enriched biological terms, or convert gene identifiers to elucidate biological function in silico. These types of analysis have been catered to support lists of gene identifiers, such as those coming from transcriptome gene expression analysis. By analyzing the functional annotation of an interesting set of genes, common biological motifs may be elucidated and a first-pass analysis can point further research in the right direction. Currently, the following databases have been parsed, processed, and added to the tool: 1( Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Database, 2) MetaCyc Encyclopedia of Metabolic Pathways, 3) Panther Pathways Database, 4) Reactome Pathways Database, 5) Gene Ontology, 6) MapMan Ontology, 7) KOG (Eukaryotic Clusters of Orthologous Groups), 5)Pfam, 6) InterPro.

  12. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome

    PubMed Central

    DeKelver, Russell C.; Choi, Vivian M.; Moehle, Erica A.; Paschon, David E.; Hockemeyer, Dirk; Meijsing, Sebastiaan H.; Sancak, Yasemin; Cui, Xiaoxia; Steine, Eveline J.; Miller, Jeffrey C.; Tam, Phillip; Bartsevich, Victor V.; Meng, Xiangdong; Rupniewski, Igor; Gopalan, Sunita M.; Sun, Helena C.; Pitz, Kathleen J.; Rock, Jeremy M.; Zhang, Lei; Davis, Gregory D.; Rebar, Edward J.; Cheeseman, Iain M.; Yamamoto, Keith R.; Sabatini, David M.; Jaenisch, Rudolf; Gregory, Philip D.; Urnov, Fyodor D.

    2010-01-01

    Isogenic settings are routine in model organisms, yet remain elusive for genetic experiments on human cells. We describe the use of designed zinc finger nucleases (ZFNs) for efficient transgenesis without drug selection into the PPP1R12C gene, a “safe harbor” locus known as AAVS1. ZFNs enable targeted transgenesis at a frequency of up to 15% following transient transfection of both transformed and primary human cells, including fibroblasts and hES cells. When added to this locus, transgenes such as expression cassettes for shRNAs, small-molecule-responsive cDNA expression cassettes, and reporter constructs, exhibit consistent expression and sustained function over 50 cell generations. By avoiding random integration and drug selection, this method allows bona fide isogenic settings for high-throughput functional genomics, proteomics, and regulatory DNA analysis in essentially any transformed human cell type and in primary cells. PMID:20508142

  13. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome.

    PubMed

    DeKelver, Russell C; Choi, Vivian M; Moehle, Erica A; Paschon, David E; Hockemeyer, Dirk; Meijsing, Sebastiaan H; Sancak, Yasemin; Cui, Xiaoxia; Steine, Eveline J; Miller, Jeffrey C; Tam, Phillip; Bartsevich, Victor V; Meng, Xiangdong; Rupniewski, Igor; Gopalan, Sunita M; Sun, Helena C; Pitz, Kathleen J; Rock, Jeremy M; Zhang, Lei; Davis, Gregory D; Rebar, Edward J; Cheeseman, Iain M; Yamamoto, Keith R; Sabatini, David M; Jaenisch, Rudolf; Gregory, Philip D; Urnov, Fyodor D

    2010-08-01

    Isogenic settings are routine in model organisms, yet remain elusive for genetic experiments on human cells. We describe the use of designed zinc finger nucleases (ZFNs) for efficient transgenesis without drug selection into the PPP1R12C gene, a "safe harbor" locus known as AAVS1. ZFNs enable targeted transgenesis at a frequency of up to 15% following transient transfection of both transformed and primary human cells, including fibroblasts and hES cells. When added to this locus, transgenes such as expression cassettes for shRNAs, small-molecule-responsive cDNA expression cassettes, and reporter constructs, exhibit consistent expression and sustained function over 50 cell generations. By avoiding random integration and drug selection, this method allows bona fide isogenic settings for high-throughput functional genomics, proteomics, and regulatory DNA analysis in essentially any transformed human cell type and in primary cells.

  14. Personalized medicine beyond genomics: alternative futures in big data-proteomics, environtome and the social proteome.

    PubMed

    Özdemir, Vural; Dove, Edward S; Gürsoy, Ulvi K; Şardaş, Semra; Yıldırım, Arif; Yılmaz, Şenay Görücü; Ömer Barlas, I; Güngör, Kıvanç; Mete, Alper; Srivastava, Sanjeeva

    2017-01-01

    No field in science and medicine today remains untouched by Big Data, and psychiatry is no exception. Proteomics is a Big Data technology and a next generation biomarker, supporting novel system diagnostics and therapeutics in psychiatry. Proteomics technology is, in fact, much older than genomics and dates to the 1970s, well before the launch of the international Human Genome Project. While the genome has long been framed as the master or "elite" executive molecule in cell biology, the proteome by contrast is humble. Yet the proteome is critical for life-it ensures the daily functioning of cells and whole organisms. In short, proteins are the blue-collar workers of biology, the down-to-earth molecules that we cannot live without. Since 2010, proteomics has found renewed meaning and international attention with the launch of the Human Proteome Project and the growing interest in Big Data technologies such as proteomics. This article presents an interdisciplinary technology foresight analysis and conceptualizes the terms "environtome" and "social proteome". We define "environtome" as the entire complement of elements external to the human host, from microbiome, ambient temperature and weather conditions to government innovation policies, stock market dynamics, human values, political power and social norms that collectively shape the human host spatially and temporally. The "social proteome" is the subset of the environtome that influences the transition of proteomics technology to innovative applications in society. The social proteome encompasses, for example, new reimbursement schemes and business innovation models for proteomics diagnostics that depart from the "once-a-life-time" genotypic tests and the anticipated hype attendant to context and time sensitive proteomics tests. Building on the "nesting principle" for governance of complex systems as discussed by Elinor Ostrom, we propose here a 3-tiered organizational architecture for Big Data science such as

  15. Combining genomic and proteomic approaches for epigenetics research

    PubMed Central

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  16. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens.

    PubMed

    Jungblut, P R; Schaible, U E; Mollenkopf, H J; Zimny-Arndt, U; Raupach, B; Mattow, J; Halada, P; Lamer, S; Hagens, K; Kaufmann, S H

    1999-09-01

    In 1993, the WHO declared tuberculosis a global emergency on the basis that there are 8 million new cases per year. The complete genome of the strain H37Rv of the causative microorganism, Mycobacterium tuberculosis, comprising 3924 genes has been sequenced. We compared the proteomes of two non-virulent vaccine strains of M. bovis BCG (Chicago and Copenhagen) with two virulent strains of M. tuberculosis (H37Rv and Erdman) to identify protein candidates of value for the development of vaccines, diagnostics and therapeutics. The mycobacterial strains were analysed by two-dimensional electrophoresis (2-DE) combining non-equilibrium pH gradient electrophoresis (NEPHGE) with SDS-PAGE. Distinct and characteristic proteins were identified by mass spectrometry and introduced into a dynamic 2-DE database (http://www.mpiib-berlin.mpg.de/2D-PAGE). Silver-stained 2-DE patterns of mycobacterial cell proteins or culture supernatants contained 1800 or 800 spots, respectively, from which 263 were identified. Of these, 54 belong to the culture supernatant. Sixteen and 25 proteins differing in intensity or position between M. tuberculosis H37Rv and Erdman, and H37Rv and M. bovis BCG Chicago, respectively, were identified and categorized into protein classes. It is to be hoped that the availability of the mycobacterial proteome will facilitate the design of novel measures for prevention and therapy of one of the great health threats, tuberculosis.

  17. The genomics and proteomics of biofilm formation

    PubMed Central

    Sauer, Karin

    2003-01-01

    Bacterial communities that are attached to a surface, so-called biofilms, and their inherent resistance to antimicrobial agents are a cause of many persistent and chronic bacterial infections. Recent genomic and proteomic studies have identified many of the genes and gene products differentially expressed during biofilm formation, revealing the complexity of this developmental process. PMID:12801407

  18. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  19. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    PubMed Central

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.

    2016-01-01

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models. PMID:27857205

  20. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  1. HepatoProteomics: Applying Proteomic Technologies to the Study of Liver Function and Disease

    SciTech Connect

    Diamond, Deborah L.; Proll, Sean; Jacobs, Jon M.; Chan, Eric Y.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-08-01

    The wealth of human genome sequence information now available, coupled with technological advances in robotics, nanotechnology, mass spectrometry, and information systems, has given rise to a method of scientific inquiry known as functional genomics. By using these technologies to survey gene expression and protein production on a near global scale, the goal of functional genomics is to assign biological function to genes with currently unknown roles in physiology. This approach carries particular appeal in disease research, where it can uncover the function of previously unknown genes and molecular pathways that are directly involved in disease progression. With this knowledge may come improved diagnostic techniques, prognostic capabilities, and novel therapeutic approaches. In this regard, the continuing evolution of proteomic technologies has resulted in an increasingly greater impact of proteome studies in many areas of research and hepatology is no exception. Our laboratory has been extremely active in this area, applying both genomic and proteomic technologies to the analysis of virus-host interactions in several systems, including the study of hepatitis C virus (HCV) infection and HCV-associated liver disease. Since proteomic technologies are foreign to many hepatologists (and to almost everyone else), this article will provide an overview of proteomic methods and technologies and describe how they're being used to study liver function and disease. We use our studies of HCV infection and HCV-associated liver disease to present an operational framework for performing high throughput proteome analysis and extracting biologically meaningful information.

  2. From genome to proteome: great progress in the domesticated silkworm (Bombyx mori L.).

    PubMed

    Zhou, Zhonghua; Yang, Huijuan; Zhong, Boxiong

    2008-07-01

    As the only truly domesticated insect, the silkworm not only has great economic value, but it also has value as a model for genetics and molecular biology research. Genomics and proteomics have recently shown vast potential to be essential tools in domesticated silkworm research, especially after the completion of the Bombyx mori genome sequence. This paper reviews the progress of the domesticated silkworm genome, particularly focusing on its genetic map, physical map and functional genome. This review also presents proteomics, the proteomic technique and its application in silkworm research.

  3. Genomics, proteomics, and genetics of leptospira.

    PubMed

    Picardeau, Mathieu

    2015-01-01

    Recent advances in molecular genetics, such as the ability to construct defined mutants, have allowed the study of virulence factors and more generally the biology in Leptospira. However, pathogenic leptospires remain much less easily transformable than the saprophyte L. biflexa and further development and improvement of genetic tools are required. Here, we review tools that have been used to genetically manipulate Leptospira. We also describe the major advances achieved in both genomics and postgenomics technologies, including transcriptomics and proteomics.

  4. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia

    PubMed Central

    Ibebunjo, Chikwendu; Chick, Joel M.; Kendall, Tracee; Eash, John K.; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A.; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P.

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia. PMID:23109432

  5. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling.

    PubMed

    Medina, Ignacio; Carbonell, José; Pulido, Luis; Madeira, Sara C; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Pascual-Montano, Alberto; Nogales-Cadenas, Ruben; Santoyo, Javier; García, Francisco; Marbà, Martina; Montaner, David; Dopazo, Joaquín

    2010-07-01

    Babelomics is a response to the growing necessity of integrating and analyzing different types of genomic data in an environment that allows an easy functional interpretation of the results. Babelomics includes a complete suite of methods for the analysis of gene expression data that include normalization (covering most commercial platforms), pre-processing, differential gene expression (case-controls, multiclass, survival or continuous values), predictors, clustering; large-scale genotyping assays (case controls and TDTs, and allows population stratification analysis and correction). All these genomic data analysis facilities are integrated and connected to multiple options for the functional interpretation of the experiments. Different methods of functional enrichment or gene set enrichment can be used to understand the functional basis of the experiment analyzed. Many sources of biological information, which include functional (GO, KEGG, Biocarta, Reactome, etc.), regulatory (Transfac, Jaspar, ORegAnno, miRNAs, etc.), text-mining or protein-protein interaction modules can be used for this purpose. Finally a tool for the de novo functional annotation of sequences has been included in the system. This provides support for the functional analysis of non-model species. Mirrors of Babelomics or command line execution of their individual components are now possible. Babelomics is available at http://www.babelomics.org.

  6. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.

  7. Plant functional genomics

    NASA Astrophysics Data System (ADS)

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-04-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  8. The Path to Clinical Proteomics Research: Integration of Proteomics, Genomics, Clinical Laboratory and Regulatory Science

    PubMed Central

    Boja, Emily S.

    2011-01-01

    Better biomarkers are urgently needed to cancer detection, diagnosis, and prognosis. While the genomics community is making significant advances in understanding the molecular basis of disease, proteomics will delineate the functional units of a cell, proteins and their intricate interaction network and signaling pathways for the underlying disease. Great progress has been made to characterize thousands of proteins qualitatively and quantitatively in complex biological systems by utilizing multi-dimensional sample fractionation strategies, mass spectrometry and protein microarrays. Comparative/quantitative analysis of high-quality clinical biospecimen (e.g., tissue and biofluids) of human cancer proteome landscape has the potential to reveal protein/peptide biomarkers responsible for this disease by means of their altered levels of expression, post-translational modifications as well as different forms of protein variants. Despite technological advances in proteomics, major hurdles still exist in every step of the biomarker development pipeline. The National Cancer Institute's Clinical Proteomic Technologies for Cancer initiative (NCI-CPTC) has taken a critical step to close the gap between biomarker discovery and qualification by introducing a pre-clinical "verification" stage in the pipeline, partnering with clinical laboratory organizations to develop and implement common standards, and developing regulatory science documents with the US Food and Drug Administration to educate the proteomics community on analytical evaluation requirements for multiplex assays in order to ensure the safety and effectiveness of these tests for their intended use. PMID:21474978

  9. The path to clinical proteomics research: integration of proteomics, genomics, clinical laboratory and regulatory science.

    PubMed

    Boja, Emily S; Rodriguez, Henry

    2011-04-01

    Better biomarkers are urgently needed to cancer detection, diagnosis, and prognosis. While the genomics community is making significant advances in understanding the molecular basis of disease, proteomics will delineate the functional units of a cell, proteins and their intricate interaction network and signaling pathways for the underlying disease. Great progress has been made to characterize thousands of proteins qualitatively and quantitatively in complex biological systems by utilizing multi-dimensional sample fractionation strategies, mass spectrometry and protein microarrays. Comparative/quantitative analysis of high-quality clinical biospecimen (e.g., tissue and biofluids) of human cancer proteome landscape has the potential to reveal protein/peptide biomarkers responsible for this disease by means of their altered levels of expression, post-translational modifications as well as different forms of protein variants. Despite technological advances in proteomics, major hurdles still exist in every step of the biomarker development pipeline. The National Cancer Institute's Clinical Proteomic Technologies for Cancer initiative (NCI-CPTC) has taken a critical step to close the gap between biomarker discovery and qualification by introducing a pre-clinical "verification" stage in the pipeline, partnering with clinical laboratory organizations to develop and implement common standards, and developing regulatory science documents with the US Food and Drug Administration to educate the proteomics community on analytical evaluation requirements for multiplex assays in order to ensure the safety and effectiveness of these tests for their intended use.

  10. DEFINING THE MANDATE OF PROTEOMICS IN THE POST-GENOMIC ERA: WORKSHOP REPORT

    EPA Science Inventory

    Research in proteomics is the next step after genomics in understanding life processes at the molecular level. In the largest sense proteomics encompasses knowledge of the structure, function and expression of all proteins in the biochemical or biological contexts of all organism...

  11. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of Populus using shotgun proteomics.

    PubMed

    Abraham, Paul; Adams, Rachel; Giannone, Richard J; Kalluri, Udaya; Ranjan, Priya; Erickson, Brian; Shah, Manesh; Tuskan, Gerald A; Hettich, Robert L

    2012-01-01

    Current state-of-the-art experimental and computational proteomic approaches were integrated to obtain a comprehensive protein profile of Populus vascular tissue. This featured: (1) a large sample set consisting of two genotypes grown under normal and tension stress conditions, (2) bioinformatics clustering to effectively handle gene duplication, and (3) an informatics approach to track and identify single amino acid polymorphisms (SAAPs). By applying a clustering algorithm to the Populus database, the number of protein entries decreased from 64,689 proteins to a total of 43,069 protein groups, thereby reducing 7505 identified proteins to a total of 4226 protein groups, in which 2016 were singletons. This reduction implies that ∼50% of the measured proteins shared extensive sequence homology. Using conservative search criteria, we were able to identify 1354 peptides containing a SAAP and 201 peptides that become tryptic due to a K or R substitution. These newly identified peptides correspond to 502 proteins, including 97 previously unidentified proteins. In total, the integration of deep proteome measurements on an extensive sample set with protein clustering and peptide sequence variants provided an exceptional level of proteome characterization for Populus, allowing us to spatially resolve the vascular tissue proteome.

  12. Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs

    PubMed Central

    Welzenbach, Julia; Neuhoff, Christiane; Heidt, Hanna; Cinar, Mehmet Ulas; Looft, Christian; Schellander, Karl; Tholen, Ernst; Große-Brinkhaus, Christine

    2016-01-01

    The aim of this study was to integrate multi omics data to characterize underlying functional pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows elucidating the black box of phenotype expression. Metabolite and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc × Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, respectively. In addition, all animals were genotyped with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within a genome-wide association study (GWAS). We detected significantly associated genetic markers and candidate genes for drip loss and for most of the metabolic components. On chromosome 18, a region with promising candidate genes was identified based on SNPs associated with drip loss, the protein “phosphoglycerate mutase 2” and the metabolite glycine. We hypothesize that association studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic variation of genes directly involved in the metabolism of performance traits. In this way, the analyses contribute to identify reliable candidate genes. PMID:27589727

  13. Linking cancer genome to proteome: NCI's investment into proteogenomics.

    PubMed

    Rivers, Robert C; Kinsinger, Christopher; Boja, Emily S; Hiltke, Tara; Mesri, Mehdi; Rodriguez, Henry

    2014-12-01

    Advances in both targeted and unbiased MS-based proteomics are now at a mature stage for comprehensively and reproducibly characterizing a large part of the cancer proteome. These developments combined with the extensive genomic characterization of several cancer types by large-scale initiatives such as the International Cancer Genome Consortium and Cancer Genome Atlas Project have paved the way for proteogenomic analysis of omics datasets and integration methods. The advances serve as the basis for the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium and this article highlights its current work and future steps in the area of proteogenomics.

  14. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling.

    PubMed

    Ribeiro, Paulo S; Josué, Filipe; Wepf, Alexander; Wehr, Michael C; Rinner, Oliver; Kelly, Gavin; Tapon, Nicolas; Gstaiger, Matthias

    2010-08-27

    The Hippo (Hpo) pathway is a central determinant of tissue size in both Drosophila and higher organisms. The core of the pathway is a kinase cascade composed of an upstream kinase Hpo (MST1/2 in mammals) and a downstream kinase Warts (Wts, Lats1/2 in mammals), as well as several scaffold proteins, Sav, dRASSF, and Mats. Activation of the core kinase cassette results in phosphorylation and inactivation of the progrowth transcriptional coactivator Yki, leading to increased apoptosis and reduced tissue growth. The mechanisms that prevent inappropriate Hpo activation remain unclear, and in particular, the identity of the phosphatase that antagonizes Hpo is unknown. Using combined proteomic and RNAi screening approaches, we identify the dSTRIPAK PP2A complex as a major regulator of Hpo signaling. dSTRIPAK depletion leads to increased Hpo activatory phosphorylation and repression of Yki target genes in vivo, suggesting this phosphatase complex prevents Hpo activation during development.

  15. GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY

    EPA Science Inventory

    Genomic and proteomic techniques applied to reproductive biology
    John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...

  16. Integrated proteomic and genomic analysis of colorectal cancer

    Cancer.gov

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  17. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    SciTech Connect

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  18. Meeting Report: "Proteomics from Discovery to Function:" 6th Annual Meeting of Proteomics Society, India and International Conference-A Milestone for the Indian Proteomics Community.

    PubMed

    Gupta, Shabarni; Reddy, Panga Jaipal; Ray, Sandipan; Atak, Apurva; Gollapalli, Kishore; Jain, Rekha; Shah, Veenita Grover; Ghantasala, Saicharan; Kumar, Saurabh; Pandala, Narendra Goud; Phapale, Prasad; Pandey, Vishnu Kumar; Zingde, Surekha; Srivastava, Sanjeeva

    2015-06-01

    Proteomics is at the epicenter of post-genomics biotechnologies that are currently driving the next generation system science. Moreover, proteomics is a truly global science. The 6(th) Annual Meeting of Proteomics Society, India (PSI) and International Conference on "Proteomics from Discovery to Function" held from December 7-9, 2014, was a transformative endeavor for global proteomics, bringing together the luminaries in the field of proteomics for the very first time in India. This meeting report presents the lessons learned and the highlights of this international scientific conference that was comprised of nine thematic sessions, pre- and post-conference workshops, and an opportunity to cultivate enduring collaborations for proteomics science to benefit both India and global society. The conference had an unforgettable impression on the participants: for the first time, India hosted past and present President and Council members from the Human Proteome Organization (HUPO), along with eminent scientists and young scholars from India and abroad in the field of proteomics at such a large scale, a major highlight of this international event. In all, the PSI 2014 was a milestone conference that has firmly poised the Indian life sciences community as a leading contributor to post-genomics life sciences, thus cultivating crucial trans-generational capacity and inspiration by recognizing the emerging scholars and omics systems scientists who can think and conduct science from cell to society.

  19. Complete Genome and Proteome of Acholeplasma laidlawii▿†

    PubMed Central

    Lazarev, V. N.; Levitskii, S. A.; Basovskii, Y. I.; Chukin, M. M.; Akopian, T. A.; Vereshchagin, V. V.; Kostrjukova, E. S.; Kovaleva, G. Y.; Kazanov, M. D.; Malko, D. B.; Vitreschak, A. G.; Sernova, N. V.; Gelfand, M. S.; Demina, I. A.; Serebryakova, M. V.; Galyamina, M. A.; Vtyurin, N. N.; Rogov, S. I.; Alexeev, D. G.; Ladygina, V. G.; Govorun, V. M.

    2011-01-01

    We present the complete genome sequence and proteogenomic map for Acholeplasma laidlawii PG-8A (class Mollicutes, order Acholeplasmatales, family Acholeplasmataceae). The genome of A. laidlawii is represented by a single 1,496,992-bp circular chromosome with an average G+C content of 31 mol%. This is the longest genome among the Mollicutes with a known nucleotide sequence. It contains genes of polymerase type I, SOS response, and signal transduction systems, as well as RNA regulatory elements, riboswitches, and T boxes. This demonstrates a significant capability for the regulation of gene expression and mutagenic response to stress. Acholeplasma laidlawii and phytoplasmas are the only Mollicutes known to use the universal genetic code, in which UGA is a stop codon. Within the Mollicutes group, only the sterol-nonrequiring Acholeplasma has the capacity to synthesize saturated fatty acids de novo. Proteomic data were used in the primary annotation of the genome, validating expression of many predicted proteins. We also detected posttranslational modifications of A. laidlawii proteins: phosphorylation and acylation. Seventy-four candidate phosphorylated proteins were found: 16 candidates are proteins unique to A. laidlawii, and 11 of them are surface-anchored or integral membrane proteins, which implies the presence of active signaling pathways. Among 20 acylated proteins, 14 contained palmitic chains, and six contained stearic chains. No residue of linoleic or oleic acid was observed. Acylated proteins were components of mainly sugar and inorganic ion transport systems and were surface-anchored proteins with unknown functions. PMID:21784942

  20. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences.

    PubMed

    Holmes, Christina; Carlson, Siobhan M; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-02

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics.

  1. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences

    PubMed Central

    Holmes, Christina; Carlson, Siobhan M.; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-01

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics. PMID:27134568

  2. University of Victoria Genome British Columbia Proteomics Centre Partners with CPTAC - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    University of Victoria Genome British Columbia Proteomics Centre, a leader in proteomic technology development, has partnered with the U.S. National Cancer Institute (NCI) to make targeted proteomic assays accessible to the community through NCI’s CPTAC Assay Portal.

  3. Aligning the proteome and genome of the silkworm, Bombyx mori.

    PubMed

    Zhang, Yaozhou; Xia, Qingyou; Xu, Jie; Chen, Jian; Nie, Zuoming; Wang, Dan; Zhang, Wenping; Chen, Jianqing; Zheng, Qingliang; Chen, Qing; Kong, Lingying; Ren, Xiaoyuan; Wang, Jiang; Lv, Zhengbing; Yu, Wei; Jiang, Caiying; Liu, Lili; Sheng, Qing; Jin, Yongfeng; Wu, Xiangfu

    2009-11-01

    A technology of mass spectrometry (MS) was used in this study for the large-scale proteomic identification and verification of protein-encoding genes present in the silkworm (Bombyx mori) genome. Peptide sequences identified by MS were compared with those from an open reading frame (ORF) library of the B. mori genome and a cDNA library, to validate the coding attributes of ORFs. Two databases were created. The first was based on a 9x draft sequence of the silkworm genome and contained 14,632 putative proteins. The second was based on a B. mori pupal cDNA library containing 3,187 putative proteins of at least 30 amino acid residues in length. A total of 81,000 peptide sequences with a threshold score of 60% were generated by the MS/MS analysis, and 55,400 of these were chosen for a sequence alignment. By searching these two databases, 6,649 and 250 proteins were matched, which accounted for approximately 45.4% and 7.8% of the peptide sequences and putative proteins, respectively. Further analyses carried out by several bioinformatic tools suggested that the matches included proteins with predicted transmembrane domains (1,393) and preproteins with a signal peptide (976). These results provide a fundamental understanding of the expression and function of silkworm proteins.

  4. Proteogenomics: the needs and roles to be filled by proteomics in genome annotation

    SciTech Connect

    Ansong, Charles; Purvine, Samuel O.; Adkins, Joshua N.; Lipton, Mary S.; Smith, Richard D.

    2008-01-01

    While genome sequencing efforts reveal the basic building blocks of life, a genome sequence alone is insufficient for elucidating biological function. Genome annotation – the process of identifying genes and assigning function to each gene in a genome sequence – provides the means to elucidate biological function from sequence. Current state-of-the-art high throughput genome annotation uses a combination of comparative (sequence similarity data) and non-comparative (ab initio gene prediction algorithms) methods to identify open reading frames in genome sequences. Because approaches used to validate the presence of these open reading frames are typically based on the information derived from the annotated genomes, they cannot independently and unequivocally determine whether a predicted open reading frame is translated into a protein. With the ability to directly measure peptides arising from expressed proteins, high throughput liquid chromatography-tandem mass spectrometry-based proteomics, approaches can be used to verify coding regions of a genomic sequence. Here, we highlight several ways in which high throughput tandem mass spectrometry-based proteomics can improve the quality of genome annotations and suggest that it could be efficiently applied during the initial gene calling process so that the improvements are propagated through the subsequent functional annotation process.

  5. Highlights of recent articles on data mining in genomics & proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial elaborates on investigations consisting of different “OMICS” technologies and their application to biological sciences. In addition, advantages and recent development of the proteomic, genomic and data mining technologies are discussed. This information will be useful to scientists ...

  6. Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718

    PubMed Central

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for

  7. Dicarbonyl proteome and genome damage in metabolic and vascular disease.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2014-04-01

    Methylglyoxal is a potent protein-glycating agent. It is an arginine-directed glycating agent and often modifies functionally important sites in proteins. Glycation forms mainly MG-H1 [Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine] residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis-MS/MS and also by immunoblotting with specific monoclonal antibodies. Methylglyoxal-modified proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation end-product in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and aging. Proteins susceptible to methylglyoxal modification with related functional impairment are called the DCP (dicarbonyl proteome). The DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and others. DCP component proteins are linked to mitochondrial dysfunction in diabetes and aging, oxidative stress, dyslipidaemia, cell detachment and anoikis and apoptosis. Methylglyoxal also modifies DNA where deoxyguanosine residues are modified to imidazopurinone MGdG {3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one} isomers. MGdG was the major quantitative adduct detected in vivo. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell-permeant glyoxalase I inhibitor. Glyoxalase I metabolizes >99% methylglyoxal and thereby protects the proteome and genome. Gene deletion of GLO1 is embryonically lethal and GLO1 silencing increases methylglyoxal concentration, MG-H1 and MGdG, premature aging and disease. Studies of methylglyoxal glycation have importance for human health, longevity and

  8. Leveraging Genomics Software to Improve Proteomics Results

    SciTech Connect

    Fodor, I K; Nelson, D O

    2005-09-06

    Rigorous data analysis techniques are essential in quantifying the differential expression of proteins in biological samples of interest. Statistical methods from the microarray literature were applied to the analysis of two-dimensional difference gel electrophoresis (2-D DIGE) proteomics experiments, in the context of technical variability studies involving human plasma. Protein expression measurements were corrected to account for observed intensity-dependent biases within gels, and normalized to mitigate observed gel to gel variations. The methods improved upon the results achieved using the best currently available 2-D DIGE proteomics software. The spot-wise protein variance was reduced by 10% and the number of apparently differentially expressed proteins was reduced by over 50%.

  9. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis.

    PubMed

    Low, Teck Yew; van Heesch, Sebastiaan; van den Toorn, Henk; Giansanti, Piero; Cristobal, Alba; Toonen, Pim; Schafer, Sebastian; Hübner, Norbert; van Breukelen, Bas; Mohammed, Shabaz; Cuppen, Edwin; Heck, Albert J R; Guryev, Victor

    2013-12-12

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.

  10. Plant organelle proteomics: collaborating for optimal cell function.

    PubMed

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  11. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences

    SciTech Connect

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, Jim K.; Lipton, Mary S.; Callister, Stephen J.

    2010-11-12

    Current methods in proteomics are dependent on the availability of sequenced genomes to identify proteins. However, genomic sequences are not always available for bacteria or microbial communities, even with high throughput sequencing technology becoming more readily available. Nevertheless, the homology that exists between related bacteria makes possible the extraction of meaningful biological information from an organism’s, or community’s proteome using the genomic sequence of a near neighbor. Here, a cross-organism search strategy was used to look at the amount of proteomics information obtainable with relative genetic distance from a near neighbor organism and to identify proteins in the proteome of minimally characterized environmental isolates. We conclude that closely related organisms with sequenced genomes, can be used to characterize proteomes of organisms with unsequenced genomes. In general, a cross-organism search strategy demonstrates the first step to use of sequences genomes to evaluate the proteomes of environmental bacteria and microbial communities that have no sequenced genome

  12. The application of proteomic approaches to the study of mammalian spermatogenesis and sperm function.

    PubMed

    Macleod, Graham; Varmuza, Susannah

    2013-11-01

    Spermatogenesis is the process by which terminally differentiated sperm are produced from male germline stem cells. This complex developmental process requires the coordination of both somatic and germ cells through phases of proliferation, meiosis, and morphological differentiation, to produce the cell responsible for the delivery of the paternal genome. With infertility affecting ~ 15% of all couples, furthering our understanding of spermatogenesis and sperm function is vital for improving the diagnosis and treatment of male factor infertility. The emerging use of proteomic technologies has played an instrumental role in our understanding of spermatogenesis by providing information regarding the genes involved. This article reviews existing proteomic literature regarding spermatogenesis and sperm function, including the proteomic characterization of spermatogenic cell types, subcellular proteomics, post-translational modifications, interactomes, and clinical studies. Future directions in the application of proteomics to the study of spermatogenesis and sperm function are also discussed.

  13. Proteomic profiling of high risk medulloblastoma reveals functional biology.

    PubMed

    Staal, Jerome A; Lau, Ling San; Zhang, Huizhen; Ingram, Wendy J; Hallahan, Andrew R; Northcott, Paul A; Pfister, Stefan M; Wechsler-Reya, Robert J; Rusert, Jessica M; Taylor, Michael D; Cho, Yoon-Jae; Packer, Roger J; Brown, Kristy J; Rood, Brian R

    2015-06-10

    Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior.

  14. Differential proteomics analysis of Bacillus amyloliquefaciens and its genome-shuffled mutant for improving surfactin production.

    PubMed

    Zhao, Junfeng; Cao, Lin; Zhang, Chong; Zhong, Lei; Lu, Jing; Lu, Zhaoxin

    2014-10-31

    Genome shuffling technology was used as a novel whole-genome engineering approach to rapidly improve the antimicrobial lipopeptide yield of Bacillus amyloliquefaciens. Comparative proteomic analysis of the parental ES-2-4 and genome-shuffled FMB38 strains was conducted to examine the differentially expressed proteins. The proteome was separated by 2-DE (two dimensional electrophoresis) and analyzed by MS (mass spectrum). In the shuffled strain FMB38, 51 differentially expressed protein spots with higher than two-fold spot density were detected by gel image comparison. Forty-six protein spots were detectable by silver staining and further MS analysis. The results demonstrated that among the 46 protein spots expressed particularly induced in the genome-shuffled mutant, 15 were related to metabolism, five to DNA replication, recombination and repair, six to translation and post-translational modifications, one to cell secretion and signal transduction mechanisms, three to surfactin synthesis, two to energy production and conversion, and 14 to others. All these indicated that the metabolic capability of the mutant was improved by the genome shuffling. The study will enable future detailed investigation of gene expression and function linked with surfactin synthesis. The results of proteome analysis may provide information for metabolic engineering of Bacillus amyloliquefaciens for overproduction of surfactin.

  15. Early identification of cardiovascular risk using genomics and proteomics

    PubMed Central

    Kullo, Iftikhar J.; Cooper, Leslie T.

    2010-01-01

    Coronary heart disease (CHD) will soon become the leading cause of death and morbidity in the world. Early detection and treatment of CHD is thus imperative to improve global health. Atherosclerosis of the coronary arteries is a complex multifactorial disease process involving multiple pathways that can be influenced by both genetic and environmental factors. With the recent advances in genomics and proteomics, many new risk factors with small-to-moderate effects are likely to be identified. Additionally, individualized risk stratification and targeted therapy may become feasible; each individual could potentially be assessed with a panel of tests for genomic and proteomic markers and, on the basis of the individual’s composite risk profile, preventive and therapeutic steps could then be undertaken. With a multimarker approach, it may also be possible to identify alterations in pathways involved in atherogenesis, rather than focus on individual risk factors. In this article, we use the specific example of atherosclerosis to discuss the role of genomics and proteomics in cardiovascular risk assessment. PMID:20440292

  16. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    PubMed Central

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research. PMID:23515231

  17. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies.

    PubMed

    Chen, Chia-Yen; Liu, Xiang; Boris-Lawrie, Kathleen; Sharma, Amit; Jeang, Kuan-Teh

    2013-02-01

    RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.

  18. The power of functional proteomics

    PubMed Central

    Wagner, Volker; Kreimer, Georg

    2008-01-01

    One of the key modifications of proteins that can affect protein functions, activities, stabilities, localizations and interactions, represents phosphorylation. For functional phosphoproteomics, phosphopeptides are enriched from isolated sub-cellular fractions of interest and analyzed by liquid chromatography-electrospray ionization-mass spectrometry. Such an approach was recently applied to the eyespot apparatus of the green flagellate alga Chlamydomonas reinhardtii, which represents a primordial visual system. Thereby, 32 phosphoproteins of known eyespot proteins along with 52 precise in vivo phosphorylation sites were identified. They include enzymes of carotenoid and fatty acid metabolism, (putative) light signaling components and proteins with unknown function. Strikingly, the two unique green algal photoreceptors, channelrhodopsin-1 and -2 were found to be phosphorylated in the cytoplasmic loop next to their seven transmembrane regions in a similar distance as observed in vertebrate rhodopsins. PMID:19513232

  19. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences.

    PubMed

    Turse, Joshua E; Marshall, Matthew J; Fredrickson, James K; Lipton, Mary S; Callister, Stephen J

    2010-11-12

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.

  20. Proteomics

    SciTech Connect

    Hixson, Kim K.; Lopez-Ferrer, Daniel; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2010-02-01

    Proteomics aims to characterize the spatial distribution and temporal dynamics of proteins in biological systems, the protein response to environmental stimuli, and the differences in protein states between diseased and control biological systems. Mass spectrometry (MS) plays a crucial role in enabling the analysis of proteomes and typically is the method of choice for identifying proteins present in biological systems. Peptide (and consequently protein) identifications are made by comparing measured masses to calculated values obtained from genome data. Several methodologies based on MS have been developed for the analysis of proteomes. The complexity of the biological systems requires that the proteome be separated prior to analysis. Both gel based and liquid chromatography based separations have proven very useful in this regard. Typically, separated proteins are analyzed with MS either intact (top-down proteomics) or are digested into peptides (bottom-up) prior to MS analysis. Additionally, several procedures, with and without stable isotopic labeling, have been introduced to facilitate protein quantitation (e.g. characterize changes in protein abundances between given biological states).

  1. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-07

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  2. Proteomic and genomic studies of non-alcoholic fatty liver disease--clues in the pathogenesis.

    PubMed

    Lim, Jun Wei; Dillon, John; Miller, Michael

    2014-07-14

    Non-alcoholic fatty liver disease (NAFLD) is a widely prevalent hepatic disorder that covers wide spectrum of liver pathology. NAFLD is strongly associated with liver inflammation, metabolic hyperlipidaemia and insulin resistance. Frequently, NAFLD has been considered as the hepatic manifestation of metabolic syndrome. The pathophysiology of NAFLD has not been fully elucidated. Some patients can remain in the stage of simple steatosis, which generally is a benign condition; whereas others can develop liver inflammation and progress into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The mechanism behind the progression is still not fully understood. Much ongoing proteomic researches have focused on discovering the unbiased circulating biochemical markers to allow early detection and treatment of NAFLD. Comprehensive genomic studies have also begun to provide new insights into the gene polymorphism to understand patient-disease variations. Therefore, NAFLD is considered a complex and mutifactorial disease phenotype resulting from environmental exposures acting on a susceptible polygenic background. This paper reviewed the current status of proteomic and genomic studies that have contributed to the understanding of NAFLD pathogenesis. For proteomics section, this review highlighted functional proteins that involved in: (1) transportation; (2) metabolic pathway; (3) acute phase reaction; (4) anti-inflammatory; (5) extracellular matrix; and (6) immune system. In the genomic studies, this review will discuss genes which involved in: (1) lipolysis; (2) adipokines; and (3) cytokines production.

  3. Comparative Proteomics of Mouse Tears and Saliva: Evidence from Large Protein Families for Functional Adaptation

    PubMed Central

    Karn, Robert C.; Laukaitis, Christina M.

    2015-01-01

    We produced a tear proteome of the genome mouse, C57BL/6, that contained 139 different protein identifications: 110 from a two-dimensional (2D) gel with subsequent trypsin digestion, 19 from a one-dimensional (1D) gel with subsequent trypsin digestion and ten from a 1D gel with subsequent Asp-N digestion. We compared this tear proteome with a C57BL/6 mouse saliva proteome produced previously. Sixteen of the 139 tear proteins are shared between the two proteomes, including six proteins that combat microbial growth. Among the 123 other tear proteins, were members of four large protein families that have no counterparts in humans: Androgen-binding proteins (ABPs) with different members expressed in the two proteomes, Exocrine secreted peptides (ESPs) expressed exclusively in the tear proteome, major urinary proteins (MUPs) expressed in one or both proteomes and the mouse-specific Kallikreins (subfamily b KLKs) expressed exclusively in the saliva proteome. All four families have members with suggested roles in mouse communication, which may influence some aspect of reproductive behavior. We discuss this in the context of functional adaptation involving tear and saliva proteins in the secretions of mouse lacrimal and salivary glands, respectively.

  4. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.

  5. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  6. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis

    PubMed Central

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-01-01

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates. PMID:27633273

  7. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis.

    PubMed

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-09-16

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.

  8. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    SciTech Connect

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  9. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Zhou, Lisha; Liu, Jinwen; Cen, Zhong; Wu, Chunyan; Wang, Tong; Zhou, Tao; Chang, De; Guo, Yinghua; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Yin, Sanjun; Dai, Wenkui; Zhou, Yuping; Zhao, Jiao; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-01-01

    The environment in space could affect microorganisms by changing a variety of features, including proliferation rate, cell physiology, cell metabolism, biofilm production, virulence, and drug resistance. However, the relevant mechanisms remain unclear. To explore the effect of a space environment on Bacillus cereus, a strain of B. cereus was sent to space for 398 h by ShenZhou VIII from November 1, 2011 to November 17, 2011. A ground simulation with similar temperature conditions was simultaneously performed as a control. After the flight, the flight and control strains were further analyzed using phenotypic, genomic, transcriptomic and proteomic techniques to explore the divergence of B. cereus in a space environment. The flight strains exhibited a significantly slower growth rate, a significantly higher amikacin resistance level, and changes in metabolism relative to the ground control strain. After the space flight, three polymorphic loci were found in the flight strains LCT-BC25 and LCT-BC235. A combined transcriptome and proteome analysis was performed, and this analysis revealed that the flight strains had changes in genes/proteins relevant to metabolism. In addition, certain genes/proteins that are relevant to structural function, gene expression modification and translation, and virulence were also altered. Our study represents the first documented analysis of the phenotypic, genomic, transcriptomic, and proteomic changes that occur in B. cereus during space flight, and our results could be beneficial to the field of space microbiology.

  10. Integrating genomics, proteomics and bioinformatics in translational studies of molecular medicine.

    PubMed

    Ostrowski, Jerzy; Wyrwicz, Lucjan S

    2009-09-01

    Understanding the molecular mechanisms of disease requires the introduction of molecular diagnostics into medical practice. Current medicine employs only elements of molecular diagnostics, which are usually applied on the scale of single genes. Medicine in the postgenomic era will utilize thousands of disease-associated molecular markers provided by high-throughput sequencing and functional genomic, proteomic and metabolomic studies. Such a spectrum of techniques will link clinical medicine based on molecularly oriented diagnostics with the prediction and prevention of disease. To achieve this task, large-scale and genome-wide biological and medical data must be combined with biostatistical and bioinformatic analyses to model biological systems. Collecting, cataloging and comparing data from molecular studies, and the subsequent development of conclusions, creates the fundamentals of systems biology. This highly complex analytical process reflects a new scientific paradigm known as integrative genomics.

  11. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.

  12. Genomics, proteomics and bioinformatics of human heart failure

    PubMed Central

    DOS REMEDIOS, C.G.; LIEW, C.C.; ALLEN, P.D.; WINSLOW, R.L.; VAN EYK, J.E.; DUNN, M.J.

    2005-01-01

    Unraveling the molecular complexities of human heart failure, particularly end-stage failure, can be achieved by combining multiple investigative approaches. There are several parts to the problem. Each patient is the product of a complex set of genetic variations, different degrees of influence of diets and lifestyles, and usually heart transplantation patients are treated with multiple drugs. The genomic status of the myocardium of any one transplant patient can be analysed using gene arrays (cDNA- or oligonucleotide-based) each with its own strengths and weaknesses. The proteins expressed by these failing hearts (myocardial proteomics) were first investigated over a decade ago using two-dimensional polyacrylamide gel electrophoresis (2DGE) which promised to resolve several thousand proteins in a single sample of failing heart. However, while 2DGE is very successful for the abundant and moderately expressed proteins, it struggles to identify proteins expressed at low levels. Highly focused first dimension separations combined with recent advances in mass spectrometry now provide new hope for solving this difficulty. Protein arrays are a more recent form of proteomics that hold great promise but, like the above methods, they have their own drawbacks. Our approach to solving the problems inherent in the genomics and proteomics of heart failure is to provide experts in each analytical method with a sample from the same human failing heart. This requires a sufficiently large number of samples from a sufficiently large pool of heart transplant patients as well as a large pool of non-diseased, non-failing human hearts. We have collected more than 200 hearts from patients undergoing heart transplantations and a further 50 non-failing hearts. By combining our expertise we expect to reduce and possibly eliminate the inherent difficulties of each analytical approach. Finally, we recognise the need for bioinformatics to make sense of the large quantities of data that will

  13. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-06

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  14. Proteomics Reveals Open Reading Frames in Mycobacterium tuberculosis H37Rv Not Predicted by Genomics

    PubMed Central

    Jungblut, Peter R.; Müller, Eva-Christina; Mattow, Jens; Kaufmann, Stefan H. E.

    2001-01-01

    Genomics revealed the sequence of 3924 genes of the H37Rv strain of Mycobacterium tuberculosis. Proteomics complements genomics in showing which genes are really expressed, and here we show the expression of six genes not predicted by genomics, as proved by two-dimensional electrophoresis and matrix-assisted laser desorption ionization and nano-electrospray mass spectrometry. PMID:11500470

  15. Linkage of exposure and effects using genomics, proteomics and metabolomics in small fish models (presentation)

    EPA Science Inventory

    This research project combines the use of whole organism endpoints, genomic, proteomic and metabolomic approaches, and computational modeling in a systems biology approach to 1) identify molecular indicators of exposure and biomarkers of effect to EDCs representing several modes/...

  16. Cancer genomics object model: an object model for multiple functional genomics data for cancer research.

    PubMed

    Park, Yu Rang; Lee, Hye Won; Cho, Sung Bum; Kim, Ju Han

    2007-01-01

    The development of functional genomics including transcriptomics, proteomics and metabolomics allow us to monitor a large number of key cellular pathways simultaneously. Several technology-specific data models have been introduced for the representation of functional genomics experimental data, including the MicroArray Gene Expression-Object Model (MAGE-OM), the Proteomics Experiment Data Repository (PEDRo), and the Tissue MicroArray-Object Model (TMA-OM). Despite the increasing number of cancer studies using multiple functional genomics technologies, there is still no integrated data model for multiple functional genomics experimental and clinical data. We propose an object-oriented data model for cancer genomics research, Cancer Genomics Object Model (CaGe-OM). We reference four data models: Functional Genomic-Object Model, MAGE-OM, TMAOM and PEDRo. The clinical and histopathological information models are created by analyzing cancer management workflow and referencing the College of American Pathology Cancer Protocols and National Cancer Institute Common Data Elements. The CaGe-OM provides a comprehensive data model for integrated storage and analysis of clinical and multiple functional genomics data.

  17. Genome-scale Proteome Quantification by DEEP SEQ Mass Spectrometry

    PubMed Central

    Zhou, Feng; Lu, Yu; Ficarro, Scott B.; Adelmant, Guillaume; Jiang, Wenyu; Luckey, C. John; Marto, Jarrod A.

    2013-01-01

    Advances in chemistry and massively parallel detection underlie DNA sequencing platforms that are poised for application in personalized medicine. In stark contrast, systematic generation of protein-level data lags well-behind genomics in virtually every aspect: depth of coverage, throughput, ease of sample preparation, and experimental time. Here, to bridge this gap, we develop an approach based on simple detergent lysis and single-enzyme digest, extreme, orthogonal separation of peptides, and true nanoflow LC-MS/MS that provides high peak capacity and ionization efficiency. This automated, deep efficient peptide sequencing and quantification (DEEP SEQ) mass spectrometry platform provides genome-scale proteome coverage equivalent to RNA-seq ribosomal profiling and accurate quantification for multiplexed isotope labels. In a model of the embryonic to epiblast transition in murine stem cells, we unambiguously quantify 11,352 gene products that span 70% of Swiss-Prot and capture protein regulation across the full detectable range of high-throughput gene expression and protein translation. PMID:23863870

  18. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation

    PubMed Central

    Xia, Dong; Sanderson, Sanya J; Jones, Andrew R; Prieto, Judith H; Yates, John R; Bromley, Elizabeth; Tomley, Fiona M; Lal, Kalpana; Sinden, Robert E; Brunk, Brian P; Roos, David S; Wastling, Jonathan M

    2008-01-01

    Background Although the genomes of many of the most important human and animal pathogens have now been sequenced, our understanding of the actual proteins expressed by these genomes and how well they predict protein sequence and expression is still deficient. We have used three complementary approaches (two-dimensional electrophoresis, gel-liquid chromatography linked tandem mass spectrometry and MudPIT) to analyze the proteome of Toxoplasma gondii, a parasite of medical and veterinary significance, and have developed a public repository for these data within ToxoDB, making for the first time proteomics data an integral part of this key genome resource. Results The draft genome for Toxoplasma predicts around 8,000 genes with varying degrees of confidence. Our data demonstrate how proteomics can inform these predictions and help discover new genes. We have identified nearly one-third (2,252) of all the predicted proteins, with 2,477 intron-spanning peptides providing supporting evidence for correct splice site annotation. Functional predictions for each protein and key pathways were determined from the proteome. Importantly, we show evidence for many proteins that match alternative gene models, or previously unpredicted genes. For example, approximately 15% of peptides matched more convincingly to alternative gene models. We also compared our data with existing transcriptional data in which we highlight apparent discrepancies between gene transcription and protein expression. Conclusion Our data demonstrate the importance of protein data in expression profiling experiments and highlight the necessity of integrating proteomic with genomic data so that iterative refinements of both annotation and expression models are possible. PMID:18644147

  19. Genome-wide proteomics analysis on longissimus muscles in Qinchuan beef cattle.

    PubMed

    He, Hua; Chen, Si; Liang, Wei; Liu, Xiaolin

    2017-04-01

    To gain further insight into the molecular mechanism of bovine muscle development, we combined mass spectrometry characterization of proteins with Illumina deep sequencing of RNAs obtained from bovine longissimus muscle (LD) at prenatal and postnatal stages. For the proteomic study, each group of LD proteins was extracted and labeled using isobaric tags for relative and absolute quantitation (iTRAQ) method. Among the 1321 proteins identified from six samples, 390 proteins were differentially expressed in embryos at day 135 post-fertilization (Emb135d) vs. 30-month-old adult cattle (Emb135d vs. 30M) samples. Gene Ontology, Cluster of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted to better understand the different functions. Furthermore, we analyzed the relationship between transcript and protein regulation between samples by direct comparison of expression levels from transcriptomic and iTRAQ-based proteomics. Association results indicated that 1295 of 1321 proteins could be mapped to transcriptome sequencing data. This study provides the most comprehensive, targeted survey of bovine LD proteins to date and has shown the power of combining transcriptomic and proteomic approaches to provide molecular insights for understanding the developmental characteristics in bovine muscle, and even in other mammals.

  20. Genomic and Proteomic Determinants of Lower Extremity Revascularization Failure: Rationale and Study Design

    PubMed Central

    Nelson, Peter R.; O'Malley, Kerri A.; Feezor, Robert J.; Moldawer, Lyle L.; Seeger, James M.

    2007-01-01

    This translational research program applies a working model of advanced functional genomics/proteomics and bioinformatics to human peripheral arterial occlusive disease (PAOD). It is a multidisciplinary collaborative effort of clinicians, scientists, and statisticians with an advisory panel comprised of experts in inflammation biology, vascular biology, molecular genetics, bioinformatics, clinical trial design, and epidemiology. The proposed human initiative is designed to study 300 symptomatic patients with PAOD undergoing medical management with or without vascular intervention by either lower extremity angioplasty/stenting or vein graft bypass. The study aims to test the hypothesis that the systemic inflammatory response following vascular intervention influences the local milieu responsible for vascular repair and adaptation. The expectation is that this response is not uniform in all patients, but rather, is modulated by either preoperative genetic predisposition or post-procedure differential regulation of the innate immune response to injury that promotes a maladaptive phenotype leading to intervention failure. Therefore, some of these differences may be present and detectable pre-intervention amenable to class prediction and prospective treatment strategies, while others may be detectable in the early post-procedure period, prior to the onset of clinical failure, permitting interventions to prevent an adverse outcome. The combination of genomic/proteomic data together with functional and quality of life outcome measures to define a critical model for class prediction and analysis should lead to new knowledge about failure mechanisms of vascular intervention and new strategies to improve existing approaches to lower extremity revascularization. PMID:17544028

  1. Fusion of genomic, proteomic and phenotypic data: the case of potyviruses.

    PubMed

    Folch-Fortuny, A; Bosque, G; Picó, J; Ferrer, A; Elena, S F

    2016-01-01

    Data fusion has been widely applied to analyse different sources of information, combining all of them in a single multivariate model. This methodology is mandatory when different omic data sets must be integrated to fully understand an organism using a systems biology approach. Here, a data fusion procedure is presented to combine genomic, proteomic and phenotypic data sets gathered for Tobacco etch virus (TEV). The genomic data correspond to random mutations inserted in most viral genes. The proteomic data represent both the effect of these mutations on the encoded proteins and the perturbation induced by the mutated proteins to their neighbours in the protein-protein interaction network (PPIN). Finally, the phenotypic trait evaluated for each mutant virus is replicative fitness. To analyse these three sources of information a Partial Least Squares (PLS) regression model is fitted in order to extract the latent variables from data that explain (and relate) the significant variables to the fitness of TEV. The final output of this methodology is a set of functional modules of the PPIN relating topology and mutations with fitness. Throughout the re-analysis of these diverse TEV data, we generated valuable information on the mechanism of action of certain mutations and how they translate into organismal fitness. Results show that the effect of some mutations goes beyond the protein they directly affect and spreads on the PPIN to neighbour proteins, thus defining functional modules.

  2. Proteomic approaches to dissect platelet function: half the story

    PubMed Central

    Gnatenko, Dmitri V.; Perrotta, Peter L.; Bahou, Wadie F.

    2006-01-01

    Platelets play critical roles in diverse hemostatic and pathologic disorders and are broadly implicated in various biological processes that include inflammation, wound healing, and thrombosis. Recent progress in high-throughput mRNA and protein profiling techniques has advanced our understanding of the biological functions of platelets. Platelet proteomics has been adopted to decode the complex processes that underlie platelet function by identifying novel platelet-expressed proteins, dissecting mechanisms of signal or metabolic pathways, and analyzing functional changes of the platelet proteome in normal and pathologic states. The integration of transcriptomics and proteomics, coupled with progress in bioinformatics, provides novel tools for dissecting platelet biology. In this review, we focus on current advances in platelet proteomic studies, with emphasis on the importance of parallel transcriptomic studies to optimally dissect platelet function. Applications of these global profiling approaches to investigate platelet genetic diseases and platelet-related disorders are also addressed. PMID:16926286

  3. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.

    PubMed

    Kelkar, Dhanashree S; Provost, Elayne; Chaerkady, Raghothama; Muthusamy, Babylakshmi; Manda, Srikanth S; Subbannayya, Tejaswini; Selvan, Lakshmi Dhevi N; Wang, Chieh-Huei; Datta, Keshava K; Woo, Sunghee; Dwivedi, Sutopa B; Renuse, Santosh; Getnet, Derese; Huang, Tai-Chung; Kim, Min-Sik; Pinto, Sneha M; Mitchell, Christopher J; Madugundu, Anil K; Kumar, Praveen; Sharma, Jyoti; Advani, Jayshree; Dey, Gourav; Balakrishnan, Lavanya; Syed, Nazia; Nanjappa, Vishalakshi; Subbannayya, Yashwanth; Goel, Renu; Prasad, T S Keshava; Bafna, Vineet; Sirdeshmukh, Ravi; Gowda, Harsha; Wang, Charles; Leach, Steven D; Pandey, Akhilesh

    2014-11-01

    Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes.

  4. CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    PubMed Central

    Mahadevan, Padmanabhan; King, John F; Seto, Donald

    2009-01-01

    Background Viruses and small-genome bacteria (~2 megabases and smaller) comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG) is an in silico genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms. Findings CGUG is available at as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an in silico display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with Chlamydophila and Francisella genomes. Conclusion CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins. PMID:19706165

  5. Genomics and proteomics in chemical warfare agent research: recent studies and future applications.

    PubMed

    Everley, Patrick A; Dillman, James F

    2010-10-20

    Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.

  6. Genomic and Proteomic Biomarkers for Cancer: A Multitude of Opportunities

    PubMed Central

    Tainsky, Michael A.

    2009-01-01

    Biomarkers are molecular indicators of a biological status, and as biochemical species can be assayed to evaluate the presence of cancer and therapeutic interventions. Through a variety of mechanisms cancer cells provide the biomarker material for their own detection. Biomarkers may be detectable in the blood, other body fluids, or tissues. The expectation is that the level of an informative biomarker is related to the specific type of disease present in the body. Biomarkers have potential both as diagnostic indicators and monitors of the effectiveness of clinical interventions. Biomarkers are also able to stratify cancer patients to the most appropriate treatment. Effective biomarkers for the early detection of cancer should provide a patient with a better outcome which in turn will translate into more efficient delivery of healthcare. Technologies for the early detection of cancer have resulted in reductions in disease-associated mortalities from cancers that are otherwise deadly if allowed to progress. Such screening technologies have proven that early detection will decrease the morbidity and mortality from cancer. An emerging theme in biomarker research is the expectation that panels of biomarker analytes rather than single markers will be needed to have sufficient sensitivity and specificity for the presymptomatic detection of cancer. Biomarkers may provide prognostic information of disease enabling interventions using targeted therapeutic agents as well as course-corrections in cancer treatment. Novel genomic, proteomic and metabolomic technologies are being used to discover and validate tumor biomarkers individually and in panels. PMID:19406210

  7. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  8. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction*

    PubMed Central

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2017-01-01

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. PMID

  9. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms.

    PubMed

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Nicora, Horacio D Lopez; Caetano-Anollés, Gustavo

    2011-11-08

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  10. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  11. Proteomics-inferred genome typing (PIGT) demonstrates inter-populationrecombination as a strategy for environmental adaptation

    SciTech Connect

    Denef, Vincent; Verberkmoes, Nathan C; Shah, Manesh B; Abraham, Paul E; Lefsrud, Mark G; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    Analyses of ecological and evolutionary processes that shape microbial consortia are facilitated by comprehensive studies of ecosystems with low species richness. In the current study we evaluated the role of recombination in altering the fitness of chemoautotrophic bacteria in their natural environment. Proteomics-inferred genome typing (PIGT) was used to determine the genomic make-up of Leptospirillum group II populations in 27 biofilms sampled from six locations in the Richmond Mine acid mine drainage system (Iron Mountain, CA) over a four-year period. We observed six distinct genotypes that are recombinants comprised of segments from two parental genotypes. Community genomic analyses revealed additional low abundance recombinant variants. The dominance of some genotypes despite a larger available genome pool, and patterns of spatiotemporal distribution within the ecosystem, indicate selection for distinct recombinants. Genes involved in motility, signal transduction and transport were overrepresented in the tens to hundreds of kilobase recombinant blocks, whereas core metabolic functions were significantly underrepresented. Our findings demonstrate the power of PIGT and reveal that recombination is a mechanism for fine-scale adaptation in this system.

  12. Applying mass spectrometry-based proteomics to genetics, genomics and network biology.

    PubMed

    Gstaiger, Matthias; Aebersold, Ruedi

    2009-09-01

    The systematic and quantitative molecular analysis of mutant organisms that has been pioneered by studies on mutant metabolomes and transcriptomes holds great promise for improving our understanding of how phenotypes emerge. Unfortunately, owing to the limitations of classical biochemical analysis, proteins have previously been excluded from such studies. Here we review how technical advances in mass spectrometry-based proteomics can be applied to measure changes in protein abundance, posttranslational modifications and protein-protein interactions in mutants at the scale of the proteome. We finally discuss examples that integrate proteomics data with genomic and phenomic information to build network-centred models, which provide a promising route for understanding how phenotypes emerge.

  13. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    PubMed Central

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  14. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  15. Comparative analyses of nuclear proteome: extending its function

    PubMed Central

    Narula, Kanika; Datta, Asis; Chakraborty, Niranjan; Chakraborty, Subhra

    2013-01-01

    Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10–20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect. PMID:23637696

  16. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation.

    PubMed

    Charon, Justine; Theil, Sébastien; Nicaise, Valérie; Michon, Thierry

    2016-02-01

    Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs.

  17. Bead Based Proteome Enrichment Enhances Features of the Protein Elution Plate (PEP) for Functional Proteomic Profiling

    PubMed Central

    Wang, Xing; Davies, Michael; Roy, Swapan; Kuruc, Matthew

    2015-01-01

    A novel functional proteomics technology called PEP(Protein Elution Plate) was developed to separate complex proteomes from natural sources and analyze protein functions systematically. The technology takes advantage of the powerful resolution of two-dimensional gel electrophoresis (2-D Gels). The modification of electrophoretic conditions in combination with a high-resolution protein elution plate supports the recovery of functionally active proteins. As 2DE(2-Dimensional Electrophoresis) resolution can be limited by protein load, we investigated the use of bead based enrichment technologies, called AlbuVoid™ and KinaSorb™ to determine their effect on the proteomic features which can be generated from the PEP platform. Using a variety of substrates and enzyme activity assays, we report on the benefits of combining bead based enrichment to improve the signal report and the features generated for Hexokinase, Protein Kinase, Protease, and Alkaline Phosphatase activities. As a result, the PEP technology allows systematic analysis of large enzyme families and can build a comprehensive picture of protein function from a complex proteome, providing biological insights that could otherwise not be observed if only protein abundances were analyzed. PMID:28248280

  18. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees.

    PubMed

    Trapp, Judith; McAfee, Alison; Foster, Leonard J

    2017-02-01

    Globally, there are over 20 000 bee species (Hymenoptera: Apoidea: Anthophila) with a host of biologically fascinating characteristics. Although they have long been studied as models for social evolution, recent challenges to bee health (mainly diseases and pesticides) have gathered the attention of both public and research communities. Genome sequences of twelve bee species are now complete or under progress, facilitating the application of additional 'omic technologies. Here, we review recent developments in honey bee and native bee research in the genomic era. We discuss the progress in genome sequencing and functional annotation, followed by the enabled comparative genomics, proteomics and transcriptomics applications regarding social evolution and health. Finally, we end with comments on future challenges in the postgenomic era.

  19. ProtoBug: functional families from the complete proteomes of insects.

    PubMed

    Rappoport, Nadav; Linial, Michal

    2015-01-01

    ProtoBug (http://www.protobug.cs.huji.ac.il) is a database and resource of protein families in Arthropod genomes. ProtoBug platform presents the relatedness of complete proteomes from 17 insects as well as a proteome of the crustacean, Daphnia pulex. The represented proteomes from insects include louse, bee, beetle, ants, flies and mosquitoes. Based on an unsupervised clustering method, protein sequences were clustered into a hierarchical tree, called ProtoBug. ProtoBug covers about 300,000 sequences that are partitioned to families. At the default setting, all sequences are partitioned to ∼20,000 families (excluding singletons). From the species perspective, each of the 18 analysed proteomes is composed of 5000-8000 families. In the regime of the advanced operational mode, the ProtoBug provides rich navigation capabilities for touring the hierarchy of the families at any selected resolution. A proteome viewer shows the composition of sequences from any of the 18 analysed proteomes. Using functional annotation from an expert system (Pfam) we assigned domains, families and repeats by 4400 keywords that cover 73% of the sequences. A strict inference protocol is applied for expanding the functional knowledge. Consequently, secured annotations were associated with 81% of the proteins, and with 70% of the families (≥10 proteins each). ProtoBug is a database and webtool with rich visualization and navigation tools. The properties of each family in relation to other families in the ProtoBug tree, and in view of the taxonomy composition are reported. Furthermore, the user can paste its own sequences to find relatedness to any of the ProtoBug families. The database and the navigation tools are the basis for functional discoveries that span 350 million years of evolution of Arthropods. ProtoBug is available with no restriction at: www.protobug.cs.huji.ac.il. Database URL: www.protobug.cs.huji.ac.il

  20. ProtoBug: functional families from the complete proteomes of insects

    PubMed Central

    Rappoport, Nadav; Linial, Michal

    2015-01-01

    ProtoBug (http://www.protobug.cs.huji.ac.il) is a database and resource of protein families in Arthropod genomes. ProtoBug platform presents the relatedness of complete proteomes from 17 insects as well as a proteome of the crustacean, Daphnia pulex. The represented proteomes from insects include louse, bee, beetle, ants, flies and mosquitoes. Based on an unsupervised clustering method, protein sequences were clustered into a hierarchical tree, called ProtoBug. ProtoBug covers about 300 000 sequences that are partitioned to families. At the default setting, all sequences are partitioned to ∼20 000 families (excluding singletons). From the species perspective, each of the 18 analysed proteomes is composed of 5000–8000 families. In the regime of the advanced operational mode, the ProtoBug provides rich navigation capabilities for touring the hierarchy of the families at any selected resolution. A proteome viewer shows the composition of sequences from any of the 18 analysed proteomes. Using functional annotation from an expert system (Pfam) we assigned domains, families and repeats by 4400 keywords that cover 73% of the sequences. A strict inference protocol is applied for expanding the functional knowledge. Consequently, secured annotations were associated with 81% of the proteins, and with 70% of the families (≥10 proteins each). ProtoBug is a database and webtool with rich visualization and navigation tools. The properties of each family in relation to other families in the ProtoBug tree, and in view of the taxonomy composition are reported. Furthermore, the user can paste its own sequences to find relatedness to any of the ProtoBug families. The database and the navigation tools are the basis for functional discoveries that span 350 million years of evolution of Arthropods. ProtoBug is available with no restriction at: www.protobug.cs.huji.ac.il. Database URL: www.protobug.cs.huji.ac.il. PMID:25911153

  1. Cancer heterogeneity determined by functional proteomics.

    PubMed

    Szász, A Marcell; Győrffy, Balázs; Marko-Varga, György

    2016-08-26

    Current manuscript gives a synopsis of tumor heterogeneity related to patient samples analyzed by proteomics, protein expression analysis and imaging mass spectrometry. First, we discuss the pathophysiologocal background of cancer biology as a multifactorial and challenging diseases. Disease pathology forms the basis for protein target selection. Therefore, histopathological diagnostics and grading of tumors is highlighted. Pathology is the cornerstone of state-of-the-art diagnostics of tumors today both by establishing dignity and - when needed - describing molecular properties of the cancers. Drug development by the pharmaceutical industry utilizes proteomics studies to pinpoint the most relevant targets. Molecular studies profiling affinity-interactions of the protein(s) with targeted small drug molecules to reach efficacy and optimal patient safety are today requested by the FDA and other agencies for new drug development. An understading of basic mechanisms, controlling drug action and drug binding is central, as a new era of personalized medicine becomes an important milestone solution for the healthcare sector as well as the Pharma and Biotech industry. Development of further diagnostic, prognostic and predictive tests will aid current and future treatment of cancer patients. In the paper we present current status of Proteomics that we believe requires attention in order to collectively advance forward in the fight against cancer, addressing the burning opportunities and challenges.

  2. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1.

    PubMed

    Pic, Emilie; Gagné, Jean-Philippe; Poirier, Guy G

    2011-12-01

    PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.

  3. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics

    PubMed Central

    Rai, Aswathy N.; Epperson, William B.; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches. PMID:26526746

  4. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics.

    PubMed

    Rai, Aswathy N; Epperson, William B; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches.

  5. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    SciTech Connect

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  6. Microchip-based single-cell functional proteomics for biomedical applications.

    PubMed

    Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui

    2017-03-29

    Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that traditional population-based methods fail to address. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical frameworks to extract new biology. In this review article, we highlight a few biological and clinical applications in which microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating a well-controlled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies.

  7. The Role of Clinical Proteomics, Lipidomics, and Genomics in the Diagnosis of Alzheimer’s Disease

    PubMed Central

    Martins, Ian James

    2016-01-01

    The early diagnosis of Alzheimer’s disease (AD) has become important to the reversal and treatment of neurodegeneration, which may be relevant to premature brain aging that is associated with chronic disease progression. Clinical proteomics allows the detection of various proteins in fluids such as the urine, plasma, and cerebrospinal fluid for the diagnosis of AD. Interest in lipidomics has accelerated with plasma testing for various lipid biomarkers that may with clinical proteomics provide a more reproducible diagnosis for early brain aging that is connected to other chronic diseases. The combination of proteomics with lipidomics may decrease the biological variability between studies and provide reproducible results that detect a community’s susceptibility to AD. The diagnosis of chronic disease associated with AD that now involves genomics may provide increased sensitivity to avoid inadvertent errors related to plasma versus cerebrospinal fluid testing by proteomics and lipidomics that identify new disease biomarkers in body fluids, cells, and tissues. The diagnosis of AD by various plasma biomarkers with clinical proteomics may now require the involvement of lipidomics and genomics to provide interpretation of proteomic results from various laboratories around the world. PMID:28248224

  8. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    SciTech Connect

    Brooks, Brandon; Mueller, R. S.; Young, Jacque C.; Morowitz, Michael J.; Robert L. Hettich; Banfield, Jillian F.

    2015-07-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13 21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  9. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    SciTech Connect

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.; Jensen, Jeffrey L.; Walker, Julia; Kobold, Mark A.; Webb, Samantha R.; Payne, Samuel H.; Ansong, Charles; Adkins, Joshua N.; Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  10. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers

    PubMed Central

    Kerou, Melina; Offre, Pierre; Valledor, Luis; Abby, Sophie S.; Melcher, Michael; Nagler, Matthias; Weckwerth, Wolfram; Schleper, Christa

    2016-01-01

    Ammonia-oxidizing archaea (AOA) are among the most abundant microorganisms and key players in the global nitrogen and carbon cycles. They share a common energy metabolism but represent a heterogeneous group with respect to their environmental distribution and adaptions, growth requirements, and genome contents. We report here the genome and proteome of Nitrososphaera viennensis EN76, the type species of the archaeal class Nitrososphaeria of the phylum Thaumarchaeota encompassing all known AOA. N. viennensis is a soil organism with a 2.52-Mb genome and 3,123 predicted protein-coding genes. Proteomic analysis revealed that nearly 50% of the predicted genes were translated under standard laboratory growth conditions. Comparison with genomes of closely related species of the predominantly terrestrial Nitrososphaerales as well as the more streamlined marine Nitrosopumilales [Candidatus (Ca.) order] and the acidophile “Ca. Nitrosotalea devanaterra” revealed a core genome of AOA comprising 860 genes, which allowed for the reconstruction of central metabolic pathways common to all known AOA and expressed in the N. viennensis and “Ca. Nitrosopelagicus brevis” proteomes. Concomitantly, we were able to identify candidate proteins for as yet unidentified crucial steps in central metabolisms. In addition to unraveling aspects of core AOA metabolism, we identified specific metabolic innovations associated with the Nitrososphaerales mediating growth and survival in the soil milieu, including the capacity for biofilm formation, cell surface modifications and cell adhesion, and carbohydrate conversions as well as detoxification of aromatic compounds and drugs. PMID:27864514

  11. [FUNCTIONAL DIFFERENTIATION IN BRYOZOAN COLONY: A PROTEOMIC ANALYSIS].

    PubMed

    Kutyumov, V A; Maltseva, A L; Kotenko, N; Ostrovsky, A N

    2016-01-01

    Bryozoans are typical modular organisms. They consist of repetitive structural units, the zooids. Bryozoan colonies grow by zooidal budding, with the distribution pattern of the budding loci underlying the diversity of colony forms. Budding is usually restricted to the zooids at the periphery of the colony, which form a "growing edge" or local terminal growth zones. Non-budding parts of the colony can be functionally subdivided, too. In many species colonies consists of regular, often repetitive zones of feeding and non-feeding modules, associated with a periodical degeneration and regeneration of the polypide, retractile tentacle crown with a gut and the accompanying musculature. So, there is functional differentiation in bryozoan colonies but its mechanisms are unknown. Presumably, budding and/or polypide recycling in different colony parts are induced or inhibited by certain determinants of functional specialization. An effective tool of their identification is the comparison of proteomes of functionally different zones. Here we report the results of proteomic analysis of three bryozoan species from the White Sea, which have a different colony form: Flustrellidra hispida, Terminoflustra membranaceotruncata and Securiflustra securifrons. Using differential two-dimensional electrophoresis (2D-DIGE), we compared proteomes of the growing edge and the zones consisting of feeding and non-feeding zooids in these species. We estimated the overall proteome variability, revealed proteins whose relative abundance gradually changed along the proximal-distal colony axis and suggested that they might be involved in the functional differentiation of the colony.

  12. A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES WITH GENOMIC, PROTEOMIC AND METABONOMIC COMPONENTS

    EPA Science Inventory

    A Database for Tracking Toxicogenomic Samples and Procedures with Genomic, Proteomic and Metabonomic Components
    Wenjun Bao1, Jennifer Fostel2, Michael D. Waters2, B. Alex Merrick2, Drew Ekman3, Mitchell Kostich4, Judith Schmid1, David Dix1
    Office of Research and Developmen...

  13. The Changing Face of Scientific Discourse: Analysis of Genomic and Proteomic Database Usage and Acceptance.

    ERIC Educational Resources Information Center

    Brown, Cecelia

    2003-01-01

    Discusses the growth in use and acceptance of Web-based genomic and proteomic databases (GPD) in scholarly communication. Confirms the role of GPD in the scientific literature cycle, suggests GPD are a storage and retrieval mechanism for molecular biology information, and recommends that existing models of scientific communication be updated to…

  14. GENOMIC AND PROTEOMIC ANALYSIS OF SURROGATE TISSUES FOR ASSESSING TOXIC EXPOSURES AND DISEASE STATES

    EPA Science Inventory

    Genomic and Proteomic Analysis of Surrogate Tissues for Assessing Toxic Exposures and Disease States
    David J. Dix and John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, ...

  15. USING GENOMICS AND PROTEOMICS TO DIAGNOSE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biology allow the use of cutting-edge genomic and proteomic tools to assess the effects of environmental contaminants on aquatic organisms. Techniques are available to measure changes in expression of single genes (quantitative real-time PCR) or to measure g...

  16. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2015-09-01

    populations were successfully established from the corresponding parental cell lines (Figure 2). To generate quantized cell populations a single ...individual cells from the SN291 parental culture. Each dot represents a single cell. Color gradient indicates enrichment score for either published CD133... parental lines and quantized cell types (Specific Aim 5). We believe this program has significantly advanced genomic, proteomic and single -cell

  17. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea

    PubMed Central

    Zivanovic, Yvan; Armengaud, Jean; Lagorce, Arnaud; Leplat, Christophe; Guérin, Philippe; Dutertre, Murielle; Anthouard, Véronique; Forterre, Patrick; Wincker, Patrick; Confalonieri, Fabrice

    2009-01-01

    Background Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis. Results T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis. Conclusions This work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes. PMID:19558674

  18. A Genomic, Transcriptomic and Proteomic Look at the GE2270 Producer Planobispora rosea, an Uncommon Actinomycete

    PubMed Central

    Gallo, Giuseppe; Petiti, Luca; Corti, Giorgio; Alt, Silke; Cruz, Joao C. S.; Salzano, Anna Maria; Scaloni, Andrea; Puglia, Anna Maria; De Bellis, Gianluca; Peano, Clelia; Donadio, Stefano; Sosio, Margherita

    2015-01-01

    We report the genome sequence of Planobispora rosea ATCC 53733, a mycelium-forming soil-dweller belonging to one of the lesser studied genera of Actinobacteria and producing the thiopeptide GE2270. The P. rosea genome presents considerable convergence in gene organization and function with other members in the family Streptosporangiaceae, with a significant number (44%) of shared orthologs. Patterns of gene expression in P. rosea cultures during exponential and stationary phase have been analyzed using whole transcriptome shotgun sequencing and by proteome analysis. Among the differentially abundant proteins, those involved in protein metabolism are particularly represented, including the GE2270-insensitive EF-Tu. Two proteins from the pbt cluster, directing GE2270 biosynthesis, slightly increase their abundance values over time. While GE2270 production starts during the exponential phase, most pbt genes, as analyzed by qRT-PCR, are down-regulated. The exception is represented by pbtA, encoding the precursor peptide of the ribosomally synthesized GE2270, whose expression reached the highest level at the entry into stationary phase. PMID:26207753

  19. FuGE: Functional Genomics Experiment Object Model.

    PubMed

    Jones, Andrew R; Pizarro, Angel; Spellman, Paul; Miller, Michael

    2006-01-01

    This is an interim report on the Functional Genomics Experiment (FuGE) Object Model. FuGE is a framework for creating data standards for high-throughput biological experiments, developed by a consortium of researchers from academia and industry. FuGE supports rich annotation of samples, protocols, instruments, and software, as well as providing extension points for technology specific details. It has been adopted by microarray and proteomics standards bodies as a basis for forthcoming standards. It is hoped that standards developers for other omics techniques will join this collaborative effort; widespread adoption will allow uniform annotation of common parts of functional genomics workflows, reduce standard development and learning times through the sharing of consistent practice, and ease the construction of software for accessing and integrating functional genomics data.

  20. Functional profiling of the Tritrichomonas foetus transcriptome and proteome.

    PubMed

    Huang, Kuo-Yang; Shin, Jyh-Wei; Huang, Po-Jung; Ku, Fu-Man; Lin, Wei-Chen; Lin, Rose; Hsu, Wei-Min; Tang, Petrus

    2013-01-01

    Tritrichomonas foetus is a potent veterinary pathogen, causing bovine and feline trichomoniasis. The principal clinical manifestation of infection in cattle is inflammation of the genital tract and infertility. In feline, the parasite causes large-bowel disease resulting in chronic diarrhea. In contrast to other well-studied protozoan, genetic data regarding the molecular characterization and expression in T. foetus is far less understood. In this study, the first large-scale T. foetus expressed sequence tag (TfEST) project was conducted on 5064 randomly selected EST clones from a non-normalized unidirectional Tf30924 cDNA library. Assembling of 5064 single-pass sequences from the 5' end resulted in 713 contigs and 1961 singlets. BLAST search revealed that 53.52% of the unigenes showed significant similarity to known sequences or protein motifs/domains. Functional classifications indicated that most of the unigenes are involved in translation, ribosomal structure and ribosome biogenesis. The average GC content of the T. foetus transcriptome is 40.93%. Intriguingly, only 31.29% of the unigenes contain the classical AAUAAA polyadenylation signal sequence at the 3'-UTR region. Furthermore, a panel of potential chemotherapeutic targets was also identified for the first time in T. foetus. The protein expression levels were verified by using two-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. A total of 68 highly abundant protein spots were successfully identified in the reference 2-DE map based on our T. foetus-specific protein database. The EST dataset and the reference 2-DE map established in the present study will provide a foundation for future whole genome sequencing project and comparative transcriptomic/proteomic analyses to provide potential drug targets against T. foetus infection.

  1. LC-MS/MS Based Proteomic Analysis and Functional Inference of Hypothetical Proteins in Desulfovibrio Vulgaris

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Gritsenko, Marina A.; Moore, Ronald J.; Nie, Lei; Scholten, Johannes C.; Petritis, Konstantinos; Strittmatter, Eric F.; Camp, David G.; Smith, Richard D.; Brockman, Fred J.

    2006-11-03

    Direct liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine the proteins extracted from Desulfovibrio vulgaris cells. While our previous study provided a proteomic overview of the cellular metabolism based on proteins with known functions (Zhang et al., 2006a, Proteomics, 6: 4286-4299), this study describes the global detection and functional inference for hypothetical D. vulgaris proteins. Across six growth conditions, 15,841 tryptic peptides were identified with high confidence. Using a criterion of peptide identification from at least two out of three independent LC-MS/MS analyses per protein, 176 open reading frames (ORFs) originally annotated as hypothetical proteins were found to encode expressed proteins. These proteins ranged from 6.0 to 153 kDa, and had calculated pI values ranging from 3.7 to 11.5. Based on homology search results (with E value <= 0.01 as a cutoff), 159 proteins were defined as conserved hypothetical proteins, and 17 proteins were unique to the D. vulgaris genome. Functional inference of the conserved hypothetical proteins was performed by a combination of several non-homology based methods: genomic context analysis, phylogenomic profiling, and analysis of a combination of experimental information including peptide detection in cells grown under specific culture conditions and cellular location of the proteins. Using this approach we were able to assign possible functions to 27 conserved hypothetical proteins. This study demonstrated that a combination of proteomics and bioinformatics methodologies can provide verification for the authenticity of hypothetical proteins and improve annotation for the D. vulgaris genome.

  2. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens Using Proteomic Data from a Field Biostimulation Experiment

    SciTech Connect

    Fang, Yilin; Wilkins, Michael J.; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-12-12

    Biomass and shotgun global proteomics data that reflected relative protein abundances from samples collected during the 2008 experiment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge site in Rifle, Colorado, provided an unprecedented opportunity to validate a genome-scale metabolic model of Geobacter metallireducens and assess its performance with respect to prediction of metal reduction, biomass yield, and growth rate under dynamic field conditions. Reconstructed from annotated genomic sequence, biochemical, and physiological data, the constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low fluxes through amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  3. Functional genomics of pathogenic bacteria.

    PubMed Central

    Moxon, E R; Hood, D W; Saunders, N J; Schweda, E K H; Richards, J C

    2002-01-01

    Microbial diseases remain the commonest cause of global mortality and morbidity. Automated-DNA sequencing has revolutionized the investigation of pathogenic microbes by making the immense fund of information contained in their genomes available at reasonable cost. The challenge is how this information can be used to increase current understanding of the biology of commensal and virulence behaviour of pathogens with particular emphasis on in vivo function and novel approaches to prevention. One example of the application of whole-genome-sequence information is afforded by investigations of the pathogenic role of Haemophilus influenzae lipopolysaccharide and its candidacy as a vaccine. PMID:11839188

  4. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  5. The Genomic Tree as Revealed from Whole Proteome Comparisons

    PubMed Central

    Tekaia, Fredj; Lazcano, Antonio; Dujon, Bernard

    1999-01-01

    The availability of a number of complete cellular genome sequences allows the development of organisms’ classification, taking into account their genome content, the loss or acquisition of genes, and overall gene similarities as signatures of common ancestry. On the basis of correspondence analysis and hierarchical classification methods, a methodological framework is introduced here for the classification of the available 20 completely sequenced genomes and partial information for Schizosaccharomyces pombe, Homo sapiens, and Mus musculus. The outcome of such an analysis leads to a classification of genomes that we call a genomic tree. Although these trees are phenograms, they carry with them strong phylogenetic signatures and are remarkably similar to 16S-like rRNA-based phylogenies. Our results suggest that duplication and deletion events that took place through evolutionary time were globally similar in related organisms. The genomic trees presented here place the Archaea in the proximity of the Bacteria when the whole gene content of each organism is considered, and when ancestral gene duplications are eliminated. Genomic trees represent an additional approach for the understanding of evolution at the genomic level and may contribute to the proper assessment of the evolutionary relationships between extant species. PMID:10400922

  6. Integrated Transcriptomic-Proteomic Analysis Using a Proteogenomic Workflow Refines Rat Genome Annotation.

    PubMed

    Kumar, Dhirendra; Yadav, Amit Kumar; Jia, Xinying; Mulvenna, Jason; Dash, Debasis

    2016-01-01

    Proteogenomic re-annotation and mRNA splicing information can lead to the discovery of various protein forms for eukaryotic model organisms like rat. However, detection of novel proteoforms using mass spectrometry proteomics data remains a formidable challenge. We developed EuGenoSuite, an open source multiple algorithmic proteomic search tool and utilized it in our in-house integrated transcriptomic-proteomic pipeline to facilitate automated proteogenomic analysis. Using four proteogenomic pipelines (integrated transcriptomic-proteomic, Peppy, Enosi, and ProteoAnnotator) on publicly available RNA-sequence and MS proteomics data, we discovered 363 novel peptides in rat brain microglia representing novel proteoforms for 249 gene loci in the rat genome. These novel peptides aided in the discovery of novel exons, translation of annotated untranslated regions, pseudogenes, and splice variants for various loci; many of which have known disease associations, including neurological disorders like schizophrenia, amyotrophic lateral sclerosis, etc. Novel isoforms were also discovered for genes implicated in cardiovascular diseases and breast cancer for which rats are considered model organisms. Our integrative multi-omics data analysis not only enables the discovery of new proteoforms but also generates an improved reference for human disease studies in the rat model.

  7. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle.

    PubMed

    Rougon-Cardoso, Alejandra; Flores-Ponce, Mitzi; Ramos-Aboites, Hilda Eréndira; Martínez-Guerrero, Christian Eduardo; Hao, You-Jin; Cunha, Luis; Rodríguez-Martínez, Jonathan Alejandro; Ovando-Vázquez, Cesaré; Bermúdez-Barrientos, José Roberto; Abreu-Goodger, Cei; Chavarría-Hernández, Norberto; Simões, Nelson; Montiel, Rafael

    2016-11-23

    The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode's genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism.

  8. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle

    PubMed Central

    Rougon-Cardoso, Alejandra; Flores-Ponce, Mitzi; Ramos-Aboites, Hilda Eréndira; Martínez-Guerrero, Christian Eduardo; Hao, You-Jin; Cunha, Luis; Rodríguez-Martínez, Jonathan Alejandro; Ovando-Vázquez, Cesaré; Bermúdez-Barrientos, José Roberto; Abreu-Goodger, Cei; Chavarría-Hernández, Norberto; Simões, Nelson; Montiel, Rafael

    2016-01-01

    The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode’s genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism. PMID:27876851

  9. Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights

    PubMed Central

    Kumar, Amitha Sampath; Sowpati, Divya Tej; Mishra, Rakesh K.

    2016-01-01

    Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a consequence of SSR events. Certain amino acids are abundant in repeat regions indicating a positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes including the human proteome, we explored the functional and structural relationship of amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any known functional domain, while ~74% of repeats are present in the disordered regions, suggesting that SAARs add to the functionality of proteins by providing flexibility, stability and act as linker elements between domains. Comparison of SAAR containing proteins across species reveals that while shorter repeats are conserved among orthologs, proteins with longer repeats, >15 amino acids, are unique to the respective organism. Lysine repeats are well conserved among orthologs with respect to their length and number of occurrences in a protein. Other amino acids such as glutamic acid, proline, serine and alanine repeats are generally conserved among the orthologs with varying repeat lengths. These findings suggest that SAARs have accumulated in the proteome under positive selection pressure and that they provide flexibility for optimal folding of functional/structural domains of proteins. The insights gained from our observations can help in effective designing and engineering of proteins with novel features. PMID:27893794

  10. Primer: genomic and proteomic tools for the molecular dissection of disease.

    PubMed

    Walker, Erin J; Siminovitch, Katherine A

    2007-10-01

    Completion of the Human Genome Project has been rapidly followed by the emergence of high-throughput technologies that combine automation, miniaturization, and many other strategies and tools to enable systematic surveys of genome composition and gene expression. Of particular relevance to the prevention and management of disease are technologies such as high-throughput DNA genotyping, microarray-based gene-expression profiling, and mass spectrometry-facilitated protein profiling--platforms that collectively support the comprehensive analysis of DNA sequence variants across the genome and the global gene and protein expression changes that distinguish health from disease. Now used extensively in all facets of biomedical investigation, genomic and proteomic tools are already beginning to pinpoint molecular variants that influence risk and outcome in common diseases, and to thereby inform and direct development of novel molecular biomarkers and drug targets. As evidenced by recent advances in DNA sequencing methods, continued improvements in the scope, power, and cost efficiency of genomic and proteomic technologies should ensure their capacity to provide the scale and depth of knowledge required for translating genome sequence information into major medical impact.

  11. Functional Genomics in the Study of Mind-Body Therapies

    PubMed Central

    Niles, Halsey; Mehta, Darshan H.; Corrigan, Alexandra A.; Bhasin, Manoj K.; Denninger, John W.

    2014-01-01

    Background Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. Methods We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. Results We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. Conclusion In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes—from epigenomics to proteomics and metabolomics. PMID:25598735

  12. Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

    PubMed

    Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng

    2013-11-01

    Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.

  13. Cyanobacterial KnowledgeBase (CKB), a Compendium of Cyanobacterial Genomes and Proteomes

    PubMed Central

    Mohandass, Shylajanaciyar; Varadharaj, Sangeetha; Thilagar, Sivasudha; Abdul Kareem, Kaleel Ahamed; Dharmar, Prabaharan; Gopalakrishnan, Subramanian; Lakshmanan, Uma

    2015-01-01

    Cyanobacterial KnowledgeBase (CKB) is a free access database that contains the genomic and proteomic information of 74 fully sequenced cyanobacterial genomes belonging to seven orders. The database also contains tools for sequence analysis. The Species report and the gene report provide details about each species and gene (including sequence features and gene ontology annotations) respectively. The database also includes cyanoBLAST, an advanced tool that facilitates comparative analysis, among cyanobacterial genomes and genomes of E. coli (prokaryote) and Arabidopsis (eukaryote). The database is developed and maintained by the Sub-Distributed Informatics Centre (sponsored by the Department of Biotechnology, Govt. of India) of the National Facility for Marine Cyanobacteria, a facility dedicated to marine cyanobacterial research. CKB is freely available at http://nfmc.res.in/ckb/index.html. PMID:26305368

  14. Public Access for Teaching Genomics, Proteomics, and Bioinformatics

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2003-01-01

    When the human genome project was conceived, its leaders wanted all researchers to have equal access to the data and associated research tools. Their vision of equal access provides an unprecedented teaching opportunity. Teachers and students have free access to the same databases that researchers are using. Furthermore, the recent movement to…

  15. A New Literary Metaphor for the Genome or Proteome

    ERIC Educational Resources Information Center

    Pappas, Gus

    2005-01-01

    Previously, the idea of a blueprint has been used to explain the genome. The concept of a play's cast of characters, the Dramatis Personae, is a more fluid metaphor that allows for mutations and time-dependent phenomena to be taken into account. It also provides an educational and mnemonic exercise for students.

  16. Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its ...

  17. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance

    PubMed Central

    Fouhy, Fiona; Stanton, Catherine; Cotter, Paul D.; Hill, Colin; Walsh, Fiona

    2015-01-01

    The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments. PMID:25784907

  18. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach

    PubMed Central

    Clowers, Brian H.; Deatherage Kaiser, Brooke L.; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeffrey T.; Kreuzer, Helen W.

    2015-01-01

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement. PMID:26599979

  19. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach.

    PubMed

    Leiser, Owen P; Merkley, Eric D; Clowers, Brian H; Deatherage Kaiser, Brooke L; Lin, Andy; Hutchison, Janine R; Melville, Angela M; Wagner, David M; Keim, Paul S; Foster, Jeffrey T; Kreuzer, Helen W

    2015-01-01

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  20. Novel Multivariate Methods for Integration of Genomics and Proteomics Data: Applications in a Kidney Transplant Rejection Study

    PubMed Central

    Günther, Oliver P.; Shin, Heesun; Ng, Raymond T.; McMaster, W. Robert; McManus, Bruce M.; Keown, Paul A.; Tebbutt, Scott. J.

    2014-01-01

    Abstract Multi-omics research is a key ingredient of data-intensive life sciences research, permitting measurement of biological molecules at different functional levels in the same individual. For a complete picture at the biological systems level, appropriate statistical techniques must however be developed to integrate different ‘omics’ data sets (e.g., genomics and proteomics). We report here multivariate projection-based analyses approaches to genomics and proteomics data sets, using the case study of and applications to observations in kidney transplant patients who experienced an acute rejection event (n=20) versus non-rejecting controls (n=20). In this data sets, we show how these novel methodologies might serve as promising tools for dimension reduction and selection of relevant features for different analytical frameworks. Unsupervised analyses highlighted the importance of post transplant time-of-rejection, while supervised analyses identified gene and protein signatures that together predicted rejection status with little time effect. The selected genes are part of biological pathways that are representative of immune responses. Gene enrichment profiles revealed increases in innate immune responses and neutrophil activities and a depletion of T lymphocyte related processes in rejection samples as compared to controls. In all, this article offers candidate biomarkers for future detection and monitoring of acute kidney transplant rejection, as well as ways forward for methodological advances to better harness multi-omics data sets. PMID:25387159

  1. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    PubMed Central

    Loevenich, Sandra N; Brunner, Erich; King, Nichole L; Deutsch, Eric W; Stein, Stephen E; Aebersold, Ruedi; Hafen, Ernst

    2009-01-01

    Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s) in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1) reduction of the complexity inherently associated with performing targeted proteomic studies, (2) designing and accelerating shotgun proteomics experiments, (3) confirming or questioning gene models, and (4) adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert. PMID:19210778

  2. Exhaustive proteome mining for functional MHC-I ligands.

    PubMed

    Koch, Christian P; Perna, Anna M; Weissmüller, Sabrina; Bauer, Stefanie; Pillong, Max; Baleeiro, Renato B; Reutlinger, Michael; Folkers, Gerd; Walden, Peter; Wrede, Paul; Hiss, Jan A; Waibler, Zoe; Schneider, Gisbert

    2013-09-20

    We present the development and application of a new machine-learning approach to exhaustively and reliably identify major histocompatibility complex class I (MHC-I) ligands among all 20(8) octapeptides and in genome-derived proteomes of Mus musculus , influenza A H3N8, and vesicular stomatitis virus (VSV). Focusing on murine H-2K(b), we identified potent octapeptides exhibiting direct MHC-I binding and stabilization on the surface of TAP-deficient RMA-S cells. Computationally identified VSV-derived peptides induced CD8(+) T-cell proliferation after VSV-infection of mice. The study demonstrates that high-level machine-learning models provide a unique access to rationally designed peptides and a promising approach toward "reverse vaccinology".

  3. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    DOE PAGES

    Brooks, Brandon; Mueller, R. S.; Young, Jacque C.; ...

    2015-07-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13 21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains ofmore » Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.« less

  4. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    PubMed Central

    Brooks, Brandon; Mueller, Ryan S.; Young, Jacque C.; Morowitz, Michael J.; Hettich, Robert L.; Banfield, Jillian F.

    2015-01-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13–21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential. PMID:26191049

  5. Temporal changes in milk proteomes reveal developing milk functions.

    PubMed

    Gao, Xinliu; McMahon, Robert J; Woo, Jessica G; Davidson, Barbara S; Morrow, Ardythe L; Zhang, Qiang

    2012-07-06

    Human milk proteins provide essential nutrition for growth and development, and support a number of vital developmental processes in the neonate. A complete understanding of the possible functions of human milk proteins has been limited by incomplete knowledge of the human milk proteome. In this report, we have analyzed the proteomes of whey from human transitional and mature milk using ion-exchange and SDS-PAGE based protein fractionation methods. With a larger-than-normal sample loading approach, we are able to largely extend human milk proteome to 976 proteins. Among them, 152 proteins are found to render significant regulatory changes between transitional milk and mature milk. We further found that immunoglobulins sIgA and IgM are more abundant in transitional milk, whereas IgG is more abundant in mature milk, suggesting a transformation in defense mechanism from newborns to young infants. Additionally, we report a more comprehensive view of a complement system and associated regulatory apparatus in human milk, demonstrating the presence and function of a system similar to that found in the circulation but prevailed by alternative pathway in complement activation. Proteins involved in various aspects of carbohydrate metabolism are also described, revealing either a transition in milk functionality to accommodate carbohydrate-rich secretions as lactation progresses, or a potentially novel way of looking at the metabolic state of the mammary tissue. Lately, a number of extracellular matrix (ECM) proteins are found to be in higher abundance in transitional milk and may be relevant to the development of infants' gastrointestinal tract in early life. In contrast, the ECM protein fibronectin and several of the actin cytoskeleton proteins that it regulates are more abundant in mature milk, which may indicate the important functional role for milk in regulating reactive oxygen species.

  6. Exploring the “dark matter” of a mammalian proteome by protein structure and function modeling

    PubMed Central

    2013-01-01

    Background A growing body of evidence shows that gene products encoded by short open reading frames play key roles in numerous cellular processes. Yet, they are generally overlooked in genome assembly, escaping annotation because small protein-coding genes are difficult to predict computationally. Consequently, there are still a considerable number of small proteins whose functions are yet to be characterized. Results To address this issue, we apply a collection of structural bioinformatics algorithms to infer molecular function of putative small proteins from the mouse proteome. Specifically, we construct 1,743 confident structure models of small proteins, which reveal a significant structural diversity with a noticeably high helical content. A subsequent structure-based function annotation of small protein models exposes 178,745 putative protein-protein interactions with the remaining gene products in the mouse proteome, 1,100 potential binding sites for small organic molecules and 987 metal-binding signatures. Conclusions These results strongly indicate that many small proteins adopt three-dimensional structures and are fully functional, playing important roles in transcriptional regulation, cell signaling and metabolism. Data collected through this work is freely available to the academic community at http://www.brylinski.org/content/databases to support future studies oriented on elucidating the functions of hypothetical small proteins. PMID:24321360

  7. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment

    PubMed Central

    Fang, Yilin; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-01-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment. PMID:23042184

  8. Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment.

    PubMed

    Fang, Yilin; Wilkins, Michael J; Yabusaki, Steven B; Lipton, Mary S; Long, Philip E

    2012-12-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens-specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  9. Gene Chips and Functional Genomics

    NASA Astrophysics Data System (ADS)

    Hamadeh, Hisham; Afshari, Cynthia

    2000-11-01

    These past few years of scientific discovery will undoubtedly be remembered as the "genomics era," the period in which biologists succeeded in enumerating the sequence of nucleotides making up all, or at least most, of human DNA. And while this achievement has been heralded as a technological feat equal to the moon landing, it is only the first of many advances in DNA technology. Scientists are now faced with the task of understanding the meaning of the DNA sequence. Specifically, they want to learn how the DNA code relates to protein function. An important tool in the study of "functional genomics," is the cDNA microarray—also known as the gene chip. Inspired by computer microchips, gene chips allow scientists to monitor the expression of hundreds, even thousands, of genes in a fraction of the time it used to take to monitor the expression of a single one. By altering the conditions under which a particular tissue expresses genes—say, by exposing it to toxins or growth factors—scientists can determine the suite of genes expressed in different situations and hence start to get a handle on the function of these genes. The authors discuss this important new technology and some of its practical applications.

  10. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods.

    PubMed

    Baldrian, Petr; López-Mondéjar, Rubén

    2014-02-01

    Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.

  11. Yeast Proteome Analysis

    NASA Astrophysics Data System (ADS)

    Matros, Andrea; Mock, Hans-Peter

    Yeast organisms, and specifically Saccharomyces cerevisiae, have become model systems for many aspects in fundamental and applied research. Consistently, many papers have been published applying proteome techniques to study these organisms. The review will give an overview on the proteome research performed on yeast systems so far; however, due to the large number of publications, only selected reports can be cited neglecting many more interesting ones in the interest of space. The review will focus on research involving mass spectrom-etry as a basic proteome technique, although many more approaches are relevant for the functional characterization of proteins in the cell, e.g. the yeast two-hybrid system. We will provide an overview on yeasts as models in the context of pro-teome analysis, and explain the basic techniques currently applied in proteome approaches. The main part of the review will deal with a survey on the current status of proteomic studies in yeasts. In a first part of this chapter, we will deal with the currently available proteome maps of yeasts, and in the following part we will discuss studies dealing with fundamental aspects, but also mention proteome studies related to applied microbiology. Finally, we will envisage future perspectives of the proteome technology for studying yeasts, and draw major conclusion on the current status reached in this field of functional genomics.

  12. Evolution, language and analogy in functional genomics

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  13. Evolution, language and analogy in functional genomics.

    PubMed

    Benner, S A; Gaucher, E A

    2001-07-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  14. Genomic and Proteomic Analyses of Prdm5 Reveal Interactions with Insulator Binding Proteins in Embryonic Stem Cells

    PubMed Central

    Galli, Giorgio Giacomo; Carrara, Matteo; Francavilla, Chiara; Honnens de Lichtenberg, Kristian; Olsen, Jesper Velgaard; Calogero, Raffaele Adolfo

    2013-01-01

    PRDM proteins belong to the SET domain protein family, which is involved in the regulation of gene expression. Although few PRDM members possess histone methyltransferase activity, the molecular mechanisms by which the other members exert transcriptional regulation remain to be delineated. In this study, we find that Prdm5 is highly expressed in mouse embryonic stem (mES) cells and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next-generation sequencing technologies, we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that although Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, cohesin, and TFIIIC and cooccupies genomic loci. In summary, our data indicate how Prdm5 modulates transcription by interacting with factors involved in genome organization in mouse embryonic stem cells. PMID:24043305

  15. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design.

    PubMed

    Schussek, Sophie; Trieu, Angela; Doolan, Denise L

    2014-01-01

    Infectious diseases remain a leading global cause of morbidity and mortality and there is an urgent need for effective approaches to develop vaccines, especially against complex pathogens. The availability of comprehensive genomic, proteomic and transcriptomic datasets has shifted the paradigm of vaccine development from microbiological to sequence-based approaches. However, how to effectively translate raw data into candidate vaccines is not yet obvious. Herein, we review cutting-edge technologies and screening strategies to mine genomic sequence information for state-of-the-art rational vaccine design, and highlight recent trends. Interdisciplinary approaches which cross the traditional boundaries of genomics, molecular biology, cell biology, immunology and computer science, and which prioritise antigens according to clinically relevant criteria, offer potential solutions to the widespread threat that complex pathogens pose to public health.

  16. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components.

    PubMed

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M

    2016-11-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  17. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification

    PubMed Central

    Bezerra, Ana R.; Simões, João; Lee, Wanseon; Rung, Johan; Weil, Tobias; Gut, Ivo G.; Gut, Marta; Bayés, Mónica; Rizzetto, Lisa; Cavalieri, Duccio; Giovannini, Gloria; Bozza, Silvia; Romani, Luigina; Kapushesky, Misha; Moura, Gabriela R.; Santos, Manuel A. S.

    2013-01-01

    Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research. PMID:23776239

  18. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification.

    PubMed

    Bezerra, Ana R; Simões, João; Lee, Wanseon; Rung, Johan; Weil, Tobias; Gut, Ivo G; Gut, Marta; Bayés, Mónica; Rizzetto, Lisa; Cavalieri, Duccio; Giovannini, Gloria; Bozza, Silvia; Romani, Luigina; Kapushesky, Misha; Moura, Gabriela R; Santos, Manuel A S

    2013-07-02

    Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research.

  19. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi*

    PubMed Central

    Atanasova, Lea; Druzhinina, Irina S.

    2010-01-01

    Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool. PMID:20205302

  20. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    DOE PAGES

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; ...

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experimentmore » (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.« less

  1. Low viscous separation media for genomics and proteomics analysis on microchip electrophoresis system.

    PubMed

    Jabasini, Mohammad; Murakami, Yuji; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2006-04-01

    Microchip electrophoresis has widely grown during the past few years, and it has showed a significant result as a strong separation tool for genomic as well as proteomic researches. To enhance and expand the role of microchip electrophoresis, several studies have been proposed especially for the low viscous separation media, which is an important factor for the success of microchip with its narrow separation channels. In this paper we show an overview for the done researches in the field of low viscous media developed for the use in microchip electrophoresis. For genomic separation studies polyhydroxy additives have been used enhance the separation of DNA at low polymer concentration of HPMC (Hydroxypropylmethyl cellulose) which could keep the viscosity low. Mixtures of poly(ethylene oxide) as well as Hydroxyporpyl cellulose have been successfully introduced for chip separation. Furthermore high molecular mass polyacrylamides at low concentrations have been studied for DNA separation. A mixture of polymer nanoparticle with conventional polymers could show a better resolution for DNA at low concentration of the polymer. For the proteomic field isoelectric focusing on chip has been well overviewed since it is the most viscous separation media which is well used for the protein separation. The different types of isoelectric focusing such as the ampholyte-free type, the thermal type as well as the ampholyte-depended type have been introduced in this paper. Isoelectric focusing on chip with its combination with sodium dodecyl sulfate (SDS) page or free solution could give a better separation. Several application for this low viscous separation medias for either genomic or proteomic could clearly show the importance of this field.

  2. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu(2+) Treatment.

    PubMed

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu(2+.) Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain.

  3. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu2+ Treatment

    PubMed Central

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu2+. Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  4. The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art

    PubMed Central

    de Franciscis, Stefano; Metzinger, Laurent; Serra, Raffaele

    2016-01-01

    Cardiovascular disease (CD) and peripheral vascular disease (PVD) are leading causes of mortality and morbidity in western countries and also responsible of a huge burden in terms of disability, functional decline, and healthcare costs. Biomarkers are measurable biological elements that reflect particular physiological or pathological states or predisposition towards diseases and they are currently widely studied in medicine and especially in CD. In this context, biomarkers can also be used to assess the severity or the evolution of several diseases, as well as the effectiveness of particular therapies. Genomics, transcriptomics, and proteomics have opened new windows on disease phenomena and may permit in the next future an effective development of novel diagnostic and prognostic medicine in order to better prevent or treat CD. This review will consider the current evidence of novel biomarkers with clear implications in the improvement of risk assessment, prevention strategies, and medical decision making in the field of CD. PMID:27298828

  5. Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*

    PubMed Central

    Dai, Shaojun; Chen, Sixue

    2012-01-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375

  6. Single-cell-type proteomics: toward a holistic understanding of plant function.

    PubMed

    Dai, Shaojun; Chen, Sixue

    2012-12-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.

  7. Exploration of Genomic, Proteomic, and Histopathological Image Data Integration Methods for Clinical Prediction

    PubMed Central

    Poruthoor, A.; Phan, J.H.; Kothari, S.; Wang, May D.

    2016-01-01

    The emergence of large multi-platform and multi-scale data repositories in biomedicine has enabled the exploration of data integration for holistic decision making. In this research, we investigate multi-modal genomic, proteomic, and histopathological image data integration for prediction of ovarian cancer clinical endpoints in The Cancer Genome Atlas (TCGA). Specifically, we study two data integration techniques, simple data concatenation and ensemble classification, to determine whether they can improve prediction of ovarian cancer grade or patient survival. Results indicate that integration via ensemble classification is more effective than simple data concatenation. We also highlight several key factors impacting data integration outcome such as predictability of endpoint, class prevalence, and unbalanced representation of features from different data modalities.

  8. Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    PubMed Central

    Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-01-01

    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions. PMID:21909256

  9. Cardiovascular translational medicine (III). Genomics and proteomics in heart failure research.

    PubMed

    González, Arantxa; López, Begoña; Beaumont, Javier; Ravassa, Susana; Arias, Teresa; Hermida, Nerea; Zudaire, Amaia; Díez, Javier

    2009-03-01

    Heart failure is a complex syndrome and is one of the main causes of morbidity and mortality in developed countries. Despite considerable research effort in recent years, heart failure prevention and treatment strategies still suffer significant limitations. New theoretical and technical approaches are, therefore, required. It is in this context that the "omic" sciences have a role to play in heart failure. The incorporation of "omic" methodologies into the study of human disease has substantially changed biological approaches to disease and has given an enormous impetus to the search for new disease mechanisms, as well as for novel biomarkers and therapeutic targets. The application of genomics, proteomics and metabonomics to heart failure research could increase our understanding of the origin and development of the different processes contributing to this syndrome, thereby enabling the establishment of specific diagnostic profiles and therapeutic templates that could help improve the poor prognosis associated with heart failure. This brief review contains a short description of the fundamental principles of the "omic" sciences and an evaluation of how these new techniques are currently contributing to research into human heart failure. The focus is mainly on the analysis of gene expression microarrays in the field of genomics and on studies using two-dimensional electrophoresis with mass spectrometry in the area of proteomics.

  10. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    PubMed Central

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  11. Integration and Querying of Genomic and Proteomic Semantic Annotations for Biomedical Knowledge Extraction.

    PubMed

    Masseroli, Marco; Canakoglu, Arif; Ceri, Stefano

    2016-01-01

    Understanding complex biological phenomena involves answering complex biomedical questions on multiple biomolecular information simultaneously, which are expressed through multiple genomic and proteomic semantic annotations scattered in many distributed and heterogeneous data sources; such heterogeneity and dispersion hamper the biologists' ability of asking global queries and performing global evaluations. To overcome this problem, we developed a software architecture to create and maintain a Genomic and Proteomic Knowledge Base (GPKB), which integrates several of the most relevant sources of such dispersed information (including Entrez Gene, UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc, KEGG, Reactome, and OMIM). Our solution is general, as it uses a flexible, modular, and multilevel global data schema based on abstraction and generalization of integrated data features, and a set of automatic procedures for easing data integration and maintenance, also when the integrated data sources evolve in data content, structure, and number. These procedures also assure consistency, quality, and provenance tracking of all integrated data, and perform the semantic closure of the hierarchical relationships of the integrated biomedical ontologies. At http://www.bioinformatics.deib.polimi.it/GPKB/, a Web interface allows graphical easy composition of queries, although complex, on the knowledge base, supporting also semantic query expansion and comprehensive explorative search of the integrated data to better sustain biomedical knowledge extraction.

  12. The genome and proteome of Serratia bacteriophage η which forms unstable lysogens

    PubMed Central

    2014-01-01

    Background Serratia marcescens phage η is a temperate unclassified member of the Siphoviridae which had been reported as containing hypermodified guanine residues. Methods The DNA was characterized by enzymatic digestion followed by HPLC analysis of the nucleoside composition, and by DNA sequencing and proteomic analysis. Its ability to form stable lysogens and integrate was also investigated. Results Enzymatic digestion and HPLC analysis revealed phage η DNA did not contain modified bases. The genome sequence of this virus, determined using pyrosequencing, is 42,724 nucleotides in length with a mol% GC of 49.9 and is circularly permuted. Sixty-nine putative CDSs were identified of which 19 encode novel proteins. While seven close genetic relatives were identified, they shared sequence similarity with only genes 40 to 69 of the phage η genome, while gp1 to gp39 shared no conserved relationship. The structural proteome, determined by SDS-PAGE and mass spectrometry, revealed seven unique proteins. This phage forms very unstable lysogens with its host S. marcescens. PMID:24433577

  13. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  14. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function.

    PubMed

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L

    2012-09-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of "novel" and "putative" protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and

  15. Applying functional genomics research to the study of pig reproduction.

    PubMed

    Pomp, D; Caetano, A R; Bertani, G R; Gladney, C D; Johnson, R K

    2001-01-01

    Functional genomics is an experimental approach that incorporates genome-wide or system-wide experimentation, expanding the scope of biological investigation from studying single genes to studying potentially all genes at once in a systematic manner. This technology is highly appealing because of its high throughput and relatively low cost. Furthermore, analysis of gene expression using microarrays is likely to be more biologically relevant than the conventional paradigm of reductionism, because it has the potential to uncover new biological connections between genes and biochemical pathways. However, functional genomics is still in its infancy, especially with regard to the study of pig reproduction. Currently, efforts are centred on developing the necessary resources to enable high throughput evaluation and comparison of gene expression. However, it is clear that in the near future functional genomics will be applied on a large scale to study the biology and physiology of reproduction in pigs, and to understand better the complex nature of genetic control over polygenic characteristics, such as ovulation rate and litter size. We can look forward to generating a significant amount of new data on differences in gene expression between genotypes, treatments, or at various temporal and spatial coordinates within a variety of reproductively relevant systems. Along with this capability will be the challenge of collating, analysing and interpreting datasets that are orders of magnitude more extensive and complex than those currently used. Furthermore, integration of functional genomics with traditional genetic approaches and with detailed analysis of the proteome and relevant whole animal phenotypes will be required to make full use of this powerful new experimental paradigm as a beneficial research tool.

  16. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  17. Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  18. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing "Leptospirillum rubarum" (Group II) and Leptospirillum ferrodiazotrophum (Group III) in acid mine drainage biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum Groups II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, CA acid mine drainage (AMD) biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum Groups II and III, respectively and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid encodes conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacteria have genes for community-essential functions, including carbon fixation, biosynthesis of vitamins, fatty acids and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum Group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum Group II uses a methyl-dependent and Leptospirillum Group III a methyl-independent response pathway. Although only Leptospirillum Group III can fix nitrogen, these proteins were not identified by proteomics. Abundances of core proteins are similar in all communities, but abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum Groups II and III.

  19. A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation.

    PubMed

    Shao, Wenguang; Zhang, Min; Lam, Henry; Lau, Stanley C K

    2015-09-23

    Shotgun proteomics is an emerging tool for bacterial identification and differentiation. However, the identification of the mass spectra of peptides to genome-derived peptide sequences remains a key issue that limits the use of shotgun proteomics to bacteria with genome sequences available. In this proof-of-concept study, we report a novel bacterial fingerprinting method that enjoys the resolving power and accuracy of mass spectrometry without the burden of peptide identification (i.e. genome sequence-independent). This method uses a similarity-clustering algorithm to search for mass spectra that are derived from the same peptide and merge them into a unique consensus spectrum as the basis to generate proteomic fingerprints of bacterial isolates. In comparison to a traditional peptide identification-based shotgun proteomics workflow and a PCR-based DNA fingerprinting method targeting the repetitive extragenic palindromes elements in bacterial genomes, the novel method generated fingerprints that were richer in information and more discriminative in differentiating E. coli isolates by their animal sources. The novel method is readily deployable to any cultivable bacteria, and may be used for several fields of study such as environmental microbiology, applied microbiology, and clinical microbiology.

  20. CodaChrome: a tool for the visualization of proteome conservation across all fully sequenced bacterial genomes

    PubMed Central

    2014-01-01

    Background The relationships between bacterial genomes are complicated by rampant horizontal gene transfer, varied selection pressures, acquisition of new genes, loss of genes, and divergence of genes, even in closely related lineages. As more and more bacterial genomes are sequenced, organizing and interpreting the incredible amount of relational information that connects them becomes increasingly difficult. Results We have developed CodaChrome (http://www.sourceforge.com/p/codachrome), a one-versus-all proteome comparison tool that allows the user to visually investigate the relationship between a bacterial proteome of interest and the proteomes encoded by every other bacterial genome recorded in GenBank in a massive interactive heat map. This tool has allowed us to rapidly identify the most highly conserved proteins encoded in the bacterial pan-genome, fast-clock genes useful for subtyping of bacterial species, the evolutionary history of an indel in the Sphingobium lineage, and an example of horizontal gene transfer from a member of the genus Enterococcus to a recent ancestor of Helicobacter pylori. Conclusion CodaChrome is a user-friendly and powerful tool for simultaneously visualizing relationships between thousands of proteomes. PMID:24460813

  1. A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation

    PubMed Central

    Shao, Wenguang; Zhang, Min; Lam, Henry; Lau, Stanley C. K.

    2015-01-01

    Shotgun proteomics is an emerging tool for bacterial identification and differentiation. However, the identification of the mass spectra of peptides to genome-derived peptide sequences remains a key issue that limits the use of shotgun proteomics to bacteria with genome sequences available. In this proof-of-concept study, we report a novel bacterial fingerprinting method that enjoys the resolving power and accuracy of mass spectrometry without the burden of peptide identification (i.e. genome sequence-independent). This method uses a similarity-clustering algorithm to search for mass spectra that are derived from the same peptide and merge them into a unique consensus spectrum as the basis to generate proteomic fingerprints of bacterial isolates. In comparison to a traditional peptide identification-based shotgun proteomics workflow and a PCR-based DNA fingerprinting method targeting the repetitive extragenic palindromes elements in bacterial genomes, the novel method generated fingerprints that were richer in information and more discriminative in differentiating E. coli isolates by their animal sources. The novel method is readily deployable to any cultivable bacteria, and may be used for several fields of study such as environmental microbiology, applied microbiology, and clinical microbiology. PMID:26395646

  2. Characterization of the Genome, Proteome, and Structure of Yersiniophage ϕR1-37

    PubMed Central

    Hyytiäinen, Heidi J.; Happonen, Lotta J.; Kiljunen, Saija; Datta, Neeta; Mattinen, Laura; Williamson, Kirsty; Kristo, Paula; Szeliga, Magdalena; Kalin-Mänttäri, Laura; Ahola-Iivarinen, Elina; Kalkkinen, Nisse; Butcher, Sarah J.

    2012-01-01

    The bacteriophage vB_YecM-ϕR1-37 (ϕR1-37) is a lytic yersiniophage that can propagate naturally in different Yersinia species carrying the correct lipopolysaccharide receptor. This large-tailed phage has deoxyuridine (dU) instead of thymidine in its DNA. In this study, we determined the genomic sequence of phage ϕR1-37, mapped parts of the phage transcriptome, characterized the phage particle proteome, and characterized the virion structure by cryo-electron microscopy and image reconstruction. The 262,391-bp genome of ϕR1-37 is one of the largest sequenced phage genomes, and it contains 367 putative open reading frames (ORFs) and 5 tRNA genes. Mass-spectrometric analysis identified 69 phage particle structural proteins with the genes scattered throughout the genome. A total of 269 of the ORFs (73%) lack homologues in sequence databases. Based on terminator and promoter sequences identified from the intergenic regions, the phage genome was predicted to consist of 40 to 60 transcriptional units. Image reconstruction revealed that the ϕR1-37 capsid consists of hexameric capsomers arranged on a T=27 lattice similar to the bacteriophage ϕKZ. The tail of ϕR1-37 has a contractile sheath. We conclude that phage ϕR1-37 is a representative of a novel phage type that carries the dU-containing genome in a ϕKZ-like head. PMID:22973030

  3. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    PubMed Central

    Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.

    2013-01-01

    The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6) and the genome rat (BN/SsNHsd/Mcwi). Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals. PMID:24926433

  4. A computational interactome and functional annotation for the human proteome

    PubMed Central

    Garzón, José Ignacio; Deng, Lei; Murray, Diana; Shapira, Sagi; Petrey, Donald; Honig, Barry

    2016-01-01

    We present a database, PrePPI (Predicting Protein-Protein Interactions), of more than 1.35 million predicted protein-protein interactions (PPIs). Of these at least 127,000 are expected to constitute direct physical interactions although the actual number may be much larger (~500,000). The current PrePPI, which contains predicted interactions for about 85% of the human proteome, is related to an earlier version but is based on additional sources of interaction evidence and is far larger in scope. The use of structural relationships allows PrePPI to infer numerous previously unreported interactions. PrePPI has been subjected to a series of validation tests including reproducing known interactions, recapitulating multi-protein complexes, analysis of disease associated SNPs, and identifying functional relationships between interacting proteins. We show, using Gene Set Enrichment Analysis (GSEA), that predicted interaction partners can be used to annotate a protein’s function. We provide annotations for most human proteins, including many annotated as having unknown function. DOI: http://dx.doi.org/10.7554/eLife.18715.001 PMID:27770567

  5. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    PubMed

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  6. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research

    PubMed Central

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  7. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics

    PubMed Central

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-01-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population. PMID:27252584

  8. Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water

    PubMed Central

    Tang, Kai; Yang, Yujie; Lin, Dan; Li, Shuhui; Zhou, Wenchu; Han, Yu; Liu, Keshao; Jiao, Nianzhi

    2016-01-01

    Roseobacter clade bacteria are ubiquitous in marine environments and now thought to be significant contributors to carbon and sulfur cycling. However, only a few strains of roseobacters have been isolated from the deep-sea water column and have not been thoroughly investigated. Here, we present the complete genomes of phylogentically closed related Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014 isolated from deep-sea water of the Southeastern Pacific. The genome sequences showed that the two deep-sea roseobacters carry genes for versatile metabolisms with functional capabilities such as ribulose bisphosphate carboxylase-mediated carbon fixation and inorganic sulfur oxidation. Physiological and biochemical analysis showed that T. profunda JLT2016 was capable of autotrophy, heterotrophy, and mixotrophy accompanied by the production of exopolysaccharide. Heterotrophic carbon fixation via anaplerotic reactions contributed minimally to bacterial biomass. Comparative proteomics experiments showed a significantly up-regulated carbon fixation and inorganic sulfur oxidation associated proteins under chemolithotrophic conditions compared to heterotrophic conditions. Collectively, rosebacters show a high metabolic flexibility, suggesting a considerable capacity for adaptation to the marine environment. PMID:27762339

  9. Proteomic and genomic characterization of a yeast model for Ogden syndrome

    PubMed Central

    Dörfel, Max J.; Fang, Han; Crain, Jonathan; Klingener, Michael; Weiser, Jake

    2016-01-01

    Abstract Naa10 is an Nα‐terminal acetyltransferase that, in a complex with its auxiliary subunit Naa15, co‐translationally acetylates the α‐amino group of newly synthetized proteins as they emerge from the ribosome. Roughly 40–50% of the human proteome is acetylated by Naa10, rendering this an enzyme one of the most broad substrate ranges known. Recently, we reported an X‐linked disorder of infancy, Ogden syndrome, in two families harbouring a c.109 T > C (p.Ser37Pro) variant in NAA10. In the present study we performed in‐depth characterization of a yeast model of Ogden syndrome. Stress tests and proteomic analyses suggest that the S37P mutation disrupts Naa10 function and reduces cellular fitness during heat shock, possibly owing to dysregulation of chaperone expression and accumulation. Microarray and RNA‐seq revealed a pseudo‐diploid gene expression profile in ΔNaa10 cells, probably responsible for a mating defect. In conclusion, the data presented here further support the disruptive nature of the S37P/Ogden mutation and identify affected cellular processes potentially contributing to the severe phenotype seen in Ogden syndrome. Data are available via GEO under identifier GSE86482 or with ProteomeXchange under identifier PXD004923. © 2016 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:27668839

  10. Genomic and proteomic characterization of SE-I, a temperate bacteriophage infecting Erysipelothrix rhusiopathiae.

    PubMed

    Yuan, Wentao; Zhang, Yaning; Wang, Guangcao; Bai, Juan; Wang, Xianwei; Li, Yufeng; Jiang, Ping

    2016-11-01

    A bacteriophage infecting pathogenic Erysipelothrix rhusiopathiae was isolated from a swine farm experiencing an outbreak of acute swine erysipelas; we designated this phage SE-I. SE-I has an icosahedral head, a long tail and a double-stranded DNA genome. The 34,997-bp genome has a GC content of 34 % and contains 43 open reading frames (ORFs) encoding packaging, structural, lysin-holin, and hypothetical proteins. Components of purified SE-I were separated using SDS-PAGE and analyzed using liquid chromatography-mass spectrometry. Nine proteins were identified, encoded by ORF9, ORF15, ORF23, ORF30, ORF31, ORF33, ORF39, ORF40 and ORF 42. A phylogenetic tree constructed based on the sequence of the large terminase subunit revealed that SE-I is closely related to Staphylococcus phages P954 and phi3396. The CHAP-domain-containing protein encoded by ORF25 was expressed in E. coli and which was able to inactivate host bacteria. SE-I was able to infect 7 of 13 E. rhusiopathiae strains, but was unable to infect Salmonella, Streptococcus suis, and Staphylococcus aureus. This is the first report of the isolation, characterization, and genomic and proteomic analysis of a temperate phage infecting E. rhusiopathiae, and it might lead to the development of new anti- E. rhusiopathiae agents.

  11. Biomarkers for Bone Tumors: Discovery from Genomics and Proteomics Studies and Their Challenges

    PubMed Central

    Wan-Ibrahim, Wan I; Singh, Vivek A; Hashim, Onn H; Abdul-Rahman, Puteri S

    2015-01-01

    Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed. PMID:26581086

  12. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    PubMed Central

    Gaudreau, Pierre-Olivier; Stagg, John; Soulières, Denis; Saad, Fred

    2016-01-01

    Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development. PMID:27168728

  13. Insight into proteomic investigations of Neisseria meningitidis serogroup C strain L91543 from analysis of its genome sequence.

    PubMed

    Karlyshev, Andrey V; Snyder, Lori A S; McFadden, Johnjoe; Griffin, Ruth

    2015-05-01

    Here, we describe the draft sequence of a virulent isolate of Neisseria meningitidis strain L91543, belonging to serogroup C. The findings from previous proteomic and metabolomic studies of this strain can now be further interpreted with genomic analysis. Comparative analysis of the genome sequence revealed close similarity and localized synteny with the genome sequence of N. meningitidis serogroup C strain, FAM18. Polymorphisms were identified in the signal peptide sequence of factor H binding protein, a target for new meningococcal vaccines, which may result in its inefficient translocation across the cytoplasmic membrane affecting its processing (lipidation and cleavage of the signal peptide) and transportation to the outer membrane in strain L91543. This would explain the unusual proteomic data for factor H binding protein for this strain. NadA, another target for new vaccines, and the MtrR regulator, which controls expression of NadA, both contain SNPs between strains L91543 and FAM18. The genome sequence data were generated using Ion Torrent PGM sequencing, assembled into 50 contigs with 64× coverage and annotated with 2262 genes, 14 rRNAs and 56 tRNAs. The availability of the genome of N. meningitidis strain L91543 will aid our understanding of the proteome of this organism, importantly its vaccine antigens.

  14. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  15. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    PubMed Central

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  16. Genome-Wide Transcriptome and Proteome Analysis on Different Developmental Stages of Cordyceps militaris

    PubMed Central

    Yin, Yalin; Yu, Guojun; Chen, Yijie; Jiang, Shuai; Wang, Man; Jin, Yanxia; Lan, Xianqing; Liang, Yi; Sun, Hui

    2012-01-01

    Background Cordyceps militaris, an ascomycete caterpillar fungus, has been used as a traditional Chinese medicine for many years owing to its anticancer and immunomodulatory activities. Currently, artificial culturing of this beneficial fungus has been widely used and can meet the market, but systematic molecular studies on the developmental stages of cultured C. militaris at transcriptional and translational levels have not been determined. Methodology/Principal Findings We utilized high-throughput Illumina sequencing to obtain the transcriptomes of C. militaris mycelium and fruiting body. All clean reads were mapped to C. militaris genome and most of the reads showed perfect coverage. Alternative splicing and novel transcripts were predicted to enrich the database. Gene expression analysis revealed that 2,113 genes were up-regulated in mycelium and 599 in fruiting body. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to analyze the genes with expression differences. Moreover, the putative cordycepin metabolism difference between different developmental stages was studied. In addition, the proteome data of mycelium and fruiting body were obtained by one-dimensional gel electrophoresis (1-DGE) coupled with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). 359 and 214 proteins were detected from mycelium and fruiting body respectively. GO, KEGG and Cluster of Orthologous Groups (COG) analysis were further conducted to better understand their difference. We analyzed the amounts of some noteworthy proteins in these two samples including lectin, superoxide dismutase, glycoside hydrolase and proteins involved in cordycepin metabolism, providing important information for further protein studies. Conclusions/Significance The results reveal the difference in gene expression between the mycelium and fruiting body of artificially cultivated C. militaris by transcriptome and proteome

  17. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches.

    PubMed

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R; Junot, Christophe; Ezan, Eric; Goossens, Pierre L; Becher, François

    2014-03-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  18. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    PubMed

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of (60)Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  19. Functional proteomic and interactome analysis of proteins associated with beef tenderness in angus cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef is a source of high quality protein for the human population, and beef tenderness has significant influence on beef palatability, consumer expectation and industry profitability. To further elucidate the factors affecting beef tenderness, functional proteomics and bioinformatics interactome ana...

  20. Proteomics for Validation of Automated Gene Model Predictions

    SciTech Connect

    Zhou, Kemin; Panisko, Ellen A.; Magnuson, Jon K.; Baker, Scott E.; Grigoriev, Igor V.

    2008-02-14

    High-throughput liquid chromatography mass spectrometry (LC-MS)-based proteomic analysis has emerged as a powerful tool for functional annotation of genome sequences. These analyses complement the bioinformatic and experimental tools used for deriving, verifying, and functionally annotating models of genes and their transcripts. Furthermore, proteomics extends verification and functional annotation to the level of the translation product of the gene model.

  1. Functional module search in protein networks based on semantic similarity improves the analysis of proteomics data.

    PubMed

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-07-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system.

  2. Proteomic Insight into the Molecular Function of the Vitreous

    PubMed Central

    Skeie, Jessica M.; Roybal, C. Nathaniel; Mahajan, Vinit B.

    2015-01-01

    The human vitreous contains primarily water, but also contains proteins which have yet to be fully characterized. To gain insight into the four vitreous substructures and their potential functions, we isolated and analyzed the vitreous protein profiles of three non-diseased human eyes. The four analyzed substructures were the anterior hyaloid, the vitreous cortex, the vitreous core, and the vitreous base. Proteins were separated by multidimensional liquid chromatography and identified by tandem mass spectrometry. Bioinformatics tools then extracted the expression profiles, signaling pathways, and interactomes unique to each tissue. From each substructure, a mean of 2,062 unique proteins were identified, with many being differentially expressed in a specific substructure: 278 proteins were unique to the anterior hyaloid, 322 to the vitreous cortex, 128 to the vitreous base, and 136 to the vitreous core. When the identified proteins were organized according to relevant functional pathways and networks, key patterns appeared. The blood coagulation pathway and extracellular matrix turnover networks were highly represented. Oxidative stress regulation and energy metabolism proteins were distributed throughout the vitreous. Immune functions were represented by high levels of immunoglobulin, the complement pathway, damage-associated molecular patterns (DAMPs), and evolutionarily conserved antimicrobial proteins. The majority of vitreous proteins detected were intracellular proteins, some of which originate from the retina, including rhodopsin (RHO), phosphodiesterase 6 (PDE6), and glial fibrillary acidic protein (GFAP). This comprehensive analysis uncovers a picture of the vitreous as a biologically active tissue, where proteins localize to distinct substructures to protect the intraocular tissues from infection, oxidative stress, and energy disequilibrium. It also reveals the retina as a potential source of inflammatory mediators. The vitreous proteome catalogues the

  3. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function

    PubMed Central

    Stauch, Kelly L.; Purnell, Phillip R.; Fox, Howard S.

    2014-01-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function. PMID:24827396

  4. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  5. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    SciTech Connect

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  6. Discovery and annotation of small proteins using genomics, proteomics, and computational approaches.

    PubMed

    Yang, Xiaohan; Tschaplinski, Timothy J; Hurst, Gregory B; Jawdy, Sara; Abraham, Paul E; Lankford, Patricia K; Adams, Rachel M; Shah, Manesh B; Hettich, Robert L; Lindquist, Erika; Kalluri, Udaya C; Gunter, Lee E; Pennacchio, Christa; Tuskan, Gerald A

    2011-04-01

    Small proteins (10-200 amino acids [aa] in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained ~2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10-200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) coding-potential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  7. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Han, Mee-Jung; Kim, Jin Young

    2016-01-01

    ABSTRACT Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C. tyrobutyricum KCTC 5387 (ATCC 25755), which consists of a 3.07-Mbp chromosome and a 63-kbp plasmid. The results of genomic analyses suggested that C. tyrobutyricum produces butyrate from butyryl-coenzyme A (butyryl-CoA) through acetate reassimilation by CoA transferase, differently from Clostridium acetobutylicum, which uses the phosphotransbutyrylase-butyrate kinase pathway; this was validated by reverse transcription-PCR (RT-PCR) of related genes, protein expression levels, in vitro CoA transferase assay, and fed-batch fermentation. In addition, the changes in protein expression levels during the course of batch fermentations on glucose were examined by shotgun proteomics. Unlike C. acetobutylicum, the expression levels of proteins involved in glycolytic and fermentative pathways in C. tyrobutyricum did not decrease even at the stationary phase. Proteins related to energy conservation mechanisms, including Rnf complex, NfnAB, and pyruvate-phosphate dikinase that are absent in C. acetobutylicum, were identified. Such features explain why this organism can produce butyric acid to a much higher titer and better tolerate toxic metabolites. This study presenting the complete genome sequence, global protein expression profiles, and genome-based metabolic characteristics during the batch fermentation of C. tyrobutyricum will be valuable in designing strategies for metabolic engineering of this strain. PMID:27302759

  8. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    PubMed

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  9. Hands-on Workshops as An Effective Means of Learning Advanced Technologies Including Genomics, Proteomics and Bioinformatics

    PubMed Central

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J.; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-01-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications. PMID:24316330

  10. Hands-on workshops as an effective means of learning advanced technologies including genomics, proteomics and bioinformatics.

    PubMed

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-12-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications.

  11. A factor analysis model for functional genomics

    PubMed Central

    Kustra, Rafal; Shioda, Romy; Zhu, Mu

    2006-01-01

    Background Expression array data are used to predict biological functions of uncharacterized genes by comparing their expression profiles to those of characterized genes. While biologically plausible, this is both statistically and computationally challenging. Typical approaches are computationally expensive and ignore correlations among expression profiles and functional categories. Results We propose a factor analysis model (FAM) for functional genomics and give a two-step algorithm, using genome-wide expression data for yeast and a subset of Gene-Ontology Biological Process functional annotations. We show that the predictive performance of our method is comparable to the current best approach while our total computation time was faster by a factor of 4000. We discuss the unique challenges in performance evaluation of algorithms used for genome-wide functions genomics. Finally, we discuss extensions to our method that can incorporate the inherent correlation structure of the functional categories to further improve predictive performance. Conclusion Our factor analysis model is a computationally efficient technique for functional genomics and provides a clear and unified statistical framework with potential for incorporating important gene ontology information to improve predictions. PMID:16630343

  12. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Zdobnov, Evgeny M.; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R.; Christophides, George K.; Thomasova, Dana; Holt, Robert A.; Subramanian, G. Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H.; Wells, Michael A.; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L.; Kokoza, Elena; Kraft, Cheryl L.; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M.; Salzberg, Steven L.; Sutton, Granger G.; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H.; Ribeiro, Jose; Gelbart, William M.; Kafatos, Fotis C.; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small ``microsyntenic'' clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.

  13. Proteomics meets genetics: SILAC labeling of Drosophila melanogaster larvae and cells for in vivo functional studies.

    PubMed

    Cuomo, Alessandro; Sanfilippo, Roberta; Vaccari, Thomas; Bonaldi, Tiziana

    2014-01-01

    Stable isotope labeling by amino acids in cell culture (SILAC) is an established and potent method for quantitative proteomics. When combined with high-resolution mass spectrometry (MS) and efficient algorithms for the analysis of quantitative MS data, SILAC has proven to be the strategy of choice for the in-depth characterization of functional states at the protein level. The fruit fly Drosophila melanogaster is one of the most widely used model systems for studies of genetics and developmental biology. Despite this, a global proteomic approach in Drosophila is rarely considered. Here, we describe an adaptation of SILAC for functional investigation of fruit flies by proteomics: We illustrate how to perform efficient SILAC labeling of cells in culture and whole fly larvae. The combination of SILAC, a highly accurate global protein quantification method, and of the fruit fly, the prime genetics and developmental model, represents a unique opportunity for quantitative proteomic studies in vivo.

  14. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk.

    PubMed

    Janjanam, Jagadeesh; Jamwal, Manu; Singh, Surender; Kumar, Saravanan; Panigrahi, Aswini K; Hariprasad, Gururao; Jena, Manoj K; Anand, Vijay; Kumar, Sudarshan; Kaushik, Jai K; Dang, Ajay K; Mukesh, Manishi; Mishra, Bishnu P; Srinivasan, Alagiri; Reddy, Vanga S; Mohanty, Ashok K

    2013-11-01

    Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation.

  15. Evolutionary Trace Annotation of Protein Function in the Structural Proteome

    PubMed Central

    Erdin, Serkan; Ward, R. Matthew; Venner, Eric

    2010-01-01

    By design, structural genomics (SG) solves many structures that cannot be assigned function based on homology to known proteins. Alternative function annotation methods are therefore needed and this study focuses on function prediction with three-dimensional (3D) templates: small structural motifs built of just a few functionally critical residues. Although experimentally proven functional residues are scarce, we show here that Evolutionary Trace (ET) rankings of residue importance are sufficient to build 3D templates, match them, and then assign Gene Ontology (GO) functions in enzymes and non-enzymes alike. In a high specificity mode, this Evolutionary Trace Annotation (ETA) method covered half (53%) of the 2384 annotated SG protein controls. Three-quarters (76%) of predictions were both correct and complete. The positive predictive value for all GO depths (all-depth PPV) was 84%, and it rose to 94% over GO depths 1– 3 (depth 3 PPV). In a high sensitivity mode coverage rose significantly (84%) while accuracy fell moderately: 68% of predictions were both correct and complete, all-depth PPV was 75%, and depth 3 PPV was 86%. These data concur with prior mutational experiments showing that ET rank information identifies key functional determinants in proteins. In practice, ETA predicted functions in 42% of 3461 un-annotated SG proteins. In 529 cases—including 280 non-enzymes and 21 for metal ion ligands—the expected accuracy is 84% at any GO depth and 94% down to GO depth 3, while for the remaining 931 the expected accuracies are 60% and 71%, respectively. Thus local structural comparisons of evolutionarily important residues can help decipher protein functions to known reliability levels and without prior assumption on functional mechanisms. ETA is available at http://mammoth.bcm.tmc.edu/eta. PMID:20036248

  16. Discovery and annotation of small proteins using genomics, proteomics, and computational approaches

    SciTech Connect

    Yang, Xiaohan; Tschaplinski, Timothy J; Hurst, Gregory {Greg} B; Jawdy, Sara; Abraham, Paul E; Lankford, Patricia K; Adams, Rachel M; Shah, Manesh B; Hettich, Robert {Bob} L; Kalluri, Udaya C; Gunter, Lee E; Pennacchio, Christa; Tuskan, Gerald A

    2011-01-01

    Small proteins (10 200 amino acids (AA) in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained ~2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 AA in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: 1) coding-potential prediction, 2) evolutionary conservation between P. deltoides and other plant species, and 3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1,469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1,282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were also supported by proteomics data. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  17. Metabolic classification of microbial genomes using functional probes

    PubMed Central

    2012-01-01

    Background Microorganisms able to grow under artificial culture conditions comprise only a small proportion of the biosphere's total microbial community. Until recently, scientists have been unable to perform thorough analyses of difficult-to-culture microorganisms due to limitations in sequencing technology. As modern techniques have dramatically increased sequencing rates and rapidly expanded the number of sequenced genomes, in addition to traditional taxonomic classifications which focus on the evolutionary relationships of organisms, classifications of the genomes based on alternative points of view may help advance our understanding of the delicate relationships of organisms. Results We have developed a proteome-based method for classifying microbial species. This classification method uses a set of probes comprising short, highly conserved amino acid sequences. For each genome, in silico translation is performed to obtained its proteome, based on which a probe-set frequency pattern is generated. Then, the probe-set frequency patterns are used to cluster the proteomes/genomes. Conclusions Features of the proposed method include a high running speed in challenge of a large number of genomes, and high applicability for classifying organisms with incomplete genome sequences. Moreover, the probe-set clustering method is sensitive to the metabolic phenotypic similarities/differences among species and is thus supposed potential for the classification or differentiation of closely-related organisms. PMID:22537274

  18. Tomato functional genomics database (TFGD): a comprehensive collection and analysis package for tomato functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato Functional Genomics Database (TFGD; http://ted.bti.cornell.edu) provides a comprehensive systems biology resource to store, mine, analyze, visualize and integrate large-scale tomato functional genomics datasets. The database is expanded from the previously described Tomato Expression Database...

  19. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3

    PubMed Central

    2012-01-01

    Background The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage. Methods The sequence of the 7-7-1 genome was determined by pyro(454)sequencing to a coverage of 378-fold. It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS). Results Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia myovirus BcepB1A. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the small (orf100) and large (orf112) subunits of the DNA packaging complex and the apparent lack of a holin-lysin cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as baseplate (orf7), putative tail fibre (orf102), portal (orf113), major capsid (orf115) and tail sheath (orf126) proteins. In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease (orf114). PMID:22650361

  20. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions.

    PubMed

    Batrakou, Dzmitry G; Kerr, Alastair R W; Schirmer, Eric C

    2009-02-15

    Since the discovery of several inherited diseases linked to the nuclear envelope the number of functions ascribed to this subcellular organelle has skyrocketed. However the molecular pathways underlying these functions are not clear in most cases, perhaps because of missing components. Several recent proteomic analyses of the nuclear envelope and nuclear pore complex proteomes have yielded not only enough missing components to potentially elucidate these pathways, but suggest an exponentially greater number of functions at the nuclear periphery than ever imagined. Many of these functions appear to derive from recapitulation of pathways utilized at the plasma membrane and from other membrane systems. Additionally, many proteins identified in the comparative nuclear envelope studies have sequence characteristics suggesting that they might also contribute to nuclear pore complex functions. In particular, the striking enrichment for proteins in the nuclear envelope fractions that carry phenylalanine-glycine (FG) repeats may be significant for the mechanism of nuclear transport. In retrospect, these findings are only surprising in context of the notion held for many years that the nuclear envelope was only a barrier protecting the genome. In fact, it is arguably the most complex membrane organelle in the cell.

  1. The Karyote physico-chemical genomic, proteomic, metabolic cell modeling system.

    PubMed

    Ortoleva, P; Berry, E; Brun, Y; Fan, J; Fontus, M; Hubbard, K; Jaqaman, K; Jarymowycz, L; Navid, A; Sayyed-Ahmad, A; Shreif, Z; Stanley, F; Tuncay, K; Weitzke, E; Wu, L-C

    2003-01-01

    Modeling approaches to the dynamics of a living cell are presented that are strongly based on its underlying physical and chemical processes and its hierarchical spatio-temporal organization. Through the inclusion of a broad spectrum of processes and a rigorous analysis of the multiple scale nature of cellular dynamics, we are attempting to advance cell modeling and its applications. The presentation focuses on our cell modeling system, which integrates data archiving and quantitative physico-chemical modeling and information theory to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly growing mess of genomic, proteomic, metabolic, and cell physiological data can be automatically used to develop and calibrate a predictive cell model. The discussion focuses on the Karyote cell modeling system and an introduction to the CellX and VirusX models. The Karyote software system integrates three elements: (1) a model-building and data archiving module that allows one to define a cell type to be modeled through its reaction network, structure, and transport processes as well as to choose the surrounding medium and other parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell simulator that solves the equations of metabolic reaction, transcription/translation polymerization and the exchange of molecules between parts of the cell and with the surrounding medium; and (3) an information theory module (ITM) that automates model calibration and development, and integrates a variety of data types with the cell dynamic computations. In Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of enzymes and other minority species yielding steady-state cycles of arbitrary complexities are accounted for. These features of the dynamics are handled via rigorous multiple scale analysis. A user interface allows for an automated generation and solution of the equations of multiple timescale

  2. Proteomics of ovarian cancer: functional insights and clinical applications

    SciTech Connect

    Elzek, Mohamed A.; Rodland, Karin D.

    2015-03-04

    In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification of aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.

  3. Proteomics of ovarian cancer: functional insights and clinical applications

    DOE PAGES

    Elzek, Mohamed A.; Rodland, Karin D.

    2015-03-04

    In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification ofmore » aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.« less

  4. Functional Profiling of Human Fungal Pathogen Genomes

    PubMed Central

    Goranov, Alexi I.; Madhani, Hiten D.

    2015-01-01

    Fungal infections are challenging to diagnose and often difficult to treat, with only a handful of drug classes existing. Understanding the molecular mechanisms by which pathogenic fungi cause human disease is imperative. Here, we discuss how the development and use of genome-scale genetic resources, such as whole-genome knockout collections, can address this unmet need. Using work in Saccharomcyes cerevisiae as a guide, studies of Cryptococcus neoformans and Candida albicans have shown how the challenges of large-scale gene deletion can be overcome, and how such collections can be effectively used to obtain insights into mechanisms of pathogenesis. We conclude that, with concerted efforts, full genome-wide functional analysis of human fungal pathogen genomes is within reach. PMID:25377143

  5. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    PubMed Central

    Meinicke, Peter

    2009-01-01

    Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address. PMID:19725959

  6. Establishing Research Strategies, Methodologies and Technologies to Link Genomics and Proteomics to Seagrass Productivity, Community Metabolism, and Ecosystem Carbon Fluxes

    PubMed Central

    Mazzuca, Silvia; Björk, M.; Beer, S.; Felisberto, P.; Gobert, S.; Procaccini, G.; Runcie, J.; Silva, J.; Borges, A. V.; Brunet, C.; Buapet, P.; Champenois, W.; Costa, M. M.; D’Esposito, D.; Gullström, M.; Lejeune, P.; Lepoint, G.; Olivé, I.; Rasmusson, L. M.; Richir, J.; Ruocco, M.; Serra, I. A.; Spadafora, A.; Santos, Rui

    2013-01-01

    A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the European Cooperation in Science and Technology (COST) Action ES0609 “Seagrasses productivity. From genes to ecosystem management,” is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems. During 10 days, 20 researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, and underwater acoustics) gathered at The Station de Recherches Sous-marines et Océanographiques (STARESO, Corsica) to study together the nearby Posidonia oceanica meadow. STARESO is located in an oligotrophic area classified as “pristine site” where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, which grows in front of the research station, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general. PMID:23515425

  7. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    SciTech Connect

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-09-12

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.

  8. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  9. Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2010-12-01

    Rice is the first cereal genome to be completely sequenced. Since the completion of its genome sequencing, considerable progress has been made in multiple areas including the whole genome annotation, gene expression profiling, mutant collection, etc. Here, we summarize the current status of rice genome annotation and review the methodology of assigning biological functions to hundreds of thousands of rice genes as well as discuss the major limitations and the future perspective in rice functional genomics. Available data analysis shows that the rice genome encodes around 32,000 protein-coding genes. Expression analysis revealed at least 31,000 genes with expression evidence from full-length cDNA/EST collection or other transcript profiling. In addition, we have summarized various strategies to generate mutant population including natural, physical, chemical, T-DNA, transposon/retrotransposon or gene silencing based mutagenesis. Currently, more than 1 million of mutants have been generated and 27,551 of them have their flanking sequence tags. To assign biological functions to hundreds of thousands of rice genes, global co-operations are required, various genetic resources should be more easily accessible and diverse data from transcriptomics, proteomics, epigenetics, comparative genomics and bioinformatics should be integrated to better understand the functions of these genes and their regulatory mechanisms.

  10. An evolutionary classification of genomic function.

    PubMed

    Graur, Dan; Zheng, Yichen; Azevedo, Ricardo B R

    2015-01-28

    The pronouncements of the ENCODE Project Consortium regarding "junk DNA" exposed the need for an evolutionary classification of genomic elements according to their selected-effect function. In the classification scheme presented here, we divide the genome into "functional DNA," that is, DNA sequences that have a selected-effect function, and "rubbish DNA," that is, sequences that do not. Functional DNA is further subdivided into "literal DNA" and "indifferent DNA." In literal DNA, the order of nucleotides is under selection; in indifferent DNA, only the presence or absence of the sequence is under selection. Rubbish DNA is further subdivided into "junk DNA" and "garbage DNA." Junk DNA neither contributes to nor detracts from the fitness of the organism and, hence, evolves under selective neutrality. Garbage DNA, on the other hand, decreases the fitness of its carriers. Garbage DNA exists in the genome only because natural selection is neither omnipotent nor instantaneous. Each of these four functional categories can be 1) transcribed and translated, 2) transcribed but not translated, or 3) not transcribed. The affiliation of a DNA segment to a particular functional category may change during evolution: Functional DNA may become junk DNA, junk DNA may become garbage DNA, rubbish DNA may become functional DNA, and so on; however, determining the functionality or nonfunctionality of a genomic sequence must be based on its present status rather than on its potential to change (or not to change) in the future. Changes in functional affiliation are divided into pseudogenes, Lazarus DNA, zombie DNA, and Jekyll-to-Hyde DNA.

  11. An Evolutionary Classification of Genomic Function

    PubMed Central

    Graur, Dan; Zheng, Yichen; Azevedo, Ricardo B.R.

    2015-01-01

    The pronouncements of the ENCODE Project Consortium regarding “junk DNA” exposed the need for an evolutionary classification of genomic elements according to their selected-effect function. In the classification scheme presented here, we divide the genome into “functional DNA,” that is, DNA sequences that have a selected-effect function, and “rubbish DNA,” that is, sequences that do not. Functional DNA is further subdivided into “literal DNA” and “indifferent DNA.” In literal DNA, the order of nucleotides is under selection; in indifferent DNA, only the presence or absence of the sequence is under selection. Rubbish DNA is further subdivided into “junk DNA” and “garbage DNA.” Junk DNA neither contributes to nor detracts from the fitness of the organism and, hence, evolves under selective neutrality. Garbage DNA, on the other hand, decreases the fitness of its carriers. Garbage DNA exists in the genome only because natural selection is neither omnipotent nor instantaneous. Each of these four functional categories can be 1) transcribed and translated, 2) transcribed but not translated, or 3) not transcribed. The affiliation of a DNA segment to a particular functional category may change during evolution: Functional DNA may become junk DNA, junk DNA may become garbage DNA, rubbish DNA may become functional DNA, and so on; however, determining the functionality or nonfunctionality of a genomic sequence must be based on its present status rather than on its potential to change (or not to change) in the future. Changes in functional affiliation are divided into pseudogenes, Lazarus DNA, zombie DNA, and Jekyll-to-Hyde DNA. PMID:25635041

  12. Schizophrenia genomics and proteomics: are we any closer to biomarker discovery?

    PubMed Central

    2009-01-01

    The field of proteomics has made leaps and bounds in the last 10 years particularly in the fields of oncology and cardiovascular medicine. In comparison, neuroproteomics is still playing catch up mainly due to the relative complexity of neurological disorders. Schizophrenia is one such disorder, believed to be the results of multiple factors both genetic and environmental. Affecting over 2 million people in the US alone, it has become a major clinical and public health concern worldwide. This paper gives an update of schizophrenia biomarker research as reviewed by Lakhan in 2006 and gives us a rundown of the progress made during the last two years. Several studies demonstrate the potential of cerebrospinal fluid as a source of neuro-specific biomarkers. Genetic association studies are making headway in identifying candidate genes for schizophrenia. In addition, metabonomics, bioinformatics, and neuroimaging techniques are aiming to complete the picture by filling in knowledge gaps. International cooperation in the form of genomics and protein databases and brain banks is facilitating research efforts. While none of the recent developments described here in qualifies as biomarker discovery, many are likely to be stepping stones towards that goal. PMID:19128481

  13. Subcellular proteomics in neuroscience.

    PubMed

    Li, Ka Wan; Smit, August B

    2008-05-01

    The brain is the most complex and dynamically organized organ of the human body, with a high degree of computation capability enabling the execution of a wide spectrum of physiological processes and behaviors. In the past decades a large number of genomics studies have been undertaken to investigate brain function and brain disorders, but despite these efforts many of the underlying molecular mechanisms still remain largely unknown. The implementation of mass spectrometry based quantitative proteomics in recent years enabled to tap into condition-specific protein trafficking and protein interaction that are the key to organelle proteome (dys)function. The technology for neuroproteomics is still evolving; currently there are no standardized protocols. In this review we describe the most commonly used methods to prepare brain subcellular fractions suitable for proteomics analysis, and highlight the various approaches for quantitative neuroproteomics.

  14. Cell wall proteomics contributes to explore the functional proteins of Brachypodium distachyon grains.

    PubMed

    Fang, Xianping; Chen, Wenyue; Ma, Huasheng

    2015-07-01

    The plant cell wall is the first barrier in response to external stimuli and cell wall proteins (CWPs) can play an important role in the modulation of plant growth and development. In the past 10 years, the plant cell wall proteomics has increasingly become a very active research filed, which provides a broader understanding of CWPs for people. The cell wall proteome of Arabidopsis, rice, and other model plants has begun to take shape, and proteomic technology has become an effective way to identify the candidate functional CWPs in large scale. The challenging work of Francin-Allami et al. (Proteomics 2015, 15, 2296-2306) is a vital step toward building the most extensive cell wall proteome of a monocot species. They identified 299 cell wall proteins in Brachypodium distachyon grains, and also compared the grain cell wall proteome with those of B. distachyon culms and leaves, which provides a new perspective for further explaining the plant cell wall structures and remodeling mechanism.

  15. Open chromatin reveals the functional maize genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...

  16. Proteome-wide analysis of functional divergence in bacteria: exploring a host of ecological adaptations.

    PubMed

    Caffrey, Brian E; Williams, Tom A; Jiang, Xiaowei; Toft, Christina; Hokamp, Karsten; Fares, Mario A

    2012-01-01

    Functional divergence is the process by which new genes and functions originate through the modification of existing ones. Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria.

  17. Discovery metabolite profiling--forging functional connections between the proteome and metabolome.

    PubMed

    Saghatelian, Alan; Cravatt, Benjamin F

    2005-08-19

    Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.

  18. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response

    DOE PAGES

    Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.; ...

    2015-04-08

    Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σRPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequencemore » GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σRPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.« less

  19. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response

    SciTech Connect

    Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.; Perry, Leslie M.; Pan, Chongle; Lankford, Patricia K.; Pelletier, Dale A.

    2015-04-08

    Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σRPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σRPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.

  20. Functional Proteomic And Structural Insights Into Molecular Recognition in the Nitrilase Family Enzymes

    SciTech Connect

    Barglow, K.T.; Saikatendu, K.; Bracey, M.H.; Huey, R.; Morris, G.M.; Olson, A.J.; Stevens, R.C.; Cravatt, B.F.

    2009-05-11

    Nitrilases are a large and diverse family of nonpeptidic C-N hydrolases. The mammalian genome encodes eight nitrilase enzymes, several of which remain poorly characterized. Prominent among these are nitrilase-1 (Nit1) and nitrilase-2 (Nit2), which, despite having been shown to exert effects on cell growth and possibly serving as tumor suppressor genes, are without known substrates or selective inhibitors. In previous studies, we identified several nitrilases, including Nit1 and Nit2, as targets for dipeptide-chloroacetamide activity-based proteomics probes. Here, we have used these probes, in combination with high-resolution crystallography and molecular modeling, to systematically map the active site of Nit2 and identify residues involved in molecular recognition. We report the 1.4 {angstrom} crystal structure of mouse Nit2 and use this structure to identify residues that discriminate probe labeling between the Nit1 and Nit2 enzymes. Interestingly, some of these residues are conserved across all vertebrate Nit2 enzymes and, conversely, not found in any vertebrate Nit1 enzymes, suggesting that they are key discriminators of molecular recognition between these otherwise highly homologous enzymes. Our findings thus point to a limited set of active site residues that establish distinct patterns of molecular recognition among nitrilases and provide chemical probes to selectively perturb the function of these enzymes in biological systems.

  1. Genome-Based Bioinformatic Selection of Chromosomal Bacillus anthracis Putative Vaccine Candidates Coupled with Proteomic Identification of Surface-Associated Antigens

    PubMed Central

    Ariel, N.; Zvi, A.; Makarova, K. S.; Chitlaru, T.; Elhanany, E.; Velan, B.; Cohen, S.; Friedlander, A. M.; Shafferman, A.

    2003-01-01

    Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine. PMID:12874336

  2. Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense.

    PubMed

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2013-11-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery.

  3. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: An ammonia-oxidizing archaeon from the open ocean

    PubMed Central

    Santoro, Alyson E.; Dupont, Christopher L.; Richter, R. Alex; Craig, Matthew T.; Carini, Paul; McIlvin, Matthew R.; Yang, Youngik; Orsi, William D.; Moran, Dawn M.; Saito, Mak A.

    2015-01-01

    Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name “Candidatus Nitrosopelagicus brevis” str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean. PMID:25587132

  4. Functional genomics approaches in parasitic helminths.

    PubMed

    Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H

    2012-01-01

    As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths.

  5. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    SciTech Connect

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; Kaiser, Brooke L. Deatherage; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeff; Kreuzer, Helen W.

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  6. From data to function: functional modeling of poultry genomics data.

    PubMed

    McCarthy, F M; Lyons, E

    2013-09-01

    One of the challenges of functional genomics is to create a better understanding of the biological system being studied so that the data produced are leveraged to provide gains for agriculture, human health, and the environment. Functional modeling enables researchers to make sense of these data as it reframes a long list of genes or gene products (mRNA, ncRNA, and proteins) by grouping based upon function, be it individual molecular functions or interactions between these molecules or broader biological processes, including metabolic and signaling pathways. However, poultry researchers have been hampered by a lack of functional annotation data, tools, and training to use these data and tools. Moreover, this lack is becoming more critical as new sequencing technologies enable us to generate data not only for an increasingly diverse range of species but also individual genomes and populations of individuals. We discuss the impact of these new sequencing technologies on poultry research, with a specific focus on what functional modeling resources are available for poultry researchers. We also describe key strategies for researchers who wish to functionally model their own data, providing background information about functional modeling approaches, the data and tools to support these approaches, and the strengths and limitations of each. Specifically, we describe methods for functional analysis using Gene Ontology (GO) functional summaries, functional enrichment analysis, and pathways and network modeling. As annotation efforts begin to provide the fundamental data that underpin poultry functional modeling (such as improved gene identification, standardized gene nomenclature, temporal and spatial expression data and gene product function), tool developers are incorporating these data into new and existing tools that are used for functional modeling, and cyberinfrastructure is being developed to provide the necessary extendibility and scalability for storing and

  7. Functional genomic Landscape of Human Breast Cancer drivers, vulnerabilities, and resistance

    PubMed Central

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R.; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E.; Bader, Gary D.; Mills, Gordon B.; Pe’er, Dana; Moffat, Jason; Neel, Benjamin G.

    2016-01-01

    Summary Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations, and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole genome shRNA “dropout screens” on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate “drivers,” and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer, and PIK3CA mutations as a resistance determinant for BET-inhibitors. PMID:26771497

  8. Evolution of complexity in the zebrafish synapse proteome.

    PubMed

    Bayés, Àlex; Collins, Mark O; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S; Emes, Richard D; Grant, Seth G N

    2017-03-02

    The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases.

  9. Evolution of complexity in the zebrafish synapse proteome

    PubMed Central

    Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.

    2017-01-01

    The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024

  10. Orchidstra: an integrated orchid functional genomics database.

    PubMed

    Su, Chun-lin; Chao, Ya-Ting; Yen, Shao-Hua; Chen, Chun-Yi; Chen, Wan-Chieh; Chang, Yao-Chien Alex; Shih, Ming-Che

    2013-02-01

    A specialized orchid database, named Orchidstra (URL: http://orchidstra.abrc.sinica.edu.tw), has been constructed to collect, annotate and share genomic information for orchid functional genomics studies. The Orchidaceae is a large family of Angiosperms that exhibits extraordinary biodiversity in terms of both the number of species and their distribution worldwide. Orchids exhibit many unique biological features; however, investigation of these traits is currently constrained due to the limited availability of genomic information. Transcriptome information for five orchid species and one commercial hybrid has been included in the Orchidstra database. Altogether, these comprise >380,000 non-redundant orchid transcript sequences, of which >110,000 are protein-coding genes. Sequences from the transcriptome shotgun assembly (TSA) were obtained either from output reads from next-generation sequencing technologies assembled into contigs, or from conventional cDNA library approaches. An annotation pipeline using Gene Ontology, KEGG and Pfam was built to assign gene descriptions and functional annotation to protein-coding genes. Deep sequencing of small RNA was also performed for Phalaenopsis aphrodite to search for microRNAs (miRNAs), extending the information archived for this species to miRNA annotation, precursors and putative target genes. The P. aphrodite transcriptome information was further used to design probes for an oligonucleotide microarray, and expression profiling analysis was carried out. The intensities of hybridized probes derived from microarray assays of various tissues were incorporated into the database as part of the functional evidence. In the future, the content of the Orchidstra database will be expanded with transcriptome data and genomic information from more orchid species.

  11. Pros and cons of the proteomics.

    PubMed

    Gupta, Ashish; Kumar, Ashutosh

    2014-01-01

    The number of proteins produced by the 30,000-40,000 genes of the human genome is estimated to be three or four orders of magnitude higher. Proteomics is a rapidly developing science. In principle, two main areas in the field of proteomics have been developed, each of them having its pros and cons. These fields are profiling and functional proteomics. The aim of the proteomic profiling is to describe and index the whole set of proteins of a biological sample, which could be an organism, an organ, or a cell, or parts there of like individual's tissue or organelles. In our understanding, both types of proteomics (profiling and functional) are valuable tools complementing other biological methodologies.

  12. Functional genomic screening to enhance oncolytic virotherapy.

    PubMed

    Mahoney, D J; Stojdl, D F

    2013-02-05

    Functional genomic screening has emerged as a powerful approach for understanding complex biological phenomena. Of the available tools, genome-wide RNA interference (RNAi) technology is unquestionably the most incisive, as it directly probes gene function. Recent applications of RNAi screening have been impressive. Notable amongst these are its use in elucidated mechanism(s) for signal transduction, various aspects of cell biology, tumourigenesis and metastasis, resistance to cancer therapeutics, and the host's response to a pathogen. Herein we discuss how recent RNAi screening efforts have helped turn our attention to the targetability of non-oncogene support pathways for cancer treatment, with a particular focus on a recent study that identified a non-oncogene addiction to the ER stress response as a synergist target for oncolytic virus therapy (OVT). Moreover, we give our thoughts on the future of RNAi screening as a tool to enhance OVT and describe recent technical improvements that are poised to make genome-scale RNAi experiments more sensitive, less noisy, more applicable in vivo, and more easily validated in clinically relevant animal models.

  13. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    SciTech Connect

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; Pan, Chongle; Robert L. Hettich

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs. disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.

  14. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    DOE PAGES

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; ...

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs.more » disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.« less

  15. Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells.

    PubMed

    Kiel, Jan A K W; van den Berg, Marco A; Fusetti, Fabrizia; Poolman, Bert; Bovenberg, Roel A L; Veenhuis, Marten; van der Klei, Ida J

    2009-05-01

    In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with putative microbody targeting signals (PTSs). This included two orthologs of proteins involved in cephalosporin biosynthesis, which we demonstrate to be bona fide microbody matrix constituents. Subsequently, we performed a proteomics based inventory of P. chrysogenum microbody matrix proteins using nano-LC-MS/MS analysis. We identified 89 microbody proteins, 79 with a PTS, including the two known microbody-borne penicillin biosynthesis enzymes, isopenicillin N:acyl CoA acyltransferase and phenylacetyl-CoA ligase. Comparative analysis revealed that 69 out of 79 PTS proteins identified experimentally were in the reference list. A prominent microbody protein was identified as a novel fumarate reductase-cytochrome b5 fusion protein, which contains an internal PTS2 between the two functional domains. We show that this protein indeed localizes to P. chrysogenum microbodies.

  16. Elucidating the Molecular Basis and Regulation of Chromium(VI) Reduction by Shewanella oneidensis MR-1 and Resistance to Metal Toxicity Using Integrated Biochemical, Genomic, and Proteomic Approaches

    SciTech Connect

    Dorothea K. Thompson; Steven D. Brown; Robert L. Hettich; Nathan VerBerkmoes; Jizhong Zhou

    2004-03-17

    The mediation of metal reduction by microorganisms has been investigated intensively from physiological and biochemical perspectives; however, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform or immobilize a wide array of heavy metals contaminating DOE field sites. Chromium(VI), for example, is one of several risk-driving contaminants at DOE sites and has been targeted by the DOE for bioremediation research. The bacterium Shewanella oneidensis MR-1 can potentially be used to immobilize chromium, a toxic and mutagenic metal, by reducing soluble Cr(VI) to the insoluble and less bioavailable form of Cr(III), thus facilitating its removal from contained-storage and natural sites. The overall goal of this study is to integrate targeted biochemical and proteomic analyses with genome-wide gene expression profiling to examine the molecular basis and regulation of chromium(VI) reduction by Shewanella oneidensis MR-1. Towards this goal, we will (1) isolate and identify the terminal chromium(VI) reductase and the gene(s) encoding this activity using whole-genome sequence information for MR-1 and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with conventional protein purification and characterization techniques; (2) verify the function of the gene(s) encoding the terminal Cr(VI) reductase and compare whole transcriptome data with whole proteome data in order to understand the regulation of chromium reduction; and (3) investigate the molecular stress response and adaptation of S. oneidensis to toxic levels of soluble Cr(VI) and other heavy metals. This research will provide important information on the functional components and regulatory mechanisms of microbial metal reduction, which should prove valuable in developing effective assessment strategies for in situ bioremediation and genetically engineering desired bacteria for enhanced bioremediation.

  17. Current advances in esophageal cancer proteomics.

    PubMed

    Uemura, Norihisa; Kondo, Tadashi

    2015-06-01

    We review the current status of proteomics for esophageal cancer (EC) from a clinician's viewpoint. The ultimate goal of cancer proteomics is the improvement of clinical outcome. The proteome as a functional translation of the genome is a straightforward representation of genomic mechanisms that trigger carcinogenesis. Cancer proteomics has identified the mechanisms of carcinogenesis and tumor progression, detected biomarker candidates for early diagnosis, and provided novel therapeutic targets for personalized treatments. Our review focuses on three major topics in EC proteomics: diagnostics, treatment, and molecular mechanisms. We discuss the major histological differences between EC types, i.e., esophageal squamous cell carcinoma and adenocarcinoma, and evaluate the clinical significance of published proteomics studies, including promising diagnostic biomarkers and novel therapeutic targets, which should be further validated prior to launching clinical trials. Multi-disciplinary collaborations between basic scientists, clinicians, and pathologists should be established for inter-institutional validation. In conclusion, EC proteomics has provided significant results, which after thorough validation, should lead to the development of novel clinical tools and improvement of the clinical outcome for esophageal cancer patients. This article is part of a Special Issue entitled: Medical Proteomics.

  18. Open-Access Cancer Genomics - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The completion of the Human Genome Project sparked a revolution in high-throughput genomics applied towards deciphering genetically complex diseases, like cancer. Now, almost 10 years later, we have a mountain of genomics data on many different cancer type

  19. Tracing the origin of functional and conserved domains in the human proteome: implications for protein evolution at the modular level

    PubMed Central

    Pal, Lipika R; Guda, Chittibabu

    2006-01-01

    Background The functional repertoire of the human proteome is an incremental collection of functions accomplished by protein domains evolved along the Homo sapiens lineage. Therefore, knowledge on the origin of these functionalities provides a better understanding of the domain and protein evolution in human. The lack of proper comprehension about such origin has impelled us to study the evolutionary origin of human proteome in a unique way as detailed in this study. Results This study reports a unique approach for understanding the evolution of human proteome by tracing the origin of its constituting domains hierarchically, along the Homo sapiens lineage. The uniqueness of this method lies in subtractive searching of functional and conserved domains in the human proteome resulting in higher efficiency of detecting their origins. From these analyses the nature of protein evolution and trends in domain evolution can be observed in the context of the entire human proteome data. The method adopted here also helps delineate the degree of divergence of functional families occurred during the course of evolution. Conclusion This approach to trace the evolutionary origin of functional domains in the human proteome facilitates better understanding of their functional versatility as well as provides insights into the functionality of hypothetical proteins present in the human proteome. This work elucidates the origin of functional and conserved domains in human proteins, their distribution along the Homo sapiens lineage, occurrence frequency of different domain combinations and proteome-wide patterns of their distribution, providing insights into the evolutionary solution to the increased complexity of the human proteome. PMID:17090320

  20. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3

    PubMed Central

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F.; Cortez, Néstor; Farias, María E.; Albarracín, Virginia H.

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth’s surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an “UV-resistome” was defined, encompassing the genes that would support the outstanding UV-resistance of this strain. PMID:25954258

  1. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3.

    PubMed

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F; Cortez, Néstor; Farias, María E; Albarracín, Virginia H

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain.

  2. Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting

    2015-07-01

    Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space

  3. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics.

    PubMed

    Asgari, Ehsaneddin; Mofrad, Mohammad R K

    2015-01-01

    We introduce a new representation and feature extraction method for biological sequences. Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. In the present paper, we focus on protein-vectors that can be utilized in a wide array of bioinformatics investigations such as family classification, protein visualization, structure prediction, disordered protein identification, and protein-protein interaction prediction. In this method, we adopt artificial neural network approaches and represent a protein sequence with a single dense n-dimensional vector. To evaluate this method, we apply it in classification of 324,018 protein sequences obtained from Swiss-Prot belonging to 7,027 protein families, where an average family classification accuracy of 93%±0.06% is obtained, outperforming existing family classification methods. In addition, we use ProtVec representation to predict disordered proteins from structured proteins. Two databases of disordered sequences are used: the DisProt database as well as a database featuring the disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups). Using support vector machine classifiers, FG-Nup sequences are distinguished from structured protein sequences found in Protein Data Bank (PDB) with a 99.8% accuracy, and unstructured DisProt sequences are differentiated from structured DisProt sequences with 100.0% accuracy. These results indicate that by only providing sequence data for various proteins into this model, accurate information about protein structure can be determined. Importantly, this model needs to be trained only once and can then be applied to extract a comprehensive set of information regarding proteins of interest. Moreover, this representation can be considered as

  4. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics

    PubMed Central

    Asgari, Ehsaneddin; Mofrad, Mohammad R. K.

    2015-01-01

    We introduce a new representation and feature extraction method for biological sequences. Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. In the present paper, we focus on protein-vectors that can be utilized in a wide array of bioinformatics investigations such as family classification, protein visualization, structure prediction, disordered protein identification, and protein-protein interaction prediction. In this method, we adopt artificial neural network approaches and represent a protein sequence with a single dense n-dimensional vector. To evaluate this method, we apply it in classification of 324,018 protein sequences obtained from Swiss-Prot belonging to 7,027 protein families, where an average family classification accuracy of 93%±0.06% is obtained, outperforming existing family classification methods. In addition, we use ProtVec representation to predict disordered proteins from structured proteins. Two databases of disordered sequences are used: the DisProt database as well as a database featuring the disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups). Using support vector machine classifiers, FG-Nup sequences are distinguished from structured protein sequences found in Protein Data Bank (PDB) with a 99.8% accuracy, and unstructured DisProt sequences are differentiated from structured DisProt sequences with 100.0% accuracy. These results indicate that by only providing sequence data for various proteins into this model, accurate information about protein structure can be determined. Importantly, this model needs to be trained only once and can then be applied to extract a comprehensive set of information regarding proteins of interest. Moreover, this representation can be considered as

  5. Functional Analysis of Shewanella, a cross genome comparison.

    SciTech Connect

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  6. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-06-24

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  7. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome

    PubMed Central

    2013-01-01

    Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of

  8. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  9. The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components*

    PubMed Central

    Soldi, Monica; Bonaldi, Tiziana

    2013-01-01

    Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status. PMID:23319141

  10. Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors

    PubMed Central

    Béliveau, Catherine; Cohen, Alejandro; Stewart, Don; Periquet, Georges; Djoumad, Abdelmadjid; Kuhn, Lisa; Stoltz, Don; Boyle, Brian; Volkoff, Anne-Nathalie; Herniou, Elisabeth A.; Drezen, Jean-Michel

    2015-01-01

    ABSTRACT Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were “captured” by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes

  11. From bacterial genome to functionality; case bifidobacteria.

    PubMed

    Ventura, Marco; O'Connell-Motherway, Mary; Leahy, Sinead; Moreno-Munoz, Jose Antonio; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-11-30

    The availability of complete bacterial genome sequences has significantly furthered our understanding of the genetics, physiology and biochemistry of the microorganisms in question, particularly those that have commercially important applications. Bifidobacteria are among such microorganisms, as they constitute mammalian commensals of biotechnological significance due to their perceived role in maintaining a balanced gastrointestinal (GIT) microflora. Bifidobacteria are therefore frequently used as health-promoting or probiotic components in functional food products. A fundamental understanding of the metabolic activities employed by these commensal bacteria, in particular their capability to utilize a wide range of complex oligosaccharides, can reveal ways to provide in vivo growth advantages relative to other competing gut bacteria or pathogens. Furthermore, an in depth analysis of adaptive responses to nutritional or environmental stresses may provide methodologies to retain viability and improve functionality during commercial preparation, storage and delivery of the probiotic organism.

  12. Selfish drive can trump function when animal mitochondrial genomes compete

    PubMed Central

    Ma, Hansong; O’Farrell, Patrick H.

    2016-01-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that the non-coding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, within each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection promoting change in the sequences influencing transmission. PMID:27270106

  13. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.

  14. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection

    PubMed Central

    2011-01-01

    Background Studies of Mycobacterium bovis BCG strains used in different countries and vaccination programs show clear variations in the genomes and immune protective properties of BCG strains. The aim of this study was to characterise the genomic and immune proteomic profile of the BCG 1931 strain used in Mexico. Results BCG Mexico 1931 has a circular chromosome of 4,350,386 bp with a G+C content and numbers of genes and pseudogenes similar to those of BCG Tokyo and BCG Pasteur. BCG Mexico 1931 lacks Region of Difference 1 (RD1), RD2 and N-RD18 and one copy of IS6110, indicating that BCG Mexico 1931 belongs to DU2 group IV within the BCG vaccine genealogy. In addition, this strain contains three new RDs, which are 53 (RDMex01), 655 (RDMex02) and 2,847 bp (REDMex03) long, and 55 single-nucleotide polymorphisms representing non-synonymous mutations compared to BCG Pasteur and BCG Tokyo. In a comparative proteomic analysis, the BCG Mexico 1931, Danish, Phipps and Tokyo strains showed 812, 794, 791 and 701 protein spots, respectively. The same analysis showed that BCG Mexico 1931 shares 62% of its protein spots with the BCG Danish strain, 61% with the BCG Phipps strain and only 48% with the BCG Tokyo strain. Thirty-nine reactive spots were detected in BCG Mexico 1931 using sera from subjects with active tuberculosis infections and positive tuberculin skin tests. Conclusions BCG Mexico 1931 has a smaller genome than the BCG Pasteur and BCG Tokyo strains. Two specific deletions in BCG Mexico 1931 are described (RDMex02 and RDMex03). The loss of RDMex02 (fadD23) is associated with enhanced macrophage binding and RDMex03 contains genes that may be involved in regulatory pathways. We also describe new antigenic proteins for the first time. PMID:21981907

  15. Challenges and Solutions in Proteomics

    PubMed Central

    Hongzhan, Huang; Shukla, Hem D; Cathy, Wu; Satya, Saxena

    2007-01-01

    The accelerated growth of proteomics data presents both opportunities and challenges. Large-scale proteomic profiling of biological samples such as cells, organelles or biological fluids has led to discovery of numerous key and novel proteins involved in many biological/disease processes including cancers, as well as to the identification of novel disease biomarkers and potential therapeutic targets. While proteomic data analysis has been greatly assisted by the many bioinformatics tools developed in recent years, a careful analysis of the major steps and flow of data in a typical highthroughput analysis reveals a few gaps that still need to be filled to fully realize the value of the data. To facilitate functional and pathway discovery for large-scale proteomic data, we have developed an integrated proteomic expression analysis system, iProXpress, which facilitates protein identification using a comprehensive sequence library and functional interpretation using integrated data. With its modular design, iProXpress complements and can be integrated with other software in a proteomic data analysis pipeline. This novel approach to complex biological questions involves the interrogation of multiple data sources, thereby facilitating hypothesis generation and knowledge discovery from the genomic-scale studies and fostering disease diagnosis and drug development. PMID:18645629

  16. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes

    PubMed Central

    Mende, Daniel R.; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S.; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-01

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de. PMID:28053165

  17. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes.

    PubMed

    Mende, Daniel R; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-04

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de.

  18. A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus

    PubMed Central

    Owens, Rebecca A.; Hammel, Stephen; Sheridan, Kevin J.; Jones, Gary W.; Doyle, Sean

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism. PMID:25198175

  19. A novel approach to the study of the functional proteome in breast cancer

    SciTech Connect

    Hennessy, Bryan; Lu, Yiling; Gonzalez-Angulo, Ana Maria; Carey, Mark; Myhre, Simen; Ju, Zhenlin; Coombes, Kevin; Meric-Bernstam, Funda; Bedrosian, Isabelle; Davies, Michael A.; Siwak, Doris; Agarwal, Roshan; Zhang, Fan; Overgaard, Jens; Alsner, Jan; Neve, Richard M.; Kuo, Wen-Lin; Gray, Joe W.; Borresen-Dale, Anne-Lise; Mills, Gordon B.

    2008-10-10

    Factors including intratumoral heterogeneity and variability in tissue handling potentially hamper the application of reverse phase protein arrays (RPPA) to study of the solid tumor functional proteome. To address this, RPPA was applied to quantify protein expression and activation in 233 human breast tumors and 52 breast cancer cell lines. Eighty-two antibodies that recognize kinase and steroid signaling events and their effectors were validated for RPPA because of the importance of these proteins to breast carcinogenesis. Reproducibility in replicate lysates was excellent. Intratumoral protein expression was less variable than intertumoral expression, and prognostic biomarkers retained the ability to accurately predict patient outcomes when analyzed in different tumor sites. Although 21/82 total and phosphoproteins demonstrated time-dependent instability in breast tumors that were placed at room temperature after surgical excision for 24 hours prior to freezing, the functional proteomic 'fingerprint' was robust in most tumors until at least 24 hours before tissue freezing. Correlations between RPPA and immunohistochemistry were statistically significant for assessed proteins but RPPA demonstrated a superior dynamic range and detected, for example, an 866-fold difference in estrogen receptor alpha level across breast tumors. Protein and mRNA levels were concordant (at p {le} 0.05) for 41.3% and 61.1% of assayed targets in breast tumors and cell lines, respectively. Several phosphorylation and cleavage products did not correlate with the corresponding transcript levels. In conclusion, the reproducibility of RPPA, the faithfulness with which proteins and the functional proteomic 'fingerprint' are preserved in different sections derived from primary breast tumors, and the surprising stability of this 'fingerprint' with increasing time to freezing all facilitate the application of RPPA to the accurate study of protein biomarkers in non-microdissected tumor specimens

  20. The function of genomes in bioenergetic organelles.

    PubMed Central

    Allen, John F

    2003-01-01

    Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence. PMID:12594916

  1. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    PubMed

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement.

  2. Population perspectives on functional genomic variation in yeast.

    PubMed

    Skelly, Daniel A; Magwene, Paul M

    2016-03-01

    Advances in high-throughput sequencing have facilitated large-scale surveys of genomic variation in the budding yeast,Saccharomyces cerevisiae These surveys have revealed extensive sequence variation between yeast strains. However, much less is known about how such variation influences the amount and nature of variation for functional genomic traits within and between yeast lineages. We review population-level studies of functional genomic variation, with a particular focus on how population functional genomic approaches can provide insights into both genome function and the evolutionary process. Although variation in functional genomics phenotypes is pervasive, our understanding of the consequences of this variation, either in physiological or evolutionary terms, is still rudimentary and thus motivates increased attention to appropriate null models. To date, much of the focus of population functional genomic studies has been on gene expression variation, but other functional genomic data types are just as likely to reveal important insights at the population level, suggesting a pressing need for more studies that go beyond transcription. Finally, we discuss how a population functional genomic perspective can be a powerful approach for developing a mechanistic understanding of the processes that link genomic variation to organismal phenotypes through gene networks.

  3. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    PubMed Central

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  4. The effect of fluoride on the structure, function, and proteome of a renal epithelial cell monolayer.

    PubMed

    Antonio, Ligia S; Jeggle, Pia; MacVinish, Lesley J; Bartram, James C; Miller, Henry; Jarvis, Gavin E; Levy, Flávia M; Santesso, Mariana R; Leite, Aline L; Oliveira, Rodrigo C; Buzalaf, Marília A R; Edwardson, J Michael

    2017-04-01

    High concentrations of fluoride in the body may cause toxic effects. Here, we investigated the effects of fluoride on the structure, function, and proteome of a cortical collecting duct epithelium in vitro. Kidney tubule cells (M-1) were chosen because the concentration of fluoride in the kidney is 4-5-fold higher than that in plasma. Mouse M-1 cell monolayers were incubated in fluoride-containing media, and the amiloride-sensitive short-circuit current and transepithelial resistance were measured. The Young's modulus of the epithelium was determined using atomic force microscopy, and the effect of fluoride on epithelial structure was assessed using scanning and transmission electron microscopy, and immunofluorescence. Differences in the expression of membrane proteins were evaluated using proteomics and bioinformatics. Fluoride exposure reduced both transepithelial Na(+) transport and resistance. The IC50 for fluoride was ∼300 µM for both effects, and the half-times for the decays of ion transport and resistance were 8.4 h and 3.6 days, respectively. Fluoride treatment did not affect the sensitivity of Na(+) transport to amiloride. The Young's modulus of the epithelium was also unaffected by fluoride; however, the functional effects of fluoride were accompanied by marked structural effects. Proteomic analysis revealed changes in expression of a number of proteins, and particularly mitochondrial proteins. Treatment with fluoride had profound effects on the structure, function and proteome of a model cortical collecting duct epithelium. Significantly, however, these effects were produced only at concentrations considerably higher than those likely to be encountered in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1455-1467, 2017.

  5. Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reverse-genomics.

    PubMed

    Dong, Wen; Kieliszewski, Marcia; Held, Michael A

    2015-04-01

    The regulation of plant cell growth and early defense response involves the insolubilization of hydroxyproline-rich glycoproteins (HRGPs), such as extensin, in the primary cell wall. In tomato (Lycopersicon esculentum), insolubilization occurs by the formation of tyrosyl-crosslinks catalyzed specifically by the pI 4.6 extensin peroxidase (EP). To date, neither the gene encoding EP nor the protein itself has been identified. Here, we have identified tomato EP candidates using both proteomic and bioinformatic approaches. Bioinformatic screening of the tomato genome yielded eight EP candidates, which contained a putative signal sequence and a predicted pI near 4.6. Biochemical fractionation of tomato culture media followed by proteomic detection further refined our list of EP candidates to three, with the lead candidate designated (CG5). To test for EP crosslinking activity, we cloned into a bacterial expression vector the CG5 open-reading frame from tomato cDNA. The CG5 was expressed in Escherichia coli, fractionated from inclusion bodies, and folded in vitro. The peroxidase activity of CG5 was assayed and quantified by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) assay. Subsequent extensin crosslinking assays showed that CG5 can covalently crosslink authentic tomato P1 extensin and P3-type extensin analogs in vitro supporting our hypothesis that CG5 encodes a tomato EP.

  6. A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains

    PubMed Central

    Wood, G. Craig; Chu, Xin; Argyropoulos, George; Benotti, Peter; Rolston, David; Mirshahi, Tooraj; Petrick, Anthony; Gabrielson, John; Carey, David J.; DiStefano, Johanna K.; Still, Christopher D.; Gerhard, Glenn S.

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of conditions that include steatohepatitis and fibrosis that are thought to emanate from hepatic steatosis. Few robust biomarkers or diagnostic tests have been developed for hepatic steatosis in the setting of obesity. We have developed a multi-component classifier for hepatic steatosis comprised of phenotypic, genomic, and proteomic variables using data from 576 adults with extreme obesity who underwent bariatric surgery and intra-operative liver biopsy. Using a 443 patient training set, protein biomarker discovery was performed using the highly multiplexed SOMAscan® proteomic assay, a set of 19 clinical variables, and the steatosis predisposing PNPLA3 rs738409 single nucleotide polymorphism genotype status. The most stable markers were selected using a stability selection algorithm with a L1-regularized logistic regression kernel and were then fitted with logistic regression models to classify steatosis, that were then tested against a 133 sample blinded verification set. The highest area under the ROC curve (AUC) for steatosis of PNPLA3 rs738409 genotype, 8 proteins, or 19 phenotypic variables was 0.913, whereas the final classifier that included variables from all three domains had an AUC of 0.935. These data indicate that multi-domain modeling has better predictive power than comprehensive analysis of variables from a single domain. PMID:28266614

  7. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir.

    PubMed

    Feng, Lu; Wang, Wei; Cheng, Jiansong; Ren, Yi; Zhao, Guang; Gao, Chunxu; Tang, Yun; Liu, Xueqian; Han, Weiqing; Peng, Xia; Liu, Rulin; Wang, Lei

    2007-03-27

    The complete genome sequence of Geobacillus thermodenitrificans NG80-2, a thermophilic bacillus isolated from a deep oil reservoir in Northern China, consists of a 3,550,319-bp chromosome and a 57,693-bp plasmid. The genome reveals that NG80-2 is well equipped for adaptation into a wide variety of environmental niches, including oil reservoirs, by possessing genes for utilization of a broad range of energy sources, genes encoding various transporters for efficient nutrient uptake and detoxification, and genes for a flexible respiration system including an aerobic branch comprising five terminal oxidases and an anaerobic branch comprising a complete denitrification pathway for quick response to dissolved oxygen fluctuation. The identification of a nitrous oxide reductase gene has not been previously described in Gram-positive bacteria. The proteome further reveals the presence of a long-chain alkane degradation pathway; and the function of the key enzyme in the pathway, the long-chain alkane monooxygenase LadA, is confirmed by in vivo and in vitro experiments. The thermophilic soluble monomeric LadA is an ideal candidate for treatment of environmental oil pollutions and biosynthesis of complex molecules.

  8. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom.

    PubMed

    Sunagar, Kartik; Morgenstern, David; Reitzel, Adam M; Moran, Yehu

    2016-03-01

    Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field.

  9. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    PubMed

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  10. Functional proteomic analyses of Bothrops atrox venom reveals phenotypes associated with habitat variation in the Amazon.

    PubMed

    Sousa, Leijiane F; Portes-Junior, José A; Nicolau, Carolina A; Bernardoni, Juliana L; Nishiyama-Jr, Milton Y; Amazonas, Diana R; Freitas-de-Sousa, Luciana A; Mourão, Rosa Hv; Chalkidis, Hipócrates M; Valente, Richard H; Moura-da-Silva, Ana M

    2017-03-06

    Venom variability is commonly reported for venomous snakes including Bothrops atrox. Here, we compared the composition of venoms from B. atrox snakes collected at Amazonian conserved habitats (terra-firme upland forest and várzea) and human modified areas (pasture and degraded areas). Venom samples were submitted to shotgun proteomic analysis as a whole or compared after fractionation by reversed-phase chromatography. Whole venom proteomes revealed a similar composition among the venoms with predominance of SVMPs, CTLs, and SVSPs and intermediate amounts of PLA2s and LAAOs. However, when distribution of particular isoforms was analyzed by either method, the venom from várzea snakes showed a decrease in hemorrhagic SVMPs and an increase in SVSPs, and procoagulant SVMPs and PLA2s. These differences were validated by experimental approaches including both enzymatic and in vivo assays, and indicated restrictions in respect to antivenom efficacy to variable components. Thus, proteomic analysis at the isoform level combined to in silico prediction of functional properties may indicate venom biological activity. These results also suggest that the prevalence of functionally distinct isoforms contributes to the variability of the venoms and could reflect the adaptation of B. atrox to distinct prey communities in different Amazon habitats.

  11. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes

    PubMed Central

    Wheeler, Nicole E.; Barquist, Lars; Kingsley, Robert A.; Gardner, Paul P.

    2016-01-01

    Motivation: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. Results: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. Availability and Implementation: A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS. Contact: nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27503221

  12. Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis.

    PubMed

    Mates, Nadia; Kettner, Karina; Heidenreich, Falk; Pursche, Theresia; Migotti, Rebekka; Kahlert, Günther; Kuhlisch, Eberhard; Breunig, Karin D; Schellenberger, Wolfgang; Dittmar, Gunnar; Hoflack, Bernard; Kriegel, Thomas M

    2014-03-01

    The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of

  13. Functional genomics down under: RNAi screening in the Victorian Centre for Functional Genomics.

    PubMed

    Thomas, Daniel W; Gould, Cathryn M; Handoko, Yanny; Simpson, Kaylene J

    2014-05-01

    The Victorian Centre for Functional Genomics (VCFG) is an RNAi screening facility housed at the Peter MacCallum Cancer Centre in Melbourne, Australia. The Peter Mac is Australia's largest dedicated Cancer Research Institute, home to a team of over 520 scientists that focus on understanding the genetic risk of cancer, the molecular events regulating cancer growth and dissemination and improving detection through new diagnostic tools (www.petermac.org). Peter Mac is a well recognised technology leader and established the VCFG with a view to enabling researchers Australia and New Zealand-wide access to cutting edge functional genomics technology, infrastructure and expertise. This review documents the technology platforms operated within the VCFG and provides insight into the workflows and analysis pipelines currently in operation.

  14. Functional profiling of the Saccharomyces cerevisiae genome.

    PubMed

    Giaever, Guri; Chu, Angela M; Ni, Li; Connelly, Carla; Riles, Linda; Véronneau, Steeve; Dow, Sally; Lucau-Danila, Ankuta; Anderson, Keith; André, Bruno; Arkin, Adam P; Astromoff, Anna; El-Bakkoury, Mohamed; Bangham, Rhonda; Benito, Rocio; Brachat, Sophie; Campanaro, Stefano; Curtiss, Matt; Davis, Karen; Deutschbauer, Adam; Entian, Karl-Dieter; Flaherty, Patrick; Foury, Francoise; Garfinkel, David J; Gerstein, Mark; Gotte, Deanna; Güldener, Ulrich; Hegemann, Johannes H; Hempel, Svenja; Herman, Zelek; Jaramillo, Daniel F; Kelly, Diane E; Kelly, Steven L; Kötter, Peter; LaBonte, Darlene; Lamb, David C; Lan, Ning; Liang, Hong; Liao, Hong; Liu, Lucy; Luo, Chuanyun; Lussier, Marc; Mao, Rong; Menard, Patrice; Ooi, Siew Loon; Revuelta, Jose L; Roberts, Christopher J; Rose, Matthias; Ross-Macdonald, Petra; Scherens, Bart; Schimmack, Greg; Shafer, Brenda; Shoemaker, Daniel D; Sookhai-Mahadeo, Sharon; Storms, Reginald K; Strathern, Jeffrey N; Valle, Giorgio; Voet, Marleen; Volckaert, Guido; Wang, Ching-yun; Ward, Teresa R; Wilhelmy, Julie; Winzeler, Elizabeth A; Yang, Yonghong; Yen, Grace; Youngman, Elaine; Yu, Kexin; Bussey, Howard; Boeke, Jef D; Snyder, Michael; Philippsen, Peter; Davis, Ronald W; Johnston, Mark

    2002-07-25

    Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

  15. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2014-07-01

    biomarker discovery . To complete this aim, we need blood and PBMC cells from both patients and their family members. Our clinical collaborators at...selection and family history of samples submitted to Complete Genomics for WGS analysis. Table 2. CGI quality control template for 12 genomic DNA...from a few kb long to entire chromosomes – based on comparison of the genome coverage signal to a pre-computed “median coverage profile” of many

  16. Differential proteomics and functional research following gene therapy in a mouse model of Leber congenital amaurosis.

    PubMed

    Zheng, Qinxiang; Ren, Yueping; Tzekov, Radouil; Zhang, Yuanping; Chen, Bo; Hou, Jiangping; Zhao, Chunhui; Zhu, Jiali; Zhang, Ying; Dai, Xufeng; Ma, Shan; Li, Jia; Pang, Jijing; Qu, Jia; Li, Wensheng

    2012-01-01

    Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process.

  17. Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes.

    PubMed

    Chi, An; Valencia, Julio C; Hu, Zhang-Zhi; Watabe, Hidenori; Yamaguchi, Hiroshi; Mangini, Nancy J; Huang, Hongzhan; Canfield, Victor A; Cheng, Keith C; Yang, Feng; Abe, Riichiro; Yamagishi, Shoichi; Shabanowitz, Jeffrey; Hearing, Vincent J; Wu, Cathy; Appella, Ettore; Hunt, Donald F

    2006-11-01

    Melanin, which is responsible for virtually all visible skin, hair, and eye pigmentation in humans, is synthesized, deposited, and distributed in subcellular organelles termed melanosomes. A comprehensive determination of the protein composition of this organelle has been obstructed by the melanin present. Here, we report a novel method of removing melanin that includes in-solution digestion and immobilized metal affinity chromatography (IMAC). Together with in-gel digestion, this method has allowed us to characterize melanosome proteomes at various developmental stages by tandem mass spectrometry. Comparative profiling and functional characterization of the melanosome proteomes identified approximately 1500 proteins in melanosomes of all stages, with approximately 600 in any given stage. These proteins include 16 homologous to mouse coat color genes and many associated with human pigmentary diseases. Approximately 100 proteins shared by melanosomes from pigmented and nonpigmented melanocytes define the essential melanosome proteome. Proteins validated by confirming their intracellular localization include PEDF (pigment-epithelium derived factor) and SLC24A5 (sodium/potassium/calcium exchanger 5, NCKX5). The sharing of proteins between melanosomes and other lysosome-related organelles suggests a common evolutionary origin. This work represents a model for the study of the biogenesis of lysosome-related organelles.

  18. Genetic resources offer efficient tools for rice functional genomics research.

    PubMed

    Lo, Shuen-Fang; Fan, Ming-Jen; Hsing, Yue-Ie; Chen, Liang-Jwu; Chen, Shu; Wen, Ien-Chie; Liu, Yi-Lun; Chen, Ku-Ting; Jiang, Mirng-Jier; Lin, Ming-Kuang; Rao, Meng-Yen; Yu, Lin-Chih; Ho, Tuan-Hua David; Yu, Su-May

    2016-05-01

    Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.

  19. The Proteomic Response to Mutants of the Escherichia coli RNA Degradosome

    DTIC Science & Technology

    2013-01-01

    pathway of RNA degradation. REPORT DOCUMENTATION PAGE (SF298) (Continuation Sheet) Continuation for Block 13 ARO Report Number The proteomic response...of the bacterial proteome and provide the first large-scale proteomic description of the response to perturbation of this major pathway of RNA...truncation mutant11 (rightmost column). Significant function enrichments (adjusted P-value o 0.01, compared to entire E. coli genome) are indicated

  20. [The place of functional genomics in oncological research].

    PubMed

    Bálint, Bálint L; Nagy, László

    2013-03-01

    The 1000 genomes project changed the way how we see the human genome. The rapid development of the deep sequencing technologies is raising several practical questions, and the way how we answer these questions will affect deeply the future of the oncological reseach in Hungary. In our manuscript we give a short overview of the results of the 1000 genomes project and we present the place of the functional genomic investigations between other genomic tools. Based on the recent development in the field we summarize the challenges that have to be addressed in the next couple of years.

  1. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.

    PubMed

    Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    Functional proteomics of plant membrane proteins is an important approach to understand the comprehensive architecture of each metabolic pathway in plants. One bottleneck in the characterization of membrane proteins is the difficulty in producing sufficient quantities of functional protein for analysis. Here, we describe three methods for membrane protein production utilizing a wheat germ cell-free protein expression system. Owing to the open nature of cell-free synthesis reaction, protein synthesis can be modified with components necessary to produce functional protein. In this way we have developed modifications to a wheat germ cell-free system for the production of functional membrane proteins. Supplementation of liposomes or detergents allows the synthesis of functional integral membrane proteins. Furthermore, supplementation of myristic acid enables synthesis of N-myristylated peripheral membrane proteins. These modified cell-free synthesis methods facilitate the preparation and subsequent functional analyses of a wide variety of membrane proteins.

  2. Salivary Genomics, Transcriptomics and Proteomics: The Emerging Concept of the Oral Ecosystem and their Use in the Early Diagnosis of Cancer and other Diseases

    PubMed Central

    Fábián, T.K; Fejérdy, P; Csermely, P

    2008-01-01

    There is an increasingly growing interest world-wide for the genomics, transcriptomics and proteomics of saliva and the oral cavity, since they provide a non-invasive source of unprecedently rich genetic information. The complexity of oral systems biology goes much beyond the human genome, transcriptome and proteome revealed by oral mucosal cells, gingival crevicular fluid, and saliva, and includes the complexity of the oral microbiota, the symbiotic assembly of bacterial, fungal and other microbial flora in the oral cavity. In our review we summarize the recent information on oral genomics, transcriptomics and proteomics, of both human and microbial origin. We also give an introduction and practical advice on sample collection, handling and storage for analysis. Finally, we show the usefulness of salivary and oral genomics in early diagnosis of cancer, as well as in uncovering other systemic diseases, infections and oral disorders. We close the review by highlighting a number of possible exploratory pathways in this emerging, hot research field. PMID:19424479

  3. Characterization of Functional Reprogramming during Osteoclast Development Using Quantitative Proteomics and mRNA Profiling*

    PubMed Central

    An, Eunkyung; Narayanan, Manikandan; Manes, Nathan P.; Nita-Lazar, Aleksandra

    2014-01-01

    In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes. The data have been deposited to the ProteomeXchange with identifier PXD000471. Our analysis identified mitochondrial changes, along with several alterations in signaling pathways, as central to the development of mature osteoclasts, while also confirming changes in pathways previously implicated in osteoclast biology. In particular, changes in the expression of proteins involved in metabolism and redirection of energy flow from basic cellular function toward bone resorption appeared to play a key role in the switch from monocytic immune system function to specialized bone-turnover function. These findings provide new insight into the differentiation program involved in the generation of functional osteoclasts. PMID:25044017

  4. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    SciTech Connect

    Bao, Guanhui; Dong, Hongjun; Zhu, Yan; Mao, Shaoming; Zhang, Tianrui; Zhang, Yanping; Chen, Zugen; Li, Yin

    2014-08-08

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.

  5. Genomic and proteomic characterization of two novel siphovirus infecting the sedentary facultative epibiont cyanobacterium Acaryochloris marina.

    PubMed

    Chan, Yi-Wah; Millard, Andrew D; Wheatley, Peter J; Holmes, Antony B; Mohr, Remus; Whitworth, Anna L; Mann, Nicholas H; Larkum, Anthony W D; Hess, Wolfgang R; Scanlan, David J; Clokie, Martha R J

    2015-11-01

    Acaryochloris marina is a symbiotic species of cyanobacteria that is capable of utilizing far-red light. We report the characterization of the phages A-HIS1 and A-HIS2, capable of infecting Acaryochloris. Morphological characterization of these phages places them in the family Siphoviridae. However, molecular characterization reveals that they do not show genetic similarity with any known siphoviruses. While the phages do show synteny between each other, the nucleotide identity between the phages is low at 45-67%, suggesting they diverged from each other some time ago. The greatest number of genes shared with another phage (a myovirus infecting marine Synechococcus) was four. Unlike most other cyanophages and in common with the Siphoviridae infecting Synechococcus, no photosynthesis-related genes were found in the genome. CRISPR (clustered regularly interspaced short palindromic repeats) spacers from the host Acaryochloris had partial matches to sequences found within the phages, which is the first time CRISPRs have been reported in a cyanobacterial/cyanophage system. The phages also encode a homologue of the proteobacterial RNase T. The potential function of RNase T in the mark-up or digestion of crRNA hints at a novel mechanism for evading the host CRISPR system.

  6. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes*

    PubMed Central

    Ohta, Shinya; Montaño-Gutierrez, Luis F.; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G.; Takeda, Shunichi; Hudson, Damien F.; Earnshaw, William C.

    2016-01-01

    Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315

  7. The role of chromosome domains in shaping the functional genome.

    PubMed

    Sexton, Tom; Cavalli, Giacomo

    2015-03-12

    The genome must be highly compacted to fit within eukaryotic nuclei but must be accessible to the transcriptional machinery to allow appropriate expression of genes in different cell types and throughout developmental pathways. A growing body of work has shown that the genome, analogously to proteins, forms an ordered, hierarchical structure that closely correlates and may even be causally linked with regulation of functions such as transcription. This review describes our current understanding of how these functional genomic "secondary and tertiary structures" form a blueprint for global nuclear architecture and the potential they hold for understanding and manipulating genomic regulation.

  8. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  9. Comparative Analysis of Two Helicobacter pylori Strains using Genomics and Mass Spectrometry-Based Proteomics

    PubMed Central

    Karlsson, Roger; Thorell, Kaisa; Hosseini, Shaghayegh; Kenny, Diarmuid; Sihlbom, Carina; Sjöling, Åsa; Karlsson, Anders; Nookaew, Intawat

    2016-01-01

    Helicobacter pylori, a gastroenteric pathogen believed to have co-evolved with humans over 100,000 years, shows significant genetic variability. This motivates the study of different H. pylori strains and the diseases they cause in order to identify determinants for disease evolution. In this study, we used proteomics tools to compare two H. pylori strains. Nic25_A was isolated in Nicaragua from a patient with intestinal metaplasia, and P12 was isolated in Europe from a patient with duodenal ulcers. Differences in the abundance of surface proteins between the two strains were determined with two mass spectrometry-based methods, label-free quantification (MaxQuant) or the use of tandem mass tags (TMT). Each approach used a lipid-based protein immobilization (LPITM) technique to enrich peptides of surface proteins. Using the MaxQuant software, we found 52 proteins that differed significantly in abundance between the two strains (up- or downregulated by a factor of 1.5); with TMT, we found 18 proteins that differed in abundance between the strains. Strain P12 had a higher abundance of proteins encoded by the cag pathogenicity island, while levels of the acid response regulator ArsR and its regulatory targets (KatA, AmiE, and proteins involved in urease production) were higher in strain Nic25_A. Our results show that differences in protein abundance between H. pylori strains can be detected with proteomic approaches; this could have important implications for the study of disease progression. PMID:27891114

  10. Outsmarting cancer: the power of hybrid genomic/proteomic biomarkers to predict drug response.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2014-01-01

    A recent study by Niepel and colleagues describes a novel approach to predicting response to targeted anti-cancer therapies. The authors used biochemical profiling of signaling activity in basal and ligand-stimulated states for a panel of receptor and intracellular kinases to develop predictive models of drug sensitivity. In some cases, the response to ligand stimulation predicted drug response better than did target abundance or genomic alterations in the targeted pathway. Furthermore, combining biochemical profiles with genomic information was better at predicting drug response. This work suggests that incorporating biochemical signaling profiles with genomic alterations should provide powerful predictors of response to molecularly targeted therapies.

  11. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  12. The human DNA ends proteome uncovers an unexpected entanglement of functional pathways

    PubMed Central

    Berthelot, Vivien; Mouta-Cardoso, Gildas; Hégarat, Nadia; Guillonneau, François; François, Jean-Christophe; Giovannangeli, Carine; Praseuth, Danièle; Rusconi, Filippo

    2016-01-01

    DNA ends get exposed in cells upon either normal or dysfunctional cellular processes or molecular events. Telomeres need to be protected by the shelterin complex to avoid junctions occurring between chromosomes while failing topoisomerases or clustered DNA damage processing may produce double-strand breaks, thus requiring swift repair to avoid cell death. The rigorous study of the great many proteins involved in the maintenance of DNA integrity is a challenging task because of the innumerous unspecific electrostatic and/or hydrophobic DNA—protein interactions that arise due to the chemical nature of DNA. We devised a technique that discriminates the proteins recruited specifically at DNA ends from those that bind to DNA because of a generic affinity for the double helix. Our study shows that the DNA ends proteome comprises proteins of an unexpectedly wide functional spectrum, ranging from DNA repair to ribosome biogenesis and cytoskeleton, including novel proteins of undocumented function. A global mapping of the identified proteome on published DNA repair protein networks demonstrated the excellent specificity and functional coverage of our purification technique. Finally, the native nucleoproteic complexes that assembled specifically onto DNA ends were shown to be endowed with a highly efficient DNA repair activity. PMID:26921407

  13. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus.

    PubMed

    Hou, Dianhai; Zhang, Leike; Deng, Fei; Fang, Wei; Wang, Ranran; Liu, Xijia; Guo, Lin; Rayner, Simon; Chen, Xinwen; Wang, Hualin; Hu, Zhihong

    2013-01-01

    The replication of lepidopteran baculoviruses is characterized by the production of two progeny phenotypes: the occlusion-derived virus (ODV), which establishes infection in midgut cells, and the budded virus (BV), which disseminates infection to different tissues within a susceptible host. To understand the structural, and hence functional, differences between BV and ODV, we employed multiple proteomic methods to reveal the protein compositions and posttranslational modifications of the two phenotypes of Helicoverpa armigera nucleopolyhedrovirus. In addition, Western blotting and quantitative mass spectrometry were used to identify the localization of proteins in the envelope or nucleocapsid fractions. Comparative protein portfolios of BV and ODV showing the distribution of 54 proteins, encompassing the 21 proteins shared by BV and ODV, the 12 BV-specific proteins, and the 21 ODV-specific proteins, were obtained. Among the 11 ODV-specific envelope proteins, 8 either are essential for or contribute to oral infection. Twenty-three phosphorylated and 6 N-glycosylated viral proteins were also identified. While the proteins that are shared by the two phenotypes appear to be important for nucleocapsid assembly and trafficking, the structural and functional differences between the two phenotypes are evidently characterized by the envelope proteins and posttranslational modifications. This comparative proteomics study provides new insight into how BV and ODV are formed and why they function differently.

  14. The human DNA ends proteome uncovers an unexpected entanglement of functional pathways.

    PubMed

    Berthelot, Vivien; Mouta-Cardoso, Gildas; Hégarat, Nadia; Guillonneau, François; François, Jean-Christophe; Giovannangeli, Carine; Praseuth, Danièle; Rusconi, Filippo

    2016-06-02

    DNA ends get exposed in cells upon either normal or dysfunctional cellular processes or molecular events. Telomeres need to be protected by the shelterin complex to avoid junctions occurring between chromosomes while failing topoisomerases or clustered DNA damage processing may produce double-strand breaks, thus requiring swift repair to avoid cell death. The rigorous study of the great many proteins involved in the maintenance of DNA integrity is a challenging task because of the innumerous unspecific electrostatic and/or hydrophobic DNA-protein interactions that arise due to the chemical nature of DNA. We devised a technique that discriminates the proteins recruited specifically at DNA ends from those that bind to DNA because of a generic affinity for the double helix. Our study shows that the DNA ends proteome comprises proteins of an unexpectedly wide functional spectrum, ranging from DNA repair to ribosome biogenesis and cytoskeleton, including novel proteins of undocumented function. A global mapping of the identified proteome on published DNA repair protein networks demonstrated the excellent specificity and functional coverage of our purification technique. Finally, the native nucleoproteic complexes that assembled specifically onto DNA ends were shown to be endowed with a highly efficient DNA repair activity.

  15. Chemistry-based functional proteomics to identify novel deubiquitylating enzymes involved in viral infection.

    PubMed

    Lei, Yunlong; Xie, Ke; Huang, Kai; Wu, Hong; Huang, Canhua

    2012-05-01

    Ubiquitylation is a reversible post-translational modification pathway that regulates a variety of cellular processes including protein degradation and trafficking, intracellular localization, DNA repair, immune response and cellcycle progression. Deubiquitylating enzymes (DUBs) can remove the ubiquitin from the modified proteins and reverse the ubiquitylation-induced biological processes; hence it isn't hard to understand that viral pathogens take advantage of the host cell ubiquitin system through disturbing DUBs, for infection and replication. Although accumulated virus-related DUBs have been defined, but how viruses regulate their expression and activities is poor understand because of limitation of technologies. Recently, chemistry-based functional proteomics, which can not only monitor the alteration of abundance but also changes in activity of enzymes, was used to study the function of DUBs involved in virus infection and held much promise. Theses works suggest that chemistry-based functional proteomics is a potent strategy for high throughput screening of virus-related DUBs and exploring their roles in virus infection.

  16. Elucidating Novel Hepatitis C Virus–Host Interactions Using Combined Mass Spectrometry and Functional Genomics Approaches*

    PubMed Central

    Germain, Marie-Anne; Chatel-Chaix, Laurent; Gagné, Bridget; Bonneil, Éric; Thibault, Pierre; Pradezynski, Fabrine; de Chassey, Benoît; Meyniel-Schicklin, Laurène; Lotteau, Vincent; Baril, Martin; Lamarre, Daniel

    2014-01-01

    More than 170 million people worldwide are infected with the hepatitis C virus (HCV), for which future therapies are expected to rely upon a combination of oral antivirals. For a rapidly evolving virus like HCV, host-targeting antivirals are an attractive option. To decipher the role of novel HCV–host interactions, we used a proteomics approach combining immunoprecipitation of viral–host protein complexes coupled to mass spectrometry identification and functional genomics RNA interference screening of HCV partners. Here, we report the proteomics analyses of protein complexes associated with Core, NS2, NS3/4A, NS4B, NS5A, and NS5B proteins. We identified a stringent set of 98 human proteins interacting specifically with one of the viral proteins. The overlap with previous virus–host interaction studies demonstrates 24.5% shared HCV interactors overall (24/98), illustrating the reliability of the approach. The identified human proteins show enriched Gene Ontology terms associated with the endoplasmic reticulum, transport proteins with a major contribution of NS3/4A interactors, and transmembrane proteins for Core interactors. The interaction network emphasizes a high degree distribution, a high betweenness distribution, and high interconnectivity of targeted human proteins, in agreement with previous virus–host interactome studies. The set of HCV interactors also shows extensive enrichment for known targets of other viruses. The combined proteomic and gene silencing study revealed strong enrichment in modulators of HCV RNA replication, with the identification of 11 novel cofactors among our set of specific HCV partners. Finally, we report a novel immune evasion mechanism of NS3/4A protein based on its ability to affect nucleocytoplasmic transport of type I interferon-mediated signal transducer and activator of transcription 1 nuclear translocation. The study revealed highly stringent association between HCV interactors and their functional contribution to the

  17. Proteome Characterization of Leaves in Common Bean

    PubMed Central

    Robison, Faith M.; Heuberger, Adam L.; Brick, Mark A.; Prenni, Jessica E.

    2015-01-01

    Dry edible bean (Phaseolus vulgaris L.) is a globally relevant food crop. The bean genome was recently sequenced and annotated allowing for proteomics investigations aimed at characterization of leaf phenotypes important to agriculture. The objective of this study was to utilize a shotgun proteomics approach to characterize the leaf proteome and to identify protein abundance differences between two bean lines with known variation in their physiological resistance to biotic stresses. Overall, 640 proteins were confidently identified. Among these are proteins known to be involved in a variety of molecular functions including oxidoreductase activity, binding peroxidase activity, and hydrolase activity. Twenty nine proteins were found to significantly vary in abundance (p-value < 0.05) between the two bean lines, including proteins associated with biotic stress. To our knowledge, this work represents the first large scale shotgun proteomic analysis of beans and our results lay the groundwork for future studies designed to investigate the molecular mechanisms involved in pathogen resistance. PMID:28248269

  18. Functional annotation of proteomic sequences based on consensus of sequence and structural analysis.

    PubMed

    Kitson, David H; Badretdinov, Azat; Zhu, Zhan-yang; Velikanov, Mikhail; Edwards, David J; Olszewski, Krzysztof; Szalma, Sándor; Yan, Lisa

    2002-03-01

    To maximise the assignment of function of the proteins encoded by a genome and to aid the search for novel drug targets, there is an emerging need for sensitive methods of predicting protein function on a genome-wide basis. GeneAtlas is an automated, high-throughput pipeline for the prediction of protein structure and function using sequence similarity detection, homology modelling and fold recognition methods. GeneAtlas is described in detail here. To test GeneAtlas, a 'virtual' genome was used, a subset of PDB structures from the SCOP database, in which the functional relationships are known. GeneAtlas detects additional relationships by building 3D models in comparison with the sequence searching method PSI-BLAST. Functionally related proteins with sequence identity below the twilight zone can be recognised correctly.

  19. The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors.

    PubMed

    Grose, Julianne H; Belnap, David M; Jensen, Jordan D; Mathis, Andrew D; Prince, John T; Merrill, Bryan D; Burnett, Sandra H; Breakwell, Donald P

    2014-10-01

    evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species.

  20. The Genomes, Proteomes, and Structures of Three Novel Phages That Infect the Bacillus cereus Group and Carry Putative Virulence Factors

    PubMed Central

    Belnap, David M.; Jensen, Jordan D.; Mathis, Andrew D.; Prince, John T.; Merrill, Bryan D.; Burnett, Sandra H.; Breakwell, Donald P.

    2014-01-01

    the evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species. PMID:25100842

  1. An Integrative Computational Framework for Hypotheses-Driven Systems Biology Research in Proteomics and Genomics

    SciTech Connect

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.; Willse, Alan R.; Singhal, Mudita; McCue, Lee Ann; McDermott, Jason E.; Taylor, Ronald C.; Waters, Katrina M.; Oehmen, Christopher S.

    2009-04-01

    Systems biology research is sometimes categorized as either discovery science or hypothesis-driven science. However, we believe that hypotheses are always used regardless, and that explicit recognition that hypothesis testing underlies all high-throughput data analysis leads to better experimental designs, data analysis and interpretation of the data. We outline the current use of hypothesis testing for proteomics data analysis in systems biology research for several projects at the Pacific Northwest National Laboratory, and provide examples of where scientific principles can be used to formulate the hypotheses used to analyze the data. We additionally discuss the data infrastructure is required to (1) track the data from different projects and diverse assays, (2) pull the data together in a congruent manner, (3) analyze the data with respect to cellular networks, and (4) visualize the resulting networks and contrast those with information from bioinformatics databases.

  2. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function.

    PubMed

    Valli, Minoska; Tatto, Nadine E; Peymann, Armin; Gruber, Clemens; Landes, Nils; Ekker, Heinz; Thallinger, Gerhard G; Mattanovich, Diethard; Gasser, Brigitte; Graf, Alexandra B

    2016-09-01

    As manually curated and non-automated BLAST analysis of the published Pichia pastoris genome sequences revealed many differences between the gene annotations of the strains GS115 and CBS7435, RNA-Seq analysis, supported by proteomics, was performed to improve the genome annotation. Detailed analysis of sequence alignment and protein domain predictions were made to extend the functional genome annotation to all P. pastoris sequences. This allowed the identification of 492 new ORFs, 4916 hypothetical UTRs and the correction of 341 incorrect ORF predictions, which were mainly due to the presence of upstream ATG or erroneous intron predictions. Moreover, 175 previously erroneously annotated ORFs need to be removed from the annotation. In total, we have annotated 5325 ORFs. Regarding the functionality of those genes, we improved all gene and protein descriptions. Thereby, the percentage of ORFs with functional annotation was increased from 48% to 73%. Furthermore, we defined functional groups, covering 25 biological cellular processes of interest, by grouping all genes that are part of the defined process. All data are presented in the newly launched genome browser and database available at www.pichiagenome.org In summary, we present a wide spectrum of curation of the P. pastoris genome annotation from gene level to protein function.

  3. Neuroscience in the era of functional genomics and systems biology.

    PubMed

    Geschwind, Daniel H; Konopka, Genevieve

    2009-10-15

    Advances in genetics and genomics have fuelled a revolution in discovery-based, or hypothesis-generating, research that provides a powerful complement to the more directly hypothesis-driven molecular, cellular and systems neuroscience. Genetic and functional genomic studies have already yielded important insights into neuronal diversity and function, as well as disease. One of the most exciting and challenging frontiers in neuroscience involves harnessing the power of large-scale genetic, genomic and phenotypic data sets, and the development of tools for data integration and mining. Methods for network analysis and systems biology offer the promise of integrating these multiple levels of data, connecting molecular pathways to nervous system function.

  4. Partnering for functional genomics research conference: Abstracts of poster presentations

    SciTech Connect

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  5. Proteomic and Functional Consequences of Hexokinase Deficiency in Glucose-repressible Kluyveromyces lactis

    PubMed Central

    Mates, Nadia; Kettner, Karina; Heidenreich, Falk; Pursche, Theresia; Migotti, Rebekka; Kahlert, Günther; Kuhlisch, Eberhard; Breunig, Karin D.; Schellenberger, Wolfgang; Dittmar, Gunnar; Hoflack, Bernard; Kriegel, Thomas M.

    2014-01-01

    The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of

  6. Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil

    PubMed Central

    Fan, Xiangyu; Yan, Jianlong; Xie, Longxiang; Zeng, Lanying; Young, Ryland F.; Xie, Jianping

    2016-01-01

    Mycobacteriophage SWU1 is a newly isolated phage from soil sample collected in Sichuan province, China using Mycobacterium smegmatis mc2155 as host. Plaque, phage morphology and one-step growth curve were characterized. The complete genomic sequence of phage SWU1 was determined by shotgun sequencing. The ends of SWU1 were determined. Structural proteins of SWU1 were analyzed by NanoLC-ESI-MS/MS. Seven ORFs were identified as structural protein encoded by SWU1 genome. The genetic basis underlying the SWU1 plaque was explored using comparative genomics. Prophages homologous to SWU1 were identified in two pathogens, Segniliparus rugosus ATCC BAA-974 and Mycobacterium rhodesiae JS60. Genus Segniliparus is a member of the order Corynebacteriales. To our knowledge, this is the first report of Mycobacterium prophages in different genera. PMID:25701596

  7. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach

    PubMed Central

    2014-01-01

    Background Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. β-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. Results Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. Conclusions BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world. PMID:24773703

  8. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    PubMed

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-04

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  9. Proteome Characterization Centers - TCGA

    Cancer.gov

    The centers, a component of NCI’s Clinical Proteomic Tumor Analysis Consortium, will analyze a subset of TCGA samples to define proteins translated from cancer genomes and their related biological processes.

  10. Decoding the ecological function of accessory genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shiga toxin-producing Escherichia coli O157:H7 primarily resides in cattle asymptomatically, and can be transmitted to humans through food. A study by Lupolova et al applied a machine-learning approach to complex pan-genome information and predicted that only a small subset of bovine isolates have t...

  11. International Summer School, ‘ From Genome to Life’

    PubMed Central

    2002-01-01

    This report from the International Summer School ‘From Genome to Life’, held at the Institute d'Etudes Scientifiques de Cargèse in Corsica in July 2002, covers the talks of the invited speakers. The topics of the talks can be broadly grouped into the areas of genome annotation, comparative and evolutionary genomics, functional genomics, proteomics, structural genomics, pharmacogenomics, and organelle genomes, epigenetics and RNA. PMID:18629253

  12. Proteomics: bases for protein complexity understanding.

    PubMed

    Rotilio, Domenico; Della Corte, Anna; D'Imperio, Marco; Coletta, Walter; Marcone, Simone; Silvestri, Cristian; Giordano, Lucia; Di Michele, Michela; Donati, Maria Benedetta

    2012-03-01

    In the post genomic era we became aware that the genomic sequence and protein functions cannot be correlated. One gene can encode multiple protein functions mainly because of mRNA splice variants, post translational modifications (PTM) and moonlighting functions. To study the whole population of proteins present in a cell to a specific time point and under defined conditions it is necessary to investigate the proteome. Comprehensive analysis of the proteome requires the use of emerging high technologies because of the complexity and wide dynamic range of protein concentrations. Proteomics provides the tools to study protein identification and quantitation, protein-protein interactions, protein modifications and localization. The most widespread strategy for studying global protein expression employs two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) allowing thousands of proteins to be resolved and their expression quantified. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) has emerged as a high throughput technique for protein identification and characterization because of its high sensitivity, precision and accuracy. LC-MS/MS is well suited for accurate quantitation of protein expression levels, post-translational modifications and comparative and absolute quantitative analysis of peptides. Bioinformatic tools are required to elaborate the growing number of proteomic data. Here, we give an overview of the current status of the wide range of technologies that define and characterize the modern proteomics.

  13. Coverage of whole proteome by structural genomics observed through protein homology modeling database

    PubMed Central

    Yamaguchi, Akihiro; Go, Mitiko

    2006-01-01

    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617

  14. From Loci to Biology: Functional Genomics of Genome-Wide Association for Coronary Disease

    PubMed Central

    Nurnberg, Sylvia T; Zhang, Hanrui; Hand, Nicholas J; Bauer, Robert C; Saleheen, Danish; Reilly, Muredach P; Rader, Daniel J

    2016-01-01

    Genome-wide association studies (GWAS) have provided a rich collection of ~58 CAD loci that suggest the existence of previously unsuspected new biology relevant to atherosclerosis. However, these studies only identify genomic loci associated with CAD and many questions remain even after a genomic locus is definitively implicated, including the nature of the causal variant(s) and the causal gene(s), as well as the directionality of effect. There are a number of tools that can be employed for investigation of the functional genomics of these loci, and progress has been made on a limited number of novel CAD loci. New biology regarding atherosclerosis and CAD will be learned through the functional genomics of these loci and the hope is that at least some of these new pathways relevant to CAD pathogenesis will yield new therapeutic targets for the prevention and treatment of CAD. PMID:26892960

  15. Chemical genomics for studying parasite gene function and interaction

    PubMed Central

    Li, Jian; Yuan, Jing; Chen, Chin-chien; Inglese, James; Su, Xin-zhuan

    2013-01-01

    With the development of new technologies in genome sequencing, gene expression profiling, genotyping, and high-throughput screening of chemical compound libraries, small molecules are playing increasingly important roles in studying gene expression regulation, gene-gene interaction, and gene function. Here we briefly review and discuss some recent advancements in drug target identification and phenotype characterization using combinations of high-throughput screening of small-molecule libraries and various genome-wide methods such as whole genome sequencing, genome-wide association studies, and genome-wide expressional analysis. These approaches can be used to search for new drugs against parasitic infections, to identify drug targets or drug-resistance genes, and to infer gene function. PMID:24215777

  16. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    PubMed

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases.

  17. Genomic and proteomic characterization of Gordonia sp. NB4-1Y in relation to 6 : 2 fluorotelomer sulfonate biodegradation.

    PubMed

    Van Hamme, Jonathan D; Bottos, Eric M; Bilbey, Nicholas J; Brewer, Sharon E

    2013-08-01

    Gordonia sp. strain NB4-1Y was isolated from vermicompost using bis-(3-pentafluorophenylpropyl)-sulfide as the sole added sulfur source and was found to have a broad capacity for metabolizing organosulfur compounds. NB4-1Y is closely related to G. desulfuricans and was found to metabolize 6 : 2 fluorotelomer sulfonate (6 : 2 FTS) to 5 : 3 fluorotelomer acid (5 : 3 acid) via 6 : 2 fluorotelomer acid (6 : 2 FTCA), 6 : 2 unsaturated fluorotelomer acid (6 : 2 FTUCA) and 5 : 3 unsaturated fluorotelomer acid (5 : 3 Uacid). Given that the molecular and biochemical basis for the microbial metabolism of poly- and per-fluorinated compounds has yet to be examined, we undertook to investigate 6 : 2 FTS metabolism in NB4-1Y. To this end, a whole-genome shotgun sequence was prepared and two-dimensional differential in-gel electrophoresis was used to compare proteomes of MgSO4- and 6 : 2 FTS-grown cells. Of the three putative alkanesulfonate monooxygenases, four nitrilotriacetate monooxygenases and one taurine dioxygenase located in the draft genome, two nitrilotriacetate monooxygenases were differentially expressed in the presence of 6 : 2 FTS. It is hypothesized that these two enzymes may be responsible for 6 : 2 FTS desulfonation. In addition, a differentially expressed putative double bond reductase may be involved in the reduction of 5 : 3 Uacid to 5 : 3 acid. Other proteins differentially expressed during 6 : 2 FTS metabolism included a sulfate ABC transporter ATP-binding protein and two alkyl hydroperoxide reductases. This work establishes a foundation for future studies on the molecular biology and biochemistry of poly- and per-fluorinated compound metabolism in bacteria.

  18. The Functional Genomics Initiative at Oak Ridge National Laboratory

    SciTech Connect

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  19. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer

    PubMed Central

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M.; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K.; Schouten, Philip C.; Rueda, Oscar M.; Bosma, Astrid J.; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J.C.; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O’Hurley, Gillian; Lehn, Sophie; Muris, Jettie J.F.; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A.; Barbet, Aurélie S.; Bard, Floriane; Lecerf, Caroline; O’Connor, Darran P.; Vis, Daniël J.; Benes, Cyril H.; McDermott, Ultan; Garnett, Mathew J.; Simon, Iris M.; Jirström, Karin; Dubois, Thierry; Linn, Sabine C.; Gallagher, William M.; Wessels, Lodewyk F.A.; Caldas, Carlos; Bernards, Rene

    2016-01-01

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies. PMID:26729235

  20. Genomic, Transcriptomic, and Proteomic Analysis Provide Insights Into the Cold Adaptation Mechanism of the Obligate Psychrophilic Fungus Mrakia psychrophila

    PubMed Central

    Su, Yao; Jiang, Xianzhi; Wu, Wenping; Wang, Manman; Hamid, M. Imran; Xiang, Meichun; Liu, Xingzhong

    2016-01-01

    Mrakia psychrophila is an obligate psychrophilic fungus. The cold adaptation mechanism of psychrophilic fungi remains unknown. Comparative genomics analysis indicated that M. psychrophila had a specific codon usage preference, especially for codons of Gly and Arg and its major facilitator superfamily (MFS) transporter gene family was expanded. Transcriptomic analysis revealed that genes involved in ribosome and energy metabolism were upregulated at 4°, while genes involved in unfolded protein binding, protein processing in the endoplasmic reticulum, proteasome, spliceosome, and mRNA surveillance were upregulated at 20°. In addition, genes related to unfolded protein binding were alternatively spliced. Consistent with other psychrophiles, desaturase and glycerol 3-phosphate dehydrogenase, which are involved in biosynthesis of unsaturated fatty acid and glycerol respectively, were upregulated at 4°. Cold adaptation of M. psychrophila is mediated by synthesizing unsaturated fatty acids to maintain membrane fluidity and accumulating glycerol as a cryoprotectant. The proteomic analysis indicated that the correlations between the dynamic patterns between transcript level changes and protein level changes for some pathways were positive at 4°, but negative at 20°. The death of M. psychrophila above 20° might be caused by an unfolded protein response. PMID:27633791

  1. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Cancer.gov

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  2. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores.

    PubMed

    Lawley, Trevor D; Croucher, Nicholas J; Yu, Lu; Clare, Simon; Sebaihia, Mohammed; Goulding, David; Pickard, Derek J; Parkhill, Julian; Choudhary, Jyoti; Dougan, Gordon

    2009-09-01

    Clostridium difficile, a major cause of antibiotic-associated diarrhea, produces highly resistant spores that contaminate hospital environments and facilitate efficient disease transmission. We purified C. difficile spores using a novel method and show that they exhibit significant resistance to harsh physical or chemical treatments and are also highly infectious, with <7 environmental spores per cm(2) reproducibly establishing a persistent infection in exposed mice. Mass spectrometric analysis identified approximately 336 spore-associated polypeptides, with a significant proportion linked to translation, sporulation/germination, and protein stabilization/degradation. In addition, proteins from several distinct metabolic pathways associated with energy production were identified. Comparison of the C. difficile spore proteome to those of other clostridial species defined 88 proteins as the clostridial spore "core" and 29 proteins as C. difficile spore specific, including proteins that could contribute to spore-host interactions. Thus, our results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches.

  3. Genomics and proteomics approaches to the study of cancer-stroma interactions

    PubMed Central

    2010-01-01

    Background The development and progression of cancer depend on its genetic characteristics as well as on the interactions with its microenvironment. Understanding these interactions may contribute to diagnostic and prognostic evaluations and to the development of new cancer therapies. Aiming to investigate potential mechanisms by which the tumor microenvironment might contribute to a cancer phenotype, we evaluated soluble paracrine factors produced by stromal and neoplastic cells which may influence proliferation and gene and protein expression. Methods The study was carried out on the epithelial cancer cell line (Hep-2) and fibroblasts isolated from a primary oral cancer. We combined a conditioned-medium technique with subtraction hybridization approach, quantitative PCR and proteomics, in order to evaluate gene and protein expression influenced by soluble paracrine factors produced by stromal and neoplastic cells. Results We observed that conditioned medium from fibroblast cultures (FCM) inhibited proliferation and induced apoptosis in Hep-2 cells. In neoplastic cells, 41 genes and 5 proteins exhibited changes in expression levels in response to FCM and, in fibroblasts, 17 genes and 2 proteins showed down-regulation in response to conditioned medium from Hep-2 cells (HCM). Nine genes were selected and the expression results of 6 down-regulated genes (ARID4A, CALR, GNB2L1, RNF10, SQSTM1, USP9X) were validated by real time PCR. Conclusions A significant and common denominator in the results was the potential induction of signaling changes associated with immune or inflammatory response in the absence of a specific protein. PMID:20441585

  4. A genomic and proteomic investigation of the impact of preimplantation factor on human decidual cells

    PubMed Central

    PAIDAS, Michael J.; KRIKUN, Graciela; HUANG, S. Joseph; JONES, Richard; ROMANO, Michael; ANNUNZIATO, Jack; BARNEA, Eytan R.

    2010-01-01

    OBJECTIVE Preimplantation factor (PIF) is a novel, 15 amino acid peptide, secreted by viable embryos. This study aims to elucidate PIF’s effects in human endometrial stromal cells (HESC) decidualized by estrogen and progestin, which mimics the pre-implantation milieu, and in first trimester decidua cultures (FTDC). STUDY DESIGN HESC or FTDC were incubated with 100nM synthetic PIF or vehicle control. Global gene expression was analyzed using microarray and pathway-analysis. Proteins were analyzed using quantitative mass-spectrometry, and PIF binding by ProtoArray. RESULTS Gene and proteomic analysis demonstrate that PIF affects immune, adhesion and apoptotic pathways. Significant upregulation in HESC (fold-change) include: NF-k-β activation via IRAKBP1 (53); TLR5 (9); FKBP15 protein (2.3); DSCAML1 (16). BCL-2 was downregulated in HESC (21.1) and FTDC (27.1). ProtoArray demonstrates PIF interaction with intracellular targets insulin degrading enzyme and beta-K+ channels. CONCLUSION PIF displays essential multi-targeted effects, of regulating immunity, promoting embryo-decidual adhesion, and regulating adaptive apoptotic processes. PMID:20452489

  5. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology.

    PubMed

    Lacerda, Carla M R; Reardon, Kenneth F

    2009-01-01

    In this review, we present the use of proteomics to advance knowledge in the field of environmental biotechnology, including studies of bacterial physiology, metabolism and ecology. Bacteria are widely applied in environmental biotechnology for their ability to catalyze dehalogenation, methanogenesis, denitrification and sulfate reduction, among others. Their tolerance to radiation and toxic compounds is also of importance. Proteomics has an important role in helping uncover the pathways behind these cellular processes. Environmental samples are often highly complex, which makes proteome studies in this field especially challenging. Some of these challenges are the lack of genome sequences for the vast majority of environmental bacteria, difficulties in isolating bacteria and proteins from certain environments, and the presence of complex microbial communities. Despite these challenges, proteomics offers a unique dynamic view into cellular function. We present examples of environmental proteomics of model organisms, and then discuss metaproteomics (microbial community proteomics), which has the potential to provide insights into the function of a community without isolating organisms. Finally, the environmental proteomics literature is summarized as it pertains to the specific application areas of wastewater treatment, metabolic engineering, microbial ecology and environmental stress responses.

  6. Defining functional DNA elements in the human genome.

    PubMed

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P; Bernstein, Bradley E; Kundaje, Anshul; Marinov, Georgi K; Ward, Lucas D; Birney, Ewan; Crawford, Gregory E; Dekker, Job; Dunham, Ian; Elnitski, Laura L; Farnham, Peggy J; Feingold, Elise A; Gerstein, Mark; Giddings, Morgan C; Gilbert, David M; Gingeras, Thomas R; Green, Eric D; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D; Myers, Richard M; Pazin, Michael J; Ren, Bing; Stamatoyannopoulos, John A; Weng, Zhiping; White, Kevin P; Hardison, Ross C

    2014-04-29

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease.

  7. Defining functional DNA elements in the human genome

    PubMed Central

    Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.

    2014-01-01

    With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594

  8. Marine proteomics: a critical assessment of an emerging technology.

    PubMed

    Slattery, Marc; Ankisetty, Sridevi; Corrales, Jone; Marsh-Hunkin, K Erica; Gochfeld, Deborah J; Willett, Kristine L; Rimoldi, John M

    2012-10-26

    The application of proteomics to marine sciences has increased in recent years because the proteome represents the interface between genotypic and phenotypic variability and, thus, corresponds to the broadest possible biomarker for eco-physiological responses and adaptations. Likewise, proteomics can provide important functional information regarding biosynthetic pathways, as well as insights into mechanism of action, of novel marine natural products. The goal of this review is to (1) explore the application of proteomics methodologies to marine systems, (2) assess the technical approaches that have been used, and (3) evaluate the pros and cons of this proteomic research, with the intent of providing a critical analysis of its future roles in marine sciences. To date, proteomics techniques have been utilized to investigate marine microbe, plant, invertebrate, and vertebrate physiology, developmental biology, seafood safety, susceptibility to disease, and responses to environmental change. However, marine proteomics studies often suffer from poor experimental design, sample processing/optimization difficulties, and data analysis/interpretation issues. Moreover, a major limitation is the lack of available annotated genomes and proteomes for most marine organisms, including several "model species". Even with these challenges in mind, there is no doubt that marine proteomics is a rapidly expanding and powerful integrative molecular research tool from which our knowledge of the marine environment, and the natural products from this resource, will be significantly expanded.

  9. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  10. Dermal toxicity elicited by phthalates: evaluation of skin absorption, immunohistology, and functional proteomics.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Hung, Yi-Yun; Lin, Chwan-Fwu; Fang, Jia-You

    2014-03-01

    The toxicity of phthalates is an important concern in the fields of environmental health and toxicology. Dermal exposure via skin care products, soil, and dust is a main route for phthalate delivery. We had explored the effect of topically-applied phthalates on skin absorption and toxicity. Immunohistology, functional proteomics, and Western blotting were employed as methodologies for validating phthalate toxicity. Among 5 phthalates tested, di(2-ethylhexyl)phthalate (DEHP) showed the highest skin reservoir. Only diethyl phthalate (DEP) and dibutyl phthalate (DBP) could penetrate across skin. Strat-M(®) membrane could be used as permeation barrier for predicting phthalate penetration through skin. The accumulation of DEHP in hair follicles was ∼15nmol/cm(2), which was significantly greater than DBP and DEP. DBP induced apoptosis of keratinocytes and fibroblasts via caspase-3 activation. This result was confirmed by downregulation of 14-3-3 and immunohistology of TUNEL. On the other hand, the HSP60 overexpression and immunostaining of COX-2 suggested inflammatory response induced by DEP and DEHP. The proteomic profiling verified the role of calcium homeostasis on skin inflammation. Some proteins investigated in this study can be sensitive biomarkers for dermal toxicity of phthalates. These included HSPs, 14-3-3, and cytokeratin. This work provided novel platforms for examining phthalate toxicity on skin.

  11. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

    PubMed Central

    Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra

    2016-01-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  12. Biogeoscience from a Metallomic and Proteomic Perspective

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Shock, E.

    2004-12-01

    In the wake of the genomics revolution, life scientists are expanding their focus from the genome to the "proteome" - the assemblage of all proteins in a cell - and the "metallome" - the distribution of inorganic species in a cell. The proteome and metallome are tightly connected because proteins and protein products are intimately involved in the transport and homeostasis of inorganic elements, and because many enzymes depend on inorganic elements for catalytic activity. Together, they are at the heart of metabolic function. Unlike the relatively static genome, the proteome and metallome are extremely dynamic, changing rapidly in response to environmental cues. They are substantially more complex than the genome; for example, in humans, some 30,000 genes code for approximately 500,000 proteins. Metaphorically, the proteome and metallome constitute the complex, dynamic "language" by which the genome and the environment communicate. Therefore biogeochemists, like life scientists, are moving beyond a strictly genomic perspective. Research guided by proteomic and metallomic perspectives and methodologies should provide new insights into the connections between life and the inorganic Earth in modern environments, and the evolution of these connections through time. For example, biogeochemical research in modern environments, such as Yellowstone hot springs, is hindered by the gap between genomic determinations of metabolic potential in ecosystems and geochemical characterizations of the energetic boundary conditions faced by these ecosystems; genomics tells us "who is there" and geochemistry tells us "what they might be doing", but neither genomics nor geochemistry easily provide quantitative information about which metabolisms are actually active or a framework for understanding why ecosystems do not fully exploit the energy available in their surroundings. Such questions are fundamentally kinetic rather than thermodynamic and therefore demand that we characterize and

  13. The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12.

    PubMed

    Vijayendran, Chandran; Polen, Tino; Wendisch, Volker F; Friehs, Karl; Niehaus, Karsten; Flaschel, Erwin

    2007-03-10

    The use of Escherichia coli as a model organism has provided a great deal of basic information in biomolecular sciences. Examining trait differences among closely related strains of the same species addresses a fundamental biological question: how much diversity is there at the single species level? The main aim of our research was to identify significant differences in the activities of groups of genes between two laboratory strains of an organism closely related in genome structure. We demonstrate that despite strict and controlled growth conditions, there is high plasticity in the global proteome and genome expression in two closely related E. coli K12 sub-strains (W3110 and MG1655), which differ insignificantly in genome structure. The growth patterns of these two sub-strains were very similar in a well-equipped bioreactor, and their genome structures were shown to be almost identical by DNA microarray. However, detailed profiling of protein and gene expression by 2-dimensional gel electrophoresis and microarray analysis showed many differentially expressed genes and proteins, combinations of which were highly correlated. The differentially regulated genes and proteins belonged to the following functional categories: genes regulated by sigma subunit of RNA polymerase (RpoS), enterobactin-related genes, and genes involved in central metabolism. Genes involved in central cell metabolism - the glycolysis pathway, the tricarboxylic acid cycle and the glyoxylate bypass - were differentially regulated at both the mRNA and proteome levels. The strains differ significantly in central metabolism and thus in the generation of precursor metabolites and energy. This high plasticity probably represents a universal feature of metabolic activities in closely related species, and has the potential to reveal differences in regulatory networks. We suggest that unless care is taken in the choice of strains for any validating experiment, the results might be misleading.

  14. Air Force Genomics, Proteomics, Bioinformatics System, DataCap-Data Collection Module. Phase 1: Development

    DTIC Science & Technology

    2004-07-01

    exist as a series of isolated computational silos, providing a depth of data in a narrow field of research. The Acero Genomics Knowledge Platform (GKP...on top of the Acero Platform. The purpose of the DataCap is to provide the individual researcher with the ability to collect experimental data in a...integrated format compatible with the Acero GKP. This technical report covers the architecture, the design and the operation of the DataCap in its

  15. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2014-07-01

    determined Unmethylated 105mg TMZ, concurrent, 7 weeks. IMRT, 5940 cGy in 33 fractions, 7 weeks. 123 Table 1. Clinical diagnosis, treatment history ...cells) and were used for further analysis. Figure 4. Patient selection and family history of samples submitted for whole genome... chromosomal deletion is not observed in the PBMC sample, as expected. Similarly, we observed large-scale but partial losses in chromosomes 1, 9, 12

  16. Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the Mycobacterium Neighborhood

    PubMed Central

    Pope, Welkin H.; Jacobs-Sera, Deborah; Russell, Daniel A.; Rubin, Daniel H. F.; Kajee, Afsana; Msibi, Zama N. P.; Larsen, Michelle H.; Jacobs, William R.; Lawrence, Jeffrey G.; Hendrix, Roger W.

    2014-01-01

    ABSTRACT Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc2155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host. PMID:25467442

  17. Quantitative plant proteomics.

    PubMed

    Bindschedler, Laurence V; Cramer, Rainer

    2011-02-01

    Quantitation is an inherent requirement in comparative proteomics and there is no exception to this for plant proteomics. Quantitative proteomics has high demands on the experimental workflow, requiring a thorough design and often a complex multi-step structure. It has to include sufficient numbers of biological and technical replicates and methods that are able to facilitate a quantitative signal read-out. Quantitative plant proteomics in particular poses many additional challenges but because of the nature of plants it also offers some potential advantages. In general, analysis of plants has been less prominent in proteomics. Low protein concentration, difficulties in protein extraction, genome multiploidy, high Rubisco abundance in green tissue, and an absence of well-annotated and completed genome sequences are some of the main challenges in plant proteomics. However, the latter is now changing with several genomes emerging for model plants and crops such as potato, tomato, soybean, rice, maize and barley. This review discusses the current status in quantitative plant proteomics (MS-based and non-MS-based) and its challenges and potentials. Both relative and absolute quantitation methods in plant proteomics from DIGE to MS-based analysis after isotope labeling and label-free quantitation are described and illustrated by published studies. In particular, we describe plant-specific quantitative methods such as metabolic labeling methods that can take full advantage of plant metabolism and culture practices, and discuss other potential advantages and challenges that may arise from the unique properties of plants.

  18. Effects of radiofrequency-modulated electromagnetic fields on proteome.

    PubMed

    Leszczynski, Dariusz

    2013-01-01

    Proteomics, the science that examines the repertoire of proteins present in an organism using both high-throughput and low-throughput techniques, might give a better understanding of the functional processes ongoing in cells than genomics or transcriptomics, because proteins are the molecules that directly regulate physiological processes. Not all changes in gene expression are necessarily reflected in the proteome. Therefore, using proteomics approaches to study the effects of RF-EMF might provide information about potential biological and health effects. Especially that the RF-EMF used in wireless communication devices has very low energy and is unable to directly induce gene mutations.

  19. HelmCoP: an online resource for helminth functional genomics and drug and vaccine targets prioritization.

    PubMed

    Abubucker, Sahar; Martin, John; Taylor, Christina M; Mitreva, Makedonka

    2011-01-01

    A vast majority of the burden from neglected tropical diseases result from helminth infections (nematodes and platyhelminthes). Parasitic helminthes infect over 2 billion, exerting a high collective burden that rivals high-mortality conditions such as AIDS or malaria, and cause devastation to crops and livestock. The challenges to improve control of parasitic helminth infections are multi-fold and no single category of approaches will meet them all. New information such as helminth genomics, functional genomics and proteomics coupled with innovative bioinformatic approaches provide fundamental molecular information about these parasites, accelerating both basic research as well as development of effective diagnostics, vaccines and new drugs. To facilitate such studies we have developed an online resource, HelmCoP (Helminth Control and Prevention), built by integrating functional, structural and comparative genomic data from plant, animal and human helminthes, to enable researchers to develop strategies for drug, vaccine and pesticide prioritization, while also providing a useful comparative genomics platform. HelmCoP encompasses genomic data from several hosts, including model organisms, along with a comprehensive suite of structural and functional annotations, to assist in comparative analyses and to study host-parasite interactions. The HelmCoP interface, with a sophisticated query engine as a backbone, allows users to search for multi-factorial combinations of properties and serves readily accessible information that will assist in the identification of various genes of interest. HelmCoP is publicly available at: http://www.nematode.net/helmcop.html.

  20. Coordinated international action to accelerate genome-to-phenome with FAANG, The Functional Annotation of Animal Genomes project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the organization of a nascent international effort - the "Functional Annotation of ANimal Genomes" project - whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species....

  1. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  2. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  3. Functional coverage of the human genome by existing structures, structural genomics targets, and homology models.

    PubMed

    Xie, Lei; Bourne, Philip E

    2005-08-01

    The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB), target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB), it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html.

  4. The First Genomic and Proteomic Characterization of a Deep-Sea Sulfate Reducer: Insights into the Piezophilic Lifestyle of Desulfovibrio piezophilus

    PubMed Central

    Pradel, Nathalie; Ji, Boyang; Gimenez, Grégory; Talla, Emmanuel; Lenoble, Patricia; Garel, Marc; Tamburini, Christian; Fourquet, Patrick; Lebrun, Régine; Bertin, Philippe; Denis, Yann; Pophillat, Matthieu; Barbe, Valérie; Ollivier, Bernard; Dolla, Alain

    2013-01-01

    Desulfovibrio piezophilus strain C1TLV30T is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle. PMID:23383081

  5. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire

    PubMed Central

    de O Santos, Eidy; Alves, Nelson; Dias, Graciela M; Mazotto, Ana Maria; Vermelho, Alane; Vora, Gary J; Wilson, Bryan; Beltran, Victor H; Bourne, David G; Le Roux, Frédérique; Thompson, Fabiano L

    2011-01-01

    Vibrio coralliilyticus has been implicated as an important pathogen of coral species worldwide. In this study, the nearly complete genome of Vibrio coralliilyticus strain P1 (LMG23696) was sequenced and proteases implicated in virulence of the strain were specifically investigated. The genome sequence of P1 (5 513 256 bp in size) consisted of 5222 coding sequences and 58 RNA genes (53 tRNAs and at least 5 rRNAs). Seventeen metalloprotease and effector (vgrG, hlyA and hcp) genes were identified in the genome and expressed proteases were also detected in the secretome of P1. As the VcpA zinc-metalloprotease has been considered an important virulence factor of V. coralliilyticus, a vcpA deletion mutant was constructed to evaluate the effect of this gene in animal pathogenesis. Both wild-type and mutant (ΔvcpA) strains exhibited similar virulence characteristics that resulted in high mortality in Artemia and Drosophila pathogenicity bioassays and strong photosystem II inactivation of the coral dinoflagellate endosymbiont (Symbiodinium). In contrast, the ΔvcpA mutant demonstrated higher hemolytic activity and secreted 18 proteins not secreted by the wild type. These proteins included four types of metalloproteases, a chitinase, a hemolysin-related protein RbmC, the Hcp protein and 12 hypothetical proteins. Overall, the results of this study indicate that V. coralliilyticus strain P1 has a diverse virulence repertoire that possibly enables this bacterium to be an efficient animal pathogen. PMID:21451583

  6. Interactions of photosynthesis with genome size and function

    PubMed Central

    Raven, John A.; Beardall, John; Larkum, Anthony W. D.; Sánchez-Baracaldo, Patricia

    2013-01-01

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280–320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements PMID:23754816

  7. Assessing the impact of comparative genomic sequence data on the functional annotation of the Drosophila genome

    PubMed Central

    Bergman, Casey M; Pfeiffer, Barret D; Rincón-Limas, Diego E; Hoskins, Roger A; Gnirke, Andreas; Mungall, Chris J; Wang, Adrienne M; Kronmiller, Brent; Pacleb, Joanne; Park, Soo; Stapleton, Mark; Wan, Kenneth; George, Reed A; de Jong, Pieter J; Botas, Juan; Rubin, Gerald M; Celniker, Susan E

    2002-01-01

    Background It is widely accepted that comparative sequence data can aid the functional annotation of genome sequences; however, the most informative species and features of genome evolution for comparison remain to be determined. Results We analyzed conservation in eight genomic regions (apterous, even-skipped, fushi tarazu, twist, and Rhodopsins 1, 2, 3 and 4) from four Drosophila species (D. erecta, D. pseudoobscura, D. willistoni, and D. littoralis) covering more than 500 kb of the D. melanogaster genome. All D. melanogaster genes (and 78-82% of coding exons) identified in divergent species such as D. pseudoobscura show evidence of functional constraint. Addition of a third species can reveal functional constraint in otherwise non-significant pairwise exon comparisons. Microsynteny is largely conserved, with rearrangement breakpoints, novel transposable element insertions, and gene transpositions occurring in similar numbers. Rates of amino-acid substitution are higher in uncharacterized genes relative to genes that have previously been studied. Conserved non-coding sequences (CNCSs) tend to be spatially clustered with conserved spacing between CNCSs, and clusters of CNCSs can be used to predict enhancer sequences. Conclusions Our results provide the basis for choosing species whose genome sequences would be most useful in aiding the functional annotation of coding and cis-regulatory sequences in Drosophila. Furthermore, this work shows how decoding the spatial organization of conserved sequences, such as the clustering of CNCSs, can complement efforts to annotate eukaryotic genomes on the basis of sequence conservation alone. PMID:12537575

  8. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein

  9. Genomic, Proteomic, Morphological, and Phylogenetic Analyses of vB_EcoP_SU10, a Podoviridae Phage with C3 Morphology

    PubMed Central

    Mirzaei, Mohammadali Khan; Eriksson, Harald; Kasuga, Kie; Haggård-Ljungquist, Elisabeth; Nilsson, Anders S.

    2014-01-01

    A recently isolated phage, vB_EcoP_SU10 (SU10), with the unusual elongated C3 morphotype, can infect a wide range of Escherichia coli strains. We have sequenced the genome of this phage and characterized it further by mass spectrometry based proteomics, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultra-thin section electron microscopy. The genome size is 77,327 base pairs and its genes, and genome architecture, show high similarity to the phiEco32 phage genes and genome. The TEM images reveal that SU10 have a quite long tail for being a Podoviridae phage, and that the tail also changes conformation upon infection. The ultra-thin section electron microscopy images of phages at the stage of replication within the host cell show that the phages form a honeycomb-like structure under packaging of genomes and assembly of mature capsids. This implies a tight link between the replication and cutting of the concatemeric genome, genome packaging, and capsid assembly. We have also performed a phylogenetic analysis of the structural genes common between Podoviridae phages of the C1 and C3 morphotypes. The result shows that the structural genes have coevolved, and that they form two distinct groups linked to their morphotypes. The structural genes of C1 and C3 phages appear to have diverged around 280 million years ago applying a molecular clock calibrated according to the presumed split between the Escherichia – Salmonella genera. PMID:25551446

  10. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/.

  11. In silico Comparison of 19 Porphyromonas gingivalis Strains in Genomics, Phylogenetics, Phylogenomics and Functional Genomics

    PubMed Central

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2017-01-01

    Currently, genome sequences of a total of 19 Porphyromonas gingivalis strains are available, including eight completed genomes (strains W83, ATCC 33277, TDC60, HG66, A7436, AJW4, 381, and A7A1-28) and 11 high-coverage draft sequences (JCVI SC001, F0185, F0566, F0568, F0569, F0570, SJD2, W4087, W50, Ando, and MP4-504) that are assembled into fewer than 300 contigs. The objective was to compare these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. Four copies of 16S rRNA gene sequences were identified in each of the eight complete genomes and one in the other 11 unfinished genomes. These 43 16S rRNA sequences represent only 24 unique sequences and the derived phylogenetic tree suggests a possible evolutionary history for these strains. Phylogenomic comparison based on shared proteins and whole genome nucleotide sequences consistently showed two groups with closely related members: one consisted of ATCC 33277, 381, and HG66, another of W83, W50, and A7436. At least 1,037 core/shared proteins were identified in the 19 P. gingivalis genomes based on the most stringent detecting parameters. Comparative functional genomics based on genome-wide comparisons between NCBI and RAST annotations, as well as additional approaches, revealed functions that are unique or missing in individual P. gingivalis strains, or species-specific in all P. gingivalis strains, when compared to a neighboring species P. asaccharolytica. All the comparative results of this study are available online for download at ftp://www.homd.org/publication_data/20160425/. PMID:28261563

  12. FunSys: Software for functional analysis of prokaryotic transcriptome and proteome

    PubMed Central

    de Sá, Pablo; Pinto, Anne; Ramos, Rommel Thiago Jucá; Coimbra, Nilson; Baraúna, Rafael; Dall'Agnol, Hivana; Carneiro, Adriana; Ranieri, Alex; Valadares, Agenor; Azevedo, Vasco; Schneider, Maria Paula; Barh, Debmalya; Silva, Artur

    2012-01-01

    The vast amount of data produced by next-generation sequencing (NGS) has necessitated the development of computational tools to assist in understanding the myriad functions performed by the biological macromolecules involved in heredity. In this work, we developed the FunSys programme, a stand-alone tool with an user friendly interface that enables us to evaluate and correlate differential expression patterns from RNA sequencing and proteomics datasets. The FunSys generates charts and reports based on the results of the analysis of differential expression to aid the interpretation of the results. Availability FunSys and a test dataset are freely available at https://sourceforge.net/projects/funsysufpa/. It requires Sun jdk 6 or higher and MySQL server 5.1 or higher. PMID:22829724

  13. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data

    PubMed Central

    Yang, Laurence; Tan, Justin; O’Brien, Edward J.; Monk, Jonathan M.; Kim, Donghyuk; Li, Howard J.; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J.; Yurkovich, James T.; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A.; Palsson, Bernhard O.

    2015-01-01

    Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5′UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome. PMID:26261351

  14. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data.

    PubMed

    Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O

    2015-08-25

    Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.

  15. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  16. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  17. Functional Analysis of the Human Genome:. Study of Genetic Disease

    NASA Astrophysics Data System (ADS)

    Tsui, Lap-Chee

    2003-04-01

    I will divide my remarks into 3 parts. First, I will give a brief summary of the Human Genome Project. Second, I will describe our work on human chromosome 7 to illustrate how we could contribute to the Project and disease research. Third, I would like to bring across the argument that study of genetic disease is an integral component of the Human Genome Project. In particular, I will use cystic fibrosis as an example to elaborate why I consider disease study is a part of functional genomics.

  18. Functional Genomic and Advanced Genetic Studies Reveal Novel Insights into the Metabolism, Regulation, and Biology of Haloferax volcanii

    PubMed Central

    Soppa, Jörg

    2011-01-01

    The genome sequence of Haloferax volcanii is available and several comparative genomic in silico studies were performed that yielded novel insight for example into protein export, RNA modifications, small non-coding RNAs, and ubiquitin-like Small Archaeal Modifier Proteins. The full range of functional genomic methods has been established and results from transcriptomic, proteomic and metabolomic studies are discussed. Notably, Hfx. volcanii is together with Halobacterium salinarum the only prokaryotic species for which a translatome analysis has been performed. The results revealed that the fraction of translationally-regulated genes in haloarchaea is as high as in eukaryotes. A highly efficient genetic system has been established that enables the application of libraries as well as the parallel generation of genomic deletion mutants. Facile mutant generation is complemented by the possibility to culture Hfx. volcanii in microtiter plates, allowing the phenotyping of mutant collections. Genetic approaches are currently used to study diverse biological questions–from replication to posttranslational modification—and selected results are discussed. Taken together, the wealth of functional genomic and genetic tools make Hfx. volcanii a bona fide archaeal model species, which has enabled the generation of important results in recent years and will most likely generate further breakthroughs in the future. PMID:22190865

  19. Deciphering primordial cyanobacterial genome functions from protein network analysis.

    PubMed

    Harel, Arye; Karkar, Slim; Cheng, Shu; Falkowski, Paul G; Bhattacharya, Debashish

    2015-03-02

    The Great Oxidation Event (GOE) ∼2.4 billion years ago resulted from the accumulation of oxygen by the ancestors of cyanobacteria [1-3]. Cyanobacteria continue to play a significant role in primary production [4] and in regulating the global marine and limnic nitrogen cycles [5, 6]. Relatively little is known, however, about the evolutionary history and gene content of primordial cyanobacteria [7, 8]. To address these issues, we used protein similarity networks [9], containing proteomes from 48 cyanobacteria as the test group, and reference proteomes from 84 microbes representing four distinct metabolic groups from most reducing to most oxidizing: methanogens, obligate anaerobes (nonmethanogenic), facultative aerobes, and obligate aerobes. These four metabolic groups represent extant bioinformatic proxies for ancient redox chemistries, extending from an anoxic origin through the GOE and ultimately to obligate aerobes [10-13]. Analysis of the network metric degree showed a strong relationship between cyanobacteria and obligate anaerobes, from which cyanobacteria presumably arose, for core functions that include translation, photosynthesis, energy conservation, and environmental interactions. These data were used to reconstruct primordial functions in cyanobacteria that included nine gene families involved in photosynthesis, hydrogenases, and proteins involved in defense from environmental stress. The presence of 60% of these genes in both reaction center I (RC-I) and RC-II-type bacteria may be explained by selective loss of either RC in the evolutionary history of some photosynthetic lineages. Finally, the network reveals that cyanobacteria occupy a unique position among prokaryotes as a hub between anaerobes and obligate aerobes.

  20. Proteomic analysis of the postsynaptic density implicates synaptic function and energy pathways in bipolar disorder

    PubMed Central

    Föcking, M; Dicker, P; Lopez, L M; Hryniewiecka, M; Wynne, K; English, J A; Cagney, G; Cotter, D R

    2016-01-01

    The postsynaptic density (PSD) contains a complex set of proteins of known relevance to neuropsychiatric disorders such as schizophrenia and bipolar disorder. We enriched for this anatomical structure in the anterior cingulate cortex of 16 bipolar disorder samples and 20 controls from the Stanley Medical Research Institute. Unbiased shotgun proteomics incorporating label-free quantitation was used to identify differentially expressed proteins. Quantitative investigation of the PSD identified 2033 proteins, among which 288 were found to be differentially expressed. Validation of expression changes of DNM1, DTNA, NDUFV2, SEPT11 and SSBP was performed by western blotting. Bioinformatics analysis of the differentially expressed proteins implicated metabolic pathways including mitochondrial function, the tricarboxylic acid cycle, oxidative phosphorylation, protein translation and calcium signaling. The data implicate PSD-associated proteins, and specifically mitochondrial function in bipolar disorder. They relate synaptic function in bipolar disorder and the energy pathways that underpin it. Overall, our findings add to a growing literature linking the PSD and mitochondrial function in psychiatric disorders generally, and suggest that mitochondrial function associated with the PSD is particularly important in bipolar disorder. PMID:27898073

  1. A segmental genomic duplication generates a functional intron

    PubMed Central

    Hellsten, Uffe; Aspden, Julie L.; Rio, Donald C.; Rokhsar, Daniel S.

    2011-01-01

    An intron is an extended genomic feature whose function requires multiple constrained positions—donor and acceptor splice sites, a branch point, a polypyrimidine tract and suitable splicing enhancers—that may be distributed over hundreds or thousands of nucleotides. New introns are therefore unlikely to emerge by incremental accumulation of functional sub-elements. Here we demonstrate that a functional intron can be created de novo in a single step by a segmental genomic duplication. This experiment recapitulates in vivo the birth of an intron that arose in the ancestral jawed vertebrate lineage nearly half-a-billion years ago. PMID:21878908

  2. Genome-based Proteomic Analysis of Lignosus rhinocerotis (Cooke) Ryvarden Sclerotium

    PubMed Central

    Yap, Hui-Yeng Yeannie; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis. PMID:25552915

  3. High-throughput TILLING for functional genomics.

    PubMed

    Till, Bradley J; Colbert, Trenton; Tompa, Rachel; Enns, Linda C; Codomo, Christine A; Johnson, Jessica E; Reynolds, Steven H; Henikoff, Jorja G; Greene, Elizabeth A; Steine, Michael N; Comai, Luca; Henikoff, Steven

    2003-01-01

    Targeting-induced local lesions in genomes (TILLING) is a general strategy for identifying induced point mutations that can be applied to almost any organism. Here, we describe the basic methodology for high-throughput TILLING. Gene segments are amplified using fluorescently tagged primers, and products are denatured and reannealed to form heteroduplexes between the mutated sequence and its wild-type counterpart. These heteroduplexes are substrates for cleavage by the endonuclease CEL I. Following cleavage, products are analyzed on denaturing polyacrylamide gels using the LI-COR DNA analyzer system. High-throughput TILLING has been adopted by the Arabidopsis TILLING Project (ATP) to provide allelic series of point mutations for the general Arabidopsis community.

  4. Deductive genomics: a functional approach to identify innovative drug targets in the post-genome era.

    PubMed

    Stumm, Gabriele; Russ, Andreas; Nehls, Michael

    2002-01-01

    The sequencing of the human genome has generated a drug discovery process that is based on sequence analysis and hypothesis-driven (inductive) prediction of gene function. This approach, which we term inductive genomics, is currently dominating the efforts of the pharmaceutical industry to identify new drug targets. According to recent studies, this sequence-driven discovery process is paradoxically increasing the average cost of drug development, thus falling short of the promise of the Human Genome Project to simplify the creation of much needed novel therapeutics. In the early stages of discovery, the flurry of new gene sequences makes it difficult to pick and prioritize the most promising product candidates for product development, as with existing technologies important decisions have to be based on circumstantial evidence that does not strongly predict therapeutic potential. This is because the physiological function of a potential target cannot be predicted by gene sequence analysis and in vitro technologies alone. In contrast, deductive genomics, or large-scale forward genetics, bridges the gap between sequence and function by providing a function-driven in vivo screen of a highly orthologous mammalian model genome for medically relevant physiological functions and drug targets. This approach allows drug discovery to move beyond the focus on sequence-driven identification of new members of classical drug-able protein families towards the biology-driven identification of innovative targets and biological pathways.

  5. Genomics, microRNA, epigenetics, and proteomics for future diagnosis, treatment and monitoring response in upper GI cancers.

    PubMed

    Brücher, Björn L D M; Li, Yan; Schnabel, Philipp; Daumer, Martin; Wallace, Timothy J; Kube, Rainer; Zilberstein, Bruno; Steele, Scott; Voskuil, Jan L A; Jamall, Ijaz S

    2016-03-01

    One major objective for our evolving understanding in the treatment of cancers will be to address how a combination of diagnosis and treatment strategies can be used to integrate patient and tumor variables with an outcome-oriented approach. Such an approach, in a multimodal therapy setting, could identify those patients (1) who should undergo a defined treatment (personalized therapy) (2) in whom modifications of the multimodal therapy due to observed responses might lead to an improvement of the response and/or prognosis (individualized therapy), (3) who might not benefit from a particular toxic treatment regimen, and (4) who could be identified early on and thereby be spared the morbidity associated with such treatments. These strategies could lead in the direction of precision medicine and there is hope of integrating translational molecular data to improve cancer classifications. In order to achieve these goals, it is necessary to understand the key issues in different aspects of biotechnology to anticipate future directions of personalized and individualized diagnosis and multimodal treatment strategies. Providing an overview of translational data in cancers proved to be a challenge as different methods and techniques used to obtain molecular data are used and studies are based on different tumor entities with different tumor biology and prognoses as well as vastly different therapeutic approaches. The pros and cons of the available methodologies and the potential response data in genomics, microRNA, epigenetics and proteomics with a focus on upper gastrointestinal cancers are considered herein to allow for an understanding of where these technologies stand with respect to cancer diagnosis, prognosis and treatment.

  6. Letter from the Director - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The NCI’s Clinical Proteomic Technologies for Cancer (CPTC) initiative is focused on developing a better understanding of cancer biology through the proteomic interrogation of genomically characterized tumors from sources such as The Cancer Genome Atlas.

  7. Director's Update - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) has recently begun the proteomic interrogation of genomically-characterized tumors from The Cancer Genome Atlas.

  8. Advances in Proteomics of Mycobacterium leprae.

    PubMed

    Parkash, O; Singh, B P

    2012-04-01

    Although Mycobacterium leprae was the first bacterial pathogen identified causing human disease, it remains one of the few that is non-cultivable. Understanding the biology of M. leprae is one of the primary challenges in current leprosy research. Genomics has been extremely valuable, nonetheless, functional proteins are ultimately responsible for controlling most aspects of cellular functions, which in turn could facilitate parasitizing the host. Furthermore, bacterial proteins provide targets for most of the vaccines and immunodiagnostic tools. Better understanding of the proteomics of M. leprae could also help in developing new drugs against M. leprae. During the past nearly 15 years, there have been several developments towards the identification of M. leprae proteins employing contemporary proteomics tools. In this review, we discuss the knowledge gained on the biology and pathogenesis of M. leprae from current proteomic studies.

  9. Microfluidics-Based Single-Cell Functional Proteomics for Fundamental and Applied Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R.

    2014-06-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  10. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications.

    PubMed

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R

    2014-01-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  11. Selective conjugation of proteins by mining active proteomes through click-functionalized magnetic nanoparticles.

    PubMed

    Ilyas, Shaista; Ilyas, Muhammad; van der Hoorn, Renier A L; Mathur, Sanjay

    2013-11-26

    Superparamagnetic iron oxide nanoparticles (SPIONs) coated with azide groups were functionalized at the surface with biotin (biotin@SPIONs) and cysteine protease inhibitor E-64 (E-64@SPIONs) with the purpose of developing nanoparticle-based assays for identifying cysteine proteases in proteomes. Magnetite particles (ca. 6 nm) were synthesized by microwave-assisted thermal decomposition of iron acetylacetonate and subsequently functionalized following a click chemistry protocol to obtain biotin and E-64 labeled particulate systems. Successful surface modification and covalent attachment of functional groups and molecules were confirmed by FT-IR spectroscopy and thermal gravimetric analysis. The ability of the surface-grafted biotin terminal groups to specifically interact with streptavidin (either horseradish peroxidase [(HRP)-luminol-H2O2] or rhodamine) was confirmed by chemiluminescent assay. A quantitative assessment showed a capture limit of 0.55-1.65 μg protein/100 μg particles. Furthermore, E-64@SPIONs were successfully used to specifically label papain-like cysteine proteases from crude plant extracts. Owing to the simplicity and versatility of the technique, together with the superparamagnetic behavior of FeOx-nanoparticles, the results demonstrate that click chemistry on surface anchored azide group is a viable approach toward bioconjugations that can be extended to other nanoparticles surfaces with different functional groups to target specific therapeutic and diagnostic applications.

  12. Functional proteomics of nonalcoholic steatohepatitis: Mitochondrial proteins as targets of S-adenosylmethionine

    PubMed Central

    Santamaría, Enrique; Avila, Matías A.; Latasa, M. Ujue; Rubio, Angel; Martín-Duce, Antonio; Lu, Shelly C.; Mato, José M.; Corrales, Fernando J.

    2003-01-01

    Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A−/−) to study the proteome of the liver during the development of steatohepatitis. One hundred and seventeen protein spots, differentially expressed during the development of steatohepatitis, were selected and identified by peptide mass fingerprinting. Among them, 12 proteins were found to be affected from birth, when MAT1A−/− expression is switched on in WT mouse liver, to the rise of histological lesions, which occurs at ≈8 months. Of the 12 proteins, 4 [prohibitin 1 (PHB1), cytochrome c oxidase I and II, and ATPase β-subunit] have known roles in mitochondrial function. We show that the alteration in expression of PHB1 correlates with a loss of mitochondrial function. Experiments in isolated rat hepatocytes indicate that AdoMet regulates PHB1 content, thus suggesting ways by which steatohepatitis may be induced. Importantly, we found the expression of these mitochondrial proteins was abnormal in ob/ob mice and obese patients who are at risk for nonalcoholic steatohepatitis. PMID:12631701

  13. FUNCTIONAL PROTEOME OF MACROPHAGE CARRIED NANOFORMULATED ANTIRETROVIRAL THERAPY DEMONSTRATES ENHANCED PARTICLE CARRYING CAPACITY

    PubMed Central

    Martinez-Skinner, Andrea L.; Veerubhotla, Ram S.; Liu, Han; Xiong, Huangui; Yu, Fang; McMillan, JoEllyn M.; Gendelman, Howard E.

    2013-01-01

    Our laboratory has pioneered the development of long-acting nanoformulations of antiretroviral therapy (nanoART). NanoART serves to improve drug compliance, toxicities, and access to viral reservoirs. These all function to improve treatment of human immunodeficiency virus (HIV) infection. Formulations are designed to harness the carrying capacities of mononuclear phagocytes (MP; monocytes and macrophages) and to use these cells as Trojan horses for drug delivery. Such a drug distribution system limits ART metabolism and excretion while facilitating access to viral reservoirs. Our prior works demonstrated a high degree of nanoART sequestration in macrophage recycling endosomes with broad and sustained drug tissue biodistribution and depots with limited untoward systemic toxicities. Despite such benefits, the effects of particle carriage on the cells’ functional capacities remained poorly understood. Thus, we employed pulsed stable isotope labeling of amino acids in cell culture to elucidate the macrophage proteome and assess any alterations in cellular functions that would affect cell-drug carriage and release kinetics. NanoART-MP interactions resulted in the induction of a broad range of activation-related proteins that can enhance phagocytosis, secretory functions, and cell migration. Notably, we now demonstrate that particle-cell interactions serve to enhance drug loading while facilitating drug tissue depots and transportation. PMID:23544708

  14. In vivo protein trapping produces a functional expression codex of the vertebrate proteome.

    PubMed

    Clark, Karl J; Balciunas, Darius; Pogoda, Hans-Martin; Ding, Yonghe; Westcot, Stephanie E; Bedell, Victoria M; Greenwood, Tammy M; Urban, Mark D; Skuster, Kimberly J; Petzold, Andrew M; Ni, Jun; Nielsen, Aubrey L; Patowary, Ashok; Scaria, Vinod; Sivasubbu, Sridhar; Xu, Xiaolei; Hammerschmidt, Matthias; Ekker, Stephen C

    2011-06-01

    We describe a conditional in vivo protein-trap mutagenesis system that reveals spatiotemporal protein expression dynamics and can be used to assess gene function in the vertebrate Danio rerio. Integration of pGBT-RP2.1 (RP2), a gene-breaking transposon containing a protein trap, efficiently disrupts gene expression with >97% knockdown of normal transcript amounts and simultaneously reports protein expression for each locus. The mutant alleles are revertible in somatic tissues via Cre recombinase or splice-site-blocking morpholinos and are thus to our knowledge the first systematic conditional mutant alleles outside the mouse model. We report a collection of 350 zebrafish lines that include diverse molecular loci. RP2 integrations reveal the complexity of genomic architecture and gene function in a living organism and can provide information on protein subcellular localization. The RP2 mutagenesis system is a step toward a unified 'codex' of protein expression and direct functional annotation of the vertebrate genome.

  15. Extreme evolutionary conservation of functionally important regions in H1N1 influenza proteome.

    PubMed

    Warren, Samantha; Wan, Xiu-Feng; Conant, Gavin; Korkin, Dmitry

    2013-01-01

    The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1) do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2) in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80's, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights towards the

  16. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function.

    PubMed

    Prunier, Julien; Verta, Jukka-Pekka; MacKay, John J

    2016-01-01

    Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees.

  17. Proteomics in medical microbiology.

    PubMed

    Cash, P

    2000-04-01

    The techniques of proteomics (high resolution two-dimensional electrophoresis and protein characterisation) are widely used for microbiological research to analyse global protein synthesis as an indicator of gene expression. The rapid progress in microbial proteomics has been achieved through the wide availability of whole genome sequences for a number of bacterial groups. Beyond providing a basic understanding of microbial gene expression, proteomics has also played a role in medical areas of microbiology. Progress has been made in the use of the techniques for investigating the epidemiology and taxonomy of human microbial pathogens, the identification of novel pathogenic mechanisms and the analysis of drug resistance. In each of these areas, proteomics has provided new insights that complement genomic-based investigations. This review describes the current progress in these research fields and highlights some of the technical challenges existing for the application of proteomics in medical microbiology. The latter concern the analysis of genetically heterogeneous bacterial populations and the integration of the proteomic and genomic data for these bacteria. The characterisation of the proteomes of bacterial pathogens growing in their natural hosts remains a future challenge.

  18. Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks

    PubMed Central

    2013-01-01

    Background Translational and post-translational protein modifications play a key role in the response of plants to pathogen infection. Among the latter, phosphorylation is critical in modulating protein structure, localization and interaction with other partners. In this work, we used a multiplex staining approach with 2D gels to study quantitative changes in the proteome and phosphoproteome of Flavescence dorée-affected and recovered ‘Barbera’ grapevines, compared to healthy plants. Results We identified 48 proteins that differentially changed in abundance, phosphorylation, or both in response to Flavescence dorée phytoplasma infection. Most of them did not show any significant difference in recovered plants, which, by contrast, were characterized by changes in abundance, phosphorylation, or both for 17 proteins not detected in infected plants. Some enzymes involved in the antioxidant response that were up-regulated in infected plants, such as isocitrate dehydrogenase and glutathione S-transferase, returned to healthy-state levels in recovered plants. Others belonging to the same functional category were even down-regulated in recovered plants (oxidoreductase GLYR1 and ascorbate peroxidase). Our proteomic approach thus agreed with previously published biochemical and RT-qPCR data which reported down-regulation of scavenging enzymes and accumulation of H2O2 in recovered plants, possibly suggesting a role for this molecule in remission from infection. Fifteen differentially phosphorylated proteins (| ratio | > 2, p < 0.05) were identified in infected compared to healthy plants, including proteins involved in photosynthesis, response to stress and the antioxidant system. Many were not differentially phosphorylated in recovered compared to healthy plants, pointing to their specific role in responding to infection, followed by a return to a steady-state phosphorylation level after remission of symptoms. Gene ontology (GO) enrichment and statistical

  19. Budding off: bringing functional genomics to Candida albicans.

    PubMed

    Anderson, Matthew Z; Bennett, Richard J

    2016-03-01

    Candida species are the most prevalent human fungal pathogens, with Candida albicans being the most clinically relevant species. Candida albicans resides as a commensal of the human gastrointestinal tract but is a frequent cause of opportunistic mucosal and systemic infections. Investigation of C. albicans virulence has traditionally relied on candidate gene approaches, but recent advances in functional genomics have now facilitated global, unbiased studies of gene function. Such studies include comparative genomics (both between and within Candida species), analysis of total RNA expression, and regulation and delineation of protein-DNA interactions. Additionally, large collections of mutant strains have begun to aid systematic screening of clinically relevant phenotypes. Here, we will highlight the development of functional genomics in C. albicans and discuss the use of these approaches to addressing both commensalism and pathogenesis in this species.

  20. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  1. Structure and Functional Studies on Dengue-2 Virus Genome

    DTIC Science & Technology

    1986-03-01

    AD STRUCTURE AND FUNCTIONAL STUDIES ON DENGUE -2 VIRUS GENOME FINAL Report Lfl C’) Radha Krishnan Padmanabhan, Ph.D. 0) March 1, 1986 Supported by U.S...and Functional Studies on Dengue -2 Virus Genome 12. PERSONAL AUTHOR(S) Radha Krishnan Padmanabhan 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF...3’-end of Dengue RNA in order to facilitate cDNA synthesis by oligo d(T) priming as proposed in the original research project. 2. We also showed that

  2. WWOX: its genomics, partners, and functions.

    PubMed

    Del Mare, Sara; Salah, Zaidoun; Aqeilan, Rami I

    2009-11-01

    The WW domain-containing oxidoreductase (WWOX) spans one of the most active common fragile sites (CFSs) involved in cancer, FRA16D. WWOX encodes a 46-kDa protein that contains two N-terminal WW domains and a central short-chain dehydrogenase/reductase (SDR) domain. Through its WW domain, Wwox interacts with its partners and modulates their functions. Our data indicate that Wwox suppresses the transactivation function of several transcription factors implied in neoplasia by sequestering them in the cytoplasm. Work from our laboratory and other research groups have demonstrated that Wwox participates in a number of cellular processes including growth, differentiation, apoptosis, and tumor suppression. Targeted deletion of the Wwox gene in mice causes increased spontaneous and chemically induced tumor incidence supporting bona fide tumor suppressor function of WWOX. Moreover, generation of the Wwox-deficient mice uncovers, at least in part, some of the physiological in vivo functions of the WWOX gene. This review focuses on recent progress that elucidates Wwox functions in biology and pathology.

  3. Proteomic analysis of the secretions of Pseudallescheria boydii, a human fungal pathogen with unknown genome.

    PubMed

    da Silva, Bianca Alcântara; Sodré, Cátia Lacerda; Souza-Gonçalves, Ana Luiza; Aor, Ana Carolina; Kneipp, Lucimar Ferreira; Fonseca, Beatriz Bastos; Rozental, Sonia; Romanos, Maria Teresa Villela; Sola-Penna, Mauro; Perales, Jonas; Kalume, Dário Eluan; dos Santos, André Luis Souza

    2012-01-01

    Pseudallescheria boydii is a filamentous fungus that causes a wide array of infections that can affect practically all the organs of the human body. The treatment of pseudallescheriosis is difficult since P. boydii exhibits intrinsic resistance to the majority of antifungal drugs used in the clinic and the virulence attributes expressed by this fungus are unknown. The study of the secretion of molecules is an important approach for understanding the pathogenicity of fungi. With this task in mind, we have shown that mycelial cells of P. boydii were able to actively secrete proteins into the extracellular environment; some of them were recognized by antibodies present in the serum of a patient with pseudallescheriosis. Additionally, molecules secreted by P. boydii induced in vitro irreversible damage in pulmonary epithelial cells. Subsequently, two-dimensional gel electrophoresis combined with mass spectrometry was carried out in order to start the construction of a map of secreted proteins from P. boydii mycelial cells. The two-dimensional map showed that most of the proteins (around 100 spots) were focused at pH ranging from 4 to 7 with molecular masses ranging from 14 to >117 kDa. Fifty spots were randomly selected, of which 30 (60%) were consistently identified, while 20 (40%) spots generated peptides that showed no resemblance to any known protein from other fungi and/or MS with low quality. Notably, we identified proteins involved in metabolic pathways (energy/carbohydrate, nucleotide, and fatty acid), cell wall remodeling, RNA processing, signaling, protein degradation/nutrition, translation machinery, drug elimination and/or detoxification, protection against environmental stress, cytoskeleton/movement proteins, and immunogenic molecules. Since the genome of this fungus is not sequenced, we performed enzymatic and immunodetection assays in order to corroborate the presence of some released proteins. The identification of proteins actively secreted by P

  4. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I.

    PubMed

    Guo, Tianyao; Duan, Zhigui; Chen, Jia; Xie, Chunliang; Wang, Ying; Chen, Ping; Wang, Xianchun

    2017-01-01

    Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches.

  5. Pull-down combined with proteomic strategy reveals functional diversity of synaptotagmin I

    PubMed Central

    Guo, Tianyao; Duan, Zhigui; Chen, Jia; Xie, Chunliang; Wang, Ying; Chen, Ping

    2017-01-01

    Synaptotagmin I (Syt I) is most abundant in the brain and is involved in multiple cellular processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our present study employed a pull-down combined with proteomic strategy to identify the C2 domain-interacting proteins to comprehensively understand the biological roles of the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and 64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to both of them. Compared with C2A, C2B could bind to many more proteins particularly those involved in synaptic transmission and metabolic regulation. Functional analysis indicated that Syt I may exert impacts by interacting with other proteins on multiple cellular processes, including vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis, transmembrane transport and structure formation, etc. These results demonstrate that the functional diversity of Syt I is higher than previously expected, that its two domains may mediate the same and different cellular processes cooperatively or independently, and that C2B domain may play even more important roles than C2A in the functioning of Syt I. This work not only further deepened our understanding of the functional diversity of Syt I and the functional differences between its two C2 domains, but also provided important clues for the further related researches. PMID:28194317

  6. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat

    PubMed Central

    Budak, Hikmet; Hussain, Babar; Khan, Zaeema; Ozturk, Neslihan Z.; Ullah, Naimat

    2015-01-01

    Drought being a yield limiting factor has become a major threat to international food security. It is a complex trait and drought tolerance response is carried out by various genes, transcription factors (TFs), microRNAs (miRNAs), hormones, proteins, co-factors, ions, and metabolites. This complexity has limited the development of wheat cultivars for drought tolerance by classical breeding. However, attempts have been made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent years, several molecular markers including single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs) associated with genes for drought signaling pathways have been reported. Screening of large wheat collections by marker assisted selection (MAS) and transformation of wheat with different genes/TFs has improved drought signaling pathways and tolerance. Several miRNAs also provide drought tolerance to wheat by regulating various TFs/genes. Emergence of OMICS techniques including transcriptomics, proteomics, metabolomics, and ionomics has helped to identify and characterize the genes, proteins, metabolites, and ions involved in drought signaling pathways. Together, all these efforts helped in understanding the complex drought tolerance mechanism. Here, we have reviewed the advances in wide hybridization, MAS, QTL mapping, miRNAs, transgenic technique, genome editing system, and above mentioned functional genomics tools for identification and utility of signaling molecules for improvement in wheat drought tolerance. PMID:26635838

  7. Jatropha curcas, a biofuel crop: Functional genomics for understanding metabolic pathways and genetic improvement

    PubMed Central

    Maghuly, Fatemeh; Laimer, Margit

    2013-01-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. PMID:24092674

  8. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    PubMed Central

    Sharivkin, Revital; Walker, Michael D.; Soen, Yoav

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+), glucagon-producing alpha cells (CD9- /CD56+) and trypsin-producing acinar cells (CD9- /CD56-). This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples. PMID:25706282

  9. Functionalization of hybrid monolithic columns via thiol-ene click reaction for proteomics analysis.

    PubMed

    Liu, Zhongshan; Liu, Jing; Liu, Zheyi; Wang, Hongwei; Ou, Junjie; Ye, Mingliang; Zou, Hanfa

    2017-01-16

    The vinyl-functionalized hybrid monolithic columns (75 and 150μm i.d.) were prepared via sol-gel chemistry of tetramethoxysilane (TMOS) and vinyltrimethoxysilane (VTMS). The content of accessible vinyl groups was further improved after the monolithic column was post-treated with vinyldimethylethoxysilane (VDMES). The surface properties of monolithic columns were tailored via thiol-ene click reaction by using 1-octadecanethiol, sodium 3-mercapto-1-propanesulfonate and 2,2'-(ethylenedioxy)diethanethiol/vinylphosphonic acid, respectively. The preparing octadecyl-functionalized monolithic columns were adopted for proteomics analysis in cLC-MS/MS. A 37-cm-long×75-μm-i.d. monolithic column could identify 3918 unique peptides and 1067 unique proteins in the tryptic digest of proteins from HeLa cells. When a 90-cm-long×75-μm-i.d. monolithic column was used, the numbers of unique peptides and proteins were increased by 82% and 32%, respectively. Furthermore, strong cation exchange (SCX) monolithic columns (4cm in length×150μm i.d.) were also prepared and coupled with the 37-cm-long×75-μm-i.d. octadecyl-functionalized monolithic column for two-dimensional SCX-RPLC-MS/MS analysis, which could identify 17114 unique peptides and 3211 unique proteins.

  10. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function

    PubMed Central

    Sadhukhan, Sushabhan; Liu, Xiaojing; Ryu, Dongryeol; Nelson, Ornella D.; Stupinski, John A.; Li, Zhi; Chen, Wei; Zhang, Sheng; Weiss, Robert S.; Auwerx, Johan; Lin, Hening

    2016-01-01

    Cellular metabolites, such as acyl-CoA, can modify proteins, leading to protein posttranslational modifications (PTMs). One such PTM is lysine succinylation, which is regulated by sirtuin 5 (SIRT5). Although numerous proteins are modified by lysine succinylation, the physiological significance of lysine succinylation and SIRT5 remains elusive. Here, by profiling acyl-CoA molecules in various mouse tissues, we have discovered that different tissues have different acyl-CoA profiles and that succinyl-CoA is the most abundant acyl-CoA molecule in the heart. This interesting observation has prompted us to examine protein lysine succinylation in different mouse tissues in the presence and absence of SIRT5. Protein lysine succinylation predominantly accumulates in the heart when Sirt5 is deleted. Using proteomic studies, we have identified many cardiac proteins regulated by SIRT5. Our data suggest that ECHA, a protein involved in fatty acid oxidation, is a major enzyme that is regulated by SIRT5 and affects heart function. Sirt5 knockout (KO) mice have lower ECHA activity, increased long-chain acyl-CoAs, and decreased ATP in the heart under fasting conditions. Sirt5 KO mice develop hypertrophic cardiomyopathy, as evident from the increased heart weight relative to body weight, as well as reduced shortening and ejection fractions. These findings establish that regulating heart metabolism and function is a major physiological function of lysine succinylation and SIRT5. PMID:27051063

  11. The Escherichia coli Proteome: Past, Present, and Future Prospects†

    PubMed Central

    Han, Mee-Jung; Lee, Sang Yup

    2006-01-01

    Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308

  12. Proteome Studies of Filamentous Fungi

    SciTech Connect

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.

  13. Integrative analysis of genomics and proteomics data on clinical breast cancer tissue specimens extracted with acid guanidinium thiocyanate-phenol-chloroform.

    PubMed

    Braakman, René B H; Bezstarosti, Karel; Sieuwerts, Anieta M; de Weerd, Vanja; van Galen, Anne M; Stingl, Christoph; Luider, Theo M; Timmermans, Mieke A M; Smid, Marcel; Martens, John W M; Foekens, John A; Demmers, Jeroen A A; Umar, Arzu

    2015-03-06

    Acid guanidinium thiocyanate, phenol, and chloroform extraction (AGPC) is a commonly used procedure to extract RNA from fresh frozen tissues and cell lines. In addition, DNA and proteins can be recovered, which makes AGPC an attractive source for integrative analysis on tissues of which little material is available, such as clinical specimens. Despite this potential, AGPC has only scarcely been used for proteomic analysis, mainly due to difficulties in extracting proteins. We have used a quantitative mass spectrometry method to show that proteins can readily be recovered from AGPC extracted tissues with high recovery and repeatability, which allows this method to be used for global proteomic profiling. Protein expression data for a selected number of clinically relevant markers, of which transcript and protein levels are known to be correlated, were in agreement with genomic and transcriptomic data obtained from the same AGPC lysate. Furthermore, global proteomic profiling successfully discriminated breast tumor tissues according to their clinical subtype. Lastly, a reference gene set of differentially expressed transcripts was strongly enriched in the differentially abundant proteins in our cohort. AGPC lysates are therefore well suited for comparative protein and integrative analyses.

  14. Structural and Functional Proteomic Analysis of a Developing Energy Transducing Membrane

    SciTech Connect

    Niederman, Robert A

    2012-06-04

    While much is known about the light reactions of photosynthesis in purple bacteria, comparatively little information is available on how the requisite integral membrane proteins are assembled, their patterns of cellular localization are established or their apoproteins cooperate with numerous assembly factors in their insertion into the growing intracytoplasmic membrane (ICM). This problem was approached through a detailed structural and functional proteomic analysis of ICM assembly process in the well-characterized purple bacterium Rhodobacter sphaeroides. Proteomic approaches have focused upon identification of membrane proteins temporally expressed during ICM development and spatially localized in both membrane growth initiation sites and in mature ICM vesicles. Protocols were established for ICM induction under reduced aeration and ICM remodeling in cells adapting to low intensity illumination, which permitted isolation, in sucrose density gradients, of ICM growth initiation sites as an upper pigmented band (UPB) and mature ICM vesicles as the main (chromatophore) band. Non-denaturing clear native gel electrophoresis (CNE) of these isolated membrane fractions gave rise to pigmented bands containing the peripheral light-harvesting 2 (LH2) antenna and the reaction center-light-harvesting 1 (RC-LH1) core complex, together with a full array of other ICM proteins, which were subjected to proteomic analysis. Proteomic analysis of the gel bands from chromatophores revealed developmental changes including increasing levels of the LH2 complex as ICM development proceeded, as well as a large array of other associated proteins including high spectral counts for the F1FO ATP synthase subunits, given the inability to detect this coupling factor, as well as the more abundant cytochrome bc1 complex by atomic force microscopy (AFM). Significant levels of general membrane assembly factors were encountered, as well as high counts for RSP6124, a protein of unknown function

  15. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  16. Integrative genomics to dissect retinoid functions.

    PubMed

    Mendoza-Parra, Marco-Antonio; Gronemeyer, Hinrich

    2014-01-01

    Retinoids and rexinoids, as all other ligands of the nuclear receptor (NR) family, act as ligand-regulated trans-acting transcription factors that bind to cis-acting DNA regulatory elements in the promoter regions of target genes (for reviews see [12, 22, 23, 26, 36]). Ligand binding modulates the communication functions of the receptor with the intracellular environment, which essentially entails receptor-protein and receptor-DNA or receptor-chromatin interactions. In this communication network, the receptor simultaneously serves as both intracellular sensor and regulator of cell/organ functions. Receptors are "intelligent" mediators of the information encoded in the chemical structure of a nuclear receptor ligand, as they interpret this information in the context of cellular identity and cell-physiological status and convert it into a dynamic chain of receptor-protein and receptor-DNA interactions. To process input and output information, they are composed of a modular structure with several domains that have evolved to exert particular molecular recognition functions. As detailed in other chapters in this volume, the main functional domains are the DNA-binding (DBD) and ligand-binding (LBD) [5-7, 38, 56, 71]. The LBD serves as a dual input-output information processor. Inputs, such as ligand binding or receptor phosphorylations, induce allosteric changes in receptor surfaces that serve as docking sites for outputs, such as subunits of transcription and epigenetic machineries or enzyme complexes. The complexity of input and output signals and their interdependencies is far from being understood.

  17. The human sperm proteome 2.0: An integrated resource for studying sperm functions at the level of posttranslational modification.

    PubMed

    Wang, Ying; Wan, Jinyuan; Ling, Xiufeng; Liu, Mingxi; Zhou, Tao

    2016-10-01

    Various types of PTMs play important roles in the regulation of sperm proteins. However, most large-scale proteomic studies only focused on a single type of modification due to the limitation of enrichment methods. To investigate the complex composition of modified sperm proteins, we constructed the human sperm proteome 2.0 that integrated lysine acetylated, phosphorylated, N-linked glycosylated, and protein N-terminal acetylated proteins from previously published proteomic datasets. A total of 6069 modified sites on 2132 proteins were annotated. Functional enrichment analyses showed that different types of modified sperm proteins displayed different functional distributions. We found that acetylated, phosphorylated, and glycosylated proteins are more directly involved in sperm functions. While N-termnial acetylated proteins and nonmodified proteins appear to be more associated with the basic cellular functions. Thus, it is efficient to search for fertility-associated biomarkers in acetylated, phosphorylated, and glycosylated proteins. We also predicted modification cross-talks within the same proteins or between different proteins that provided potential hotspot targets for understanding the regulation of sperm functions via multiple modifications.

  18. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein.

    PubMed

    Senis, Yotis A; Tomlinson, Michael G; García, Angel; Dumon, Stephanie; Heath, Victoria L; Herbert, John; Cobbold, Stephen P; Spalton, Jennifer C; Ayman, Sinem; Antrobus, Robin; Zitzmann, Nicole; Bicknell, Roy; Frampton, Jon; Authi, Kalwant S; Martin, Ashley; Wakelam, Michael J O; Watson, Stephen P

    2007-03-01

    The platelet surface is poorly characterized due to the low abundance of many membrane proteins and the lack of specialist tools for their investigation. In this study we identified novel human platelet and mouse megakaryocyte membrane proteins using specialist proteomics and genomics approaches. Three separate methods were used to enrich platelet surface proteins prior to identification by liquid chromatography and tandem mass spectrometry: lectin affinity chromatography, biotin/NeutrAvidin affinity chromatography, and free flow electrophoresis. Many known, abundant platelet surface transmembrane proteins and several novel proteins were identified using each receptor enrichment strategy. In total, two or more unique peptides were identified for 46, 68, and 22 surface membrane, intracellular membrane, and membrane proteins of unknown subcellular localization, respectively. The majority of these were single transmembrane proteins. To complement the proteomics studies, we analyzed the transcriptome of a highly purified preparation of mature primary mouse megakaryocytes using serial analysis of gene expression in view of the increasing importance of mutant mouse models in establishing protein function in platelets. This approach identified all of the major classes of platelet transmembrane receptors, including multitransmembrane proteins. Strikingly 17 of the 25 most megakaryocyte-specific genes (relative to 30 other serial analysis of gene expression libraries) were transmembrane proteins, illustrating the unique nature of the megakaryocyte/platelet surface. The list of novel plasma membrane proteins identified using proteomics includes the immunoglobulin superfamily member G6b, which undergoes extensive alternate splicing. Specific antibodies were used to demonstrate expression of the G6b-B isoform, which contains an immunoreceptor tyrosine-based inhibition motif. G6b-B undergoes tyrosine phosphorylation and association with the SH2 domain-containing phosphatase

  19. Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells

    PubMed Central

    Wang, Chien-Yu; Staniforth, Vanisree; Chiao, Ming-Tsang; Hou, Chia-Chung; Wu, Han-Ming; Yeh, Kuo-Chen; Chen, Chun-Houh; Hwang, Pei-Ing; Wen, Tuan-Nan; Shyur, Lie-Fen; Yang, Ning-Sun

    2008-01-01

    Background Echinacea spp. extracts and the derived phytocompounds have been shown to induce specific immune cell activities and are popularly used as food supplements or nutraceuticals for immuno-modulatory functions. Dendritic cells (DCs), the most potent antigen presenting cells, play an important role in both innate and adaptive immunities. In this study, we investigated the specific and differential gene expression in human immature DCs (iDCs) in response to treatment with a butanol fraction containing defined bioactive phytocompounds extracted from stems and leaves of Echinacea purpurea, that we denoted [BF/S+L/Ep]. Results Affymetrix DNA microarray results showed significant up regulation of specific genes for cytokines (IL-8, IL-1β, and IL-18) and chemokines (CXCL 2, CCL 5, and CCL 2) within 4 h after [BF/S+L/Ep] treatment of iDCs. Bioinformatics analysis of genes expressed in [BF/S+L/Ep]-treated DCs revealed a key-signaling network involving a number of immune-modulatory molecules leading to the activation of a downstream molecule, adenylate cyclase 8. Proteomic analysis showed increased expression of antioxidant and cytoskeletal proteins after treatment with [BF/S+L/Ep] and cichoric acid. Conclusion This study provides information on candidate target molecules and molecular signaling mechanisms for future systematic research into the immune-modulatory activities of an important traditional medicinal herb and its derived phytocompounds. PMID:18847511

  20. Genomic Functionalization: The Next Revolution In Biology

    SciTech Connect

    Anderson, Peter; Schoeniger, Joseph S.; Imbro, Paula M.

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  1. Genetic and genomic approaches to understanding macrophage identity and function.

    PubMed

    Glass, Christopher K

    2015-04-01

    A major goal of our laboratory is to understand the molecular mechanisms that underlie the development and functions of diverse macrophage phenotypes in health and disease. Recent studies using genetic and genomic approaches suggest a relatively simple model of collaborative and hierarchical interactions between lineage-determining and signal-dependent transcription factors that enable selection and activation of transcriptional enhancers that specify macrophage identity and function. In addition, we have found that it is possible to use natural genetic variation as a powerful tool for advancing our understanding of how the macrophage deciphers the information encoded by the genome to attain specific phenotypes in a context-dependent manner. Here, I will describe our recent efforts to extend genetic and genomic approaches to investigate the roles of distinct tissue environments in determining the phenotypes of different resident populations of macrophages.

  2. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function.

    PubMed

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.

  3. Redox Proteomics Identification of Oxidatively Modified Myocardial Proteins in Human Heart Failure: Implications for Protein Function

    PubMed Central

    Brioschi, Maura; Polvani, Gianluca; Fratto, Pasquale; Parolari, Alessandro; Agostoni, Piergiuseppe; Tremoli, Elena; Banfi, Cristina

    2012-01-01

    Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF. PMID:22606238

  4. Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions.

    PubMed

    Hung, Yu-Chiang; Wang, Pei-Wen; Pan, Tai-Long

    2010-06-01

    Salvia miltiorrhiza is a Chinese herb widely used for cardiovascular disorder regimens, yet little is known about the cellular mechanisms that contribute to attenuated growth of smooth muscle cells (SMCs) under oxidative stress such as homocysteine (Hcy) treatment. As anticipated, a low dose (0.015 mg/mL) of S.miltiorrhiza aqueous extract (SMAE) significantly inhibited (>60%) the growth of a rat smooth muscle cell line (A10) under Hcy stimulation and the intracellular reactive oxygen species (ROS) concentration obviously decreased after SMAE treatment in terms of reducing p47(phox) translocation and increasing catalase activity. Signaling profile suggests that SMAE inhibited Hcy-induced A10 cell growth via the PKC/MAPK-dependent pathway. Two-dimensional electrophoresis (2-DE) coupled with mass spectrometry revealed statistically significant changes in the intensity of 14 proteins in response to Hcy and Hcy/SMAE. Meanwhile, SMAE attenuated carbonyl-modification of specific cytoskeleton and chaperone proteins leading to cell type transformation. Moreover, a network analysis using MetaCore shed more light on the molecular basis associated with SMAE efficacy. SMAE exerts its protective effect through the scavenging of ROS and subsequent modulation of protein carbonylation to inhibit cell proliferation. These signature networks and functional proteomics highlighted herein may facilitate the evaluation of potential therapeutic targets and elucidate novel mechanisms through which protein functions can be regulated by the redox status.

  5. Proteomic Landscape of Tissue-Specific Cyclin E Functions in Vivo

    PubMed Central

    Odajima, Junko; Jung, Piotr; Ndassa-Colday, Yasmine; Ficaro, Scott; Geng, Yan; Marco, Eugenio; Michowski, Wojciech; Wang, Yaoyu E.; DeCaprio, James A.; Litovchick, Larisa; Marto, Jarrod; Sicinski, Piotr

    2016-01-01

    E-type cyclins (cyclins E1 and E2) are components of the cell cycle machinery that has been conserved from yeast to humans. The major function of E-type cyclins is to drive cell division. It is unknown whether in addition to their ‘core’ cell cycle functions, E-type cyclins also perform unique tissue-specific roles. Here, we applied high-throughput mass spectrometric analyses of mouse organs to define the repertoire of cyclin E protein partners in vivo. We found that cyclin E interacts with distinct sets of proteins in different compartments. These cyclin E interactors are highly enriched for phosphorylation targets of cyclin E and its catalytic partner, the cyclin-dependent kinase 2 (Cdk2). Among cyclin E interactors we identified several novel tissue-specific substrates of cyclin E-Cdk2 kinase. In proliferating compartments, cyclin E-Cdk2 phosphorylates Lin proteins within the DREAM complex. In the testes, cyclin E-Cdk2 phosphorylates Mybl1 and Dmrtc2, two meiotic transcription factors that represent key regulators of spermatogenesis. In embryonic and adult brains cyclin E interacts with proteins involved in neurogenesis, while in adult brains also with proteins regulating microtubule-based processes and microtubule cytoskeleton. We also used quantitative proteomics to demonstrate re-wiring of the cyclin E interactome upon ablation of Cdk2. This approach can be used to study how protein interactome changes during development or in any pathological state such as aging or cancer. PMID:27828963

  6. Functional annotation of proteomic data from chicken heterophils and macrophages induced by carbon nanotube exposure.

    PubMed

    Li, Yun-Ze; Cheng, Chung-Shi; Chen, Chao-Jung; Li, Zi-Lin; Lin, Yao-Tung; Chen, Shuen-Ei; Huang, San-Yuan

    2014-05-12

    With the expanding applications of carbon nanotubes (CNT) in biomedicine and agriculture, questions about the toxicity and biocompatibility of CNT in humans and domestic animals are becoming matters of serious concern. This study used proteomic methods to profile gene expression in chicken macrophages and heterophils in response to CNT exposure. Two-dimensional gel electrophoresis identified 12 proteins in macrophages and 15 in heterophils, with differential expression patterns in response to CNT co-incubation (0, 1, 10, and 100 µg/mL of CNT for 6 h) (p < 0.05). Gene ontology analysis showed that most of the differentially expressed proteins are associated with protein interactions, cellular metabolic processes, and cell mobility, suggesting activation of innate immune functions. Western blot analysis with heat shock protein 70, high mobility group protein, and peptidylprolyl isomerase A confirmed the alterations of the profiled proteins. The functional annotations were further confirmed by effective cell migration, promoted interleukin-1β secretion, and more cell death in both macrophages and heterophils exposed to CNT (p < 0.05). In conclusion, results of this study suggest that CNT exposure affects protein expression, leading to activation of macrophages and heterophils, resulting in altered cytoskeleton remodeling, cell migration, and cytokine production, and thereby mediates tissue immune responses.

  7. Proteomics: present and future implications in neuro-oncology.

    PubMed

    Micallef, Johann; Gajadhar, Aaron; Wiley, Joseph; DeSouza, Leroi V; Michael Siu, K W; Guha, Abhijit

    2008-03-01

    PROTEOMICS, IN ITS broadest mandate, is the study of proteins and their functions. As the "workhorses" of the genome, proteins govern normal cellular structure and function. Protein function is not just a reflection of its expression level; it is also the cumulative result of many post-transcriptional (splicing) and post-translational events that together determine cellular localization, interactions, and longevity. The composition and variability of the proteome is vastly more complex than the corresponding genome. It is this proteome variation that helps define an organism and the unique characteristics that separate one individual from another. Aberrations in protein function, which alter normal cellular structure and function, are the ultimate basis of disease, including cancer. Therefore, an understanding of protein networks through a systems biology approach of proteomics is necessary to understand normal and abnormal cellular function, with the goal of performing rational therapeutic interventions. In this review, we focus on two emerging proteomic technologies: mass spectrometry and bioluminescence resonance energy transfer. In addition to reviewing the principles and potential utilization of these two techniques, we highlight their application in neuro-oncology research.

  8. Mutant power: using mutant allele collections for yeast functional genomics.

    PubMed

    Norman, Kaitlyn L; Kumar, Anuj

    2016-03-01

    The budding yeast has long served as a model eukaryote for the functional genomic analysis of highly conserved signaling pathways, cellular processes and mechanisms underlying human disease. The collection of reagents available for genomics in yeast is extensive, encompassing a growing diversity of mutant collections beyond gene deletion sets in the standard wild-type S288C genetic background. We review here three main types of mutant allele collections: transposon mutagen collections, essential gene collections and overexpression libraries. Each collection provides unique and identifiable alleles that can be utilized in genome-wide, high-throughput studies. These genomic reagents are particularly informative in identifying synthetic phenotypes and functions associated with essential genes, including those modeled most effectively in complex genetic backgrounds. Several examples of genomic studies in filamentous/pseudohyphal backgrounds are provided here to illustrate this point. Additionally, the limitations of each approach are examined. Collectively, these mutant allele collections in Saccharomyces cerevisiae and the related pathogenic yeast Candida albicans promise insights toward an advanced understanding of eukaryotic molecular and cellular biology.

  9. The Human Functional Genomics Project: Understanding Generation of Diversity.

    PubMed

    Pappalardo, Jenna L; Hafler, David A

    2016-11-03

    Generation of biologic diversity is a cornerstone of immunity, yet the tools to investigate the causal influence of genetic and environmental factors have been greatly limited. Studies from the Human Functional Genomics Project, presented in Cell and other Cell Press journals, integrate environmental and genetic factors with the direction and magnitude of immune responses to decipher inflammatory disease pathogenesis.

  10. A bioinformatics pipeline to search functional motifs within whole-proteome data: a case study of poxviruses.

    PubMed

    Sobhy, Haitham

    2017-04-01

    Proteins harbor domains or short linear motifs, which facilitate their functions and interactions. Finding functional motifs in protein sequences could predict the putative cellular roles or characteristics of hypothetical proteins. In this study, we present Shetti-Motif, which is an interactive tool to (i) map UniProt and PROSITE flat files, (ii) search for multiple pre-defined consensus patterns or experimentally validated functional motifs in large datasets protein sequences (proteome-wide), (iii) search for motifs containing repeated residues (low-complexity regions, e.g., Leu-, SR-, PEST-rich motifs, etc.). As proof of principle, using this comparative proteomics pipeline, eleven proteomes encoded by member of Poxviridae family were searched against about 100 experimentally validated functional motifs. The closely related viruses and viruses infect the same host cells (e.g. vaccinia and variola viruses) show similar motif-containing proteins profile. The motifs encoded by these viruses are correlated, which explains why poxviruses are able to interact with wide range of host cells. In conclusion, this in silico analysis is useful to establish a dataset(s) or potential proteins for further investigation or compare between species.

  11. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1

    SciTech Connect

    Lu, Dihong; Ni, Weimin; Stanley, Bruce A.; Ma, Hong

    2016-03-03

    The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type, but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. In conclusion, our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.

  12. Resurrection of DNA Function In Vivo from an Extinct Genome

    PubMed Central

    Pask, Andrew J.; Behringer, Richard R.; Renfree, Marilyn B.

    2008-01-01

    There is a burgeoning repository of information available from ancient DNA that can be used to understand how genomes have evolved and to determine the genetic features that defined a particular species. To assess the functional consequences of changes to a genome, a variety of methods are needed to examine extinct DNA function. We isolated a transcriptional enhancer element from the genome of an extinct marsupial, the Tasmanian tiger (Thylacinus cynocephalus or thylacine), obtained from 100 year-old ethanol-fixed tissues from museum collections. We then examined the function of the enhancer in vivo. Using a transgenic approach, it was possible to resurrect DNA function in transgenic mice. The results demonstrate that the thylacine Col2A1 enhancer directed chondrocyte-specific expression in this extinct mammalian species in the same way as its orthologue does in mice. While other studies have examined extinct coding DNA function in vitro, this is the first example of the restoration of extinct non-coding DNA and examination of its function in vivo. Our method using transgenesis can be used to explore the function of regulatory and protein-coding sequences obtained from any extinct species in an in vivo model system, providing important insights into gene evolution and diversity. PMID:18493600

  13. Functional annotation from the genome sequence of the giant panda.

    PubMed

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  14. Using proteomics to study sexual reproduction in angiosperms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While a relative latecomer to the post-genomics era of functional biology, the application of mass spectrometry-based proteomic analysis has increased exponentially over the past 10 years. Some of this increase is the result of transition of chemists physicists, and mathematicians to the study of ...

  15. Elucidating the Molecular Basis and Regulation of Chromium (VI) Reduction by Shewanella oneidensis MR-1 Using Biochemical, Genomic, and Proteomic Approaches

    SciTech Connect

    Hettich, Robert L.

    2006-10-30

    Although microbial metal reduction has been investigated intensively from physiological and biochemical perspectives, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform, detoxify, or immobilize a wide array of heavy metals contaminating DOE-relevant environments. The major goal of this work is to elucidate the molecular components comprising the chromium(VI) response pathway, with an emphasis on components involved in Cr(VI) detoxification and the enzyme complex catalyzing the terminal step in Cr(VI) reduction by Shewanella oneidensis MR-1. We have identified and characterized (in the case of DNA-binding response regulator [SO2426] and a putative azoreductase [SO3585]) the genes and gene products involved in the molecular response of MR-1 to chromium(VI) stress using whole-genome sequence information for MR-1 and recently developed proteomic technology, in particular liquid chromatographymass spectrometry (LC-MS), in conjunction with conventional protein purification and characterization techniques. The proteome datasets were integrated with information from whole-genome expression arrays for S. oneidensis MR-1 (as illustrated in Figure 1). The genes and their encoded products identified in this study are of value in understanding metal reduction and bacterial resistance to metal toxicity and in developing effective metal immobilization strategies.

  16. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, we performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and...

  17. Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors

    PubMed Central

    Nastase, Anca; Teo, Jin Yao; Heng, Hong Lee; Ng, Cedric Chuan Young; Myint, Swe Swe; Rajasegaran, Vikneswari; Loh, Jia Liang; Lee, Ser Yee; Ooi, London Lucien; Chung, Alexander Yaw Fui; Chow, Pierce Kah Hoe; Cheow, Peng Chung; Wan, Wei Keat; Azhar, Rafy; Khoo, Avery; Xiu, Sam Xin; Alkaff, Syed Muhammad Fahmy; Cutcutache, Ioana; Lim, Jing Quan; Ong, Choon Kiat; Herlea, Vlad; Dima, Simona; Duda, Dan G; Teh, Bin Tean; Popescu, Irinel; Lim, Tony Kiat Hon

    2017-01-01

    AT rich interactive domain 1A (ARID1A) is one of the most commonly mutated genes in a broad variety of tumors. The mechanisms that involve ARID1A in ampullary cancer progression remains elusive. Here, we evaluated the frequency of ARID1A and KRAS mutations in ampullary adenomas and adenocarcinomas and in duodenal adenocarcinomas from two cohorts of patients from Singapore and Romania, correlated with clinical and pathological tumor features, and assessed the functional role of ARID1A. In the ampullary adenocarcinomas, the frequency of KRAS and ARID1A mutations was 34.7% and 8.2% respectively, with a loss or reduction of ARID1A protein in 17.2% of the cases. ARID1A mutational status was significantly correlated with ARID1A protein expression level (P=0.023). There was a significant difference in frequency of ARID1A mutation between Romania and Singapore (2.7% versus 25%, P=0.04), suggestive of different etiologies. One somatic mutation was detected in the ampullary adenoma group. In vitro studies indicated the tumor suppressive role of ARID1A. Our results warrant further investigation of this chromatin remodeller as a potential early biomarker of the disease, as well as identification of therapeutic targets in ARID1A mutated ampullary cancers.

  18. Structure and Functional Studies on Dengue-2 Virus Genome

    DTIC Science & Technology

    1986-03-01

    AD_ _ _ Lfl oSTRUCTURE AND FUNCTIONAL STUDIES ON DENGUE -2 VIRUS GENOME 0Annual Report Radha Krishnan Padmanabhan, Ph.D. March 1, 1986 Supported by...Studies on Dengue -2 Virus Genome 12 PERSONAL AUTHOR(S) Radha Krishnan Padmanabhan 13a TYPE OF REPORT 1 3b TIME COVERED 14 DATE OF REPORT (Year, Month, Day...analysis of these clones totalling 06 01 14,586 nucleotides: Deduced amino acid sequences of dengue virI 19 ABSTRACT (Continue on reverse of

  19. Knocking down the obstacles to functional genomics data sharing

    PubMed Central

    Simpson, Kaylene J.; Smith, Jennifer A.

    2017-01-01

    This week, Scientific Data published a collection of eight papers that describe datasets from high-throughput functional genomics screens, primarily utilizing RNA interference (RNAi). The publications explore host-pathogen dependencies, innate immune response, disease pathways, and cell morphology and motility at the genome-level. All data, including raw images from the high content screens, are publically available in PubChem BioAssay, figshare, Harvard Dataverse or the Image Data Resource (IDR). Detailed data descriptors enable use of these data for analysis algorithm design, machine learning, data comparisons, as well as generating new scientific hypotheses. PMID:28248922

  20. Knocking down the obstacles to functional genomics data sharing.

    PubMed

    Simpson, Kaylene J; Smith, Jennifer A

    2017-03-01

    This week, Scientific Data published a collection of eight papers that describe datasets from high-throughput functional genomics screens, primarily utilizing RNA interference (RNAi). The publications explore host-pathogen dependencies, innate immune response, disease pathways, and cell morphology and motility at the genome-level. All data, including raw images from the high content screens, are publically available in PubChem BioAssay, figshare, Harvard Dataverse or the Image Data Resource (IDR). Detailed data descriptors enable use of these data for analysis algorithm design, machine learning, data comparisons, as well as generating new scientific hypotheses.

  1. Quantitative proteomics in Giardia duodenalis-Achievements and challenges.

    PubMed

    Emery, Samantha J; Lacey, Ernest; Haynes, Paul A

    2016-08-01

    Giardia duodenalis (syn. G. lamblia and G. intestinalis) is a protozoan parasite of vertebrates and a major contributor to the global burden of diarrheal diseases and gastroenteritis. The publication of multiple genome sequences in the G. duodenalis species complex has provided important insights into parasite biology, and made post-genomic technologies, including proteomics, significantly more accessible. The aims of proteomics are to identify and quantify proteins present in a cell, and assign functions to them within the context of dynamic biological systems. In Giardia, proteomics in the post-genomic era has transitioned from reliance on gel-based systems to utilisation of a diverse array of techniques based on bottom-up LC-MS/MS technologies. Together, these have generated crucial foundations for subcellular proteomes, elucidated intra- and inter-assemblage isolate variation, and identified pathways and markers in differentiation, host-parasite interactions and drug resistance. However, in Giardia, proteomics remains an emerging field, with considerable shortcomings evident from the published research. These include a bias towards assemblage A, a lack of emphasis on quantitative analytical techniques, and limited information on post-translational protein modifications. Additionally, there are multiple areas of research for which proteomic data is not available to add value to published transcriptomic data. The challenge of amalgamating data in the systems biology paradigm necessitates the further generation of large, high-quality quantitative datasets to accurately model parasite biology. This review surveys the current proteomic research available for Giardia and evaluates their technical and quantitative approaches, while contextualising their biological insights into parasite pathology, isolate variation and eukaryotic evolution. Finally, we propose areas of priority for the generation of future proteomic data to explore fundamental questions in Giardia

  2. First insight into the proteome landscape of the porcine short posterior ciliary arteries: Key signalling pathways maintaining physiologic functions

    PubMed Central

    Manicam, Caroline; Perumal, Natarajan; Pfeiffer, Norbert; Grus, Franz H.; Gericke, Adrian

    2016-01-01

    Short posterior ciliary arteries (sPCA) provide the major blood supply to the optic nerve head. Emerging evidence has linked structural and functional anomalies of sPCA to the pathogenesis of several ocular disorders that cause varying degrees of visual loss, particularly anterior ischaemic optic neuropathy and glaucoma. Although the functional relevance of this vascular bed is well-recognized, the proteome of sPCA remains uncharacterized. Since the porcine ocular system closely resembles that of the human’s and is increasingly employed in translational ophthalmic research, this study characterized the proteome of porcine sPCA employing the mass spectrometry-based proteomics strategy. A total of 1742 proteins and 10527 peptides were identified in the porcine sPCA. The major biological processes involved in the maintenance of physiological functions of the sPCA included redox and metabolic processes, and cytoskeleton organization. These proteins were further clustered into diverse signalling pathways that regulate vasoactivity of sPCA, namely the tight junction, α- and β-adrenoceptor, 14-3-3, nitric oxide synthase and endothelin-1 -mediated signalling pathways. This study provides the first insight into the complex mechanisms dictating the vast protein repertoire in normal vascular physiology of the porcine sPCA. It is envisioned that our findings will serve as important benchmarks for future studies of sPCA. PMID:27922054

  3. A New System for Comparative Functional Genomics of Saccharomyces Yeasts

    PubMed Central

    Caudy, Amy A.; Guan, Yuanfang; Jia, Yue; Hansen, Christina; DeSevo, Chris; Hayes, Alicia P.; Agee, Joy; Alvarez-Dominguez, Juan R.; Arellano, Hugo; Barrett, Daniel; Bauerle, Cynthia; Bisaria, Namita; Bradley, Patrick H.; Breunig, J. Scott; Bush, Erin; Cappel, David; Capra, Emily; Chen, Walter; Clore, John; Combs, Peter A.; Doucette, Christopher; Demuren, Olukunle; Fellowes, Peter; Freeman, Sam; Frenkel, Evgeni; Gadala-Maria, Daniel; Gawande, Richa; Glass, David; Grossberg, Samuel; Gupta, Anita; Hammonds-Odie, Latanya; Hoisos, Aaron; Hsi, Jenny; Hsu, Yu-Han Huang; Inukai, Sachi; Karczewski, Konrad J.; Ke, Xiaobo; Kojima, Mina; Leachman, Samuel; Lieber, Danny; Liebowitz, Anna; Liu, Julia; Liu, Yufei; Martin, Trevor; Mena, Jose; Mendoza, Rosa; Myhrvold, Cameron; Millian, Christian; Pfau, Sarah; Raj, Sandeep; Rich, Matt; Rokicki, Joe; Rounds, William; Salazar, Michael; Salesi, Matthew; Sharma, Rajani; Silverman, Sanford; Singer, Cara; Sinha, Sandhya; Staller, Max; Stern, Philip; Tang, Hanlin; Weeks, Sharon; Weidmann, Maxwell; Wolf, Ashley; Young, Carmen; Yuan, Jie; Crutchfield, Christopher; McClean, Megan; Murphy, Coleen T.; Llinás, Manuel; Botstein, David; Troyanskaya, Olga G.; Dunham, Maitreya J.

    2013-01-01

    Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast. PMID:23852385

  4. A new system for comparative functional genomics of Saccharomyces yeasts.

    PubMed

    Caudy, Amy A; Guan, Yuanfang; Jia, Yue; Hansen, Christina; DeSevo, Chris; Hayes, Alicia P; Agee, Joy; Alvarez-Dominguez, Juan R; Arellano, Hugo; Barrett, Daniel; Bauerle, Cynthia; Bisaria, Namita; Bradley, Patrick H; Breunig, J Scott; Bush, Erin; Cappel, David; Capra, Emily; Chen, Walter; Clore, John; Combs, Peter A; Doucette, Christopher; Demuren, Olukunle; Fellowes, Peter; Freeman, Sam; Frenkel, Evgeni; Gadala-Maria, Daniel; Gawande, Richa; Glass, David; Grossberg, Samuel; Gupta, Anita; Hammonds-Odie, Latanya; Hoisos, Aaron; Hsi, Jenny; Hsu, Yu-Han Huang; Inukai, Sachi; Karczewski, Konrad J; Ke, Xiaobo; Kojima, Mina; Leachman, Samuel; Lieber, Danny; Liebowitz, Anna; Liu, Julia; Liu, Yufei; Martin, Trevor; Mena, Jose; Mendoza, Rosa; Myhrvold, Cameron; Millian, Christian; Pfau, Sarah; Raj, Sandeep; Rich, Matt; Rokicki, Joe; Rounds, William; Salazar, Michael; Salesi, Matthew; Sharma, Rajani; Silverman, Sanford; Singer, Cara; Sinha, Sandhya; Staller, Max; Stern, Philip; Tang, Hanlin; Weeks, Sharon; Weidmann, Maxwell; Wolf, Ashley; Young, Carmen; Yuan, Jie; Crutchfield, Christopher; McClean, Megan; Murphy, Coleen T; Llinás, Manuel; Botstein, David; Troyanskaya, Olga G; Dunham, Maitreya J

    2013-09-01

    Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.

  5. Identification of brain substrates of transglutaminase by functional proteomics supports its role in neurodegenerative diseases.

    PubMed

    André, William; Nondier, Isabelle; Valensi, Maud; Guillonneau, François; Federici, Christian; Hoffner, Guylaine; Djian, Philippe

    2017-05-01

    Transglutaminases are calcium-dependent enzymes that catalyze the formation of ε-(γ-glutamyl)lysine isopeptide bonds between specific glutamine and lysine residues. Some transglutaminase isoforms are present in the brain and are thought to participate in the protein aggregation characteristic of neurological diseases such as Huntington, Alzheimer's and Parkinson's disease. We have developed a functional proteomics strategy in which biotinylated amine-donor and amine-acceptor probes were used to identify the transglutaminase substrates present in brain. Bioinformatics analyses revealed that most of the 166 brain substrates identified interacted with huntingtin, the amyloid precursor protein or α-synuclein and that neurological disease was the most significant canonical pathway associated with the substrates. The physiological relevance of the substrates identified by mass spectrometry was confirmed by the fact that three of them (actin, β-tubulin and a neurofilament subunit) were polymerized in neuronal cells when cytosolic calcium concentration was raised. We also showed by in-situ immunolabeling that some of the substrates were part of the protein aggregates found in neurological diseases. These results strongly support the idea that the crosslinking activity of brain transglutaminase participates in the formation of the protein aggregates found in diseases of the central nervous system.

  6. CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis.

    PubMed

    Ochoa-Montaño, Bernardo; Mohan, Nishita; Blundell, Tom L

    2015-01-01

    Tuberculosis kills more than a million people annually and presents increasingly high levels of resistance against current first line drugs. Structural information about Mycobacterium tuberculosis (Mtb) proteins is a valuable asset for the development of novel drugs and for understanding the biology of the bacterium; however, only about 10% of the ∼4000 proteins have had their structures determined experimentally. The CHOPIN database assigns structural domains and generates homology models for 2911 sequences, corresponding to ∼73% of the proteome. A sophisticated pipeline allows multiple models to be created using conformational states characteristic of different oligomeric states and ligand binding, such that the models reflect various functional states of the proteins. Additionally, CHOPIN includes structural analyses of mutations potentially associated with drug resistance. Results are made available at the web interface, which also serves as an automatically updated repository of all published Mtb experimental structures. Its RESTful interface allows direct and flexible access to structures and metadata via intuitive URLs, enabling easy programmatic use of the models.

  7. Functional Differentiation of Bundle Sheath and Mesophyll Maize Chloroplasts Determined by Comparative ProteomicsW⃞

    PubMed Central

    Majeran, Wojciech; Cai, Yang; Sun, Qi; van Wijk, Klaas J.

    2005-01-01

    Chloroplasts of maize (Zea mays) leaves differentiate into specific bundle sheath (BS) and mesophyll (M) types to accommodate C4 photosynthesis. Consequences for other plastid functions are not well understood but are addressed here through a quantitative comparative proteome analysis of purified M and BS chloroplast stroma. Three independent techniques were used, including cleavable stable isotope coded affinity tags. Enzymes involved in lipid biosynthesis, nitrogen import, and tetrapyrrole and isoprenoid biosynthesis are preferentially located in the M chloroplasts. By contrast, enzymes involved in starch synthesis and sulfur import preferentially accumulate in BS chloroplasts. The different soluble antioxidative systems, in particular peroxiredoxins, accumulate at higher levels in M chloroplasts. We also observed differential accumulation of proteins involved in expression of plastid-encoded proteins (e.g., EF-Tu, EF-G, and mRNA binding proteins) and thylakoid formation (VIPP1), whereas others were equally distributed. Enzymes related to the C4 shuttle, the carboxylation and regeneration phase of the Calvin cycle, and several regulators (e.g., CP12) distributed as expected. However, enzymes involved in triose phosphate reduction and triose phosphate isomerase are primarily located in the M chloroplasts, indicating that the M-localized triose phosphate shuttle should be viewed as part of the BS-localized Calvin cycle, rather than a parallel pathway. PMID:16243905

  8. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.

    PubMed

    Chu, Pu; Chen, Huhui; Zhou, Yuliang; Li, Yin; Ding, Yu; Jiang, Liwen; Tsang, Edward W T; Wu, Keqiang; Huang, Shangzhi

    2012-06-01

    Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor.

  9. Proteomic analysis of physiological function response to hot summer in liver from lactating dairy cows.

    PubMed

    Wang, Qiangjun; Zhao, Xiaowei; Zhang, Zijun; Zhao, Huiling; Huang, Dongwei; Cheng, Guanglong; Yang, Yongxin

    2017-04-01

    Lactation performance of dairy cattle is susceptible to heat stress. The liver is one of the most crucial organs affected by high temperature in dairy cows. However, the physiological adaption by the liver to hot summer conditions has not been well elucidated in lactating dairy cows. In the present study, proteomic analysis of the liver in dairy cows in spring and hot summer was performed using a label-free method. In total, 127 differentially expressed proteins were identified; most of the upregulated proteins were involved in protein metabolic processes and responses to stimuli, whereas most of the downregulated proteins were related to oxidation-reduction. Pathway analysis indicated that 3 upregulated heat stress proteins (HSP90α, HSP90β, and endoplasmin) were enriched in the NOD-like receptor signaling pathway, whereas several downregulated NADH dehydrogenase proteins were involved in the oxidative phosphorylation pathway. The protein-protein interaction network indicated that several upregulated HSPs (HSP90α, HSP90β, and GRP78) were involved in more interactions than other proteins and were thus considered as central hub nodes. Our findings provide novel insights into the physiological adaption of liver function in lactating dairy cows to natural high temperature.

  10. Functional proteomics-aided selection of protease inhibitors for herbivore insect control

    PubMed Central

    Rasoolizadeh, Asieh; Munger, Aurélie; Goulet, Marie-Claire; Sainsbury, Frank; Cloutier, Conrad; Michaud, Dominique

    2016-01-01

    Studies have reported the potential of protease inhibitors to engineer insect resistance in transgenic plants but the general usefulness of this approach in crop protection still remains to be established. Insects have evolved strategies to cope with dietary protease inhibitors, such as the use of proteases recalcitrant to inhibition, that often make the selection of effective inhibitors very challenging. Here, we used a functional proteomics approach for the ‘capture’ of Cys protease targets in crude protein extracts as a tool to identify promising cystatins for plant improvement. Two cystatins found to differ in their efficiency to capture Cys proteases of the coleopteran pest Leptinotarsa decemlineata also differed in their usefulness to produce transgenic potato lines resistant to this insect. Plants expressing the most potent cystatin at high level had a strong repressing effect on larval growth and leaf intake, while plants expressing the weakest cystatin showed no effect on both two parameters compared to untransformed parental line used for genetic transformation. Our data underline the relevance of considering the whole range of possible protease targets when selecting an inhibitor for plant pest control. They also confirm the feasibility of developing cystatin-expressing transgenics resistant to a major pest of potato. PMID:27958307

  11. Beyond Drosophila: RNAi in vivo and functional genomics in insects.

    PubMed

    Bellés, Xavier

    2010-01-01

    The increasing availability of insect genomes has revealed a large number of genes with unknown functions and the resulting problem of how to discover these functions. The RNA interference (RNAi) technique, which generates loss-of-function phenotypes by depletion of a chosen transcript, can help to overcome this challenge. RNAi can unveil the functions of new genes, lead to the discovery of new functions for old genes, and find the genes for old functions. Moreover, the possibility of studying the functions of homologous genes in different species can allow comparisons of the genetic networks regulating a given function in different insect groups, thereby facilitating an evolutionary insight into developmental processes. RNAi also has drawbacks and obscure points, however, such as those related to differences in species sensitivity. Disentangling these differences is one of the main challenges in the RNAi field.

  12. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics

    PubMed Central

    Deutsch, Eric W.; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L.

    2015-01-01

    Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features. PMID:25631240

  13. PROTEOMER: A workflow-optimized laboratory information management system for 2-D electrophoresis-centered proteomics.

    PubMed

    Nebrich, Grit; Herrmann, Marion; Hartl, Daniela; Diedrich, Madeleine; Kreitler, Thomas; Wierling, Christoph; Klose, Joachim; Giavalisco, Patrick; Zabel, Claus; Mao, Lei

    2009-04-01

    In recent years proteomics became increasingly important to functional genomics. Although a large amount of data is generated by high throughput large-scale techniques, a connection of these mostly heterogeneous data from different analytical platforms and of different experiments is limited. Data mining procedures and algorithms are often insufficient to extract meaningful results from large datasets and therefore limit the exploitation of the generated biological information. In our proteomic core facility, which almost exclusively focuses on 2-DE/MS-based proteomics, we developed a proteomic database custom tailored to our needs aiming at connecting MS protein identification information to 2-DE derived protein expression profiles. The tools developed should not only enable an automatic evaluation of single experiments, but also link multiple 2-DE experiments with MS-data on different levels and thereby helping to create a comprehensive network of our proteomics data. Therefore the key feature of our "PROTEOMER" database is its high cross-referencing capacity, enabling integration of a wide range of experimental data. To illustrate the workflow and utility of the system, two practical examples are provided to demonstrate that proper data cross-referencing can transform information into biological knowledge.

  14. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  15. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS.

    PubMed

    Kamelgarn, Marisa; Chen, Jing; Kuang, Lisha; Arenas, Alexandra; Zhai, Jianjun; Zhu, Haining; Gal, Jozsef

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Mutations in the Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) gene cause a subset of familial ALS cases and are also implicated in sporadic ALS. FUS is typically localized to the nucleus. The ALS-related FUS mutations cause cytoplasmic mis-localization and the formation of stress granule-like structures. Abnormal cytoplasmic FUS localization was also found in a subset of frontotemporal dementia (FTLD) cases without FUS mutations. To better understand the function of FUS, we performed wild-type and mutant FUS pull-downs followed by proteomic identification of the interacting proteins. The FUS interacting partners we identified are involved in multiple pathways, including chromosomal organization, transcription, RNA splicing, RNA transport, localized translation, and stress response. FUS interacted with hnRNPA1 and Matrin-3, RNA binding proteins whose mutations were also reported to cause familial ALS, suggesting that hnRNPA1 and Matrin-3 may play common pathogenic roles with FUS. The FUS interactions displayed varied RNA dependence. Numerous FUS interacting partners that we identified are components of exosomes. We found that FUS itself was present in exosomes, suggesting that the secretion of FUS might contribute to the cell-to-cell spreading of FUS pathology. FUS interacting proteins were sequestered into the cytoplasmic mutant FUS inclusions that could lead to their mis-regulation or loss of function, contributing to ALS pathogenesis. Our results provide insights into the physiological functions of FUS as well as important pathways where mutant FUS can interfere with cellular processes and potentially contribute to the pathogenesis of ALS.

  16. Neocaridina denticulata: A Decapod Crustacean Model for Functional Genomics.

    PubMed

    Mykles, Donald L; Hui, Jerome H L

    2015-11-01

    A decapod crustacean model is needed for understanding the molecular mechanisms underlying physiological processes, such as reproduction, sex determination, molting and growth, immunity, regeneration, and response to stress. Criteria for selection are: life-history traits, adult size, availability and ease of culture, and genomics and genetic manipulation. Three freshwater species are considered: cherry shrimp, Neocaridina denticulata; red swamp crayfish, Procambarus clarkii; and redclaw crayfish, Cherax quadricarinatus. All three are readily available, reproduce year round, and grow rapidly. The crayfish species require more space for culture than does N. denticulata. The transparent cuticle of cherry shrimp provides for direct assessment of reproductive status, stage of molt, and tissue-specific expression of reporter genes, and facilitates screening of mutations affecting phenotype. Moreover, a preliminary genome of N. denticulata is available and efforts toward complete genome sequencing and transcriptome sequencing have been initiated. Neocaridina denticulata possesses the best combination of traits that make it most suitable as a model for functional genomics. The next step is to obtain the complete genome sequence and to develop molecular technologies for the screening of mutants and for manipulating tissue-specific gene expression.

  17. Marine invertebrate lipases: Comparative and functional genomic analysis.

    PubMed

    Rivera-Perez, Crisalejandra

    2015-09-01

    Lipases are key enzymes involved in lipid digestion, storage and mobilization of reserves during fasting or heightened metabolic demand. This is a highly conserved process, essential for survival. The genomes of five marine invertebrate species with distinctive digestive system were screened for the six major lipase families. The two most common families in marine invertebrates, the neutral an acid lipases, are also the main families in mammals and insects. The number of lipases varies two-fold across analyzed genomes. A high degree of orthology with mammalian lipases was observed. Interestingly, 19% of the marine invertebrate lipases have lost motifs required for catalysis. Analysis of the lid and loop regions of the neutral lipases suggests that many marine invertebrates have a functional triacylglycerol hydrolytic activity as well as some acid lipases. A revision of the expression profiles and functional activity on sequences in databases and scientific literature provided information regarding the function of these families of enzymes in marine invertebrates.

  18. Recent advances in tomato functional genomics: utilization of VIGS.

    PubMed

    Sahu, Pranav Pankaj; Puranik, Swati; Khan, Moinuddin; Prasad, Manoj

    2012-10-01

    Tomato unquestionably occupies a significant position in world vegetable production owing to its world-wide consumption. The tomato genome sequencing efforts being recently concluded, it becomes more imperative to recognize important functional genes from this treasure of generated information for improving tomato yield. While much progress has been made in conventional tomato breeding, post-transcriptional gene silencing (PTGS) offers an alternative approach for advancement of tomato functional genomics. In particular, virus-induced gene silencing (VIGS) is increasingly being used as rapid, reliable, and lucrative screening strategy to elucidate gene function. In this review, we focus on the recent advancement made through exploiting the potential of this technique for manipulating different agronomically important traits in tomato by discussing several case studies.

  19. Functional Status and Inflammation after Preseason Training Program in Professional and Recreational Soccer Players: a Proteomic Approach

    PubMed Central

    Martín-Sánchez, Francisco J.; Villalón, José María; Zamorano-León, José J.; Rosas, Luis Fernández; Proietti, Ricardo; Mateos-Caceres, Petra J.; González-Armengol, Juan J.; Villarroel, Pedro; Macaya, Carlos; López-Farré, Antonio J.

    2011-01-01

    The purpose of the study was to determine if an intensive pre- season training program modifies the inflammatory status in professional soccer players and if this inflammatory profile may be associated with the physical state. We compared plasma protein biomarkers, using proteomics, and the physiological state and cardiac function in 12 professional soccer players and 9 recreational soccer players. Reduced cardiac low frequency [LF] after the pre- season training program previous competition with respect to recreational soccer players was found. No differences were found in cardiac high frequency, cardiac high frequency/low frequency ratio, tension index and oxygen volume consumption. Alpha-1-antitrypsin isotype-3, fibrinogen-gamma isotypes-1, 2 and 3 and vitamin-D-binding protein isotype-1 were reduced in professionals players compared with those in recreational players. However, an increased content of alpha-1-antitrypsin isotype-6 and alpha-1-antichymotrypsin 1 and 4 were found in professional soccer players. Spearman’s analysis showed a positive correlation between LF and fibrinogen-gamma chain isotype 3; but LF was negatively correlated with alpha-antichymotrypsin isotype 4. Professional soccer players submitted to an intensive training showed differences in the content of plasma proteins associated with inflammatory/oxidative stress and thrombosis with respect to recreational soccer players. Proteomics analysis in combination with the analysis of cardiac function assessment may be useful to know more in depth molecular processes associated with sport and intensive exercise. Key points Proteomics allow us to find differences in the plasma protein content in sportsmen. Just after pre-season training program, professional soccer players showed lower content of circulating proteins associated with inflammation compared to recreational soccer players. Proteomic analysis in combination with the analysis of cardiac function may be useful to know more in depth

  20. AcCNET (Accessory Genome Constellation Network): comparative genomics software for accessory genome analysis using bipartite networks.

    PubMed

    Lanza, Val F; Baquero, Fernando; de la Cruz, Fernando; Coque, Teresa M

    2017-01-15

    AcCNET (Accessory genome Constellation Network) is a Perl application that aims to compare accessory genomes of a large number of genomic units, both at qualitative and quantitative levels. Using the proteomes extracted from the analysed genomes, AcCNET creates a bipartite network compatible with standard network analysis platforms. AcCNET allows merging phylogenetic and functional information about the concerned genomes, thus improving the capability of current methods of network analysis. The AcCNET bipartite network opens a new perspective to explore the pangenome of bacterial species, focusing on the accessory genome behind the idiosyncrasy of a particular strain and/or population.

  1. “Spatial Mapping of the Neurite and Soma Proteomes Reveals a Functional Cdc42/Rac Regulatory Network”

    SciTech Connect

    Pertz, Olivier C.; Wang, Yingchun; Yang, Feng; Wang, Wei; gay, laurie J.; Gritsenko, Marina A.; Clauss, Therese RW; Anderson, David J.; Liu, Tao; Auberry, Kenneth J.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2008-02-12

    Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a novel neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4855 proteins were mapped revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple GEFs and GAPs to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process including those that control Rac and Cdc42 signaling.

  2. Market opportunity in computational proteomics.

    PubMed

    Razvi, Enal

    2002-03-01

    The current exuberance on the potential of proteomics as a means to deploy the wealth of the human genome is expected to last into the coming years. Unlike the genome, a finite entity with a fixed number of base pairs of the genetic material, the proteome is "plastic", changing throughout growth and development and environmental stresses, as well as in pathological situations. Our proteomes change over time, and therefore there is no one proteome; the proteome is for practical purposes an infinite entity. It is therefore crucial to build systems that are capable of manipulating the information content that is the proteome, thence the need for computational proteomics as a discipline. In this Market View article, we present the industry landscape that is emerging in the computational proteomics space. This space is still in its infancy and for the most part undefined; therefore we seek to present the market opportunity in informatics in the drug discovery space and then extend that to an examination of industry trends in proteomics. Thus, the gestalt is a set of predictions as to the evolution of the landscape in computational proteomics over the coming years.

  3. An integrated genomic, proteomic and biochemical analysis of (+)-3-carene biosynthesis in Sitka spruce (Picea sitchensis) genotypes that are resistant or susceptible to white pine weevil.

    PubMed

    Hall, Dawn E; Robert, Jeanne A; Keeling, Christopher I; Domanski, Dominik; Quesada, Alfonso Lara; Jancsik, Sharon; Kuzyk, Michael A; Hamberger, Britta; Borchers, Christoph H; Bohlmann, Jörg

    2011-03-01

    Conifers are extremely long-lived plants that have evolved complex chemical defenses in the form of oleoresin terpenoids to resist attack from pathogens and herbivores. In these species, terpenoid diversity is determined by the size and composition of the terpene synthase (TPS) gene family and the single- and multi-product profiles of these enzymes. The monoterpene (+)-3-carene is associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil