Science.gov

Sample records for functional genomics proteomics

  1. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  2. Revisiting the Identification of Canonical Splice Isoforms through Integration of Functional Genomics and Proteomics Evidence

    PubMed Central

    Li, Hong-Dong; Menon, Rajasree; Omenn, Gilbert S.; Guan, Yuanfang

    2014-01-01

    Canonical isoforms in different databases have been defined as the most prevalent, most conserved, most expressed, longest, or the one with the clearest description of domains or post-translational modifications. In this article, we revisit these definitions of canonical isoforms based on functional genomics and proteomics evidence, focusing on mouse data. We report a novel functional relationship network-based approach for identifying the Highest Connected Isoforms (HCIs). We show that 46% of these HCIs are not the longest transcripts. In addition, this approach revealed many genes that have more than one highly connected isoforms. Averaged across 175 RNA-seq datasets covering diverse tissues and conditions, 65% of the HCIs show higher expression levels than non-highest connected isoforms (NCIs) at the transcript level. At the protein level, these HCIs highly overlap with the expressed splice variants, based on proteomic data from eight different normal tissues. These results suggest that a more confident definition of canonical isoforms can be made through integration of multiple lines of evidence, including highest connected isoforms defined by biological processes and pathways, expression prevalence at the transcript level, and relative or absolute abundance at the protein level. This integrative proteogenomics approach can successfully identify principal isoforms that are responsible for the canonical functions of genes. PMID:25265570

  3. Proteomics in the genome engineering era.

    PubMed

    Vandemoortele, Giel; Gevaert, Kris; Eyckerman, Sven

    2016-01-01

    Genome engineering experiments used to be lengthy, inefficient, and often expensive, preventing a widespread adoption of such experiments for the full assessment of endogenous protein functions. With the revolutionary clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 technology, genome engineering became accessible to the broad life sciences community and is now implemented in several research areas. One particular field that can benefit significantly from this evolution is proteomics where a substantial impact on experimental design and general proteome biology can be expected. In this review, we describe the main applications of genome engineering in proteomics, including the use of engineered disease models and endogenous epitope tagging. In addition, we provide an overview on current literature and highlight important considerations when launching genome engineering technologies in proteomics workflows.

  4. Proteomics/genomics and signaling in lymphocytes.

    PubMed

    Wollscheid, Bernd; Watts, Julian D; Aebersold, Ruedi

    2004-06-01

    Recent technological advances in genomics, proteomics and bioinformatics have offered new insights into the molecular mechanisms that underlie lymphocyte signaling and function, and the development of new tools in these areas has opened up new avenues for biological investigation. By adding a quantitative dimension to lymphocyte proteome profiling, molecular machines and spatiotemporal regulatory processes can now be analyzed using such discovery-driven approaches. Biologists employing genomic and proteomic tools are gathering data at increasing speed and their struggle to extract maximal biological information is helped by new software tools that enable the detailed comparison of multiple datasets.

  5. ProGeRF: Proteome and Genome Repeat Finder Utilizing a Fast Parallel Hash Function

    PubMed Central

    Moraes, Walas Jhony Lopes; Rodrigues, Thiago de Souza; Bartholomeu, Daniella Castanheira

    2015-01-01

    Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity. PMID:25811026

  6. ProGeRF: proteome and genome repeat finder utilizing a fast parallel hash function.

    PubMed

    Lopes, Robson da Silva; Moraes, Walas Jhony Lopes; Rodrigues, Thiago de Souza; Bartholomeu, Daniella Castanheira

    2015-01-01

    Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity. PMID:25811026

  7. ProGeRF: proteome and genome repeat finder utilizing a fast parallel hash function.

    PubMed

    Lopes, Robson da Silva; Moraes, Walas Jhony Lopes; Rodrigues, Thiago de Souza; Bartholomeu, Daniella Castanheira

    2015-01-01

    Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity.

  8. The Functional Network of the Arabidopsis Plastoglobule Proteome Based on Quantitative Proteomics and Genome-Wide Coexpression Analysis1[C][W][OA

    PubMed Central

    Lundquist, Peter K.; Poliakov, Anton; Bhuiyan, Nazmul H.; Zybailov, Boris; Sun, Qi; van Wijk, Klaas J.

    2012-01-01

    Plastoglobules (PGs) in chloroplasts are thylakoid-associated monolayer lipoprotein particles containing prenyl and neutral lipids and several dozen proteins mostly with unknown functions. An integrated view of the role of the PG is lacking. Here, we better define the PG proteome and provide a conceptual framework for further studies. The PG proteome from Arabidopsis (Arabidopsis thaliana) leaf chloroplasts was determined by mass spectrometry of isolated PGs and quantitative comparison with the proteomes of unfractionated leaves, thylakoids, and stroma. Scanning electron microscopy showed the purity and size distribution of the isolated PGs. Compared with previous PG proteome analyses, we excluded several proteins and identified six new PG proteins, including an M48 metallopeptidase and two Absence of bc1 complex (ABC1) atypical kinases, confirmed by immunoblotting. This refined PG proteome consisted of 30 proteins, including six ABC1 kinases and seven fibrillins together comprising more than 70% of the PG protein mass. Other fibrillins were located predominantly in the stroma or thylakoid and not in PGs; we discovered that this partitioning can be predicted by their isoelectric point and hydrophobicity. A genome-wide coexpression network for the PG genes was then constructed from mRNA expression data. This revealed a modular network with four distinct modules that each contained at least one ABC1K and/or fibrillin gene. Each module showed clear enrichment in specific functions, including chlorophyll degradation/senescence, isoprenoid biosynthesis, plastid proteolysis, and redox regulators and phosphoregulators of electron flow. We propose a new testable model for the PGs, in which sets of genes are associated with specific PG functions. PMID:22274653

  9. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.

    PubMed

    Phan, John H; Quo, Chang-Feng; Wang, May D

    2006-01-01

    The goal of this chapter is to introduce some of the available computational methods for expression analysis. Genomic and proteomic experimental techniques are briefly discussed to help the reader understand these methods and results better in context with the biological significance. Furthermore, a case study is presented that will illustrate the use of these analytical methods to extract significant biomarkers from high-throughput microarray data. Genomic and proteomic data analysis is essential for understanding the underlying factors that are involved in human disease. Currently, such experimental data are generally obtained by high-throughput microarray or mass spectrometry technologies among others. The sheer amount of raw data obtained using these methods warrants specialized computational methods for data analysis. Biomarker discovery for neurological diagnosis and prognosis is one such example. By extracting significant genomic and proteomic biomarkers in controlled experiments, we come closer to understanding how biological mechanisms contribute to neural degenerative diseases such as Alzheimers' and how drug treatments interact with the nervous system. In the biomarker discovery process, there are several computational methods that must be carefully considered to accurately analyze genomic or proteomic data. These methods include quality control, clustering, classification, feature ranking, and validation. Data quality control and normalization methods reduce technical variability and ensure that discovered biomarkers are statistically significant. Preprocessing steps must be carefully selected since they may adversely affect the results of the following expression analysis steps, which generally fall into two categories: unsupervised and supervised. Unsupervised or clustering methods can be used to group similar genomic or proteomic profiles and therefore can elucidate relationships within sample groups. These methods can also assign biomarkers to sub

  10. Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction

    PubMed Central

    Peltier, Jean-Benoît; Emanuelsson, Olof; Kalume, Dário E.; Ytterberg, Jimmy; Friso, Giulia; Rudella, Andrea; Liberles, David A.; Söderberg, Linda; Roepstorff, Peter; von Heijne, Gunnar; van Wijk, Klaas J.

    2002-01-01

    Experimental proteome analysis was combined with a genome-wide prediction screen to characterize the protein content of the thylakoid lumen of Arabidopsis chloroplasts. Soluble thylakoid proteins were separated by two-dimensional electrophoresis and identified by mass spectrometry. The identities of 81 proteins were established, and N termini were sequenced to validate localization prediction. Gene annotation of the identified proteins was corrected by experimental data, and an interesting case of alternative splicing was discovered. Expression of a surprising number of paralogs was detected. Expression of five isomerases of different classes suggests strong (un)folding activity in the thylakoid lumen. These isomerases possibly are connected to a network of peripheral and lumenal proteins involved in antioxidative response, including peroxiredoxins, m-type thioredoxins, and a lumenal ascorbate peroxidase. Characteristics of the experimentally identified lumenal proteins and their orthologs were used for a genome-wide prediction of the lumenal proteome. Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases. Thus, prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress. Many of the predicted lumenal proteins must be present at concentrations at least 10,000-fold lower than proteins of the photosynthetic apparatus. PMID:11826309

  11. Towards the molecular dissection of fertilization signaling: Our functional genomic/proteomic strategies.

    PubMed

    Sato, Ken-Ichi; Iwasaki, Tetsushi; Sakakibara, Ken-Ichi; Itakura, Shuji; Fukami, Yasuo

    2002-09-01

    Recent advances in DNA sequencing techniques and automated informatics has led to clarification of all genome sequence of some model organisms in a very short period. The demonstration of the first draft sequence of the human genome has prompted us to elaborate new approaches in biology, pharmacology and medicine. Such new research will focus on high throughput methods to function on collections of genes, and hopefully, on a genome-wide, quantitative modeling of the cell system as a whole. In this review article, we discuss the present status of "post genome sequencing" approaches in line with our strategies for understanding the molecular mechanism of fertilization and activation of development using the African clawed frog, Xenopus laevis, as a model system.

  12. Integrated Molecular Signature of Disease: Analysis of Influenza Virus-Infected Macaques through Functional Genomics and Proteomics

    SciTech Connect

    Baas, T.; Baskin, C. R.; Diamond, Deborah L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T. M.; Thomas, M. J.; Carter, V. S.; Teal, T. H.; Van Hoven, N.; Proll, Sean; Jacobs, Jon M.; Caldwell, Z.; Gritsenko, Marina A.; Hukkanen, R.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-11-01

    Recent outbreaks of avian influenza in humans have stressed the need for an improved non-human primate model of influenza pathogenesis. In order to develop our macaque model, we expanded our in vivo and functional genomics experiments: We focused on the innate immune response at day 2 post-inoculation and on gene expression in affected lung tissue with viral genetic material present; finally, we sought to identify signature genes for early infection in whole blood. For these purposes, we infected six pigtailed macaques with 107 TCID50 of influenza A/Texas/36/91 virus and three control animals with a sham inoculate. We sacrificed one control and two experimental animals at day 2, 4, and 7 and lung tissue was harvested for pathology, gene expression profiling, and proteomics. Additionally, blood was collected for genomics every other day from each animal until its endpoint. Gross and microscopic pathology, immunohistochemistry, viral gene expression by arrays and/or quantitative real-time RT-PCR confirmed successful yet mild infection in all experimental animals. Genomic experiments were performed using second generation macaque-specific oligonucleotide arrays and high-throughput proteomics revealed host response to infection at the protein level. Our data showed dramatic differences in gene expression within the same influenza-induced lesion based on the presence or absence of viral mRNA. We also identified genes tightly co-regulated in peripheral white blood cells and in lung tissue at day 2 post-inoculation. This latter finding opens the possibility of using gene expression arrays on whole blood to detect infection after exposure but prior to onset of symptoms or shedding.

  13. Functional assignment of Mycobacterium tuberculosis proteome revealed by genome-scale fold-recognition.

    PubMed

    Mao, Chunhong; Shukla, Maulik; Larrouy-Maumus, Gérald; Dix, Flora L; Kelley, Lawrence A; Sternberg, Michael J; Sobral, Bruno W; de Carvalho, Luiz Pedro S

    2013-01-01

    Hundreds of putative enzymes from Mycobacterium tuberculosis as well as other mycobacteria remain categorized as "conserved hypothetical proteins" or "hypothetical proteins", offering little or no information on their functional role in pathogenic and non-pathogenic processes. In this study we have predicted the fold and 3-D structure of more than 99% of all proteins encoded in the genome of M. tuberculosis H37Rv. Fold-recognition, database search, 3-D modelling was performed using Protein Homology/analogy Recognition Engine V 2.0 (Phyre2). These results are used to tentatively assign potential function for unannotated enzymes and proteins. In summary, fold-recognition and structural homology might be used as a complementary tool in genome annotation efforts and furthermore, it can deliver primary sequence-independent information regarding structure, ligands and even substrate specificity for enzymes that display low primary sequence identity with potential homologues in other species.

  14. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome.

    PubMed

    O'Connell, Grant C; Nichols, Cody; Guo, Ge; Croston, Tara L; Thapa, Dharendra; Hollander, John M; Pistilli, Emidio E

    2015-11-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.

  15. Algal Functional Annotation Tool from the DOE-UCLA Institute for Genomics and Proteomics

    DOE Data Explorer

    Lopez, David

    The Algal Functional Annotation Tool is a bioinformatics resource to visualize pathway maps, identify enriched biological terms, or convert gene identifiers to elucidate biological function in silico. These types of analysis have been catered to support lists of gene identifiers, such as those coming from transcriptome gene expression analysis. By analyzing the functional annotation of an interesting set of genes, common biological motifs may be elucidated and a first-pass analysis can point further research in the right direction. Currently, the following databases have been parsed, processed, and added to the tool: 1( Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Database, 2) MetaCyc Encyclopedia of Metabolic Pathways, 3) Panther Pathways Database, 4) Reactome Pathways Database, 5) Gene Ontology, 6) MapMan Ontology, 7) KOG (Eukaryotic Clusters of Orthologous Groups), 5)Pfam, 6) InterPro.

  16. [Beyond the genome to the proteome].

    PubMed

    Nishimura, Osamu

    2005-03-01

    The sequence of the human genome has been decoded and a post-genome era is now beginning. This is the start of the protein/peptide era. Working in the fundamental research division of a pharmaceutical company and being engaged in studies on the research and development of new drugs based upon genomic information, it was clear to me that genomic information was useful, significant and indispensable in driving forward to new drug discovery. However, it is also true that we need more than that. I have faced multiple barriers in pursuing genomic information alone. There are numerous dead-end stories in genome-based new drug discovery and in many cases, those hurdles are very hard to get over. What approach can be a breakthrough of this bottleneck? I believe that one answer is research into proteins. The proteome describes all the proteins within an organism. The proteome analysis research field promises a bright future for the discovery of new drugs, diagnosis and therapeutics. I believe the mass spectrometer(MS) will be a key instrument in this research. The contribution of mass spectrometry was recently recognized in the Nobel Prize for Chemistry 2002, for 'the discovery of Soft Laser Desorption/Ionization' awarded to Mr. Koichi Tanaka. There is no doubt that the MS will play an essential role in accelerating proteome analysis. However, the present proteome analysis technology has not yet reached a sufficient scientific level. Further improvements of both hardware and software are necessary. For the hardware, improvements in sensitivity, accuracy and high-throughput, in addition to equipment for ultra-micro analysis applied to the analysis of the proteome should be addressed. Regarding software, we need to develop new chemistries for proteome analyses and propose original, user-friendly proteome analysis methods. In this review, starting with a briefing on genome-based drug discovery, I will discuss a new concept for proteome analysis based on mass spectrometry and

  17. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  18. HepatoProteomics: Applying Proteomic Technologies to the Study of Liver Function and Disease

    SciTech Connect

    Diamond, Deborah L.; Proll, Sean; Jacobs, Jon M.; Chan, Eric Y.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-08-01

    The wealth of human genome sequence information now available, coupled with technological advances in robotics, nanotechnology, mass spectrometry, and information systems, has given rise to a method of scientific inquiry known as functional genomics. By using these technologies to survey gene expression and protein production on a near global scale, the goal of functional genomics is to assign biological function to genes with currently unknown roles in physiology. This approach carries particular appeal in disease research, where it can uncover the function of previously unknown genes and molecular pathways that are directly involved in disease progression. With this knowledge may come improved diagnostic techniques, prognostic capabilities, and novel therapeutic approaches. In this regard, the continuing evolution of proteomic technologies has resulted in an increasingly greater impact of proteome studies in many areas of research and hepatology is no exception. Our laboratory has been extremely active in this area, applying both genomic and proteomic technologies to the analysis of virus-host interactions in several systems, including the study of hepatitis C virus (HCV) infection and HCV-associated liver disease. Since proteomic technologies are foreign to many hepatologists (and to almost everyone else), this article will provide an overview of proteomic methods and technologies and describe how they're being used to study liver function and disease. We use our studies of HCV infection and HCV-associated liver disease to present an operational framework for performing high throughput proteome analysis and extracting biologically meaningful information.

  19. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  20. The proteome: structure, function and evolution.

    PubMed

    Fleming, Keiran; Kelley, Lawrence A; Islam, Suhail A; MacCallum, Robert M; Muller, Arne; Pazos, Florencio; Sternberg, Michael J E

    2006-03-29

    This paper reports two studies to model the inter-relationships between protein sequence, structure and function. First, an automated pipeline to provide a structural annotation of proteomes in the major genomes is described. The results are stored in a database at Imperial College, London (3D-GENOMICS) that can be accessed at www.sbg.bio.ic.ac.uk. Analysis of the assignments to structural superfamilies provides evolutionary insights. 3D-GENOMICS is being integrated with related proteome annotation data at University College London and the European Bioinformatics Institute in a project known as e-protein (http://www.e-protein.org/). The second topic is motivated by the developments in structural genomics projects in which the structure of a protein is determined prior to knowledge of its function. We have developed a new approach PHUNCTIONER that uses the gene ontology (GO) classification to supervise the extraction of the sequence signal responsible for protein function from a structure-based sequence alignment. Using GO we can obtain profiles for a range of specificities described in the ontology. In the region of low sequence similarity (around 15%), our method is more accurate than assignment from the closest structural homologue. The method is also able to identify the specific residues associated with the function of the protein family.

  1. Genomic and proteomic profiling reveals reduced mitochondrial function and disruption of the neuromuscular junction driving rat sarcopenia.

    PubMed

    Ibebunjo, Chikwendu; Chick, Joel M; Kendall, Tracee; Eash, John K; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P; Glass, David J

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia.

  2. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia

    PubMed Central

    Ibebunjo, Chikwendu; Chick, Joel M.; Kendall, Tracee; Eash, John K.; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A.; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P.

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia. PMID:23109432

  3. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains.

  4. Plant functional genomics.

    PubMed

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-06-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  5. DEFINING THE MANDATE OF PROTEOMICS IN THE POST-GENOMIC ERA: WORKSHOP REPORT

    EPA Science Inventory

    Research in proteomics is the next step after genomics in understanding life processes at the molecular level. In the largest sense proteomics encompasses knowledge of the structure, function and expression of all proteins in the biochemical or biological contexts of all organism...

  6. Distinctive features of large complex virus genomes and proteomes

    PubMed Central

    Mrázek, Jan; Karlin, Samuel

    2007-01-01

    More than a dozen large DNA viruses exceeding 240-kb genome size were recently discovered, including the “giant” mimivirus with a 1.2-Mb genome size. The detection of mimivirus and other large viruses has stimulated new analysis and discussion concerning the early evolution of life and the complexity and mechanisms of evolutionary transitions. This paper presents analysis in three contexts. (i) Genome signatures of large viruses tend to deviate from the genome signatures of their hosts, perhaps indicating that the large viruses are lytic in the hosts. (ii) Proteome composition within these viral genomes contrast with cellular organisms; for example, most eukaryotic genomes, with respect to acidic residue usages, select Glu over Asp, but the opposite generally prevails for the large viral genomes preferring Asp more than Glu. In comparing Phe vs. Tyr usage, the viral genomes select mostly Tyr over Phe, whereas in almost all bacterial and eukaryotic genomes, Phe is used more than Tyr. Interpretations of these contrasts are proffered with respect to protein structure and function. (iii) Frequent oligonucleotides and peptides are characterized in the large viral genomes. The frequent words may provide structural flexibility to interact with host proteins. PMID:17360339

  7. Proteomics, genomics and the future of medical education.

    PubMed

    Pike, Linda J; Sadler, J Evan

    2004-01-01

    The completion of the human genome project in 2003 ushered in the era of genomics, the systematic study of our DNA sequence. Proteomics, the study of the full complement of proteins present in a cell, is a natural extension of genomics. Together, the information obtainable through genomics and proteomics has tremendous potential to change clinical practice. The application of such information to medical diagnosis and treatment will require significant changes in the training of physicians. All students and physicians in training will need to acquire enough knowledge of the underlying science, including medical genetics, epidemiology, bioinformatics and statistics, so they will intuitively understand the technology and recognize the strengths and limitations of genomic/proteomic tests. Because genomic or proteomic testing may yield extensive information about a person's genetic makeup and disease risks, consideration will need to be given throughout the medical curriculum to the ethical issues raised by the application of this new technology to the diagnosis and treatment of patients.

  8. Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs.

    PubMed

    Welzenbach, Julia; Neuhoff, Christiane; Heidt, Hanna; Cinar, Mehmet Ulas; Looft, Christian; Schellander, Karl; Tholen, Ernst; Große-Brinkhaus, Christine

    2016-01-01

    The aim of this study was to integrate multi omics data to characterize underlying functional pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows elucidating the black box of phenotype expression. Metabolite and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc × Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, respectively. In addition, all animals were genotyped with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within a genome-wide association study (GWAS). We detected significantly associated genetic markers and candidate genes for drip loss and for most of the metabolic components. On chromosome 18, a region with promising candidate genes was identified based on SNPs associated with drip loss, the protein "phosphoglycerate mutase 2" and the metabolite glycine. We hypothesize that association studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic variation of genes directly involved in the metabolism of performance traits. In this way, the analyses contribute to identify reliable candidate genes. PMID:27589727

  9. Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs

    PubMed Central

    Welzenbach, Julia; Neuhoff, Christiane; Heidt, Hanna; Cinar, Mehmet Ulas; Looft, Christian; Schellander, Karl; Tholen, Ernst; Große-Brinkhaus, Christine

    2016-01-01

    The aim of this study was to integrate multi omics data to characterize underlying functional pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows elucidating the black box of phenotype expression. Metabolite and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc × Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, respectively. In addition, all animals were genotyped with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within a genome-wide association study (GWAS). We detected significantly associated genetic markers and candidate genes for drip loss and for most of the metabolic components. On chromosome 18, a region with promising candidate genes was identified based on SNPs associated with drip loss, the protein “phosphoglycerate mutase 2” and the metabolite glycine. We hypothesize that association studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic variation of genes directly involved in the metabolism of performance traits. In this way, the analyses contribute to identify reliable candidate genes. PMID:27589727

  10. Characterization of seedling proteomes and development of markers to distinguish the Brassica A and C genomes.

    PubMed

    Kong, Fang; Ge, Cailin; Fang, Xiaoping; Snowdon, Rod J; Wang, Youping

    2010-05-01

    The diploid species Brassica rapa (genome AA) and B. oleracea (genome CC) were compared by full-scale proteome analyses of seedling. A total of 28.2% of the proteins was common to both species, indicating the existence of a basal or ubiquitous proteome. However, a number of discriminating proteins (32.0%) and specific proteins (39.8%) of the Brassica A and C genomes, respectively, were identified, which could represent potentially species-specific functions. Based on these A or C genome-specific proteins, a number of PCR-based markers to distinguish B. rapa and B. oleracea species were also developed.

  11. Clinical Microfluidics for Neutrophil Genomics and Proteomics

    PubMed Central

    Kotz, Kenneth T.; Xiao, Wenzong; Miller-Graziano, Carol; Qian, Wei-Jun; Russom, Aman; Warner, Elizabeth A.; Moldawer, Lyle L.; De, Asit; Bankey, Paul E.; Petritis, Brianne O.; Camp, David G.; Rosenbach, Alan E.; Goverman, Jeremy; Fagan, Shawn P.; Brownstein, Bernard H.; Irimia, Daniel; Xu, Weihong; Wilhelmy, Julie; Mindrinos, Michael N.; Smith, Richard D.; Davis, Ronald W.; Tompkins, Ronald G.; Toner, Mehmet

    2010-01-01

    Neutrophils play critical roles in modulating the immune response. We present a robust methodology for rapidly isolating neutrophils directly from whole blood and develop ‘on-chip’ processing for mRNA and protein isolation for genomics and proteomics. We validate this device with an ex vivo stimulation experiment and by comparison with standard bulk isolation methodologies. Lastly, we implement this tool as part of a near patient blood processing system within a multi-center clinical study of the immune response to severe trauma and burn injury. The preliminary results from a small cohort of patients in our study and healthy controls show a unique time-dependent gene expression pattern clearly demonstrating the ability of this tool to discriminate temporal transcriptional events of neutrophils within a clinical setting. PMID:20802500

  12. Clinical microfluidics for neutrophil genomics and proteomics.

    PubMed

    Kotz, Kenneth T; Xiao, Wenzong; Miller-Graziano, Carol; Qian, Wei-Jun; Russom, Aman; Warner, Elizabeth A; Moldawer, Lyle L; De, Asit; Bankey, Paul E; Petritis, Brianne O; Camp, David G; Rosenbach, Alan E; Goverman, Jeremy; Fagan, Shawn P; Brownstein, Bernard H; Irimia, Daniel; Xu, Weihong; Wilhelmy, Julie; Mindrinos, Michael N; Smith, Richard D; Davis, Ronald W; Tompkins, Ronald G; Toner, Mehmet

    2010-09-01

    Neutrophils have key roles in modulating the immune response. We present a robust methodology for rapidly isolating neutrophils directly from whole blood with 'on-chip' processing for mRNA and protein isolation for genomics and proteomics. We validate this device with an ex vivo stimulation experiment and by comparison with standard bulk isolation methodologies. Last, we implement this tool as part of a near-patient blood processing system within a multi-center clinical study of the immune response to severe trauma and burn injury. The preliminary results from a small cohort of subjects in our study and healthy controls show a unique time-dependent gene expression pattern clearly demonstrating the ability of this tool to discriminate temporal transcriptional events of neutrophils within a clinical setting.

  13. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility

    PubMed Central

    Castillo, Judit; Estanyol, Josep Maria; Ballescà, Josep Lluis; Oliva, Rafael

    2015-01-01

    The classical idea about the function of the mammalian sperm chromatin is that it serves to transmit a highly protected and transcriptionally inactive paternal genome, largely condensed by protamines, to the next generation. In addition, recent sperm chromatin genome-wide dissection studies indicate the presence of a differential distribution of the genes and repetitive sequences in the protamine-condensed and histone-condensed sperm chromatin domains, which could be potentially involved in regulatory roles after fertilization. Interestingly, recent proteomic studies have shown that sperm chromatin contains many additional proteins, in addition to the abundant histones and protamines, with specific modifications and chromatin affinity features which are also delivered to the oocyte. Both gene and protein signatures seem to be altered in infertile patients and, as such, are consistent with the potential involvement of the sperm chromatin landscape in early embryo development. This present work reviews the available information on the composition of the human sperm chromatin and its epigenetic potential, with a particular focus on recent results derived from high-throughput genomic and proteomic studies. As a complement, we provide experimental evidence for the detection of phosphorylations and acetylations in human protamine 1 using a mass spectrometry approach. The available data indicate that the sperm chromatin is much more complex than what it was previously thought, raising the possibility that it could also serve to transmit crucial paternal epigenetic information to the embryo. PMID:25926607

  14. Integrated proteomic and genomic analysis of colorectal cancer

    Cancer.gov

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  15. GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY

    EPA Science Inventory

    Genomic and proteomic techniques applied to reproductive biology
    John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...

  16. Laboratory Medicine in the Scope of Proteomics and Genomics

    PubMed Central

    2010-01-01

    Advances in technology, especially in molecular biology, allow for a fast expansion of diagnostic methods in routine clinical practice. New proteomics and genomics technologies could be used for disease specific biomarker discovery and to monitor patient response to the therapy. Genomics and proteomics may also help to establish new, molecular classification of the disease. Applying genomic and proteomic methods to body fluids (serum, cerebrospinal fluid, urine, etc) and tissue extracts would place valuable objective analytical power in the hands of the clinician however validation of those methods is an important issue. The rapid expansion of the diagnostic tools based on developments in proteomic and genomic technologies can be fundamental for the development of personalized medicine.

  17. Meeting Report: "Proteomics from Discovery to Function:" 6th Annual Meeting of Proteomics Society, India and International Conference-A Milestone for the Indian Proteomics Community.

    PubMed

    Gupta, Shabarni; Reddy, Panga Jaipal; Ray, Sandipan; Atak, Apurva; Gollapalli, Kishore; Jain, Rekha; Shah, Veenita Grover; Ghantasala, Saicharan; Kumar, Saurabh; Pandala, Narendra Goud; Phapale, Prasad; Pandey, Vishnu Kumar; Zingde, Surekha; Srivastava, Sanjeeva

    2015-06-01

    Proteomics is at the epicenter of post-genomics biotechnologies that are currently driving the next generation system science. Moreover, proteomics is a truly global science. The 6(th) Annual Meeting of Proteomics Society, India (PSI) and International Conference on "Proteomics from Discovery to Function" held from December 7-9, 2014, was a transformative endeavor for global proteomics, bringing together the luminaries in the field of proteomics for the very first time in India. This meeting report presents the lessons learned and the highlights of this international scientific conference that was comprised of nine thematic sessions, pre- and post-conference workshops, and an opportunity to cultivate enduring collaborations for proteomics science to benefit both India and global society. The conference had an unforgettable impression on the participants: for the first time, India hosted past and present President and Council members from the Human Proteome Organization (HUPO), along with eminent scientists and young scholars from India and abroad in the field of proteomics at such a large scale, a major highlight of this international event. In all, the PSI 2014 was a milestone conference that has firmly poised the Indian life sciences community as a leading contributor to post-genomics life sciences, thus cultivating crucial trans-generational capacity and inspiration by recognizing the emerging scholars and omics systems scientists who can think and conduct science from cell to society.

  18. Systems proteomics of liver mitochondria function.

    PubMed

    Williams, Evan G; Wu, Yibo; Jha, Pooja; Dubuis, Sébastien; Blattmann, Peter; Argmann, Carmen A; Houten, Sander M; Amariuta, Tiffany; Wolski, Witold; Zamboni, Nicola; Aebersold, Ruedi; Auwerx, Johan

    2016-06-10

    Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis. PMID:27284200

  19. Systems proteomics of liver mitochondria function.

    PubMed

    Williams, Evan G; Wu, Yibo; Jha, Pooja; Dubuis, Sébastien; Blattmann, Peter; Argmann, Carmen A; Houten, Sander M; Amariuta, Tiffany; Wolski, Witold; Zamboni, Nicola; Aebersold, Ruedi; Auwerx, Johan

    2016-06-10

    Recent improvements in quantitative proteomics approaches, including Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH-MS), permit reproducible large-scale protein measurements across diverse cohorts. Together with genomics, transcriptomics, and other technologies, transomic data sets can be generated that permit detailed analyses across broad molecular interaction networks. Here, we examine mitochondrial links to liver metabolism through the genome, transcriptome, proteome, and metabolome of 386 individuals in the BXD mouse reference population. Several links were validated between genetic variants toward transcripts, proteins, metabolites, and phenotypes. Among these, sequence variants in Cox7a2l alter its protein's activity, which in turn leads to downstream differences in mitochondrial supercomplex formation. This data set demonstrates that the proteome can now be quantified comprehensively, serving as a key complement to transcriptomics, genomics, and metabolomics--a combination moving us forward in complex trait analysis.

  20. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    SciTech Connect

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  1. Proteomics. Making sense of genomic information for drug discovery.

    PubMed

    Whitelegge, J P; le Coutre, J

    2001-01-01

    As an increasing number of available genomes triggers a gold rush in modern biology, the scientific challenge shifts towards understanding the total of the encoded information, most notably the proteins, their structures, functions and interactions. Currently this work is in its early stages but the near future will bring a merger of biology, engineering and informatics with a far broader impact on society than pure genomics has had so far. The challenge of characterizing the structures and functions of all proteins in a given cell demands technological advances beyond the classical methodologies of protein biochemistry. Mass spectrometry techniques for high-throughput protein identification, including peptide mass fingerprinting, sequence tagging and mass spectrometry on full-length proteins are providing the driving force behind proteomics endeavors. New technologies are needed to move high-resolution protein structure determination to an industrial scale. Nonetheless, improvements in techniques for the separation of intrinsic membrane proteins are enabling proteomics efforts towards identifying drug targets within this important class of biomolecules. Beyond the acquisition of data on sequences, structures and interactions, however, the major work in drug discovery remains: the screening of large candidate compound libraries combined with clever medicinal chemistry that guarantees selective action and defined delivery of the drug.

  2. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling.

    PubMed

    Friedman, Adam A; Tucker, George; Singh, Rohit; Yan, Dong; Vinayagam, Arunachalam; Hu, Yanhui; Binari, Richard; Hong, Pengyu; Sun, Xiaoyun; Porto, Maura; Pacifico, Svetlana; Murali, Thilakam; Finley, Russell L; Asara, John M; Berger, Bonnie; Perrimon, Norbert

    2011-10-25

    Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.

  3. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences

    PubMed Central

    Holmes, Christina; Carlson, Siobhan M.; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-01

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics. PMID:27134568

  4. Genomics and proteomics: importance for the future of nutrition research.

    PubMed

    Daniel, H

    2002-05-01

    A huge number of genes within the human genome code for proteins that mediate and/or control nutritional processes. Although a large body of information on the number of genes, on chromosomal localisation, gene structure and function has been gathered, we are far from understanding the orchestrated way of how they make metabolism. Nevertheless, based on the genetic information emerging on a daily basis, we are offered fantastic new tools that allow us new insights into the molecular basis of human metabolism under normal as well as pathophysiological conditions. Recent technological advancements have made it possible to analyse simultaneously large sets of mRNA and/or proteins expressed in a biological sample or to define genetic heterogeneity that may be important for the individual response of an organism to changes in its nutritional environment. Applications of the new techniques of genome and proteome analysis are central for the development of nutritional sciences in the next decade and its integration into the rapidly developing era of functional genomics.

  5. Proteomics, genomics and the future of medical education.

    PubMed

    Pike, Linda J; Sadler, J Evan

    2004-01-01

    The completion of the human genome project in 2003 ushered in the era of genomics, the systematic study of our DNA sequence. Proteomics, the study of the full complement of proteins present in a cell, is a natural extension of genomics. Together, the information obtainable through genomics and proteomics has tremendous potential to change clinical practice. The application of such information to medical diagnosis and treatment will require significant changes in the training of physicians. All students and physicians in training will need to acquire enough knowledge of the underlying science, including medical genetics, epidemiology, bioinformatics and statistics, so they will intuitively understand the technology and recognize the strengths and limitations of genomic/proteomic tests. Because genomic or proteomic testing may yield extensive information about a person's genetic makeup and disease risks, consideration will need to be given throughout the medical curriculum to the ethical issues raised by the application of this new technology to the diagnosis and treatment of patients. PMID:15535026

  6. University of Victoria Genome British Columbia Proteomics Centre Partners with CPTAC - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    University of Victoria Genome British Columbia Proteomics Centre, a leader in proteomic technology development, has partnered with the U.S. National Cancer Institute (NCI) to make targeted proteomic assays accessible to the community through NCI’s CPTAC Assay Portal.

  7. Proteome organization in a genome-reduced bacterium.

    PubMed

    Kühner, Sebastian; van Noort, Vera; Betts, Matthew J; Leo-Macias, Alejandra; Batisse, Claire; Rode, Michaela; Yamada, Takuji; Maier, Tobias; Bader, Samuel; Beltran-Alvarez, Pedro; Castaño-Diez, Daniel; Chen, Wei-Hua; Devos, Damien; Güell, Marc; Norambuena, Tomas; Racke, Ines; Rybin, Vladimir; Schmidt, Alexander; Yus, Eva; Aebersold, Ruedi; Herrmann, Richard; Böttcher, Bettina; Frangakis, Achilleas S; Russell, Robert B; Serrano, Luis; Bork, Peer; Gavin, Anne-Claude

    2009-11-27

    The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.

  8. Proteogenomics: the needs and roles to be filled by proteomics in genome annotation

    SciTech Connect

    Ansong, Charles; Purvine, Samuel O.; Adkins, Joshua N.; Lipton, Mary S.; Smith, Richard D.

    2008-01-01

    While genome sequencing efforts reveal the basic building blocks of life, a genome sequence alone is insufficient for elucidating biological function. Genome annotation – the process of identifying genes and assigning function to each gene in a genome sequence – provides the means to elucidate biological function from sequence. Current state-of-the-art high throughput genome annotation uses a combination of comparative (sequence similarity data) and non-comparative (ab initio gene prediction algorithms) methods to identify open reading frames in genome sequences. Because approaches used to validate the presence of these open reading frames are typically based on the information derived from the annotated genomes, they cannot independently and unequivocally determine whether a predicted open reading frame is translated into a protein. With the ability to directly measure peptides arising from expressed proteins, high throughput liquid chromatography-tandem mass spectrometry-based proteomics, approaches can be used to verify coding regions of a genomic sequence. Here, we highlight several ways in which high throughput tandem mass spectrometry-based proteomics can improve the quality of genome annotations and suggest that it could be efficiently applied during the initial gene calling process so that the improvements are propagated through the subsequent functional annotation process.

  9. The 9th Siena meeting: from genome to proteome: open innovations.

    PubMed

    Godovac-Zimmermann, Jasminka

    2012-12-01

    The Siena Meeting has been held biannually since 1994, when for the first time the concept of the proteome was introduced to a large scientific audience. Over the years, the meeting has grown to be a major international conference in the field of proteomics and has attracted excellent scientists from all corners of the world. The 9th Siena Meeting: 'from Genome to Proteome: Open Innovations' was attended by 300 scientists. There were four plenary and eight parallel sessions with 50 invited talks and three poster sessions with 94 posters covering wide range of functional proteomics, signaling, biomarkers, cancer, neuroscience, glycoproteomics, mass spectrometry and bioinformatics. As in the past, this year's Siena Meeting maintained its tradition of placing science at centre stage, which generated a wide range of discussions of major importance for the future. PMID:23256669

  10. The 9th Siena meeting: from genome to proteome: open innovations.

    PubMed

    Godovac-Zimmermann, Jasminka

    2012-12-01

    The Siena Meeting has been held biannually since 1994, when for the first time the concept of the proteome was introduced to a large scientific audience. Over the years, the meeting has grown to be a major international conference in the field of proteomics and has attracted excellent scientists from all corners of the world. The 9th Siena Meeting: 'from Genome to Proteome: Open Innovations' was attended by 300 scientists. There were four plenary and eight parallel sessions with 50 invited talks and three poster sessions with 94 posters covering wide range of functional proteomics, signaling, biomarkers, cancer, neuroscience, glycoproteomics, mass spectrometry and bioinformatics. As in the past, this year's Siena Meeting maintained its tradition of placing science at centre stage, which generated a wide range of discussions of major importance for the future.

  11. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    PubMed Central

    Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-01-01

    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490

  12. Highlights of recent articles on data mining in genomics & proteomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial elaborates on investigations consisting of different “OMICS” technologies and their application to biological sciences. In addition, advantages and recent development of the proteomic, genomic and data mining technologies are discussed. This information will be useful to scientists ...

  13. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics.

    PubMed

    Lundby, Alicia; Rossin, Elizabeth J; Steffensen, Annette B; Acha, Moshe Rav; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T; Jukema, J Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W; Krijthe, Bouwe P; Hofman, Albert; Uitterlinden, André G; Stricker, Bruno H; Nathoe, Hendrik M; Spiering, Wilko; Daly, Mark J; Asselbergs, Folkert W; van der Harst, Pim; Milan, David J; de Bakker, Paul I W; Lage, Kasper; Olsen, Jesper V

    2014-08-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated with complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT-interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single-nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  14. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    PubMed Central

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Rav Acha, Moshe; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N.; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T.; Jukema, J.Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Folkert W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I.W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated wtih complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  15. Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718

    PubMed Central

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for

  16. Dicarbonyl proteome and genome damage in metabolic and vascular disease.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2014-04-01

    Methylglyoxal is a potent protein-glycating agent. It is an arginine-directed glycating agent and often modifies functionally important sites in proteins. Glycation forms mainly MG-H1 [Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine] residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis-MS/MS and also by immunoblotting with specific monoclonal antibodies. Methylglyoxal-modified proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation end-product in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and aging. Proteins susceptible to methylglyoxal modification with related functional impairment are called the DCP (dicarbonyl proteome). The DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and others. DCP component proteins are linked to mitochondrial dysfunction in diabetes and aging, oxidative stress, dyslipidaemia, cell detachment and anoikis and apoptosis. Methylglyoxal also modifies DNA where deoxyguanosine residues are modified to imidazopurinone MGdG {3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one} isomers. MGdG was the major quantitative adduct detected in vivo. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell-permeant glyoxalase I inhibitor. Glyoxalase I metabolizes >99% methylglyoxal and thereby protects the proteome and genome. Gene deletion of GLO1 is embryonically lethal and GLO1 silencing increases methylglyoxal concentration, MG-H1 and MGdG, premature aging and disease. Studies of methylglyoxal glycation have importance for human health, longevity and

  17. Dicarbonyl proteome and genome damage in metabolic and vascular disease.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2014-04-01

    Methylglyoxal is a potent protein-glycating agent. It is an arginine-directed glycating agent and often modifies functionally important sites in proteins. Glycation forms mainly MG-H1 [Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine] residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis-MS/MS and also by immunoblotting with specific monoclonal antibodies. Methylglyoxal-modified proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation end-product in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and aging. Proteins susceptible to methylglyoxal modification with related functional impairment are called the DCP (dicarbonyl proteome). The DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and others. DCP component proteins are linked to mitochondrial dysfunction in diabetes and aging, oxidative stress, dyslipidaemia, cell detachment and anoikis and apoptosis. Methylglyoxal also modifies DNA where deoxyguanosine residues are modified to imidazopurinone MGdG {3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one} isomers. MGdG was the major quantitative adduct detected in vivo. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell-permeant glyoxalase I inhibitor. Glyoxalase I metabolizes >99% methylglyoxal and thereby protects the proteome and genome. Gene deletion of GLO1 is embryonically lethal and GLO1 silencing increases methylglyoxal concentration, MG-H1 and MGdG, premature aging and disease. Studies of methylglyoxal glycation have importance for human health, longevity and

  18. Leveraging Genomics Software to Improve Proteomics Results

    SciTech Connect

    Fodor, I K; Nelson, D O

    2005-09-06

    Rigorous data analysis techniques are essential in quantifying the differential expression of proteins in biological samples of interest. Statistical methods from the microarray literature were applied to the analysis of two-dimensional difference gel electrophoresis (2-D DIGE) proteomics experiments, in the context of technical variability studies involving human plasma. Protein expression measurements were corrected to account for observed intensity-dependent biases within gels, and normalized to mitigate observed gel to gel variations. The methods improved upon the results achieved using the best currently available 2-D DIGE proteomics software. The spot-wise protein variance was reduced by 10% and the number of apparently differentially expressed proteins was reduced by over 50%.

  19. A pan-cancer proteomic perspective on The Cancer Genome Atlas

    PubMed Central

    Akbani, Rehan; Ng, Patrick Kwok Shing; Werner, Henrica M.J.; Shahmoradgoli, Maria; Zhang, Fan; Ju, Zhenlin; Liu, Wenbin; Yang, Ji-Yeon; Yoshihara, Kosuke; Li, Jun; Ling, Shiyun; Seviour, Elena G.; Ram, Prahlad T.; Minna, John D.; Diao, Lixia; Tong, Pan; Heymach, John V.; Hill, Steven M.; Dondelinger, Frank; Städler, Nicolas; Byers, Lauren A.; Meric-Bernstam, Funda; Weinstein, John N.; Broom, Bradley M.; Verhaak, Roeland G.W.; Liang, Han; Mukherjee, Sach; Lu, Yiling; Mills, Gordon B.

    2014-01-01

    Protein levels and function are poorly predicted by genomic and transcriptomic analysis of patient tumors. Therefore, direct study of the functional proteome has the potential to provide a wealth of information that complements and extends genomic, epigenomic and transcriptomic analysis in The Cancer Genome Atlas (TCGA) projects. Here we use reverse-phase protein arrays to analyze 3,467 patient samples from 11 TCGA “Pan-Cancer” diseases, using 181 high-quality antibodies that target 128 total proteins and 53 post-translationally modified proteins. The resultant proteomic data is integrated with genomic and transcriptomic analyses of the same samples to identify commonalities, differences, emergent pathways and network biology within and across tumor lineages. In addition, tissue-specific signals are reduced computationally to enhance biomarker and target discovery spanning multiple tumor lineages. This integrative analysis, with an emphasis on pathways and potentially actionable proteins, provides a framework for determining the prognostic, predictive and therapeutic relevance of the functional proteome. PMID:24871328

  20. Differential Proteomics Analysis of Bacillus amyloliquefaciens and Its Genome-Shuffled Mutant for Improving Surfactin Production

    PubMed Central

    Zhao, Junfeng; Cao, Lin; Zhang, Chong; Zhong, Lei; Lu, Jing; Lu, Zhaoxin

    2014-01-01

    Genome shuffling technology was used as a novel whole-genome engineering approach to rapidly improve the antimicrobial lipopeptide yield of Bacillus amyloliquefaciens. Comparative proteomic analysis of the parental ES-2-4 and genome-shuffled FMB38 strains was conducted to examine the differentially expressed proteins. The proteome was separated by 2-DE (two dimensional electrophoresis) and analyzed by MS (mass spectrum). In the shuffled strain FMB38, 51 differentially expressed protein spots with higher than two-fold spot density were detected by gel image comparison. Forty-six protein spots were detectable by silver staining and further MS analysis. The results demonstrated that among the 46 protein spots expressed particularly induced in the genome-shuffled mutant, 15 were related to metabolism, five to DNA replication, recombination and repair, six to translation and post-translational modifications, one to cell secretion and signal transduction mechanisms, three to surfactin synthesis, two to energy production and conversion, and 14 to others. All these indicated that the metabolic capability of the mutant was improved by the genome shuffling. The study will enable future detailed investigation of gene expression and function linked with surfactin synthesis. The results of proteome analysis may provide information for metabolic engineering of Bacillus amyloliquefaciens for overproduction of surfactin. PMID:25365175

  1. The srhSR gene pair from Staphylococcus aureus: genomic and proteomic approaches to the identification and characterization of gene function.

    PubMed

    Throup, J P; Zappacosta, F; Lunsford, R D; Annan, R S; Carr, S A; Lonsdale, J T; Bryant, A P; McDevitt, D; Rosenberg, M; Burnham, M K

    2001-08-28

    Systematic analysis of the entire two-component signal transduction system (TCSTS) gene complement of Staphylococcus aureus revealed the presence of a putative TCSTS (designated SrhSR) which shares considerable homology with the ResDE His-Asp phospho-relay pair of Bacillus subtilis. Disruption of the srhSR gene pair resulted in a dramatic reduction in growth of the srhSR mutant, when cultured under anaerobic conditions, and a 3-log attenuation in growth when analyzed in the murine pyelonephritis model. To further understand the role of SrhSR, differential display two-dimensional gel electrophoresis was used to analyze the cell-free extracts derived from the srhSR mutant and the corresponding wild type. Proteins shown to be differentially regulated were identified by mass spectrometry in combination with protein database searching. An srhSR deletion led to changes in the expression of proteins involved in energy metabolism and other metabolic processes including arginine catabolism, xanthine catabolism, and cell morphology. The impaired growth of the mutant under anaerobic conditions and the dramatic changes in proteins involved in energy metabolism shed light on the mechanisms used by S. aureus to grow anaerobically and indicate that the staphylococcal SrhSR system plays an important role in the regulation of energy transduction in response to changes in oxygen availability. The combination of proteomics, bio-informatics, and microbial genetics employed here represents a powerful set of techniques which can be applied to the study of bacterial gene function.

  2. Proteomic analysis of propiconazole responses in mouse liver: comparison of genomic and proteomic profiles.

    PubMed

    Ortiz, Pedro A; Bruno, Maribel E; Moore, Tanya; Nesnow, Stephen; Winnik, Witold; Ge, Yue

    2010-03-01

    We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we identified 62 proteins that were altered. Several of these protein changes detected by 2-DE/MS were verified by Western blot analyses. These differentially expressed proteins were mapped using Ingenuity Pathway Analyses (IPA) canonical pathways and IPA tox lists. Forty-four pathways/lists were identified. IPA was also used to create networks of interacting protein clusters. The protein-generated IPA canonical pathways and IPA tox lists were compared to those pathways and lists previously generated from genomic analyses from livers of mice treated with propiconazole under the same experimental conditions. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data with 27 pathways common to both proteomic and genomic analyses. However, there were also 17 pathways/lists identified only by proteomics analysis and 21 pathways/lists only identified by genomic analysis. The protein network analysis produced interacting subnetworks centered around hepatocyte nuclear factor 4 alpha (HNF4 alpha), MYC, proteasome subunit type 4 alpha, and glutathione S-transferase (GST). The HNF4 alpha network hub was also identified by genomic analysis. Five GST isoforms were identified by proteomic analysis and GSTs were present in 10 of the 44 protein-based pathways/lists. Hepatic GST activities were compared between mice treated with propiconazole and 2 additional conazoles and higher GST activities were found to be associated with the tumorigenic conazoles. Overall, this comparative proteomic and genomic study has revealed a series of alterations in livers induced by propiconazole: nuclear receptor

  3. The path to enlightenment: making sense of genomic and proteomic information.

    PubMed

    Maurer, Martin H

    2004-05-01

    Whereas genomics describes the study of genome, mainly represented by its gene expression on the DNA or RNA level, the term proteomics denotes the study of the proteome, which is the protein complement encoded by the genome. In recent years, the number of proteomic experiments increased tremendously. While all fields of proteomics have made major technological advances, the biggest step was seen in bioinformatics. Biological information management relies on sequence and structure databases and powerful software tools to translate experimental results into meaningful biological hypotheses and answers. In this resource article, I provide a collection of databases and software available on the Internet that are useful to interpret genomic and proteomic data. The article is a toolbox for researchers who have genomic or proteomic datasets and need to put their findings into a biological context.

  4. Proteomics enhances evolutionary and functional analysis of reproductive proteins.

    PubMed

    Findlay, Geoffrey D; Swanson, Willie J

    2010-01-01

    Reproductive proteins maintain species-specific barriers to fertilization, affect the outcome of sperm competition, mediate reproductive conflicts between the sexes, and potentially contribute to the formation of new species. However, the specific proteins and molecular mechanisms that underlie these processes are understood in only a handful of cases. Advances in genomic and proteomic technologies enable the identification of large suites of reproductive proteins, making it possible to dissect reproductive phenotypes at the molecular level. We first review these technological advances and describe how reproductive proteins are identified in diverse animal taxa. We then discuss the dynamic evolution of reproductive proteins and the potential selective forces that act on them. Finally, we describe molecular and genomic tools for functional analysis and detail how evolutionary data may be used to make predictions about interactions among reproductive proteins.

  5. Proteomics

    SciTech Connect

    Hixson, Kim K.; Lopez-Ferrer, Daniel; Robinson, Errol W.; Pasa-Tolic, Ljiljana

    2010-02-01

    Proteomics aims to characterize the spatial distribution and temporal dynamics of proteins in biological systems, the protein response to environmental stimuli, and the differences in protein states between diseased and control biological systems. Mass spectrometry (MS) plays a crucial role in enabling the analysis of proteomes and typically is the method of choice for identifying proteins present in biological systems. Peptide (and consequently protein) identifications are made by comparing measured masses to calculated values obtained from genome data. Several methodologies based on MS have been developed for the analysis of proteomes. The complexity of the biological systems requires that the proteome be separated prior to analysis. Both gel based and liquid chromatography based separations have proven very useful in this regard. Typically, separated proteins are analyzed with MS either intact (top-down proteomics) or are digested into peptides (bottom-up) prior to MS analysis. Additionally, several procedures, with and without stable isotopic labeling, have been introduced to facilitate protein quantitation (e.g. characterize changes in protein abundances between given biological states).

  6. An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    PubMed Central

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, James K.; Lipton, Mary S.; Callister, Stephen J.

    2010-01-01

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella. PMID:21103051

  7. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-01

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  8. Proteomic and genomic studies of non-alcoholic fatty liver disease--clues in the pathogenesis.

    PubMed

    Lim, Jun Wei; Dillon, John; Miller, Michael

    2014-07-14

    Non-alcoholic fatty liver disease (NAFLD) is a widely prevalent hepatic disorder that covers wide spectrum of liver pathology. NAFLD is strongly associated with liver inflammation, metabolic hyperlipidaemia and insulin resistance. Frequently, NAFLD has been considered as the hepatic manifestation of metabolic syndrome. The pathophysiology of NAFLD has not been fully elucidated. Some patients can remain in the stage of simple steatosis, which generally is a benign condition; whereas others can develop liver inflammation and progress into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The mechanism behind the progression is still not fully understood. Much ongoing proteomic researches have focused on discovering the unbiased circulating biochemical markers to allow early detection and treatment of NAFLD. Comprehensive genomic studies have also begun to provide new insights into the gene polymorphism to understand patient-disease variations. Therefore, NAFLD is considered a complex and mutifactorial disease phenotype resulting from environmental exposures acting on a susceptible polygenic background. This paper reviewed the current status of proteomic and genomic studies that have contributed to the understanding of NAFLD pathogenesis. For proteomics section, this review highlighted functional proteins that involved in: (1) transportation; (2) metabolic pathway; (3) acute phase reaction; (4) anti-inflammatory; (5) extracellular matrix; and (6) immune system. In the genomic studies, this review will discuss genes which involved in: (1) lipolysis; (2) adipokines; and (3) cytokines production.

  9. Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant

    PubMed Central

    Brotherton, Marie-Christine; Bourassa, Sylvie; Leprohon, Philippe; Légaré, Danielle; Poirier, Guy G.; Droit, Arnaud; Ouellette, Marc

    2013-01-01

    Background Antimonials remain the primary antileishmanial drugs in most developing countries. However, drug resistance to these compounds is increasing and our understanding of resistance mechanisms is partial. Methods/Principal Findings In the present study, quantitative proteomics using stable isotope labelling of amino acids in cell culture (SILAC) and genome next generation sequencing were used in order to better characterize in vitro generated Leishmania infantum antimony resistant mutant (Sb2000.1). Using the proteomic method, 58 proteins were found to be differentially regulated in Sb2000.1. The ABC transporter MRPA (ABCC3), a known marker of antimony resistance, was observed for the first time in a proteomic screen. Furthermore, transfection of its gene conferred antimony resistance in wild-type cells. Next generation sequencing revealed aneuploidy for 8 chromosomes in Sb2000.1. Moreover, specific amplified regions derived from chromosomes 17 and 23 were observed in Sb2000.1 and a single nucleotide polymorphism (SNP) was detected in a protein kinase (LinJ.33.1810-E629K). Conclusion/Significance Our results suggest that differentially expressed proteins, chromosome number variations (CNVs), specific gene amplification and SNPs are important features of antimony resistance in Leishmania. PMID:24312377

  10. A proteomic approach to neuropeptide function elucidation.

    PubMed

    Temmerman, L; Bogaerts, A; Meelkop, E; Cardoen, D; Boerjan, B; Janssen, T; Schoofs, L

    2012-03-01

    Many of the diverse functions of neuropeptides are still elusive. As they are ideally suited to modulate traditional signaling, their added actions are not always detectable under standard laboratory conditions. The search for function assignment to peptide encoding genes can therefore greatly benefit from molecular information. Specific molecular changes resulting from neuropeptide signaling may direct researchers to yet unknown processes or conditions, for which studying these signaling systems may eventually lead to phenotypic confirmation. Here, we applied gel-based proteomics after pdf-1 neuropeptide gene knockout in the model organism Caenorhabditis elegans. It has previously been described that pdf-1 null mutants display a locomotion defect, being slower and making more turns and reversals than wild type worms. The vertebrate functional homolog of PDF-1, vasocative intestinal peptide (VIP), is known to influence a plethora of processes, which have so far not been investigated for pdf-1. Because proteins represent the actual effectors inside an organism, proteomic analysis can guide our view to novel pdf-1 actions in the nematode worm. Our data show that knocking out pdf-1 results in alteration of levels of proteins involved in fat metabolism, stress resistance and development. This indicates a possible conservation of VIP-like actions for pdf-1 in C. elegans.

  11. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.

  12. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  13. The disulfide proteome and other reactive cysteine proteomes: analysis and functional significance.

    PubMed

    Lindahl, Marika; Mata-Cabana, Alejandro; Kieselbach, Thomas

    2011-06-15

    Ten years ago, proteomics techniques designed for large-scale investigations of redox-sensitive proteins started to emerge. The proteomes, defined as sets of proteins containing reactive cysteines that undergo oxidative post-translational modifications, have had a particular impact on research concerning the redox regulation of cellular processes. These proteomes, which are hereafter termed "disulfide proteomes," have been studied in nearly all kingdoms of life, including animals, plants, fungi, and bacteria. Disulfide proteomics has been applied to the identification of proteins modified by reactive oxygen and nitrogen species under stress conditions. Other studies involving disulfide proteomics have addressed the functions of thioredoxins and glutaredoxins. Hence, there is a steadily growing number of proteins containing reactive cysteines, which are probable targets for redox regulation. The disulfide proteomes have provided evidence that entire pathways, such as glycolysis, the tricarboxylic acid cycle, and the Calvin-Benson cycle, are controlled by mechanisms involving changes in the cysteine redox state of each enzyme implicated. Synthesis and degradation of proteins are processes highly represented in disulfide proteomes and additional biochemical data have established some mechanisms for their redox regulation. Thus, combined with biochemistry and genetics, disulfide proteomics has a significant potential to contribute to new discoveries on redox regulation and signaling.

  14. proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data*

    PubMed Central

    Wang, Xiaojing; Slebos, Robbert J. C.; Chambers, Matthew C.; Tabb, David L.; Liebler, Daniel C.; Zhang, Bing

    2016-01-01

    To facilitate genome-based representation and analysis of proteomics data, we developed a new bioinformatics framework, proBAMsuite, in which a central component is the protein BAM (proBAM) file format for organizing peptide spectrum matches (PSMs)1 within the context of the genome. proBAMsuite also includes two R packages, proBAMr and proBAMtools, for generating and analyzing proBAM files, respectively. Applying proBAMsuite to three recently published proteomics datasets, we demonstrated its utility in facilitating efficient genome-based sharing, interpretation, and integration of proteomics data. First, the interpretation of proteomics data is significantly enhanced with the rich genomic annotation information. Second, PSMs can be easily reannotated using user-specified gene annotation schemes and assembled into both protein and gene identifications. Third, using the genome as a common reference, proBAMsuite facilitates seamless proteomics and proteogenomics data integration. Finally, proBAM files can be readily visualized in genome browsers and thus bring proteomics data analysis to a general audience beyond the proteomics community. Results from this study establish proBAMsuite as a useful bioinformatics framework for proteomics and proteogenomics research. PMID:26657539

  15. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and Heterochromatin Protein-1γ in reprogramming to pluripotency

    PubMed Central

    Sridharan, Rupa; Gonzales-Cope, Michelle; Chronis, Constantinos; Bonora, Giancarlo; McKee, Robin; Huang, Chengyang; Patel, Sanjeet; Lopez, David; Mishra, Nilamadhab; Pellegrini, Matteo; Carey, Michael; Garcia, Benjamin A.; Plath, Kathrin

    2013-01-01

    Reprogramming of somatic cells into iPSCs involves a dramatic reorganization of chromatin. To identify posttranslational histone modifications that change in global abundance during this process, we have applied a quantitative mass-spectrometry-based approach. We found that iPSCs, compared to both the starting fibroblasts and a late reprogramming intermediate (pre-iPSCs), are enriched for histone modifications associated with active chromatin, and depleted for marks of transcriptional elongation and a subset of repressive modifications including H3K9me2/me3. Dissecting the contribution of H3K9methylation to reprogramming, we show that the H3K9methyltransferases Ehmt1, Ehmt2, and Setdb1 regulate global H3K9me2/me3 levels and that their depletion increases iPSC formation from both fibroblasts and pre-iPSCs. Similarly, inhibition of heterochromatin-protein-1γ (Cbx3), a protein known to recognize H3K9methylation, enhances reprogramming. Genome-wide location analysis revealed that Cbx3 predominantly binds active genes in both pre-iPSCs and pluripotent cells but with a strikingly different distribution: in pre-iPSCs, but not in ESCs, Cbx3 associates with active transcriptional start sites, suggesting a developmentally-regulated role for Cbx3 in transcriptional activation. Despite largely non-overlapping functions and the association of Cbx3 with active transcription, the H3K9methyltransferases and Cbx3 both inhibit reprogramming by repressing the pluripotency factor Nanog. Together, our findings demonstrate that Cbx3 and H3K9methylation restrict late reprogramming events, and suggest that a dramatic change in global chromatin character is an epigenetic roadblock for reprogramming. PMID:23748610

  16. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Zhou, Lisha; Liu, Jinwen; Cen, Zhong; Wu, Chunyan; Wang, Tong; Zhou, Tao; Chang, De; Guo, Yinghua; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Yin, Sanjun; Dai, Wenkui; Zhou, Yuping; Zhao, Jiao; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-01-01

    The environment in space could affect microorganisms by changing a variety of features, including proliferation rate, cell physiology, cell metabolism, biofilm production, virulence, and drug resistance. However, the relevant mechanisms remain unclear. To explore the effect of a space environment on Bacillus cereus, a strain of B. cereus was sent to space for 398 h by ShenZhou VIII from November 1, 2011 to November 17, 2011. A ground simulation with similar temperature conditions was simultaneously performed as a control. After the flight, the flight and control strains were further analyzed using phenotypic, genomic, transcriptomic and proteomic techniques to explore the divergence of B. cereus in a space environment. The flight strains exhibited a significantly slower growth rate, a significantly higher amikacin resistance level, and changes in metabolism relative to the ground control strain. After the space flight, three polymorphic loci were found in the flight strains LCT-BC25 and LCT-BC235. A combined transcriptome and proteome analysis was performed, and this analysis revealed that the flight strains had changes in genes/proteins relevant to metabolism. In addition, certain genes/proteins that are relevant to structural function, gene expression modification and translation, and virulence were also altered. Our study represents the first documented analysis of the phenotypic, genomic, transcriptomic, and proteomic changes that occur in B. cereus during space flight, and our results could be beneficial to the field of space microbiology.

  17. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis.

    PubMed

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-01-01

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates. PMID:27633273

  18. Expressed Genome of Methylobacillus flagellatus as Defined through Comprehensive Proteomics and New Insights into Methylotrophy▿ †

    PubMed Central

    Hendrickson, Erik L.; Beck, David A. C.; Wang, Tiansong; Lidstrom, Mary E.; Hackett, Murray; Chistoserdova, Ludmila

    2010-01-01

    In recent years, techniques have been developed and perfected for high-throughput identification of proteins and their accurate partial sequencing by shotgun nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS), making it feasible to assess global protein expression profiles in organisms with sequenced genomes. We implemented comprehensive proteomics to assess the expressed portion of the genome of Methylobacillus flagellatus during methylotrophic growth. We detected a total of 1,671 proteins (64% of the inferred proteome), including all the predicted essential proteins. Nonrandom patterns observed with the nondetectable proteins appeared to correspond to silent genomic islands, as inferred through functional profiling and genome localization. The protein contents in methylamine- and methanol-grown cells showed a significant overlap, confirming the commonality of methylotrophic metabolism downstream of the primary oxidation reactions. The new insights into methylotrophy include detection of proteins for the N-methylglutamate methylamine oxidation pathway that appears to be auxiliary and detection of two alternative enzymes for both the 6-phosphogluconate dehydrogenase reaction (GndA and GndB) and the formate dehydrogenase reaction (FDH1 and FDH4). Mutant analysis revealed that GndA and FDH4 are crucial for the organism's fitness, while GndB and FDH1 are auxiliary. PMID:20639322

  19. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    SciTech Connect

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  20. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis

    PubMed Central

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-01-01

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates. PMID:27633273

  1. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis.

    PubMed

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-01-01

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.

  2. LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia

    PubMed Central

    Fröhlich, Thomas; Arnold, Georg J; Fritsch, Rainer; Mayr, Tobias; Laforsch, Christian

    2009-01-01

    Background Daphniids, commonly known as waterfleas, serve as important model systems for ecology, evolution and the environmental sciences. The sequencing and annotation of the Daphnia pulex genome both open future avenues of research on this model organism. As proteomics is not only essential to our understanding of cell function, and is also a powerful validation tool for predicted genes in genome annotation projects, a first proteomic dataset is presented in this article. Results A comprehensive set of 701,274 peptide tandem-mass-spectra, derived from Daphnia pulex, was generated, which lead to the identification of 531 proteins. To measure the impact of the Daphnia pulex filtered models database for mass spectrometry based Daphnia protein identification, this result was compared with results obtained with the Swiss-Prot and the Drosophila melanogaster database. To further validate the utility of the Daphnia pulex database for research on other Daphnia species, additional 407,778 peptide tandem-mass-spectra, obtained from Daphnia longicephala, were generated and evaluated, leading to the identification of 317 proteins. Conclusion Peptides identified in our approach provide the first experimental evidence for the translation of a broad variety of predicted coding regions within the Daphnia genome. Furthermore it could be demonstrated that identification of Daphnia longicephala proteins using the Daphnia pulex protein database is feasible but shows a slightly reduced identification rate. Data provided in this article clearly demonstrates that the Daphnia genome database is the key for mass spectrometry based high throughput proteomics in Daphnia. PMID:19383153

  3. Integration of RNA-seq and proteomics data with genomics for improved genome annotation in Apicomplexan parasites.

    PubMed

    Silmon de Monerri, Natalie C; Weiss, Louis M

    2015-08-01

    While high quality genomic sequence data is available for many pathogenic organisms, the corresponding gene annotations are often plagued with inaccuracies that can hinder research that utilizes such genomic data. Experimental validation of gene models is clearly crucial in improving such gene annotations; the field of proteogenomics is an emerging area of research wherein proteomic data is applied to testing and improving genetic models. Krishna et al. [Proteomics 2015, 15, 2618-2628] investigated whether incorporation of RNA-seq data into proteogenomics analyses can contribute significantly to validation studies of genome annotation, in two important parasitic organisms Toxoplasma gondii and Neospora caninum. They applied a systematic approach to combine new and previously published proteomics data from T. gondii and N. caninum with transcriptomics data, leading to substantially improved gene models for these organisms. This study illustrates the importance of incorporating experimental data from both proteomics and RNA-seq studies into routine genome annotation protocols.

  4. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research

    PubMed Central

    2013-01-01

    Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing approaches for directly elucidating phosphoprotein signaling networks in cancer cells or for capturing high-resolution snapshots of immune system function in patients with various disease conditions. We discuss advances in single-cell proteomics platforms, with an emphasis on microchip methods. These methods can provide a direct correlation of morphological, functional and molecular signatures at the single-cell level. We also provide examples of how those platforms are being applied to both fundamental biology and clinical studies, focusing on immune-system monitoring and phosphoprotein signaling networks in cancer. PMID:23998271

  5. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.

  6. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. PMID:26323482

  7. Integrative environmental genomics of Cod (Gadus morhua): the proteomics approach.

    PubMed

    Karlsen, Odd André; Bjørneklett, Silje; Berg, Karin; Brattås, Marianne; Bohne-Kjersem, Anneli; Grøsvik, Bjørn Einar; Goksøyr, Anders

    2011-01-01

    Atlantic cod (Gadus morhua) is an essential species in North Atlantic fisheries and increasingly relevant as an aquaculture species. However, potential conflicts with both coastal industry and petroleum industry expanding into northern waters make it important to understand how effluents (produced water, pharmaceuticals, food contaminants, and feed contaminants) affect the growth, reproduction, and health of this species in order to maintain a sustainable cod population and a healthy human food source, and to discover biomarkers for environmental monitoring and risk assessment. The ongoing genome sequencing effort of Atlantic cod has opened the possibility for a systems biology approach to elucidate molecular mechanisms of toxicity. Our study aims to be a first step toward such a systems toxicology understanding of genomic responses to environmental insults. A toxicogenomic approach was initiated that is combining data generated from proteomics analyses and transcriptomics analyses, and the concurrent development of searchable expressed sequence tags (EST) databases and genomic databases. This interdisciplinary study may also open new possibilities of gene annotation and pathway analyses.

  8. Genomics, proteomics and metabonomics in toxicology: hopefully not 'fashionomics'.

    PubMed

    Pognan, Francois

    2004-10-01

    Genomics, proteomics and metabonomics are applied to toxicology either as stand-alone technologies or in combination, with the intention of providing a more efficient assessment of the potential side effects of new chemical entities. Two different approaches are taken: a predictive/proactive strategy based on a statistical analogy of 'signatures' of drugs to many known toxicant gene or metabolite fingerprints; and a mechanistic/reactive strategy based on the in-depth biological analysis of the gene, protein or metabolite profiles induced by one or a few compounds of interest. This article focuses on the advantages and disadvantages of these technologies, as well as the many hurdles associated with both these approaches in toxicology that have to be considered before applying them to the assessment of future drugs. PMID:15469409

  9. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  10. Linkage of exposure and effects using genomics, proteomics and metabolomics in small fish models (presentation)

    EPA Science Inventory

    This research project combines the use of whole organism endpoints, genomic, proteomic and metabolomic approaches, and computational modeling in a systems biology approach to 1) identify molecular indicators of exposure and biomarkers of effect to EDCs representing several modes/...

  11. Comparative genomics and proteomics of 13 Porphyromonas gingivalis strains.

    PubMed

    Chen, Tsute; Siddiqui, Huma; Olsen, Ingar

    2015-01-01

    At the current time, genome sequences of a total of 13 Porphyromonas gingivalis strains are available, including five completed genomes (strains ATCC 33277, HG66, TDC60, JCVISC001, and W83) and eight high-coverage draft sequences (F0185, F0566, F0568, F0569, F0570, SJD2, W4087, and W50) that are assembled into fewer than 300 contigs. This study compared these genomes at both nucleotide and protein sequence levels in order to understand their phylogenetic and functional relatedness. There are four copies of 16S rRNA gene sequences in each of the strains of ATCC 33277, HG66, TDC60, and W83 and one copy in the other nine genomes. These 25 16S rRNA sequences represent only 13 unique sequences. The five copies in W83 and W50 are identical and the three copies in HG66 are identical to the four copies in ATCC 33277, suggesting close evolutionary lineage between W83 and W50, as well as HG66 and ATCC 33277. Genome-wide comparison based on "Rapid Annotation using Subsystem Technology" (RAST) also showed that for the overall biological functions of the genomes, W83 is closer to W50, and HG66 to ATCC33277, than to other genomes. The comparison of the RAST subsystems identified biological functions that are unique to individual, shared by some, or by all genomes. Functions unique to individual genomes include: a tetracycline resistance protein TetQ, DNA metabolism gene YcfH, and DNA repair gene exonuclease SbcC (only in SJD2); very-short-patch mismatch repair endonuclease and a phage packaging terminase similar to Bacteroides phage B124-14 (in W4087); an internalin similar to a Listeria surface virulence protein (W83); a Type I restriction-modification system (F0569); an iron acquisition/heme transport protein (F0566); colicin I receptor and carbamoylputrescine amidase (W50); L-serine dehydratase (TDC60); and spermidine synthase and ribokinase (JCVISC001). The results also identified biological functions that are missing in individual or several genomes. For example, JCVISC001

  12. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  13. CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    PubMed Central

    Mahadevan, Padmanabhan; King, John F; Seto, Donald

    2009-01-01

    Background Viruses and small-genome bacteria (~2 megabases and smaller) comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG) is an in silico genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms. Findings CGUG is available at as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an in silico display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with Chlamydophila and Francisella genomes. Conclusion CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins. PMID:19706165

  14. Genomics and proteomics in chemical warfare agent research: recent studies and future applications.

    PubMed

    Everley, Patrick A; Dillman, James F

    2010-10-20

    Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.

  15. Approaches for the study of cancer: towards the integration of genomics, proteomics and metabolomics.

    PubMed

    Casado-Vela, Juan; Cebrián, Arancha; Gómez del Pulgar, María Teresa; Lacal, Juan Carlos

    2011-09-01

    Recent technological advances, combined with the development of bioinformatic tools, allow us to better address biological questions combining -omic approaches (i.e., genomics, metabolomics and proteomics). This novel comprehensive perspective addresses the identification, characterisation and quantitation of the whole repertoire of genes, proteins and metabolites occurring in living organisms. Here we provide an overview of recent significant advances and technologies used in genomics, metabolomics and proteomics. We also underline the importance and limits of mass accuracy in mass spectrometry-based -omics and briefly describe emerging types of fragmentation used in mass spectrometry. The range of instruments and techniques used to address the study of each -omic approach, which provide vast amounts of information (usually termed "high-throughput" technologies in the literature) is briefly discussed, including names, links and descriptions of the main databases, data repositories and resources used. Integration of multiple -omic results and procedures seems necessary. Therefore, an emerging challenge is the integration of the huge amount of data generated and the standardisation of the procedures and methods used. Functional data integration will lead to answers to unsolved questions, hopefully, applicable to clinical practice and management of patients.

  16. Genomic and Proteomic Biomarkers for Cancer: A Multitude of Opportunities

    PubMed Central

    Tainsky, Michael A.

    2009-01-01

    Biomarkers are molecular indicators of a biological status, and as biochemical species can be assayed to evaluate the presence of cancer and therapeutic interventions. Through a variety of mechanisms cancer cells provide the biomarker material for their own detection. Biomarkers may be detectable in the blood, other body fluids, or tissues. The expectation is that the level of an informative biomarker is related to the specific type of disease present in the body. Biomarkers have potential both as diagnostic indicators and monitors of the effectiveness of clinical interventions. Biomarkers are also able to stratify cancer patients to the most appropriate treatment. Effective biomarkers for the early detection of cancer should provide a patient with a better outcome which in turn will translate into more efficient delivery of healthcare. Technologies for the early detection of cancer have resulted in reductions in disease-associated mortalities from cancers that are otherwise deadly if allowed to progress. Such screening technologies have proven that early detection will decrease the morbidity and mortality from cancer. An emerging theme in biomarker research is the expectation that panels of biomarker analytes rather than single markers will be needed to have sufficient sensitivity and specificity for the presymptomatic detection of cancer. Biomarkers may provide prognostic information of disease enabling interventions using targeted therapeutic agents as well as course-corrections in cancer treatment. Novel genomic, proteomic and metabolomic technologies are being used to discover and validate tumor biomarkers individually and in panels. PMID:19406210

  17. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

    PubMed Central

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Koonin, Eugene V; Makarova, Kira S; Wolf, Yuri I; Rigden, Daniel J; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. Results We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Conclusions Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. PMID:19014707

  18. Alternative Splicing and Subfunctionalization Generates Functional Diversity in Fungal Proteomes

    PubMed Central

    Jiménez-López, Claudia; Lorenz, Michael C.; van Hoof, Ambro

    2013-01-01

    Alternative splicing is commonly used by the Metazoa to generate more than one protein from a gene. However, such diversification of the proteome by alternative splicing is much rarer in fungi. We describe here an ancient fungal alternative splicing event in which these two proteins are generated from a single alternatively spliced ancestral SKI7/HBS1 gene retained in many species in both the Ascomycota and Basidiomycota. While the ability to express two proteins from a single SKI7/HBS1 gene is conserved in many fungi, the exact mechanism by which they achieve this varies. The alternative splicing was lost in Saccharomyces cerevisiae following the whole-genome duplication event as these two genes subfunctionalized into the present functionally distinct HBS1 and SKI7 genes. When expressed in yeast, the single gene from Lachancea kluyveri generates two functionally distinct proteins. Expression of one of these proteins complements hbs1, but not ski7 mutations, while the other protein complements ski7, but not hbs1. This is the first known case of subfunctionalization by loss of alternative splicing in yeast. By coincidence, the ancestral alternatively spliced gene was also duplicated in Schizosaccharomyces pombe with subsequent subfunctionalization and loss of splicing. Similar subfunctionalization by loss of alternative splicing in fungi also explains the presence of two PTC7 genes in the budding yeast Tetrapisispora blattae, suggesting that this is a common mechanism to preserve duplicate alternatively spliced genes. PMID:23516382

  19. The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function

    PubMed Central

    Carroll, Adam J.

    2013-01-01

    The cytosolic ribosomal proteome of Arabidopsis thaliana has been studied intensively by a range of proteomics approaches and is now one of the most well characterized eukaryotic ribosomal proteomes. Plant cytosolic ribosomes are distinguished from other eukaryotic ribosomes by unique proteins, unique post-translational modifications and an abundance of ribosomal proteins for which multiple divergent paralogs are expressed and incorporated. Study of the A. thaliana ribosome has now progressed well beyond a simple cataloging of protein parts and is focused strongly on elucidating the functions of specific ribosomal proteins, their paralogous isoforms and covalent modifications. This review summarises current knowledge concerning the Arabidopsis cytosolic ribosomal proteome and highlights potentially fruitful areas of future research in this fast moving and important area. PMID:23459595

  20. Proteomics-inferred genome typing (PIGT) demonstrates inter-populationrecombination as a strategy for environmental adaptation

    SciTech Connect

    Denef, Vincent; Verberkmoes, Nathan C; Shah, Manesh B; Abraham, Paul E; Lefsrud, Mark G; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    Analyses of ecological and evolutionary processes that shape microbial consortia are facilitated by comprehensive studies of ecosystems with low species richness. In the current study we evaluated the role of recombination in altering the fitness of chemoautotrophic bacteria in their natural environment. Proteomics-inferred genome typing (PIGT) was used to determine the genomic make-up of Leptospirillum group II populations in 27 biofilms sampled from six locations in the Richmond Mine acid mine drainage system (Iron Mountain, CA) over a four-year period. We observed six distinct genotypes that are recombinants comprised of segments from two parental genotypes. Community genomic analyses revealed additional low abundance recombinant variants. The dominance of some genotypes despite a larger available genome pool, and patterns of spatiotemporal distribution within the ecosystem, indicate selection for distinct recombinants. Genes involved in motility, signal transduction and transport were overrepresented in the tens to hundreds of kilobase recombinant blocks, whereas core metabolic functions were significantly underrepresented. Our findings demonstrate the power of PIGT and reveal that recombination is a mechanism for fine-scale adaptation in this system.

  1. Comparative analyses of nuclear proteome: extending its function

    PubMed Central

    Narula, Kanika; Datta, Asis; Chakraborty, Niranjan; Chakraborty, Subhra

    2013-01-01

    Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10–20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect. PMID:23637696

  2. Genomic and Proteomic Studies on Plesiomonas shigelloides Lipopolysaccharide Core Biosynthesis

    PubMed Central

    Aquilini, Eleonora; Merino, Susana; Regué, Miguel

    2014-01-01

    We report here the identification of waa clusters with the genes required for the biosynthesis of the core lipopolysaccharides (LPS) of two Plesiomonas shigelloides strains. Both P. shigelloides waa clusters shared all of the genes besides the ones flanking waaL. In both strains, all of the genes were found in the waa gene cluster, although one common core biosynthetic gene (wapG) was found in a different chromosome location outside the cluster. Since P. shigelloides and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up at least to the second outer-core residue, the functions of the common P. shigelloides genes were elucidated by genetic complementation studies using well-defined K. pneumoniae mutants. The function of strain-specific inner- or outer-core genes was identified by using as a surrogate acceptor LPS from three well-defined K. pneumoniae core LPS mutants. Using this strategy, we were able to assign a proteomic function to all of the P. shigelloides waa genes identified in the two strains encoding six new glycosyltransferases (WapA, -B, -C, -D, -F, and -G). P. shigelloides demonstrated an important variety of core LPS structures, despite being a single species of the genus, as well as high homologous recombination in housekeeping genes. PMID:24244003

  3. Genomic and proteomic studies on Plesiomonas shigelloides lipopolysaccharide core biosynthesis.

    PubMed

    Aquilini, Eleonora; Merino, Susana; Regué, Miguel; Tomás, Juan M

    2014-02-01

    We report here the identification of waa clusters with the genes required for the biosynthesis of the core lipopolysaccharides (LPS) of two Plesiomonas shigelloides strains. Both P. shigelloides waa clusters shared all of the genes besides the ones flanking waaL. In both strains, all of the genes were found in the waa gene cluster, although one common core biosynthetic gene (wapG) was found in a different chromosome location outside the cluster. Since P. shigelloides and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up at least to the second outer-core residue, the functions of the common P. shigelloides genes were elucidated by genetic complementation studies using well-defined K. pneumoniae mutants. The function of strain-specific inner- or outer-core genes was identified by using as a surrogate acceptor LPS from three well-defined K. pneumoniae core LPS mutants. Using this strategy, we were able to assign a proteomic function to all of the P. shigelloides waa genes identified in the two strains encoding six new glycosyltransferases (WapA, -B, -C, -D, -F, and -G). P. shigelloides demonstrated an important variety of core LPS structures, despite being a single species of the genus, as well as high homologous recombination in housekeeping genes.

  4. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation.

    PubMed

    Charon, Justine; Theil, Sébastien; Nicaise, Valérie; Michon, Thierry

    2016-02-01

    Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs. PMID:26699268

  5. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation.

    PubMed

    Charon, Justine; Theil, Sébastien; Nicaise, Valérie; Michon, Thierry

    2016-02-01

    Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs.

  6. Genomic comparisons of Brucella spp. and closely related bacteria using base compositional and proteome based methods

    PubMed Central

    2010-01-01

    Background Classification of bacteria within the genus Brucella has been difficult due in part to considerable genomic homogeneity between the different species and biovars, in spite of clear differences in phenotypes. Therefore, many different methods have been used to assess Brucella taxonomy. In the current work, we examine 32 sequenced genomes from genus Brucella representing the six classical species, as well as more recently described species, using bioinformatical methods. Comparisons were made at the level of genomic DNA using oligonucleotide based methods (Markov chain based genomic signatures, genomic codon and amino acid frequencies based comparisons) and proteomes (all-against-all BLAST protein comparisons and pan-genomic analyses). Results We found that the oligonucleotide based methods gave different results compared to that of the proteome based methods. Differences were also found between the oligonucleotide based methods used. Whilst the Markov chain based genomic signatures grouped the different species in genus Brucella according to host preference, the codon and amino acid frequencies based methods reflected small differences between the Brucella species. Only minor differences could be detected between all genera included in this study using the codon and amino acid frequencies based methods. Proteome comparisons were found to be in strong accordance with current Brucella taxonomy indicating a remarkable association between gene gain or loss on one hand and mutations in marker genes on the other. The proteome based methods found greater similarity between Brucella species and Ochrobactrum species than between species within genus Agrobacterium compared to each other. In other words, proteome comparisons of species within genus Agrobacterium were found to be more diverse than proteome comparisons between species in genus Brucella and genus Ochrobactrum. Pan-genomic analyses indicated that uptake of DNA from outside genus Brucella appears to be

  7. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    PubMed Central

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  8. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics.

    PubMed

    Takeuchi, Takeshi; Yamada, Lixy; Shinzato, Chuya; Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  9. Mass-spectrometric exploration of proteome structure and function.

    PubMed

    Aebersold, Ruedi; Mann, Matthias

    2016-01-01

    Numerous biological processes are concurrently and coordinately active in every living cell. Each of them encompasses synthetic, catalytic and regulatory functions that are, almost always, carried out by proteins organized further into higher-order structures and networks. For decades, the structures and functions of selected proteins have been studied using biochemical and biophysical methods. However, the properties and behaviour of the proteome as an integrated system have largely remained elusive. Powerful mass-spectrometry-based technologies now provide unprecedented insights into the composition, structure, function and control of the proteome, shedding light on complex biological processes and phenotypes. PMID:27629641

  10. Mass-spectrometric exploration of proteome structure and function.

    PubMed

    Aebersold, Ruedi; Mann, Matthias

    2016-09-14

    Numerous biological processes are concurrently and coordinately active in every living cell. Each of them encompasses synthetic, catalytic and regulatory functions that are, almost always, carried out by proteins organized further into higher-order structures and networks. For decades, the structures and functions of selected proteins have been studied using biochemical and biophysical methods. However, the properties and behaviour of the proteome as an integrated system have largely remained elusive. Powerful mass-spectrometry-based technologies now provide unprecedented insights into the composition, structure, function and control of the proteome, shedding light on complex biological processes and phenotypes.

  11. Genomics and proteomics analysis of cultured primary rat hepatocytes.

    PubMed

    Beigel, Juergen; Fella, Kerstin; Kramer, Peter-Juergen; Kroeger, Michaela; Hewitt, Philip

    2008-02-01

    The use of animal models in pharmaceutical research is a costly and sometimes misleading method of generating toxicity data and hence predicting human safety. Therefore, in vitro test systems, such as primary rat hepatocytes, and the developing genomics and proteomics technologies, are playing an increasingly important role in toxicological research. Gene and protein expression analysis were investigated in a time series (up to 5 days) of primary rat hepatocytes cultured on collagen coated dishes. Especially after 24h, a significant down-regulation of many important Phase I and Phase II enzymes (e.g., cytochrome P450's, glutathione-S-transferases, sulfotransferases) involved in xenobiotic metabolism, and antioxidative enzymes (e.g., catalase, superoxide dismutase, glutathione peroxidase) was observed. Acute-phase-response enzymes were frequently up-regulated (e.g., LPS binding protein, alpha-2-macro-globulin, ferritin, serine proteinase inhibitor B, haptoglobin), which is likely to be a result of cellular stress caused by the cell isolation procedure (perfusion) itself. A parallel observation was the increased expression of several structural genes (e.g., beta-actin, alpha-tubulin, vimentin), possibly caused by other proliferating cell types in the culture, such as fibroblasts or alternatively by hepatocyte dedifferentiation. In conclusion, the careful interpretation of data derived from this in vitro system indicates that primary hepatocytes can be successfully used for short-term toxicity studies up to 24h. However, culturing conditions need to be further optimized to reduce the massive changes of gene and protein expression of long-term cultured hepatocytes to allow practical applications as a long-term toxicity test system.

  12. ProtoBug: functional families from the complete proteomes of insects

    PubMed Central

    Rappoport, Nadav; Linial, Michal

    2015-01-01

    ProtoBug (http://www.protobug.cs.huji.ac.il) is a database and resource of protein families in Arthropod genomes. ProtoBug platform presents the relatedness of complete proteomes from 17 insects as well as a proteome of the crustacean, Daphnia pulex. The represented proteomes from insects include louse, bee, beetle, ants, flies and mosquitoes. Based on an unsupervised clustering method, protein sequences were clustered into a hierarchical tree, called ProtoBug. ProtoBug covers about 300 000 sequences that are partitioned to families. At the default setting, all sequences are partitioned to ∼20 000 families (excluding singletons). From the species perspective, each of the 18 analysed proteomes is composed of 5000–8000 families. In the regime of the advanced operational mode, the ProtoBug provides rich navigation capabilities for touring the hierarchy of the families at any selected resolution. A proteome viewer shows the composition of sequences from any of the 18 analysed proteomes. Using functional annotation from an expert system (Pfam) we assigned domains, families and repeats by 4400 keywords that cover 73% of the sequences. A strict inference protocol is applied for expanding the functional knowledge. Consequently, secured annotations were associated with 81% of the proteins, and with 70% of the families (≥10 proteins each). ProtoBug is a database and webtool with rich visualization and navigation tools. The properties of each family in relation to other families in the ProtoBug tree, and in view of the taxonomy composition are reported. Furthermore, the user can paste its own sequences to find relatedness to any of the ProtoBug families. The database and the navigation tools are the basis for functional discoveries that span 350 million years of evolution of Arthropods. ProtoBug is available with no restriction at: www.protobug.cs.huji.ac.il. Database URL: www.protobug.cs.huji.ac.il. PMID:25911153

  13. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1.

    PubMed

    Pic, Emilie; Gagné, Jean-Philippe; Poirier, Guy G

    2011-12-01

    PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.

  14. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics

    PubMed Central

    Rai, Aswathy N.; Epperson, William B.; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches. PMID:26526746

  15. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    SciTech Connect

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  16. [FUNCTIONAL DIFFERENTIATION IN BRYOZOAN COLONY: A PROTEOMIC ANALYSIS].

    PubMed

    Kutyumov, V A; Maltseva, A L; Kotenko, N; Ostrovsky, A N

    2016-01-01

    Bryozoans are typical modular organisms. They consist of repetitive structural units, the zooids. Bryozoan colonies grow by zooidal budding, with the distribution pattern of the budding loci underlying the diversity of colony forms. Budding is usually restricted to the zooids at the periphery of the colony, which form a "growing edge" or local terminal growth zones. Non-budding parts of the colony can be functionally subdivided, too. In many species colonies consists of regular, often repetitive zones of feeding and non-feeding modules, associated with a periodical degeneration and regeneration of the polypide, retractile tentacle crown with a gut and the accompanying musculature. So, there is functional differentiation in bryozoan colonies but its mechanisms are unknown. Presumably, budding and/or polypide recycling in different colony parts are induced or inhibited by certain determinants of functional specialization. An effective tool of their identification is the comparison of proteomes of functionally different zones. Here we report the results of proteomic analysis of three bryozoan species from the White Sea, which have a different colony form: Flustrellidra hispida, Terminoflustra membranaceotruncata and Securiflustra securifrons. Using differential two-dimensional electrophoresis (2D-DIGE), we compared proteomes of the growing edge and the zones consisting of feeding and non-feeding zooids in these species. We estimated the overall proteome variability, revealed proteins whose relative abundance gradually changed along the proximal-distal colony axis and suggested that they might be involved in the functional differentiation of the colony.

  17. [FUNCTIONAL DIFFERENTIATION IN BRYOZOAN COLONY: A PROTEOMIC ANALYSIS].

    PubMed

    Kutyumov, V A; Maltseva, A L; Kotenko, N; Ostrovsky, A N

    2016-01-01

    Bryozoans are typical modular organisms. They consist of repetitive structural units, the zooids. Bryozoan colonies grow by zooidal budding, with the distribution pattern of the budding loci underlying the diversity of colony forms. Budding is usually restricted to the zooids at the periphery of the colony, which form a "growing edge" or local terminal growth zones. Non-budding parts of the colony can be functionally subdivided, too. In many species colonies consists of regular, often repetitive zones of feeding and non-feeding modules, associated with a periodical degeneration and regeneration of the polypide, retractile tentacle crown with a gut and the accompanying musculature. So, there is functional differentiation in bryozoan colonies but its mechanisms are unknown. Presumably, budding and/or polypide recycling in different colony parts are induced or inhibited by certain determinants of functional specialization. An effective tool of their identification is the comparison of proteomes of functionally different zones. Here we report the results of proteomic analysis of three bryozoan species from the White Sea, which have a different colony form: Flustrellidra hispida, Terminoflustra membranaceotruncata and Securiflustra securifrons. Using differential two-dimensional electrophoresis (2D-DIGE), we compared proteomes of the growing edge and the zones consisting of feeding and non-feeding zooids in these species. We estimated the overall proteome variability, revealed proteins whose relative abundance gradually changed along the proximal-distal colony axis and suggested that they might be involved in the functional differentiation of the colony. PMID:27220253

  18. Proteomic profiling reveals insights into Triticeae stigma development and function.

    PubMed

    Nazemof, Nazila; Couroux, Philippe; Rampitsch, Christof; Xing, Tim; Robert, Laurian S

    2014-11-01

    To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function. PMID:25170101

  19. Single-Nucleotide Variations in Cardiac Arrhythmias: Prospects for Genomics and Proteomics Based Biomarker Discovery and Diagnostics

    PubMed Central

    Abunimer, Ayman; Smith, Krista; Wu, Tsung-Jung; Lam, Phuc; Simonyan, Vahan; Mazumder, Raja

    2014-01-01

    Cardiovascular diseases are a large contributor to causes of early death in developed countries. Some of these conditions, such as sudden cardiac death and atrial fibrillation, stem from arrhythmias—a spectrum of conditions with abnormal electrical activity in the heart. Genome-wide association studies can identify single nucleotide variations (SNVs) that may predispose individuals to developing acquired forms of arrhythmias. Through manual curation of published genome-wide association studies, we have collected a comprehensive list of 75 SNVs associated with cardiac arrhythmias. Ten of the SNVs result in amino acid changes and can be used in proteomic-based detection methods. In an effort to identify additional non-synonymous mutations that affect the proteome, we analyzed the post-translational modification S-nitrosylation, which is known to affect cardiac arrhythmias. We identified loss of seven known S-nitrosylation sites due to non-synonymous single nucleotide variations (nsSNVs). For predicted nitrosylation sites we found 1429 proteins where the sites are modified due to nsSNV. Analysis of the predicted S-nitrosylation dataset for over- or under-representation (compared to the complete human proteome) of pathways and functional elements shows significant statistical over-representation of the blood coagulation pathway. Gene Ontology (GO) analysis displays statistically over-represented terms related to muscle contraction, receptor activity, motor activity, cystoskeleton components, and microtubule activity. Through the genomic and proteomic context of SNVs and S-nitrosylation sites presented in this study, researchers can look for variation that can predispose individuals to cardiac arrhythmias. Such attempts to elucidate mechanisms of arrhythmia thereby add yet another useful parameter in predicting susceptibility for cardiac diseases. PMID:24705329

  20. The Eukaryotic Flagellum Makes the Day: Novel and Unforeseen Roles Uncovered After Post-Genomics and Proteomics Data

    PubMed Central

    Diniz, Michely C; Pacheco, Ana Carolina L; Farias, Kaio M; de Oliveira, Diana M

    2012-01-01

    This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum, as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes, is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme, the canonical “9+2” microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less well-characterized signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated conserved proteins, which lately have been the subject of intense investigation and of our present examination. PMID:22708495

  1. The eukaryotic flagellum makes the day: novel and unforeseen roles uncovered after post-genomics and proteomics data.

    PubMed

    Diniz, Michely C; Pacheco, Ana Carolina L; Farias, Kaio M; de Oliveira, Diana M

    2012-09-01

    This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum, as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes, is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme, the canonical "9+2" microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less wellcharacterized signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated conserved proteins, which lately have been the subject of intense investigation and of our present examination.

  2. Large-scale metabolome analysis and quantitative integration with genomics and proteomics data in Mycoplasma pneumoniae.

    PubMed

    Maier, Tobias; Marcos, Josep; Wodke, Judith A H; Paetzold, Bernhard; Liebeke, Manuel; Gutiérrez-Gallego, Ricardo; Serrano, Luis

    2013-07-01

    Systems metabolomics, the identification and quantification of cellular metabolites and their integration with genomics and proteomics data, promises valuable functional insights into cellular biology. However, technical constraints, sample complexity issues and the lack of suitable complementary quantitative data sets prevented accomplishing such studies in the past. Here, we present an integrative metabolomics study of the genome-reduced bacterium Mycoplasma pneumoniae. We experimentally analysed its metabolome using a cross-platform approach. We explain intracellular metabolite homeostasis by quantitatively integrating our results with the cellular inventory of proteins, DNA and other macromolecules, as well as with available building blocks from the growth medium. We calculated in vivo catalytic parameters of glycolytic enzymes, making use of measured reaction velocities, as well as enzyme and metabolite pool sizes. A quantitative, inter-species comparison of absolute and relative metabolite abundances indicated that metabolic pathways are regulated as functional units, thereby simplifying adaptive responses. Our analysis demonstrates the potential for new scientific insight by integrating different types of large-scale experimental data from a single biological source.

  3. A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES WITH GENOMIC, PROTEOMIC AND METABONOMIC COMPONENTS

    EPA Science Inventory

    A Database for Tracking Toxicogenomic Samples and Procedures with Genomic, Proteomic and Metabonomic Components
    Wenjun Bao1, Jennifer Fostel2, Michael D. Waters2, B. Alex Merrick2, Drew Ekman3, Mitchell Kostich4, Judith Schmid1, David Dix1
    Office of Research and Developmen...

  4. USING GENOMICS AND PROTEOMICS TO DIAGNOSE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biology allow the use of cutting-edge genomic and proteomic tools to assess the effects of environmental contaminants on aquatic organisms. Techniques are available to measure changes in expression of single genes (quantitative real-time PCR) or to measure g...

  5. The Changing Face of Scientific Discourse: Analysis of Genomic and Proteomic Database Usage and Acceptance.

    ERIC Educational Resources Information Center

    Brown, Cecelia

    2003-01-01

    Discusses the growth in use and acceptance of Web-based genomic and proteomic databases (GPD) in scholarly communication. Confirms the role of GPD in the scientific literature cycle, suggests GPD are a storage and retrieval mechanism for molecular biology information, and recommends that existing models of scientific communication be updated to…

  6. GENOMIC AND PROTEOMIC ANALYSIS OF SURROGATE TISSUES FOR ASSESSING TOXIC EXPOSURES AND DISEASE STATES

    EPA Science Inventory

    Genomic and Proteomic Analysis of Surrogate Tissues for Assessing Toxic Exposures and Disease States
    David J. Dix and John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, ...

  7. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria

    SciTech Connect

    Lo, I; Denef, Vincent; Verberkmoes, Nathan C; Shah, Manesh B; Goltsman, Daniela; DiBartolo, Genevieve; Tyson, Gene W.; Allen, Eric E.; Ram, Rachna J.; Detter, J. Chris; Richardson, Paul; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2007-01-01

    Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metalrich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems1-3 and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strainresolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis4-6 of microorganisms in the natural environment.

  8. Functional genomics in the mouse.

    PubMed

    Perkins, Archibald S

    2002-08-01

    The mouse is the premier genetic model organism for the study of human disease and development. With the recent advances in sequencing of the human and mouse genomes, there is strong interest now in large-scale approaches to decipher the function of mouse genes using various mutagenesis technologies. This review discusses what tools are currently available for manipulating and mutagenizing the mouse genome, such as ethylnitrosourea and gene trap mutagenesis, engineered inversions and deletions using the cre-lox system, and proviral insertional mutagenesis in somatic cells, and how these are being used to uncover gene function.

  9. Applied proteomics: mitochondrial proteins and effect on function.

    PubMed

    Lopez, Mary F; Melov, Simon

    2002-03-01

    The identification of a majority of the polypeptides in mitochondria would be invaluable because they play crucial and diverse roles in many cellular processes and diseases. The endogenous production of reactive oxygen species (ROS) is a major limiter of life as illustrated by studies in which the transgenic overexpression in invertebrates of catalytic antioxidant enzymes results in increased lifespans. Mitochondria have received considerable attention as a principal source---and target---of ROS. Mitochondrial oxidative stress has been implicated in heart disease including myocardial preconditioning, ischemia/reperfusion, and other pathologies. In addition, oxidative stress in the mitochondria is associated with the pathogenesis of Alzheimer's disease, Parkinson's disease, prion diseases, and amyotrophic lateral sclerosis (ALS) as well as aging itself. The rapidly emerging field of proteomics can provide powerful strategies for the characterization of mitochondrial proteins. Current approaches to mitochondrial proteomics include the creation of detailed catalogues of the protein components in a single sample or the identification of differentially expressed proteins in diseased or physiologically altered samples versus a reference control. It is clear that for any proteomics approach prefractionation of complex protein mixtures is essential to facilitate the identification of low-abundance proteins because the dynamic range of protein abundance within cells has been estimated to be as high as 10(7). The opportunities for identification of proteins directly involved in diseases associated with or caused by mitochondrial dysfunction are compelling. Future efforts will focus on linking genomic array information to actual protein levels in mitochondria. PMID:11884366

  10. Comparative genomic and proteomic anatomy of Mycobacterium ubiquitous Esx family proteins: implications in pathogenicity and virulence.

    PubMed

    Deng, Wanyan; Xiang, Xiaohong; Xie, Jianping

    2014-04-01

    Secreted proteins are among the most important molecules involved in host-pathogen interaction of Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB). M. tuberculosis encodes five types of VII secretion systems (ESX-1 to ESX-5) responsible for the exportation of many proteins. This system mediated substrates including members of the Esx family implicated in tuberculosis pathogenesis and survival within host cells. However, the distribution and evolution of this family remain elusive. To explore the evolution and distribution of Esx family proteins, we analyzed all available Mycobacteria genomes. Interestingly, amino mutations among M. tuberculosis esx family proteins may relate to their functions. We further analyzed the differences between pathogenic Mycobacteria, the attenuated Mycobacteria and non-pathogenic Mycobacteria. The stability, the globular domains and the phosphorylation of serine/threonine residues of M. tuberculosis esx proteins with their homologies among other Mycoabcteria were analyzed. Our comparative genomic and proteomic analysis found that the change of stability, gain or loss of globular domains and phosphorylation of serine/threonine might be responsible for the difference between the pathogenesis and virulence of the esx proteins and its homolog widespread among Mycobacteria and related species, which may provide clues for novel anti-tuberculosis drug targets.

  11. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family.

    PubMed

    Adriaenssens, Evelien M; Edwards, Rob; Nash, John H E; Mahadevan, Padmanabhan; Seto, Donald; Ackermann, Hans-Wolfgang; Lavigne, Rob; Kropinski, Andrew M

    2015-03-01

    Using a variety of genomic (BLASTN, ClustalW) and proteomic (Phage Proteomic Tree, CoreGenes) tools we have tackled the taxonomic status of members of the largest bacteriophage family, the Siphoviridae. In all over 400 phages were examined and we were able to propose 39 new genera, comprising 216 phage species, and add 62 species to two previously defined genera (Phic3unalikevirus; L5likevirus) grouping, in total, 390 fully sequenced phage isolates. Many of the remainders are orphans which the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) chooses not to ascribe genus status at the time being.

  12. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens Using Proteomic Data from a Field Biostimulation Experiment

    SciTech Connect

    Fang, Yilin; Wilkins, Michael J.; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-12-12

    Biomass and shotgun global proteomics data that reflected relative protein abundances from samples collected during the 2008 experiment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge site in Rifle, Colorado, provided an unprecedented opportunity to validate a genome-scale metabolic model of Geobacter metallireducens and assess its performance with respect to prediction of metal reduction, biomass yield, and growth rate under dynamic field conditions. Reconstructed from annotated genomic sequence, biochemical, and physiological data, the constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low fluxes through amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  13. Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and post-genomics

    PubMed Central

    Vandenkoornhuyse, Philippe; Dufresne, Alexis; Quaiser, Achim; Gouesbet, Gwenola; Binet, Françoise; Francez, André-Jean; Mahé, Stéphane; Bormans, Myriam; Lagadeuc, Yvan; Couée, Ivan

    2010-01-01

    Environmental genomics and genome-wide expression approaches deal with large-scale sequence-based information obtained from environmental samples, at organismal, population or community levels. To date, environmental genomics, transcriptomics and proteomics are arguably the most powerful approaches to discover completely novel ecological functions and to link organismal capabilities, organism–environment interactions, functional diversity, ecosystem processes, evolution and Earth history. Thus, environmental genomics is not merely a toolbox of new technologies but also a source of novel ecological concepts and hypotheses. By removing previous dichotomies between ecophysiology, population ecology, community ecology and ecosystem functioning, environmental genomics enables the integration of sequence-based information into higher ecological and evolutionary levels. However, environmental genomics, along with transcriptomics and proteomics, must involve pluridisciplinary research, such as new developments in bioinformatics, in order to integrate high-throughput molecular biology techniques into ecology. In this review, the validity of environmental genomics and post-genomics for studying ecosystem functioning is discussed in terms of major advances and expectations, as well as in terms of potential hurdles and limitations. Novel avenues for improving the use of these approaches to test theory-driven ecological hypotheses are also explored. PMID:20426792

  14. Current Approaches on Viral Infection: Proteomics and Functional Validations

    PubMed Central

    Zheng, Jie; Tan, Boon Huan; Sugrue, Richard; Tang, Kai

    2012-01-01

    Viruses could manipulate cellular machinery to ensure their continuous survival and thus become parasites of living organisms. Delineation of sophisticated host responses upon virus infection is a challenging task. It lies in identifying the repertoire of host factors actively involved in the viral infectious cycle and characterizing host responses qualitatively and quantitatively during viral pathogenesis. Mass spectrometry based proteomics could be used to efficiently study pathogen-host interactions and virus-hijacked cellular signaling pathways. Moreover, direct host and viral responses upon infection could be further investigated by activity-based functional validation studies. These approaches involve drug inhibition of secretory pathway, immunofluorescence staining, dominant negative mutant of protein target, real-time PCR, small interfering siRNA-mediated knockdown, and molecular cloning studies. In this way, functional validation could gain novel insights into the high-content proteomic dataset in an unbiased and comprehensive way. PMID:23162545

  15. Functional genomics of pathogenic bacteria.

    PubMed Central

    Moxon, E R; Hood, D W; Saunders, N J; Schweda, E K H; Richards, J C

    2002-01-01

    Microbial diseases remain the commonest cause of global mortality and morbidity. Automated-DNA sequencing has revolutionized the investigation of pathogenic microbes by making the immense fund of information contained in their genomes available at reasonable cost. The challenge is how this information can be used to increase current understanding of the biology of commensal and virulence behaviour of pathogens with particular emphasis on in vivo function and novel approaches to prevention. One example of the application of whole-genome-sequence information is afforded by investigations of the pathogenic role of Haemophilus influenzae lipopolysaccharide and its candidacy as a vaccine. PMID:11839188

  16. Genomes with distinct function composition.

    PubMed

    Tamames, J; Ouzounis, C; Sander, C; Valencia, A

    1996-06-24

    The functional composition of organisms can be analysed for the first time with the appearance of complete or sizeable parts of various genomes. We have reduced the problem of protein function classification to a simple scheme with three classes of protein function: energy-, information- and communication-associated proteins. Finer classification schemes can be easily mapped to the above three classes. To deal with the vast amount of information, a system for automatic function classification using database annotations has been developed. The system is able to classify correctly about 80% of the query sequences with annotations. Using this system, we can analyse samples from the genomes of the most represented species in sequence databases and compare their genomic composition. The similarities and differences for different taxonomic groups are strikingly intuitive. Viruses have the highest proportion of proteins involved in the control and expression of genetic information. Bacteria have the highest proportion of their genes dedicated to the production of proteins associated with small molecule transformations and transport. Animals have a very large proportion of proteins associated with intra- and intercellular communication and other regulatory processes. In general, the proportion of communication-related proteins increases during evolution, indicating trends that led to the emergence of the eukaryotic cell and later the transition from unicellular to multicellular organisms. PMID:8682215

  17. Bacteriophage functional genomics and its role in bacterial pathogen detection.

    PubMed

    Klumpp, Jochen; Fouts, Derrick E; Sozhamannan, Shanmuga

    2013-07-01

    Emerging and reemerging bacterial infectious diseases are a major public health concern worldwide. The role of bacteriophages in the emergence of novel bacterial pathogens by horizontal gene transfer was highlighted by the May 2011 Escherichia coli O104:H4 outbreaks that originated in Germany and spread to other European countries. This outbreak also highlighted the pivotal role played by recent advances in functional genomics in rapidly deciphering the virulence mechanism elicited by this novel pathogen and developing rapid diagnostics and therapeutics. However, despite a steady increase in the number of phage sequences in the public databases, boosted by the next-generation sequencing technologies, few functional genomics studies of bacteriophages have been conducted. Our definition of 'functional genomics' encompasses a range of aspects: phage genome sequencing, annotation and ascribing functions to phage genes, prophage identification in bacterial sequences, elucidating the events in various stages of phage life cycle using genomic, transcriptomic and proteomic approaches, defining the mechanisms of host takeover including specific bacterial-phage protein interactions and identifying virulence and other adaptive features encoded by phages and finally, using prophage genomic information for bacterial detection/diagnostics. Given the breadth and depth of this definition and the fact that some of these aspects (especially phage-encoded virulence/adaptive features) have been treated extensively in other reviews, we restrict our focus only on certain aspects. These include phage genome sequencing and annotation, identification of prophages in bacterial sequences and genetic characterization of phages, functional genomics of the infection process and finally, bacterial identification using genomic information.

  18. Bacteriophage functional genomics and its role in bacterial pathogen detection.

    PubMed

    Klumpp, Jochen; Fouts, Derrick E; Sozhamannan, Shanmuga

    2013-07-01

    Emerging and reemerging bacterial infectious diseases are a major public health concern worldwide. The role of bacteriophages in the emergence of novel bacterial pathogens by horizontal gene transfer was highlighted by the May 2011 Escherichia coli O104:H4 outbreaks that originated in Germany and spread to other European countries. This outbreak also highlighted the pivotal role played by recent advances in functional genomics in rapidly deciphering the virulence mechanism elicited by this novel pathogen and developing rapid diagnostics and therapeutics. However, despite a steady increase in the number of phage sequences in the public databases, boosted by the next-generation sequencing technologies, few functional genomics studies of bacteriophages have been conducted. Our definition of 'functional genomics' encompasses a range of aspects: phage genome sequencing, annotation and ascribing functions to phage genes, prophage identification in bacterial sequences, elucidating the events in various stages of phage life cycle using genomic, transcriptomic and proteomic approaches, defining the mechanisms of host takeover including specific bacterial-phage protein interactions and identifying virulence and other adaptive features encoded by phages and finally, using prophage genomic information for bacterial detection/diagnostics. Given the breadth and depth of this definition and the fact that some of these aspects (especially phage-encoded virulence/adaptive features) have been treated extensively in other reviews, we restrict our focus only on certain aspects. These include phage genome sequencing and annotation, identification of prophages in bacterial sequences and genetic characterization of phages, functional genomics of the infection process and finally, bacterial identification using genomic information. PMID:23520178

  19. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology.

    PubMed

    Agrawal, Ganesh Kumar; Rakwal, Randeep

    2011-05-01

    Growing rice is an important socio-economic activity. Rice proteomics has achieved a tremendous progress in establishing techniques to proteomes of almost all tissues, organs, and organelles during the past one decade (year 2000-2010). We have compiled these progresses time to time over this period. The present compilation discusses proteomics research in rice published between 1st April 2008 and 30th July 2010. Progress continues mainly towards protein cataloging deep into the proteome with high-confident protein assignment and some functional significance than ever before by (i) identifying previously unreported/low-abundance proteins, (ii) quantifying relative/absolute values of proteins, (iii) assigning protein responses to biotic/abiotic stresses, (iv) protein localization into organelles, (v) validating previous proteomes and eliminating false-positive proteins, and (vi) discovering potential biomarkers for tissues, organs, organelles, and for screening transgenic plants and food-safety evaluation. The notable achievements in global mapping of phosphorylation sites and identifying several novel secreted proteins into the extracellular space are worth appreciating. Our ever-increasing knowledge on the rice proteomics is beginning to impact the biology of not only rice, but also crops and plants. These major achievements will be discussed in this review keeping in mind newcomers, young, and established scientists in proteomics and plants.

  20. Enabling Proteomics Discovery Through Visual Analysis

    SciTech Connect

    Havre, Susan L.; Singhal, Mudita; Payne, Deborah A.; Lipton, Mary S.; Webb-Robertson, Bobbie-Jo M.

    2005-05-01

    With the completion of the Human Genome Project and the sequencing of large genomes, proteomics is the new big challenge. A proteome is the collection of all the proteins present in an organism at a given moment. Unlike the genome, the proteome is dynamic, changing continuously in response to tens of thousands of intra- and extra-cellular environmental signals. Proteomics is the study of proteomes under different conditions—for example, over time, under different environments, or in different disease states. Because proteins are the key actors in cellular processes and proteomics is the study of not one or two proteins at a time but whole proteomes, proteomics has a key role in revealing the complex processes of cells at a global or systems level. There are several high-throughput proteomics techniques; all generate data faster than the data can currently be analyzed. The tremendous size and complexity of the high-throughput experimental data make it very difficult to process and interpret. The success of proteomics will rely on high-throughput experimental techniques coupled with sophisticated visual analysis and data mining methods. This article presents the motivation for developing visual analysis tools for proteomic data and demonstrates their application to proteomics research with a visualization tool named Peptide Permutation and Protein Prediction, or PQuad. PQuad is a functioning visual analytic tool in operation at the Pacific Northwest National Laboratory for the study of systems biology. PQuad supports the exploration of proteins identified by proteomic techniques in the context of supplemental biological information.

  1. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance.

    PubMed

    Fouhy, Fiona; Stanton, Catherine; Cotter, Paul D; Hill, Colin; Walsh, Fiona

    2015-01-01

    The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments. PMID:25784907

  2. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance.

    PubMed

    Fouhy, Fiona; Stanton, Catherine; Cotter, Paul D; Hill, Colin; Walsh, Fiona

    2015-01-01

    The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments.

  3. Exploring the “dark matter” of a mammalian proteome by protein structure and function modeling

    PubMed Central

    2013-01-01

    Background A growing body of evidence shows that gene products encoded by short open reading frames play key roles in numerous cellular processes. Yet, they are generally overlooked in genome assembly, escaping annotation because small protein-coding genes are difficult to predict computationally. Consequently, there are still a considerable number of small proteins whose functions are yet to be characterized. Results To address this issue, we apply a collection of structural bioinformatics algorithms to infer molecular function of putative small proteins from the mouse proteome. Specifically, we construct 1,743 confident structure models of small proteins, which reveal a significant structural diversity with a noticeably high helical content. A subsequent structure-based function annotation of small protein models exposes 178,745 putative protein-protein interactions with the remaining gene products in the mouse proteome, 1,100 potential binding sites for small organic molecules and 987 metal-binding signatures. Conclusions These results strongly indicate that many small proteins adopt three-dimensional structures and are fully functional, playing important roles in transcriptional regulation, cell signaling and metabolism. Data collected through this work is freely available to the academic community at http://www.brylinski.org/content/databases to support future studies oriented on elucidating the functions of hypothetical small proteins. PMID:24321360

  4. Evolution of early eukaryotic cells: genomes, proteomes, and compartments.

    PubMed

    Bogorad, Lawrence

    2008-01-01

    Eukaryotes arose from an endosymbiotic association of an alpha-proteobacterium-like organism (the ancestor of mitochondria) with a host cell (lacking mitochondria or plastids). Plants arose by the addition of a cyanobacterium-like endosymbiont (the ancestor of plastids) to the two-member association. Each member of the association brought a unique internal environment and a unique genome. Analyses of recently acquired genomic sequences with newly developed algorithms have revealed (a) that the number of endosymbiont genes that remain in eukaryotic cells-principally in the nucleus-is surprisingly large, (b) that protein products of a large number of genes (or their descendents) that entered the association in the genome of the host are now directed to an organelle derived from an endosymbiont, and (c) that protein products of genes traceable to endosymbiont genomes are directed to the nucleo-cytoplasmic compartment. Consideration of these remarkable findings has led to the present suggestion that contemporary eukaryotic cells evolved through continual chance relocation and testing of genes as well as combinations of gene products and biochemical processes in each unique cell compartment derived from a member of the eukaryotic association. Most of these events occurred during about 300 million years, or so, before contemporary forms of eukaryotic cells appear in the fossil record; they continue today. PMID:17912611

  5. Public Access for Teaching Genomics, Proteomics, and Bioinformatics

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2003-01-01

    When the human genome project was conceived, its leaders wanted all researchers to have equal access to the data and associated research tools. Their vision of equal access provides an unprecedented teaching opportunity. Teachers and students have free access to the same databases that researchers are using. Furthermore, the recent movement to…

  6. A New Literary Metaphor for the Genome or Proteome

    ERIC Educational Resources Information Center

    Pappas, Gus

    2005-01-01

    Previously, the idea of a blueprint has been used to explain the genome. The concept of a play's cast of characters, the Dramatis Personae, is a more fluid metaphor that allows for mutations and time-dependent phenomena to be taken into account. It also provides an educational and mnemonic exercise for students.

  7. Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its ...

  8. Functional Insights from Structural Genomics

    SciTech Connect

    Forouhar,F.; Kuzin, A.; Seetharaman, J.; Lee, I.; Zhou, W.; Abashidze, M.; Chen, Y.; Montelione, G.; Tong, L.; et al

    2007-01-01

    Structural genomics efforts have produced structural information, either directly or by modeling, for thousands of proteins over the past few years. While many of these proteins have known functions, a large percentage of them have not been characterized at the functional level. The structural information has provided valuable functional insights on some of these proteins, through careful structural analyses, serendipity, and structure-guided functional screening. Some of the success stories based on structures solved at the Northeast Structural Genomics Consortium (NESG) are reported here. These include a novel methyl salicylate esterase with important role in plant innate immunity, a novel RNA methyltransferase (H. influenzae yggJ (HI0303)), a novel spermidine/spermine N-acetyltransferase (B. subtilis PaiA), a novel methyltransferase or AdoMet binding protein (A. fulgidus AF{_}0241), an ATP:cob(I)alamin adenosyltransferase (B. subtilis YvqK), a novel carboxysome pore (E. coli EutN), a proline racemase homolog with a disrupted active site (B. melitensis BME11586), an FMN-dependent enzyme (S. pneumoniae SP{_}1951), and a 12-stranded {beta}-barrel with a novel fold (V. parahaemolyticus VPA1032).

  9. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu.

    PubMed

    Zhang, Yanlin; Luo, Guangbin; Liu, Dongcheng; Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat.

  10. Genome-, Transcriptome- and Proteome-Wide Analyses of the Gliadin Gene Families in Triticum urartu

    PubMed Central

    Wang, Dongzhi; Yang, Wenlong; Sun, Jiazhu; Zhang, Aimin; Zhan, Kehui

    2015-01-01

    Gliadins are the major components of storage proteins in wheat grains, and they play an essential role in the dough extensibility and nutritional quality of flour. Because of the large number of the gliadin family members, the high level of sequence identity, and the lack of abundant genomic data for Triticum species, identifying the full complement of gliadin family genes in hexaploid wheat remains challenging. Triticum urartu is a wild diploid wheat species and considered the A-genome donor of polyploid wheat species. The accession PI428198 (G1812) was chosen to determine the complete composition of the gliadin gene families in the wheat A-genome using the available draft genome. Using a PCR-based cloning strategy for genomic DNA and mRNA as well as a bioinformatics analysis of genomic sequence data, 28 gliadin genes were characterized. Of these genes, 23 were α-gliadin genes, three were γ-gliadin genes and two were ω-gliadin genes. An RNA sequencing (RNA-Seq) survey of the dynamic expression patterns of gliadin genes revealed that their synthesis in immature grains began prior to 10 days post-anthesis (DPA), peaked at 15 DPA and gradually decreased at 20 DPA. The accumulation of proteins encoded by 16 of the expressed gliadin genes was further verified and quantified using proteomic methods. The phylogenetic analysis demonstrated that the homologs of these α-gliadin genes were present in tetraploid and hexaploid wheat, which was consistent with T. urartu being the A-genome progenitor species. This study presents a systematic investigation of the gliadin gene families in T. urartu that spans the genome, transcriptome and proteome, and it provides new information to better understand the molecular structure, expression profiles and evolution of the gliadin genes in T. urartu and common wheat. PMID:26132381

  11. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach

    PubMed Central

    Clowers, Brian H.; Deatherage Kaiser, Brooke L.; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeffrey T.; Kreuzer, Helen W.

    2015-01-01

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement. PMID:26599979

  12. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach.

    PubMed

    Leiser, Owen P; Merkley, Eric D; Clowers, Brian H; Deatherage Kaiser, Brooke L; Lin, Andy; Hutchison, Janine R; Melville, Angela M; Wagner, David M; Keim, Paul S; Foster, Jeffrey T; Kreuzer, Helen W

    2015-01-01

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement. PMID:26599979

  13. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach.

    PubMed

    Leiser, Owen P; Merkley, Eric D; Clowers, Brian H; Deatherage Kaiser, Brooke L; Lin, Andy; Hutchison, Janine R; Melville, Angela M; Wagner, David M; Keim, Paul S; Foster, Jeffrey T; Kreuzer, Helen W

    2015-01-01

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  14. Recent advances in chemical proteomics: exploring the post-translational proteome.

    PubMed

    Tate, Edward W

    2008-11-01

    Identification and quantification of multiple proteins from complex mixtures is a central theme in post-genomic biology. Despite recent progress in high-throughput proteomics, proteomic analysis of post-translationally modified (PTM) proteins remains particularly challenging. This mini-review introduces the emerging field of chemical proteomics and reviews recent advances in chemical proteomic technology that are offering striking new insights into the functional biology of post-translational modification.

  15. Gene Chips and Functional Genomics

    NASA Astrophysics Data System (ADS)

    Hamadeh, Hisham; Afshari, Cynthia

    2000-11-01

    These past few years of scientific discovery will undoubtedly be remembered as the "genomics era," the period in which biologists succeeded in enumerating the sequence of nucleotides making up all, or at least most, of human DNA. And while this achievement has been heralded as a technological feat equal to the moon landing, it is only the first of many advances in DNA technology. Scientists are now faced with the task of understanding the meaning of the DNA sequence. Specifically, they want to learn how the DNA code relates to protein function. An important tool in the study of "functional genomics," is the cDNA microarray—also known as the gene chip. Inspired by computer microchips, gene chips allow scientists to monitor the expression of hundreds, even thousands, of genes in a fraction of the time it used to take to monitor the expression of a single one. By altering the conditions under which a particular tissue expresses genes—say, by exposing it to toxins or growth factors—scientists can determine the suite of genes expressed in different situations and hence start to get a handle on the function of these genes. The authors discuss this important new technology and some of its practical applications.

  16. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods.

    PubMed

    Baldrian, Petr; López-Mondéjar, Rubén

    2014-02-01

    Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.

  17. Global Shifts in Genome and Proteome Composition Are Very Tightly Coupled

    PubMed Central

    Brbić, Maria; Warnecke, Tobias; Kriško, Anita; Supek, Fran

    2015-01-01

    The amino acid composition (AAC) of proteomes differs greatly between microorganisms and is associated with the environmental niche they inhabit, suggesting that these changes may be adaptive. Similarly, the oligonucleotide composition of genomes varies and may confer advantages at the DNA/RNA level. These influences overlap in protein-coding sequences, making it difficult to gauge their relative contributions. We disentangle these effects by systematically evaluating the correspondence between intergenic nucleotide composition, where protein-level selection is absent, the AAC, and ecological parameters of 909 prokaryotes. We find that G + C content, the most frequently used measure of genomic composition, cannot capture diversity in AAC and across ecological contexts. However, di-/trinucleotide composition in intergenic DNA predicts amino acid frequencies of proteomes to the point where very little cross-species variability remains unexplained (91% of variance accounted for). Qualitatively similar results were obtained for 49 fungal genomes, where 80% of the variability in AAC could be explained by the composition of introns and intergenic regions. Upon factoring out oligonucleotide composition and phylogenetic inertia, the residual AAC is poorly predictive of the microbes’ ecological preferences, in stark contrast with the original AAC. Moreover, highly expressed genes do not exhibit more prominent environment-related AAC signatures than lowly expressed genes, despite contributing more to the effective proteome. Thus, evolutionary shifts in overall AAC appear to occur almost exclusively through factors shaping the global oligonucleotide content of the genome. We discuss these results in light of contravening evidence from biophysical data and further reading frame-specific analyses that suggest that adaptation takes place at the protein level. PMID:25971281

  18. Genomic and Proteomic Analyses of the Terminally Redundant Genome of the Pseudomonas aeruginosa Phage PaP1: Establishment of Genus PaP1-Like Phages

    PubMed Central

    Lu, Shuguang; Le, Shuai; Tan, Yinling; Zhu, Junmin; Li, Ming; Rao, Xiancai; Zou, Lingyun; Li, Shu; Wang, Jing; Jin, Xiaolin; Huang, Guangtao; Zhang, Lin; Zhao, Xia; Hu, Fuquan

    2013-01-01

    We isolated and characterized a new Pseudomonas aeruginosa myovirus named PaP1. The morphology of this phage was visualized by electron microscopy and its genome sequence and ends were determined. Finally, genomic and proteomic analyses were performed. PaP1 has an icosahedral head with an apex diameter of 68–70 nm and a contractile tail with a length of 138–140 nm. The PaP1 genome is a linear dsDNA molecule containing 91,715 base pairs (bp) with a G+C content of 49.36% and 12 tRNA genes. A strategy to identify the genome ends of PaP1 was designed. The genome has a 1190 bp terminal redundancy. PaP1 has 157 open reading frames (ORFs). Of these, 143 proteins are homologs of known proteins, but only 38 could be functionally identified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography-mass spectrometry allowed identification of 12 ORFs as structural protein coding genes within the PaP1 genome. Comparative genomic analysis indicated that the Pseudomonas aeruginosa phage PaP1, JG004, PAK_P1 and vB_PaeM_C2-10_Ab1 share great similarity. Besides their similar biological characteristics, the phages contain 123 core genes and have very close phylogenetic relationships, which distinguish them from other known phage genera. We therefore propose that these four phages be classified as PaP1-like phages, a new phage genus of Myoviridae that infects Pseudomonas aeruginosa. PMID:23675441

  19. Evolution, language and analogy in functional genomics.

    PubMed

    Benner, S A; Gaucher, E A

    2001-07-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  20. Evolution, language and analogy in functional genomics

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  1. Genomic and Proteomic Analyses of Prdm5 Reveal Interactions with Insulator Binding Proteins in Embryonic Stem Cells

    PubMed Central

    Galli, Giorgio Giacomo; Carrara, Matteo; Francavilla, Chiara; Honnens de Lichtenberg, Kristian; Olsen, Jesper Velgaard; Calogero, Raffaele Adolfo

    2013-01-01

    PRDM proteins belong to the SET domain protein family, which is involved in the regulation of gene expression. Although few PRDM members possess histone methyltransferase activity, the molecular mechanisms by which the other members exert transcriptional regulation remain to be delineated. In this study, we find that Prdm5 is highly expressed in mouse embryonic stem (mES) cells and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next-generation sequencing technologies, we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that although Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, cohesin, and TFIIIC and cooccupies genomic loci. In summary, our data indicate how Prdm5 modulates transcription by interacting with factors involved in genome organization in mouse embryonic stem cells. PMID:24043305

  2. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design.

    PubMed

    Schussek, Sophie; Trieu, Angela; Doolan, Denise L

    2014-01-01

    Infectious diseases remain a leading global cause of morbidity and mortality and there is an urgent need for effective approaches to develop vaccines, especially against complex pathogens. The availability of comprehensive genomic, proteomic and transcriptomic datasets has shifted the paradigm of vaccine development from microbiological to sequence-based approaches. However, how to effectively translate raw data into candidate vaccines is not yet obvious. Herein, we review cutting-edge technologies and screening strategies to mine genomic sequence information for state-of-the-art rational vaccine design, and highlight recent trends. Interdisciplinary approaches which cross the traditional boundaries of genomics, molecular biology, cell biology, immunology and computer science, and which prioritise antigens according to clinically relevant criteria, offer potential solutions to the widespread threat that complex pathogens pose to public health.

  3. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes

    PubMed Central

    Paul, Sandip; Bag, Sumit K; Das, Sabyasachi; Harvill, Eric T; Dutta, Chitra

    2008-01-01

    Background Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation. Results Comparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history. Conclusion The generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive. PMID:18397532

  4. The genome and proteome of a Campylobacter coli bacteriophage vB_CcoM-IBB_35 reveal unusual features

    PubMed Central

    2012-01-01

    Background Campylobacter is the leading cause of foodborne diseases worldwide. Bacteriophages (phages) are naturally occurring predators of bacteria, ubiquitous in the environment, with high host specificity and thus considered an appealing option to control bacterial pathogens. Nevertheless for an effective use of phages as antimicrobial agents, it is important to understand phage biology which renders crucial the analysis of phage genomes and proteomes. The lack of sequence data from Campylobacter phages adds further importance to these studies. Methods vB_CcoM-IBB_35 is a broad lytic spectrum Myoviridae Campylobacter phage with high potential for therapeutic use. The genome of this phage was obtained by pyrosequencing and the sequence data was further analyzed. The proteomic analysis was performed by SDS-PAGE and Mass spectrometry. Results and conclusions The DNA sequence data of vB_CcoM-IBB_35 consists of five contigs for a total of 172,065 bp with an average GC content of 27%. Attempts to close the gaps between contigs were unsuccessful since the DNA preparations appear to contain substances that inhibited Taq and ϕ29 polymerases. From the 210 identified ORFs, around 60% represent proteins that were not functionally assigned. Homology exists with members of the Teequatrovirinae namely for T4 proteins involved in morphogenesis, nucleotide metabolism, transcription, DNA replication and recombination. Tandem mass spectrometric analysis revealed 38 structural proteins as part of the mature phage particle. Conclusions Genes encoding proteins involved in the carbohydrate metabolism along with several incidences of gene duplications, split genes with inteins and introns have been rarely found in other phage genomes yet are found in this phage. We identified the genes encoding for tail fibres and for the lytic cassette, this later, expressing enzymes for bacterial capsular polysaccharides (CPS) degradation, which has not been reported before for Campylobacter phages

  5. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    DOE PAGES

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; Kaiser, Brooke L. Deatherage; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeff; et al

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experimentmore » (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.« less

  6. Single-cell-type proteomics: toward a holistic understanding of plant function.

    PubMed

    Dai, Shaojun; Chen, Sixue

    2012-12-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.

  7. Endosperm and Amyloplast Proteomes of Wheat Grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in proteomics and genomics have improved our understanding of the gluten proteins, a complex and functionally important protein group. Proteomic approaches also have been used to identify other proteins that may play roles in wheat flour functionality, to assign genes for gluten proteins to...

  8. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu(2+) Treatment.

    PubMed

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu(2+.) Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  9. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu2+ Treatment

    PubMed Central

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu2+. Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  10. The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art

    PubMed Central

    de Franciscis, Stefano; Metzinger, Laurent; Serra, Raffaele

    2016-01-01

    Cardiovascular disease (CD) and peripheral vascular disease (PVD) are leading causes of mortality and morbidity in western countries and also responsible of a huge burden in terms of disability, functional decline, and healthcare costs. Biomarkers are measurable biological elements that reflect particular physiological or pathological states or predisposition towards diseases and they are currently widely studied in medicine and especially in CD. In this context, biomarkers can also be used to assess the severity or the evolution of several diseases, as well as the effectiveness of particular therapies. Genomics, transcriptomics, and proteomics have opened new windows on disease phenomena and may permit in the next future an effective development of novel diagnostic and prognostic medicine in order to better prevent or treat CD. This review will consider the current evidence of novel biomarkers with clear implications in the improvement of risk assessment, prevention strategies, and medical decision making in the field of CD. PMID:27298828

  11. After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli?

    PubMed

    Radhouani, Hajer; Pinto, Luís; Poeta, Patrícia; Igrejas, Gilberto

    2012-06-01

    Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link.

  12. Drought stress and preharvest aflatoxin contamination in agricultural commodity: genetics, genomics and proteomics.

    PubMed

    Guo, Baozhu; Chen, Zhi-Yuan; Lee, R Dewey; Scully, Brian T

    2008-10-01

    Throughout the world, aflatoxin contamination is considered one of the most serious food safety issues concerning health. Chronic problems with preharvest aflatoxin contamination occur in the southern US, and are particularly troublesome in corn, peanut, cottonseed, and tree nuts. Drought stress is a major factor to contribute to preharvest aflatoxin contamination. Recent studies have demonstrated higher concentration of defense or stress-related proteins in corn kernels of resistant genotypes compared with susceptible genotypes, suggesting that preharvest field condition (drought or not drought) influences gene expression differently in different genotypes resulting in different levels of "end products": PR(pathogenesis-related) proteins in the mature kernels. Because of the complexity of Aspergillus-plant interactions, better understanding of the mechanisms of genetic resistance will be needed using genomics and proteomics for crop improvement. Genetic improvement of crop resistance to drought stress is one component and will provide a good perspective on the efficacy of control strategy. Proteomic comparisons of corn kernel proteins between resistant or susceptible genotypes to Aspergillus flavus infection have identified stress-related proteins along with antifungal proteins as associated with kernel resistance. Gene expression studies in developing corn kernels are in agreement with the proteomic studies that defense-related genes could be upregulated or downregulated by abiotic stresses. PMID:19017115

  13. The MMACHC proteome: hallmarks of functional cobalamin deficiency in humans.

    PubMed

    Hannibal, Luciana; DiBello, Patricia M; Yu, Michelle; Miller, Abby; Wang, Sihe; Willard, Belinda; Rosenblatt, David S; Jacobsen, Donald W

    2011-07-01

    Cobalamin (Cbl, B(12)) is an essential micronutrient required to fulfill the enzymatic reactions of cytosolic methylcobalamin-dependent methionine synthase and mitochondrial adenosylcobalamin-dependent methylmalonyl-CoA mutase. Mutations in the MMACHC gene (cblC complementation group) disrupt processing of the upper-axial ligand of newly internalized cobalamins, leading to functional deficiency of the vitamin. Patients with cblC disease present with both hyperhomocysteinemia and methylmalonic acidemia, cognitive dysfunction, and megaloblastic anemia. In the present study we show that cultured skin fibroblasts from cblC patients export increased levels of both homocysteine and methylmalonic acid compared to control skin fibroblasts, and that they also have decreased levels of total intracellular folates. This is consistent with the clinical phenotype of functional cobalamin deficiency in vivo. The protein changes that accompany human functional Cbl deficiency are unknown. The proteome of control and cblC fibroblasts was quantitatively examined by two dimensional difference in-gel electrophoresis (2D-DIGE) and liquid chromatography-electrospray ionization-mass spectrometry (LC/ESI/MS). Major changes were observed in the expression levels of proteins involved in cytoskeleton organization and assembly, the neurological system and cell signaling. Pathway analysis of the differentially expressed proteins demonstrated strong associations with neurological disorders, muscular and skeletal disorders, and cardiovascular diseases in the cblC mutant cell lines. Supplementation of the cell cultures with hydroxocobalamin did not restore the cblC proteome to the patterns of expression observed in control cells. These results concur with the observed phenotype of patients with the cblC disorder and their sometimes poor response to treatment with hydroxocobalamin. Our findings could be valuable for designing alternative therapies to alleviate the clinical manifestation of the cbl

  14. Proteomics Analysis Reveals Overlapping Functions of Clustered Protocadherins*

    PubMed Central

    Han, Meng-Hsuan; Lin, Chengyi; Meng, Shuxia; Wang, Xiaozhong

    2010-01-01

    The three tandem-arrayed protocadherin (Pcdh) gene clusters, namely Pcdh-α, Pcdh-β, and Pcdh-γ, play important roles in the development of the vertebrate central nervous system. To gain insight into the molecular action of PCDHs, we performed a systematic proteomics analysis of PCDH-γ-associated protein complexes. We identified a list of 154 non-redundant proteins in the PCDH-γ complexes. This list includes nearly 30 members of clustered Pcdh-α, -β, and -γ families as core components of the complexes and additionally over 120 putative PCDH-associated proteins. We validated a selected subset of PCDH-γ-associated proteins using specific antibodies. Analysis of the identities of PCDH-associated proteins showed that the majority of them overlap with the proteomic profile of postsynaptic density preparations. Further analysis of membrane protein complexes revealed that several validated PCDH-γ-associated proteins exhibit reduced levels in Pcdh-γ-deficient brain tissues. Therefore, PCDH-γs are required for the integrity of the complexes. However, the size of the overall complexes and the abundance of many other proteins remained unchanged, raising a possibility that PCDH-αs and PCDH-βs might compensate for PCDH-γ function in complex formation. As a test of this idea, RNA interference knockdown of both PCDH-αs and PCDH-γs showed that PCDHs have redundant functions in regulating neuronal survival in the chicken spinal cord. Taken together, our data provide evidence that clustered PCDHs coexist in large protein complexes and have overlapping functions during vertebrate neural development. PMID:19843561

  15. Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    PubMed Central

    Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-01-01

    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions. PMID:21909256

  16. Genomic, proteomic, and transcriptomic analysis of virulent and avirulent Rickettsia prowazekii reveals its adaptive mutation capabilities.

    PubMed

    Bechah, Yassina; El Karkouri, Khalid; Mediannikov, Oleg; Leroy, Quentin; Pelletier, Nicolas; Robert, Catherine; Médigue, Claudine; Mege, Jean-Louis; Raoult, Didier

    2010-05-01

    Rickettsia prowazekii, the agent of epidemic typhus, is an obligate intracellular bacterium that is transmitted to human beings by the body louse. Several strains that differ considerably in virulence are recognized, but the genetic basis for these variations has remained unknown since the initial description of the avirulent vaccine strain nearly 70 yr ago. We use a recently developed murine model of epidemic typhus and transcriptomic, proteomic, and genetic techniques to identify the factors associated with virulence. We identified four phenotypes of R. prowazekii that differed in virulence, associated with the up-regulation of antiapoptotic genes or the interferon I pathway in the host cells. Transcriptional and proteomic analyses of R. prowazekii surface protein expression and protein methylation varied with virulence. By sequencing a virulent strain and using comparative genomics, we found hotspots of mutations in homopolymeric tracts of poly(A) and poly(T) in eight genes in an avirulent strain that split and inactivated these genes. These included recO, putative methyltransferase, and exported protein. Passage of the avirulent Madrid E strain in cells or in experimental animals was associated with a cascade of gene reactivations, beginning with recO, that restored the virulent phenotype. An area of genomic plasticity appears to determine virulence in R. prowazekii and represents an example of adaptive mutation for this pathogen. PMID:20368341

  17. Brewing yeast genomes and genome-wide expression and proteome profiling during fermentation.

    PubMed

    Smart, Katherine A

    2007-11-01

    The genome structure, ancestry and instability of the brewing yeast strains have received considerable attention. The hybrid nature of brewing lager yeast strains provides adaptive potential but yields genome instability which can adversely affect fermentation performance. The requirement to differentiate between production strains and assess master cultures for genomic instability has led to significant adoption of specialized molecular tool kits by the industry. Furthermore, the development of genome-wide transcriptional and protein expression technologies has generated significant interest from brewers. The opportunity presented to explore, and the concurrent requirement to understand both, the constraints and potential of their strains to generate existing and new products during fermentation is discussed.

  18. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  19. Biophotonics applied to proteomics.

    PubMed

    Faupel, Michel; Bonenfant, Débora; Schindler, Patrick; Bertrand, Eric; Mueller, Dieter; Stoeckli, Markus; Bitsch, Francis; Rohner, Tatiana; Staab, Dieter; Van Oostrum, Jan

    2007-01-01

    Since the completion of the human genome sequencing, our understanding of gene and protein function and their involvement in physiopathological states has increased dramatically, partly due to technological developments in photonics. Photonics is a very active area where new developments occur on a weekly basis, while established tools are adapted to fulfill the needs of other disciplines like genomics and proteomics. Biophotonics emerged at the interface of photonics and biology as a very straightforward and efficient approach to observe and manipulate living systems. In this chapter, we review the current applications of photonics and imaging to proteomics from 2D gels analysis to molecular imaging.

  20. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  1. Proteomics of extremophiles.

    PubMed

    Burg, Dominic; Ng, Charmaine; Ting, Lily; Cavicchioli, Ricardo

    2011-08-01

    Functional genomic approaches, such as proteomics, greatly enhance the value of genome sequences by providing a global level assessment of which genes are expressed, when genes are expressed and at what cellular levels gene products are synthesized. With over 1000 complete genome sequences of different microorganisms available, and DNA sequencing for environmental samples (metagenomes) producing vast amounts of gene sequence data, there is a real opportunity and a clear need to generate associated functional genomic data to learn about the source microorganisms. In contrast to the technological advances that have led to the accelerated rate and ease at which DNA sequence data can be generated, mass spectrometry based proteomics remains a technically sophisticated and exacting science. In recognition of the need to make proteomics more accessible to a growing number of environmental microbiologists so that the 'functional genomics gap' may be bridged, this review strives to demystify proteomic technologies and describe ways in which they have been applied, and more importantly, can be applied to study the physiology and ecology of extremophiles.

  2. Changes in the proteome of functional and regressing corpus luteum during pregnancy and lactation in the rat.

    PubMed

    González-Fernández, Raquel; Martínez-Galisteo, Emilia; Gaytán, Francisco; Bárcena, José Antonio; Sánchez-Criado, José Eugenio

    2008-07-01

    The corpus luteum (CL) is an exquisitely regulated transitory endocrine gland necessary for the onset and maintenance of pregnancy in mammals. Most of the data on the mechanisms of CL differentiation at the molecular level come from genomic studies, but direct protein data are scarce. Here we have undertaken a differential expression proteomic approach to identify, in an unbiased way, those proteins whose levels change significantly in the rat CL as it evolves from functionality during pregnancy to regression after parturition. Moreover, we have compared the regressing CL with the newly formed functional CL that coexist during lactation under the same endocrine environment. We have defined a "proteomic signature" of CL functionality, which is constituted by a set of 24 proteins with a few differences between pregnancy and lactation. Most of these markers are new and are involved in microtubule assembly, retinoic acid transport, and Raf kinase signaling cascade; 10 are enzymes that define a ketogenic metabolic landscape, demonstrating, for the first time, the prevalence of de novo cholesterol synthesis in luteal cells. The "proteomic signature of regression," on the other hand, is composed of nine proteins, one of which is 20alpha-hydroxysteroid dehydrogenase and two, ferritin and gamma-actin, are new. The discovery of unpredictable new actors in the differentiation process of CL reported here will contribute to new hypotheses that explain the complex female reproductive function at the protein level. It will also open new doors to research on each identified protein by relating them to cellular differentiation.

  3. Functional Networks of Highest-Connected Splice Isoforms: From The Chromosome 17 Human Proteome Project.

    PubMed

    Li, Hong-Dong; Menon, Rajasree; Govindarajoo, Brandon; Panwar, Bharat; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2015-09-01

    Alternative splicing allows a single gene to produce multiple transcript-level splice isoforms from which the translated proteins may show differences in their expression and function. Identifying the major functional or canonical isoform is important for understanding gene and protein functions. Identification and characterization of splice isoforms is a stated goal of the HUPO Human Proteome Project and of neXtProt. Multiple efforts have catalogued splice isoforms as "dominant", "principal", or "major" isoforms based on expression or evolutionary traits. In contrast, we recently proposed highest connected isoforms (HCIs) as a new class of canonical isoforms that have the strongest interactions in a functional network and revealed their significantly higher (differential) transcript-level expression compared to nonhighest connected isoforms (NCIs) regardless of tissues/cell lines in the mouse. HCIs and their expression behavior in the human remain unexplored. Here we identified HCIs for 6157 multi-isoform genes using a human isoform network that we constructed by integrating a large compendium of heterogeneous genomic data. We present examples for pairs of transcript isoforms of ABCC3, RBM34, ERBB2, and ANXA7. We found that functional networks of isoforms of the same gene can show large differences. Interestingly, differential expression between HCIs and NCIs was also observed in the human on an independent set of 940 RNA-seq samples across multiple tissues, including heart, kidney, and liver. Using proteomic data from normal human retina and placenta, we showed that HCIs are a promising indicator of expressed protein isoforms exemplified by NUDFB6 and M6PR. Furthermore, we found that a significant percentage (20%, p = 0.0003) of human and mouse HCIs are homologues, suggesting their conservation between species. Our identified HCIs expand the repertoire of canonical isoforms and are expected to facilitate studying main protein products, understanding gene

  4. Functional Networks of Highest-Connected Splice Isoforms: From The Chromosome 17 Human Proteome Project.

    PubMed

    Li, Hong-Dong; Menon, Rajasree; Govindarajoo, Brandon; Panwar, Bharat; Zhang, Yang; Omenn, Gilbert S; Guan, Yuanfang

    2015-09-01

    Alternative splicing allows a single gene to produce multiple transcript-level splice isoforms from which the translated proteins may show differences in their expression and function. Identifying the major functional or canonical isoform is important for understanding gene and protein functions. Identification and characterization of splice isoforms is a stated goal of the HUPO Human Proteome Project and of neXtProt. Multiple efforts have catalogued splice isoforms as "dominant", "principal", or "major" isoforms based on expression or evolutionary traits. In contrast, we recently proposed highest connected isoforms (HCIs) as a new class of canonical isoforms that have the strongest interactions in a functional network and revealed their significantly higher (differential) transcript-level expression compared to nonhighest connected isoforms (NCIs) regardless of tissues/cell lines in the mouse. HCIs and their expression behavior in the human remain unexplored. Here we identified HCIs for 6157 multi-isoform genes using a human isoform network that we constructed by integrating a large compendium of heterogeneous genomic data. We present examples for pairs of transcript isoforms of ABCC3, RBM34, ERBB2, and ANXA7. We found that functional networks of isoforms of the same gene can show large differences. Interestingly, differential expression between HCIs and NCIs was also observed in the human on an independent set of 940 RNA-seq samples across multiple tissues, including heart, kidney, and liver. Using proteomic data from normal human retina and placenta, we showed that HCIs are a promising indicator of expressed protein isoforms exemplified by NUDFB6 and M6PR. Furthermore, we found that a significant percentage (20%, p = 0.0003) of human and mouse HCIs are homologues, suggesting their conservation between species. Our identified HCIs expand the repertoire of canonical isoforms and are expected to facilitate studying main protein products, understanding gene

  5. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing "Leptospirillum rubarum" (Group II) and Leptospirillum ferrodiazotrophum (Group III) in acid mine drainage biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum Groups II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, CA acid mine drainage (AMD) biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum Groups II and III, respectively and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid encodes conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacteria have genes for community-essential functions, including carbon fixation, biosynthesis of vitamins, fatty acids and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum Group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum Group II uses a methyl-dependent and Leptospirillum Group III a methyl-independent response pathway. Although only Leptospirillum Group III can fix nitrogen, these proteins were not identified by proteomics. Abundances of core proteins are similar in all communities, but abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum Groups II and III.

  6. Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  7. Ecophysiology of Thioploca ingrica as revealed by the complete genome sequence supplemented with proteomic evidence.

    PubMed

    Kojima, Hisaya; Ogura, Yoshitoshi; Yamamoto, Nozomi; Togashi, Tomoaki; Mori, Hiroshi; Watanabe, Tomohiro; Nemoto, Fumiko; Kurokawa, Ken; Hayashi, Tetsuya; Fukui, Manabu

    2015-05-01

    Large sulfur-oxidizing bacteria, which accumulate a high concentration of nitrate, are important constituents of aquatic sediment ecosystems. No representative of this group has been isolated in pure culture, and only fragmented draft genome sequences are available for these microorganisms. In this study, we successfully reconstituted the genome of Thioploca ingrica from metagenomic sequences, thereby generating the first complete genome sequence from this group. The Thioploca samples for the metagenomic analysis were obtained from a freshwater lake in Japan. A PCR-free paired-end library was constructed from the DNA extracted from the samples and was sequenced on the Illumina MiSeq platform. By closing gaps within and between the scaffolds, we obtained a circular chromosome and a plasmid-like element. The reconstituted chromosome was 4.8 Mbp in length with a 41.2% GC content. A sulfur oxidation pathway identical to that suggested for the closest relatives of Thioploca was deduced from the reconstituted genome. A full set of genes required for respiratory nitrate reduction to dinitrogen gas was also identified. We further performed a proteomic analysis of the Thioploca sample and detected many enzymes/proteins involved in sulfur oxidation, nitrate respiration and inorganic carbon fixation as major components of the protein extracts from the sample, suggesting that these metabolic activities are strongly associated with the physiology of T. ingrica in lake sediment.

  8. Exploration of Panviral Proteome: High-Throughput Cloning and Functional Implications in Virus-host Interactions

    PubMed Central

    Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M.; LaBaer, Joshua

    2014-01-01

    Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies. PMID:24955142

  9. Characterization of the Genome, Proteome, and Structure of Yersiniophage ϕR1-37

    PubMed Central

    Hyytiäinen, Heidi J.; Happonen, Lotta J.; Kiljunen, Saija; Datta, Neeta; Mattinen, Laura; Williamson, Kirsty; Kristo, Paula; Szeliga, Magdalena; Kalin-Mänttäri, Laura; Ahola-Iivarinen, Elina; Kalkkinen, Nisse; Butcher, Sarah J.

    2012-01-01

    The bacteriophage vB_YecM-ϕR1-37 (ϕR1-37) is a lytic yersiniophage that can propagate naturally in different Yersinia species carrying the correct lipopolysaccharide receptor. This large-tailed phage has deoxyuridine (dU) instead of thymidine in its DNA. In this study, we determined the genomic sequence of phage ϕR1-37, mapped parts of the phage transcriptome, characterized the phage particle proteome, and characterized the virion structure by cryo-electron microscopy and image reconstruction. The 262,391-bp genome of ϕR1-37 is one of the largest sequenced phage genomes, and it contains 367 putative open reading frames (ORFs) and 5 tRNA genes. Mass-spectrometric analysis identified 69 phage particle structural proteins with the genes scattered throughout the genome. A total of 269 of the ORFs (73%) lack homologues in sequence databases. Based on terminator and promoter sequences identified from the intergenic regions, the phage genome was predicted to consist of 40 to 60 transcriptional units. Image reconstruction revealed that the ϕR1-37 capsid consists of hexameric capsomers arranged on a T=27 lattice similar to the bacteriophage ϕKZ. The tail of ϕR1-37 has a contractile sheath. We conclude that phage ϕR1-37 is a representative of a novel phage type that carries the dU-containing genome in a ϕKZ-like head. PMID:22973030

  10. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function.

    PubMed

    Ramakrishnan, Gayatri; Ochoa-Montaño, Bernardo; Raghavender, Upadhyayula S; Mudgal, Richa; Joshi, Adwait G; Chandra, Nagasuma R; Sowdhamini, Ramanathan; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better

  11. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics.

    PubMed

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-06-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population. PMID:27252584

  12. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics.

    PubMed

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-06-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.

  13. Functional proteomic and interactome analysis of proteins associated with beef tenderness in angus cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beef is a source of high quality protein for the human population, and beef tenderness has significant influence on beef palatability, consumer expectation and industry profitability. To further elucidate the factors affecting beef tenderness, functional proteomics and bioinformatics interactome ana...

  14. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    PubMed

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  15. Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water

    PubMed Central

    Tang, Kai; Yang, Yujie; Lin, Dan; Li, Shuhui; Zhou, Wenchu; Han, Yu; Liu, Keshao; Jiao, Nianzhi

    2016-01-01

    Roseobacter clade bacteria are ubiquitous in marine environments and now thought to be significant contributors to carbon and sulfur cycling. However, only a few strains of roseobacters have been isolated from the deep-sea water column and have not been thoroughly investigated. Here, we present the complete genomes of phylogentically closed related Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014 isolated from deep-sea water of the Southeastern Pacific. The genome sequences showed that the two deep-sea roseobacters carry genes for versatile metabolisms with functional capabilities such as ribulose bisphosphate carboxylase-mediated carbon fixation and inorganic sulfur oxidation. Physiological and biochemical analysis showed that T. profunda JLT2016 was capable of autotrophy, heterotrophy, and mixotrophy accompanied by the production of exopolysaccharide. Heterotrophic carbon fixation via anaplerotic reactions contributed minimally to bacterial biomass. Comparative proteomics experiments showed a significantly up-regulated carbon fixation and inorganic sulfur oxidation associated proteins under chemolithotrophic conditions compared to heterotrophic conditions. Collectively, rosebacters show a high metabolic flexibility, suggesting a considerable capacity for adaptation to the marine environment. PMID:27762339

  16. Genomic and proteomic characterization of SE-I, a temperate bacteriophage infecting Erysipelothrix rhusiopathiae.

    PubMed

    Yuan, Wentao; Zhang, Yaning; Wang, Guangcao; Bai, Juan; Wang, Xianwei; Li, Yufeng; Jiang, Ping

    2016-11-01

    A bacteriophage infecting pathogenic Erysipelothrix rhusiopathiae was isolated from a swine farm experiencing an outbreak of acute swine erysipelas; we designated this phage SE-I. SE-I has an icosahedral head, a long tail and a double-stranded DNA genome. The 34,997-bp genome has a GC content of 34 % and contains 43 open reading frames (ORFs) encoding packaging, structural, lysin-holin, and hypothetical proteins. Components of purified SE-I were separated using SDS-PAGE and analyzed using liquid chromatography-mass spectrometry. Nine proteins were identified, encoded by ORF9, ORF15, ORF23, ORF30, ORF31, ORF33, ORF39, ORF40 and ORF 42. A phylogenetic tree constructed based on the sequence of the large terminase subunit revealed that SE-I is closely related to Staphylococcus phages P954 and phi3396. The CHAP-domain-containing protein encoded by ORF25 was expressed in E. coli and which was able to inactivate host bacteria. SE-I was able to infect 7 of 13 E. rhusiopathiae strains, but was unable to infect Salmonella, Streptococcus suis, and Staphylococcus aureus. This is the first report of the isolation, characterization, and genomic and proteomic analysis of a temperate phage infecting E. rhusiopathiae, and it might lead to the development of new anti- E. rhusiopathiae agents. PMID:27541818

  17. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    PubMed Central

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  18. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    PubMed Central

    Gaudreau, Pierre-Olivier; Stagg, John; Soulières, Denis; Saad, Fred

    2016-01-01

    Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development. PMID:27168728

  19. Biomarkers for Bone Tumors: Discovery from Genomics and Proteomics Studies and Their Challenges

    PubMed Central

    Wan-Ibrahim, Wan I; Singh, Vivek A; Hashim, Onn H; Abdul-Rahman, Puteri S

    2015-01-01

    Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed. PMID:26581086

  20. An integrated genomic and proteomic approach to identify signatures of endosulfan exposure in hepatocellular carcinoma cells.

    PubMed

    Gandhi, Deepa; Tarale, Prashant; Naoghare, Pravin K; Bafana, Amit; Krishnamurthi, Kannan; Arrigo, Patrizio; Saravanadevi, Sivanesan

    2015-11-01

    Present study reports the identification of genomic and proteomic signatures of endosulfan exposure in hepatocellular carcinoma cells (HepG2). HepG2 cells were exposed to sublethal concentration (15μM) of endosulfan for 24h. DNA microarray and MALDI-TOF-MS analyses revealed that endosulfan induced significant alterations in the expression level of genes and proteins involved in multiple cellular pathways (apoptosis, transcription, immune/inflammatory response, carbohydrate metabolism, etc.). Furthermore, downregulation of PHLDA gene, upregulation of ACIN1 protein and caspase-3 activation in exposed cells indicated that endosulfan can trigger apoptotic cascade in hepatocellular carcinoma cells. In total 135 transcripts and 19 proteins were differentially expressed. This study presents an integrated approach to identify the alteration of biological/cellular pathways in HepG2 cells upon endosulfan exposure.

  1. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    PubMed

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of (60)Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  2. Proteomic Insight into the Molecular Function of the Vitreous

    PubMed Central

    Skeie, Jessica M.; Roybal, C. Nathaniel; Mahajan, Vinit B.

    2015-01-01

    The human vitreous contains primarily water, but also contains proteins which have yet to be fully characterized. To gain insight into the four vitreous substructures and their potential functions, we isolated and analyzed the vitreous protein profiles of three non-diseased human eyes. The four analyzed substructures were the anterior hyaloid, the vitreous cortex, the vitreous core, and the vitreous base. Proteins were separated by multidimensional liquid chromatography and identified by tandem mass spectrometry. Bioinformatics tools then extracted the expression profiles, signaling pathways, and interactomes unique to each tissue. From each substructure, a mean of 2,062 unique proteins were identified, with many being differentially expressed in a specific substructure: 278 proteins were unique to the anterior hyaloid, 322 to the vitreous cortex, 128 to the vitreous base, and 136 to the vitreous core. When the identified proteins were organized according to relevant functional pathways and networks, key patterns appeared. The blood coagulation pathway and extracellular matrix turnover networks were highly represented. Oxidative stress regulation and energy metabolism proteins were distributed throughout the vitreous. Immune functions were represented by high levels of immunoglobulin, the complement pathway, damage-associated molecular patterns (DAMPs), and evolutionarily conserved antimicrobial proteins. The majority of vitreous proteins detected were intracellular proteins, some of which originate from the retina, including rhodopsin (RHO), phosphodiesterase 6 (PDE6), and glial fibrillary acidic protein (GFAP). This comprehensive analysis uncovers a picture of the vitreous as a biologically active tissue, where proteins localize to distinct substructures to protect the intraocular tissues from infection, oxidative stress, and energy disequilibrium. It also reveals the retina as a potential source of inflammatory mediators. The vitreous proteome catalogues the

  3. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches.

    PubMed

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R; Junot, Christophe; Ezan, Eric; Goossens, Pierre L; Becher, François

    2014-03-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  4. Genome-Wide Transcriptome and Proteome Analysis on Different Developmental Stages of Cordyceps militaris

    PubMed Central

    Yin, Yalin; Yu, Guojun; Chen, Yijie; Jiang, Shuai; Wang, Man; Jin, Yanxia; Lan, Xianqing; Liang, Yi; Sun, Hui

    2012-01-01

    Background Cordyceps militaris, an ascomycete caterpillar fungus, has been used as a traditional Chinese medicine for many years owing to its anticancer and immunomodulatory activities. Currently, artificial culturing of this beneficial fungus has been widely used and can meet the market, but systematic molecular studies on the developmental stages of cultured C. militaris at transcriptional and translational levels have not been determined. Methodology/Principal Findings We utilized high-throughput Illumina sequencing to obtain the transcriptomes of C. militaris mycelium and fruiting body. All clean reads were mapped to C. militaris genome and most of the reads showed perfect coverage. Alternative splicing and novel transcripts were predicted to enrich the database. Gene expression analysis revealed that 2,113 genes were up-regulated in mycelium and 599 in fruiting body. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to analyze the genes with expression differences. Moreover, the putative cordycepin metabolism difference between different developmental stages was studied. In addition, the proteome data of mycelium and fruiting body were obtained by one-dimensional gel electrophoresis (1-DGE) coupled with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). 359 and 214 proteins were detected from mycelium and fruiting body respectively. GO, KEGG and Cluster of Orthologous Groups (COG) analysis were further conducted to better understand their difference. We analyzed the amounts of some noteworthy proteins in these two samples including lectin, superoxide dismutase, glycoside hydrolase and proteins involved in cordycepin metabolism, providing important information for further protein studies. Conclusions/Significance The results reveal the difference in gene expression between the mycelium and fruiting body of artificially cultivated C. militaris by transcriptome and proteome

  5. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    PubMed Central

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  6. Microbial proteomics: the quiet revolution

    SciTech Connect

    Seraphin, Bertrand; Hettich, Robert {Bob} L

    2012-01-01

    Technological developments in DNA sequencing and their application to study thousands of microbial genomes or even microbial ecosystems still today often make the headlines of general newspapers and scientific journals. These revolutionary changes are hiding another revolution that is unfolding more quietly in the background: the development of microbial proteomics to study genome expression products. It is important to recognize that while DNA sequencing reveals extensive details about the genomic potential of an organism or community, proteomic measurements reveal the functional gene products that are present and operational under specific environmental conditions, and thus perhaps better characterize the critical biomolecules that execute the life processes (enzymes, signaling, structural factors, etc.).

  7. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  8. Proteomics for Validation of Automated Gene Model Predictions

    SciTech Connect

    Zhou, Kemin; Panisko, Ellen A.; Magnuson, Jon K.; Baker, Scott E.; Grigoriev, Igor V.

    2008-02-14

    High-throughput liquid chromatography mass spectrometry (LC-MS)-based proteomic analysis has emerged as a powerful tool for functional annotation of genome sequences. These analyses complement the bioinformatic and experimental tools used for deriving, verifying, and functionally annotating models of genes and their transcripts. Furthermore, proteomics extends verification and functional annotation to the level of the translation product of the gene model.

  9. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    PubMed

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  10. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Han, Mee-Jung; Kim, Jin Young

    2016-01-01

    ABSTRACT Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C. tyrobutyricum KCTC 5387 (ATCC 25755), which consists of a 3.07-Mbp chromosome and a 63-kbp plasmid. The results of genomic analyses suggested that C. tyrobutyricum produces butyrate from butyryl-coenzyme A (butyryl-CoA) through acetate reassimilation by CoA transferase, differently from Clostridium acetobutylicum, which uses the phosphotransbutyrylase-butyrate kinase pathway; this was validated by reverse transcription-PCR (RT-PCR) of related genes, protein expression levels, in vitro CoA transferase assay, and fed-batch fermentation. In addition, the changes in protein expression levels during the course of batch fermentations on glucose were examined by shotgun proteomics. Unlike C. acetobutylicum, the expression levels of proteins involved in glycolytic and fermentative pathways in C. tyrobutyricum did not decrease even at the stationary phase. Proteins related to energy conservation mechanisms, including Rnf complex, NfnAB, and pyruvate-phosphate dikinase that are absent in C. acetobutylicum, were identified. Such features explain why this organism can produce butyric acid to a much higher titer and better tolerate toxic metabolites. This study presenting the complete genome sequence, global protein expression profiles, and genome-based metabolic characteristics during the batch fermentation of C. tyrobutyricum will be valuable in designing strategies for metabolic engineering of this strain. PMID:27302759

  11. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    SciTech Connect

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  12. Proteome-wide dataset supporting functional study of tyrosine kinases in breast cancer

    PubMed Central

    Angelopoulos, Nicos; Stebbing, Justin; Xu, Yichen; Giamas, Georgios; Zhang, Hua

    2016-01-01

    Tyrosine kinases (TKs) play an essential role in regulating various cellular activities and dysregulation of TK signaling contributes to oncogenesis. However, less than half of the TKs have been thoroughly studied. Through a combined use of RNAi and stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative proteomics, a global functional proteomic landscape of TKs in breast cancer was recently revealed highlighting a comprehensive and highly integrated signaling network regulated by TKs (Stebbing et al., 2015) [1]. We collate the enormous amount of the proteomic data in an open access platform, providing a valuable resource for studying the function of TKs in cancer and benefiting the science community. Here we present a detailed description related to this study (Stebbing et al., 2015) [1] and the raw data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the identifier PXD002065. PMID:27054188

  13. Comparative Functional Analysis of the Caenorhabditis elegans and Drosophila melanogaster Proteomes

    PubMed Central

    Schrimpf, Sabine P; Weiss, Manuel; Reiter, Lukas; Ahrens, Christian H; Jovanovic, Marko; Malmström, Johan; Brunner, Erich; Mohanty, Sonali; Lercher, Martin J; Hunziker, Peter E; Aebersold, Ruedi; von Mering, Christian; Hengartner, Michael O

    2009-01-01

    The nematode Caenorhabditis elegans is a popular model system in genetics, not least because a majority of human disease genes are conserved in C. elegans. To generate a comprehensive inventory of its expressed proteome, we performed extensive shotgun proteomics and identified more than half of all predicted C. elegans proteins. This allowed us to confirm and extend genome annotations, characterize the role of operons in C. elegans, and semiquantitatively infer abundance levels for thousands of proteins. Furthermore, for the first time to our knowledge, we were able to compare two animal proteomes (C. elegans and Drosophila melanogaster). We found that the abundances of orthologous proteins in metazoans correlate remarkably well, better than protein abundance versus transcript abundance within each organism or transcript abundances across organisms; this suggests that changes in transcript abundance may have been partially offset during evolution by opposing changes in protein abundance. PMID:19260763

  14. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    PubMed Central

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  15. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Zdobnov, Evgeny M.; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R.; Christophides, George K.; Thomasova, Dana; Holt, Robert A.; Subramanian, G. Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H.; Wells, Michael A.; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L.; Kokoza, Elena; Kraft, Cheryl L.; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M.; Salzberg, Steven L.; Sutton, Granger G.; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H.; Ribeiro, Jose; Gelbart, William M.; Kafatos, Fotis C.; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small ``microsyntenic'' clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.

  16. Proteomics of ovarian cancer: functional insights and clinical applications

    DOE PAGES

    Elzek, Mohamed A.; Rodland, Karin D.

    2015-03-04

    In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification ofmore » aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.« less

  17. Proteomics of ovarian cancer: functional insights and clinical applications

    SciTech Connect

    Elzek, Mohamed A.; Rodland, Karin D.

    2015-03-04

    In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification of aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.

  18. Discovery and annotation of small proteins using genomics, proteomics, and computational approaches

    SciTech Connect

    Yang, Xiaohan; Tschaplinski, Timothy J; Hurst, Gregory {Greg} B; Jawdy, Sara; Abraham, Paul E; Lankford, Patricia K; Adams, Rachel M; Shah, Manesh B; Hettich, Robert {Bob} L; Kalluri, Udaya C; Gunter, Lee E; Pennacchio, Christa; Tuskan, Gerald A

    2011-01-01

    Small proteins (10 200 amino acids (AA) in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained ~2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 AA in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: 1) coding-potential prediction, 2) evolutionary conservation between P. deltoides and other plant species, and 3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1,469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1,282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were also supported by proteomics data. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  19. Tomato functional genomics database (TFGD): a comprehensive collection and analysis package for tomato functional genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato Functional Genomics Database (TFGD; http://ted.bti.cornell.edu) provides a comprehensive systems biology resource to store, mine, analyze, visualize and integrate large-scale tomato functional genomics datasets. The database is expanded from the previously described Tomato Expression Database...

  20. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3

    PubMed Central

    2012-01-01

    Background The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage. Methods The sequence of the 7-7-1 genome was determined by pyro(454)sequencing to a coverage of 378-fold. It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS). Results Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia myovirus BcepB1A. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the small (orf100) and large (orf112) subunits of the DNA packaging complex and the apparent lack of a holin-lysin cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as baseplate (orf7), putative tail fibre (orf102), portal (orf113), major capsid (orf115) and tail sheath (orf126) proteins. In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease (orf114). PMID:22650361

  1. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    PubMed Central

    Meinicke, Peter

    2009-01-01

    Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address. PMID:19725959

  2. From genome to function: the Arabidopsis aquaporins

    PubMed Central

    Quigley, Francoise; Rosenberg, Joshua M; Shachar-Hill, Yair; Bohnert, Hans J

    2002-01-01

    Background In the post-genomic era newly sequenced genomes can be used to deduce organismal functions from our knowledge of other systems. Here we apply this approach to analyzing the aquaporin gene family in Arabidopsis thaliana. The aquaporins are intrinsic membrane proteins that have been characterized as facilitators of water flux. Originally termed major intrinsic proteins (MIPs), they are now also known as water channels, glycerol facilitators and aqua-glyceroporins, yet recent data suggest that they facilitate the movement of other low-molecular-weight metabolites as well. Results The Arabidopsis genome contains 38 sequences with homology to aquaporin in four subfamilies, termed PIP, TIP, NIP and SIP. We have analyzed aquaporin family structure and expression using the A. thaliana genome sequence, and introduce a new NMR approach for the purpose of analyzing water movement in plant roots in vivo. Conclusions Our preliminary data indicate a strongly transcellular component for the flux of water in roots. PMID:11806824

  3. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    SciTech Connect

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-09-12

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.

  4. The Karyote physico-chemical genomic, proteomic, metabolic cell modeling system.

    PubMed

    Ortoleva, P; Berry, E; Brun, Y; Fan, J; Fontus, M; Hubbard, K; Jaqaman, K; Jarymowycz, L; Navid, A; Sayyed-Ahmad, A; Shreif, Z; Stanley, F; Tuncay, K; Weitzke, E; Wu, L-C

    2003-01-01

    Modeling approaches to the dynamics of a living cell are presented that are strongly based on its underlying physical and chemical processes and its hierarchical spatio-temporal organization. Through the inclusion of a broad spectrum of processes and a rigorous analysis of the multiple scale nature of cellular dynamics, we are attempting to advance cell modeling and its applications. The presentation focuses on our cell modeling system, which integrates data archiving and quantitative physico-chemical modeling and information theory to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly growing mess of genomic, proteomic, metabolic, and cell physiological data can be automatically used to develop and calibrate a predictive cell model. The discussion focuses on the Karyote cell modeling system and an introduction to the CellX and VirusX models. The Karyote software system integrates three elements: (1) a model-building and data archiving module that allows one to define a cell type to be modeled through its reaction network, structure, and transport processes as well as to choose the surrounding medium and other parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell simulator that solves the equations of metabolic reaction, transcription/translation polymerization and the exchange of molecules between parts of the cell and with the surrounding medium; and (3) an information theory module (ITM) that automates model calibration and development, and integrates a variety of data types with the cell dynamic computations. In Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of enzymes and other minority species yielding steady-state cycles of arbitrary complexities are accounted for. These features of the dynamics are handled via rigorous multiple scale analysis. A user interface allows for an automated generation and solution of the equations of multiple timescale

  5. Establishing Research Strategies, Methodologies and Technologies to Link Genomics and Proteomics to Seagrass Productivity, Community Metabolism, and Ecosystem Carbon Fluxes

    PubMed Central

    Mazzuca, Silvia; Björk, M.; Beer, S.; Felisberto, P.; Gobert, S.; Procaccini, G.; Runcie, J.; Silva, J.; Borges, A. V.; Brunet, C.; Buapet, P.; Champenois, W.; Costa, M. M.; D’Esposito, D.; Gullström, M.; Lejeune, P.; Lepoint, G.; Olivé, I.; Rasmusson, L. M.; Richir, J.; Ruocco, M.; Serra, I. A.; Spadafora, A.; Santos, Rui

    2013-01-01

    A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the European Cooperation in Science and Technology (COST) Action ES0609 “Seagrasses productivity. From genes to ecosystem management,” is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems. During 10 days, 20 researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, and underwater acoustics) gathered at The Station de Recherches Sous-marines et Océanographiques (STARESO, Corsica) to study together the nearby Posidonia oceanica meadow. STARESO is located in an oligotrophic area classified as “pristine site” where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, which grows in front of the research station, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general. PMID:23515425

  6. Functional protein microarray as molecular decathlete: a versatile player in clinical proteomics.

    PubMed

    Zhu, Heng; Cox, Eric; Qian, Jiang

    2012-12-01

    Functional protein microarrays were developed as a high-throughput tool to overcome the limitations of DNA microarrays and to provide a versatile platform for protein functional analyses. Recent years have witnessed tremendous growth in the use of protein microarrays, particularly functional protein microarrays, to address important questions in the field of clinical proteomics. In this review, we will summarize some of the most innovative and exciting recent applications of protein microarrays in clinical proteomics, including biomarker identification, pathogen-host interactions, and cancer biology. PMID:23027439

  7. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'.

    PubMed

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-11-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The approximately 108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  8. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response

    SciTech Connect

    Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.; Perry, Leslie M.; Pan, Chongle; Lankford, Patricia K.; Pelletier, Dale A.

    2015-04-08

    Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σRPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σRPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.

  9. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response

    DOE PAGES

    Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.; Perry, Leslie M.; Pan, Chongle; Lankford, Patricia K.; Pelletier, Dale A.

    2015-04-08

    Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σRPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequencemore » GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σRPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.« less

  10. Discovery metabolite profiling--forging functional connections between the proteome and metabolome.

    PubMed

    Saghatelian, Alan; Cravatt, Benjamin F

    2005-08-19

    Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.

  11. Identification of multiple metabolic enzymes from mice cochleae tissue using a novel functional proteomics technology.

    PubMed

    Wang, David L; Li, Hui; Liang, Ruqiang; Bao, Jianxin

    2015-01-01

    A new type of technology in proteomics was developed in order to separate a complex protein mixture and analyze protein functions systematically. The technology combines the ability of two-dimensional gel electrophoresis (2-DE) to separate proteins with a protein elution plate (PEP) to recover active proteins for functional analysis and mass spectrometry (MS)-based identification. In order to demonstrate the feasibility of this functional proteomics approach, NADH and NADPH-dependent oxidases, major redox enzyme families, were identified from mice cochlear tissue after a specific drug treatment. By comparing the enzymatic activity between mice that were treated with a drug and a control group significant changes were observed. Using MS, five NADH-dependent oxidases were identified that showed highly altered enzymatic activities due to the drug treatment. In essence, the PEP technology allows for a systematic analysis of a large enzyme family from a complex proteome, providing insights in understanding the mechanism of drug treatment.

  12. An evolutionary classification of genomic function.

    PubMed

    Graur, Dan; Zheng, Yichen; Azevedo, Ricardo B R

    2015-03-01

    The pronouncements of the ENCODE Project Consortium regarding "junk DNA" exposed the need for an evolutionary classification of genomic elements according to their selected-effect function. In the classification scheme presented here, we divide the genome into "functional DNA," that is, DNA sequences that have a selected-effect function, and "rubbish DNA," that is, sequences that do not. Functional DNA is further subdivided into "literal DNA" and "indifferent DNA." In literal DNA, the order of nucleotides is under selection; in indifferent DNA, only the presence or absence of the sequence is under selection. Rubbish DNA is further subdivided into "junk DNA" and "garbage DNA." Junk DNA neither contributes to nor detracts from the fitness of the organism and, hence, evolves under selective neutrality. Garbage DNA, on the other hand, decreases the fitness of its carriers. Garbage DNA exists in the genome only because natural selection is neither omnipotent nor instantaneous. Each of these four functional categories can be 1) transcribed and translated, 2) transcribed but not translated, or 3) not transcribed. The affiliation of a DNA segment to a particular functional category may change during evolution: Functional DNA may become junk DNA, junk DNA may become garbage DNA, rubbish DNA may become functional DNA, and so on; however, determining the functionality or nonfunctionality of a genomic sequence must be based on its present status rather than on its potential to change (or not to change) in the future. Changes in functional affiliation are divided into pseudogenes, Lazarus DNA, zombie DNA, and Jekyll-to-Hyde DNA. PMID:25635041

  13. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

    PubMed

    Weckwerth, Wolfram

    2011-12-10

    biochemical networks up to whole species populations. This process relies on the development of new technologies for the analysis of molecular data, especially genomics, metabolomics and proteomics data. The ambitious aim of these non-targeted 'omic' technologies is to extend our understanding beyond the analysis of separated parts of the system, in contrast to traditional reductionistic hypothesis-driven approaches. The consequent integration of genotyping, pheno/morphotyping and the analysis of the molecular phenotype using metabolomics, proteomics and transcriptomics will reveal a novel understanding of plant metabolism and its interaction with the environment. The analysis of single model systems - plants, fungi, animals and bacteria - will finally emerge in the analysis of populations of plants and other organisms and their adaptation to the ecological niche. In parallel, this novel understanding of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and marker- or genome-assisted breeding approaches. In this review the foundations of green systems biology are described and applications in ecosystems research are presented. Knowledge exchange of ecosystems research and green biotechnology merging into green systems biology is anticipated based on the principles of natural variation, biodiversity and the genotype-phenotype environment relationship as the fundamental drivers of ecology and evolution.

  14. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

    PubMed

    Weckwerth, Wolfram

    2011-12-10

    biochemical networks up to whole species populations. This process relies on the development of new technologies for the analysis of molecular data, especially genomics, metabolomics and proteomics data. The ambitious aim of these non-targeted 'omic' technologies is to extend our understanding beyond the analysis of separated parts of the system, in contrast to traditional reductionistic hypothesis-driven approaches. The consequent integration of genotyping, pheno/morphotyping and the analysis of the molecular phenotype using metabolomics, proteomics and transcriptomics will reveal a novel understanding of plant metabolism and its interaction with the environment. The analysis of single model systems - plants, fungi, animals and bacteria - will finally emerge in the analysis of populations of plants and other organisms and their adaptation to the ecological niche. In parallel, this novel understanding of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and marker- or genome-assisted breeding approaches. In this review the foundations of green systems biology are described and applications in ecosystems research are presented. Knowledge exchange of ecosystems research and green biotechnology merging into green systems biology is anticipated based on the principles of natural variation, biodiversity and the genotype-phenotype environment relationship as the fundamental drivers of ecology and evolution. PMID:21802534

  15. The Use of Functional Genomics in Conjunction with Metabolomics for Mycobacterium tuberculosis Research

    PubMed Central

    Swanepoel, Conrad C.

    2014-01-01

    Tuberculosis (TB), caused by Mycobacterium tuberculosis, is a fatal infectious disease, resulting in 1.4 million deaths globally per annum. Over the past three decades, genomic studies have been conducted in an attempt to elucidate the functionality of the genome of the pathogen. However, many aspects of this complex genome remain largely unexplored, as approaches like genomics, proteomics, and transcriptomics have failed to characterize them successfully. In turn, metabolomics, which is relatively new to the “omics” revolution, has shown great potential for investigating biological systems or their modifications. Furthermore, when these data are interpreted in combination with previously acquired genomics, proteomics and transcriptomics data, using what is termed a systems biology approach, a more holistic understanding of these systems can be achieved. In this review we discuss how metabolomics has contributed so far to characterizing TB, with emphasis on the resulting improved elucidation of M. tuberculosis in terms of (1) metabolism, (2) growth and replication, (3) pathogenicity, and (4) drug resistance, from the perspective of systems biology. PMID:24771957

  16. Application of Functional Genomics and Proteomics to Plant Cryopreservation

    PubMed Central

    Volk, Gayle M

    2010-01-01

    Plant cryobiology has primarily emerged from the classical fields of cryobiology and plant stress physiology. Cryopreservation tools are now available to geneticists for germplasm preservation and the field itself is advancing significantly through the use of molecular techniques. Long-term preservation of vegetatively propagated tissues can minimize the risks of long-term maintenance under tissue culture or field conditions. Cells can be successfully cryopreserved when the adverse affects of ice crystal formation are mitigated by the removal of water or procedures to limit ice formation and crystal growth. The addition of cryoprotectant solutions to hydrated cells may improve the survival of microdissected shoot tips or embryonic axes. Recent discoveries in the genetic pathways leading to cold acclimation and freezing tolerance suggest the involvement of key cold-regulated genes in the acquisition of cold tolerance in plant tissues. Model systems of banana and Arabidopsis have revealed the involvement of genes and proteins in the glycolytic and other metabolic pathways, particularly processes involved in dehydration tolerance, osmoprotection, and membrane transport. Furthermore, successful recovery appears to be dependent upon the presence of antioxidant protection from reactive oxygen species. Characterization of specific genes and proteins will lead to significant advances in plant cryobiology research. PMID:20808520

  17. Genomic and Proteomic Analyses of the Agarolytic System Expressed by Saccharophagus degradans 2-40†

    PubMed Central

    Ekborg, Nathan A.; Taylor, Larry E.; Longmire, Atkinson G.; Henrissat, Bernard; Weiner, Ronald M.; Hutcheson, Steven W.

    2006-01-01

    Saccharophagus degradans 2-40 (formerly Microbulbifer degradans 2-40) is a marine gamma-subgroup proteobacterium capable of degrading many complex polysaccharides, such as agar. While several agarolytic systems have been characterized biochemically, the genetics of agarolytic systems have been only partially determined. By use of genomic, proteomic, and genetic approaches, the components of the S. degradans 2-40 agarolytic system were identified. Five agarases were identified in the S. degradans 2-40 genome. Aga50A and Aga50D include GH50 domains. Aga86C and Aga86E contain GH86 domains, whereas Aga16B carries a GH16 domain. Novel family 6 carbohydrate binding modules (CBM6) were identified in Aga16B and Aga86E. Aga86C has an amino-terminal acylation site, suggesting that it is surface associated. Aga16B, Aga86C, and Aga86E were detected by mass spectrometry in agarolytic fractions obtained from culture filtrates of agar-grown cells. Deletion analysis revealed that aga50A and aga86E were essential for the metabolism of agarose. Aga16B was shown to endolytically degrade agarose to release neoagarotetraose, similarly to a β-agarase I, whereas Aga86E was demonstrated to exolytically degrade agarose to form neoagarobiose. The agarolytic system of S. degradans 2-40 is thus predicted to be composed of a secreted endo-acting GH16-dependent depolymerase, a surface-associated GH50-dependent depolymerase, an exo-acting GH86-dependent agarase, and an α-neoagarobiose hydrolase to release galactose from agarose. PMID:16672483

  18. GenAge: a genomic and proteomic network map of human ageing.

    PubMed

    de Magalhães, João Pedro; Toussaint, Olivier

    2004-07-30

    The aim of this work was to provide an overview of the genetics of human ageing to gain novel insights about the mechanisms involved. By incorporating findings from model organisms to humans, such as mutations that either delay or accelerate ageing in mice, we constructed the gene networks previously related to ageing: namely, the network related to DNA metabolism and the network involving the GH/IGF-1 axis. Gathering data about the interacting partners of these proteins allowed us to suggest the involvement in ageing of a number of proteins through a "guilt-by-association" methodology. To organize our data, we developed the first curated database of genes related to human ageing: GenAge. With over 200 entries, GenAge may serve as a reference database of genes related to human ageing. Moreover, we rendered the first proteomic network map of human ageing, which suggests a relationship between the genetics of development and the genetics of ageing. Our work serves as a framework upon which a systems-biology understanding of ageing can be developed. GenAge is freely available for academic purposes at: http://genomics.senescence.info/genes/.

  19. Open chromatin reveals the functional maize genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...

  20. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    PubMed Central

    Simmons, Shaneka S.; Isokpehi, Raphael D.; Brown, Shyretha D.; McAllister, Donee L.; Hall, Charnia C.; McDuffy, Wanaki M.; Medley, Tamara L.; Udensi, Udensi K.; Rajnarayanan, Rajendram V.; Ayensu, Wellington K.; Cohly, Hari H.P.

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  1. Non-coding genome functions in diabetes.

    PubMed

    Cebola, Inês; Pasquali, Lorenzo

    2016-01-01

    Most of the genetic variation associated with diabetes, through genome-wide association studies, does not reside in protein-coding regions, making the identification of functional variants and their eventual translation to the clinic challenging. In recent years, high-throughput sequencing-based methods have enabled genome-scale high-resolution epigenomic profiling in a variety of human tissues, allowing the exploration of the human genome outside of the well-studied coding regions. These experiments unmasked tens of thousands of regulatory elements across several cell types, including diabetes-relevant tissues, providing new insights into their mechanisms of gene regulation. Regulatory landscapes are highly dynamic and cell-type specific and, being sensitive to DNA sequence variation, can vary with individual genomes. The scientific community is now in place to exploit the regulatory maps of tissues central to diabetes etiology, such as pancreatic progenitors and adult islets. This giant leap forward in the understanding of pancreatic gene regulation is revolutionizing our capacity to discriminate between functional and non-functional non-coding variants, opening opportunities to uncover regulatory links between sequence variation and diabetes susceptibility. In this review, we focus on the non-coding regulatory landscape of the pancreatic endocrine cells and provide an overview of the recent developments in this field. PMID:26438568

  2. Current Progress in Tonoplast Proteomics Reveals Insights into the Function of the Large Central Vacuole

    PubMed Central

    Trentmann, Oliver; Haferkamp, Ilka

    2013-01-01

    Vacuoles of plants fulfill various biologically important functions, like turgor generation and maintenance, detoxification, solute sequestration, or protein storage. Different types of plant vacuoles (lytic versus protein storage) are characterized by different functional properties apparently caused by a different composition/abundance and regulation of transport proteins in the surrounding membrane, the tonoplast. Proteome analyses allow the identification of vacuolar proteins and provide an informative basis for assigning observed transport processes to specific carriers or channels. This review summarizes techniques required for vacuolar proteome analyses, like e.g., isolation of the large central vacuole or tonoplast membrane purification. Moreover, an overview about diverse published vacuolar proteome studies is provided. It becomes evident that qualitative proteomes from different plant species represent just the tip of the iceberg. During the past few years, mass spectrometry achieved immense improvement concerning its accuracy, sensitivity, and application. As a consequence, modern tonoplast proteome approaches are suited for detecting alterations in membrane protein abundance in response to changing environmental/physiological conditions and help to clarify the regulation of tonoplast transport processes. PMID:23459586

  3. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    PubMed Central

    Austin, Ryan S; Provart, Nicholas J; Cutler, Sean R

    2007-01-01

    Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*), the ER-retention signal (K/HDEL*), the ER-retrieval signal for membrane bound proteins (KKxx*), the prenylation signal (CC*) and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists between species, among

  4. Integration of genomic and proteomic data to identify candidate genes in HT-29 cells after incubation with Bifidobacterium bifidum ATCC 29521.

    PubMed

    Wang, Bao-Gui; Wu, Yaoping; Qiu, Liang; Shah, Nagendra P; Xu, Feng; Wei, Hua

    2016-09-01

    As the predominant group inhabiting the human gastrointestinal tract, bifidobacteria play a vital role in human nutrition, therapeutics, and health by shaping and maintaining the gut ecosystem, reducing blood cholesterol, and promoting the supply of nutrients. The interaction between bacterial cells and human intestinal epithelial cell lines has been studied for decades in an attempt to understand the mechanisms of action. These studies, however, have been limited by lack of genomic and proteomic database to aid in achieving comprehensive understanding of these mechanisms at molecular levels. Microarray data (GSE: 74119) coupled with isobaric tags for relative and absolute quantitation (iTRAQ) were performed to detect differentially expressed genes and proteins in HT-29 cells after incubation with Bifidobacterium bifidum. Real-time quantitative PCR, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted for mRNA validation, functional annotation, and pathway identification, respectively. According to the results of microarray, 1,717 differentially expressed genes, including 1,693 upregulated and 24 downregulated genes, were selected and classified by the gene ontology database. The iTRAQ analysis identified 43 differentially expressed proteins, where 29 proteins were upregulated and 14 proteins were downregulated. Eighty-two candidate genes showing consistent differences with microarray and iTRAQ were further validated in HT-29 and Caco-2 cells by real-time quantitative PCR. Nine of the top genes showing interesting results with high confidence were further investigated in vivo in mice intestine samples. Integration of genomic and proteomic data provides an approach to identify candidate genes that are more likely to function in ubiquitin-mediated proteolysis, positive regulation of apoptosis, membrane proteins, and transferase catalysis. These findings might contribute to our understanding of molecular mechanisms regulating the

  5. [The ENCODE project and functional genomics studies].

    PubMed

    Ding, Nan; Qu, Hongzhu; Fang, Xiangdong

    2014-03-01

    Upon the completion of the Human Genome Project, scientists have been trying to interpret the underlying genomic code for human biology. Since 2003, National Human Genome Research Institute (NHGRI) has invested nearly $0.3 billion and gathered over 440 scientists from more than 32 institutions in the United States, China, United Kingdom, Japan, Spain and Singapore to initiate the Encyclopedia of DNA Elements (ENCODE) project, aiming to identify and analyze all regulatory elements in the human genome. Taking advantage of the development of next-generation sequencing technologies and continuous improvement of experimental methods, ENCODE had made remarkable achievements: identified methylation and histone modification of DNA sequences and their regulatory effects on gene expression through altering chromatin structures, categorized binding sites of various transcription factors and constructed their regulatory networks, further revised and updated database for pseudogenes and non-coding RNA, and identified SNPs in regulatory sequences associated with diseases. These findings help to comprehensively understand information embedded in gene and genome sequences, the function of regulatory elements as well as the molecular mechanism underlying the transcriptional regulation by noncoding regions, and provide extensive data resource for life sciences, particularly for translational medicine. We re-viewed the contributions of high-throughput sequencing platform development and bioinformatical technology improve-ment to the ENCODE project, the association between epigenetics studies and the ENCODE project, and the major achievement of the ENCODE project. We also provided our prospective on the role of the ENCODE project in promoting the development of basic and clinical medicine.

  6. Application of an Improved Proteomics Method for Abundant Protein Cleanup: Molecular and Genomic Mechanisms Study in Plant Defense*

    PubMed Central

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2013-01-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery. PMID:23943779

  7. Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense.

    PubMed

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2013-11-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery.

  8. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: An ammonia-oxidizing archaeon from the open ocean

    PubMed Central

    Santoro, Alyson E.; Dupont, Christopher L.; Richter, R. Alex; Craig, Matthew T.; Carini, Paul; McIlvin, Matthew R.; Yang, Youngik; Orsi, William D.; Moran, Dawn M.; Saito, Mak A.

    2015-01-01

    Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name “Candidatus Nitrosopelagicus brevis” str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean. PMID:25587132

  9. Impact of transgenic technologies on functional genomics.

    PubMed

    Shashikant, Cooduvalli S; Ruddle, Frank H

    2003-07-01

    Gene transfer technologies in mammals are the focus of renewed interest owing to the recent emphasis on analyzing gene function in the postgenomic era. Three important developments in this area include transgenics, gene targeting and nuclear transfer or animal cloning. These technological innovations have enhanced our ability to analyze gene function at the level of the whole organism and have provided the means to modify gene expression. This review discusses the origins and current status of transgenic technologies. Various applications and technologies including chromosome engineering, stem cells, gene traps and modification of livestock are presented. The impact of mouse technologies and genomics on functional analyses is also discussed.

  10. Functional Proteomic Profiling of Phosphodiesterases Using SeraFILE Separations Platform

    PubMed Central

    Oka, Amita R.; Kuruc, Matthew P.; Gujarathi, Ketan M.; Roy, Swapan

    2012-01-01

    Functional proteomic profiling can help identify targets for disease diagnosis and therapy. Available methods are limited by the inability to profile many functional properties measured by enzymes kinetics. The functional proteomic profiling approach proposed here seeks to overcome such limitations. It begins with surface-based proteome separations of tissue/cell-line extracts, using SeraFILE, a proprietary protein separations platform. Enzyme kinetic properties of resulting subproteomes are then characterized, and the data integrated into proteomic profiles. As a model, SeraFILE-derived subproteomes of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs) from bovine brain homogenate (BBH) and rat brain homogenate (RBH) were characterized for cAMP hydrolysis activity in the presence (challenge condition) and absence of cGMP. Functional profiles of RBH and BBH were compiled from the enzyme activity response to the challenge condition in each of the respective subproteomes. Intersample analysis showed that comparable profiles differed in only a few data points, and that distinctive subproteomes can be generated from comparable tissue samples from different animals. These results demonstrate that the proposed methods provide a means to simplify intersample differences, and to localize proteins attributable to sample-specific responses. It can be potentially applied for disease and nondisease sample comparison in biomarker discovery and drug discovery profiling. PMID:23227336

  11. Effects of retroviruses on host genome function.

    PubMed

    Jern, Patric; Coffin, John M

    2008-01-01

    For millions of years, retroviral infections have challenged vertebrates, occasionally leading to germline integration and inheritance as ERVs, genetic parasites whose remnants today constitute some 7% to 8% of the human genome. Although they have had significant evolutionary side effects, it is useful to view ERVs as fossil representatives of retroviruses extant at the time of their insertion into the germline and not as direct players in the evolutionary process itself. Expression of particular ERVs is associated with several positive physiological functions as well as certain diseases, although their roles in human disease as etiological agents, possible contributing factors, or disease markers-well demonstrated in animal models-remain to be established. Here we discuss ERV contributions to host genome structure and function, including their ability to mediate recombination, and physiological effects on the host transcriptome resulting from their integration, expression, and other events.

  12. Functional genomics approaches in parasitic helminths.

    PubMed

    Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H

    2012-01-01

    As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths.

  13. [Genomic, proteomic and metabolomic predictors of nonalcoholic fatty liver disease development in obese patients. Part I].

    PubMed

    Chernyak, O O; Sentsova, T B; Vorozhko, I V; Tutelyan, V A; Gapparova, K M; Isakov, V A

    2015-01-01

    The prevention, diagnosis and treatment of diseases associated to obesity require a qualitative increase of efficiency. There are still disputable questions about diagnostic significance of some molecules, including genomic, proteomic and metabolomic biomarkers. We observed 72 obese patients (20 men and 52 women, mean age--41.3 +/- 2.5) and performed ultrasound elastography and ultrasound of liver. We have identified two groups of patients: Group 1 consisted of 50 obese patients without complications (BMI 43.2 +/- 0.6), group 2 consisted of 22 patients with obesity complicated with nonalcoholic fatty liver disease (BMI 45.8 +/- 2.3). Determination of the adipokines (adiponectin, ghrelin, resistin, visfatin, and apelin), cytokine (interleukin--6, TNFalpha) oxidized lipoproteins (oxLDL), adhesion molecule sICAM (soluble intercellular cell adhesion molecule), fatty acid transporter L-FABP in serum was performed by ELISA. The study of the lipid metabolism involved determination of the concentration of total cholesterols, triglycerides, low and high density lipoproteins (LDL and HDL) by turbidimetry and spectrophotometry by analyzer. In addition, we conducted analysis of polymorphic alleles epsilon2, epsilon3, episolon4 of ApoE gene using polymerase chain reaction. Our data indicate that reducing the concentration of adiponectin (0.46-1.71 mcg/ml), increasing the level of glucose (5.57-6.25 mmol/l), triglycerides (2.06-3.94 mmol/l), TNFalpha (5.07-16.68 pg/ml) and L-FABP (11.62-23.76 pg/ml) are predictors of nonalcoholic fatty liver disease in obese patients, and the presence of genotype epsilon3/epsilon4 of ApoE gene is a poor prognostic marker of severity of nonalcoholic fatty liver disease. PMID:26852528

  14. Salivary Proteomic and Genomic Biomarkers for Primary Sjögren’s Syndrome

    PubMed Central

    Hu, Shen; Wang, Jianghua; Meijer, Jiska; Ieong, Sonya; Xie, Yongming; Yu, Tianwei; Zhou, Hui; Henry, Sharon; Vissink, Arjan; Pijpe, Justin; Kallenberg, Cees; Elashoff, David; Loo, Joseph A.; Wong, David T.

    2010-01-01

    Objective To identify a panel of protein and messenger RNA (mRNA) biomarkers in human whole saliva (WS) that may be used in the detection of primary Sjögren’s syndrome (SS). Methods Mass spectrometry and expression microarray profiling were used to identify candidate protein and mRNA biomarkers of primary SS in WS samples. Validation of the discovered mRNA and protein biomarkers was also demonstrated using real-time quantitative polymerase chain reaction and immunoblotting techniques. Results Sixteen WS proteins were found to be down-regulated and 25 WS proteins were found to be up-regulated in primary SS patients compared with matched healthy control subjects. These proteins reflected the damage of glandular cells and inflammation of the oral cavity system in patients with primary SS. In addition, 16 WS peptides (10 up-regulated and 6 down-regulated in primary SS) were found at significantly different levels (P <0.05) in primary SS patients and controls. Using stringent criteria (3-fold change; P <0.0005), 27 mRNA in saliva samples were found to be significantly up-regulated in the primary SS patients. Strikingly, 19 of 27 genes that were found to be overex-pressed were interferon-inducible or were related to lymphocyte filtration and antigen presentation known to be involved in the pathogenesis of primary SS. Conclusion Our preliminary study has indicated that WS from patients with primary SS contains molecular signatures that reflect damaged glandular cells and an activated immune response in this autoimmune disease. These candidate proteomic and genomic biomarkers may improve the clinical detection of primary SS once they have been further validated. We also found that WS contains more informative proteins, peptides, and mRNA, as compared with gland-specific saliva, that can be used in generating candidate biomarkers for the detection of primary SS. PMID:17968930

  15. Biomarkers for pancreatic cancer: recent achievements in proteomics and genomics through classical and multivariate statistical methods.

    PubMed

    Marengo, Emilio; Robotti, Elisa

    2014-10-01

    Pancreatic cancer (PC) is one of the most aggressive and lethal neoplastic diseases. A valid alternative to the usual invasive diagnostic tools would certainly be the determination of biomarkers in peripheral fluids to provide less invasive tools for early diagnosis. Nowadays, biomarkers are generally investigated mainly in peripheral blood and tissues through high-throughput omics techniques comparing control vs pathological samples. The results can be evaluated by two main strategies: (1) classical methods in which the identification of significant biomarkers is accomplished by monovariate statistical tests where each biomarker is considered as independent from the others; and (2) multivariate methods, taking into consideration the correlations existing among the biomarkers themselves. This last approach is very powerful since it allows the identification of pools of biomarkers with diagnostic and prognostic performances which are superior to single markers in terms of sensitivity, specificity and robustness. Multivariate techniques are usually applied with variable selection procedures to provide a restricted set of biomarkers with the best predictive ability; however, standard selection methods are usually aimed at the identification of the smallest set of variables with the best predictive ability and exhaustivity is usually neglected. The exhaustive search for biomarkers is instead an important alternative to standard variable selection since it can provide information about the etiology of the pathology by producing a comprehensive set of markers. In this review, the most recent applications of the omics techniques (proteomics, genomics and metabolomics) to the identification of exploratory biomarkers for PC will be presented with particular regard to the statistical methods adopted for their identification. The basic theory related to classical and multivariate methods for identification of biomarkers is presented and then, the most recent applications in

  16. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    SciTech Connect

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; Kaiser, Brooke L. Deatherage; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeff; Kreuzer, Helen W.

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  17. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    DOE PAGES

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; Pan, Chongle; Robert L. Hettich

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs.more » disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.« less

  18. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    SciTech Connect

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; Pan, Chongle; Robert L. Hettich

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs. disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.

  19. Orchidstra: An Integrated Orchid Functional Genomics Database

    PubMed Central

    Su, Chun-lin; Chao, Ya-Ting; Yen, Shao-Hua; Chen, Chun-Yi; Chen, Wan-Chieh; Chang, Yao-Chien Alex; Shih, Ming-Che

    2013-01-01

    A specialized orchid database, named Orchidstra (URL: http://orchidstra.abrc.sinica.edu.tw), has been constructed to collect, annotate and share genomic information for orchid functional genomics studies. The Orchidaceae is a large family of Angiosperms that exhibits extraordinary biodiversity in terms of both the number of species and their distribution worldwide. Orchids exhibit many unique biological features; however, investigation of these traits is currently constrained due to the limited availability of genomic information. Transcriptome information for five orchid species and one commercial hybrid has been included in the Orchidstra database. Altogether, these comprise >380,000 non-redundant orchid transcript sequences, of which >110,000 are protein-coding genes. Sequences from the transcriptome shotgun assembly (TSA) were obtained either from output reads from next-generation sequencing technologies assembled into contigs, or from conventional cDNA library approaches. An annotation pipeline using Gene Ontology, KEGG and Pfam was built to assign gene descriptions and functional annotation to protein-coding genes. Deep sequencing of small RNA was also performed for Phalaenopsis aphrodite to search for microRNAs (miRNAs), extending the information archived for this species to miRNA annotation, precursors and putative target genes. The P. aphrodite transcriptome information was further used to design probes for an oligonucleotide microarray, and expression profiling analysis was carried out. The intensities of hybridized probes derived from microarray assays of various tissues were incorporated into the database as part of the functional evidence. In the future, the content of the Orchidstra database will be expanded with transcriptome data and genomic information from more orchid species. PMID:23324169

  20. Functional genomics for food fermentation processes.

    PubMed

    Smid, E J; Hugenholtz, J

    2010-01-01

    This review describes recent scientific and technological drivers of food fermentation research. In addition, a number of practical implications of the results of this development will be highlighted. The first part of the manuscript elaborates on the message that genome sequence information gives us an unprecedented view on the biodiversity of microbes in food fermentation. This information can be made applicable for tailoring relevant characteristics of food products through fermentation. The second part deals with the integration of genome sequence data into metabolic models and the use of these models for a number of topics that are relevant for food fermentation processes. The final part will be about metagenomics approaches to reveal the complexity and understand the functionality of undefined complex microbial consortia used in a diverse range of food fermentation processes.

  1. High-Density Lipoprotein Proteomics: Identifying New Drug Targets and Biomarkers by Understanding Functionality

    PubMed Central

    Gordon, Scott; Durairaj, Anita; Lu, Jason L.; Davidson, W. Sean

    2010-01-01

    Recent proteomics studies on human plasma high-density lipoprotein (HDL) have discovered up to 50 individual protein constituents. Many of these have known functions that vary surprisingly from the lipid transport roles commonly thought to mediate HDL’s ability to protect from coronary artery disease. Given newly discovered roles in inflammation, protease inhibition, complement regulation, and innate immunity, many have begun to view HDL as a broad collection of distinct particle subfamilies, each distinguished by unique protein compositions and functions. Herein we review recent applications of high-resolution proteomics to HDL and summarize evidence supporting the idea of HDL functional subspeciation. These studies have set the stage for a more complete understanding of the molecular basis of HDL functional heterogeneity and hold promise for the identification of new biomarkers that can predict disease or evaluate the success of clinical interventions. PMID:20625533

  2. Effects of Lon protease down-regulation on the mitochondrial function and proteome.

    PubMed

    Hamon, Marie-Paule; Bayot, Aurélien; Gareil, Monique; Chavatte, Laurent; Lombès, Anne; Friguet, Bertrand; Bulteau, Anne-Laure

    2014-10-01

    The Lon protease is an ATP-dependent protease of the mitochondrial matrix that contributes to the degradation of abnormal and oxidized proteins in this compartment. It is also involved in the stability and regulation of the mitochondrial genome. The effects of a depletion of this protease on the mitochondrial function and the identification of oxidized target proteins of Lon have been performed using as cellular model HeLa cells in which Lon level expression can be down-regulated. The expression level of proteins playing a role in the stress response was first determined. The amount of ClpP, another protease in charge of protein degradation of the mitochondrial matrix, and the amount of several chaperones have been evaluated. The expression level of respiratory chain subunits was also measured with or without Lon depletion. The mitochondrial compartment morphology was monitored in different stress conditions, and measured using a parameter devoted to the evaluation of the mitochondrial dynamics. None of these investigations showed a significant phenotype resulting from Lon down-regulation A possible impact of Lon depletion on oxidized mitochondrial proteins level was then sought. 1D gel electrophoresis after the derivatization of protein carbonyl groups with 2,4-dinitrophenyl hydrazine (DNPH) revealed an increase in carbonylated proteins more important in mitochondrial extracts than in total cellular extracts. 2D difference gel electrophoresis (DIGE) experiments provide results consistent with these observations with some enlightenments. Performed with fluorescent dyes labelling either proteins or their carbonyl groups, these experiments indicated proteome modifications in cells with Lon down-regulation both at the level of protein expression and at the level of protein oxidation. These variations are noted in proteins acting in different cellular activities, i.e. metabolism, protein quality control and cytoskeleton organization.

  3. Proteomics in alcohol research.

    PubMed

    Anni, Helen; Israel, Yedy

    2002-01-01

    The proteome is the complete set of proteins in an organism. It is considerably larger and more complex than the genome--the collection of genes that encodes these proteins. Proteomics deals with the qualitative and quantitative study of the proteome under physiological and pathological conditions (e.g., after exposure to alcohol, which causes major changes in numerous proteins of different cell types). To map large proteomes such as the human proteome, proteins from discrete tissues, cells, cell components, or biological fluids are first separated by high-resolution two-dimensional electrophoresis and multidimensional liquid chromatography. Then, individual proteins are identified by mass spectrometry. The huge amount of data acquired using these techniques is analyzed and assembled by fast computers and bioinformatics tools. Using these methods, as well as other technological advances, alcohol researchers can gain a better understanding of how alcohol globally influences protein structure and function, protein-protein interactions, and protein networks. This knowledge ultimately will assist in the early diagnosis and prognosis of alcoholism and the discovery of new drug targets and medications for treatment.

  4. Elucidating the Molecular Basis and Regulation of Chromium(VI) Reduction by Shewanella oneidensis MR-1 and Resistance to Metal Toxicity Using Integrated Biochemical, Genomic, and Proteomic Approaches

    SciTech Connect

    Dorothea K. Thompson; Steven D. Brown; Robert L. Hettich; Nathan VerBerkmoes; Jizhong Zhou

    2004-03-17

    The mediation of metal reduction by microorganisms has been investigated intensively from physiological and biochemical perspectives; however, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform or immobilize a wide array of heavy metals contaminating DOE field sites. Chromium(VI), for example, is one of several risk-driving contaminants at DOE sites and has been targeted by the DOE for bioremediation research. The bacterium Shewanella oneidensis MR-1 can potentially be used to immobilize chromium, a toxic and mutagenic metal, by reducing soluble Cr(VI) to the insoluble and less bioavailable form of Cr(III), thus facilitating its removal from contained-storage and natural sites. The overall goal of this study is to integrate targeted biochemical and proteomic analyses with genome-wide gene expression profiling to examine the molecular basis and regulation of chromium(VI) reduction by Shewanella oneidensis MR-1. Towards this goal, we will (1) isolate and identify the terminal chromium(VI) reductase and the gene(s) encoding this activity using whole-genome sequence information for MR-1 and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with conventional protein purification and characterization techniques; (2) verify the function of the gene(s) encoding the terminal Cr(VI) reductase and compare whole transcriptome data with whole proteome data in order to understand the regulation of chromium reduction; and (3) investigate the molecular stress response and adaptation of S. oneidensis to toxic levels of soluble Cr(VI) and other heavy metals. This research will provide important information on the functional components and regulatory mechanisms of microbial metal reduction, which should prove valuable in developing effective assessment strategies for in situ bioremediation and genetically engineering desired bacteria for enhanced bioremediation.

  5. Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics.

    PubMed

    Xiong, Jie; Lu, Yuming; Feng, Jinmei; Yuan, Dongxia; Tian, Miao; Chang, Yue; Fu, Chengjie; Wang, Guangying; Zeng, Honghui; Miao, Wei

    2013-01-01

    The ciliated protozoan Tetrahymena thermophila is a useful unicellular model organism for studies of eukaryotic cellular and molecular biology. Researches on T. thermophila have contributed to a series of remarkable basic biological principles. After the macronuclear genome was sequenced, substantial progress has been made in functional genomics research on T. thermophila, including genome-wide microarray analysis of the T. thermophila life cycle, a T. thermophila gene network analysis based on the microarray data and transcriptome analysis by deep RNA sequencing. To meet the growing demands for the Tetrahymena research community, we integrated these data to provide a public access database: Tetrahymena functional genomics database (TetraFGD). TetraFGD contains three major resources, including the RNA-Seq transcriptome, microarray and gene networks. The RNA-Seq data define gene structures and transcriptome, with special emphasis on exon-intron boundaries; the microarray data describe gene expression of 20 time points during three major stages of the T. thermophila life cycle; the gene network data identify potential gene-gene interactions of 15 049 genes. The TetraFGD provides user-friendly search functions that assist researchers in accessing gene models, transcripts, gene expression data and gene-gene relationships. In conclusion, the TetraFGD is an important functional genomic resource for researchers who focus on the Tetrahymena or other ciliates. Database URL: http://tfgd.ihb.ac.cn/

  6. Functional Analysis of Shewanella, a cross genome comparison.

    SciTech Connect

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  7. Open-Access Cancer Genomics - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The completion of the Human Genome Project sparked a revolution in high-throughput genomics applied towards deciphering genetically complex diseases, like cancer. Now, almost 10 years later, we have a mountain of genomics data on many different cancer type

  8. Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting

    2015-07-01

    Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space

  9. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3.

    PubMed

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F; Cortez, Néstor; Farias, María E; Albarracín, Virginia H

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain. PMID:25954258

  10. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3

    PubMed Central

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F.; Cortez, Néstor; Farias, María E.; Albarracín, Virginia H.

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth’s surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an “UV-resistome” was defined, encompassing the genes that would support the outstanding UV-resistance of this strain. PMID:25954258

  11. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3.

    PubMed

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F; Cortez, Néstor; Farias, María E; Albarracín, Virginia H

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain.

  12. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae

    PubMed Central

    Frampton, Rebekah A.; Lopez Acedo, Elena; Young, Vivienne L.; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A.; Pitman, Andrew R.; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C.

    2015-01-01

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae. PMID:26114474

  13. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-07-01

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  14. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-07-01

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae. PMID:26114474

  15. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  16. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome

    PubMed Central

    2013-01-01

    Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of

  17. Retroelements and their impact on genome evolution and functioning.

    PubMed

    Gogvadze, Elena; Buzdin, Anton

    2009-12-01

    Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition.

  18. Proteomics: methodologies and applications in oncology.

    PubMed

    Wouters, Bradly G

    2008-04-01

    Few technological developments have created as much excitement and skepticism as proteomics over their potential to change clinical diagnostic and prognostic procedures. Proteomics concerns itself with the characterization and function of all cellular proteins, the ultimate determinants of cellular function. As such, it represents the end result of all mechanisms of gene regulation and thus offers tremendous potential for characterizing biology. In much the same way as what has occurred with the genome, the scientific community is coming to grips with the fact that the proteome, although enormously complex, is finite. It is conceivable that we will learn the identity of all possible proteins, including all posttranslational modifications. The rate of protein discovery continues to accelerate in large part because of improvements in mass spectrometry-based technologies coupled with improved genomic databases and bioinformatic tools. In addition, there is reason to believe that proteomics is on the verge of moving from a methodology that requires repeated proteome "discovery" to one that can more systematically profile proteomes. This review discusses current proteomic-based technologies and the efforts of scientists to move them into the clinic for use in patients treated with radiotherapy and other modalities.

  19. Post-translational modification of cardiac proteasomes: functional delineation enabled by proteomics

    PubMed Central

    Scruggs, Sarah B.; Zong, Nobel C.; Wang, Ding; Stefani, Enrico

    2012-01-01

    Proteasomes are ubiquitously expressed multicatalytic complexes that serve as key regulators of protein homeostasis. There are several lines of evidence indicating that proteasomes exist in heterogeneous subpopulations in cardiac muscle, differentiated, in part, by post-translational modifications (PTMs). PTMs regulate numerous facets of proteasome function, including catalytic activities, complex assembly, interactions with associating partners, subcellular localization, substrate preference, and complex turnover. Classical technologies used to identify PTMs on proteasomes have lacked the ability to determine site specificity, quantify stoichiometry, and perform large-scale, multi-PTM analysis. Recent advancements in proteomic technologies have largely overcome these limitations. We present here a discussion on the importance of PTMs in modulating proteasome function in cardiac physiology and pathophysiology, followed by the presentation of a state-of-the-art proteomic workflow for identifying and quantifying PTMs of cardiac proteasomes. PMID:22523251

  20. A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus

    PubMed Central

    Owens, Rebecca A.; Hammel, Stephen; Sheridan, Kevin J.; Jones, Gary W.; Doyle, Sean

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism. PMID:25198175

  1. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission. PMID:27270106

  2. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.

  3. A novel approach to the study of the functional proteome in breast cancer

    SciTech Connect

    Hennessy, Bryan; Lu, Yiling; Gonzalez-Angulo, Ana Maria; Carey, Mark; Myhre, Simen; Ju, Zhenlin; Coombes, Kevin; Meric-Bernstam, Funda; Bedrosian, Isabelle; Davies, Michael A.; Siwak, Doris; Agarwal, Roshan; Zhang, Fan; Overgaard, Jens; Alsner, Jan; Neve, Richard M.; Kuo, Wen-Lin; Gray, Joe W.; Borresen-Dale, Anne-Lise; Mills, Gordon B.

    2008-10-10

    Factors including intratumoral heterogeneity and variability in tissue handling potentially hamper the application of reverse phase protein arrays (RPPA) to study of the solid tumor functional proteome. To address this, RPPA was applied to quantify protein expression and activation in 233 human breast tumors and 52 breast cancer cell lines. Eighty-two antibodies that recognize kinase and steroid signaling events and their effectors were validated for RPPA because of the importance of these proteins to breast carcinogenesis. Reproducibility in replicate lysates was excellent. Intratumoral protein expression was less variable than intertumoral expression, and prognostic biomarkers retained the ability to accurately predict patient outcomes when analyzed in different tumor sites. Although 21/82 total and phosphoproteins demonstrated time-dependent instability in breast tumors that were placed at room temperature after surgical excision for 24 hours prior to freezing, the functional proteomic 'fingerprint' was robust in most tumors until at least 24 hours before tissue freezing. Correlations between RPPA and immunohistochemistry were statistically significant for assessed proteins but RPPA demonstrated a superior dynamic range and detected, for example, an 866-fold difference in estrogen receptor alpha level across breast tumors. Protein and mRNA levels were concordant (at p {le} 0.05) for 41.3% and 61.1% of assayed targets in breast tumors and cell lines, respectively. Several phosphorylation and cleavage products did not correlate with the corresponding transcript levels. In conclusion, the reproducibility of RPPA, the faithfulness with which proteins and the functional proteomic 'fingerprint' are preserved in different sections derived from primary breast tumors, and the surprising stability of this 'fingerprint' with increasing time to freezing all facilitate the application of RPPA to the accurate study of protein biomarkers in non-microdissected tumor specimens

  4. Structural characterization of the human proteome.

    PubMed

    Müller, Arne; MacCallum, Robert M; Sternberg, Michael J E

    2002-11-01

    This paper reports an analysis of the encoded proteins (the proteome) of the genomes of human, fly, worm, yeast, and representatives of bacteria and archaea in terms of the three-dimensional structures of their globular domains together with a general sequence-based study. We show that 39% of the human proteome can be assigned to known structures. We estimate that for 77% of the proteome, there is some functional annotation, but only 26% of the proteome can be assigned to standard sequence motifs that characterize function. Of the human protein sequences, 13% are transmembrane proteins, but only 3% of the residues in the proteome form membrane-spanning regions. There are substantial differences in the composition of globular domains of transmembrane proteins between the proteomes we have analyzed. Commonly occurring structural superfamilies are identified within the proteome. The frequencies of these superfamilies enable us to estimate that 98% of the human proteome evolved by domain duplication, with four of the 10 most duplicated superfamilies specific for multicellular organisms. The zinc-finger superfamily is massively duplicated in human compared to fly and worm, and occurrence of domains in repeats is more common in metazoa than in single cellular organisms. Structural superfamilies over- and underrepresented in human disease genes have been identified. Data and results can be downloaded and analyzed via web-based applications at http://www.sbg.bio.ic.ac.uk.

  5. The function of genomes in bioenergetic organelles.

    PubMed Central

    Allen, John F

    2003-01-01

    Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence. PMID:12594916

  6. Proteomic analysis of Chinese hamster ovary cells.

    PubMed

    Baycin-Hizal, Deniz; Tabb, David L; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N; Krag, Sharon S; Cole, Robert N; Palsson, Bernhard O; Zhang, Hui; Betenbaugh, Michael

    2012-11-01

    To complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO cells including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multidimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using the CHO genome exclusively, which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. Five-hundred four of the detected proteins included N-acetylation modifications, and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  7. Proteomic and functional profiles of a follicle-stimulating hormone positive human nonfunctional pituitary adenoma.

    PubMed

    Wang, Xiaowei; Guo, Tianyao; Peng, Fang; Long, Ying; Mu, Yun; Yang, Haiyan; Ye, Ningrong; Li, Xuejun; Zhan, Xianquan

    2015-06-01

    Nonfunctional pituitary adenoma (NFPA) is highly heterogeneous with different hormone-expressed subtypes in NFPA tissues including follicle-stimulating hormone (FSH) positive, luteinizing hormone-positive, FSH/luteinizing hormone-positive, and negative types. To analyze in-depth the variations in the proteomes among different NFPA subtypes for our long-term goal to clarify molecular mechanisms of NFPA and to detect tumor biomarker for personalized medicine practice, a reference map of proteome of a human FSH-expressed NFPA tissue was described here. 2DE and PDQuest image analysis were used to array each protein. MALDI-TOF PMF and human Swiss-Prot databases with MASCOT search were used to identify each protein. A good 2DE pattern with high level of between-gel reproducibility was attained with an average positional deviation 1.98 ± 0.75 mm in the IEF direction and 1.62 ± 0.68 mm in the SDS-PAGE direction. Approximately 1200 protein spots were 2DE-detected and 192 redundant proteins that were contained in 141 protein spots were PMF-identified, representing 107 nonredundant proteins. Those proteins were located in cytoplasm, nucleus, plasma membrane, extracellular space, and so on, and those functioned in transmembrane receptor, ion channel, transcription/translation regulator, transporter, enzyme, phosphatase, kinase, and so on. Several important pathway networks were characterized from those identified proteins with DAVID and Ingenuity Pathway Analysis systems, including gluconeogenesis and glycolysis, mitochondrial dysfunction, oxidative stress, cell-cycle alteration, MAPKsignaling system, immune response, TP53-signaling, VEGF-signaling, and inflammation signaling pathways. Those resulting data contribute to a functional profile of the proteome of a human FSH-positive NFPA tissue, and will serve as a reference for the heterogeneity analysis of NFPA proteomes. PMID:25809007

  8. Genomic and Proteomic Dissection of the Ubiquitous Plant Pathogen, Armillaria mellea: Toward a New Infection Model System

    PubMed Central

    2013-01-01

    Armillaria mellea is a major plant pathogen. Yet, no large-scale “-omics” data are available to enable new studies, and limited experimental models are available to investigate basidiomycete pathogenicity. Here we reveal that the A. mellea genome comprises 58.35 Mb, contains 14473 gene models, of average length 1575 bp (4.72 introns/gene). Tandem mass spectrometry identified 921 mycelial (n = 629 unique) and secreted (n = 183 unique) proteins. Almost 100 mycelial proteins were either species-specific or previously unidentified at the protein level. A number of proteins (n = 111) was detected in both mycelia and culture supernatant extracts. Signal sequence occurrence was 4-fold greater for secreted (50.2%) compared to mycelial (12%) proteins. Analyses revealed a rich reservoir of carbohydrate degrading enzymes, laccases, and lignin peroxidases in the A. mellea proteome, reminiscent of both basidiomycete and ascomycete glycodegradative arsenals. We discovered that A. mellea exhibits a specific killing effect against Candida albicans during coculture. Proteomic investigation of this interaction revealed the unique expression of defensive and potentially offensive A. mellea proteins (n = 30). Overall, our data reveal new insights into the origin of basidiomycete virulence and we present a new model system for further studies aimed at deciphering fungal pathogenic mechanisms. PMID:23656496

  9. The personal genome browser: visualizing functions of genetic variants.

    PubMed

    Juan, Liran; Teng, Mingxiang; Zang, Tianyi; Hao, Yafeng; Wang, Zhenxing; Yan, Chengwu; Liu, Yongzhuang; Li, Jie; Zhang, Tianjiao; Wang, Yadong

    2014-07-01

    Advances in high-throughput sequencing technologies have brought us into the individual genome era. Projects such as the 1000 Genomes Project have led the individual genome sequencing to become more and more popular. How to visualize, analyse and annotate individual genomes with knowledge bases to support genome studies and personalized healthcare is still a big challenge. The Personal Genome Browser (PGB) is developed to provide comprehensive functional annotation and visualization for individual genomes based on the genetic-molecular-phenotypic model. Investigators can easily view individual genetic variants, such as single nucleotide variants (SNVs), INDELs and structural variations (SVs), as well as genomic features and phenotypes associated to the individual genetic variants. The PGB especially highlights potential functional variants using the PGB built-in method or SIFT/PolyPhen2 scores. Moreover, the functional risks of genes could be evaluated by scanning individual genetic variants on the whole genome, a chromosome, or a cytoband based on functional implications of the variants. Investigators can then navigate to high risk genes on the scanned individual genome. The PGB accepts Variant Call Format (VCF) and Genetic Variation Format (GVF) files as the input. The functional annotation of input individual genome variants can be visualized in real time by well-defined symbols and shapes. The PGB is available at http://www.pgbrowser.org/. PMID:24799434

  10. The genome and proteome of the Kluyvera bacteriophage Kvp1 – another member of the T7-like Autographivirinae

    PubMed Central

    Lingohr, Erika J; Villegas, Andre; She, Yi-Min; Ceyssens, Pieter-Jan; Kropinski, Andrew M

    2008-01-01

    Background Kluyvera, a genus within the family Enterobacteriaceae, is an infrequent cause of human infections. Bacteriophage Kvp1, the only bacteriophage isolated for one of its species, Kluyvera cryocrescens, is a member of the viral family Podoviridae. Results The genome of Kvp1, the first Kluyvera cryocrescens-specific bacteriophage, was sequenced using pyrosequencing (454 technology) at the McGill University and Genome Québec Innovation Centre. The two contigs were closed using PCR and the sequence of the terminal repeats completed by primer walking off the phage DNA. The phage structural proteome was investigated by SDS-PAGE and mass spectrometry. Conclusion At 39,472 bp, the annotated genome revealed a closer relationship to coliphage T3 than T7 with Kvp1 containing homologs to T3 early proteins S-adenosyl-L-methionine hydrolase (0.3) and protein kinase (0.7). The quantitative nature of the relationships between Kvp1 and the other members of the T7-like virus genus (T7, T3, φA1122, φYeO3-12, Berlin, K1F, VP4 and gh-1) was confirmed using CoreGenes. PMID:18937848

  11. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    PubMed

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  12. Chlamydomonas proteomics.

    PubMed

    Rolland, Norbert; Atteia, Ariane; Decottignies, Paulette; Garin, Jérôme; Hippler, Michael; Kreimer, Georg; Lemaire, Stéphane D; Mittag, Maria; Wagner, Volker

    2009-06-01

    Chlamydomonas reinhardtii is a biflagellate and photosynthetic unicellular alga that has long fascinated scientists because it combines characteristics of both plants and animals. Chlamydomonas offers the simplicity of a unicellular organism that is amenable to genetic screening, molecular, and biochemical approaches, as well as to transformation of its nuclear, plastid, or mitochondrial genomes. Over the past decade, proteomics based studies of Chlamydomonas have provided major research contributions in the areas of photosynthesis, molecular biology, and evolution. This review refers to technical and biological aspects of proteomics studies that have been recently performed on the C. reinhardtii model organism.

  13. The use of high-dimensional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the preterm parturition syndrome.

    PubMed

    Romero, R; Espinoza, J; Gotsch, F; Kusanovic, J P; Friel, L A; Erez, O; Mazaki-Tovi, S; Than, N G; Hassan, S; Tromp, G

    2006-12-01

    High-dimensional biology (HDB) refers to the simultaneous study of the genetic variants (DNA variation), transcription (messenger RNA [mRNA]), peptides and proteins, and metabolites of an organ, tissue, or an organism in health and disease. The fundamental premise is that the evolutionary complexity of biological systems renders them difficult to comprehensively understand using only a reductionist approach. Such complexity can become tractable with the use of "omics" research. This term refers to the study of entities in aggregate. The current nomenclature of "omics" sciences includes genomics for DNA variants, transcriptomics for mRNA, proteomics for proteins, and metabolomics for intermediate products of metabolism. Another discipline relevant to medicine is pharmacogenomics. The two major advances that have made HDB possible are technological breakthroughs that allow simultaneous examination of thousands of genes, transcripts, and proteins, etc., with high-throughput techniques and analytical tools to extract information. What is conventionally considered hypothesis-driven research and discovery-driven research (through "omic" methodologies) are complementary and synergistic. Here we review data which have been derived from: 1) genomics to examine predisposing factors for preterm birth; 2) transcriptomics to determine changes in mRNA in reproductive tissues associated with preterm labour and preterm prelabour rupture of membranes; 3) proteomics to identify differentially expressed proteins in amniotic fluid of women with preterm labour; and 4) metabolomics to identify the metabolic footprints of women with preterm labour likely to deliver preterm and those who will deliver at term. The complementary nature of discovery science and HDB is emphasised.

  14. Functional annotations in bacterial genomes based on small RNA signatures.

    PubMed

    Sridhar, Jayavel; Rafi, Ziauddin Ahamed

    2008-04-04

    One of the key challenges in computational genomics is annotating coding genes and identification of regulatory RNAs in complete genomes. An attempt is made in this study which uses the regulatory RNA locations and their conserved flanking genes identified within the genomic backbone of template genome to search for similar RNA locations in query genomes. The search is based on recently reported coexistence of small RNAs and their conserved flanking genes in related genomes. Based on our study, 54 additional sRNA locations and functions of 96 uncharacterized genes are predicted in two draft genomes viz., Serratia marcesens Db1 and Yersinia enterocolitica 8081. Although most of the identified additional small RNA regions and their corresponding flanking genes are homologous in nature, the proposed anchoring technique could successfully identify four non-homologous small RNA regions in Y. enterocolitica genome also. The KEGG Orthology (KO) based automated functional predictions confirms the predicted functions of 65 flanking genes having defined KO numbers, out of the total 96 predictions made by this method. This coexistence based method shows more sensitivity than controlled vocabularies in locating orthologous gene pairs even in the absence of defined Orthology numbers. All functional predictions made by this study in Y. enterocolitica 8081 were confirmed by the recently published complete genome sequence and annotations. This study also reports the possible regions of gene rearrangements in these two genomes and further characterization of such RNA regions could shed more light on their possible role in genome evolution.

  15. Functional annotations in bacterial genomes based on small RNA signatures

    PubMed Central

    Sridhar, Jayavel; Rafi, Ziauddin Ahamed

    2008-01-01

    One of the key challenges in computational genomics is annotating coding genes and identification of regulatory RNAs in complete genomes. An attempt is made in this study which uses the regulatory RNA locations and their conserved flanking genes identified within the genomic backbone of template genome to search for similar RNA locations in query genomes. The search is based on recently reported coexistence of small RNAs and their conserved flanking genes in related genomes. Based on our study, 54 additional sRNA locations and functions of 96 uncharacterized genes are predicted in two draft genomes viz., Serratia marcesens Db1 and Yersinia enterocolitica 8081. Although most of the identified additional small RNA regions and their corresponding flanking genes are homologous in nature, the proposed anchoring technique could successfully identify four non-homologous small RNA regions in Y. enterocolitica genome also. The KEGG Orthology (KO) based automated functional predictions confirms the predicted functions of 65 flanking genes having defined KO numbers, out of the total 96 predictions made by this method. This coexistence based method shows more sensitivity than controlled vocabularies in locating orthologous gene pairs even in the absence of defined Orthology numbers. All functional predictions made by this study in Y. enterocolitica 8081 were confirmed by the recently published complete genome sequence and annotations. This study also reports the possible regions of gene rearrangements in these two genomes and further characterization of such RNA regions could shed more light on their possible role in genome evolution. PMID:18478081

  16. Differential proteomics and functional research following gene therapy in a mouse model of Leber congenital amaurosis.

    PubMed

    Zheng, Qinxiang; Ren, Yueping; Tzekov, Radouil; Zhang, Yuanping; Chen, Bo; Hou, Jiangping; Zhao, Chunhui; Zhu, Jiali; Zhang, Ying; Dai, Xufeng; Ma, Shan; Li, Jia; Pang, Jijing; Qu, Jia; Li, Wensheng

    2012-01-01

    Leber congenital amaurosis (LCA) is one of the most severe forms of inherited retinal degeneration and can be caused by mutations in at least 15 different genes. To clarify the proteomic differences in LCA eyes, a cohort of retinal degeneration 12 (rd12) mice, an LCA2 model caused by a mutation in the RPE65 gene, were injected subretinally with an AAV vector (scAAV5-smCBA-hRPE65) in one eye, while the contralateral eye served as a control. Proteomics were compared between untreated rd12 and normal control retinas on P14 and P21, and among treated and untreated rd12 retinas and control retinas on P42. Gene therapy in rd12 mice restored retinal function in treated eyes, which was demonstrated by electroretinography (ERG). Proteomic analysis successfully identified 39 proteins expressed differently among the 3 groups. The expression of 3 proteins involved in regulation of apoptosis and neuroptotection (alpha A crystallin, heat shock protein 70 and peroxiredoxin 6) were investigated further. Immunofluorescence, Western blot and real-time PCR confirmed the quantitative changes in their expression. Furthermore, cell culture studies suggested that peroxiredoxin 6 could act in an antioxidant role in rd12 mice. Our findings support the feasibility of gene therapy in LCA2 patients and support a role for alpha A crystallin, heat shock protein 70 and peroxiredoxin 6 in the pathogenetic mechanisms involved in LCA2 disease process. PMID:22953002

  17. Functional profiling of the Saccharomyces cerevisiae genome.

    PubMed

    Giaever, Guri; Chu, Angela M; Ni, Li; Connelly, Carla; Riles, Linda; Véronneau, Steeve; Dow, Sally; Lucau-Danila, Ankuta; Anderson, Keith; André, Bruno; Arkin, Adam P; Astromoff, Anna; El-Bakkoury, Mohamed; Bangham, Rhonda; Benito, Rocio; Brachat, Sophie; Campanaro, Stefano; Curtiss, Matt; Davis, Karen; Deutschbauer, Adam; Entian, Karl-Dieter; Flaherty, Patrick; Foury, Francoise; Garfinkel, David J; Gerstein, Mark; Gotte, Deanna; Güldener, Ulrich; Hegemann, Johannes H; Hempel, Svenja; Herman, Zelek; Jaramillo, Daniel F; Kelly, Diane E; Kelly, Steven L; Kötter, Peter; LaBonte, Darlene; Lamb, David C; Lan, Ning; Liang, Hong; Liao, Hong; Liu, Lucy; Luo, Chuanyun; Lussier, Marc; Mao, Rong; Menard, Patrice; Ooi, Siew Loon; Revuelta, Jose L; Roberts, Christopher J; Rose, Matthias; Ross-Macdonald, Petra; Scherens, Bart; Schimmack, Greg; Shafer, Brenda; Shoemaker, Daniel D; Sookhai-Mahadeo, Sharon; Storms, Reginald K; Strathern, Jeffrey N; Valle, Giorgio; Voet, Marleen; Volckaert, Guido; Wang, Ching-yun; Ward, Teresa R; Wilhelmy, Julie; Winzeler, Elizabeth A; Yang, Yonghong; Yen, Grace; Youngman, Elaine; Yu, Kexin; Bussey, Howard; Boeke, Jef D; Snyder, Michael; Philippsen, Peter; Davis, Ronald W; Johnston, Mark

    2002-07-25

    Determining the effect of gene deletion is a fundamental approach to understanding gene function. Conventional genetic screens exhibit biases, and genes contributing to a phenotype are often missed. We systematically constructed a nearly complete collection of gene-deletion mutants (96% of annotated open reading frames, or ORFs) of the yeast Saccharomyces cerevisiae. DNA sequences dubbed 'molecular bar codes' uniquely identify each strain, enabling their growth to be analysed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays. We show that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment. Less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal growth in four of the tested conditions. Our results validate the yeast gene-deletion collection as a valuable resource for functional genomics.

  18. Global analysis of the rat and human platelet proteome - the molecular blueprint for illustrating multi-functional platelets and cross-species function evolution.

    PubMed

    Yu, Yanbao; Leng, Taohua; Yun, Dong; Liu, Na; Yao, Jun; Dai, Ying; Yang, Pengyuan; Chen, Xian

    2010-07-01

    Emerging evidences indicate that blood platelets function in multiple biological processes including immune response, bone metastasis and liver regeneration in addition to their known roles in hemostasis and thrombosis. Global elucidation of platelet proteome will provide the molecular base of these platelet functions. Here, we set up a high-throughput platform for maximum exploration of the rat/human platelet proteome using integrated proteomic technologies, and then applied to identify the largest number of the proteins expressed in both rat and human platelets. After stringent statistical filtration, a total of 837 unique proteins matched with at least two unique peptides were precisely identified, making it the first comprehensive protein database so far for rat platelets. Meanwhile, quantitative analyses of the thrombin-stimulated platelets offered great insights into the biological functions of platelet proteins and therefore confirmed our global profiling data. A comparative proteomic analysis between rat and human platelets was also conducted, which revealed not only a significant similarity, but also an across-species evolutionary link that the orthologous proteins representing "core proteome", and the "evolutionary proteome" is actually a relatively static proteome.

  19. Microsomal proteomics.

    PubMed

    Wong, Diana M; Adeli, Khosrow

    2009-01-01

    Proteomic profiling of subcellular compartments has many advantages over traditional proteomic approaches using whole cell lysates as it allows for detailed proteome analysis of a specific organelle and corresponding functional characteristics. The microsome is a critical, membranous compartment involved in the synthesis, sorting, and secretion of proteins as well as other metabolic functions. This chapter will describe detailed methods for the isolation of microsomal organelles including the ER, Golgi, and prechylomicron transport vesicle (PCTV), a recently identified vesicular system involved in intestinal lipoprotein assembly and secretion. Particular focus is given to the isolation of microsomes from primary hepatocytes and enterocytes freshly isolated from rodent liver and intestinal tissue, and their proteomic profiling using a combination of two-dimensional gel electrophoresis and mass spectrometry.

  20. Functional genomics: Probing plant gene function and expression with transposons

    PubMed Central

    Martienssen, Robert A.

    1998-01-01

    Transposable elements provide a convenient and flexible means to disrupt plant genes, so allowing their function to be assessed. By engineering transposons to carry reporter genes and regulatory signals, the expression of target genes can be monitored and to some extent manipulated. Two strategies for using transposons to assess gene function are outlined here: First, the PCR can be used to identify plants that carry insertions into specific genes from among pools of heavily mutagenized individuals (site-selected transposon mutagenesis). This method requires that high copy transposons be used and that a relatively large number of reactions be performed to identify insertions into genes of interest. Second, a large library of plants, each carrying a unique insertion, can be generated. Each insertion site then can be amplified and sequenced systematically. These two methods have been demonstrated in maize, Arabidopsis, and other plant species, and the relative merits of each are discussed in the context of plant genome research. PMID:9482828

  1. Modifications of wheat germ cell-free system for functional proteomics of plant membrane proteins.

    PubMed

    Nozawa, Akira; Tozawa, Yuzuru

    2014-01-01

    Functional proteomics of plant membrane proteins is an important approach to understand the comprehensive architecture of each metabolic pathway in plants. One bottleneck in the characterization of membrane proteins is the difficulty in producing sufficient quantities of functional protein for analysis. Here, we describe three methods for membrane protein production utilizing a wheat germ cell-free protein expression system. Owing to the open nature of cell-free synthesis reaction, protein synthesis can be modified with components necessary to produce functional protein. In this way we have developed modifications to a wheat germ cell-free system for the production of functional membrane proteins. Supplementation of liposomes or detergents allows the synthesis of functional integral membrane proteins. Furthermore, supplementation of myristic acid enables synthesis of N-myristylated peripheral membrane proteins. These modified cell-free synthesis methods facilitate the preparation and subsequent functional analyses of a wide variety of membrane proteins. PMID:24136528

  2. Characterization of Functional Reprogramming during Osteoclast Development Using Quantitative Proteomics and mRNA Profiling*

    PubMed Central

    An, Eunkyung; Narayanan, Manikandan; Manes, Nathan P.; Nita-Lazar, Aleksandra

    2014-01-01

    In addition to forming macrophages and dendritic cells, monocytes in adult peripheral blood retain the ability to develop into osteoclasts, mature bone-resorbing cells. The extensive morphological and functional transformations that occur during osteoclast differentiation require substantial reprogramming of gene and protein expression. Here we employ -omic-scale technologies to examine in detail the molecular changes at discrete developmental stages in this process (precursor cells, intermediate osteoclasts, and multinuclear osteoclasts), quantitatively comparing their transcriptomes and proteomes. The data have been deposited to the ProteomeXchange with identifier PXD000471. Our analysis identified mitochondrial changes, along with several alterations in signaling pathways, as central to the development of mature osteoclasts, while also confirming changes in pathways previously implicated in osteoclast biology. In particular, changes in the expression of proteins involved in metabolism and redirection of energy flow from basic cellular function toward bone resorption appeared to play a key role in the switch from monocytic immune system function to specialized bone-turnover function. These findings provide new insight into the differentiation program involved in the generation of functional osteoclasts. PMID:25044017

  3. Proteomics Analysis with a Nano Random Forest Approach Reveals Novel Functional Interactions Regulated by SMC Complexes on Mitotic Chromosomes*

    PubMed Central

    Ohta, Shinya; Montaño-Gutierrez, Luis F.; de Lima Alves, Flavia; Ogawa, Hiromi; Toramoto, Iyo; Sato, Nobuko; Morrison, Ciaran G.; Takeda, Shunichi; Hudson, Damien F.; Earnshaw, William C.

    2016-01-01

    Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression. PMID:27231315

  4. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  5. Comparative genomic and proteomic analyses of Clostridium acetobutylicum Rh8 and its parent strain DSM 1731 revealed new understandings on butanol tolerance

    SciTech Connect

    Bao, Guanhui; Dong, Hongjun; Zhu, Yan; Mao, Shaoming; Zhang, Tianrui; Zhang, Yanping; Chen, Zugen; Li, Yin

    2014-08-08

    Highlights: • Genomes of a butanol tolerant strain and its parent strain were deciphered. • Comparative genomic and proteomic was applied to understand butanol tolerance. • None differentially expressed proteins have mutations in its corresponding genes. • Mutations in ribosome might be responsible for the global difference of proteomics. - Abstract: Clostridium acetobutylicum strain Rh8 is a butanol-tolerant mutant which can tolerate up to 19 g/L butanol, 46% higher than that of its parent strain DSM 1731. We previously performed comparative cytoplasm- and membrane-proteomic analyses to understand the mechanism underlying the improved butanol tolerance of strain Rh8. In this work, we further extended this comparison to the genomic level. Compared with the genome of the parent strain DSM 1731, two insertion sites, four deletion sites, and 67 single nucleotide variations (SNVs) are distributed throughout the genome of strain Rh8. Among the 67 SNVs, 16 SNVs are located in the predicted promoters and intergenic regions; while 29 SNVs are located in the coding sequence, affecting a total of 21 proteins involved in transport, cell structure, DNA replication, and protein translation. The remaining 22 SNVs are located in the ribosomal genes, affecting a total of 12 rRNA genes in different operons. Analysis of previous comparative proteomic data indicated that none of the differentially expressed proteins have mutations in its corresponding genes. Rchange Algorithms analysis indicated that the mutations occurred in the ribosomal genes might change the ribosome RNA thermodynamic characteristics, thus affect the translation strength of these proteins. Take together, the improved butanol tolerance of C. acetobutylicum strain Rh8 might be acquired through regulating the translational process to achieve different expression strength of genes involved in butanol tolerance.

  6. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.

    PubMed

    Ideker, T; Thorsson, V; Ranish, J A; Christmas, R; Buhler, J; Eng, J K; Bumgarner, R; Goodlett, D R; Aebersold, R; Hood, L

    2001-05-01

    We demonstrate an integrated approach to build, test, and refine a model of a cellular pathway, in which perturbations to critical pathway components are analyzed using DNA microarrays, quantitative proteomics, and databases of known physical interactions. Using this approach, we identify 997 messenger RNAs responding to 20 systematic perturbations of the yeast galactose-utilization pathway, provide evidence that approximately 15 of 289 detected proteins are regulated posttranscriptionally, and identify explicit physical interactions governing the cellular response to each perturbation. We refine the model through further iterations of perturbation and global measurements, suggesting hypotheses about the regulation of galactose utilization and physical interactions between this and a variety of other metabolic pathways.

  7. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and phophorylated phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  8. The Complete Genome and Proteome of Laribacter hongkongensis Reveal Potential Mechanisms for Adaptations to Different Temperatures and Habitats

    PubMed Central

    Curreem, Shirly O. T.; Tsang, Alan K. L.; Fan, Rachel Y. Y.; Wong, Gilman K. M.; Huang, Yi; Loman, Nicholas J.; Snyder, Lori A. S.; Cai, James J.; Huang, Jian-Dong; Mak, William; Pallen, Mark J.; Lok, Si; Yuen, Kwok-Yung

    2009-01-01

    Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish–borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals different mechanisms potentially important for its adaptation to diverse habitats of human and freshwater fish intestines and freshwater environments. The gene contents support its phenotypic properties and suggest that amino acids and fatty acids can be used as carbon sources. The extensive variety of transporters, including multidrug efflux and heavy metal transporters as well as genes involved in chemotaxis, may enable L. hongkongensis to survive in different environmental niches. Genes encoding urease, bile salts efflux pump, adhesin, catalase, superoxide dismutase, and other putative virulence factors—such as hemolysins, RTX toxins, patatin-like proteins, phospholipase A1, and collagenases—are present. Proteomes of L. hongkongensis HLHK9 cultured at 37°C (human body temperature) and 20°C (freshwater habitat temperature) showed differential gene expression, including two homologous copies of argB, argB-20, and argB-37, which encode two isoenzymes of N-acetyl-L-glutamate kinase (NAGK)—NAGK-20 and NAGK-37—in the arginine biosynthesis pathway. NAGK-20 showed higher expression at 20°C, whereas NAGK-37 showed higher expression at 37°C. NAGK-20 also had a lower optimal temperature for enzymatic activities and was inhibited by arginine probably as negative-feedback control. Similar duplicated copies of argB are also observed in bacteria from hot springs such as Thermus thermophilus, Deinococcus geothermalis, Deinococcus radiodurans, and Roseiflexus castenholzii, suggesting that similar mechanisms for temperature adaptation may be employed by other bacteria. Genome and

  9. Proteomic and functional analyses of a novel porin-like protein in Xanthomonas oryzae pv. oryzae.

    PubMed

    Park, Hye-Jee; Lee, Sang-Won; Han, Sang-Wook

    2014-12-01

    Proteomic analysis is a useful technique for postulating and elucidating protein functions. In the present work, a shotgun proteomic analysis was used to identify functions of the PXO_03968 gene (previously known as the ax21) from Xanthomonas oryzae pv. oryzae (Xoo), a causal agent for bacterial blight disease in rice. Structural prediction performed on the protein sequence encoded by PXO_03968 reveals that it encodes a putative porin-like protein, possessing a β-barrel domain with 10 β-strands and a signal peptide at the N-terminus. We renamed the gene as an omp1X (outer membrane protein 1 in Xoo), generated its knock out mutant (XooΔomp1X), and compared the protein expression level in the mutant to that in the wild type. A total of 106 proteins displayed more than 1.5-fold difference in expression between the mutant and the wild type strains. COG analysis revealed that these proteins are involved in cell motility as well as signal transduction. In addition, phenotypic analysis demonstrated that motility and biofilm formation in XooΔomp1X are lower than the wild type. These results provide new insights into the functions of outer membrane proteins in Gram-negative bacteria.

  10. The proteome of schizophrenia

    PubMed Central

    Nascimento, Juliana M; Martins-de-Souza, Daniel

    2015-01-01

    On observing schizophrenia from a clinical point of view up to its molecular basis, one may conclude that this is likely to be one of the most complex human disorders to be characterized in all aspects. Such complexity is the reflex of an intricate combination of genetic and environmental components that influence brain functions since pre-natal neurodevelopment, passing by brain maturation, up to the onset of disease and disease establishment. The perfect function of tissues, organs, systems, and finally the organism depends heavily on the proper functioning of cells. Several lines of evidence, including genetics, genomics, transcriptomics, neuropathology, and pharmacology, have supported the idea that dysfunctional cells are causative to schizophrenia. Together with the above-mentioned techniques, proteomics have been contributing to understanding the biochemical basis of schizophrenia at the cellular and tissue level through the identification of differentially expressed proteins and consequently their biochemical pathways, mostly in the brain tissue but also in other cells. In addition, mass spectrometry-based proteomics have identified and precisely quantified proteins that may serve as biomarker candidates to prognosis, diagnosis, and medication monitoring in peripheral tissue. Here, we review all data produced by proteomic investigation in the last 5 years using tissue and/or cells from schizophrenic patients, focusing on postmortem brain tissue and peripheral blood serum and plasma. This information has provided integrated pictures of the biochemical systems involved in the pathobiology, and has suggested potential biomarkers, and warrant potential targets to alternative treatment therapies to schizophrenia. PMID:27336025

  11. REVIEW: Zebrafish: A Renewed Model System For Functional Genomics

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Yan

    2008-01-01

    In the post genome era, a major goal in molecular biology is to determine the function of the many thousands of genes present in the vertebrate genome. The zebrafish (Danio rerio) provides an almost ideal genetic model to identify the biological roles of these novel genes, in part because their embryos are transparent and develop rapidly. The zebrafish has many advantages over mouse for genome-wide mutagenesis studies, allowing for easier, cheaper and faster functional characterization of novel genes in the vertebrate genome. Many molecular research tools such as chemical mutagenesis, transgenesis, gene trapping, gene knockdown, TILLING, gene targeting, RNAi and chemical genetic screen are now available in zebrafish. Combining all the forward, reverse, and chemical genetic tools, it is expected that zebrafish will make invaluable contribution to vertebrate functional genomics in functional annotation of the genes, modeling human diseases and drug discoveries.

  12. Outsmarting cancer: the power of hybrid genomic/proteomic biomarkers to predict drug response.

    PubMed

    Rexer, Brent N; Arteaga, Carlos L

    2014-01-01

    A recent study by Niepel and colleagues describes a novel approach to predicting response to targeted anti-cancer therapies. The authors used biochemical profiling of signaling activity in basal and ligand-stimulated states for a panel of receptor and intracellular kinases to develop predictive models of drug sensitivity. In some cases, the response to ligand stimulation predicted drug response better than did target abundance or genomic alterations in the targeted pathway. Furthermore, combining biochemical profiles with genomic information was better at predicting drug response. This work suggests that incorporating biochemical signaling profiles with genomic alterations should provide powerful predictors of response to molecularly targeted therapies.

  13. Retroelements and their impact on genome evolution and functioning.

    PubMed

    Gogvadze, Elena; Buzdin, Anton

    2009-12-01

    Retroelements comprise a considerable fraction of eukaryotic genomes. Since their initial discovery by Barbara McClintock in maize DNA, retroelements have been found in genomes of almost all organisms. First considered as a "junk DNA" or genomic parasites, they were shown to influence genome functioning and to promote genetic innovations. For this reason, they were suggested as an important creative force in the genome evolution and adaptation of an organism to altered environmental conditions. In this review, we summarize the up-to-date knowledge of different ways of retroelement involvement in structural and functional evolution of genes and genomes, as well as the mechanisms generated by cells to control their retrotransposition. PMID:19649766

  14. Proteomic and functional analysis of proline dehydrogenase 1 link proline catabolism to mitochondrial electron transport in Arabidopsis thaliana.

    PubMed

    Cabassa-Hourton, Cécile; Schertl, Peter; Bordenave-Jacquemin, Marianne; Saadallah, Kaouthar; Guivarc'h, Anne; Lebreton, Sandrine; Planchais, Séverine; Klodmann, Jennifer; Eubel, Holger; Crilat, Emilie; Lefebvre-De Vos, Delphine; Ghelis, Thanos; Richard, Luc; Abdelly, Chedly; Carol, Pierre; Braun, Hans-Peter; Savouré, Arnould

    2016-09-01

    Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain. PMID:27303048

  15. Proteomics techniques for the detection of translated pseudogenes.

    PubMed

    Ucciferri, Nadia; Rocchiccioli, Silvia

    2014-01-01

    Increasing evidence indicates that pseudogenes can reach the translational process. Translated pseudogene products have in fact been found in various organisms, confuting the original definition of pseudogenes as genes without any coding potential. Proteomics is the main technology allowing the study of proteins and, when integrated with genomics, is defined as proteogenomics. In proteogenomics, the peptide-genome alignment drives the identification and annotation of gene products and allows for a better understanding of their function. In this chapter, we give a brief overview of the proteomic techniques applied to pseudogenes. In particular, we discuss peptide spectrum acquisition, mass data analysis, and genome database matching.

  16. Elucidating Novel Hepatitis C Virus–Host Interactions Using Combined Mass Spectrometry and Functional Genomics Approaches*

    PubMed Central

    Germain, Marie-Anne; Chatel-Chaix, Laurent; Gagné, Bridget; Bonneil, Éric; Thibault, Pierre; Pradezynski, Fabrine; de Chassey, Benoît; Meyniel-Schicklin, Laurène; Lotteau, Vincent; Baril, Martin; Lamarre, Daniel

    2014-01-01

    More than 170 million people worldwide are infected with the hepatitis C virus (HCV), for which future therapies are expected to rely upon a combination of oral antivirals. For a rapidly evolving virus like HCV, host-targeting antivirals are an attractive option. To decipher the role of novel HCV–host interactions, we used a proteomics approach combining immunoprecipitation of viral–host protein complexes coupled to mass spectrometry identification and functional genomics RNA interference screening of HCV partners. Here, we report the proteomics analyses of protein complexes associated with Core, NS2, NS3/4A, NS4B, NS5A, and NS5B proteins. We identified a stringent set of 98 human proteins interacting specifically with one of the viral proteins. The overlap with previous virus–host interaction studies demonstrates 24.5% shared HCV interactors overall (24/98), illustrating the reliability of the approach. The identified human proteins show enriched Gene Ontology terms associated with the endoplasmic reticulum, transport proteins with a major contribution of NS3/4A interactors, and transmembrane proteins for Core interactors. The interaction network emphasizes a high degree distribution, a high betweenness distribution, and high interconnectivity of targeted human proteins, in agreement with previous virus–host interactome studies. The set of HCV interactors also shows extensive enrichment for known targets of other viruses. The combined proteomic and gene silencing study revealed strong enrichment in modulators of HCV RNA replication, with the identification of 11 novel cofactors among our set of specific HCV partners. Finally, we report a novel immune evasion mechanism of NS3/4A protein based on its ability to affect nucleocytoplasmic transport of type I interferon-mediated signal transducer and activator of transcription 1 nuclear translocation. The study revealed highly stringent association between HCV interactors and their functional contribution to the

  17. Proteomic Profiling and Functional Characterization of Multiple Post-Translational Modifications of Tubulin.

    PubMed

    Liu, Ningning; Xiong, Yun; Ren, Yiran; Zhang, Linlin; He, Xianfei; Wang, Xincheng; Liu, Min; Li, Dengwen; Shui, Wenqing; Zhou, Jun

    2015-08-01

    Tubulin is known to undergo unique post-translational modifications (PTMs), such as detyrosination and polyglutamylation, particularly in the unstructured carboxy-terminal tails (CTTs). However, more conventional PTMs of tubulin and their roles in the regulation of microtubule properties and functions remain poorly defined. Here, we report the comprehensive profiling of tubulin phosphorylation, acetylation, ubiquitylation, and O-GlcNAcylation in HeLa cells with a proteomic approach. Our tubulin-targeted analysis has identified 80 residues bearing single or multiple conventional PTMs including 24 novel PTM sites not covered in previous global proteomic surveys. By using a series of PTM-deficient or PTM-mimicking mutants, we further find that tubulin phosphorylation and acetylation play important roles in the control of microtubule assembly and stability. In addition, these tubulin PTMs have distinct effects on the retrograde transport of adenoviruses along microtubules. These findings thus enlarge the repertoire of tubulin PTMs and foster our understanding of their versatile roles in the regulation of microtubule dynamics and cellular functions.

  18. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics

    PubMed Central

    Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang

    2015-01-01

    In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process. PMID:26160685

  19. Curation of the genome annotation of Pichia pastoris (Komagataella phaffii) CBS7435 from gene level to protein function.

    PubMed

    Valli, Minoska; Tatto, Nadine E; Peymann, Armin; Gruber, Clemens; Landes, Nils; Ekker, Heinz; Thallinger, Gerhard G; Mattanovich, Diethard; Gasser, Brigitte; Graf, Alexandra B

    2016-09-01

    As manually curated and non-automated BLAST analysis of the published Pichia pastoris genome sequences revealed many differences between the gene annotations of the strains GS115 and CBS7435, RNA-Seq analysis, supported by proteomics, was performed to improve the genome annotation. Detailed analysis of sequence alignment and protein domain predictions were made to extend the functional genome annotation to all P. pastoris sequences. This allowed the identification of 492 new ORFs, 4916 hypothetical UTRs and the correction of 341 incorrect ORF predictions, which were mainly due to the presence of upstream ATG or erroneous intron predictions. Moreover, 175 previously erroneously annotated ORFs need to be removed from the annotation. In total, we have annotated 5325 ORFs. Regarding the functionality of those genes, we improved all gene and protein descriptions. Thereby, the percentage of ORFs with functional annotation was increased from 48% to 73%. Furthermore, we defined functional groups, covering 25 biological cellular processes of interest, by grouping all genes that are part of the defined process. All data are presented in the newly launched genome browser and database available at www.pichiagenome.org In summary, we present a wide spectrum of curation of the P. pastoris genome annotation from gene level to protein function. PMID:27388471

  20. Proteomics and transcriptomics of the BABA-induced resistance response in potato using a novel functional annotation approach

    PubMed Central

    2014-01-01

    Background Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. β-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. Results Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. Conclusions BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world. PMID:24773703

  1. The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors.

    PubMed

    Grose, Julianne H; Belnap, David M; Jensen, Jordan D; Mathis, Andrew D; Prince, John T; Merrill, Bryan D; Burnett, Sandra H; Breakwell, Donald P

    2014-10-01

    evolution of pathogenic strains. Herein we provide the results of detailed study of three novel B. cereus phages, two highly related myoviruses (JL and Shanette) and an unrelated siphovirus (Basilisk). The detailed characterization of host range and superinfection, together with results of genomic, proteomic, and structural analyses, reveal several putative virulence factors as well as the ability of these phages to infect different pathogenic species.

  2. Characterizing genomic alterations in cancer by complementary functional associations

    PubMed Central

    Kim, J. W.; Botvinnik, O. B.; Abudayyeh, O.; Birger, C.; Rosenbluh, J.; Shrestha, Y.; Abazeed, M. E.; Hammerman, P. S.; DiCara, D.; Konieczkowski, D. J.; Johannessen, C. M.; Liberzon, A.; Alizad-Rahvar, A. R.; Alexe, G.; Aguirre, A.; Ghandi, M.; Greulich, H.; Vazquez, F.; Weir, B. A.; Van Allen, E. M.; Tsherniak, A.; Shao, D. D.; Zack, T. I.; Noble, M.; Getz, G.; Beroukhim, R.; Garraway, L. A.; Ardakani, M.; Romualdi, C.; Sales, G.; Barbie, D. A.; Boehm, J. S.; Hahn, W. C.; Mesirov, J. P.; Tamayo, P.

    2016-01-01

    Systematic efforts to sequence the cancer genome have identified large numbers of relevant mutations and copy number alterations in human cancers; however, elucidating their functional consequences, and their interactions to drive or maintain oncogenic states, is still a significant challenge. Here we introduce REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene-dependency of oncogenic pathways or the sensitivity to a drug treatment. We use REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of β-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes. PMID:27088724

  3. Interpreting functional effects of coding variants: challenges in proteome-scale prediction, annotation and assessment.

    PubMed

    Shameer, Khader; Tripathi, Lokesh P; Kalari, Krishna R; Dudley, Joel T; Sowdhamini, Ramanathan

    2016-09-01

    Accurate assessment of genetic variation in human DNA sequencing studies remains a nontrivial challenge in clinical genomics and genome informatics. Ascribing functional roles and/or clinical significances to single nucleotide variants identified from a next-generation sequencing study is an important step in genome interpretation. Experimental characterization of all the observed functional variants is yet impractical; thus, the prediction of functional and/or regulatory impacts of the various mutations using in silico approaches is an important step toward the identification of functionally significant or clinically actionable variants. The relationships between genotypes and the expressed phenotypes are multilayered and biologically complex; such relationships present numerous challenges and at the same time offer various opportunities for the design of in silico variant assessment strategies. Over the past decade, many bioinformatics algorithms have been developed to predict functional consequences of single nucleotide variants in the protein coding regions. In this review, we provide an overview of the bioinformatics resources for the prediction, annotation and visualization of coding single nucleotide variants. We discuss the currently available approaches and major challenges from the perspective of protein sequence, structure, function and interactions that require consideration when interpreting the impact of putatively functional variants. We also discuss the relevance of incorporating integrated workflows for predicting the biomedical impact of the functionally important variations encoded in a genome, exome or transcriptome. Finally, we propose a framework to classify variant assessment approaches and strategies for incorporation of variant assessment within electronic health records.

  4. An Integrative Computational Framework for Hypotheses-Driven Systems Biology Research in Proteomics and Genomics

    SciTech Connect

    Cannon, William R.; Webb-Robertson, Bobbie-Jo M.; Willse, Alan R.; Singhal, Mudita; McCue, Lee Ann; McDermott, Jason E.; Taylor, Ronald C.; Waters, Katrina M.; Oehmen, Christopher S.

    2009-04-01

    Systems biology research is sometimes categorized as either discovery science or hypothesis-driven science. However, we believe that hypotheses are always used regardless, and that explicit recognition that hypothesis testing underlies all high-throughput data analysis leads to better experimental designs, data analysis and interpretation of the data. We outline the current use of hypothesis testing for proteomics data analysis in systems biology research for several projects at the Pacific Northwest National Laboratory, and provide examples of where scientific principles can be used to formulate the hypotheses used to analyze the data. We additionally discuss the data infrastructure is required to (1) track the data from different projects and diverse assays, (2) pull the data together in a congruent manner, (3) analyze the data with respect to cellular networks, and (4) visualize the resulting networks and contrast those with information from bioinformatics databases.

  5. Partnering for functional genomics research conference: Abstracts of poster presentations

    SciTech Connect

    1998-06-01

    This reports contains abstracts of poster presentations presented at the Functional Genomics Research Conference held April 16--17, 1998 in Oak Ridge, Tennessee. Attention is focused on the following areas: mouse mutagenesis and genomics; phenotype screening; gene expression analysis; DNA analysis technology development; bioinformatics; comparative analyses of mouse, human, and yeast sequences; and pilot projects to evaluate methodologies.

  6. The proteome browser web portal.

    PubMed

    Goode, Robert J A; Yu, Simon; Kannan, Anitha; Christiansen, Jeffrey H; Beitz, Anthony; Hancock, William S; Nice, Edouard; Smith, A Ian

    2013-01-01

    In 2010, the Human Proteome Organization launched the Human Proteome Project (HPP), aimed at identifying and characterizing the proteome of the human body. To support complete coverage, one arm of the project will take a gene- or chromosomal-centric strategy (C-HPP) aimed at identifying at least one protein product from each protein-coding gene. Despite multiple large international biological databases housing genomic and protein data, there is currently no single system that integrates updated pertinent information from each of these data repositories and assembles the information into a searchable format suitable for the type of global proteomics effort proposed by the C-HPP. We have undertaken the goal of producing a data integration and analysis software system and browser for the C-HPP effort and of making data collections from this resource discoverable through metadata repositories, such as Australian National Data Service's Research Data Australia. Here we present our vision and progress toward the goal of developing a comprehensive data integration and analysis software tool that provides a snapshot of currently available proteomic related knowledge around each gene product, which will ultimately assist in analyzing biological function and the study of human physiology in health and disease.

  7. Integration of Proteomics and Transcriptomics Data Sets for the Analysis of a Lymphoma B-Cell Line in the Context of the Chromosome-Centric Human Proteome Project.

    PubMed

    Díez, Paula; Droste, Conrad; Dégano, Rosa M; González-Muñoz, María; Ibarrola, Nieves; Pérez-Andrés, Martín; Garin-Muga, Alba; Segura, Víctor; Marko-Varga, Gyorgy; LaBaer, Joshua; Orfao, Alberto; Corrales, Fernando J; De Las Rivas, Javier; Fuentes, Manuel

    2015-09-01

    A comprehensive study of the molecular active landscape of human cells can be undertaken to integrate two different but complementary perspectives: transcriptomics, and proteomics. After the genome era, proteomics has emerged as a powerful tool to simultaneously identify and characterize the compendium of thousands of different proteins active in a cell. Thus, the Chromosome-centric Human Proteome Project (C-HPP) is promoting a full characterization of the human proteome combining high-throughput proteomics with the data derived from genome-wide expression profiling of protein-coding genes. Here we present a full proteomic profiling of a human lymphoma B-cell line (Ramos) performed using a nanoUPLC-LTQ-Orbitrap Velos proteomic platform, combined to an in-depth transcriptomic profiling of the same cell type. Data are available via ProteomeXchange with identifier PXD001933. Integration of the proteomic and transcriptomic data sets revealed a 94% overlap in the proteins identified by both -omics approaches. Moreover, functional enrichment analysis of the proteomic profiles showed an enrichment of several functions directly related to the biological and morphological characteristics of B-cells. In turn, about 30% of all protein-coding genes present in the whole human genome were identified as being expressed by the Ramos cells (stable average of 30% genes along all the chromosomes), revealing the size of the protein expression-set present in one specific human cell type. Additionally, the identification of missing proteins in our data sets has been reported, highlighting the power of the approach. Also, a comparison between neXtProt and UniProt database searches has been performed. In summary, our transcriptomic and proteomic experimental profiling provided a high coverage report of the expressed proteome from a human lymphoma B-cell type with a clear insight into the biological processes that characterized these cells. In this way, we demonstrated the usefulness of

  8. Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil

    PubMed Central

    Fan, Xiangyu; Yan, Jianlong; Xie, Longxiang; Zeng, Lanying; Young, Ryland F.; Xie, Jianping

    2016-01-01

    Mycobacteriophage SWU1 is a newly isolated phage from soil sample collected in Sichuan province, China using Mycobacterium smegmatis mc2155 as host. Plaque, phage morphology and one-step growth curve were characterized. The complete genomic sequence of phage SWU1 was determined by shotgun sequencing. The ends of SWU1 were determined. Structural proteins of SWU1 were analyzed by NanoLC-ESI-MS/MS. Seven ORFs were identified as structural protein encoded by SWU1 genome. The genetic basis underlying the SWU1 plaque was explored using comparative genomics. Prophages homologous to SWU1 were identified in two pathogens, Segniliparus rugosus ATCC BAA-974 and Mycobacterium rhodesiae JS60. Genus Segniliparus is a member of the order Corynebacteriales. To our knowledge, this is the first report of Mycobacterium prophages in different genera. PMID:25701596

  9. Caenorhabditis elegans proteomics comes of age.

    PubMed

    Shim, Yhong-Hee; Paik, Young-Ki

    2010-02-01

    Caenorhabditis elegans, a free-living soil nematode, is an ideal model system for studying various physiological problems relevant to human diseases. Despite its short history, C. elegans proteomics is receiving great attention in multiple research areas, including the genome annotation, major signaling pathways (e.g. TGF-beta and insulin/IGF-1 signaling), verification of RNA interference-mediated gene targeting, aging, disease models, as well as peptidomic analysis of neuropeptides involved in behavior and locomotion. For example, a proteome-wide profiling of developmental and aging processes not only provides basic information necessary for constructing a molecular network, but also identifies important target proteins for chemical modulation. Although C. elegans has a simple body system and neural circuitry, it exhibits very complicated functions ranging from feeding to locomotion. Investigation of these functions through proteomic analysis of various C. elegans neuropeptides, some of which are not found in the predicted genome sequence, would open a new field of peptidomics. Given the importance of nematode infection in plants and mammalian pathogenesis pathways, proteomics could be applied to investigate the molecular mechanisms underlying plant- or animal-nematode pathogenesis and to identify novel antinematodal drugs. Thus, C. elegans proteomics, in combination of other molecular, biological and genetic techniques, would provide a versatile new tool box for the systematic analysis of gene functions throughout the entire life cycle of this nematode. PMID:20029841

  10. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice.

    PubMed

    Zabielski, Piotr; Lanza, Ian R; Gopala, Srinivas; Heppelmann, Carrie J Holtz; Bergen, H Robert; Dasari, Surendra; Nair, K Sreekumaran

    2016-03-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  11. Dermal toxicity elicited by phthalates: evaluation of skin absorption, immunohistology, and functional proteomics.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Hung, Yi-Yun; Lin, Chwan-Fwu; Fang, Jia-You

    2014-03-01

    The toxicity of phthalates is an important concern in the fields of environmental health and toxicology. Dermal exposure via skin care products, soil, and dust is a main route for phthalate delivery. We had explored the effect of topically-applied phthalates on skin absorption and toxicity. Immunohistology, functional proteomics, and Western blotting were employed as methodologies for validating phthalate toxicity. Among 5 phthalates tested, di(2-ethylhexyl)phthalate (DEHP) showed the highest skin reservoir. Only diethyl phthalate (DEP) and dibutyl phthalate (DBP) could penetrate across skin. Strat-M(®) membrane could be used as permeation barrier for predicting phthalate penetration through skin. The accumulation of DEHP in hair follicles was ∼15nmol/cm(2), which was significantly greater than DBP and DEP. DBP induced apoptosis of keratinocytes and fibroblasts via caspase-3 activation. This result was confirmed by downregulation of 14-3-3 and immunohistology of TUNEL. On the other hand, the HSP60 overexpression and immunostaining of COX-2 suggested inflammatory response induced by DEP and DEHP. The proteomic profiling verified the role of calcium homeostasis on skin inflammation. Some proteins investigated in this study can be sensitive biomarkers for dermal toxicity of phthalates. These included HSPs, 14-3-3, and cytokeratin. This work provided novel platforms for examining phthalate toxicity on skin.

  12. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    PubMed

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-01

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  13. Dermal toxicity elicited by phthalates: evaluation of skin absorption, immunohistology, and functional proteomics.

    PubMed

    Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Hung, Yi-Yun; Lin, Chwan-Fwu; Fang, Jia-You

    2014-03-01

    The toxicity of phthalates is an important concern in the fields of environmental health and toxicology. Dermal exposure via skin care products, soil, and dust is a main route for phthalate delivery. We had explored the effect of topically-applied phthalates on skin absorption and toxicity. Immunohistology, functional proteomics, and Western blotting were employed as methodologies for validating phthalate toxicity. Among 5 phthalates tested, di(2-ethylhexyl)phthalate (DEHP) showed the highest skin reservoir. Only diethyl phthalate (DEP) and dibutyl phthalate (DBP) could penetrate across skin. Strat-M(®) membrane could be used as permeation barrier for predicting phthalate penetration through skin. The accumulation of DEHP in hair follicles was ∼15nmol/cm(2), which was significantly greater than DBP and DEP. DBP induced apoptosis of keratinocytes and fibroblasts via caspase-3 activation. This result was confirmed by downregulation of 14-3-3 and immunohistology of TUNEL. On the other hand, the HSP60 overexpression and immunostaining of COX-2 suggested inflammatory response induced by DEP and DEHP. The proteomic profiling verified the role of calcium homeostasis on skin inflammation. Some proteins investigated in this study can be sensitive biomarkers for dermal toxicity of phthalates. These included HSPs, 14-3-3, and cytokeratin. This work provided novel platforms for examining phthalate toxicity on skin. PMID:24384410

  14. International Summer School, ‘ From Genome to Life’

    PubMed Central

    2002-01-01

    This report from the International Summer School ‘From Genome to Life’, held at the Institute d'Etudes Scientifiques de Cargèse in Corsica in July 2002, covers the talks of the invited speakers. The topics of the talks can be broadly grouped into the areas of genome annotation, comparative and evolutionary genomics, functional genomics, proteomics, structural genomics, pharmacogenomics, and organelle genomes, epigenetics and RNA. PMID:18629253

  15. The Functional Genomics Initiative at Oak Ridge National Laboratory

    SciTech Connect

    Johnson, Dabney; Justice, Monica; Beattle, Ken; Buchanan, Michelle; Ramsey, Michael; Ramsey, Rose; Paulus, Michael; Ericson, Nance; Allison, David; Kress, Reid; Mural, Richard; Uberbacher, Ed; Mann, Reinhold

    1997-12-31

    The Functional Genomics Initiative at the Oak Ridge National Laboratory integrates outstanding capabilities in mouse genetics, bioinformatics, and instrumentation. The 50 year investment by the DOE in mouse genetics/mutagenesis has created a one-of-a-kind resource for generating mutations and understanding their biological consequences. It is generally accepted that, through the mouse as a surrogate for human biology, we will come to understand the function of human genes. In addition to this world class program in mammalian genetics, ORNL has also been a world leader in developing bioinformatics tools for the analysis, management and visualization of genomic data. Combining this expertise with new instrumentation technologies will provide a unique capability to understand the consequences of mutations in the mouse at both the organism and molecular levels. The goal of the Functional Genomics Initiative is to develop the technology and methodology necessary to understand gene function on a genomic scale and apply these technologies to megabase regions of the human genome. The effort is scoped so as to create an effective and powerful resource for functional genomics. ORNL is partnering with the Joint Genome Institute and other large scale sequencing centers to sequence several multimegabase regions of both human and mouse genomic DNA, to identify all the genes in these regions, and to conduct fundamental surveys to examine gene function at the molecular and organism level. The Initiative is designed to be a pilot for larger scale deployment in the post-genome era. Technologies will be applied to the examination of gene expression and regulation, metabolism, gene networks, physiology and development.

  16. From Loci to Biology: Functional Genomics of Genome-Wide Association for Coronary Disease.

    PubMed

    Nurnberg, Sylvia T; Zhang, Hanrui; Hand, Nicholas J; Bauer, Robert C; Saleheen, Danish; Reilly, Muredach P; Rader, Daniel J

    2016-02-19

    Genome-wide association studies have provided a rich collection of ≈ 58 coronary artery disease (CAD) loci that suggest the existence of previously unsuspected new biology relevant to atherosclerosis. However, these studies only identify genomic loci associated with CAD, and many questions remain even after a genomic locus is definitively implicated, including the nature of the causal variant(s) and the causal gene(s), as well as the directionality of effect. There are several tools that can be used for investigation of the functional genomics of these loci, and progress has been made on a limited number of novel CAD loci. New biology regarding atherosclerosis and CAD will be learned through the functional genomics of these loci, and the hope is that at least some of these new pathways relevant to CAD pathogenesis will yield new therapeutic targets for the prevention and treatment of CAD.

  17. Biogeoscience from a Metallomic and Proteomic Perspective

    NASA Astrophysics Data System (ADS)

    Anbar, A. D.; Shock, E.

    2004-12-01

    In the wake of the genomics revolution, life scientists are expanding their focus from the genome to the "proteome" - the assemblage of all proteins in a cell - and the "metallome" - the distribution of inorganic species in a cell. The proteome and metallome are tightly connected because proteins and protein products are intimately involved in the transport and homeostasis of inorganic elements, and because many enzymes depend on inorganic elements for catalytic activity. Together, they are at the heart of metabolic function. Unlike the relatively static genome, the proteome and metallome are extremely dynamic, changing rapidly in response to environmental cues. They are substantially more complex than the genome; for example, in humans, some 30,000 genes code for approximately 500,000 proteins. Metaphorically, the proteome and metallome constitute the complex, dynamic "language" by which the genome and the environment communicate. Therefore biogeochemists, like life scientists, are moving beyond a strictly genomic perspective. Research guided by proteomic and metallomic perspectives and methodologies should provide new insights into the connections between life and the inorganic Earth in modern environments, and the evolution of these connections through time. For example, biogeochemical research in modern environments, such as Yellowstone hot springs, is hindered by the gap between genomic determinations of metabolic potential in ecosystems and geochemical characterizations of the energetic boundary conditions faced by these ecosystems; genomics tells us "who is there" and geochemistry tells us "what they might be doing", but neither genomics nor geochemistry easily provide quantitative information about which metabolisms are actually active or a framework for understanding why ecosystems do not fully exploit the energy available in their surroundings. Such questions are fundamentally kinetic rather than thermodynamic and therefore demand that we characterize and

  18. The Proteomic and Genomic Teratogenicity Elicited by Valproic Acid Is Preventable with Resveratrol and α-Tocopherol

    PubMed Central

    Chen, Yeh; Lin, Ping-Xiao; Hsieh, Chiu-Lan; Peng, Chiung-Chi; Peng, Robert Y.

    2014-01-01

    Background Previously, we reported that valproic acid (VPA), a common antiepileptic drug and a potent teratogenic, dowregulates RBP4 in chicken embryo model (CEM) when induced by VPA. Whether such teratogenicity is associated with more advanced proteomic and genomic alterations, we further performed this present study. Methodology/Principal Findings VPA (60 µM) was applied to 36 chicken embryos at HH stage 10 (day-1.5). Resveratrol (RV) and vitamin E (vit E) (each at 0.2 and 2.0 µM) were applied simultaneously to explore the alleviation effect. The proteins in the cervical muscles of the day-1 chicks were analyzed using 2D-electrophoresis and LC/MS/MS. While the genomics associated with each specific protein alteration was examined with RT-PCR and qPCR. At earlier embryonic stage, VPA downregulated PEBP1 and BHMT genes and at the same time upregulated MYL1, ALB and FLNC genes significantly (p<0.05) without affecting PKM2 gene. Alternatively, VPA directly inhibited the folate-independent (or the betaine-dependent) remethylation pathway. These features were effectively alleviated by RV and vit E. Conclusions VPA alters the expression of PEBP1, BHMT, MYL1, ALB and FLNC that are closely related with metabolic myopathies, myogenesis, albumin gene expression, and haemolytic anemia. On the other hand, VPA directly inhibits the betaine-dependent remethylation pathway. Taken together, VPA elicits hemorrhagic myoliposis via these action mechanisms, and RV and vit E are effective for alleviation of such adverse effects. PMID:25551574

  19. Significant Natural Product Biosynthetic Potential of Actinorhizal Symbionts of the Genus Frankia, as Revealed by Comparative Genomic and Proteomic Analyses▿

    PubMed Central

    Udwary, Daniel W.; Gontang, Erin A.; Jones, Adam C.; Jones, Carla S.; Schultz, Andrew W.; Winter, Jaclyn M.; Yang, Jane Y.; Beauchemin, Nicholas; Capson, Todd L.; Clark, Benjamin R.; Esquenazi, Eduardo; Eustáquio, Alessandra S.; Freel, Kelle; Gerwick, Lena; Gerwick, William H.; Gonzalez, David; Liu, Wei-Ting; Malloy, Karla L.; Maloney, Katherine N.; Nett, Markus; Nunnery, Joshawna K.; Penn, Kevin; Prieto-Davo, Alejandra; Simmons, Thomas L.; Weitz, Sara; Wilson, Micheal C.; Tisa, Louis S.; Dorrestein, Pieter C.; Moore, Bradley S.

    2011-01-01

    Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus. PMID:21498757

  20. Integrative bioinformatics analysis of genomic and proteomic approaches to understand the transcriptional regulatory program in coronary artery disease pathways.

    PubMed

    Vangala, Rajani Kanth; Ravindran, Vandana; Ghatge, Madan; Shanker, Jayashree; Arvind, Prathima; Bindu, Hima; Shekar, Meghala; Rao, Veena S

    2013-01-01

    Patients with cardiovascular disease show a panel of differentially regulated serum biomarkers indicative of modulation of several pathways from disease onset to progression. Few of these biomarkers have been proposed for multimarker risk prediction methods. However, the underlying mechanism of the expression changes and modulation of the pathways is not yet addressed in entirety. Our present work focuses on understanding the regulatory mechanisms at transcriptional level by identifying the core and specific transcription factors that regulate the coronary artery disease associated pathways. Using the principles of systems biology we integrated the genomics and proteomics data with computational tools. We selected biomarkers from 7 different pathways based on their association with the disease and assayed 24 biomarkers along with gene expression studies and built network modules which are highly regulated by 5 core regulators PPARG, EGR1, ETV1, KLF7 and ESRRA. These network modules in turn comprise of biomarkers from different pathways showing that the core regulatory transcription factors may work together in differential regulation of several pathways potentially leading to the disease. This kind of analysis can enhance the elucidation of mechanisms in the disease and give better strategies of developing multimarker module based risk predictions.

  1. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer

    PubMed Central

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M.; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K.; Schouten, Philip C.; Rueda, Oscar M.; Bosma, Astrid J.; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J.C.; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O’Hurley, Gillian; Lehn, Sophie; Muris, Jettie J.F.; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A.; Barbet, Aurélie S.; Bard, Floriane; Lecerf, Caroline; O’Connor, Darran P.; Vis, Daniël J.; Benes, Cyril H.; McDermott, Ultan; Garnett, Mathew J.; Simon, Iris M.; Jirström, Karin; Dubois, Thierry; Linn, Sabine C.; Gallagher, William M.; Wessels, Lodewyk F.A.; Caldas, Carlos; Bernards, Rene

    2016-01-01

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies. PMID:26729235

  2. Nuclear pore proteins and the control of genome functions

    PubMed Central

    Ibarra, Arkaitz

    2015-01-01

    Nuclear pore complexes (NPCs) are composed of several copies of ∼30 different proteins called nucleoporins (Nups). NPCs penetrate the nuclear envelope (NE) and regulate the nucleocytoplasmic trafficking of macromolecules. Beyond this vital role, NPC components influence genome functions in a transport-independent manner. Nups play an evolutionarily conserved role in gene expression regulation that, in metazoans, extends into the nuclear interior. Additionally, in proliferative cells, Nups play a crucial role in genome integrity maintenance and mitotic progression. Here we discuss genome-related functions of Nups and their impact on essential DNA metabolism processes such as transcription, chromosome duplication, and segregation. PMID:25691464

  3. Characterizing genomic alterations in cancer by complementary functional associations | Office of Cancer Genomics

    Cancer.gov

    Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment.

  4. Stylus: A System for Evolutionary Experimentation Based on a Protein/Proteome Model with Non-Arbitrary Functional Constraints

    PubMed Central

    Axe, Douglas D.; Dixon, Brendan W.; Lu, Philip

    2008-01-01

    The study of protein evolution is complicated by the vast size of protein sequence space, the huge number of possible protein folds, and the extraordinary complexity of the causal relationships between protein sequence, structure, and function. Much simpler model constructs may therefore provide an attractive complement to experimental studies in this area. Lattice models, which have long been useful in studies of protein folding, have found increasing use here. However, while these models incorporate actual sequences and structures (albeit non-biological ones), they incorporate no actual functions—relying instead on largely arbitrary structural criteria as a proxy for function. In view of the central importance of function to evolution, and the impossibility of incorporating real functional constraints without real function, it is important that protein-like models be developed around real structure–function relationships. Here we describe such a model and introduce open-source software that implements it. The model is based on the structure–function relationship in written language, where structures are two-dimensional ink paths and functions are the meanings that result when these paths form legible characters. To capture something like the hierarchical complexity of protein structure, we use the traditional characters of Chinese origin. Twenty coplanar vectors, encoded by base triplets, act like amino acids in building the character forms. This vector-world model captures many aspects of real proteins, including life-size sequences, a life-size structural repertoire, a realistic genetic code, secondary, tertiary, and quaternary structure, structural domains and motifs, operon-like genetic structures, and layered functional complexity up to a level resembling bacterial genomes and proteomes. Stylus is a full-featured implementation of the vector world for Unix systems. To demonstrate the utility of Stylus, we generated a sample set of homologous vector

  5. Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores.

    PubMed

    Lawley, Trevor D; Croucher, Nicholas J; Yu, Lu; Clare, Simon; Sebaihia, Mohammed; Goulding, David; Pickard, Derek J; Parkhill, Julian; Choudhary, Jyoti; Dougan, Gordon

    2009-09-01

    Clostridium difficile, a major cause of antibiotic-associated diarrhea, produces highly resistant spores that contaminate hospital environments and facilitate efficient disease transmission. We purified C. difficile spores using a novel method and show that they exhibit significant resistance to harsh physical or chemical treatments and are also highly infectious, with <7 environmental spores per cm(2) reproducibly establishing a persistent infection in exposed mice. Mass spectrometric analysis identified approximately 336 spore-associated polypeptides, with a significant proportion linked to translation, sporulation/germination, and protein stabilization/degradation. In addition, proteins from several distinct metabolic pathways associated with energy production were identified. Comparison of the C. difficile spore proteome to those of other clostridial species defined 88 proteins as the clostridial spore "core" and 29 proteins as C. difficile spore specific, including proteins that could contribute to spore-host interactions. Thus, our results provide the first molecular definition of C. difficile spores, opening up new opportunities for the development of diagnostic and therapeutic approaches. PMID:19542279

  6. Metabolic capabilities and systems fluctuations in Haloarcula marismortui revealed by integrative genomics and proteomics analyses

    PubMed Central

    Chu, Lichieh Julie; Yang, Hanyin; Shih, Peiyin; Kao, Yuchieh; Tsai, Yihsuan Shannon; Chen, Jinzhi; Huang, Gueitang; Weng, Rueyhung Roc; Ting, Ying Sonia; Fang, Xuefeng; von Haller, Priska D.; Goodlett, David R.; Ng, Wailap Victor

    2011-01-01

    The 1,310 Haloarcula marismortui proteins identified from mid-log and late-log phase soluble and membrane proteomes were analyzed in metabolic and cellular process networks to predict the available systems and systems fluctuations upon environmental stresses. When the connected metabolic reactions with identified proteins were examined, the availability of a number of metabolic pathways and a highly connected amino acid metabolic network were revealed. Quantitative spectral count analyses suggested 300 or more proteins might have expression changes in late-log phase. Among these, integrative network analyses indicated approximately 106 were metabolic proteins which might have growth-phase dependent changes. Interestingly, a large proportion of proteins in affected biomodules had same trend of changes in spectral counts. Disregard the magnitude of changes, we had successfully predicted and validated the expression changes of nine genes including the rimK, gltCP, rrnAC, and argC in lysine biosynthesis pathway which were downregulated in late-log phase. This study had not only revealed the expressed proteins but also the availability of biological systems in two growth phases, systems level changes in response to the stresses in late-log phase, cellular locations of identified proteins, and the likely regulated genes to facilitate further analyses in the postgenomic era. PMID:21598921

  7. The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12.

    PubMed

    Vijayendran, Chandran; Polen, Tino; Wendisch, Volker F; Friehs, Karl; Niehaus, Karsten; Flaschel, Erwin

    2007-03-10

    The use of Escherichia coli as a model organism has provided a great deal of basic information in biomolecular sciences. Examining trait differences among closely related strains of the same species addresses a fundamental biological question: how much diversity is there at the single species level? The main aim of our research was to identify significant differences in the activities of groups of genes between two laboratory strains of an organism closely related in genome structure. We demonstrate that despite strict and controlled growth conditions, there is high plasticity in the global proteome and genome expression in two closely related E. coli K12 sub-strains (W3110 and MG1655), which differ insignificantly in genome structure. The growth patterns of these two sub-strains were very similar in a well-equipped bioreactor, and their genome structures were shown to be almost identical by DNA microarray. However, detailed profiling of protein and gene expression by 2-dimensional gel electrophoresis and microarray analysis showed many differentially expressed genes and proteins, combinations of which were highly correlated. The differentially regulated genes and proteins belonged to the following functional categories: genes regulated by sigma subunit of RNA polymerase (RpoS), enterobactin-related genes, and genes involved in central metabolism. Genes involved in central cell metabolism - the glycolysis pathway, the tricarboxylic acid cycle and the glyoxylate bypass - were differentially regulated at both the mRNA and proteome levels. The strains differ significantly in central metabolism and thus in the generation of precursor metabolites and energy. This high plasticity probably represents a universal feature of metabolic activities in closely related species, and has the potential to reveal differences in regulatory networks. We suggest that unless care is taken in the choice of strains for any validating experiment, the results might be misleading. PMID

  8. The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12.

    PubMed

    Vijayendran, Chandran; Polen, Tino; Wendisch, Volker F; Friehs, Karl; Niehaus, Karsten; Flaschel, Erwin

    2007-03-10

    The use of Escherichia coli as a model organism has provided a great deal of basic information in biomolecular sciences. Examining trait differences among closely related strains of the same species addresses a fundamental biological question: how much diversity is there at the single species level? The main aim of our research was to identify significant differences in the activities of groups of genes between two laboratory strains of an organism closely related in genome structure. We demonstrate that despite strict and controlled growth conditions, there is high plasticity in the global proteome and genome expression in two closely related E. coli K12 sub-strains (W3110 and MG1655), which differ insignificantly in genome structure. The growth patterns of these two sub-strains were very similar in a well-equipped bioreactor, and their genome structures were shown to be almost identical by DNA microarray. However, detailed profiling of protein and gene expression by 2-dimensional gel electrophoresis and microarray analysis showed many differentially expressed genes and proteins, combinations of which were highly correlated. The differentially regulated genes and proteins belonged to the following functional categories: genes regulated by sigma subunit of RNA polymerase (RpoS), enterobactin-related genes, and genes involved in central metabolism. Genes involved in central cell metabolism - the glycolysis pathway, the tricarboxylic acid cycle and the glyoxylate bypass - were differentially regulated at both the mRNA and proteome levels. The strains differ significantly in central metabolism and thus in the generation of precursor metabolites and energy. This high plasticity probably represents a universal feature of metabolic activities in closely related species, and has the potential to reveal differences in regulatory networks. We suggest that unless care is taken in the choice of strains for any validating experiment, the results might be misleading.

  9. Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions.

    PubMed

    Tesei, Donatella; Marzban, Gorji; Marchetti-Deschmann, Martina; Tafer, Hakim; Arcalis, Elsa; Sterflinger, Katja

    2015-12-01

    In the current study a comparative proteomic approach was used to investigate the response of the human pathogen black yeast Exophiala dermatitidis toward temperature treatment. Protein functional analysis - based on cellular process GO terms - was performed on the 32 temperature-responsive identified proteins. The bioinformatics analyses and data presented here provided novel insights into the cellular pathways at the base of the fungus temperature tolerance. A detailed analysis and interpretation of the data can be found in "Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis" by Tesei et al. (2015) [1]. PMID:26958594

  10. Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions

    PubMed Central

    Tesei, Donatella; Marzban, Gorji; Marchetti-Deschmann, Martina; Tafer, Hakim; Arcalis, Elsa; Sterflinger, Katja

    2015-01-01

    In the current study a comparative proteomic approach was used to investigate the response of the human pathogen black yeast Exophiala dermatitidis toward temperature treatment. Protein functional analysis – based on cellular process GO terms – was performed on the 32 temperature-responsive identified proteins. The bioinformatics analyses and data presented here provided novel insights into the cellular pathways at the base of the fungus temperature tolerance. A detailed analysis and interpretation of the data can be found in “Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis” by Tesei et al. (2015) [1]. PMID:26958594

  11. Protein functional analysis data in support of comparative proteomics of the pathogenic black yeast Exophiala dermatitidis under different temperature conditions.

    PubMed

    Tesei, Donatella; Marzban, Gorji; Marchetti-Deschmann, Martina; Tafer, Hakim; Arcalis, Elsa; Sterflinger, Katja

    2015-12-01

    In the current study a comparative proteomic approach was used to investigate the response of the human pathogen black yeast Exophiala dermatitidis toward temperature treatment. Protein functional analysis - based on cellular process GO terms - was performed on the 32 temperature-responsive identified proteins. The bioinformatics analyses and data presented here provided novel insights into the cellular pathways at the base of the fungus temperature tolerance. A detailed analysis and interpretation of the data can be found in "Proteome of tolerance fine-tuning in the human pathogen black yeast Exophiala dermatitidis" by Tesei et al. (2015) [1].

  12. Genome wide functional genetics in haploid cells.

    PubMed

    Elling, Ulrich; Penninger, Josef M

    2014-08-01

    Some organisms such as yeast or males of social insects are haploid, i.e. they carry a single set of chromosomes, while haploidy in mammals is exclusively restricted to mature germ cells. A single copy of the genome provides the basis for genetic analyses where any recessive mutation of essential genes will show a clear phenotype due to the absence of a second gene copy. Most prominently, haploidy in yeast has been utilized for recessive genetic screens that have markedly contributed to our understanding of development, basic physiology, and disease. Somatic mammalian cells carry two copies of chromosomes (diploidy) that obscure genetic analysis. Near haploid human leukemic cells however have been developed as a high throughput screening tool. Although deemed impossible, we and others have generated mammalian haploid embryonic stem cells from parthenogenetic mouse embryos. Haploid stem cells open the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale. Haploid genetics has thus become a powerful alternative to RNAi or CRISPR based screens. PMID:24950427

  13. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  14. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  15. Coordinated international action to accelerate genome-to-phenome with FAANG, The Functional Annotation of Animal Genomes project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the organization of a nascent international effort - the "Functional Annotation of ANimal Genomes" project - whose aim is to produce comprehensive maps of functional elements in the genomes of domesticated animal species....

  16. Genomics and Proteomics of Mycobacteriophage Patience, an Accidental Tourist in the Mycobacterium Neighborhood

    PubMed Central

    Pope, Welkin H.; Jacobs-Sera, Deborah; Russell, Daniel A.; Rubin, Daniel H. F.; Kajee, Afsana; Msibi, Zama N. P.; Larsen, Michelle H.; Jacobs, William R.; Lawrence, Jeffrey G.; Hendrix, Roger W.

    2014-01-01

    ABSTRACT Newly emerging human viruses such as Ebola virus, severe acute respiratory syndrome (SARS) virus, and HIV likely originate within an extant population of viruses in nonhuman hosts and acquire the ability to infect and cause disease in humans. Although several mechanisms preventing viral infection of particular hosts have been described, the mechanisms and constraints on viral host expansion are ill defined. We describe here mycobacteriophage Patience, a newly isolated phage recovered using Mycobacterium smegmatis mc2155 as a host. Patience has genomic features distinct from its M. smegmatis host, including a much lower GC content (50.3% versus 67.4%) and an abundance of codons that are rarely used in M. smegmatis. Nonetheless, it propagates well in M. smegmatis, and we demonstrate the use of mass spectrometry to show expression of over 75% of the predicted proteins, to identify new genes, to refine the genome annotation, and to estimate protein abundance. We propose that Patience evolved primarily among lower-GC hosts and that the disparities between its genomic profile and that of M. smegmatis presented only a minimal barrier to host expansion. Rapid adaptions to its new host include recent acquisition of higher-GC genes, expression of out-of-frame proteins within predicted genes, and codon selection among highly expressed genes toward the translational apparatus of its new host. PMID:25467442

  17. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness

    PubMed Central

    2014-01-01

    Background KIAA1199 is a recently identified novel gene that is up-regulated in human cancer with poor survival. Our proteomic study on signaling polarity in chemotactic cells revealed KIAA1199 as a novel protein target that may be involved in cellular chemotaxis and motility. In the present study, we examined the functional significance of KIAA1199 expression in breast cancer growth, motility and invasiveness. Methods We validated the previous microarray observation by tissue microarray immunohistochemistry using a TMA slide containing 12 breast tumor tissue cores and 12 corresponding normal tissues. We performed the shRNA-mediated knockdown of KIAA1199 in MDA-MB-231 and HS578T cells to study the role of this protein in cell proliferation, migration and apoptosis in vitro. We studied the effects of KIAA1199 knockdown in vivo in two groups of mice (n = 5). We carried out the SILAC LC-MS/MS based proteomic studies on the involvement of KIAA1199 in breast cancer. Results KIAA1199 mRNA and protein was significantly overexpressed in breast tumor specimens and cell lines as compared with non-neoplastic breast tissues from large-scale microarray and studies of breast cancer cell lines and tumors. To gain deeper insights into the novel role of KIAA1199 in breast cancer, we modulated KIAA1199 expression using shRNA-mediated knockdown in two breast cancer cell lines (MDA-MB-231 and HS578T), expressing higher levels of KIAA1199. The KIAA1199 knockdown cells showed reduced motility and cell proliferation in vitro. Moreover, when the knockdown cells were injected into the mammary fat pads of female athymic nude mice, there was a significant decrease in tumor incidence and growth. In addition, quantitative proteomic analysis revealed that knockdown of KIAA1199 in breast cancer (MDA-MB-231) cells affected a broad range of cellular functions including apoptosis, metabolism and cell motility. Conclusions Our findings indicate that KIAA1199 may play an important role in breast

  18. CMPD: cancer mutant proteome database.

    PubMed

    Huang, Po-Jung; Lee, Chi-Ching; Tan, Bertrand Chin-Ming; Yeh, Yuan-Ming; Julie Chu, Lichieh; Chen, Ting-Wen; Chang, Kai-Ping; Lee, Cheng-Yang; Gan, Ruei-Chi; Liu, Hsuan; Tang, Petrus

    2015-01-01

    Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes.

  19. CMPD: cancer mutant proteome database

    PubMed Central

    Huang, Po-Jung; Lee, Chi-Ching; Tan, Bertrand Chin-Ming; Yeh, Yuan-Ming; Julie Chu, Lichieh; Chen, Ting-Wen; Chang, Kai-Ping; Lee, Cheng-Yang; Gan, Ruei-Chi; Liu, Hsuan; Tang, Petrus

    2015-01-01

    Whole-exome sequencing, which centres on the protein coding regions of disease/cancer associated genes, represents the most cost-effective method to-date for deciphering the association between genetic alterations and diseases. Large-scale whole exome/genome sequencing projects have been launched by various institutions, such as NCI, Broad Institute and TCGA, to provide a comprehensive catalogue of coding variants in diverse tissue samples and cell lines. Further functional and clinical interrogation of these sequence variations must rely on extensive cross-platforms integration of sequencing information and a proteome database that explicitly and comprehensively archives the corresponding mutated peptide sequences. While such data resource is a critical for the mass spectrometry-based proteomic analysis of exomic variants, no database is currently available for the collection of mutant protein sequences that correspond to recent large-scale genomic data. To address this issue and serve as bridge to integrate genomic and proteomics datasets, CMPD (http://cgbc.cgu.edu.tw/cmpd) collected over 2 millions genetic alterations, which not only facilitates the confirmation and examination of potential cancer biomarkers but also provides an invaluable resource for translational medicine research and opportunities to identify mutated proteins encoded by mutated genes. PMID:25398898

  20. The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus.

    PubMed

    Pradel, Nathalie; Ji, Boyang; Gimenez, Grégory; Talla, Emmanuel; Lenoble, Patricia; Garel, Marc; Tamburini, Christian; Fourquet, Patrick; Lebrun, Régine; Bertin, Philippe; Denis, Yann; Pophillat, Matthieu; Barbe, Valérie; Ollivier, Bernard; Dolla, Alain

    2013-01-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle. PMID:23383081

  1. The first genomic and proteomic characterization of a deep-sea sulfate reducer: insights into the piezophilic lifestyle of Desulfovibrio piezophilus.

    PubMed

    Pradel, Nathalie; Ji, Boyang; Gimenez, Grégory; Talla, Emmanuel; Lenoble, Patricia; Garel, Marc; Tamburini, Christian; Fourquet, Patrick; Lebrun, Régine; Bertin, Philippe; Denis, Yann; Pophillat, Matthieu; Barbe, Valérie; Ollivier, Bernard; Dolla, Alain

    2013-01-01

    Desulfovibrio piezophilus strain C1TLV30(T) is a piezophilic anaerobe that was isolated from wood falls in the Mediterranean deep-sea. D. piezophilus represents a unique model for studying the adaptation of sulfate-reducing bacteria to hydrostatic pressure. Here, we report the 3.6 Mbp genome sequence of this piezophilic bacterium. An analysis of the genome revealed the presence of seven genomic islands as well as gene clusters that are most likely linked to life at a high hydrostatic pressure. Comparative genomics and differential proteomics identified the transport of solutes and amino acids as well as amino acid metabolism as major cellular processes for the adaptation of this bacterium to hydrostatic pressure. In addition, the proteome profiles showed that the abundance of key enzymes that are involved in sulfate reduction was dependent on hydrostatic pressure. A comparative analysis of orthologs from the non-piezophilic marine bacterium D. salexigens and D. piezophilus identified aspartic acid, glutamic acid, lysine, asparagine, serine and tyrosine as the amino acids preferentially replaced by arginine, histidine, alanine and threonine in the piezophilic strain. This work reveals the adaptation strategies developed by a sulfate reducer to a deep-sea lifestyle.

  2. FunSys: Software for functional analysis of prokaryotic transcriptome and proteome

    PubMed Central

    de Sá, Pablo; Pinto, Anne; Ramos, Rommel Thiago Jucá; Coimbra, Nilson; Baraúna, Rafael; Dall'Agnol, Hivana; Carneiro, Adriana; Ranieri, Alex; Valadares, Agenor; Azevedo, Vasco; Schneider, Maria Paula; Barh, Debmalya; Silva, Artur

    2012-01-01

    The vast amount of data produced by next-generation sequencing (NGS) has necessitated the development of computational tools to assist in understanding the myriad functions performed by the biological macromolecules involved in heredity. In this work, we developed the FunSys programme, a stand-alone tool with an user friendly interface that enables us to evaluate and correlate differential expression patterns from RNA sequencing and proteomics datasets. The FunSys generates charts and reports based on the results of the analysis of differential expression to aid the interpretation of the results. Availability FunSys and a test dataset are freely available at https://sourceforge.net/projects/funsysufpa/. It requires Sun jdk 6 or higher and MySQL server 5.1 or higher. PMID:22829724

  3. Genome-Wide Functional Divergence after the Symbiosis of Proteobacteria with Insects Unraveled through a Novel Computational Approach

    PubMed Central

    Toft, Christina; Williams, Tom A.; Fares, Mario A.

    2009-01-01

    Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote) provides the endosymbiont (prokaryote) with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity. PMID:19343224

  4. Life on the edge: functional genomic response of Ignicoccus hospitalis to the presence of Nanoarchaeum equitans

    PubMed Central

    Giannone, Richard J; Wurch, Louie L; Heimerl, Thomas; Martin, Stanton; Yang, Zamin; Huber, Harald; Rachel, Reinhard; Hettich, Robert L; Podar, Mircea

    2015-01-01

    The marine hyperthermophilic crenarchaeon Ignicoccus hospitalis supports the propagation on its surface of Nanoarchaeum equitans, an evolutionarily enigmatic archaeon that resembles highly derived parasitic and symbiotic bacteria. The cellular and molecular mechanisms that enable this interarchaea relationship and the intimate physiologic consequences to I. hospitalis are unknown. Here, we used concerted proteomic and transcriptomic analyses to probe into the functional genomic response of I. hospitalis as N. equitans multiplies on its surface. The expression of over 97% of the genes was detected at mRNA level and over 80% of the predicted proteins were identified and their relative abundance measured by proteomics. These indicate that little, if any, of the host genomic information is silenced during growth in the laboratory. The primary response to N. equitans was at the membrane level, with increases in relative abundance of most protein complexes involved in energy generation as well as that of several transporters and proteins involved in cellular membrane stabilization. Similar upregulation was observed for genes and proteins involved in key metabolic steps controlling nitrogen and carbon metabolism, although the overall biosynthetic pathways were marginally impacted. Proliferation of N. equitans resulted, however, in selective downregulation of genes coding for transcription factors and replication and cell cycle control proteins as I. hospitalis shifted its physiology from its own cellular growth to that of its ectosymbiont/parasite. The combination of these multiomic approaches provided an unprecedented level of detail regarding the dynamics of this interspecies interaction, which is especially pertinent as these organisms are not genetically tractable. PMID:25012904

  5. Mapping genomic features to functional traits through microbial whole genome sequences.

    PubMed

    Zhang, Wei; Zeng, Erliang; Liu, Dan; Jones, Stuart E; Emrich, Scott

    2014-01-01

    Recently, the utility of trait-based approaches for microbial communities has been identified. Increasing availability of whole genome sequences provide the opportunity to explore the genetic foundations of a variety of functional traits. We proposed a machine learning framework to quantitatively link the genomic features with functional traits. Genes from bacteria genomes belonging to different functional traits were grouped to Cluster of Orthologs (COGs), and were used as features. Then, TF-IDF technique from the text mining domain was applied to transform the data to accommodate the abundance and importance of each COG. After TF-IDF processing, COGs were ranked using feature selection methods to identify their relevance to the functional trait of interest. Extensive experimental results demonstrated that functional trait related genes can be detected using our method. Further, the method has the potential to provide novel biological insights.

  6. Contribution of genomics to the understanding of physiological functions.

    PubMed

    Hocquette, J F; Cassar-Malek, I; Scalbert, A; Guillou, F

    2009-10-01

    Genomics has brought with it a true biological revolution and can be applied to all areas of life sciences. The advent of genomics is thus linked to the development of high-throughput techniques which allows the genome of organisms as a whole to be studied. The first high-throughput techniques to be developed were sequencing methods. These advances will allow new approaches to a variety of problems in biology. For instance, the emerging fields of genomic medicine in humans and genomic selection in livestock are promising. After the sequencing of genomes, genomics has shifted to the study of gene expression and function. This is called the "post-genomic area" by some authors or "functional genomics" by others. The most recent "omics" to be developed are associated with the study of the metabolism (e.g. metabolomics). Integrative "omics" approaches (e.g. nutrigenomics) are based on the association of the omics tools at different levels (DNA, RNA, proteins, metabolites) for a specific objective (here nutrition). In terms of perspectives, it is likely that methods for collecting data will outstrip our capacity to adequately analyse these data. So scientists must develop bioinformatic tools and methods to overcome this difficulty. In addition, high-throughput techniques need to be developed in physiology in order to match the increasing amount of genomic information with true biological data. Finally, there is no doubt that all these new approaches will allow important new genes and novel biological mechanisms to be discovered. Physiological models with invalidated or over-expressed genes will be precious tools to check these new biological discoveries.

  7. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data.

    PubMed

    Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O

    2015-08-25

    Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome.

  8. Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data.

    PubMed

    Yang, Laurence; Tan, Justin; O'Brien, Edward J; Monk, Jonathan M; Kim, Donghyuk; Li, Howard J; Charusanti, Pep; Ebrahim, Ali; Lloyd, Colton J; Yurkovich, James T; Du, Bin; Dräger, Andreas; Thomas, Alex; Sun, Yuekai; Saunders, Michael A; Palsson, Bernhard O

    2015-08-25

    Finding the minimal set of gene functions needed to sustain life is of both fundamental and practical importance. Minimal gene lists have been proposed by using comparative genomics-based core proteome definitions. A definition of a core proteome that is supported by empirical data, is understood at the systems-level, and provides a basis for computing essential cell functions is lacking. Here, we use a systems biology-based genome-scale model of metabolism and expression to define a functional core proteome consisting of 356 gene products, accounting for 44% of the Escherichia coli proteome by mass based on proteomics data. This systems biology core proteome includes 212 genes not found in previous comparative genomics-based core proteome definitions, accounts for 65% of known essential genes in E. coli, and has 78% gene function overlap with minimal genomes (Buchnera aphidicola and Mycoplasma genitalium). Based on transcriptomics data across environmental and genetic backgrounds, the systems biology core proteome is significantly enriched in nondifferentially expressed genes and depleted in differentially expressed genes. Compared with the noncore, core gene expression levels are also similar across genetic backgrounds (two times higher Spearman rank correlation) and exhibit significantly more complex transcriptional and posttranscriptional regulatory features (40% more transcription start sites per gene, 22% longer 5'UTR). Thus, genome-scale systems biology approaches rigorously identify a functional core proteome needed to support growth. This framework, validated by using high-throughput datasets, facilitates a mechanistic understanding of systems-level core proteome function through in silico models; it de facto defines a paleome. PMID:26261351

  9. Interactions of photosynthesis with genome size and function

    PubMed Central

    Raven, John A.; Beardall, John; Larkum, Anthony W. D.; Sánchez-Baracaldo, Patricia

    2013-01-01

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280–320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements PMID:23754816

  10. Interactions of photosynthesis with genome size and function.

    PubMed

    Raven, John A; Beardall, John; Larkum, Anthony W D; Sánchez-Baracaldo, Patricia

    2013-07-19

    Photolithotrophs are divided between those that use water as their electron donor (Cyanobacteria and the photosynthetic eukaryotes) and those that use a different electron donor (the anoxygenic photolithotrophs, all of them Bacteria). Photolithotrophs with the most reduced genomes have more genes than do the corresponding chemoorganotrophs, and the fastest-growing photolithotrophs have significantly lower specific growth rates than the fastest-growing chemoorganotrophs. Slower growth results from diversion of resources into the photosynthetic apparatus, which accounts for about half of the cell protein. There are inherent dangers in (especially oxygenic) photosynthesis, including the formation of reactive oxygen species (ROS) and blue light sensitivity of the water spitting apparatus. The extent to which photolithotrophs incur greater DNA damage and repair, and faster protein turnover with increased rRNA requirement, needs further investigation. A related source of environmental damage is ultraviolet B (UVB) radiation (280-320 nm), whose flux at the Earth's surface decreased as oxygen (and ozone) increased in the atmosphere. This oxygenation led to the requirements of defence against ROS, and decreasing availability to organisms of combined (non-dinitrogen) nitrogen and ferrous iron, and (indirectly) phosphorus, in the oxygenated biosphere. Differential codon usage in the genome and, especially, the proteome can lead to economies in the use of potentially growth-limiting elements.

  11. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    NASA Astrophysics Data System (ADS)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein

  12. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages.

    PubMed

    Ramesh, Vignesh; Ganesan, Kumaresan

    2016-08-15

    Hepatocellular carcinoma (HCC) is a highly heterogeneous disease and the development of targeted therapeutics is still at an early stage. The 'omics' based genome-wide profiling comprising the transcriptome, miRNome and proteome are highly useful in identifying the deregulated molecular processes involved in hepatocarcinogenesis. One of the end products and processes of the central dogma being the metabolites and metabolic processes mediate the cellular functions. In recent years, metabolomics based investigations have revealed the major deregulated metabolic processes involved in carcinogenesis. However, the integrative analysis of the holistic metabolic processes with genomics is at an early stage. Since the gene-sets are highly useful in assessing the biological processes and pathways, we made an attempt to infer the deregulated cellular metabolic processes involved in HCC by employing metabolism associated gene-set enrichment analysis. Further, the metabolic process enrichment scores were integrated with the transcriptome profiles of HCC. Integrative analysis shows three distinct metabolic deregulations: i) hepatocyte function related molecular processes involving lipid/fatty acid/bile acid synthesis, ii) inflammatory processes with cytokine, sphingolipid & chondriotin sulphate metabolism and iii) enriched nucleotide metabolic process involving purine/pyrimidine & glucose mediated catabolic process, in hepatocarcinogenesis. The three distinct metabolic processes were found to occur both in tumor and liver cancer cell line profiles. Unsupervised hierarchical clustering of the metabolic processes along with clinical sample information has identified two major clusters based on AFP (alpha-fetoprotein) and metastasis. The study reveals the three major regulatory processes involved in HCC stages. PMID:27107678

  13. Integrative functional genomic analysis unveils the differing dysregulated metabolic processes across hepatocellular carcinoma stages.

    PubMed

    Ramesh, Vignesh; Ganesan, Kumaresan

    2016-08-15

    Hepatocellular carcinoma (HCC) is a highly heterogeneous disease and the development of targeted therapeutics is still at an early stage. The 'omics' based genome-wide profiling comprising the transcriptome, miRNome and proteome are highly useful in identifying the deregulated molecular processes involved in hepatocarcinogenesis. One of the end products and processes of the central dogma being the metabolites and metabolic processes mediate the cellular functions. In recent years, metabolomics based investigations have revealed the major deregulated metabolic processes involved in carcinogenesis. However, the integrative analysis of the holistic metabolic processes with genomics is at an early stage. Since the gene-sets are highly useful in assessing the biological processes and pathways, we made an attempt to infer the deregulated cellular metabolic processes involved in HCC by employing metabolism associated gene-set enrichment analysis. Further, the metabolic process enrichment scores were integrated with the transcriptome profiles of HCC. Integrative analysis shows three distinct metabolic deregulations: i) hepatocyte function related molecular processes involving lipid/fatty acid/bile acid synthesis, ii) inflammatory processes with cytokine, sphingolipid & chondriotin sulphate metabolism and iii) enriched nucleotide metabolic process involving purine/pyrimidine & glucose mediated catabolic process, in hepatocarcinogenesis. The three distinct metabolic processes were found to occur both in tumor and liver cancer cell line profiles. Unsupervised hierarchical clustering of the metabolic processes along with clinical sample information has identified two major clusters based on AFP (alpha-fetoprotein) and metastasis. The study reveals the three major regulatory processes involved in HCC stages.

  14. Toward a functional analysis of the yeast genome through exhaustive two-hybrid screens.

    PubMed

    Fromont-Racine, M; Rain, J C; Legrain, P

    1997-07-01

    The genome of the yeast Saccharomyces cerevisiae is now completely sequenced. Despite successful genetic work in recent years, 60% of yeast genes have no assigned function and half of those encode putative proteins without any homology with known proteins. Genetic analyses, such as suppressor or synthetic lethal screens, have suggested many functional links between gene products, some of which have been confirmed by biochemical means. Altogether, these approaches have led to a fairly extensive knowledge of defined biochemical pathways. However, the integration of these pathways against the background of complexity in a living cell remains to be accomplished. The two-hybrid method applied to the yeast genome might allow the characterization to the network of interactions between yeast proteins, leading to a better understanding of cellular functions. Such an analysis has been performed for the bacteriophage T7 genome that encodes 55 proteins and for Drosophila cell cycle regulators. However, the currently available two-hybrid methodology is not suitable for a large-scale project without specific methodological improvements In particular, the exhaustivity and selectivity of the screens must first be greatly improved. We constructed a new yeast genomic library and developed a highly selective two-hybrid procedure adapted for exhaustive screens of the yeast genome. For each bait we selected a limited set of interacting preys that we classified in categories of distinct heuristic values. Taking into account this classification, new baits were chosen among preys and, in turn, used for second-round screens. Repeating this procedure several times led to the characterization of the network of interactions. Using known pre-mRNA splicing factors as initial baits, we were able to characterize new interactions between known splicing factors, identify new yeast splicing factors, including homologues of human SF1 and SAP49, and reveal novel potential functional links between

  15. Functional genomics of lactic acid bacteria: from food to health.

    PubMed

    Douillard, François P; de Vos, Willem M

    2014-08-29

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health.

  16. Functional genomics of lactic acid bacteria: from food to health

    PubMed Central

    2014-01-01

    Genome analysis using next generation sequencing technologies has revolutionized the characterization of lactic acid bacteria and complete genomes of all major groups are now available. Comparative genomics has provided new insights into the natural and laboratory evolution of lactic acid bacteria and their environmental interactions. Moreover, functional genomics approaches have been used to understand the response of lactic acid bacteria to their environment. The results have been instrumental in understanding the adaptation of lactic acid bacteria in artisanal and industrial food fermentations as well as their interactions with the human host. Collectively, this has led to a detailed analysis of genes involved in colonization, persistence, interaction and signaling towards to the human host and its health. Finally, massive parallel genome re-sequencing has provided new opportunities in applied genomics, specifically in the characterization of novel non-GMO strains that have potential to be used in the food industry. Here, we provide an overview of the state of the art of these functional genomics approaches and their impact in understanding, applying and designing lactic acid bacteria for food and health. PMID:25186768

  17. Functional Analysis of the Human Genome:. Study of Genetic Disease

    NASA Astrophysics Data System (ADS)

    Tsui, Lap-Chee

    2003-04-01

    I will divide my remarks into 3 parts. First, I will give a brief summary of the Human Genome Project. Second, I will describe our work on human chromosome 7 to illustrate how we could contribute to the Project and disease research. Third, I would like to bring across the argument that study of genetic disease is an integral component of the Human Genome Project. In particular, I will use cystic fibrosis as an example to elaborate why I consider disease study is a part of functional genomics.

  18. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis.

    PubMed

    Parsons, Harriet T; Christiansen, Katy; Knierim, Bernhard; Carroll, Andrew; Ito, Jun; Batth, Tanveer S; Smith-Moritz, Andreia M; Morrison, Stephanie; McInerney, Peter; Hadi, Masood Z; Auer, Manfred; Mukhopadhyay, Aindrila; Petzold, Christopher J; Scheller, Henrik V; Loqué, Dominique; Heazlewood, Joshua L

    2012-05-01

    The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized. PMID:22430844

  19. Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii

    PubMed Central

    2011-01-01

    Background Recent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI), prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale. Results We assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST. In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate. Conclusions We functionally annotated approximately 1

  20. Selective conjugation of proteins by mining active proteomes through click-functionalized magnetic nanoparticles.

    PubMed

    Ilyas, Shaista; Ilyas, Muhammad; van der Hoorn, Renier A L; Mathur, Sanjay

    2013-11-26

    Superparamagnetic iron oxide nanoparticles (SPIONs) coated with azide groups were functionalized at the surface with biotin (biotin@SPIONs) and cysteine protease inhibitor E-64 (E-64@SPIONs) with the purpose of developing nanoparticle-based assays for identifying cysteine proteases in proteomes. Magnetite particles (ca. 6 nm) were synthesized by microwave-assisted thermal decomposition of iron acetylacetonate and subsequently functionalized following a click chemistry protocol to obtain biotin and E-64 labeled particulate systems. Successful surface modification and covalent attachment of functional groups and molecules were confirmed by FT-IR spectroscopy and thermal gravimetric analysis. The ability of the surface-grafted biotin terminal groups to specifically interact with streptavidin (either horseradish peroxidase [(HRP)-luminol-H2O2] or rhodamine) was confirmed by chemiluminescent assay. A quantitative assessment showed a capture limit of 0.55-1.65 μg protein/100 μg particles. Furthermore, E-64@SPIONs were successfully used to specifically label papain-like cysteine proteases from crude plant extracts. Owing to the simplicity and versatility of the technique, together with the superparamagnetic behavior of FeOx-nanoparticles, the results demonstrate that click chemistry on surface anchored azide group is a viable approach toward bioconjugations that can be extended to other nanoparticles surfaces with different functional groups to target specific therapeutic and diagnostic applications. PMID:24143894

  1. Functional proteome of macrophage carried nanoformulated antiretroviral therapy demonstrates enhanced particle carrying capacity.

    PubMed

    Martinez-Skinner, Andrea L; Veerubhotla, Ram S; Liu, Han; Xiong, Huangui; Yu, Fang; McMillan, JoEllyn M; Gendelman, Howard E

    2013-05-01

    Our laboratory developed long-acting nanoformulations of antiretroviral therapy (nanoART) to improve drug compliance, reduce toxicities, and facilitate access of drug to viral reservoirs. These all function to inevitably improve treatment of human immunodeficiency virus (HIV) infection. Formulations are designed to harness the carrying capacities of mononuclear phagocytes (MP; monocytes and macrophages) and to use these cells as Trojan horses for drug delivery. Such a drug distribution system limits ART metabolism and excretion while facilitating access to viral reservoirs. Our prior works demonstrated a high degree of nanoART sequestration in macrophage recycling endosomes with broad and sustained drug tissue biodistribution and depots with limited untoward systemic toxicities. Despite such benefits, the effects of particle carriage on the cells' functional capacities remained poorly understood. Thus, we employed pulsed stable isotope labeling of amino acids in cell culture to elucidate the macrophage proteome and assess any alterations in cellular functions that would affect cell-drug carriage and release kinetics. NanoART-MP interactions resulted in the induction of a broad range of activation-related proteins that can enhance phagocytosis, secretory functions, and cell migration. Notably, we now demonstrate that particle-cell interactions serve to enhance drug loading while facilitating drug tissue depots and transportation. PMID:23544708

  2. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications.

    PubMed

    Yu, Jing; Zhou, Jing; Sutherland, Alex; Wei, Wei; Shin, Young Shik; Xue, Min; Heath, James R

    2014-01-01

    We review an emerging microfluidics-based toolkit for single-cell functional proteomics. Functional proteins include, but are not limited to, the secreted signaling proteins that can reflect the biological behaviors of immune cells or the intracellular phosphoproteins associated with growth factor-stimulated signaling networks. Advantages of the microfluidics platforms are multiple. First, 20 or more functional proteins may be assayed simultaneously from statistical numbers of single cells. Second, cell behaviors (e.g., motility) may be correlated with protein assays. Third, extensions to quantized cell populations can permit measurements of cell-cell interactions. Fourth, rare cells can be functionally identified and then separated for further analysis or culturing. Finally, certain assay types can provide a conduit between biology and the physicochemical laws. We discuss the history and challenges of the field then review design concepts and uses of the microchip platforms that have been reported, with an eye toward biomedical applications. We then look to the future of the field.

  3. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells

    PubMed Central

    Lorkova, Lucie; Scigelova, Michaela; Arrey, Tabiwang Ndipanquang; Vit, Ondrej; Pospisilova, Jana; Doktorova, Eliska; Klanova, Magdalena; Alam, Mahmudul; Vockova, Petra; Maswabi, Bokang

    2015-01-01

    Mantle cell lymphoma (MCL) is a chronically relapsing aggressive type of B-cell non-Hodgkin lymphoma considered incurable by currently used treatment approaches. Fludarabine is a purine analog clinically still widely used in the therapy of relapsed MCL. Molecular mechanisms of fludarabine resistance have not, however, been studied in the setting of MCL so far. We therefore derived fludarabine-resistant MCL cells (Mino/FR) and performed their detailed functional and proteomic characterization compared to the original fludarabine sensitive cells (Mino). We demonstrated that Mino/FR were highly cross-resistant to other antinucleosides (cytarabine, cladribine, gemcitabine) and to an inhibitor of Bruton tyrosine kinase (BTK) ibrutinib. Sensitivity to other types of anti-lymphoma agents was altered only mildly (methotrexate, doxorubicin, bortezomib) or remained unaffacted (cisplatin, bendamustine). The detailed proteomic analysis of Mino/FR compared to Mino cells unveiled over 300 differentially expressed proteins. Mino/FR were characterized by the marked downregulation of deoxycytidine kinase (dCK) and BTK (thus explaining the observed crossresistance to antinucleosides and ibrutinib), but also by the upregulation of several enzymes of de novo nucleotide synthesis, as well as the up-regulation of the numerous proteins of DNA repair and replication. The significant upregulation of the key antiapoptotic protein Bcl-2 in Mino/FR cells was associated with the markedly increased sensitivity of the fludarabine-resistant MCL cells to Bcl-2-specific inhibitor ABT199 compared to fludarabine-sensitive cells. Our data thus demonstrate that a detailed molecular analysis of drug-resistant tumor cells can indeed open a way to personalized therapy of resistant malignancies. PMID:26285204

  4. Letter from the Director - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The NCI’s Clinical Proteomic Technologies for Cancer (CPTC) initiative is focused on developing a better understanding of cancer biology through the proteomic interrogation of genomically characterized tumors from sources such as The Cancer Genome Atlas.

  5. Director's Update - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (NCI-CPTAC) has recently begun the proteomic interrogation of genomically-characterized tumors from The Cancer Genome Atlas.

  6. Novel aspects of grapevine response to phytoplasma infection investigated by a proteomic and phospho-proteomic approach with data integration into functional networks

    PubMed Central

    2013-01-01

    Background Translational and post-translational protein modifications play a key role in the response of plants to pathogen infection. Among the latter, phosphorylation is critical in modulating protein structure, localization and interaction with other partners. In this work, we used a multiplex staining approach with 2D gels to study quantitative changes in the proteome and phosphoproteome of Flavescence dorée-affected and recovered ‘Barbera’ grapevines, compared to healthy plants. Results We identified 48 proteins that differentially changed in abundance, phosphorylation, or both in response to Flavescence dorée phytoplasma infection. Most of them did not show any significant difference in recovered plants, which, by contrast, were characterized by changes in abundance, phosphorylation, or both for 17 proteins not detected in infected plants. Some enzymes involved in the antioxidant response that were up-regulated in infected plants, such as isocitrate dehydrogenase and glutathione S-transferase, returned to healthy-state levels in recovered plants. Others belonging to the same functional category were even down-regulated in recovered plants (oxidoreductase GLYR1 and ascorbate peroxidase). Our proteomic approach thus agreed with previously published biochemical and RT-qPCR data which reported down-regulation of scavenging enzymes and accumulation of H2O2 in recovered plants, possibly suggesting a role for this molecule in remission from infection. Fifteen differentially phosphorylated proteins (| ratio | > 2, p < 0.05) were identified in infected compared to healthy plants, including proteins involved in photosynthesis, response to stress and the antioxidant system. Many were not differentially phosphorylated in recovered compared to healthy plants, pointing to their specific role in responding to infection, followed by a return to a steady-state phosphorylation level after remission of symptoms. Gene ontology (GO) enrichment and statistical

  7. Genome-based proteomic analysis of Lignosus rhinocerotis (Cooke) Ryvarden sclerotium.

    PubMed

    Yap, Hui-Yeng Yeannie; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis. PMID:25552915

  8. Genome-based Proteomic Analysis of Lignosus rhinocerotis (Cooke) Ryvarden Sclerotium

    PubMed Central

    Yap, Hui-Yeng Yeannie; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis. PMID:25552915

  9. Aldosterone: from biosynthesis to non-genomic action onto the proteome.

    PubMed

    Zöllner, Susanne; Hwang, Kyung Hoon; Wilzewski, Britta; Carapito, Christine; Leize-Wagner, Emmanuelle; Van Dorsselaer, Alain; Bernhardt, Rita

    2008-10-01

    An increased aldosterone concentration can lead to a progression of heart diseases and to myocardial fibrosis. These fatal processes can be prevented by e.g. inhibiting the mineralocorticoid receptor (MR), which is nowadays part of a commonly applied standard therapy. Moreover, selective inhibition of aldosterone synthase (CYP11B2) is a straightforward goal whereby CYP11B1, a key enzyme in glucocorticoid biosynthesis exhibiting a high structure identity with CYP11B2 should not be inhibited. Therefore, effective test systems have been developed and rather potent and selective CYP11B2 compounds like SIAS-1 have been identified by our group. In addition to finding new inhibitors, we investigated which proteins are directly influenced by aldosterone focussing on non-genomic effects. Schizosaccharomyces pombe was chosen as a model organism, since this yeast does not contain nuclear steroid receptors, but many genes and regulatory mechanisms that are close to those of mammals. Besides creating a reference map for this organism, protein spots affected by aldosterone as well as deoxycorticosterone (DOC) and corticosterone have been identified. In case of aldosterone, a regulatory effect of proteins that are connected with structural proteins, signal cascades, osmoregulation and calcium pathway as well as to general metabolism have been discovered. DOC causes overlapping but also different effects compared with aldosterone. As shown exemplarily for GAPDH, the aldosterone-mediated effects in S. pombe can also be verified in mammalian cells. These and further investigations contribute to a deeper understanding of so-called non-genomic aldosterone effects. PMID:18280527

  10. Integrated Proteomics and Genomics Analysis Reveals a Novel Mesenchymal to Epithelial Reverting Transition in Leiomyosarcoma through Regulation of Slug*

    PubMed Central

    Yang, Jilong; Eddy, James A.; Pan, Yuan; Hategan, Andrea; Tabus, Ioan; Wang, Yingmei; Cogdell, David; Price, Nathan D.; Pollock, Raphael E.; Lazar, Alexander J. F.; Hunt, Kelly K.; Trent, Jonathan C.; Zhang, Wei

    2010-01-01

    Leiomyosarcoma is one of the most common mesenchymal tumors. Proteomics profiling analysis by reverse-phase protein lysate array surprisingly revealed that expression of the epithelial marker E-cadherin (encoded by CDH1) was significantly elevated in a subset of leiomyosarcomas. In contrast, E-cadherin was rarely expressed in the gastrointestinal stromal tumors, another major mesenchymal tumor type. We further sought to 1) validate this finding, 2) determine whether there is a mesenchymal to epithelial reverting transition (MErT) in leiomyosarcoma, and if so 3) elucidate the regulatory mechanism responsible for this MErT. Our data showed that the epithelial cell markers E-cadherin, epithelial membrane antigen, cytokeratin AE1/AE3, and pan-cytokeratin were often detected immunohistochemically in leiomyosarcoma tumor cells on tissue microarray. Interestingly, the E-cadherin protein expression was correlated with better survival in leiomyosarcoma patients. Whole genome microarray was used for transcriptomics analysis, and the epithelial gene expression signature was also associated with better survival. Bioinformatics analysis of transcriptome data showed an inverse correlation between E-cadherin and E-cadherin repressor Slug (SNAI2) expression in leiomyosarcoma, and this inverse correlation was validated on tissue microarray by immunohistochemical staining of E-cadherin and Slug. Knockdown of Slug expression in SK-LMS-1 leiomyosarcoma cells by siRNA significantly increased E-cadherin; decreased the mesenchymal markers vimentin and N-cadherin (encoded by CDH2); and significantly decreased cell proliferation, invasion, and migration. An increase in Slug expression by pCMV6-XL5-Slug transfection decreased E-cadherin and increased vimentin and N-cadherin. Thus, MErT, which is mediated through regulation of Slug, is a clinically significant phenotype in leiomyosarcoma. PMID:20651304

  11. Metabolomics-assisted proteomics identifies succinylation and SIRT5 as important regulators of cardiac function.

    PubMed

    Sadhukhan, Sushabhan; Liu, Xiaojing; Ryu, Dongryeol; Nelson, Ornella D; Stupinski, John A; Li, Zhi; Chen, Wei; Zhang, Sheng; Weiss, Robert S; Locasale, Jason W; Auwerx, Johan; Lin, Hening

    2016-04-19

    Cellular metabolites, such as acyl-CoA, can modify proteins, leading to protein posttranslational modifications (PTMs). One such PTM is lysine succinylation, which is regulated by sirtuin 5 (SIRT5). Although numerous proteins are modified by lysine succinylation, the physiological significance of lysine succinylation and SIRT5 remains elusive. Here, by profiling acyl-CoA molecules in various mouse tissues, we have discovered that different tissues have different acyl-CoA profiles and that succinyl-CoA is the most abundant acyl-CoA molecule in the heart. This interesting observation has prompted us to examine protein lysine succinylation in different mouse tissues in the presence and absence of SIRT5. Protein lysine succinylation predominantly accumulates in the heart whenSirt5is deleted. Using proteomic studies, we have identified many cardiac proteins regulated by SIRT5. Our data suggest that ECHA, a protein involved in fatty acid oxidation, is a major enzyme that is regulated by SIRT5 and affects heart function.Sirt5knockout (KO) mice have lower ECHA activity, increased long-chain acyl-CoAs, and decreased ATP in the heart under fasting conditions.Sirt5KO mice develop hypertrophic cardiomyopathy, as evident from the increased heart weight relative to body weight, as well as reduced shortening and ejection fractions. These findings establish that regulating heart metabolism and function is a major physiological function of lysine succinylation and SIRT5. PMID:27051063

  12. Functional Proteomics Screen Enables Enrichment of Distinct Cell Types from Human Pancreatic Islets

    PubMed Central

    Sharivkin, Revital; Walker, Michael D.; Soen, Yoav

    2015-01-01

    The current world-wide epidemic of diabetes has prompted attempts to generate new sources of insulin-producing cells for cell replacement therapy. An inherent challenge in many of these strategies is the lack of cell-surface markers permitting isolation and characterization of specific cell types from differentiating stem cell populations. Here we introduce an iterative proteomics procedure allowing tag-free isolation of cell types based on their function. Our method detects and associates specific cell-surface markers with particular cell functionality by coupling cell capture on antibody arrays with immunofluorescent labeling. Using this approach in an iterative manner, we discovered marker combinations capable of enriching for discrete pancreatic cell subtypes from human islets of Langerhans: insulin-producing beta cells (CD9high/CD56+), glucagon-producing alpha cells (CD9- /CD56+) and trypsin-producing acinar cells (CD9- /CD56-). This strategy may assist future beta cell research and the development of diagnostic tools for diabetes. It can also be applied more generally for function-based purification of desired cell types from other limited and heterogeneous biological samples. PMID:25706282

  13. Wheat proteomics: proteome modulation and abiotic stress acclimation

    PubMed Central

    Komatsu, Setsuko; Kamal, Abu H. M.; Hossain, Zahed

    2014-01-01

    Cellular mechanisms of stress sensing and signaling represent the initial plant responses to adverse conditions. The development of high-throughput “Omics” techniques has initiated a new era of the study of plant molecular strategies for adapting to environmental changes. However, the elucidation of stress adaptation mechanisms in plants requires the accurate isolation and characterization of stress-responsive proteins. Because the functional part of the genome, namely the proteins and their post-translational modifications, are critical for plant stress responses, proteomic studies provide comprehensive information about the fine-tuning of cellular pathways that primarily involved in stress mitigation. This review summarizes the major proteomic findings related to alterations in the wheat proteomic profile in response to abiotic stresses. Moreover, the strengths and weaknesses of different sample preparation techniques, including subcellular protein extraction protocols, are discussed in detail. The continued development of proteomic approaches in combination with rapidly evolving bioinformatics tools and interactive databases will facilitate understanding of the plant mechanisms underlying stress tolerance. PMID:25538718

  14. Structural and Functional Proteomic Analysis of a Developing Energy Transducing Membrane

    SciTech Connect

    Niederman, Robert A

    2012-06-04

    While much is known about the light reactions of photosynthesis in purple bacteria, comparatively little information is available on how the requisite integral membrane proteins are assembled, their patterns of cellular localization are established or their apoproteins cooperate with numerous assembly factors in their insertion into the growing intracytoplasmic membrane (ICM). This problem was approached through a detailed structural and functional proteomic analysis of ICM assembly process in the well-characterized purple bacterium Rhodobacter sphaeroides. Proteomic approaches have focused upon identification of membrane proteins temporally expressed during ICM development and spatially localized in both membrane growth initiation sites and in mature ICM vesicles. Protocols were established for ICM induction under reduced aeration and ICM remodeling in cells adapting to low intensity illumination, which permitted isolation, in sucrose density gradients, of ICM growth initiation sites as an upper pigmented band (UPB) and mature ICM vesicles as the main (chromatophore) band. Non-denaturing clear native gel electrophoresis (CNE) of these isolated membrane fractions gave rise to pigmented bands containing the peripheral light-harvesting 2 (LH2) antenna and the reaction center-light-harvesting 1 (RC-LH1) core complex, together with a full array of other ICM proteins, which were subjected to proteomic analysis. Proteomic analysis of the gel bands from chromatophores revealed developmental changes including increasing levels of the LH2 complex as ICM development proceeded, as well as a large array of other associated proteins including high spectral counts for the F1FO ATP synthase subunits, given the inability to detect this coupling factor, as well as the more abundant cytochrome bc1 complex by atomic force microscopy (AFM). Significant levels of general membrane assembly factors were encountered, as well as high counts for RSP6124, a protein of unknown function

  15. Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function.

    PubMed

    Prunier, Julien; Verta, Jukka-Pekka; MacKay, John J

    2016-01-01

    Conifers have been understudied at the genomic level despite their worldwide ecological and economic importance but the situation is rapidly changing with the development of next generation sequencing (NGS) technologies. With NGS, genomics research has simultaneously gained in speed, magnitude and scope. In just a few years, genomes of 20-24 gigabases have been sequenced for several conifers, with several others expected in the near future. Biological insights have resulted from recent sequencing initiatives as well as genetic mapping, gene expression profiling and gene discovery research over nearly two decades. We review the knowledge arising from conifer genomics research emphasizing genome evolution and the genomic basis of adaptation, and outline emerging questions and knowledge gaps. We discuss future directions in three areas with potential inputs from NGS technologies: the evolutionary impacts of adaptation in conifers based on the adaptation-by-speciation model; the contributions of genetic variability of gene expression in adaptation; and the development of a broader understanding of genetic diversity and its impacts on genome function. These research directions promise to sustain research aimed at addressing the emerging challenges of adaptation that face conifer trees.

  16. Functional genomics identifies drivers of medulloblastoma dissemination.

    PubMed

    Mumert, Michael; Dubuc, Adrian; Wu, Xiaochong; Northcott, Paul A; Chin, Steven S; Pedone, Carolyn A; Taylor, Michael D; Fults, Daniel W

    2012-10-01

    Medulloblastomas are malignant brain tumors that arise in the cerebellum in children and disseminate via the cerebrospinal fluid to the leptomeningeal spaces of the brain and spinal cord. Challenged by the poor prognosis for patients with metastatic dissemination, pediatric oncologists have developed aggressive treatment protocols, combining surgery, craniospinal radiation, and high-dose chemotherapy, that often cause disabling neurotoxic effects in long-term survivors. Insights into the genetic control of medulloblastoma dissemination have come from transposon insertion mutagenesis studies. Mobilizing the Sleeping Beauty transposon in cerebellar neural progenitor cells caused widespread dissemination of typically nonmetastatic medulloblastomas in Patched(+/-) mice, in which Shh signaling is hyperactive. Candidate metastasis genes were identified by sequencing the insertion sites and then mapping these sequences back to the mouse genome. To determine whether genes located at transposon insertion sites directly caused medulloblastomas to disseminate, we overexpressed candidate genes in Nestin(+) neural progenitors in the cerebella of mice by retroviral transfer in combination with Shh. We show here that ectopic expression of Eras, Lhx1, Ccrk, and Akt shifted the in vivo growth characteristics of Shh-induced medulloblastomas from a localized pattern to a disseminated pattern in which tumor cells seeded the leptomeningeal spaces of the brain and spinal cord. PMID:22875024

  17. Recombination between defective tombusvirus RNAs generates functional hybrid genomes

    SciTech Connect

    White, K.A.; Morris, T.J.

    1994-04-26

    The tombusviruses represent a group of small icosahedral plant viruses that contain monopartite positive-sense RNA genomes. Tombusviruses are able to generate small replicating deletion mutants of their genomes (i.e., defective interfering RNAs) during infections via RNA recombination and/or rearrangement. To further study the process of RNA recombination and to determine whether tombusviruses were capable of trans-recombination, protoplasts were coinoculated with in vitro-generated transcripts of a nonreplicating 3{prime}-truncated genomic RNA of cucumber necrosis tombusvirus and either replicative or replication-defective DI RNAs of tomato bushy stunt tombusvirus. After 48-hr incubation, two dominant replicative chimeric recombinant viral RNA populations were detected that contained various large contiguous 5{prime} segments of the cucumber necrosis tombusvirus genomic RNA fused to 3{prime}-terminal regions of the tomato bushy stunt tombusvirus defective interfering RNA. Some of the larger chimeric recombinants formed in protoplasts were able to systemically infect plants and induce wild-type symptoms. In addition, a functional chimeric genome was generated in planta after direct coinoculation of whole plants with the defective RNA components. These results indicate that (i) RNA recombination can occur relatively efficiently in single-cell infections, (ii) trans-recombination can occur with nonreplicating viral RNA components, and (iii) functional chimeric genomes can be generated via recombination. Possible mechanisms for the formation of the recombinants are proposed, and evolutionary implications are discussed.

  18. The Escherichia coli Proteome: Past, Present, and Future Prospects†

    PubMed Central

    Han, Mee-Jung; Lee, Sang Yup

    2006-01-01

    Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308

  19. Proteomics research in India: an update.

    PubMed

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-01

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India.

  20. Proteomics research in India: an update.

    PubMed

    Reddy, Panga Jaipal; Atak, Apurva; Ghantasala, Saicharan; Kumar, Saurabh; Gupta, Shabarni; Prasad, T S Keshava; Zingde, Surekha M; Srivastava, Sanjeeva

    2015-09-01

    After a successful completion of the Human Genome Project, deciphering the mystery surrounding the human proteome posed a major challenge. Despite not being largely involved in the Human Genome Project, the Indian scientific community contributed towards proteomic research along with the global community. Currently, more than 76 research/academic institutes and nearly 145 research labs are involved in core proteomic research across India. The Indian researchers have been major contributors in drafting the "human proteome map" along with international efforts. In addition to this, virtual proteomics labs, proteomics courses and remote triggered proteomics labs have helped to overcome the limitations of proteomics education posed due to expensive lab infrastructure. The establishment of Proteomics Society, India (PSI) has created a platform for the Indian proteomic researchers to share ideas, research collaborations and conduct annual conferences and workshops. Indian proteomic research is really moving forward with the global proteomics community in a quest to solve the mysteries of proteomics. A draft map of the human proteome enhances the enthusiasm among intellectuals to promote proteomic research in India to the world.This article is part of a Special Issue entitled: Proteomics in India. PMID:25868663

  1. Platelet proteomics.

    PubMed

    Zufferey, Anne; Fontana, Pierre; Reny, Jean-Luc; Nolli, Severine; Sanchez, Jean-Charles

    2012-01-01

    Platelets are small cell fragments, produced by megakaryocytes, in the bone marrow. They play an important role in hemostasis and diverse thrombotic disorders. They are therefore primary targets of antithrombotic therapies. They are implicated in several pathophysiological pathways, such as inflammation or wound repair. In blood circulation, platelets are activated by several pathways including subendothelial matrix and thrombin, triggering the formation of the platelet plug. Studying their proteome is a powerful approach to understand their biology and function. However, particular attention must be paid to different experimental parameters, such as platelet quality and purity. Several technologies are involved during the platelet proteome processing, yielding information on protein identification, characterization, localization, and quantification. Recent technical improvements in proteomics combined with inter-disciplinary strategies, such as metabolomic, transcriptomics, and bioinformatics, will help to understand platelets biological mechanisms. Therefore, a comprehensive analysis of the platelet proteome under different environmental conditions may contribute to elucidate complex processes relevant to platelet function regarding bleeding disorders or platelet hyperreactivity and identify new targets for antiplatelet therapy.

  2. Assessing the clinical utility of cancer genomic and proteomic data across tumor types.

    PubMed

    Yuan, Yuan; Van Allen, Eliezer M; Omberg, Larsson; Wagle, Nikhil; Amin-Mansour, Ali; Sokolov, Artem; Byers, Lauren A; Xu, Yanxun; Hess, Kenneth R; Diao, Lixia; Han, Leng; Huang, Xuelin; Lawrence, Michael S; Weinstein, John N; Stuart, Josh M; Mills, Gordon B; Garraway, Levi A; Margolin, Adam A; Getz, Gad; Liang, Han

    2014-07-01

    Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, microRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We find that incorporating molecular data with clinical variables yields statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2-23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data.

  3. Proteome Studies of Filamentous Fungi

    SciTech Connect

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.

  4. From Genetics to Functional Genomics: Improvement in Drought Signaling and Tolerance in Wheat

    PubMed Central

    Budak, Hikmet; Hussain, Babar; Khan, Zaeema; Ozturk, Neslihan Z.; Ullah, Naimat

    2015-01-01

    Drought being a yield limiting factor has become a major threat to international food security. It is a complex trait and drought tolerance response is carried out by various genes, transcription factors (TFs), microRNAs (miRNAs), hormones, proteins, co-factors, ions, and metabolites. This complexity has limited the development of wheat cultivars for drought tolerance by classical breeding. However, attempts have been made to fill the lost genetic diversity by crossing wheat with wild wheat relatives. In recent years, several molecular markers including single nucleotide polymorphisms (SNPs) and quantitative trait loci (QTLs) associated with genes for drought signaling pathways have been reported. Screening of large wheat collections by marker assisted selection (MAS) and transformation of wheat with different genes/TFs has improved drought signaling pathways and tolerance. Several miRNAs also provide drought tolerance to wheat by regulating various TFs/genes. Emergence of OMICS techniques including transcriptomics, proteomics, metabolomics, and ionomics has helped to identify and characterize the genes, proteins, metabolites, and ions involved in drought signaling pathways. Together, all these efforts helped in understanding the complex drought tolerance mechanism. Here, we have reviewed the advances in wide hybridization, MAS, QTL mapping, miRNAs, transgenic technique, genome editing system, and above mentioned functional genomics tools for identification and utility of signaling molecules for improvement in wheat drought tolerance. PMID:26635838

  5. Jatropha curcas, a biofuel crop: Functional genomics for understanding metabolic pathways and genetic improvement

    PubMed Central

    Maghuly, Fatemeh; Laimer, Margit

    2013-01-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement. PMID:24092674

  6. Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine.

    PubMed

    Montezano, Daniel; Meek, Laura; Gupta, Rashmi; Bermudez, Luiz E; Bermudez, José C M

    2015-01-01

    We present a study of the metabolism of the Mycobacterium tuberculosis after exposure to antibiotics using proteomics data and flux balance analysis (FBA). The use of FBA to study prokaryotic organisms is well-established and allows insights into the metabolic pathways chosen by the organisms under different environmental conditions. To apply FBA a specific objective function must be selected that represents the metabolic goal of the organism. FBA estimates the metabolism of the cell by linear programming constrained by the stoichiometry of the reactions in an in silico metabolic model of the organism. It is assumed that the metabolism of the organism works towards the specified objective function. A common objective is the maximization of biomass. However, this goal is not suitable for situations when the bacterium is exposed to antibiotics, as the goal of organisms in these cases is survival and not necessarily optimal growth. In this paper we propose a new approach for defining the FBA objective function in studies when the bacterium is under stress. The function is defined based on protein expression data. The proposed methodology is applied to the case when the bacterium is exposed to the drug mefloquine, but can be easily extended to other organisms, conditions or drugs. We compare our method with an alternative method that uses experimental data for adjusting flux constraints. We perform comparisons in terms of essential enzymes and agreement using enzyme abundances. Results indicate that using proteomics data to define FBA objective functions yields less essential reactions with zero flux and lower error rates in prediction accuracy. With flux variability analysis we observe that overall variability due to alternate optima is reduced with the incorporation of proteomics data. We believe that incorporating proteomics data in the objective function used in FBA may help obtain metabolic flux representations that better support experimentally observed features

  7. Pre-fractionation strategies to resolve pea (Pisum sativum) sub-proteomes

    PubMed Central

    Meisrimler, Claudia-Nicole; Menckhoff, Ljiljana; Kukavica, Biljana M.; Lüthje, Sabine

    2015-01-01

    Legumes are important crop plants and pea (Pisum sativum L.) has been investigated as a model with respect to several physiological aspects. The sequencing of the pea genome has not been completed. Therefore, proteomic approaches are currently limited. Nevertheless, the increasing numbers of available EST-databases as well as the high homology of the pea and medicago genome (Medicago truncatula Gaertner) allow the successful identification of proteins. Due to the un-sequenced pea genome, pre-fractionation approaches have been used in pea proteomic surveys in the past. Aside from a number of selective proteome studies on crude extracts and the chloroplast, few studies have targeted other components such as the pea secretome, an important sub-proteome of interest due to its role in abiotic and biotic stress processes. The secretome itself can be further divided into different sub-proteomes (plasma membrane, apoplast, cell wall proteins). Cell fractionation in combination with different gel-electrophoresis, chromatography methods and protein identification by mass spectrometry are important partners to gain insight into pea sub-proteomes, post-translational modifications and protein functions. Overall, pea proteomics needs to link numerous existing physiological and biochemical data to gain further insight into adaptation processes, which play important roles in field applications. Future developments and directions in pea proteomics are discussed. PMID:26539198

  8. Functional proteomics reveal the effect of Salvia miltiorrhiza aqueous extract against vascular atherosclerotic lesions.

    PubMed

    Hung, Yu-Chiang; Wang, Pei-Wen; Pan, Tai-Long

    2010-06-01

    Salvia miltiorrhiza is a Chinese herb widely used for cardiovascular disorder regimens, yet little is known about the cellular mechanisms that contribute to attenuated growth of smooth muscle cells (SMCs) under oxidative stress such as homocysteine (Hcy) treatment. As anticipated, a low dose (0.015 mg/mL) of S.miltiorrhiza aqueous extract (SMAE) significantly inhibited (>60%) the growth of a rat smooth muscle cell line (A10) under Hcy stimulation and the intracellular reactive oxygen species (ROS) concentration obviously decreased after SMAE treatment in terms of reducing p47(phox) translocation and increasing catalase activity. Signaling profile suggests that SMAE inhibited Hcy-induced A10 cell growth via the PKC/MAPK-dependent pathway. Two-dimensional electrophoresis (2-DE) coupled with mass spectrometry revealed statistically significant changes in the intensity of 14 proteins in response to Hcy and Hcy/SMAE. Meanwhile, SMAE attenuated carbonyl-modification of specific cytoskeleton and chaperone proteins leading to cell type transformation. Moreover, a network analysis using MetaCore shed more light on the molecular basis associated with SMAE efficacy. SMAE exerts its protective effect through the scavenging of ROS and subsequent modulation of protein carbonylation to inhibit cell proliferation. These signature networks and functional proteomics highlighted herein may facilitate the evaluation of potential therapeutic targets and elucidate novel mechanisms through which protein functions can be regulated by the redox status.

  9. Functional genomics of tomato: opportunities and challenges in post-genome NGS era.

    PubMed

    Kumar, Rahul; Khurana, Ashima

    2014-12-01

    The Tomato Genome Sequencing Project represented a landmark venture in the history of sequencing projects where both Sanger's and next-generation sequencing (NGS) technologies were employed, and a highly accurate and one of the best assembled plant genomes along with a draft of the wild relative, Solanum pimpinellifolium, were released in 2012. However, the functional potential of the major portion of this newly generated resource is still undefined. The very first challenge before scientists working on tomato functional biology is to exploit this high-quality reference sequence for tapping of the wealth of genetic variants for improving agronomic traits in cultivated tomatoes. The sequence data generated recently by 150 Tomato Genome Consortium would further uncover the natural alleles present in different tomato genotypes. Therefore, we found it relevant to have a fresh outlook on tomato functional genomics in the context of application of NGS technologies in its post-genome sequencing phase. Herein, we provide an overview how NGS technologies vis-a-vis available reference sequence have assisted each other for their mutual improvement and how their combined use could further facilitate the development of other 'omics' tools, required to propel the Solanaceae research. Additionally, we highlight the challenges associated with the application of these cutting-edge technologies.

  10. Functional genomics of tomato: opportunities and challenges in post-genome NGS era.

    PubMed

    Kumar, Rahul; Khurana, Ashima

    2014-12-01

    The Tomato Genome Sequencing Project represented a landmark venture in the history of sequencing projects where both Sanger's and next-generation sequencing (NGS) technologies were employed, and a highly accurate and one of the best assembled plant genomes along with a draft of the wild relative, Solanum pimpinellifolium, were released in 2012. However, the functional potential of the major portion of this newly generated resource is still undefined. The very first challenge before scientists working on tomato functional biology is to exploit this high-quality reference sequence for tapping of the wealth of genetic variants for improving agronomic traits in cultivated tomatoes. The sequence data generated recently by 150 Tomato Genome Consortium would further uncover the natural alleles present in different tomato genotypes. Therefore, we found it relevant to have a fresh outlook on tomato functional genomics in the context of application of NGS technologies in its post-genome sequencing phase. Herein, we provide an overview how NGS technologies vis-a-vis available reference sequence have assisted each other for their mutual improvement and how their combined use could further facilitate the development of other 'omics' tools, required to propel the Solanaceae research. Additionally, we highlight the challenges associated with the application of these cutting-edge technologies. PMID:25431420

  11. Genomic Functionalization: The Next Revolution In Biology

    SciTech Connect

    Anderson, Peter; Schoeniger, Joseph S.; Imbro, Paula M.

    2014-07-01

    We have implemented a ligand-alignment algorithm into our developed computational pipeline for identifying specificity-determining features (SDFs) in protein-ligand complexes. Given a set of protein-ligand complex structures, the algorithm aligns the complexes by ligand rather than by the C -RMSD or standard approach, providing a single reference frame for extracting SDFs. We anticipate that this ligand-alignment capability will be highly useful for protein function prediction. We already have a database containing > 20 K ligand-protein complex crystal structures taken from the Protein Data Bank. By aligning these proteins to single reference frames using ligand alignment, we can submit the complexes to our pipeline for SDF extraction. The SDFs derived from this training procedure can be used as thumbprints that are hallmarks of individual enzyme classes. These SDF thumbprints may then serve as guides to the prediction of function of new unknown proteins.

  12. An Italian functional genomic resource for Medicago truncatula

    PubMed Central

    Porceddu, Andrea; Panara, Francesco; Calderini, Ornella; Molinari, Lorna; Taviani, Paola; Lanfaloni, Luisa; Scotti, Carla; Carelli, Maria; Scaramelli, Laura; Bruschi, Gianluca; Cosson, Viviane; Ratet, Pascal; de Larembergue, Henri; Duc, Gerard; Piano, Efisio; Arcioni, Sergio

    2008-01-01

    Background Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes. Findings Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States. PMID:19077311

  13. The use of proteomics to study infectious diseases.

    PubMed

    List, E O; Berryman, D E; Bower, B; Sackmann-Sala, L; Gosney, E; Ding, J; Okada, S; Kopchick, J J

    2008-03-01

    Technology surrounding genomics, or the study of an organism's genome and its gene use, has advanced rapidly resulting in an abundance of readily available genomic data. Although genomics is extremely valuable, proteins are ultimately responsible for controlling most aspects of cellular function. The field of proteomics, or the study of the full array of proteins produced by an organism, has become the premier arena for the identification and characterization of proteins. Yet the task of characterizing a proteomic profile is more complex, in part because many unique proteins can be produced by the same gene product and because proteins have more diverse chemical structures making sequencing and identification more difficult. Proteomic profiles of a particular organism, tissue or cell are influenced by a variety of environmental stimuli, including those brought on by infectious disease. The intent of this review is to highlight applications of proteomics used in the study of pathogenesis, etiology and pathology of infectious disorders. While many infectious agents have been the target of proteomic studies, this review will focus on those infectious diseases which rank among the highest in worldwide mortalities, such as HIV/AIDS, tuberculosis, malaria, measles, and hepatitis. PMID:18473905

  14. Genomic and Proteomic Profiles Reveal the Association of Gelsolin to TP53 Status and Bladder Cancer Progression

    PubMed Central

    Sanchez-Carbayo, Marta; Socci, Nicholas D.; Richstone, Lee; Corton, Marta; Behrendt, Nille; Wulkfuhle, Julia; Bochner, Bernard; Petricoin, Emmanuel; Cordon-Cardo, Carlos

    2007-01-01

    Bladder cancer transformation and immortalization require the inactivation of key regulatory genes, including TP53. Genotyping of a large cohort of bladder cancer patients (n = 256) using the TP53 GeneChip showed mutations in 103 cases (40.2%), the majority of them mapping to the DNA-binding core domain. TP53 mutation status was significantly associated with tumor stage (P = 0.0001) and overall survival for patients with advanced disease (P = 0.01). Transcript profiling using oligonucleotide arrays was performed on a subset of these cases (n = 46). Supervised analyses identified genes differentially expressed between invasive bladder tumors with wild-type (n = 24) and mutated TP53 (n = 22). Pathway analyses of top-ranked genes supported the central role of TP53 in the functional network of such gene patterns. A proteomic strategy using reverse phase arrays with protein extracts of bladder cancer cell lines validated the association of identified differentially expressed genes, such as gelsolin, to TP53 status. Immunohistochemistry on tissue microarrays (n = 294) revealed that gelsolin was associated with tumor stage and overall survival, correlating positively with TP53 status in a subset of these patients. This study further reveals that TP53 mutations are frequent events in bladder cancer progression and identified gelsolin related to TP53 status, tumor staging, and clinical outcome by independent high-throughput strategies. PMID:17982131

  15. Functional genomics of Buchnera and the ecology of aphid hosts.

    PubMed

    Moran, Nancy A; Degnan, Patrick H

    2006-04-01

    In many animal groups, mutualistic bacterial symbionts play a central role in host ecology, by provisioning rare nutrients and thus enabling specialization on restricted diets. Among such symbionts, genomic studies are most advanced for Buchnera, the obligate symbiont of aphids, which feed on phloem sap. The contents of the highly reduced Buchnera genomes have verified its role in aphid nutrition. Comparisons of Buchnera gene sets indicate ongoing, irreversible gene losses that are expected to affect aphid nutritional needs. Furthermore, almost all regulatory genes have been eliminated, raising the question of whether and how gene expression responds to environmental change. Microarray studies on genome-wide expression indicate that Buchnera has evolved some constitutive changes in gene expression: homologues of heat stress genes have elevated transcript levels in Buchnera (relative to other bacteria) even in the absence of stress. Additionally, the microarray results indicate that responses to heat stress and to amino acid availability are both few and modest. Observed responses are consistent with control by the few ancestral regulators retained in the genome. Initial studies on the role of host genes in mediating the symbiosis reveal distinctive expression patterns in host cells harbouring Buchnera. In the near future, a complete genome of pea aphid will accelerate progress in understanding the functional integration of aphid and Buchnera genomes. Although information for other insect symbioses is relatively limited, studies on symbionts of carpenter ants and tsetse flies indicate many similarities to Buchnera. PMID:16626452

  16. Proteomic analysis of the SIRT6 interactome: novel links to genome maintenance and cellular stress signaling.

    PubMed

    Simeoni, Federica; Tasselli, Luisa; Tanaka, Shinji; Villanova, Lidia; Hayashi, Mayumi; Kubota, Kazuishi; Isono, Fujio; Garcia, Benjamin A; Michishita-Kioi, Eriko; Chua, Katrin F

    2013-01-01

    The chromatin regulatory factor SIRT6 plays pivotal roles in metabolism, tumor suppression, and aging biology. Despite the fundamental roles of SIRT6 in physiology and disease, only a handful of molecular and functional interactions of SIRT6 have been reported. Here, we characterize the SIRT6 interactome and identify 80+ novel SIRT6-interacting proteins. The discovery of these SIRT6-associations considerably expands knowledge of the SIRT6 interaction network, and suggests previously unknown functional interactions of SIRT6 in fundamental cellular processes. These include chromatin remodeling, mitotic chromosome segregation, protein homeostasis, and transcriptional elongation. Extended analysis of the SIRT6 interaction with G3BP1, a master stress response factor, uncovers an unexpected role and mechanism of SIRT6 in regulating stress granule assembly and cellular stress resistance.

  17. A predicted functional gene network for the plant pathogen Phytophthora infestans as a framework for genomic biology

    PubMed Central

    2013-01-01

    Background Associations between proteins are essential to understand cell biology. While this complex interplay between proteins has been studied in model organisms, it has not yet been described for the oomycete late blight pathogen Phytophthora infestans. Results We present an integrative probabilistic functional gene network that provides associations for 37 percent of the predicted P. infestans proteome. Our method unifies available genomic, transcriptomic and comparative genomic data into a single comprehensive network using a Bayesian approach. Enrichment of proteins residing in the same or related subcellular localization validates the biological coherence of our predictions. The network serves as a framework to query existing genomic data using network-based methods, which thus far was not possible in Phytophthora. We used the network to study the set of interacting proteins that are encoded by genes co-expressed during sporulation. This identified potential novel roles for proteins in spore formation through their links to proteins known to be involved in this process such as the phosphatase Cdc14. Conclusions The functional association network represents a novel genome-wide data source for P. infestans that also acts as a framework to interrogate other system-wide data. In both capacities it will improve our understanding of the complex biology of P. infestans and related oomycete pathogens. PMID:23865555

  18. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    PubMed Central

    2010-01-01

    Background Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency. PMID:20067623

  19. CAPER: a chromosome-assembled human proteome browsER.

    PubMed

    Guo, Feifei; Wang, Dan; Liu, Zhongyang; Lu, Liang; Zhang, Wei; Sun, Haiyan; Zhang, Hongxing; Ma, Jie; Wu, Songfeng; Li, Ning; Jiang, Ying; Zhu, Weimin; Qin, Jun; Xu, Ping; Li, Dong; He, Fuchu

    2013-01-01

    High-throughput mass spectrometry and antibody-based experiments have begun to produce a large amount of proteomic data sets. Chromosome-based visualization of these data sets and their annotations can help effectively integrate, organize, and analyze them. Therefore, we developed a web-based, user-friendly Chromosome-Assembled human Proteome browsER (CAPER). To display proteomic data sets and related annotations comprehensively, CAPER employs two distinct visualization strategies: track-view for the sequence/site information and the correspondence between proteome, transcriptome, genome, and chromosome and heatmap-view for the qualitative and quantitative functional annotations. CAPER supports data browsing at multiple scales through Google Map-like smooth navigation, zooming, and positioning with chromosomes as the reference coordinate. Both track-view and heatmap-view can mutually switch, providing a high-quality user interface. Taken together, CAPER will greatly facilitate the complete annotation and functional interpretation of the human genome by proteomic approaches, thereby making a significant contribution to the Chromosome-Centric Human Proteome Project and even the human physiology/pathology research. CAPER can be accessed at http://www.bprc.ac.cn/CAPE .

  20. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, we performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and...

  1. Using proteomics to study sexual reproduction in angiosperms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While a relative latecomer to the post-genomics era of functional biology, the application of mass spectrometry-based proteomic analysis has increased exponentially over the past 10 years. Some of this increase is the result of transition of chemists physicists, and mathematicians to the study of ...

  2. Functional annotation from the genome sequence of the giant panda.

    PubMed

    Huo, Tong; Zhang, Yinjie; Lin, Jianping

    2012-08-01

    The giant panda is one of the most critically endangered species due to the fragmentation and loss of its habitat. Studying the functions of proteins in this animal, especially specific trait-related proteins, is therefore necessary to protect the species. In this work, the functions of these proteins were investigated using the genome sequence of the giant panda. Data on 21,001 proteins and their functions were stored in the Giant Panda Protein Database, in which the proteins were divided into two groups: 20,179 proteins whose functions can be predicted by GeneScan formed the known-function group, whereas 822 proteins whose functions cannot be predicted by GeneScan comprised the unknown-function group. For the known-function group, we further classified the proteins by molecular function, biological process, cellular component, and tissue specificity. For the unknown-function group, we developed a strategy in which the proteins were filtered by cross-Blast to identify panda-specific proteins under the assumption that proteins related to the panda-specific traits in the unknown-function group exist. After this filtering procedure, we identified 32 proteins (2 of which are membrane proteins) specific to the giant panda genome as compared against the dog and horse genomes. Based on their amino acid sequences, these 32 proteins were further analyzed by functional classification using SVM-Prot, motif prediction using MyHits, and interacting protein prediction using the Database of Interacting Proteins. Nineteen proteins were predicted to be zinc-binding proteins, thus affecting the activities of nucleic acids. The 32 panda-specific proteins will be further investigated by structural and functional analysis.

  3. Global Proteomic Analysis of Functional Compartments in Immature Avian Follicles Using Laser Microdissection Coupled to LC-MS/MS

    PubMed Central

    Nepomuceno, Angelito I.; Muddiman, David C.; Petitte, James N.

    2015-01-01

    Laser microdissection (LMD) was utilized for the separation of the yolk, follicular wall and surrounding stromal cells of small white follicles (SWF) obtained from reproductively active domestic fowl. Herein, we provide an in-situ proteomics based approach to studying follicular development through the use of LMD and mass spectrometry. This study resulted in a total of 2,889 proteins identified from the three specific isolated compartments. White yolk from the smallest avian follicles resulted in the identification of 1,984 proteins, while isolated follicular wall and ovarian stroma yielded 2,470 and 2,456 proteins, respectively. GO annotations highlighted the functional differences between the compartments. Among the three compartments examined, the relative abundance of vitellogenins, steroidogenic enzymes, anti-Mullerian hormone, transcription factors, and proteins involved in retinoic acid receptors/retinoic acid synthesis, transcription factors and cell surface receptors such as EGFR and their associated signaling pathways reflected known cellular function of the ovary. This study has provided a global proteome for SWF, white yolk and ovarian stroma of the avian ovary that can be used as a baseline for future studies and verifies that the coupling of LMD with proteomic analysis can be used to evaluate proteins from small, physiologically functional compartments of complex tissue. PMID:26211554

  4. Proteomics profiling reveals novel proteins and functions of the plant stigma exudate

    PubMed Central

    Rejón, Juan David; Delalande, François; Castro, Antonio Jesús

    2013-01-01

    Proteomic analysis of the stigmatic exudate of Lilium longiflorum and Olea europaea led to the identification of 51 and 57 proteins, respectively, most of which are described for the first time in this secreted fluid. These results indicate that the stigmatic exudate is an extracellular environment metabolically active, participating in at least 80 different biological processes and 97 molecular functions. The stigma exudate showed a markedly catabolic profile and appeared to possess the enzyme machinery necessary to degrade large polysaccharides and lipids secreted by papillae to smaller units, allowing their incorporation into the pollen tube during pollination. It may also regulate pollen-tube growth in the pistil through the selective degradation of tube-wall components. Furthermore, some secreted proteins were involved in pollen-tube adhesion and orientation, as well as in programmed cell death of the papillae cells in response to either compatible pollination or incompatible pollen rejection. Finally, the results also revealed a putative cross-talk between genetic programmes regulating stress/defence and pollination responses in the stigma. PMID:24151302

  5. CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis

    PubMed Central

    Ochoa-Montaño, Bernardo; Mohan, Nishita; Blundell, Tom L.

    2015-01-01

    Tuberculosis kills more than a million people annually and presents increasingly high levels of resistance against current first line drugs. Structural information about Mycobacterium tuberculosis (Mtb) proteins is a valuable asset for the development of novel drugs and for understanding the biology of the bacterium; however, only about 10% of the ∼4000 proteins have had their structures determined experimentally. The CHOPIN database assigns structural domains and generates homology models for 2911 sequences, corresponding to ∼73% of the proteome. A sophisticated pipeline allows multiple models to be created using conformational states characteristic of different oligomeric states and ligand binding, such that the models reflect various functional states of the proteins. Additionally, CHOPIN includes structural analyses of mutations potentially associated with drug resistance. Results are made available at the web interface, which also serves as an automatically updated repository of all published Mtb experimental structures. Its RESTful interface allows direct and flexible access to structures and metadata via intuitive URLs, enabling easy programmatic use of the models. Database URL: http://structure.bioc.cam.ac.uk/chopin PMID:25833954

  6. CHOPIN: a web resource for the structural and functional proteome of Mycobacterium tuberculosis.

    PubMed

    Ochoa-Montaño, Bernardo; Mohan, Nishita; Blundell, Tom L

    2015-01-01

    Tuberculosis kills more than a million people annually and presents increasingly high levels of resistance against current first line drugs. Structural information about Mycobacterium tuberculosis (Mtb) proteins is a valuable asset for the development of novel drugs and for understanding the biology of the bacterium; however, only about 10% of the ∼4000 proteins have had their structures determined experimentally. The CHOPIN database assigns structural domains and generates homology models for 2911 sequences, corresponding to ∼73% of the proteome. A sophisticated pipeline allows multiple models to be created using conformational states characteristic of different oligomeric states and ligand binding, such that the models reflect various functional states of the proteins. Additionally, CHOPIN includes structural analyses of mutations potentially associated with drug resistance. Results are made available at the web interface, which also serves as an automatically updated repository of all published Mtb experimental structures. Its RESTful interface allows direct and flexible access to structures and metadata via intuitive URLs, enabling easy programmatic use of the models.

  7. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.

    PubMed

    Chu, Pu; Chen, Huhui; Zhou, Yuliang; Li, Yin; Ding, Yu; Jiang, Liwen; Tsang, Edward W T; Wu, Keqiang; Huang, Shangzhi

    2012-06-01

    Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor.

  8. Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function.

    PubMed

    Worah, Kuntal; Mathan, Till S M; Vu Manh, Thien Phong; Keerthikumar, Shivakumar; Schreibelt, Gerty; Tel, Jurjen; Duiveman-de Boer, Tjitske; Sköld, Annette E; van Spriel, Annemiek B; de Vries, I Jolanda M; Huynen, Martijn A; Wessels, Hans J; Gloerich, Jolein; Dalod, Marc; Lasonder, Edwin; Figdor, Carl G; Buschow, Sonja I

    2016-09-13

    Dendritic cells (DCs) play a key role in orchestrating adaptive immune responses. In human blood, three distinct subsets exist: plasmacytoid DCs (pDCs) and BDCA3+ and CD1c+ myeloid DCs. In addition, a DC-like CD16+ monocyte has been reported. Although RNA-expression profiles have been previously compared, protein expression data may provide a different picture. Here, we exploited label-free quantitative mass spectrometry to compare and identify differences in primary human DC subset proteins. Moreover, we integrated these proteomic data with existing mRNA data to derive robust cell-specific expression signatures with more than 400 differentially expressed proteins between subsets, forming a solid basis for investigation of subset-specific functions. We illustrated this by extracting subset identification markers and by demonstrating that pDCs lack caspase-1 and only express low levels of other inflammasome-related proteins. In accordance, pDCs were incapable of interleukin (IL)-1β secretion in response to ATP. PMID:27626665

  9. Casein kinase 1 proteomics reveal prohibitin 2 function in molecular clock.

    PubMed

    Kategaya, Lorna S; Hilliard, Aisha; Zhang, Louying; Asara, John M; Ptáček, Louis J; Fu, Ying-Hui

    2012-01-01

    Throughout the day, clock proteins synchronize changes in animal physiology (e.g., wakefulness and appetite) with external cues (e.g., daylight and food). In vertebrates, both casein kinase 1 delta and epsilon (CK1δ and CK1ε) regulate these circadian changes by phosphorylating other core clock proteins. In addition, CK1 can regulate circadian-dependent transcription in a non-catalytic manner, however, the mechanism is unknown. Furthermore, the extent of functional redundancy between these closely related kinases is debated. To further advance knowledge about CK1δ and CK1ε mechanisms of action in the biological clock, we first carried out proteomic analysis of both kinases in human cells. Next, we tested interesting candidates in a cell-based circadian readout which resulted in the discovery of PROHIBITIN 2 (PHB2) as a modulator of period length. Decreasing the expression of PHB2 increases circadian-driven transcription, thus revealing PHB2 acts as an inhibitor in the molecular clock. While stable binding of PHB2 to either kinase was not detected, knocking down CK1ε expression increases PHB2 protein levels and, unexpectedly, knocking down CK1δ decreases PHB2 transcript levels. Thus, isolating CK1 protein complexes led to the identification of PHB2 as an inhibitor of circadian transcription. Furthermore, we show that CK1δ and CK1ε differentially regulate the expression of PHB2.

  10. Functional specifications of an integrated proteomics information management and analysis platform.

    PubMed

    Tsiknakis, M; Grangeat, P; Binz, P-A; Potamias, G; Lisacek, F; Gerfault, L; Paulus, C; Manakanatas, D; Kritsotakis, V; Kondylakis, H; Perez, M; Plexousakis, D; Kaforou, S; Kafetzopoulos, D

    2007-01-01

    Detecting proteins in human blood holds the promise of a revolution in cancer diagnosis. Also, the ability to perform laboratory operations on small scales using miniaturized (lab-on-a-chip) devices has many benefits. Designing and fabricating such systems is extremely challenging, but physicists and engineers are beginning to construct such highly integrated and compact labs on chips with exciting functionality. This paper focuses on the presentation of the requirements of the information technology layer in such an integrated platform been developed in the LOCCANDIA project. LOCCANDIA is a Specific Targeted Research project (STREP) funded under the 6th Framework program of the EC. Its ultimate objective is to develop an innovative nano-technology based (lab-on-a-chip) platform for the medical-proeomics field. The paper presents the main engineering aspects, challenges and architecture for creating an Integrated Clinico-Proteomic Environment. The environment will be used to monitor and document the analysis and discovery chain and to allow the physician to interpret the digital spectrogram data delivered by the mass spectrometer, for diagnostic purposes. PMID:18003398

  11. Proteome research in food science.

    PubMed

    Pischetsrieder, Monika; Baeuerlein, Rainer

    2009-09-01

    The proteome is the totality of proteins present in a biological sample. In contrast to the static genome, the proteome is highly dynamic, influenced by the genome and many external factors, such as the state of development, tissue type, metabolic state, and various interactions. Thus, the proteome reflects very closely the biological (and chemical) processes occurring in a system. For proteome analysis, gel based and shotgun methods are most widely applied. Because of the potential to generate a systematic view of protein composition and biological as well as chemical interactions, the application of proteome analysis in food science is steadily growing. This tutorial review introduces several fields in food science, where proteomics has been successfully applied: analysis of food composition, safety assessment of genetically modified food, the search for marker proteins for food authentication, identification of food allergens, systematic analysis of the physiological activity of food, analysis of the effects of processing on food proteins and the improvement of food quality.

  12. Elucidating the Molecular Basis and Regulation of Chromium (VI) Reduction by Shewanella oneidensis MR-1 Using Biochemical, Genomic, and Proteomic Approaches

    SciTech Connect

    Hettich, Robert L.

    2006-10-30

    Although microbial metal reduction has been investigated intensively from physiological and biochemical perspectives, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform, detoxify, or immobilize a wide array of heavy metals contaminating DOE-relevant environments. The major goal of this work is to elucidate the molecular components comprising the chromium(VI) response pathway, with an emphasis on components involved in Cr(VI) detoxification and the enzyme complex catalyzing the terminal step in Cr(VI) reduction by Shewanella oneidensis MR-1. We have identified and characterized (in the case of DNA-binding response regulator [SO2426] and a putative azoreductase [SO3585]) the genes and gene products involved in the molecular response of MR-1 to chromium(VI) stress using whole-genome sequence information for MR-1 and recently developed proteomic technology, in particular liquid chromatographymass spectrometry (LC-MS), in conjunction with conventional protein purification and characterization techniques. The proteome datasets were integrated with information from whole-genome expression arrays for S. oneidensis MR-1 (as illustrated in Figure 1). The genes and their encoded products identified in this study are of value in understanding metal reduction and bacterial resistance to metal toxicity and in developing effective metal immobilization strategies.

  13. Proteomic analysis of FUS interacting proteins provides insights into FUS function and its role in ALS.

    PubMed

    Kamelgarn, Marisa; Chen, Jing; Kuang, Lisha; Arenas, Alexandra; Zhai, Jianjun; Zhu, Haining; Gal, Jozsef

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease. Mutations in the Fused in Sarcoma/Translocated in Liposarcoma (FUS/TLS) gene cause a subset of familial ALS cases and are also implicated in sporadic ALS. FUS is typically localized to the nucleus. The ALS-related FUS mutations cause cytoplasmic mis-localization and the formation of stress granule-like structures. Abnormal cytoplasmic FUS localization was also found in a subset of frontotemporal dementia (FTLD) cases without FUS mutations. To better understand the function of FUS, we performed wild-type and mutant FUS pull-downs followed by proteomic identification of the interacting proteins. The FUS interacting partners we identified are involved in multiple pathways, including chromosomal organization, transcription, RNA splicing, RNA transport, localized translation, and stress response. FUS interacted with hnRNPA1 and Matrin-3, RNA binding proteins whose mutations were also reported to cause familial ALS, suggesting that hnRNPA1 and Matrin-3 may play common pathogenic roles with FUS. The FUS interactions displayed varied RNA dependence. Numerous FUS interacting partners that we identified are components of exosomes. We found that FUS itself was present in exosomes, suggesting that the secretion of FUS might contribute to the cell-to-cell spreading of FUS pathology. FUS interacting proteins were sequestered into the cytoplasmic mutant FUS inclusions that could lead to their mis-regulation or loss of function, contributing to ALS pathogenesis. Our results provide insights into the physiological functions of FUS as well as important pathways where mutant FUS can interfere with cellular processes and potentially contribute to the pathogenesis of ALS. PMID:27460707

  14. Two novel temperate bacteriophages co-existing in Aeromonas sp. ARM81 - characterization of their genomes, proteomes and DNA methyltransferases.

    PubMed

    Dziewit, Lukasz; Radlinska, Monika

    2016-08-01

    Aeromonas species are causative agents of a wide spectrum of diseases in animals and humans. Although these bacteria are commonly found in various environments, little is known about their phages. Thus far, only one temperate Aeromonas phage has been characterized. Whole-genome sequencing of an Aeromonas sp. strain ARM81 revealed the presence of two prophage clusters. One of them is integrated into the chromosome and the other was maintained as an extrachromosomal, linear plasmid-like prophage encoding a protelomerase. Both prophages were artificially and spontaneously inducible. We separately isolated both phages and compared their genomes with other known viruses. The novel phages show no similarity to the previously characterized Aeromonas phages and might represent new evolutionary lineages of viruses infecting Aeromonadaceae. Apart from the comparative genomic analyses of these phages, complemented with their structural and molecular characterization, a functional analysis of four DNA methyltransferases encoded by these viruses was conducted. One of the investigated N6-adenine-modifying enzymes shares sequence specificity with a Dam-like methyltransferase of its bacterial host, while another one is non-specific, as it catalyzes adenine methylation in various sequence contexts. The presented results shed new light on the diversity of Aeromonas temperate phages.

  15. Functional genomics and its implications for molecular medicine.

    PubMed

    Broeckel, Ulrich; Maresso, Karen; Kugathasan, Subra

    2006-10-01

    Technological development in genetics and genomics provides unprecedented possibilities to identify the underlying molecular basic of many common diseases. With the availability of the human genome sequence and growing information on the most frequent DNA variations combined with the molecular analysis on the RNA expression and protein level, diseases might be characterized in the future at the molecular level. Describing gene function anf the specific role of DNA, RNA, and proteins in the disease process provides novel diagnosis tools and treatment. Ultimately how the unique genetic signature of an individual influences the risk and prognosis of disease will be the basis for individualized medicine in the years to come.

  16. Quantitative proteomics in Giardia duodenalis-Achievements and challenges.

    PubMed

    Emery, Samantha J; Lacey, Ernest; Haynes, Paul A

    2016-08-01

    Giardia duodenalis (syn. G. lamblia and G. intestinalis) is a protozoan parasite of vertebrates and a major contributor to the global burden of diarrheal diseases and gastroenteritis. The publication of multiple genome sequences in the G. duodenalis species complex has provided important insights into parasite biology, and made post-genomic technologies, including proteomics, significantly more accessible. The aims of proteomics are to identify and quantify proteins present in a cell, and assign functions to them within the context of dynamic biological systems. In Giardia, proteomics in the post-genomic era has transitioned from reliance on gel-based systems to utilisation of a diverse array of techniques based on bottom-up LC-MS/MS technologies. Together, these have generated crucial foundations for subcellular proteomes, elucidated intra- and inter-assemblage isolate variation, and identified pathways and markers in differentiation, host-parasite interactions and drug resistance. However, in Giardia, proteomics remains an emerging field, with considerable shortcomings evident from the published research. These include a bias towards assemblage A, a lack of emphasis on quantitative analytical techniques, and limited information on post-translational protein modifications. Additionally, there are multiple areas of research for which proteomic data is not available to add value to published transcriptomic data. The challenge of amalgamating data in the systems biology paradigm necessitates the further generation of large, high-quality quantitative datasets to accurately model parasite biology. This review surveys the current proteomic research available for Giardia and evaluates their technical and quantitative approaches, while contextualising their biological insights into parasite pathology, isolate variation and eukaryotic evolution. Finally, we propose areas of priority for the generation of future proteomic data to explore fundamental questions in Giardia

  17. Quantitative proteomics in Giardia duodenalis-Achievements and challenges.

    PubMed

    Emery, Samantha J; Lacey, Ernest; Haynes, Paul A

    2016-08-01

    Giardia duodenalis (syn. G. lamblia and G. intestinalis) is a protozoan parasite of vertebrates and a major contributor to the global burden of diarrheal diseases and gastroenteritis. The publication of multiple genome sequences in the G. duodenalis species complex has provided important insights into parasite biology, and made post-genomic technologies, including proteomics, significantly more accessible. The aims of proteomics are to identify and quantify proteins present in a cell, and assign functions to them within the context of dynamic biological systems. In Giardia, proteomics in the post-genomic era has transitioned from reliance on gel-based systems to utilisation of a diverse array of techniques based on bottom-up LC-MS/MS technologies. Together, these have generated crucial foundations for subcellular proteomes, elucidated intra- and inter-assemblage isolate variation, and identified pathways and markers in differentiation, host-parasite interactions and drug resistance. However, in Giardia, proteomics remains an emerging field, with considerable shortcomings evident from the published research. These include a bias towards assemblage A, a lack of emphasis on quantitative analytical techniques, and limited information on post-translational protein modifications. Additionally, there are multiple areas of research for which proteomic data is not available to add value to published transcriptomic data. The challenge of amalgamating data in the systems biology paradigm necessitates the further generation of large, high-quality quantitative datasets to accurately model parasite biology. This review surveys the current proteomic research available for Giardia and evaluates their technical and quantitative approaches, while contextualising their biological insights into parasite pathology, isolate variation and eukaryotic evolution. Finally, we propose areas of priority for the generation of future proteomic data to explore fundamental questions in Giardia

  18. Functional Status and Inflammation after Preseason Training Program in Professional and Recreational Soccer Players: a Proteomic Approach

    PubMed Central

    Martín-Sánchez, Francisco J.; Villalón, José María; Zamorano-León, José J.; Rosas, Luis Fernández; Proietti, Ricardo; Mateos-Caceres, Petra J.; González-Armengol, Juan J.; Villarroel, Pedro; Macaya, Carlos; López-Farré, Antonio J.

    2011-01-01

    The purpose of the study was to determine if an intensive pre- season training program modifies the inflammatory status in professional soccer players and if this inflammatory profile may be associated with the physical state. We compared plasma protein biomarkers, using proteomics, and the physiological state and cardiac function in 12 professional soccer players and 9 recreational soccer players. Reduced cardiac low frequency [LF] after the pre- season training program previous competition with respect to recreational soccer players was found. No differences were found in cardiac high frequency, cardiac high frequency/low frequency ratio, tension index and oxygen volume consumption. Alpha-1-antitrypsin isotype-3, fibrinogen-gamma isotypes-1, 2 and 3 and vitamin-D-binding protein isotype-1 were reduced in professionals players compared with those in recreational players. However, an increased content of alpha-1-antitrypsin isotype-6 and alpha-1-antichymotrypsin 1 and 4 were found in professional soccer players. Spearman’s analysis showed a positive correlation between LF and fibrinogen-gamma chain isotype 3; but LF was negatively correlated with alpha-antichymotrypsin isotype 4. Professional soccer players submitted to an intensive training showed differences in the content of plasma proteins associated with inflammatory/oxidative stress and thrombosis with respect to recreational soccer players. Proteomics analysis in combination with the analysis of cardiac function assessment may be useful to know more in depth molecular processes associated with sport and intensive exercise. Key points Proteomics allow us to find differences in the plasma protein content in sportsmen. Just after pre-season training program, professional soccer players showed lower content of circulating proteins associated with inflammation compared to recreational soccer players. Proteomic analysis in combination with the analysis of cardiac function may be useful to know more in depth

  19. PROTEOMER: A workflow-optimized laboratory information management system for 2-D electrophoresis-centered proteomics.

    PubMed

    Nebrich, Grit; Herrmann, Marion; Hartl, Daniela; Diedrich, Madeleine; Kreitler, Thomas; Wierling, Christoph; Klose, Joachim; Giavalisco, Patrick; Zabel, Claus; Mao, Lei

    2009-04-01

    In recent years proteomics became increasingly important to functional genomics. Although a large amount of data is generated by high throughput large-scale techniques, a connection of these mostly heterogeneous data from different analytical platforms and of different experiments is limited. Data mining procedures and algorithms are often insufficient to extract meaningful results from large datasets and therefore limit the exploitation of the generated biological information. In our proteomic core facility, which almost exclusively focuses on 2-DE/MS-based proteomics, we developed a proteomic database custom tailored to our needs aiming at connecting MS protein identification information to 2-DE derived protein expression profiles. The tools developed should not only enable an automatic evaluation of single experiments, but also link multiple 2-DE experiments with MS-data on different levels and thereby helping to create a comprehensive network of our proteomics data. Therefore the key feature of our "PROTEOMER" database is its high cross-referencing capacity, enabling integration of a wide range of experimental data. To illustrate the workflow and utility of the system, two practical examples are provided to demonstrate that proper data cross-referencing can transform information into biological knowledge. PMID:19259999

  20. Trans-Proteomic Pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics

    PubMed Central

    Deutsch, Eric W.; Mendoza, Luis; Shteynberg, David; Slagel, Joseph; Sun, Zhi; Moritz, Robert L.

    2015-01-01

    Democratization of genomics technologies has enabled the rapid determination of genotypes. More recently the democratization of comprehensive proteomics technologies is enabling the determination of the cellular phenotype and the molecular events that define its dynamic state. Core proteomic technologies include mass spectrometry to define protein sequence, protein:protein interactions, and protein post-translational modifications. Key enabling technologies for proteomics are bioinformatic pipelines to identify, quantitate, and summarize these events. The Trans-Proteomics Pipeline (TPP) is a robust open-source standardized data processing pipeline for large-scale reproducible quantitative mass spectrometry proteomics. It supports all major operating systems and instrument vendors via open data formats. Here we provide a review of the overall proteomics workflow supported by the TPP, its major tools, and how it can be used in its various modes from desktop to cloud computing. We describe new features for the TPP, including data visualization functionality. We conclude by describing some common perils that affect the analysis of tandem mass spectrometry datasets, as well as some major upcoming features. PMID:25631240

  1. Transcriptome and genome sequencing uncovers functional variation in humans

    PubMed Central

    Lappalainen, Tuuli; Sammeth, Michael; Friedländer, Marc R; ‘t Hoen, Peter AC; Monlong, Jean; Rivas, Manuel A; Gonzàlez-Porta, Mar; Kurbatova, Natalja; Griebel, Thasso; Ferreira, Pedro G; Barann, Matthias; Wieland, Thomas; Greger, Liliana; van Iterson, Maarten; Almlöf, Jonas; Ribeca, Paolo; Pulyakhina, Irina; Esser, Daniela; Giger, Thomas; Tikhonov, Andrew; Sultan, Marc; Bertier, Gabrielle; MacArthur, Daniel G; Lek, Monkol; Lizano, Esther; Buermans, Henk PJ; Padioleau, Ismael; Schwarzmayr, Thomas; Karlberg, Olof; Ongen, Halit; Kilpinen, Helena; Beltran, Sergi; Gut, Marta; Kahlem, Katja; Amstislavskiy, Vyacheslav; Stegle, Oliver; Pirinen, Matti; Montgomery, Stephen B; Donnelly, Peter; McCarthy, Mark I; Flicek, Paul; Strom, Tim M; Lehrach, Hans; Schreiber, Stefan; Sudbrak, Ralf; Carracedo, Ángel; Antonarakis, Stylianos E; Häsler, Robert; Syvänen, Ann-Christine; van Ommen, Gert-Jan; Brazma, Alvis; Meitinger, Thomas; Rosenstiel, Philip; Guigó, Roderic; Gut, Ivo G; Estivill, Xavier; Dermitzakis, Emmanouil T

    2013-01-01

    Summary Genome sequencing projects are discovering millions of genetic variants in humans, and interpretation of their functional effects is essential for understanding the genetic basis of variation in human traits. Here we report sequencing and deep analysis of mRNA and miRNA from lymphoblastoid cell lines of 462 individuals from the 1000 Genomes Project – the first uniformly processed RNA-seq data from multiple human populations with high-quality genome sequences. We discovered extremely widespread genetic variation affecting regulation of the majority of genes, with transcript structure and expression level variation being equally common but genetically largely independent. Our characterization of causal regulatory variation sheds light on cellular mechanisms of regulatory and loss-of-function variation, and allowed us to infer putative causal variants for dozens of disease-associated loci. Altogether, this study provides a deep understanding of the cellular mechanisms of transcriptome variation and of the landscape of functional variants in the human genome. PMID:24037378

  2. A Populus EST resource for plant functional genomics.

    PubMed

    Sterky, Fredrik; Bhalerao, Rupali R; Unneberg, Per; Segerman, Bo; Nilsson, Peter; Brunner, Amy M; Charbonnel-Campaa, Laurence; Lindvall, Jenny Jonsson; Tandre, Karolina; Strauss, Steven H; Sundberg, Björn; Gustafsson, Petter; Uhlén, Mathias; Bhalerao, Rishikesh P; Nilsson, Ove; Sandberg, Göran; Karlsson, Jan; Lundeberg, Joakim; Jansson, Stefan

    2004-09-21

    Trees present a life form of paramount importance for terrestrial ecosystems and human societies because of their ecological structure and physiological function and provision of energy and industrial materials. The genus Populus is the internationally accepted model for molecular tree biology. We have analyzed 102,019 Populus ESTs that clustered into 11,885 clusters and 12,759 singletons. We also provide >4,000 assembled full clone sequences to serve as a basis for the upcoming annotation of the Populus genome sequence. A public web-based EST database (POPULUSDB) provides digital expression profiles for 18 tissues that comprise the majority of differentiated organs. The coding content of Populus and Arabidopsis genomes shows very high similarity, indicating that differences between these annual and perennial angiosperm life forms result primarily from differences in gene regulation. The high similarity between Populus and Arabidopsis will allow studies of Populus to directly benefit from the detailed functional genomic information generated for Arabidopsis, enabling detailed insights into tree development and adaptation. These data will also valuable for functional genomic efforts in Arabidopsis.

  3. Beyond Drosophila: RNAi in vivo and functional genomics in insects.

    PubMed

    Bellés, Xavier

    2010-01-01

    The increasing availability of insect genomes has revealed a large number of genes with unknown functions and the resulting problem of how to discover these functions. The RNA interference (RNAi) technique, which generates loss-of-function phenotypes by depletion of a chosen transcript, can help to overcome this challenge. RNAi can unveil the functions of new genes, lead to the discovery of new functions for old genes, and find the genes for old functions. Moreover, the possibility of studying the functions of homologous genes in different species can allow comparisons of the genetic networks regulating a given function in different insect groups, thereby facilitating an evolutionary insight into developmental processes. RNAi also has drawbacks and obscure points, however, such as those related to differences in species sensitivity. Disentangling these differences is one of the main challenges in the RNAi field.

  4. Genomic islands predict functional adaptation in marine actinobacteria

    SciTech Connect

    Penn, Kevin; Jenkins, Caroline; Nett, Markus; Udwary, Daniel; Gontang, Erin; McGlinchey, Ryan; Foster, Brian; Lapidus, Alla; Podell, Sheila; Allen, Eric; Moore, Bradley; Jensen, Paul

    2009-04-01

    Linking functional traits to bacterial phylogeny remains a fundamental but elusive goal of microbial ecology 1. Without this information, it becomes impossible to resolve meaningful units of diversity and the mechanisms by which bacteria interact with each other and adapt to environmental change. Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house functionally adaptive traits 2. In the case of environmental bacteria, these traits are largely inferred from bioinformatic or gene expression analyses 2, thus leaving few examples in which the functions of island genes have been experimentally characterized. Here we report the complete genome sequences of Salinispora tropica and S. arenicola, the first cultured, obligate marine Actinobacteria 3. These two species inhabit benthic marine environments and dedicate 8-10percent of their genomes to the biosynthesis of secondary metabolites. Despite a close phylogenetic relationship, 25 of 37 secondary metabolic pathways are species-specific and located within 21 genomic islands, thus providing new evidence linking secondary metabolism to ecological adaptation. Species-specific differences are also observed in CRISPR sequences, suggesting that variations in phage immunity provide fitness advantages that contribute to the cosmopolitan distribution of S. arenicola 4. The two Salinispora genomes have evolved by complex processes that include the duplication and acquisition of secondary metabolite genes, the products of which provide immediate opportunities for molecular diversification and ecological adaptation. Evidence that secondary metabolic pathways are exchanged by Horizontal Gene Transfer (HGT) yet are fixed among globally distributed populations 5 supports a functional role for their products and suggests that pathway acquisition represents a previously unrecognized force driving bacterial diversification

  5. “Spatial Mapping of the Neurite and Soma Proteomes Reveals a Functional Cdc42/Rac Regulatory Network”

    SciTech Connect

    Pertz, Olivier C.; Wang, Yingchun; Yang, Feng; Wang, Wei; gay, laurie J.; Gritsenko, Marina A.; Clauss, Therese RW; Anderson, David J.; Liu, Tao; Auberry, Kenneth J.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2008-02-12

    Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a novel neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4855 proteins were mapped revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple GEFs and GAPs to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process including those that control Rac and Cdc42 signaling.

  6. Functional Genomics Using the Saccharomyces cerevisiae Yeast Deletion Collections.

    PubMed

    Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri

    2016-01-01

    Constructed by a consortium of 16 laboratories, the Saccharomyces genome-wide deletion collections have, for the past decade, provided a powerful, rapid, and inexpensive approach for functional profiling of the yeast genome. Loss-of-function deletion mutants were systematically created using a polymerase chain reaction (PCR)-based gene deletion strategy to generate a start-to-stop codon replacement of each open reading frame by homologous recombination. Each strain carries two molecular barcodes that serve as unique strain identifiers, enabling their growth to be analyzed in parallel and the fitness contribution of each gene to be quantitatively assessed by hybridization to high-density oligonucleotide arrays or through the use of next-generation sequencing technologies. Functional profiling of the deletion collections, using either strain-by-strain or parallel assays, provides an unbiased approach to systematically survey the yeast genome. The Saccharomyces yeast deletion collections have proved immensely powerful in contributing to the understanding of gene function, including functional relationships between genes and genetic pathways in response to diverse genetic and environmental perturbations. PMID:27587784

  7. Function of global regulator CodY in Bacillus thuringiensis BMB171 by comparative proteomic analysis.

    PubMed

    Qi, Mingxia; Mei, Fei; Wang, Hui; Sun, Ming; Wang, Gejiao; Yu, Ziniu; Je, Yeonho; Li, Mingshun

    2015-02-01

    CodY is a highly conserved protein in low G+C gram-positive bacteria that regulates genes involved in sporulation and stationary-phase adaptation. Bacillus thuringiensis is a grampositive bacterium that forms spores and parasporal crystals during the stationary phase. To our knowledge, the regulatory mechanism of CodY in B. thuringiensis is unknown. To study the function of CodY protein in B. thuringiensis, BMB171codY(-) was constructed in a BMB171 strain. A shuttle vector containing the ORF of cry1Ac10 was transformed into BMB171 and BMB171codY(-), named BMB171cry1Ac and BMB171codY(-)cry1Ac, respectively. Some morphological and physiological changes of codY mutant BMB171codY(-)cry1Ac were observed. A comparative proteomic analysis was conducted for both BMB171codY(-)cry1Ac and BMB171cry1Ac through two-dimensional gel electrophoresis and MALDI-TOF-MS/MS analysis. The results showed that the proteins regulated by CodY are involved in microbial metabolism, including branched-chain amino acid metabolism, carbohydrate metabolism, fatty acid metabolism, and energy metabolism. Furthermore, we found CodY to be involved in sporulation, biosynthesis of poly-β-hydroxybutyrate, growth, genetic competence, and translation. According to the analysis of differentially expressed proteins, and physiological characterization of the codY mutant, we performed bacterial one-hybrid and electrophoretic mobility shift assay experiments and confirmed the direct regulation of genes by CodY, specifically those involved in metabolism of branched-chain amino acids, ribosomal recycling factor FRR, and the late competence protein ComER. Our data establish the foundation for in-depth study of the regulation of CodY in B. thuringiensis, and also offer a potential biocatalyst for functions of CodY in other bacteria.

  8. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells.

    PubMed

    Gibellini, Lara; Pinti, Marcello; Boraldi, Federica; Giorgio, Valentina; Bernardi, Paolo; Bartolomeo, Regina; Nasi, Milena; De Biasi, Sara; Missiroli, Sonia; Carnevale, Gianluca; Losi, Lorena; Tesei, Anna; Pinton, Paolo; Quaglino, Daniela; Cossarizza, Andrea

    2014-12-01

    Lon is a nuclear-encoded, mitochondrial protease that assists protein folding, degrades oxidized/damaged proteins, and participates in maintaining mtDNA levels. Here we show that Lon is up-regulated in several human cancers and that its silencing in RKO colon cancer cells causes profound alterations of mitochondrial proteome and function, and cell death. We silenced Lon in RKO cells by constitutive or inducible expression of Lon shRNA. Lon-silenced cells displayed altered levels of 39 mitochondrial proteins (26% related to stress response, 14.8% to ribosome assembly, 12.7% to oxidative phosphorylation, 8.5% to Krebs cycle, 6.3% to β-oxidation, and 14.7% to crista integrity, ketone body catabolism, and mtDNA maintenance), low levels of mtDNA transcripts, and reduced levels of oxidative phosphorylation complexes (with >90% reduction of complex I). Oxygen consumption rate decreased 7.5-fold in basal conditions, and ATP synthesis dropped from 0.25 ± 0.04 to 0.03 ± 0.001 nmol/mg proteins, in the presence of 2-deoxy-d-glucose. Hydrogen peroxide and mitochondrial superoxide anion levels increased by 3- and 1.3-fold, respectively. Mitochondria appeared fragmented, heterogeneous in size and shape, with dilated cristae, vacuoles, and electrondense inclusions. The triterpenoid 2-cyano-3,12-dioxooleana-1,9,-dien-28-oic acid, a Lon inhibitor, partially mimics Lon silencing. In summary, Lon is essential for maintaining mitochondrial shape and function, and for survival of RKO cells.

  9. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development.

    PubMed

    Wang, Yong-Qiang; Yang, Yong; Fei, Zhangjun; Yuan, Hui; Fish, Tara; Thannhauser, Theodore W; Mazourek, Michael; Kochian, Leon V; Wang, Xiaowu; Li, Li

    2013-02-01

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953-2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants.

  10. Using models of the myocyte for functional interpretation of cardiac proteomic data

    PubMed Central

    Winslow, Raimond L; Cortassa, Sonia; Greenstein, Joseph L

    2005-01-01

    There has been significant progress towards the development of highly integrative computational models of the cardiac myocyte over the past decade. Models now incorporate descriptions of voltage-gated ionic currents and membrane transporters, mechanisms of calcium-induced calcium release and intracellular calcium cycling, mitochondrial ATP production and its coupling to energy-requiring membrane transport processes and mechanisms of force generation. There is an extensive literature documenting both the reconstructive and predictive abilities of these models and there is no question that an interplay between quantitative modelling and experimental investigation has become a central component of modern cardiovascular research. As data regarding the cardiovascular proteome in both health and disease emerge, integrative models of the myocyte are becoming useful tools for interpreting the functional significance of changes in protein expression and post-translational modifications (PTMs). Data of particular importance include information on: (a) changes of expressed protein level, (b) changes of protein PTMs, (c) protein localization, and (d) protein–protein interactions, as it is often possible to incorporate and interpret the functional significance of such findings using computational models. We provide two examples of how models may be used in this fashion. In the first example, we show how information on altered expression of the sarcoplasmic reticulum Ca2+-ATPase, when interpreted through the use of a computational model, has provided key insights into fundamental mechanisms regulating cardiac action potential duration. In the second example, we show how information on the effects of phosphorylation of L-type Ca2+ channels, when interpreted through the use of a model, provides insights on how this post-translational modification alters the properties of excitation–contraction coupling and risk for arrhythmia. PMID:15611013

  11. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development

    PubMed Central

    Wang, Yong-Qiang; Yang, Yong; Li, Li

    2013-01-01

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953–2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants. PMID:23314817

  12. Proteomic analysis of chromoplasts from six crop species reveals insights into chromoplast function and development.

    PubMed

    Wang, Yong-Qiang; Yang, Yong; Fei, Zhangjun; Yuan, Hui; Fish, Tara; Thannhauser, Theodore W; Mazourek, Michael; Kochian, Leon V; Wang, Xiaowu; Li, Li

    2013-02-01

    Chromoplasts are unique plastids that accumulate massive amounts of carotenoids. To gain a general and comparative characterization of chromoplast proteins, this study performed proteomic analysis of chromoplasts from six carotenoid-rich crops: watermelon, tomato, carrot, orange cauliflower, red papaya, and red bell pepper. Stromal and membrane proteins of chromoplasts were separated by 1D gel electrophoresis and analysed using nLC-MS/MS. A total of 953-2262 proteins from chromoplasts of different crop species were identified. Approximately 60% of the identified proteins were predicted to be plastid localized. Functional classification using MapMan bins revealed large numbers of proteins involved in protein metabolism, transport, amino acid metabolism, lipid metabolism, and redox in chromoplasts from all six species. Seventeen core carotenoid metabolic enzymes were identified. Phytoene synthase, phytoene desaturase, ζ-carotene desaturase, 9-cis-epoxycarotenoid dioxygenase, and carotenoid cleavage dioxygenase 1 were found in almost all crops, suggesting relative abundance of them among the carotenoid pathway enzymes. Chromoplasts from different crops contained abundant amounts of ATP synthase and adenine nucleotide translocator, which indicates an important role of ATP production and transport in chromoplast development. Distinctive abundant proteins were observed in chromoplast from different crops, including capsanthin/capsorubin synthase and fibrillins in pepper, superoxide dismutase in watermelon, carrot, and cauliflower, and glutathione-S-transferease in papaya. The comparative analysis of chromoplast proteins among six crop species offers new insights into the general metabolism and function of chromoplasts as well as the uniqueness of chromoplasts in specific crop species. This work provides reference datasets for future experimental study of chromoplast biogenesis, development, and regulation in plants. PMID:23314817

  13. LC-MS/MS based proteomic analysis and functional inference of hypothetical proteins in Desulfovibrio vulgaris

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Gritsenko, Marina A.; Moore, Ronald J.; Nie, Lei; Scholten, Johannes C.; Petritis, Konstantinos; Strittmatter, Eric F.; Camp, David G.; Smith, Richard D.; Brockman, Fred J.

    2006-11-03

    ABSTRACT In the previous study, the whole-genome gene expression profiles of D. vulgaris in response to oxidative stress and heat shock were determined. The results showed 24-28% of the responsive genes were hypothetical proteins that have not been experimentally characterized or whose function can not be deduced by simple sequence comparison. To further explore the protecting mechanisms employed in D. vulgaris against the oxidative stress and heat shock, attempt was made in this study to infer functions of these hypothetical proteins by phylogenomic profiling along with detailed sequence comparison against various publicly available databases. By this approach we were ableto assign possible functions to 25 responsive hypothetical proteins. The findings included that DVU0725, induced by oxidative stress, may be involved in lipopolysaccharide biosynthesis, implying that the alternation of lipopolysaccharide on cell surface might service as a mechanism against oxidative stress in D. vulgaris. In addition, two responsive proteins, DVU0024 encoding a putative transcriptional regulator and DVU1670 encoding predicted redox protein, were sharing co-evolution atterns with rubrerythrin in Archaeoglobus fulgidus and Clostridium perfringens, respectively, implying that they might be part of the stress response and protective systems in D. vulgaris. The study demonstrated that phylogenomic profiling is a useful tool in interpretation of experimental genomics data, and also provided further insight on cellular response to oxidative stress and heat shock in D. vulgaris.

  14. Translating Proteomic Into Functional Data: An High Mobility Group A1 (HMGA1) Proteomic Signature Has Prognostic Value in Breast Cancer*

    PubMed Central

    Maurizio, Elisa; Wiśniewski, Jacek R.; Ciani, Yari; Amato, Angela; Arnoldo, Laura; Penzo, Carlotta; Pegoraro, Silvia; Giancotti, Vincenzo; Zambelli, Alberto; Piazza, Silvano; Manfioletti, Guidalberto; Sgarra, Riccardo

    2016-01-01

    Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one. The proteins extracted from HMGA1-silenced and control MDA-MB-231 cells were analyzed using label-free shotgun mass spectrometry. The differentially expressed proteins were cross-referenced with DNA microarray data obtained using the same cellular model and the overlapping genes were filtered for factors linked to poor prognosis in breast cancer gene expression meta-data sets, resulting in an HMGA1 protein signature composed of 21 members (HRS, HMGA1 reduced signature). This signature had a prognostic value (overall survival, relapse-free survival, and distant metastasis-free survival) in breast cancer. qRT-PCR, Western blot, and immunohistochemistry analyses validated the link of three members of this signature (KIFC1, LRRC59, and TRIP13) with HMGA1 expression levels both in vitro and in vivo and wound healing assays demonstrated that these three proteins are involved in modulating tumor cell motility. Combining proteomic and genomic data with the aid of bioinformatic tools, our results highlight the potential involvement in neoplastic transformation of a restricted list of factors with an as-yet-unexplored role in cancer. These factors are druggable targets that could be exploited for the development of new, targeted therapeutic approaches in triple-negative breast cancer. PMID:26527623

  15. Functional genomics of Lactobacillus casei establishment in the gut

    PubMed Central

    Licandro-Seraut, Hélène; Scornec, Hélène; Pédron, Thierry; Cavin, Jean-François; Sansonetti, Philippe J.

    2014-01-01

    Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis. PMID:25024222

  16. Proteomic Assessment of Poultry Spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fully characterizing the protein composition of spermatozoa is the first step in utilizing proteomics to delineate the function of sperm proteins. To date, sperm proteome maps have been partially developed for the human, mouse, rat, bull and several invertebrates. Here we report the first proteomic...

  17. Genomic and Surface Proteomic Analysis of the Canine Pathogen Staphylococcus pseudintermedius Reveals Proteins That Mediate Adherence to the Extracellular Matrix ▿

    PubMed Central

    Bannoehr, Jeanette; Ben Zakour, Nouri L.; Reglinski, Mark; Inglis, Neil F.; Prabhakaran, Sabitha; Fossum, Even; Smith, David G.; Wilson, Gillian J.; Cartwright, Robyn A.; Haas, Juergen; Hook, Magnus; van den Broek, Adri H. M.; Thoday, Keith L.; Fitzgerald,