Science.gov

Sample records for functional genomics proteomics

  1. Impact of functional genomics and proteomics on radionuclide imaging.

    PubMed

    Haberkorn, Uwe; Altmann, Annette; Mier, Walter; Eisenhut, Michael

    2004-01-01

    The assessment of gene function following the completion of human genome sequencing may be performed using radionuclide imaging procedures. These procedures are needed for the evaluation of genetically manipulated animals or newly designed biomolecules, which requires a thorough understanding of physiology, biochemistry, and pharmacology. The experimental approaches will involve many new technologies, including in vivo imaging with single photon emission computed tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers, or using in vivo reporter genes, such as genes encoding enzymes, receptors, antigens, or transporters. Visualization of in vivo reporter gene expression can be performed using radiolabeled substrates, antibodies, or ligands. Combinations of specific promoters and in vivo reporter genes may deliver information about the regulation of the corresponding genes. Furthermore, protein-protein interactions and activation of signal transduction pathways may be visualized noninvasively. The role of radiolabeled antisense molecules for the analysis of messenger ribonucleic acid (RNA) content has to be investigated. However, possible applications are therapeutic intervention using triplex oligonucleotides with therapeutic isotopes, which can be brought near to specific deoxyribonucleic acid sequences to induce deoxyribonucleic acid strand breaks at selected loci. Imaging of labeled siRNA makes sense if these are used for therapeutic purposes to assess the delivery of these new drugs to their target tissue. Pharmacogenomics will identify new surrogate markers for therapy monitoring, which may represent potential new tracers for imaging. Drug distribution studies for new therapeutic biomolecules are needed at least during preclinical stages of drug development. New treatment modalities, such as gene therapy with suicide genes, will need

  2. Genomes to Proteomes

    SciTech Connect

    Panisko, Ellen A.; Grigoriev, Igor; Daly, Don S.; Webb-Robertson, Bobbie-Jo; Baker, Scott E.

    2009-03-01

    Biologists are awash with genomic sequence data. In large part, this is due to the rapid acceleration in the generation of DNA sequence that occurred as public and private research institutes raced to sequence the human genome. In parallel with the large human genome effort, mostly smaller genomes of other important model organisms were sequenced. Projects following on these initial efforts have made use of technological advances and the DNA sequencing infrastructure that was built for the human and other organism genome projects. As a result, the genome sequences of many organisms are available in high quality draft form. While in many ways this is good news, there are limitations to the biological insights that can be gleaned from DNA sequences alone; genome sequences offer only a bird's eye view of the biological processes endemic to an organism or community. Fortunately, the genome sequences now being produced at such a high rate can serve as the foundation for other global experimental platforms such as proteomics. Proteomic methods offer a snapshot of the proteins present at a point in time for a given biological sample. Current global proteomics methods combine enzymatic digestion, separations, mass spectrometry and database searching for peptide identification. One key aspect of proteomics is the prediction of peptide sequences from mass spectrometry data. Global proteomic analysis uses computational matching of experimental mass spectra with predicted spectra based on databases of gene models that are often generated computationally. Thus, the quality of gene models predicted from a genome sequence is crucial in the generation of high quality peptide identifications. Once peptides are identified they can be assigned to their parent protein. Proteins identified as expressed in a given experiment are most useful when compared to other expressed proteins in a larger biological context or biochemical pathway. In this chapter we will discuss the automatic

  3. Functional modelling of an equine bronchoalveolar lavage fluid proteome provides experimental confirmation and functional annotation of equine genome sequences.

    PubMed

    Bright, L A; Mujahid, N; Nanduri, B; McCarthy, F M; Costa, L R R; Burgess, S C; Swiderski, C E

    2011-08-01

    The equine genome sequence enables the use of high-throughput genomic technologies in equine research, but accurate identification of expressed gene products and interpreting their biological relevance require additional structural and functional genome annotation. Here, we employ the equine genome sequence to identify predicted and known proteins using proteomics and model these proteins into biological pathways, identifying 582 proteins in normal cell-free equine bronchoalveolar lavage fluid (BALF). We improved structural and functional annotation by directly confirming the in vivo expression of 558 (96%) proteins, which were computationally predicted previously, and adding Gene Ontology (GO) annotations for 174 proteins, 108 of which lacked functional annotation. Bronchoalveolar lavage is commonly used to investigate equine respiratory disease, leading us to model the associated proteome and its biological functions. Modelling of protein functions using Ingenuity Pathway Analysis identified carbohydrate metabolism, cell-to-cell signalling, cellular function, inflammatory response, organ morphology, lipid metabolism and cellular movement as key biological processes in normal equine BALF. Comparative modelling of protein functions in normal cell-free bronchoalveolar lavage proteomes from horse, human, and mouse, performed by grouping GO terms sharing common ancestor terms, confirms conservation of functions across species. Ninety-one of 92 human GO categories and 105 of 109 mouse GO categories were conserved in the horse. Our approach confirms the utility of the equine genome sequence to characterize protein networks without antibodies or mRNA quantification, highlights the need for continued structural and functional annotation of the equine genome and provides a framework for equine researchers to aid in the annotation effort.

  4. PeroxisomeDB: a database for the peroxisomal proteome, functional genomics and disease

    PubMed Central

    Schlüter, Agatha; Fourcade, Stéphane; Domènech-Estévez, Enric; Gabaldón, Toni; Huerta-Cepas, Jaime; Berthommier, Guillaume; Ripp, Raymond; Wanders, Ronald J. A.; Poch, Olivier; Pujol, Aurora

    2007-01-01

    Peroxisomes are essential organelles of eukaryotic origin, ubiquitously distributed in cells and organisms, playing key roles in lipid and antioxidant metabolism. Loss or malfunction of peroxisomes causes more than 20 fatal inherited conditions. We have created a peroxisomal database () that includes the complete peroxisomal proteome of Homo sapiens and Saccharomyces cerevisiae, by gathering, updating and integrating the available genetic and functional information on peroxisomal genes. PeroxisomeDB is structured in interrelated sections ‘Genes’, ‘Functions’, ‘Metabolic pathways’ and ‘Diseases’, that include hyperlinks to selected features of NCBI, ENSEMBL and UCSC databases. We have designed graphical depictions of the main peroxisomal metabolic routes and have included updated flow charts for diagnosis. Precomputed BLAST, PSI-BLAST, multiple sequence alignment (MUSCLE) and phylogenetic trees are provided to assist in direct multispecies comparison to study evolutionary conserved functions and pathways. Highlights of the PeroxisomeDB include new tools developed for facilitating (i) identification of novel peroxisomal proteins, by means of identifying proteins carrying peroxisome targeting signal (PTS) motifs, (ii) detection of peroxisomes in silico, particularly useful for screening the deluge of newly sequenced genomes. PeroxisomeDB should contribute to the systematic characterization of the peroxisomal proteome and facilitate system biology approaches on the organelle. PMID:17135190

  5. ProGeRF: Proteome and Genome Repeat Finder Utilizing a Fast Parallel Hash Function

    PubMed Central

    Moraes, Walas Jhony Lopes; Rodrigues, Thiago de Souza; Bartholomeu, Daniella Castanheira

    2015-01-01

    Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity. PMID:25811026

  6. ProGeRF: proteome and genome repeat finder utilizing a fast parallel hash function.

    PubMed

    Lopes, Robson da Silva; Moraes, Walas Jhony Lopes; Rodrigues, Thiago de Souza; Bartholomeu, Daniella Castanheira

    2015-01-01

    Repetitive element sequences are adjacent, repeating patterns, also called motifs, and can be of different lengths; repetitions can involve their exact or approximate copies. They have been widely used as molecular markers in population biology. Given the sizes of sequenced genomes, various bioinformatics tools have been developed for the extraction of repetitive elements from DNA sequences. However, currently available tools do not provide options for identifying repetitive elements in the genome or proteome, displaying a user-friendly web interface, and performing-exhaustive searches. ProGeRF is a web site for extracting repetitive regions from genome and proteome sequences. It was designed to be efficient, fast, and accurate and primarily user-friendly web tool allowing many ways to view and analyse the results. ProGeRF (Proteome and Genome Repeat Finder) is freely available as a stand-alone program, from which the users can download the source code, and as a web tool. It was developed using the hash table approach to extract perfect and imperfect repetitive regions in a (multi)FASTA file, while allowing a linear time complexity.

  7. Central Functions of the Lumenal and Peripheral Thylakoid Proteome of Arabidopsis Determined by Experimentation and Genome-Wide Prediction

    PubMed Central

    Peltier, Jean-Benoît; Emanuelsson, Olof; Kalume, Dário E.; Ytterberg, Jimmy; Friso, Giulia; Rudella, Andrea; Liberles, David A.; Söderberg, Linda; Roepstorff, Peter; von Heijne, Gunnar; van Wijk, Klaas J.

    2002-01-01

    Experimental proteome analysis was combined with a genome-wide prediction screen to characterize the protein content of the thylakoid lumen of Arabidopsis chloroplasts. Soluble thylakoid proteins were separated by two-dimensional electrophoresis and identified by mass spectrometry. The identities of 81 proteins were established, and N termini were sequenced to validate localization prediction. Gene annotation of the identified proteins was corrected by experimental data, and an interesting case of alternative splicing was discovered. Expression of a surprising number of paralogs was detected. Expression of five isomerases of different classes suggests strong (un)folding activity in the thylakoid lumen. These isomerases possibly are connected to a network of peripheral and lumenal proteins involved in antioxidative response, including peroxiredoxins, m-type thioredoxins, and a lumenal ascorbate peroxidase. Characteristics of the experimentally identified lumenal proteins and their orthologs were used for a genome-wide prediction of the lumenal proteome. Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases. Thus, prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress. Many of the predicted lumenal proteins must be present at concentrations at least 10,000-fold lower than proteins of the photosynthetic apparatus. PMID:11826309

  8. Genomics and proteomics in cancer.

    PubMed

    Baak, J P A; Path, F R C; Hermsen, M A J A; Meijer, G; Schmidt, J; Janssen, E A M

    2003-06-01

    Cancer development is driven by the accumulation of DNA changes in the approximately 40000 chromosomal genes. In solid tumours, chromosomal numerical/structural aberrations are common. DNA repair defects may lead to genome-wide genetic instability, which can drive further cancer progression. The genes code the actual players in the cellular processes, the 100000-10 million proteins, which in (pre)malignant cells can also be altered in a variety of ways. Over the past decade, our knowledge of the human genome and Genomics (the study of the human genome) in (pre)malignancies has increased enormously and Proteomics (the analysis of the protein complement of the genome) has taken off as well. Both will play an increasingly important role. In this article, a short description of the essential molecular biological cell processes is given. Important genomic and proteomic research methods are described and illustrated. Applications are still limited, but the evidence so far is exciting. Will genomics replace classical diagnostic or prognostic procedures? In breast cancers, the gene expression array is stronger than classical criteria, but in endometrial hyperplasia, quantitative morphological features are more cost-effective than genetic testing. It is still too early to make strong statements, the more so because it is expected that genomics and proteomics will expand rapidly. However, it is likely that they will take a central place in the understanding, diagnosis, monitoring and treatment of (pre)cancers of many different sites.

  9. Integrated Molecular Signature of Disease: Analysis of Influenza Virus-Infected Macaques through Functional Genomics and Proteomics

    SciTech Connect

    Baas, T.; Baskin, C. R.; Diamond, Deborah L.; Garcia-Sastre, A.; Bielefeldt-Ohmann, H.; Tumpey, T. M.; Thomas, M. J.; Carter, V. S.; Teal, T. H.; Van Hoven, N.; Proll, Sean; Jacobs, Jon M.; Caldwell, Z.; Gritsenko, Marina A.; Hukkanen, R.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-11-01

    Recent outbreaks of avian influenza in humans have stressed the need for an improved non-human primate model of influenza pathogenesis. In order to develop our macaque model, we expanded our in vivo and functional genomics experiments: We focused on the innate immune response at day 2 post-inoculation and on gene expression in affected lung tissue with viral genetic material present; finally, we sought to identify signature genes for early infection in whole blood. For these purposes, we infected six pigtailed macaques with 107 TCID50 of influenza A/Texas/36/91 virus and three control animals with a sham inoculate. We sacrificed one control and two experimental animals at day 2, 4, and 7 and lung tissue was harvested for pathology, gene expression profiling, and proteomics. Additionally, blood was collected for genomics every other day from each animal until its endpoint. Gross and microscopic pathology, immunohistochemistry, viral gene expression by arrays and/or quantitative real-time RT-PCR confirmed successful yet mild infection in all experimental animals. Genomic experiments were performed using second generation macaque-specific oligonucleotide arrays and high-throughput proteomics revealed host response to infection at the protein level. Our data showed dramatic differences in gene expression within the same influenza-induced lesion based on the presence or absence of viral mRNA. We also identified genes tightly co-regulated in peripheral white blood cells and in lung tissue at day 2 post-inoculation. This latter finding opens the possibility of using gene expression arrays on whole blood to detect infection after exposure but prior to onset of symptoms or shedding.

  10. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome

    PubMed Central

    O'Connell, Grant C.; Nichols, Cody; Guo, Ge; Croston, Tara L.; Thapa, Dharendra; Hollander, John M.; Pistilli, Emidio E.

    2016-01-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occur independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome. PMID:26458787

  11. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome.

    PubMed

    O'Connell, Grant C; Nichols, Cody; Guo, Ge; Croston, Tara L; Thapa, Dharendra; Hollander, John M; Pistilli, Emidio E

    2015-11-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.

  12. Algal Functional Annotation Tool from the DOE-UCLA Institute for Genomics and Proteomics

    DOE Data Explorer

    Lopez, David

    The Algal Functional Annotation Tool is a bioinformatics resource to visualize pathway maps, identify enriched biological terms, or convert gene identifiers to elucidate biological function in silico. These types of analysis have been catered to support lists of gene identifiers, such as those coming from transcriptome gene expression analysis. By analyzing the functional annotation of an interesting set of genes, common biological motifs may be elucidated and a first-pass analysis can point further research in the right direction. Currently, the following databases have been parsed, processed, and added to the tool: 1( Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathways Database, 2) MetaCyc Encyclopedia of Metabolic Pathways, 3) Panther Pathways Database, 4) Reactome Pathways Database, 5) Gene Ontology, 6) MapMan Ontology, 7) KOG (Eukaryotic Clusters of Orthologous Groups), 5)Pfam, 6) InterPro.

  13. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome

    PubMed Central

    DeKelver, Russell C.; Choi, Vivian M.; Moehle, Erica A.; Paschon, David E.; Hockemeyer, Dirk; Meijsing, Sebastiaan H.; Sancak, Yasemin; Cui, Xiaoxia; Steine, Eveline J.; Miller, Jeffrey C.; Tam, Phillip; Bartsevich, Victor V.; Meng, Xiangdong; Rupniewski, Igor; Gopalan, Sunita M.; Sun, Helena C.; Pitz, Kathleen J.; Rock, Jeremy M.; Zhang, Lei; Davis, Gregory D.; Rebar, Edward J.; Cheeseman, Iain M.; Yamamoto, Keith R.; Sabatini, David M.; Jaenisch, Rudolf; Gregory, Philip D.; Urnov, Fyodor D.

    2010-01-01

    Isogenic settings are routine in model organisms, yet remain elusive for genetic experiments on human cells. We describe the use of designed zinc finger nucleases (ZFNs) for efficient transgenesis without drug selection into the PPP1R12C gene, a “safe harbor” locus known as AAVS1. ZFNs enable targeted transgenesis at a frequency of up to 15% following transient transfection of both transformed and primary human cells, including fibroblasts and hES cells. When added to this locus, transgenes such as expression cassettes for shRNAs, small-molecule-responsive cDNA expression cassettes, and reporter constructs, exhibit consistent expression and sustained function over 50 cell generations. By avoiding random integration and drug selection, this method allows bona fide isogenic settings for high-throughput functional genomics, proteomics, and regulatory DNA analysis in essentially any transformed human cell type and in primary cells. PMID:20508142

  14. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome.

    PubMed

    DeKelver, Russell C; Choi, Vivian M; Moehle, Erica A; Paschon, David E; Hockemeyer, Dirk; Meijsing, Sebastiaan H; Sancak, Yasemin; Cui, Xiaoxia; Steine, Eveline J; Miller, Jeffrey C; Tam, Phillip; Bartsevich, Victor V; Meng, Xiangdong; Rupniewski, Igor; Gopalan, Sunita M; Sun, Helena C; Pitz, Kathleen J; Rock, Jeremy M; Zhang, Lei; Davis, Gregory D; Rebar, Edward J; Cheeseman, Iain M; Yamamoto, Keith R; Sabatini, David M; Jaenisch, Rudolf; Gregory, Philip D; Urnov, Fyodor D

    2010-08-01

    Isogenic settings are routine in model organisms, yet remain elusive for genetic experiments on human cells. We describe the use of designed zinc finger nucleases (ZFNs) for efficient transgenesis without drug selection into the PPP1R12C gene, a "safe harbor" locus known as AAVS1. ZFNs enable targeted transgenesis at a frequency of up to 15% following transient transfection of both transformed and primary human cells, including fibroblasts and hES cells. When added to this locus, transgenes such as expression cassettes for shRNAs, small-molecule-responsive cDNA expression cassettes, and reporter constructs, exhibit consistent expression and sustained function over 50 cell generations. By avoiding random integration and drug selection, this method allows bona fide isogenic settings for high-throughput functional genomics, proteomics, and regulatory DNA analysis in essentially any transformed human cell type and in primary cells.

  15. Personalized medicine beyond genomics: alternative futures in big data-proteomics, environtome and the social proteome.

    PubMed

    Özdemir, Vural; Dove, Edward S; Gürsoy, Ulvi K; Şardaş, Semra; Yıldırım, Arif; Yılmaz, Şenay Görücü; Ömer Barlas, I; Güngör, Kıvanç; Mete, Alper; Srivastava, Sanjeeva

    2017-01-01

    No field in science and medicine today remains untouched by Big Data, and psychiatry is no exception. Proteomics is a Big Data technology and a next generation biomarker, supporting novel system diagnostics and therapeutics in psychiatry. Proteomics technology is, in fact, much older than genomics and dates to the 1970s, well before the launch of the international Human Genome Project. While the genome has long been framed as the master or "elite" executive molecule in cell biology, the proteome by contrast is humble. Yet the proteome is critical for life-it ensures the daily functioning of cells and whole organisms. In short, proteins are the blue-collar workers of biology, the down-to-earth molecules that we cannot live without. Since 2010, proteomics has found renewed meaning and international attention with the launch of the Human Proteome Project and the growing interest in Big Data technologies such as proteomics. This article presents an interdisciplinary technology foresight analysis and conceptualizes the terms "environtome" and "social proteome". We define "environtome" as the entire complement of elements external to the human host, from microbiome, ambient temperature and weather conditions to government innovation policies, stock market dynamics, human values, political power and social norms that collectively shape the human host spatially and temporally. The "social proteome" is the subset of the environtome that influences the transition of proteomics technology to innovative applications in society. The social proteome encompasses, for example, new reimbursement schemes and business innovation models for proteomics diagnostics that depart from the "once-a-life-time" genotypic tests and the anticipated hype attendant to context and time sensitive proteomics tests. Building on the "nesting principle" for governance of complex systems as discussed by Elinor Ostrom, we propose here a 3-tiered organizational architecture for Big Data science such as

  16. Combining genomic and proteomic approaches for epigenetics research

    PubMed Central

    Han, Yumiao; Garcia, Benjamin A

    2014-01-01

    Epigenetics is the study of changes in gene expression or cellular phenotype that do not change the DNA sequence. In this review, current methods, both genomic and proteomic, associated with epigenetics research are discussed. Among them, chromatin immunoprecipitation (ChIP) followed by sequencing and other ChIP-based techniques are powerful techniques for genome-wide profiling of DNA-binding proteins, histone post-translational modifications or nucleosome positions. However, mass spectrometry-based proteomics is increasingly being used in functional biological studies and has proved to be an indispensable tool to characterize histone modifications, as well as DNA–protein and protein–protein interactions. With the development of genomic and proteomic approaches, combination of ChIP and mass spectrometry has the potential to expand our knowledge of epigenetics research to a higher level. PMID:23895656

  17. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens.

    PubMed

    Jungblut, P R; Schaible, U E; Mollenkopf, H J; Zimny-Arndt, U; Raupach, B; Mattow, J; Halada, P; Lamer, S; Hagens, K; Kaufmann, S H

    1999-09-01

    In 1993, the WHO declared tuberculosis a global emergency on the basis that there are 8 million new cases per year. The complete genome of the strain H37Rv of the causative microorganism, Mycobacterium tuberculosis, comprising 3924 genes has been sequenced. We compared the proteomes of two non-virulent vaccine strains of M. bovis BCG (Chicago and Copenhagen) with two virulent strains of M. tuberculosis (H37Rv and Erdman) to identify protein candidates of value for the development of vaccines, diagnostics and therapeutics. The mycobacterial strains were analysed by two-dimensional electrophoresis (2-DE) combining non-equilibrium pH gradient electrophoresis (NEPHGE) with SDS-PAGE. Distinct and characteristic proteins were identified by mass spectrometry and introduced into a dynamic 2-DE database (http://www.mpiib-berlin.mpg.de/2D-PAGE). Silver-stained 2-DE patterns of mycobacterial cell proteins or culture supernatants contained 1800 or 800 spots, respectively, from which 263 were identified. Of these, 54 belong to the culture supernatant. Sixteen and 25 proteins differing in intensity or position between M. tuberculosis H37Rv and Erdman, and H37Rv and M. bovis BCG Chicago, respectively, were identified and categorized into protein classes. It is to be hoped that the availability of the mycobacterial proteome will facilitate the design of novel measures for prevention and therapy of one of the great health threats, tuberculosis.

  18. The genomics and proteomics of biofilm formation

    PubMed Central

    Sauer, Karin

    2003-01-01

    Bacterial communities that are attached to a surface, so-called biofilms, and their inherent resistance to antimicrobial agents are a cause of many persistent and chronic bacterial infections. Recent genomic and proteomic studies have identified many of the genes and gene products differentially expressed during biofilm formation, revealing the complexity of this developmental process. PMID:12801407

  19. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    SciTech Connect

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.

    2016-11-18

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.

  20. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    DOE PAGES

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; ...

    2016-11-18

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less

  1. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    PubMed Central

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.

    2016-01-01

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models. PMID:27857205

  2. 2004 Structural, Function and Evolutionary Genomics

    SciTech Connect

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  3. Proteomics Data on UCSC Genome Browser - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data.

  4. HepatoProteomics: Applying Proteomic Technologies to the Study of Liver Function and Disease

    SciTech Connect

    Diamond, Deborah L.; Proll, Sean; Jacobs, Jon M.; Chan, Eric Y.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2006-08-01

    The wealth of human genome sequence information now available, coupled with technological advances in robotics, nanotechnology, mass spectrometry, and information systems, has given rise to a method of scientific inquiry known as functional genomics. By using these technologies to survey gene expression and protein production on a near global scale, the goal of functional genomics is to assign biological function to genes with currently unknown roles in physiology. This approach carries particular appeal in disease research, where it can uncover the function of previously unknown genes and molecular pathways that are directly involved in disease progression. With this knowledge may come improved diagnostic techniques, prognostic capabilities, and novel therapeutic approaches. In this regard, the continuing evolution of proteomic technologies has resulted in an increasingly greater impact of proteome studies in many areas of research and hepatology is no exception. Our laboratory has been extremely active in this area, applying both genomic and proteomic technologies to the analysis of virus-host interactions in several systems, including the study of hepatitis C virus (HCV) infection and HCV-associated liver disease. Since proteomic technologies are foreign to many hepatologists (and to almost everyone else), this article will provide an overview of proteomic methods and technologies and describe how they're being used to study liver function and disease. We use our studies of HCV infection and HCV-associated liver disease to present an operational framework for performing high throughput proteome analysis and extracting biologically meaningful information.

  5. Genomics, proteomics, and genetics of leptospira.

    PubMed

    Picardeau, Mathieu

    2015-01-01

    Recent advances in molecular genetics, such as the ability to construct defined mutants, have allowed the study of virulence factors and more generally the biology in Leptospira. However, pathogenic leptospires remain much less easily transformable than the saprophyte L. biflexa and further development and improvement of genetic tools are required. Here, we review tools that have been used to genetically manipulate Leptospira. We also describe the major advances achieved in both genomics and postgenomics technologies, including transcriptomics and proteomics.

  6. From genome to proteome: great progress in the domesticated silkworm (Bombyx mori L.).

    PubMed

    Zhou, Zhonghua; Yang, Huijuan; Zhong, Boxiong

    2008-07-01

    As the only truly domesticated insect, the silkworm not only has great economic value, but it also has value as a model for genetics and molecular biology research. Genomics and proteomics have recently shown vast potential to be essential tools in domesticated silkworm research, especially after the completion of the Bombyx mori genome sequence. This paper reviews the progress of the domesticated silkworm genome, particularly focusing on its genetic map, physical map and functional genome. This review also presents proteomics, the proteomic technique and its application in silkworm research.

  7. Genomic and Proteomic Profiling Reveals Reduced Mitochondrial Function and Disruption of the Neuromuscular Junction Driving Rat Sarcopenia

    PubMed Central

    Ibebunjo, Chikwendu; Chick, Joel M.; Kendall, Tracee; Eash, John K.; Li, Christine; Zhang, Yunyu; Vickers, Chad; Wu, Zhidan; Clarke, Brian A.; Shi, Jun; Cruz, Joseph; Fournier, Brigitte; Brachat, Sophie; Gutzwiller, Sabine; Ma, QiCheng; Markovits, Judit; Broome, Michelle; Steinkrauss, Michelle; Skuba, Elizabeth; Galarneau, Jean-Rene; Gygi, Steven P.

    2013-01-01

    Molecular mechanisms underlying sarcopenia, the age-related loss of skeletal muscle mass and function, remain unclear. To identify molecular changes that correlated best with sarcopenia and might contribute to its pathogenesis, we determined global gene expression profiles in muscles of rats aged 6, 12, 18, 21, 24, and 27 months. These rats exhibit sarcopenia beginning at 21 months. Correlation of the gene expression versus muscle mass or age changes, and functional annotation analysis identified gene signatures of sarcopenia distinct from gene signatures of aging. Specifically, mitochondrial energy metabolism (e.g., tricarboxylic acid cycle and oxidative phosphorylation) pathway genes were the most downregulated and most significantly correlated with sarcopenia. Also, perturbed were genes/pathways associated with neuromuscular junction patency (providing molecular evidence of sarcopenia-related functional denervation and neuromuscular junction remodeling), protein degradation, and inflammation. Proteomic analysis of samples at 6, 18, and 27 months confirmed the depletion of mitochondrial energy metabolism proteins and neuromuscular junction proteins. Together, these findings suggest that therapeutic approaches that simultaneously stimulate mitochondrogenesis and reduce muscle proteolysis and inflammation have potential for treating sarcopenia. PMID:23109432

  8. The proteome: structure, function and evolution

    PubMed Central

    Fleming, Keiran; Kelley, Lawrence A; Islam, Suhail A; MacCallum, Robert M; Muller, Arne; Pazos, Florencio; Sternberg, Michael J.E

    2006-01-01

    This paper reports two studies to model the inter-relationships between protein sequence, structure and function. First, an automated pipeline to provide a structural annotation of proteomes in the major genomes is described. The results are stored in a database at Imperial College, London (3D-GENOMICS) that can be accessed at www.sbg.bio.ic.ac.uk. Analysis of the assignments to structural superfamilies provides evolutionary insights. 3D-GENOMICS is being integrated with related proteome annotation data at University College London and the European Bioinformatics Institute in a project known as e-protein (http://www.e-protein.org/). The second topic is motivated by the developments in structural genomics projects in which the structure of a protein is determined prior to knowledge of its function. We have developed a new approach PHUNCTIONER that uses the gene ontology (GO) classification to supervise the extraction of the sequence signal responsible for protein function from a structure-based sequence alignment. Using GO we can obtain profiles for a range of specificities described in the ontology. In the region of low sequence similarity (around 15%), our method is more accurate than assignment from the closest structural homologue. The method is also able to identify the specific residues associated with the function of the protein family. PMID:16524832

  9. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling.

    PubMed

    Medina, Ignacio; Carbonell, José; Pulido, Luis; Madeira, Sara C; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Pascual-Montano, Alberto; Nogales-Cadenas, Ruben; Santoyo, Javier; García, Francisco; Marbà, Martina; Montaner, David; Dopazo, Joaquín

    2010-07-01

    Babelomics is a response to the growing necessity of integrating and analyzing different types of genomic data in an environment that allows an easy functional interpretation of the results. Babelomics includes a complete suite of methods for the analysis of gene expression data that include normalization (covering most commercial platforms), pre-processing, differential gene expression (case-controls, multiclass, survival or continuous values), predictors, clustering; large-scale genotyping assays (case controls and TDTs, and allows population stratification analysis and correction). All these genomic data analysis facilities are integrated and connected to multiple options for the functional interpretation of the experiments. Different methods of functional enrichment or gene set enrichment can be used to understand the functional basis of the experiment analyzed. Many sources of biological information, which include functional (GO, KEGG, Biocarta, Reactome, etc.), regulatory (Transfac, Jaspar, ORegAnno, miRNAs, etc.), text-mining or protein-protein interaction modules can be used for this purpose. Finally a tool for the de novo functional annotation of sequences has been included in the system. This provides support for the functional analysis of non-model species. Mirrors of Babelomics or command line execution of their individual components are now possible. Babelomics is available at http://www.babelomics.org.

  10. Functional proteomics within the genus Lactobacillus.

    PubMed

    De Angelis, Maria; Calasso, Maria; Cavallo, Noemi; Di Cagno, Raffaella; Gobbetti, Marco

    2016-03-01

    Lactobacillus are mainly used for the manufacture of fermented dairy, sourdough, meat, and vegetable foods or used as probiotics. Under optimal processing conditions, Lactobacillus strains contribute to food functionality through their enzyme portfolio and the release of metabolites. An extensive genomic diversity analysis was conducted to elucidate the core features of the genus Lactobacillus, and to provide a better comprehension of niche adaptation of the strains. However, proteomics is an indispensable "omics" science to elucidate the proteome diversity, and the mechanisms of regulation and adaptation of Lactobacillus strains. This review focuses on the novel and comprehensive knowledge of functional proteomics and metaproteomics of Lactobacillus species. A large list of proteomic case studies of different Lactobacillus species is provided to illustrate the adaptability of the main metabolic pathways (e.g., carbohydrate transport and metabolism, pyruvate metabolism, proteolytic system, amino acid metabolism, and protein synthesis) to various life conditions. These investigations have highlighted that lactobacilli modulate the level of a complex panel of proteins to growth/survive in different ecological niches. In addition to the general regulation and stress response, specific metabolic pathways can be switched on and off, modifying the behavior of the strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Path to Clinical Proteomics Research: Integration of Proteomics, Genomics, Clinical Laboratory and Regulatory Science

    PubMed Central

    Boja, Emily S.

    2011-01-01

    Better biomarkers are urgently needed to cancer detection, diagnosis, and prognosis. While the genomics community is making significant advances in understanding the molecular basis of disease, proteomics will delineate the functional units of a cell, proteins and their intricate interaction network and signaling pathways for the underlying disease. Great progress has been made to characterize thousands of proteins qualitatively and quantitatively in complex biological systems by utilizing multi-dimensional sample fractionation strategies, mass spectrometry and protein microarrays. Comparative/quantitative analysis of high-quality clinical biospecimen (e.g., tissue and biofluids) of human cancer proteome landscape has the potential to reveal protein/peptide biomarkers responsible for this disease by means of their altered levels of expression, post-translational modifications as well as different forms of protein variants. Despite technological advances in proteomics, major hurdles still exist in every step of the biomarker development pipeline. The National Cancer Institute's Clinical Proteomic Technologies for Cancer initiative (NCI-CPTC) has taken a critical step to close the gap between biomarker discovery and qualification by introducing a pre-clinical "verification" stage in the pipeline, partnering with clinical laboratory organizations to develop and implement common standards, and developing regulatory science documents with the US Food and Drug Administration to educate the proteomics community on analytical evaluation requirements for multiplex assays in order to ensure the safety and effectiveness of these tests for their intended use. PMID:21474978

  12. The path to clinical proteomics research: integration of proteomics, genomics, clinical laboratory and regulatory science.

    PubMed

    Boja, Emily S; Rodriguez, Henry

    2011-04-01

    Better biomarkers are urgently needed to cancer detection, diagnosis, and prognosis. While the genomics community is making significant advances in understanding the molecular basis of disease, proteomics will delineate the functional units of a cell, proteins and their intricate interaction network and signaling pathways for the underlying disease. Great progress has been made to characterize thousands of proteins qualitatively and quantitatively in complex biological systems by utilizing multi-dimensional sample fractionation strategies, mass spectrometry and protein microarrays. Comparative/quantitative analysis of high-quality clinical biospecimen (e.g., tissue and biofluids) of human cancer proteome landscape has the potential to reveal protein/peptide biomarkers responsible for this disease by means of their altered levels of expression, post-translational modifications as well as different forms of protein variants. Despite technological advances in proteomics, major hurdles still exist in every step of the biomarker development pipeline. The National Cancer Institute's Clinical Proteomic Technologies for Cancer initiative (NCI-CPTC) has taken a critical step to close the gap between biomarker discovery and qualification by introducing a pre-clinical "verification" stage in the pipeline, partnering with clinical laboratory organizations to develop and implement common standards, and developing regulatory science documents with the US Food and Drug Administration to educate the proteomics community on analytical evaluation requirements for multiplex assays in order to ensure the safety and effectiveness of these tests for their intended use.

  13. DEFINING THE MANDATE OF PROTEOMICS IN THE POST-GENOMIC ERA: WORKSHOP REPORT

    EPA Science Inventory

    Research in proteomics is the next step after genomics in understanding life processes at the molecular level. In the largest sense proteomics encompasses knowledge of the structure, function and expression of all proteins in the biochemical or biological contexts of all organism...

  14. DEFINING THE MANDATE OF PROTEOMICS IN THE POST-GENOMIC ERA: WORKSHOP REPORT

    EPA Science Inventory

    Research in proteomics is the next step after genomics in understanding life processes at the molecular level. In the largest sense proteomics encompasses knowledge of the structure, function and expression of all proteins in the biochemical or biological contexts of all organism...

  15. Plant functional genomics

    NASA Astrophysics Data System (ADS)

    Holtorf, Hauke; Guitton, Marie-Christine; Reski, Ralf

    2002-04-01

    Functional genome analysis of plants has entered the high-throughput stage. The complete genome information from key species such as Arabidopsis thaliana and rice is now available and will further boost the application of a range of new technologies to functional plant gene analysis. To broadly assign functions to unknown genes, different fast and multiparallel approaches are currently used and developed. These new technologies are based on known methods but are adapted and improved to accommodate for comprehensive, large-scale gene analysis, i.e. such techniques are novel in the sense that their design allows researchers to analyse many genes at the same time and at an unprecedented pace. Such methods allow analysis of the different constituents of the cell that help to deduce gene function, namely the transcripts, proteins and metabolites. Similarly the phenotypic variations of entire mutant collections can now be analysed in a much faster and more efficient way than before. The different methodologies have developed to form their own fields within the functional genomics technological platform and are termed transcriptomics, proteomics, metabolomics and phenomics. Gene function, however, cannot solely be inferred by using only one such approach. Rather, it is only by bringing together all the information collected by different functional genomic tools that one will be able to unequivocally assign functions to unknown plant genes. This review focuses on current technical developments and their impact on the field of plant functional genomics. The lower plant Physcomitrella is introduced as a new model system for gene function analysis, owing to its high rate of homologous recombination.

  16. The SAV1322 gene from Staphylococcus aureus: genomic and proteomic approaches to identification and characterization of gene function.

    PubMed

    Kim, Jung Wook; Kim, Hyun-Kyung; Kang, Gi Su; Kim, Il-Hwan; Kim, Hwa Su; Lee, Yeong Seon; Yoo, Jae Il

    2016-09-06

    Bacterial two-component regulatory systems (TCRS) are associated with the expression of virulence factors and antibiotic susceptibility. In Staphylococcus aureus, 16 TCRS types have been identified. The histidine kinase/response regulator SAV1321/SAV1322 in the S. aureus shares considerable homology with the TCRS DesKR in Bacillus subtilis. However, a function for the SAV1322 locus has not yet been assigned. Deletion of the SAV1322 locus in S. aureus results in reduced growth when cultured under low (25 °C) and high (46 °C) temperature conditions. The sav1322 deletion mutant is more tolerant to oxidative stress in vitro and is less pathogenic in a murine infection model when compared with wild-type parent strain Mu50. Furthermore, the sav1322 mutant exhibits lower MICs for gentimicin, tetracyclines and glycopeptides, increased autolysis, and a thinner cell wall when compared with the wild-type strain. Microarray and proteomic analyses show that the expression of cell-wall-associated genes glmS and murZ are lower, and the expression of heat shock and stress-related genes (hrcA, ctsR, dnaK, dnaJ, grpE, clpB, and clpC) are higher in the sav1322 mutant when compared with the wild-type strain. In addition, the sav1322 mutant displays altered expression of proteins involved in carbohydrate/energy metabolism, cell wall metabolism, and stress or heat shock response, as well as other metabolic processes including lipid metabolism, amino acid biosynthesis, purine or pyrimidine metabolism, transcription, and protein biosynthesis. The S. aureus SAV1322 locus plays a pronounced role in temperature adaptation, antibiotic resistance, and virulence by regulating a wide range of genes and proteins involved in metabolism and stress tolerance.

  17. Defining the boundaries and characterizing the landscape of functional genome expression in vascular tissues of Populus using shotgun proteomics.

    PubMed

    Abraham, Paul; Adams, Rachel; Giannone, Richard J; Kalluri, Udaya; Ranjan, Priya; Erickson, Brian; Shah, Manesh; Tuskan, Gerald A; Hettich, Robert L

    2012-01-01

    Current state-of-the-art experimental and computational proteomic approaches were integrated to obtain a comprehensive protein profile of Populus vascular tissue. This featured: (1) a large sample set consisting of two genotypes grown under normal and tension stress conditions, (2) bioinformatics clustering to effectively handle gene duplication, and (3) an informatics approach to track and identify single amino acid polymorphisms (SAAPs). By applying a clustering algorithm to the Populus database, the number of protein entries decreased from 64,689 proteins to a total of 43,069 protein groups, thereby reducing 7505 identified proteins to a total of 4226 protein groups, in which 2016 were singletons. This reduction implies that ∼50% of the measured proteins shared extensive sequence homology. Using conservative search criteria, we were able to identify 1354 peptides containing a SAAP and 201 peptides that become tryptic due to a K or R substitution. These newly identified peptides correspond to 502 proteins, including 97 previously unidentified proteins. In total, the integration of deep proteome measurements on an extensive sample set with protein clustering and peptide sequence variants provided an exceptional level of proteome characterization for Populus, allowing us to spatially resolve the vascular tissue proteome.

  18. Trends in biomedical engineering: focus on Genomics and Proteomics.

    PubMed

    Pattini, Linda; Bertacco, Riccardo; Candiani, Gabriele; Masseroli, Marco; Servi, Stefano

    2011-01-01

    Genomics is the study of an organism's genome aimed at the functional specification of the different parts of the sequence that comprise the blueprint of the living cell to unveil the mechanisms of the physiology of the cell and its basic, developmental, and tissue-specific processes. Proteomics is the comprehensive study of the executive molecules of the cell coded by the genome, further raising the level of complexity, because of the large amplification in the number, going from genes to proteins, and to the sophisticated structural and functional characterization of protein products, which confer specific biochemical properties. While continuous progress in technology provides new experimental solutions to study and measure the behavior of genes and proteins in the cell, the analysis and the management of biological data cannot be uncoupled from the use of mathematics, statistics, and informatics disciplines that play a key role in modern molecular biology.Together, genomics and proteomics, meant as complementary approaches, delineate the framework of modern molecular medicine, where the knowledge of the functional mechanisms on a subcellular scale, both under physiologic and pathologic conditions, may lead to an improvement in diagnosis, therapy, and drug development.

  19. Functional genomics in reproductive medicine.

    PubMed

    Barratt, Christopher L R; Hughes, David C; Afnan, Masoud; Brewis, Ian A

    2002-02-01

    The British Fertility Society organised a workshop on Functional Genomics in Reproductive Medicine at the University of Birmingham on 13-14 September 2001. The primary aim was to inform delegates about the power of the technology that has been made available after completion of the sequencing of the human genome, and to stimulate debate about using functional genomics to address both clinical and scientific questions in reproductive medicine. Three specific areas were addressed: proteomics, gene expression and bioinformatics. Although the sophistication and plethora of techniques available were obvious, major limitations in the technology were also discussed. The future promises to be very challenging indeed.

  20. Exploring hepsin functional genetic variation association with disease specific protein expression in bipolar disorder: Applications of a proteomic informed genomic approach.

    PubMed

    Nassan, Malik; Jia, Yun-Fang; Jenkins, Greg; Colby, Colin; Feeder, Scott; Choi, Doo-Sup; Veldic, Marin; McElroy, Susan L; Bond, David J; Weinshilboum, Richard; Biernacka, Joanna M; Frye, Mark A

    2017-07-04

    In a prior discovery study, increased levels of serum Growth Differentiation Factor 15 (GDF15), Hepsin (HPN), and Matrix Metalloproteinase-7 (MMP7) were observed in bipolar depressed patients vs controls. This exploratory post-hoc analysis applied a proteomic-informed genomic research strategy to study the potential functional role of these proteins in bipolar disorder (BP). Utilizing the Genotype-Tissue Expression (GTEx) database to identify cis-acting blood expression quantitative trait loci (cis-eQTLs), five eQTL variants from the HPN gene were analyzed for association with BP cases using genotype data of cases from the discovery study (n = 58) versus healthy controls (n = 777). After adjusting for relevant covariates, we analyzed the relationship between these 5 cis-eQTLs and HPN serum level in the BP cases. All 5 cis-eQTL minor alleles were significantly more frequent in BP cases vs controls [(rs62122114, OR = 1.6, p = 0.02), (rs67003112, OR = 1.6, p = 0.02), (rs4997929, OR = 1.7, p = 0.01), (rs12610663, OR = 1.7, p = 0.01), (rs62122148, OR = 1.7, P = 0.01)]. The minor allele (A) in rs62122114 was significantly associated with increased serum HPN level in BP cases (Beta = 0.12, P = 0.049). However, this same minor allele was associated with reduced gene expression in GTEx controls. These exploratory analyses suggest that genetic variation in/near the gene encoding for hepsin protein may influence risk of bipolar disorder. This genetic variation, at least for the rs62122114-A allele, may have functional impact (i.e. differential expression) as evidenced by serum HPN protein expression. Although limited by small sample size, this study highlights the merits of proteomic informed functional genomic studies as a tool to investigate with greater precision the genetic risk of bipolar disorder and secondary relationships to protein expression recognizing, and encouraging in subsequent studies, high likelihood of epigenetic modification of

  1. Proteomics, genomics and the future of medical education.

    PubMed

    Pike, Linda J; Sadler, J Evan

    2004-01-01

    The completion of the human genome project in 2003 ushered in the era of genomics, the systematic study of our DNA sequence. Proteomics, the study of the full complement of proteins present in a cell, is a natural extension of genomics. Together, the information obtainable through genomics and proteomics has tremendous potential to change clinical practice. The application of such information to medical diagnosis and treatment will require significant changes in the training of physicians. All students and physicians in training will need to acquire enough knowledge of the underlying science, including medical genetics, epidemiology, bioinformatics and statistics, so they will intuitively understand the technology and recognize the strengths and limitations of genomic/proteomic tests. Because genomic or proteomic testing may yield extensive information about a person's genetic makeup and disease risks, consideration will need to be given throughout the medical curriculum to the ethical issues raised by the application of this new technology to the diagnosis and treatment of patients.

  2. Integrative Analysis of Metabolomic, Proteomic and Genomic Data to Reveal Functional Pathways and Candidate Genes for Drip Loss in Pigs

    PubMed Central

    Welzenbach, Julia; Neuhoff, Christiane; Heidt, Hanna; Cinar, Mehmet Ulas; Looft, Christian; Schellander, Karl; Tholen, Ernst; Große-Brinkhaus, Christine

    2016-01-01

    The aim of this study was to integrate multi omics data to characterize underlying functional pathways and candidate genes for drip loss in pigs. The consideration of different omics levels allows elucidating the black box of phenotype expression. Metabolite and protein profiling was applied in Musculus longissimus dorsi samples of 97 Duroc × Pietrain pigs. In total, 126 and 35 annotated metabolites and proteins were quantified, respectively. In addition, all animals were genotyped with the porcine 60 k Illumina beadchip. An enrichment analysis resulted in 10 pathways, amongst others, sphingolipid metabolism and glycolysis/gluconeogenesis, with significant influence on drip loss. Drip loss and 22 metabolic components were analyzed as intermediate phenotypes within a genome-wide association study (GWAS). We detected significantly associated genetic markers and candidate genes for drip loss and for most of the metabolic components. On chromosome 18, a region with promising candidate genes was identified based on SNPs associated with drip loss, the protein “phosphoglycerate mutase 2” and the metabolite glycine. We hypothesize that association studies based on intermediate phenotypes are able to provide comprehensive insights in the genetic variation of genes directly involved in the metabolism of performance traits. In this way, the analyses contribute to identify reliable candidate genes. PMID:27589727

  3. Linking cancer genome to proteome: NCI's investment into proteogenomics.

    PubMed

    Rivers, Robert C; Kinsinger, Christopher; Boja, Emily S; Hiltke, Tara; Mesri, Mehdi; Rodriguez, Henry

    2014-12-01

    Advances in both targeted and unbiased MS-based proteomics are now at a mature stage for comprehensively and reproducibly characterizing a large part of the cancer proteome. These developments combined with the extensive genomic characterization of several cancer types by large-scale initiatives such as the International Cancer Genome Consortium and Cancer Genome Atlas Project have paved the way for proteogenomic analysis of omics datasets and integration methods. The advances serve as the basis for the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium and this article highlights its current work and future steps in the area of proteogenomics.

  4. Integrated proteomic and genomic analysis of colorectal cancer

    Cancer.gov

    Investigators who analyzed 95 human colorectal tumor samples have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, pro

  5. GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY

    EPA Science Inventory

    Genomic and proteomic techniques applied to reproductive biology
    John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...

  6. GENOMIC AND PROTEOMIC TECHNIQUES APPLIED TO REPRODUCTIVE BIOLOGY

    EPA Science Inventory

    Genomic and proteomic techniques applied to reproductive biology
    John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Tria...

  7. CPTAC Proteomics Data on UCSC Genome Browser | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium scientists are working together with the University of California, Santa Cruz (UCSC) Genomics Institute to provide public access to cancer proteomics data via the UCSC Genome Browser. This effort extends accessibility of the CPTAC data to more researchers and provides an additional level of analysis to assist the cancer biology community.

  8. Connecting Genomic Alterations to Cancer Biology with Proteomics: The NCI Clinical Proteomic Tumor Analysis Consortium

    SciTech Connect

    Ellis, Matthew; Gillette, Michael; Carr, Steven A.; Paulovich, Amanda G.; Smith, Richard D.; Rodland, Karin D.; Townsend, Reid; Kinsinger, Christopher; Mesri, Mehdi; Rodriguez, Henry; Liebler, Daniel

    2013-10-03

    The National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium is applying the latest generation of proteomic technologies to genomically annotated tumors from The Cancer Genome Atlas (TCGA) program, a joint initiative of the NCI and the National Human Genome Research Institute. By providing a fully integrated accounting of DNA, RNA, and protein abnormalities in individual tumors, these datasets will illuminate the complex relationship between genomic abnormalities and cancer phenotypes, thus producing biologic insights as well as a wave of novel candidate biomarkers and therapeutic targets amenable to verifi cation using targeted mass spectrometry methods.

  9. Meeting Report: "Proteomics from Discovery to Function:" 6th Annual Meeting of Proteomics Society, India and International Conference-A Milestone for the Indian Proteomics Community.

    PubMed

    Gupta, Shabarni; Reddy, Panga Jaipal; Ray, Sandipan; Atak, Apurva; Gollapalli, Kishore; Jain, Rekha; Shah, Veenita Grover; Ghantasala, Saicharan; Kumar, Saurabh; Pandala, Narendra Goud; Phapale, Prasad; Pandey, Vishnu Kumar; Zingde, Surekha; Srivastava, Sanjeeva

    2015-06-01

    Proteomics is at the epicenter of post-genomics biotechnologies that are currently driving the next generation system science. Moreover, proteomics is a truly global science. The 6(th) Annual Meeting of Proteomics Society, India (PSI) and International Conference on "Proteomics from Discovery to Function" held from December 7-9, 2014, was a transformative endeavor for global proteomics, bringing together the luminaries in the field of proteomics for the very first time in India. This meeting report presents the lessons learned and the highlights of this international scientific conference that was comprised of nine thematic sessions, pre- and post-conference workshops, and an opportunity to cultivate enduring collaborations for proteomics science to benefit both India and global society. The conference had an unforgettable impression on the participants: for the first time, India hosted past and present President and Council members from the Human Proteome Organization (HUPO), along with eminent scientists and young scholars from India and abroad in the field of proteomics at such a large scale, a major highlight of this international event. In all, the PSI 2014 was a milestone conference that has firmly poised the Indian life sciences community as a leading contributor to post-genomics life sciences, thus cultivating crucial trans-generational capacity and inspiration by recognizing the emerging scholars and omics systems scientists who can think and conduct science from cell to society.

  10. Complete Genome and Proteome of Acholeplasma laidlawii▿†

    PubMed Central

    Lazarev, V. N.; Levitskii, S. A.; Basovskii, Y. I.; Chukin, M. M.; Akopian, T. A.; Vereshchagin, V. V.; Kostrjukova, E. S.; Kovaleva, G. Y.; Kazanov, M. D.; Malko, D. B.; Vitreschak, A. G.; Sernova, N. V.; Gelfand, M. S.; Demina, I. A.; Serebryakova, M. V.; Galyamina, M. A.; Vtyurin, N. N.; Rogov, S. I.; Alexeev, D. G.; Ladygina, V. G.; Govorun, V. M.

    2011-01-01

    We present the complete genome sequence and proteogenomic map for Acholeplasma laidlawii PG-8A (class Mollicutes, order Acholeplasmatales, family Acholeplasmataceae). The genome of A. laidlawii is represented by a single 1,496,992-bp circular chromosome with an average G+C content of 31 mol%. This is the longest genome among the Mollicutes with a known nucleotide sequence. It contains genes of polymerase type I, SOS response, and signal transduction systems, as well as RNA regulatory elements, riboswitches, and T boxes. This demonstrates a significant capability for the regulation of gene expression and mutagenic response to stress. Acholeplasma laidlawii and phytoplasmas are the only Mollicutes known to use the universal genetic code, in which UGA is a stop codon. Within the Mollicutes group, only the sterol-nonrequiring Acholeplasma has the capacity to synthesize saturated fatty acids de novo. Proteomic data were used in the primary annotation of the genome, validating expression of many predicted proteins. We also detected posttranslational modifications of A. laidlawii proteins: phosphorylation and acylation. Seventy-four candidate phosphorylated proteins were found: 16 candidates are proteins unique to A. laidlawii, and 11 of them are surface-anchored or integral membrane proteins, which implies the presence of active signaling pathways. Among 20 acylated proteins, 14 contained palmitic chains, and six contained stearic chains. No residue of linoleic or oleic acid was observed. Acylated proteins were components of mainly sugar and inorganic ion transport systems and were surface-anchored proteins with unknown functions. PMID:21784942

  11. CPTAC Releases Largest-Ever Ovarian Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have just released a comprehensive dataset of the proteomic analysis of high grade serous ovarian tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).  This is one of the largest public datasets covering the proteome, phosphoproteome and glycoproteome with complementary deep genomic sequencing data on the same tumor.

  12. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences

    PubMed Central

    Holmes, Christina; Carlson, Siobhan M.; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-01

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics. PMID:27134568

  13. Exploring the post-genomic world: differing explanatory and manipulatory functions of post-genomic sciences.

    PubMed

    Holmes, Christina; Carlson, Siobhan M; McDonald, Fiona; Jones, Mavis; Graham, Janice

    2016-01-02

    Richard Lewontin proposed that the ability of a scientific field to create a narrative for public understanding garners it social relevance. This article applies Lewontin's conceptual framework of the functions of science (manipulatory and explanatory) to compare and explain the current differences in perceived societal relevance of genetics/genomics and proteomics. We provide three examples to illustrate the social relevance and strong cultural narrative of genetics/genomics for which no counterpart exists for proteomics. We argue that the major difference between genetics/genomics and proteomics is that genomics has a strong explanatory function, due to the strong cultural narrative of heredity. Based on qualitative interviews and observations of proteomics conferences, we suggest that the nature of proteins, lack of public understanding, and theoretical complexity exacerbates this difference for proteomics. Lewontin's framework suggests that social scientists may find that omics sciences affect social relations in different ways than past analyses of genetics.

  14. University of Victoria Genome British Columbia Proteomics Centre Partners with CPTAC | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    University of Victoria Genome British Columbia Proteomics Centre, a leader in proteomic technology development, has partnered with the U.S. National Cancer Institute (NCI) to make targeted proteomic assays accessible to the community through NCI’s CPTAC Assay Portal (https://assays.cancer.gov).

  15. University of Victoria Genome British Columbia Proteomics Centre Partners with CPTAC - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    University of Victoria Genome British Columbia Proteomics Centre, a leader in proteomic technology development, has partnered with the U.S. National Cancer Institute (NCI) to make targeted proteomic assays accessible to the community through NCI’s CPTAC Assay Portal.

  16. Aligning the proteome and genome of the silkworm, Bombyx mori.

    PubMed

    Zhang, Yaozhou; Xia, Qingyou; Xu, Jie; Chen, Jian; Nie, Zuoming; Wang, Dan; Zhang, Wenping; Chen, Jianqing; Zheng, Qingliang; Chen, Qing; Kong, Lingying; Ren, Xiaoyuan; Wang, Jiang; Lv, Zhengbing; Yu, Wei; Jiang, Caiying; Liu, Lili; Sheng, Qing; Jin, Yongfeng; Wu, Xiangfu

    2009-11-01

    A technology of mass spectrometry (MS) was used in this study for the large-scale proteomic identification and verification of protein-encoding genes present in the silkworm (Bombyx mori) genome. Peptide sequences identified by MS were compared with those from an open reading frame (ORF) library of the B. mori genome and a cDNA library, to validate the coding attributes of ORFs. Two databases were created. The first was based on a 9x draft sequence of the silkworm genome and contained 14,632 putative proteins. The second was based on a B. mori pupal cDNA library containing 3,187 putative proteins of at least 30 amino acid residues in length. A total of 81,000 peptide sequences with a threshold score of 60% were generated by the MS/MS analysis, and 55,400 of these were chosen for a sequence alignment. By searching these two databases, 6,649 and 250 proteins were matched, which accounted for approximately 45.4% and 7.8% of the peptide sequences and putative proteins, respectively. Further analyses carried out by several bioinformatic tools suggested that the matches included proteins with predicted transmembrane domains (1,393) and preproteins with a signal peptide (976). These results provide a fundamental understanding of the expression and function of silkworm proteins.

  17. Proteogenomics: the needs and roles to be filled by proteomics in genome annotation

    SciTech Connect

    Ansong, Charles; Purvine, Samuel O.; Adkins, Joshua N.; Lipton, Mary S.; Smith, Richard D.

    2008-01-01

    While genome sequencing efforts reveal the basic building blocks of life, a genome sequence alone is insufficient for elucidating biological function. Genome annotation – the process of identifying genes and assigning function to each gene in a genome sequence – provides the means to elucidate biological function from sequence. Current state-of-the-art high throughput genome annotation uses a combination of comparative (sequence similarity data) and non-comparative (ab initio gene prediction algorithms) methods to identify open reading frames in genome sequences. Because approaches used to validate the presence of these open reading frames are typically based on the information derived from the annotated genomes, they cannot independently and unequivocally determine whether a predicted open reading frame is translated into a protein. With the ability to directly measure peptides arising from expressed proteins, high throughput liquid chromatography-tandem mass spectrometry-based proteomics, approaches can be used to verify coding regions of a genomic sequence. Here, we highlight several ways in which high throughput tandem mass spectrometry-based proteomics can improve the quality of genome annotations and suggest that it could be efficiently applied during the initial gene calling process so that the improvements are propagated through the subsequent functional annotation process.

  18. Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome

    PubMed Central

    2013-01-01

    Background The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its members. Given that mitochondria play important roles in fungal virulence and the susceptibility/resistance of fungi to fungicides, we performed the first functional analysis of this organelle in Ceratocystis using integrated “omics” approaches. Results The C. cacaofunesta mitochondrial genome (mtDNA) consists of a single, 103,147-bp circular molecule, making this the second largest mtDNA among the Sordariomycetes. Bioinformatics analysis revealed the presence of 15 conserved genes and 37 intronic open reading frames in C. cacaofunesta mtDNA. Here, we predicted the mitochondrial proteome (mtProt) of C. cacaofunesta, which is comprised of 1,124 polypeptides - 52 proteins that are mitochondrially encoded and 1,072 that are nuclearly encoded. Transcriptome analysis revealed 33 probable novel genes. Comparisons among the Gene Ontology results of the predicted mtProt of C. cacaofunesta, Neurospora crassa and Saccharomyces cerevisiae revealed no significant differences. Moreover, C. cacaofunesta mitochondria were isolated, and the mtProt was subjected to mass spectrometric analysis. The experimental proteome validated 27% of the predicted mtProt. Our results confirmed the existence of 110 hypothetical proteins and 7 novel proteins of which 83 and 1, respectively, had putative mitochondrial localization. Conclusions The present study provides the first partial genomic analysis of a species of the Ceratocystis genus and the first predicted mitochondrial protein inventory of a phytopathogenic fungus. In addition to the known mitochondrial role in pathogenicity, our results demonstrated that the global function analysis of this organelle is similar in pathogenic and non

  19. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    PubMed Central

    Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-01-01

    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490

  20. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    SciTech Connect

    Callister, Stephen J.; McCue, Lee Ann; Turse, Josh E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-02-06

    Comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry. Experimental validation of the existence of this core genome requires extensive measurement and is not typically undertaken. Enabled by an extensive proteome database development over a six year period, we experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. While genomic studies establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits.

  1. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.

    PubMed

    Komatsu, Setsuko; Wang, Xin; Yin, Xiaojian; Nanjo, Yohei; Ohyanagi, Hajime; Sakata, Katsumi

    2017-06-23

    The Soybean Proteome Database (SPD) stores data on soybean proteins obtained with gel-based and gel-free proteomic techniques. The database was constructed to provide information on proteins for functional analyses. The majority of the data is focused on soybean (Glycine max 'Enrei'). The growth and yield of soybean are strongly affected by environmental stresses such as flooding. The database was originally constructed using data on soybean proteins separated by two-dimensional polyacrylamide gel electrophoresis, which is a gel-based proteomic technique. Since 2015, the database has been expanded to incorporate data obtained by label-free mass spectrometry-based quantitative proteomics, which is a gel-free proteomic technique. Here, the portions of the database consisting of gel-free proteomic data are described. The gel-free proteomic database contains 39,212 proteins identified in 63 sample sets, such as temporal and organ-specific samples of soybean plants grown under flooding stress or non-stressed conditions. In addition, data on organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored. Furthermore, the database integrates multiple omics data such as genomics, transcriptomics, metabolomics, and proteomics. The SPD database is accessible at http://proteome.dc.affrc.go.jp/Soybean/. The Soybean Proteome Database stores data obtained from both gel-based and gel-free proteomic techniques. The gel-free proteomic database comprises 39,212 proteins identified in 63 sample sets, such as different organs of soybean plants grown under flooding stress or non-stressed conditions in a time-dependent manner. In addition, organellar proteins identified in mitochondria, nuclei, and endoplasmic reticulum are stored in the gel-free proteomics database. A total of 44,704 proteins, including 5490 proteins identified using a gel-based proteomic technique, are stored in the SPD. It accounts for approximately 80% of all predicted proteins from

  2. Highlights of recent articles on data mining in genomics & proteomics

    USDA-ARS?s Scientific Manuscript database

    This editorial elaborates on investigations consisting of different “OMICS” technologies and their application to biological sciences. In addition, advantages and recent development of the proteomic, genomic and data mining technologies are discussed. This information will be useful to scientists ...

  3. CPTAC Releases Largest-Ever Colorectal Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    On September 4, 2013, NCI’s Clinical Proteomics Tumor Analysis Consortium (CPTAC) publicly released proteomic data produced from colorectal tumor samples previously analyzed by The Cancer Genome Atlas (TCGA).  This is the initial release of proteomic tumor data designed to complement genomic data on the same tumors. The data is publicly available at the CPTAC data portal.

  4. CPTAC Releases Largest-Ever Breast Cancer Proteome Dataset from Previously Genome Characterized Tumors | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    National Cancer Institute (NCI) Clinical Proteomic Tumor Analysis Consortium (CPTAC) scientists have released a dataset of proteins and  phosphopeptides identified through deep proteomic and phosphoproteomic analysis of breast tumor samples, previously genomically analyzed by The Cancer Genome Atlas (TCGA).

  5. Annotation of loci from genome-wide association studies using tissue-specific quantitative interaction proteomics

    PubMed Central

    Lundby, Alicia; Rossin, Elizabeth J.; Steffensen, Annette B.; Rav Acha, Moshe; Newton-Cheh, Christopher; Pfeufer, Arne; Lynch, Stacey N.; Olesen, Søren-Peter; Brunak, Søren; Ellinor, Patrick T.; Jukema, J.Wouter; Trompet, Stella; Ford, Ian; Macfarlane, Peter W.; Krijthe, Bouwe P.; Hofman, Albert; Uitterlinden, Andre G.; Stricker, Bruno H.; Nathoe, Hendrik M.; Spiering, Wilko; Daly, Mark J.; Asselbergs, Folkert W.; van der Harst, Pim; Milan, David J.; de Bakker, Paul I.W.; Lage, Kasper; Olsen, Jesper V.

    2014-01-01

    Genome-wide association studies (GWAS) have identified thousands of loci associated wtih complex traits, but it is challenging to pinpoint causal genes in these loci and to exploit subtle association signals. We used tissue-specific quantitative interaction proteomics to map a network of five genes involved in the Mendelian disorder long QT syndrome (LQTS). We integrated the LQTS network with GWAS loci from the corresponding common complex trait, QT interval variation, to identify candidate genes that were subsequently confirmed in Xenopus laevis oocytes and zebrafish. We used the LQTS protein network to filter weak GWAS signals by identifying single nucleotide polymorphisms (SNPs) in proximity to genes in the network supported by strong proteomic evidence. Three SNPs passing this filter reached genome-wide significance after replication genotyping. Overall, we present a general strategy to propose candidates in GWAS loci for functional studies and to systematically filter subtle association signals using tissue-specific quantitative interaction proteomics. PMID:24952909

  6. Comparative Analysis of Genomics and Proteomics in Bacillus thuringiensis 4.0718

    PubMed Central

    Rang, Jie; He, Hao; Wang, Ting; Ding, Xuezhi; Zuo, Mingxing; Quan, Meifang; Sun, Yunjun; Yu, Ziquan; Hu, Shengbiao; Xia, Liqiu

    2015-01-01

    Bacillus thuringiensis is a widely used biopesticide that produced various insecticidal active substances during its life cycle. Separation and purification of numerous insecticide active substances have been difficult because of the relatively short half-life of such substances. On the other hand, substances can be synthetized at different times during development, so samples at different stages have to be studied, further complicating the analysis. A dual genomic and proteomic approach would enhance our ability to identify such substances, and particularily using mass spectrometry-based proteomic methods. The comparative analysis for genomic and proteomic data have showed that not all of the products deduced from the annotated genome could be identified among the proteomic data. For instance, genome annotation results showed that 39 coding sequences in the whole genome were related to insect pathogenicity, including five cry genes. However, Cry2Ab, Cry1Ia, Cytotoxin K, Bacteriocin, Exoenzyme C3 and Alveolysin could not be detected in the proteomic data obtained. The sporulation-related proteins were also compared analysis, results showed that the great majority sporulation-related proteins can be detected by mass spectrometry. This analysis revealed Spo0A~P, SigF, SigE(+), SigK(+) and SigG(+), all known to play an important role in the process of spore formation regulatory network, also were displayed in the proteomic data. Through the comparison of the two data sets, it was possible to infer that some genes were silenced or were expressed at very low levels. For instance, found that cry2Ab seems to lack a functional promoter while cry1Ia may not be expressed due to the presence of transposons. With this comparative study a relatively complete database can be constructed and used to transform hereditary material, thereby prompting the high expression of toxic proteins. A theoretical basis is provided for constructing highly virulent engineered bacteria and for

  7. Dicarbonyl proteome and genome damage in metabolic and vascular disease.

    PubMed

    Rabbani, Naila; Thornalley, Paul J

    2014-04-01

    Methylglyoxal is a potent protein-glycating agent. It is an arginine-directed glycating agent and often modifies functionally important sites in proteins. Glycation forms mainly MG-H1 [Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine] residues. MG-H1 content of proteins is quantified by stable isotopic dilution analysis-MS/MS and also by immunoblotting with specific monoclonal antibodies. Methylglyoxal-modified proteins undergo cellular proteolysis and release MG-H1 free adduct for excretion. MG-H1 residues have been found in proteins of animals, plants, bacteria, fungi and protoctista. MG-H1 is often the major advanced glycation end-product in proteins of tissues and body fluids, increasing in diabetes and associated vascular complications, renal failure, cirrhosis, Alzheimer's disease, arthritis, Parkinson's disease and aging. Proteins susceptible to methylglyoxal modification with related functional impairment are called the DCP (dicarbonyl proteome). The DCP includes albumin, haemoglobin, transcription factors, mitochondrial proteins, extracellular matrix proteins, lens crystallins and others. DCP component proteins are linked to mitochondrial dysfunction in diabetes and aging, oxidative stress, dyslipidaemia, cell detachment and anoikis and apoptosis. Methylglyoxal also modifies DNA where deoxyguanosine residues are modified to imidazopurinone MGdG {3-(2'-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one} isomers. MGdG was the major quantitative adduct detected in vivo. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell-permeant glyoxalase I inhibitor. Glyoxalase I metabolizes >99% methylglyoxal and thereby protects the proteome and genome. Gene deletion of GLO1 is embryonically lethal and GLO1 silencing increases methylglyoxal concentration, MG-H1 and MGdG, premature aging and disease. Studies of methylglyoxal glycation have importance for human health, longevity and

  8. Leveraging Genomics Software to Improve Proteomics Results

    SciTech Connect

    Fodor, I K; Nelson, D O

    2005-09-06

    Rigorous data analysis techniques are essential in quantifying the differential expression of proteins in biological samples of interest. Statistical methods from the microarray literature were applied to the analysis of two-dimensional difference gel electrophoresis (2-D DIGE) proteomics experiments, in the context of technical variability studies involving human plasma. Protein expression measurements were corrected to account for observed intensity-dependent biases within gels, and normalized to mitigate observed gel to gel variations. The methods improved upon the results achieved using the best currently available 2-D DIGE proteomics software. The spot-wise protein variance was reduced by 10% and the number of apparently differentially expressed proteins was reduced by over 50%.

  9. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis.

    PubMed

    Low, Teck Yew; van Heesch, Sebastiaan; van den Toorn, Henk; Giansanti, Piero; Cristobal, Alba; Toonen, Pim; Schafer, Sebastian; Hübner, Norbert; van Breukelen, Bas; Mohammed, Shabaz; Cuppen, Edwin; Heck, Albert J R; Guryev, Victor

    2013-12-12

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We obtained peptide evidence for 26,463 rat liver proteins. We validated 1,195 gene predictions, 83 splice events, 126 proteins with nonsynonymous variants, and 20 isoforms with nonsynonymous RNA editing. Quantitative RNA sequencing and proteomics data correlate highly between strains but poorly among each other, indicating extensive nongenetic regulation. Our multilevel analysis identified a genomic variant in the promoter of the most differentially expressed gene Cyp17a1, a previously reported top hit in genome-wide association studies for human hypertension, as a potential contributor to the hypertension phenotype in SHR rats. These results demonstrate the power of and need for integrative analysis for understanding genetic control of molecular dynamics and phenotypic diversity in a system-wide manner.

  10. Plant organelle proteomics: collaborating for optimal cell function.

    PubMed

    Agrawal, Ganesh Kumar; Bourguignon, Jacques; Rolland, Norbert; Ephritikhine, Geneviève; Ferro, Myriam; Jaquinod, Michel; Alexiou, Konstantinos G; Chardot, Thierry; Chakraborty, Niranjan; Jolivet, Pascale; Doonan, John H; Rakwal, Randeep

    2011-01-01

    Organelle proteomics describes the study of proteins present in organelle at a particular instance during the whole period of their life cycle in a cell. Organelles are specialized membrane bound structures within a cell that function by interacting with cytosolic and luminal soluble proteins making the protein composition of each organelle dynamic. Depending on organism, the total number of organelles within a cell varies, indicating their evolution with respect to protein number and function. For example, one of the striking differences between plant and animal cells is the plastids in plants. Organelles have their own proteins, and few organelles like mitochondria and chloroplast have their own genome to synthesize proteins for specific function and also require nuclear-encoded proteins. Enormous work has been performed on animal organelle proteomics. However, plant organelle proteomics has seen limited work mainly due to: (i) inter-plant and inter-tissue complexity, (ii) difficulties in isolation of subcellular compartments, and (iii) their enrichment and purity. Despite these concerns, the field of organelle proteomics is growing in plants, such as Arabidopsis, rice and maize. The available data are beginning to help better understand organelles and their distinct and/or overlapping functions in different plant tissues, organs or cell types, and more importantly, how protein components of organelles behave during development and with surrounding environments. Studies on organelles have provided a few good reviews, but none of them are comprehensive. Here, we present a comprehensive review on plant organelle proteomics starting from the significance of organelle in cells, to organelle isolation, to protein identification and to biology and beyond. To put together such a systematic, in-depth review and to translate acquired knowledge in a proper and adequate form, we join minds to provide discussion and viewpoints on the collaborative nature of organelles in

  11. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences

    SciTech Connect

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, Jim K.; Lipton, Mary S.; Callister, Stephen J.

    2010-11-12

    Current methods in proteomics are dependent on the availability of sequenced genomes to identify proteins. However, genomic sequences are not always available for bacteria or microbial communities, even with high throughput sequencing technology becoming more readily available. Nevertheless, the homology that exists between related bacteria makes possible the extraction of meaningful biological information from an organism’s, or community’s proteome using the genomic sequence of a near neighbor. Here, a cross-organism search strategy was used to look at the amount of proteomics information obtainable with relative genetic distance from a near neighbor organism and to identify proteins in the proteome of minimally characterized environmental isolates. We conclude that closely related organisms with sequenced genomes, can be used to characterize proteomes of organisms with unsequenced genomes. In general, a cross-organism search strategy demonstrates the first step to use of sequences genomes to evaluate the proteomes of environmental bacteria and microbial communities that have no sequenced genome

  12. Proteomics and integrative genomics for unraveling the mysteries of spermatogenesis: the strategies of a team.

    PubMed

    Com, Emmanuelle; Melaine, Nathalie; Chalmel, Frédéric; Pineau, Charles

    2014-07-31

    The strikingly complex structural organization of the mammalian testis in vivo creates particular difficulties for studies of its organization, function and regulation. These difficulties are particularly pronounced for investigations of the molecular communication networks within the seminiferous tubules that govern spermatogenesis. The use of classical molecular and cell biology approaches to unravel this complexity has proved problematic, due to difficulties in maintaining differentiated germ cells in vitro, in particular. The lack of a suitable testing ground has led to a greater reliance on high-quality proteomic and genomic analyses as a prelude to the in vitro antx1d in vivo testing of hypotheses. In this study, we highlight the options currently available for research, as used in our laboratory, in which proteomic and integrative genomic strategies are applied to the study of spermatogenesis in mammals. We will comment on results providing insight into the molecular mechanisms underlying normal and pathological spermatogenesis and new perspectives for the treatment of male infertility in humans. Finally, we will discuss the relevance of our strategies and the unexpected potential and perspectives they offer to teams involved in the study of male reproduction, within the framework of the Human Proteome Project. Integrative genomics is becoming a powerful strategy for discovering the biological significance hidden in proteomic datasets. This work introduces some of the integrative genomic concepts and works used by our team to gain new insight into mammalian spermatogenesis, a remarkably sophisticated process. We demonstrate the relevance of these integrative approaches to understand the cellular cross talks established between the somatic Sertoli cells and the germ cell lineage, within the seminiferous epithelium. Our work also contributes to new knowledge on the pathophysiology of testicular function, with promising clinical applications. This article is

  13. The application of proteomic approaches to the study of mammalian spermatogenesis and sperm function.

    PubMed

    Macleod, Graham; Varmuza, Susannah

    2013-11-01

    Spermatogenesis is the process by which terminally differentiated sperm are produced from male germline stem cells. This complex developmental process requires the coordination of both somatic and germ cells through phases of proliferation, meiosis, and morphological differentiation, to produce the cell responsible for the delivery of the paternal genome. With infertility affecting ~ 15% of all couples, furthering our understanding of spermatogenesis and sperm function is vital for improving the diagnosis and treatment of male factor infertility. The emerging use of proteomic technologies has played an instrumental role in our understanding of spermatogenesis by providing information regarding the genes involved. This article reviews existing proteomic literature regarding spermatogenesis and sperm function, including the proteomic characterization of spermatogenic cell types, subcellular proteomics, post-translational modifications, interactomes, and clinical studies. Future directions in the application of proteomics to the study of spermatogenesis and sperm function are also discussed.

  14. Proteomic profiling of high risk medulloblastoma reveals functional biology

    PubMed Central

    Staal, Jerome A.; Lau, Ling San; Zhang, Huizhen; Ingram, Wendy J.; Hallahan, Andrew R.; Northcott, Paul A.; Pfister, Stefan M.; Wechsler-Reya, Robert J.; Rusert, Jessica M.; Taylor, Michael D.; Cho, Yoon-Jae; Packer, Roger J.; Brown, Kristy J.; Rood, Brian R.

    2015-01-01

    Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior. PMID:25970789

  15. Proteomic profiling of high risk medulloblastoma reveals functional biology.

    PubMed

    Staal, Jerome A; Lau, Ling San; Zhang, Huizhen; Ingram, Wendy J; Hallahan, Andrew R; Northcott, Paul A; Pfister, Stefan M; Wechsler-Reya, Robert J; Rusert, Jessica M; Taylor, Michael D; Cho, Yoon-Jae; Packer, Roger J; Brown, Kristy J; Rood, Brian R

    2015-06-10

    Genomic characterization of medulloblastoma has improved molecular risk classification but struggles to define functional biological processes, particularly for the most aggressive subgroups. We present here a novel proteomic approach to this problem using a reference library of stable isotope labeled medulloblastoma-specific proteins as a spike-in standard for accurate quantification of the tumor proteome. Utilizing high-resolution mass spectrometry, we quantified the tumor proteome of group 3 medulloblastoma cells and demonstrate that high-risk MYC amplified tumors can be segregated based on protein expression patterns. We cross-validated the differentially expressed protein candidates using an independent transcriptomic data set and further confirmed them in a separate cohort of medulloblastoma tissue samples to identify the most robust proteogenomic differences. Interestingly, highly expressed proteins associated with MYC-amplified tumors were significantly related to glycolytic metabolic pathways via alternative splicing of pyruvate kinase (PKM) by heterogeneous ribonucleoproteins (HNRNPs). Furthermore, when maintained under hypoxic conditions, these MYC-amplified tumors demonstrated increased viability compared to non-amplified tumors within the same subgroup. Taken together, these findings highlight the power of proteomics as an integrative platform to help prioritize genetic and molecular drivers of cancer biology and behavior.

  16. Differential proteomics analysis of Bacillus amyloliquefaciens and its genome-shuffled mutant for improving surfactin production.

    PubMed

    Zhao, Junfeng; Cao, Lin; Zhang, Chong; Zhong, Lei; Lu, Jing; Lu, Zhaoxin

    2014-10-31

    Genome shuffling technology was used as a novel whole-genome engineering approach to rapidly improve the antimicrobial lipopeptide yield of Bacillus amyloliquefaciens. Comparative proteomic analysis of the parental ES-2-4 and genome-shuffled FMB38 strains was conducted to examine the differentially expressed proteins. The proteome was separated by 2-DE (two dimensional electrophoresis) and analyzed by MS (mass spectrum). In the shuffled strain FMB38, 51 differentially expressed protein spots with higher than two-fold spot density were detected by gel image comparison. Forty-six protein spots were detectable by silver staining and further MS analysis. The results demonstrated that among the 46 protein spots expressed particularly induced in the genome-shuffled mutant, 15 were related to metabolism, five to DNA replication, recombination and repair, six to translation and post-translational modifications, one to cell secretion and signal transduction mechanisms, three to surfactin synthesis, two to energy production and conversion, and 14 to others. All these indicated that the metabolic capability of the mutant was improved by the genome shuffling. The study will enable future detailed investigation of gene expression and function linked with surfactin synthesis. The results of proteome analysis may provide information for metabolic engineering of Bacillus amyloliquefaciens for overproduction of surfactin.

  17. Early identification of cardiovascular risk using genomics and proteomics

    PubMed Central

    Kullo, Iftikhar J.; Cooper, Leslie T.

    2010-01-01

    Coronary heart disease (CHD) will soon become the leading cause of death and morbidity in the world. Early detection and treatment of CHD is thus imperative to improve global health. Atherosclerosis of the coronary arteries is a complex multifactorial disease process involving multiple pathways that can be influenced by both genetic and environmental factors. With the recent advances in genomics and proteomics, many new risk factors with small-to-moderate effects are likely to be identified. Additionally, individualized risk stratification and targeted therapy may become feasible; each individual could potentially be assessed with a panel of tests for genomic and proteomic markers and, on the basis of the individual’s composite risk profile, preventive and therapeutic steps could then be undertaken. With a multimarker approach, it may also be possible to identify alterations in pathways involved in atherogenesis, rather than focus on individual risk factors. In this article, we use the specific example of atherosclerosis to discuss the role of genomics and proteomics in cardiovascular risk assessment. PMID:20440292

  18. Comparing function and structure between entire proteomes

    PubMed Central

    Liu, Jinfeng; Rost, Burkhard

    2001-01-01

    More than 30 organisms have been sequenced entirely. Here, we applied a variety of simple bioinformatics tools to analyze 29 proteomes for representatives from all three kingdoms: eukaryotes, prokaryotes, and archaebacteria. We confirmed that eukaryotes have relatively more long proteins than prokaryotes and archaes, and that the overall amino acid composition is similar among the three. We predicted that ∼15%–30% of all proteins contained transmembrane helices. We could not find a correlation between the content of membrane proteins and the complexity of the organism. In particular, we did not find significantly higher percentages of helical membrane proteins in eukaryotes than in prokaryotes or archae. However, we found more proteins with seven transmembrane helices in eukaryotes and more with six and 12 transmembrane helices in prokaryotes. We found twice as many coiled-coil proteins in eukaryotes (10%) as in prokaryotes and archaes (4%–5%), and we predicted ∼15%–25% of all proteins to be secreted by most eukaryotes and prokaryotes. Every tenth protein had no known homolog in current databases, and 30%–40% of the proteins fell into structural families with >100 members. A classification by cellular function verified that eukaryotes have a higher proportion of proteins for communication with the environment. Finally, we found at least one homolog of experimentally known structure for ∼20%–45% of all proteins; the regions with structural homology covered 20%–30% of all residues. These numbers may or may not suggest that there are 1200–2600 folds in the universe of protein structures. All predictions are available at http://cubic.bioc.columbia.edu/genomes. PMID:11567088

  19. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    PubMed Central

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research. PMID:23515231

  20. VESPA: software to facilitate genomic annotation of prokaryotic organisms through integration of proteomic and transcriptomic data

    PubMed Central

    2012-01-01

    Background The procedural aspects of genome sequencing and assembly have become relatively inexpensive, yet the full, accurate structural annotation of these genomes remains a challenge. Next-generation sequencing transcriptomics (RNA-Seq), global microarrays, and tandem mass spectrometry (MS/MS)-based proteomics have demonstrated immense value to genome curators as individual sources of information, however, integrating these data types to validate and improve structural annotation remains a major challenge. Current visual and statistical analytic tools are focused on a single data type, or existing software tools are retrofitted to analyze new data forms. We present Visual Exploration and Statistics to Promote Annotation (VESPA) is a new interactive visual analysis software tool focused on assisting scientists with the annotation of prokaryotic genomes though the integration of proteomics and transcriptomics data with current genome location coordinates. Results VESPA is a desktop Java™ application that integrates high-throughput proteomics data (peptide-centric) and transcriptomics (probe or RNA-Seq) data into a genomic context, all of which can be visualized at three levels of genomic resolution. Data is interrogated via searches linked to the genome visualizations to find regions with high likelihood of mis-annotation. Search results are linked to exports for further validation outside of VESPA or potential coding-regions can be analyzed concurrently with the software through interaction with BLAST. VESPA is demonstrated on two use cases (Yersinia pestis Pestoides F and Synechococcus sp. PCC 7002) to demonstrate the rapid manner in which mis-annotations can be found and explored in VESPA using either proteomics data alone, or in combination with transcriptomic data. Conclusions VESPA is an interactive visual analytics tool that integrates high-throughput data into a genomic context to facilitate the discovery of structural mis-annotations in prokaryotic

  1. Public access for teaching genomics, proteomics, and bioinformatics.

    PubMed

    Campbell, A Malcolm

    2003-01-01

    When the human genome project was conceived, its leaders wanted all researchers to have equal access to the data and associated research tools. Their vision of equal access provides an unprecedented teaching opportunity. Teachers and students have free access to the same databases that researchers are using. Furthermore, the recent movement to deliver scientific publications freely has presented a second source of current information for teaching. I have developed a genomics course that incorporates many of the public-domain databases, research tools, and peer-reviewed journals. These online resources provide students with exciting entree into the new fields of genomics, proteomics, and bioinformatics. In this essay, I outline how these fields are especially well suited for inclusion in the undergraduate curriculum. Assessment data indicate that my students were able to utilize online information to achieve the educational goals of the course and that the experience positively influenced their perceptions of how they might contribute to biology.

  2. Cellular RNA helicases and HIV-1: insights from genome-wide, proteomic, and molecular studies.

    PubMed

    Chen, Chia-Yen; Liu, Xiang; Boris-Lawrie, Kathleen; Sharma, Amit; Jeang, Kuan-Teh

    2013-02-01

    RNA helicases are ubiquitous in plants and animals and function in many cellular processes. Retroviruses, such as human immunodeficiency virus (HIV-1), encode no RNA helicases in their genomes and utilize host cellular RNA helicases at various stages of their life cycle. Here, we briefly summarize the roles RNA helicases play in HIV-1 replication that have been identified recently, in part, through genome-wide screenings, proteomics, and molecular studies. Some of these helicases augment virus propagation while others apparently participate in antiviral defenses against viral replication.

  3. Key roles of government in genomics and proteomics: a public health perspective.

    PubMed

    Noonan, Allan S

    2002-01-01

    This paper is based on the presentation of Dr. Allan Noonan at the third biennial Asan-Harvard Medical International Symposium on "Genomics and Proteomics: Impact on Medicine and Health" that took place in Seoul, Korea, July 3-4, 2001. Dr. Noonan is a senior advisor to the Surgeon General of the United States and was representing the then Surgeon General, Dr. David Satcher. In this final presentation of the symposium, Dr. Noonan reviews the key roles of government in US health care and discusses several areas where genomic- and proteomic-based information will necessitate changes in the functions of public health. In particular, Dr. Noonan discusses the need for appropriate training to meet the challenges of the genomic future; for sensitivity in the development of policies to address the ethical, legal, and social implications of genomic information; and for dissemination of genomic information to both the professionals and the public. Dr. Noonan concludes with a vision of the genomic future of the next 30 years and a reiteration of the need for partnership among health professionals, educators, and social services professionals.

  4. An empirical strategy for characterizing bacterial proteomes across species in the absence of genomic sequences.

    PubMed

    Turse, Joshua E; Marshall, Matthew J; Fredrickson, James K; Lipton, Mary S; Callister, Stephen J

    2010-11-12

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300-500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella.

  5. An Empirical Strategy for Characterizing Bacterial Proteomes across Species in the Absence of Genomic Sequences

    PubMed Central

    Turse, Joshua E.; Marshall, Matthew J.; Fredrickson, James K.; Lipton, Mary S.; Callister, Stephen J.

    2010-01-01

    Global protein identification through current proteomics methods typically depends on the availability of sequenced genomes. In spite of increasingly high throughput sequencing technologies, this information is not available for every microorganism and rarely available for entire microbial communities. Nevertheless, the protein-level homology that exists between related bacteria makes it possible to extract biological information from the proteome of an organism or microbial community by using the genomic sequences of a near neighbor organism. Here, we demonstrate a trans-organism search strategy for determining the extent to which near-neighbor genome sequences can be applied to identify proteins in unsequenced environmental isolates. In proof of concept testing, we found that within a CLUSTAL W distance of 0.089, near-neighbor genomes successfully identified a high percentage of proteins within an organism. Application of this strategy to characterize environmental bacterial isolates lacking sequenced genomes, but having 16S rDNA sequence similarity to Shewanella resulted in the identification of 300–500 proteins in each strain. The majority of identified pathways mapped to core processes, as well as to processes unique to the Shewanellae, in particular to the presence of c-type cytochromes. Examples of core functional categories include energy metabolism, protein and nucleotide synthesis and cofactor biosynthesis, allowing classification of bacteria by observation of conserved processes. Additionally, within these core functionalities, we observed proteins involved in the alternative lactate utilization pathway, recently described in Shewanella. PMID:21103051

  6. The power of functional proteomics

    PubMed Central

    Wagner, Volker; Kreimer, Georg

    2008-01-01

    One of the key modifications of proteins that can affect protein functions, activities, stabilities, localizations and interactions, represents phosphorylation. For functional phosphoproteomics, phosphopeptides are enriched from isolated sub-cellular fractions of interest and analyzed by liquid chromatography-electrospray ionization-mass spectrometry. Such an approach was recently applied to the eyespot apparatus of the green flagellate alga Chlamydomonas reinhardtii, which represents a primordial visual system. Thereby, 32 phosphoproteins of known eyespot proteins along with 52 precise in vivo phosphorylation sites were identified. They include enzymes of carotenoid and fatty acid metabolism, (putative) light signaling components and proteins with unknown function. Strikingly, the two unique green algal photoreceptors, channelrhodopsin-1 and -2 were found to be phosphorylated in the cytoplasmic loop next to their seven transmembrane regions in a similar distance as observed in vertebrate rhodopsins. PMID:19513232

  7. Comprehensive genome-wide proteomic analysis of human placental tissue for the Chromosome-Centric Human Proteome Project.

    PubMed

    Lee, Hyoung-Joo; Jeong, Seul-Ki; Na, Keun; Lee, Min Jung; Lee, Sun Hee; Lim, Jong-Sun; Cha, Hyun-Jeong; Cho, Jin-Young; Kwon, Ja-Young; Kim, Hoguen; Song, Si Young; Yoo, Jong Shin; Park, Young Mok; Kim, Hail; Hancock, William S; Paik, Young-Ki

    2013-06-07

    As a starting point of the Chromosome-Centric Human Proteome Project (C-HPP), we established strategies of genome-wide proteomic analysis, including protein identification, quantitation of disease-specific proteins, and assessment of post-translational modifications, using paired human placental tissues from healthy and preeclampsia patients. This analysis resulted in identification of 4239 unique proteins with high confidence (two or more unique peptides with a false discovery rate less than 1%), covering 21% of approximately 20, 059 (Ensembl v69, Oct 2012) human proteins, among which 28 proteins exhibited differentially expressed preeclampsia-specific proteins. When these proteins are assigned to all human chromosomes, the pattern of the newly identified placental protein population is proportional to that of the gene count distribution of each chromosome. We also identified 219 unique N-linked glycopeptides, 592 unique phosphopeptides, and 66 chromosome 13-specific proteins. In particular, protein evidence of 14 genes previously known to be specifically up-regulated in human placenta was verified by mass spectrometry. With respect to the functional implication of these proteins, 38 proteins were found to be involved in regulatory factor biosynthesis or the immune system in the placenta, but the molecular mechanism of these proteins during pregnancy warrants further investigation. As far as we know, this work produced the highest number of proteins identified in the placenta and will be useful for annotating and mapping all proteins encoded in the human genome.

  8. Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant

    PubMed Central

    Brotherton, Marie-Christine; Bourassa, Sylvie; Leprohon, Philippe; Légaré, Danielle; Poirier, Guy G.; Droit, Arnaud; Ouellette, Marc

    2013-01-01

    Background Antimonials remain the primary antileishmanial drugs in most developing countries. However, drug resistance to these compounds is increasing and our understanding of resistance mechanisms is partial. Methods/Principal Findings In the present study, quantitative proteomics using stable isotope labelling of amino acids in cell culture (SILAC) and genome next generation sequencing were used in order to better characterize in vitro generated Leishmania infantum antimony resistant mutant (Sb2000.1). Using the proteomic method, 58 proteins were found to be differentially regulated in Sb2000.1. The ABC transporter MRPA (ABCC3), a known marker of antimony resistance, was observed for the first time in a proteomic screen. Furthermore, transfection of its gene conferred antimony resistance in wild-type cells. Next generation sequencing revealed aneuploidy for 8 chromosomes in Sb2000.1. Moreover, specific amplified regions derived from chromosomes 17 and 23 were observed in Sb2000.1 and a single nucleotide polymorphism (SNP) was detected in a protein kinase (LinJ.33.1810-E629K). Conclusion/Significance Our results suggest that differentially expressed proteins, chromosome number variations (CNVs), specific gene amplification and SNPs are important features of antimony resistance in Leishmania. PMID:24312377

  9. Proteomic and genomic studies of non-alcoholic fatty liver disease - clues in the pathogenesis

    PubMed Central

    Lim, Jun Wei; Dillon, John; Miller, Michael

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) is a widely prevalent hepatic disorder that covers wide spectrum of liver pathology. NAFLD is strongly associated with liver inflammation, metabolic hyperlipidaemia and insulin resistance. Frequently, NAFLD has been considered as the hepatic manifestation of metabolic syndrome. The pathophysiology of NAFLD has not been fully elucidated. Some patients can remain in the stage of simple steatosis, which generally is a benign condition; whereas others can develop liver inflammation and progress into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The mechanism behind the progression is still not fully understood. Much ongoing proteomic researches have focused on discovering the unbiased circulating biochemical markers to allow early detection and treatment of NAFLD. Comprehensive genomic studies have also begun to provide new insights into the gene polymorphism to understand patient-disease variations. Therefore, NAFLD is considered a complex and mutifactorial disease phenotype resulting from environmental exposures acting on a susceptible polygenic background. This paper reviewed the current status of proteomic and genomic studies that have contributed to the understanding of NAFLD pathogenesis. For proteomics section, this review highlighted functional proteins that involved in: (1) transportation; (2) metabolic pathway; (3) acute phase reaction; (4) anti-inflammatory; (5) extracellular matrix; and (6) immune system. In the genomic studies, this review will discuss genes which involved in: (1) lipolysis; (2) adipokines; and (3) cytokines production. PMID:25024592

  10. Proteomic and genomic studies of non-alcoholic fatty liver disease--clues in the pathogenesis.

    PubMed

    Lim, Jun Wei; Dillon, John; Miller, Michael

    2014-07-14

    Non-alcoholic fatty liver disease (NAFLD) is a widely prevalent hepatic disorder that covers wide spectrum of liver pathology. NAFLD is strongly associated with liver inflammation, metabolic hyperlipidaemia and insulin resistance. Frequently, NAFLD has been considered as the hepatic manifestation of metabolic syndrome. The pathophysiology of NAFLD has not been fully elucidated. Some patients can remain in the stage of simple steatosis, which generally is a benign condition; whereas others can develop liver inflammation and progress into non-alcoholic steatohepatitis, fibrosis, cirrhosis and hepatocellular carcinoma. The mechanism behind the progression is still not fully understood. Much ongoing proteomic researches have focused on discovering the unbiased circulating biochemical markers to allow early detection and treatment of NAFLD. Comprehensive genomic studies have also begun to provide new insights into the gene polymorphism to understand patient-disease variations. Therefore, NAFLD is considered a complex and mutifactorial disease phenotype resulting from environmental exposures acting on a susceptible polygenic background. This paper reviewed the current status of proteomic and genomic studies that have contributed to the understanding of NAFLD pathogenesis. For proteomics section, this review highlighted functional proteins that involved in: (1) transportation; (2) metabolic pathway; (3) acute phase reaction; (4) anti-inflammatory; (5) extracellular matrix; and (6) immune system. In the genomic studies, this review will discuss genes which involved in: (1) lipolysis; (2) adipokines; and (3) cytokines production.

  11. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species.

    PubMed

    Prior, Philippe; Ailloud, Florent; Dalsing, Beth L; Remenant, Benoit; Sanchez, Borja; Allen, Caitilyn

    2016-02-01

    The increased availability of genome sequences has advanced the development of genomic distance methods to describe bacterial diversity. Results of these fast-evolving methods are highly correlated with those of the historically standard DNA-DNA hybridization technique. However, these genomic-based methods can be done more rapidly and less expensively and are less prone to technical and human error. They are thus a technically accessible replacement for species delineation. Here, we use several genomic comparison methods, supported by our own proteomic analyses and metabolic characterization as well as previously published DNA-DNA hybridization analyses, to differentiate members of the Ralstonia solanacearum species complex into three species. This pathogen group consists of diverse and widespread strains that cause bacterial wilt disease on many different plants. We used three different methods to compare the complete genomes of 29 strains from the R. solanacearum species complex. In parallel we profiled the proteomes of 73 strains using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF-MS). Proteomic profiles together with genomic sequence comparisons consistently and comprehensively described the diversity of the R. solanacearum species complex. In addition, genome-driven functional phenotypic assays excitingly supported an old hypothesis (Hayward et al. (J Appl Bacteriol 69:269-80, 1990)), that closely related members of the R. solanacearum could be identified through a simple assay of anaerobic nitrate metabolism. This assay allowed us to clearly and easily differentiate phylotype II and IV strains from phylotype I and III strains. Further, genomic dissection of the pathway distinguished between proposed subspecies within the current phylotype IV. The assay revealed large scale differences in energy production within the R. solanacearum species complex, indicating coarse evolutionary distance and further supporting a

  12. Comparative Proteomics of Mouse Tears and Saliva: Evidence from Large Protein Families for Functional Adaptation

    PubMed Central

    Karn, Robert C.; Laukaitis, Christina M.

    2015-01-01

    We produced a tear proteome of the genome mouse, C57BL/6, that contained 139 different protein identifications: 110 from a two-dimensional (2D) gel with subsequent trypsin digestion, 19 from a one-dimensional (1D) gel with subsequent trypsin digestion and ten from a 1D gel with subsequent Asp-N digestion. We compared this tear proteome with a C57BL/6 mouse saliva proteome produced previously. Sixteen of the 139 tear proteins are shared between the two proteomes, including six proteins that combat microbial growth. Among the 123 other tear proteins, were members of four large protein families that have no counterparts in humans: Androgen-binding proteins (ABPs) with different members expressed in the two proteomes, Exocrine secreted peptides (ESPs) expressed exclusively in the tear proteome, major urinary proteins (MUPs) expressed in one or both proteomes and the mouse-specific Kallikreins (subfamily b KLKs) expressed exclusively in the saliva proteome. All four families have members with suggested roles in mouse communication, which may influence some aspect of reproductive behavior. We discuss this in the context of functional adaptation involving tear and saliva proteins in the secretions of mouse lacrimal and salivary glands, respectively.

  13. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.

  14. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  15. proBAMsuite, a Bioinformatics Framework for Genome-Based Representation and Analysis of Proteomics Data*

    PubMed Central

    Wang, Xiaojing; Slebos, Robbert J. C.; Chambers, Matthew C.; Tabb, David L.; Liebler, Daniel C.; Zhang, Bing

    2016-01-01

    To facilitate genome-based representation and analysis of proteomics data, we developed a new bioinformatics framework, proBAMsuite, in which a central component is the protein BAM (proBAM) file format for organizing peptide spectrum matches (PSMs)1 within the context of the genome. proBAMsuite also includes two R packages, proBAMr and proBAMtools, for generating and analyzing proBAM files, respectively. Applying proBAMsuite to three recently published proteomics datasets, we demonstrated its utility in facilitating efficient genome-based sharing, interpretation, and integration of proteomics data. First, the interpretation of proteomics data is significantly enhanced with the rich genomic annotation information. Second, PSMs can be easily reannotated using user-specified gene annotation schemes and assembled into both protein and gene identifications. Third, using the genome as a common reference, proBAMsuite facilitates seamless proteomics and proteogenomics data integration. Finally, proBAM files can be readily visualized in genome browsers and thus bring proteomics data analysis to a general audience beyond the proteomics community. Results from this study establish proBAMsuite as a useful bioinformatics framework for proteomics and proteogenomics research. PMID:26657539

  16. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight

    NASA Astrophysics Data System (ADS)

    Su, Longxiang; Zhou, Lisha; Liu, Jinwen; Cen, Zhong; Wu, Chunyan; Wang, Tong; Zhou, Tao; Chang, De; Guo, Yinghua; Fang, Xiangqun; Wang, Junfeng; Li, Tianzhi; Yin, Sanjun; Dai, Wenkui; Zhou, Yuping; Zhao, Jiao; Fang, Chengxiang; Yang, Ruifu; Liu, Changting

    2014-01-01

    The environment in space could affect microorganisms by changing a variety of features, including proliferation rate, cell physiology, cell metabolism, biofilm production, virulence, and drug resistance. However, the relevant mechanisms remain unclear. To explore the effect of a space environment on Bacillus cereus, a strain of B. cereus was sent to space for 398 h by ShenZhou VIII from November 1, 2011 to November 17, 2011. A ground simulation with similar temperature conditions was simultaneously performed as a control. After the flight, the flight and control strains were further analyzed using phenotypic, genomic, transcriptomic and proteomic techniques to explore the divergence of B. cereus in a space environment. The flight strains exhibited a significantly slower growth rate, a significantly higher amikacin resistance level, and changes in metabolism relative to the ground control strain. After the space flight, three polymorphic loci were found in the flight strains LCT-BC25 and LCT-BC235. A combined transcriptome and proteome analysis was performed, and this analysis revealed that the flight strains had changes in genes/proteins relevant to metabolism. In addition, certain genes/proteins that are relevant to structural function, gene expression modification and translation, and virulence were also altered. Our study represents the first documented analysis of the phenotypic, genomic, transcriptomic, and proteomic changes that occur in B. cereus during space flight, and our results could be beneficial to the field of space microbiology.

  17. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    SciTech Connect

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.

  18. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis.

    PubMed

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-09-16

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.

  19. ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis

    PubMed Central

    Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep; Nagpal, Gandharva; Usmani, Salman Sadullah; Thakur, Anamika; Kaur, Gazaldeep; Sharma, Shivangi; Bhardwaj, Aman; Qureshi, Abid; Raghava, Gajendra Pal Singh; Kumar, Manoj

    2016-01-01

    Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates. PMID:27633273

  20. Integrating genomics, proteomics and bioinformatics in translational studies of molecular medicine.

    PubMed

    Ostrowski, Jerzy; Wyrwicz, Lucjan S

    2009-09-01

    Understanding the molecular mechanisms of disease requires the introduction of molecular diagnostics into medical practice. Current medicine employs only elements of molecular diagnostics, which are usually applied on the scale of single genes. Medicine in the postgenomic era will utilize thousands of disease-associated molecular markers provided by high-throughput sequencing and functional genomic, proteomic and metabolomic studies. Such a spectrum of techniques will link clinical medicine based on molecularly oriented diagnostics with the prediction and prevention of disease. To achieve this task, large-scale and genome-wide biological and medical data must be combined with biostatistical and bioinformatic analyses to model biological systems. Collecting, cataloging and comparing data from molecular studies, and the subsequent development of conclusions, creates the fundamentals of systems biology. This highly complex analytical process reflects a new scientific paradigm known as integrative genomics.

  1. Navigating yeast genome maintenance with functional genomics.

    PubMed

    Measday, Vivien; Stirling, Peter C

    2016-03-01

    Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Genomics, proteomics and bioinformatics of human heart failure

    PubMed Central

    DOS REMEDIOS, C.G.; LIEW, C.C.; ALLEN, P.D.; WINSLOW, R.L.; VAN EYK, J.E.; DUNN, M.J.

    2005-01-01

    Unraveling the molecular complexities of human heart failure, particularly end-stage failure, can be achieved by combining multiple investigative approaches. There are several parts to the problem. Each patient is the product of a complex set of genetic variations, different degrees of influence of diets and lifestyles, and usually heart transplantation patients are treated with multiple drugs. The genomic status of the myocardium of any one transplant patient can be analysed using gene arrays (cDNA- or oligonucleotide-based) each with its own strengths and weaknesses. The proteins expressed by these failing hearts (myocardial proteomics) were first investigated over a decade ago using two-dimensional polyacrylamide gel electrophoresis (2DGE) which promised to resolve several thousand proteins in a single sample of failing heart. However, while 2DGE is very successful for the abundant and moderately expressed proteins, it struggles to identify proteins expressed at low levels. Highly focused first dimension separations combined with recent advances in mass spectrometry now provide new hope for solving this difficulty. Protein arrays are a more recent form of proteomics that hold great promise but, like the above methods, they have their own drawbacks. Our approach to solving the problems inherent in the genomics and proteomics of heart failure is to provide experts in each analytical method with a sample from the same human failing heart. This requires a sufficiently large number of samples from a sufficiently large pool of heart transplant patients as well as a large pool of non-diseased, non-failing human hearts. We have collected more than 200 hearts from patients undergoing heart transplantations and a further 50 non-failing hearts. By combining our expertise we expect to reduce and possibly eliminate the inherent difficulties of each analytical approach. Finally, we recognise the need for bioinformatics to make sense of the large quantities of data that will

  3. Nongenetic functions of the genome.

    PubMed

    Bustin, Michael; Misteli, Tom

    2016-05-06

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  4. Linkage of exposure and effects using genomics, proteomics and metabolomics in small fish models (presentation)

    EPA Science Inventory

    This research project combines the use of whole organism endpoints, genomic, proteomic and metabolomic approaches, and computational modeling in a systems biology approach to 1) identify molecular indicators of exposure and biomarkers of effect to EDCs representing several modes/...

  5. Linkage of exposure and effects using genomics, proteomics and metabolomics in small fish models (presentation)

    EPA Science Inventory

    This research project combines the use of whole organism endpoints, genomic, proteomic and metabolomic approaches, and computational modeling in a systems biology approach to 1) identify molecular indicators of exposure and biomarkers of effect to EDCs representing several modes/...

  6. Genome-scale Proteome Quantification by DEEP SEQ Mass Spectrometry

    PubMed Central

    Zhou, Feng; Lu, Yu; Ficarro, Scott B.; Adelmant, Guillaume; Jiang, Wenyu; Luckey, C. John; Marto, Jarrod A.

    2013-01-01

    Advances in chemistry and massively parallel detection underlie DNA sequencing platforms that are poised for application in personalized medicine. In stark contrast, systematic generation of protein-level data lags well-behind genomics in virtually every aspect: depth of coverage, throughput, ease of sample preparation, and experimental time. Here, to bridge this gap, we develop an approach based on simple detergent lysis and single-enzyme digest, extreme, orthogonal separation of peptides, and true nanoflow LC-MS/MS that provides high peak capacity and ionization efficiency. This automated, deep efficient peptide sequencing and quantification (DEEP SEQ) mass spectrometry platform provides genome-scale proteome coverage equivalent to RNA-seq ribosomal profiling and accurate quantification for multiplexed isotope labels. In a model of the embryonic to epiblast transition in murine stem cells, we unambiguously quantify 11,352 gene products that span 70% of Swiss-Prot and capture protein regulation across the full detectable range of high-throughput gene expression and protein translation. PMID:23863870

  7. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction

    SciTech Connect

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2016-11-11

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies

  8. Cancer genomics object model: an object model for multiple functional genomics data for cancer research.

    PubMed

    Park, Yu Rang; Lee, Hye Won; Cho, Sung Bum; Kim, Ju Han

    2007-01-01

    The development of functional genomics including transcriptomics, proteomics and metabolomics allow us to monitor a large number of key cellular pathways simultaneously. Several technology-specific data models have been introduced for the representation of functional genomics experimental data, including the MicroArray Gene Expression-Object Model (MAGE-OM), the Proteomics Experiment Data Repository (PEDRo), and the Tissue MicroArray-Object Model (TMA-OM). Despite the increasing number of cancer studies using multiple functional genomics technologies, there is still no integrated data model for multiple functional genomics experimental and clinical data. We propose an object-oriented data model for cancer genomics research, Cancer Genomics Object Model (CaGe-OM). We reference four data models: Functional Genomic-Object Model, MAGE-OM, TMAOM and PEDRo. The clinical and histopathological information models are created by analyzing cancer management workflow and referencing the College of American Pathology Cancer Protocols and National Cancer Institute Common Data Elements. The CaGe-OM provides a comprehensive data model for integrated storage and analysis of clinical and multiple functional genomics data.

  9. Current clinical application of genomic and proteomic profiling in non-small-cell lung cancer.

    PubMed

    Tanvetyanon, Tawee; Creelan, Benjamin C; Chiappori, Alberto A

    2014-01-01

    Genomic or proteomic profiling of cancer can be broadly defined as a systematic grouping of cancer based on its genetic or protein makeup. In the management of non-small-cell lung cancer (NSCLC), genomic and proteomic profiling applications have become useful in early disease detection, diagnosis, treatment, and prognostication. We reviewed the recent literature on the applications of genomic and proteomic profiling in NSCLC. Important applications were summarized into those already adopted as standard care and those still under investigation. For genomic profiling, testing for EGFR mutation and ALK rearrangement has become routine for adenocarcinoma. Multiplex assay and malignancy-risk gene signature are both important applications in development. A test to predict outcome after treatment with an epidermal growth factor rector/tyrosine kinase inhibitor and a screening blood test for lung cancer are being investigated for use in proteomic profiling. Genomic profiling is routine in patients with NSCLC, and proteomic profiling shows promise. Additional genomic and proteomic profiling applications may also prove to be useful contributions in the care of these patients.

  10. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation

    PubMed Central

    Xia, Dong; Sanderson, Sanya J; Jones, Andrew R; Prieto, Judith H; Yates, John R; Bromley, Elizabeth; Tomley, Fiona M; Lal, Kalpana; Sinden, Robert E; Brunk, Brian P; Roos, David S; Wastling, Jonathan M

    2008-01-01

    Background Although the genomes of many of the most important human and animal pathogens have now been sequenced, our understanding of the actual proteins expressed by these genomes and how well they predict protein sequence and expression is still deficient. We have used three complementary approaches (two-dimensional electrophoresis, gel-liquid chromatography linked tandem mass spectrometry and MudPIT) to analyze the proteome of Toxoplasma gondii, a parasite of medical and veterinary significance, and have developed a public repository for these data within ToxoDB, making for the first time proteomics data an integral part of this key genome resource. Results The draft genome for Toxoplasma predicts around 8,000 genes with varying degrees of confidence. Our data demonstrate how proteomics can inform these predictions and help discover new genes. We have identified nearly one-third (2,252) of all the predicted proteins, with 2,477 intron-spanning peptides providing supporting evidence for correct splice site annotation. Functional predictions for each protein and key pathways were determined from the proteome. Importantly, we show evidence for many proteins that match alternative gene models, or previously unpredicted genes. For example, approximately 15% of peptides matched more convincingly to alternative gene models. We also compared our data with existing transcriptional data in which we highlight apparent discrepancies between gene transcription and protein expression. Conclusion Our data demonstrate the importance of protein data in expression profiling experiments and highlight the necessity of integrating proteomic with genomic data so that iterative refinements of both annotation and expression models are possible. PMID:18644147

  11. Genome-wide proteomics analysis on longissimus muscles in Qinchuan beef cattle.

    PubMed

    He, Hua; Chen, Si; Liang, Wei; Liu, Xiaolin

    2017-04-01

    To gain further insight into the molecular mechanism of bovine muscle development, we combined mass spectrometry characterization of proteins with Illumina deep sequencing of RNAs obtained from bovine longissimus muscle (LD) at prenatal and postnatal stages. For the proteomic study, each group of LD proteins was extracted and labeled using isobaric tags for relative and absolute quantitation (iTRAQ) method. Among the 1321 proteins identified from six samples, 390 proteins were differentially expressed in embryos at day 135 post-fertilization (Emb135d) vs. 30-month-old adult cattle (Emb135d vs. 30M) samples. Gene Ontology, Cluster of Orthologous Groups and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted to better understand the different functions. Furthermore, we analyzed the relationship between transcript and protein regulation between samples by direct comparison of expression levels from transcriptomic and iTRAQ-based proteomics. Association results indicated that 1295 of 1321 proteins could be mapped to transcriptome sequencing data. This study provides the most comprehensive, targeted survey of bovine LD proteins to date and has shown the power of combining transcriptomic and proteomic approaches to provide molecular insights for understanding the developmental characteristics in bovine muscle, and even in other mammals.

  12. Genomic and Proteomic Determinants of Lower Extremity Revascularization Failure: Rationale and Study Design

    PubMed Central

    Nelson, Peter R.; O'Malley, Kerri A.; Feezor, Robert J.; Moldawer, Lyle L.; Seeger, James M.

    2007-01-01

    This translational research program applies a working model of advanced functional genomics/proteomics and bioinformatics to human peripheral arterial occlusive disease (PAOD). It is a multidisciplinary collaborative effort of clinicians, scientists, and statisticians with an advisory panel comprised of experts in inflammation biology, vascular biology, molecular genetics, bioinformatics, clinical trial design, and epidemiology. The proposed human initiative is designed to study 300 symptomatic patients with PAOD undergoing medical management with or without vascular intervention by either lower extremity angioplasty/stenting or vein graft bypass. The study aims to test the hypothesis that the systemic inflammatory response following vascular intervention influences the local milieu responsible for vascular repair and adaptation. The expectation is that this response is not uniform in all patients, but rather, is modulated by either preoperative genetic predisposition or post-procedure differential regulation of the innate immune response to injury that promotes a maladaptive phenotype leading to intervention failure. Therefore, some of these differences may be present and detectable pre-intervention amenable to class prediction and prospective treatment strategies, while others may be detectable in the early post-procedure period, prior to the onset of clinical failure, permitting interventions to prevent an adverse outcome. The combination of genomic/proteomic data together with functional and quality of life outcome measures to define a critical model for class prediction and analysis should lead to new knowledge about failure mechanisms of vascular intervention and new strategies to improve existing approaches to lower extremity revascularization. PMID:17544028

  13. Fusion of genomic, proteomic and phenotypic data: the case of potyviruses.

    PubMed

    Folch-Fortuny, A; Bosque, G; Picó, J; Ferrer, A; Elena, S F

    2016-01-01

    Data fusion has been widely applied to analyse different sources of information, combining all of them in a single multivariate model. This methodology is mandatory when different omic data sets must be integrated to fully understand an organism using a systems biology approach. Here, a data fusion procedure is presented to combine genomic, proteomic and phenotypic data sets gathered for Tobacco etch virus (TEV). The genomic data correspond to random mutations inserted in most viral genes. The proteomic data represent both the effect of these mutations on the encoded proteins and the perturbation induced by the mutated proteins to their neighbours in the protein-protein interaction network (PPIN). Finally, the phenotypic trait evaluated for each mutant virus is replicative fitness. To analyse these three sources of information a Partial Least Squares (PLS) regression model is fitted in order to extract the latent variables from data that explain (and relate) the significant variables to the fitness of TEV. The final output of this methodology is a set of functional modules of the PPIN relating topology and mutations with fitness. Throughout the re-analysis of these diverse TEV data, we generated valuable information on the mechanism of action of certain mutations and how they translate into organismal fitness. Results show that the effect of some mutations goes beyond the protein they directly affect and spreads on the PPIN to neighbour proteins, thus defining functional modules.

  14. Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps.

    PubMed

    Nabieva, Elena; Jim, Kam; Agarwal, Amit; Chazelle, Bernard; Singh, Mona

    2005-06-01

    Determining protein function is one of the most important problems in the post-genomic era. For the typical proteome, there are no functional annotations for one-third or more of its proteins. Recent high-throughput experiments have determined proteome-scale protein physical interaction maps for several organisms. These physical interactions are complemented by an abundance of data about other types of functional relationships between proteins, including genetic interactions, knowledge about co-expression and shared evolutionary history. Taken together, these pairwise linkages can be used to build whole-proteome protein interaction maps. We develop a network-flow based algorithm, FunctionalFlow, that exploits the underlying structure of protein interaction maps in order to predict protein function. In cross-validation testing on the yeast proteome, we show that FunctionalFlow has improved performance over previous methods in predicting the function of proteins with few (or no) annotated protein neighbors. By comparing several methods that use protein interaction maps to predict protein function, we demonstrate that FunctionalFlow performs well because it takes advantage of both network topology and some measure of locality. Finally, we show that performance can be improved substantially as we consider multiple data sources and use them to create weighted interaction networks. http://compbio.cs.princeton.edu/function

  15. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis.

    PubMed

    Kelkar, Dhanashree S; Provost, Elayne; Chaerkady, Raghothama; Muthusamy, Babylakshmi; Manda, Srikanth S; Subbannayya, Tejaswini; Selvan, Lakshmi Dhevi N; Wang, Chieh-Huei; Datta, Keshava K; Woo, Sunghee; Dwivedi, Sutopa B; Renuse, Santosh; Getnet, Derese; Huang, Tai-Chung; Kim, Min-Sik; Pinto, Sneha M; Mitchell, Christopher J; Madugundu, Anil K; Kumar, Praveen; Sharma, Jyoti; Advani, Jayshree; Dey, Gourav; Balakrishnan, Lavanya; Syed, Nazia; Nanjappa, Vishalakshi; Subbannayya, Yashwanth; Goel, Renu; Prasad, T S Keshava; Bafna, Vineet; Sirdeshmukh, Ravi; Gowda, Harsha; Wang, Charles; Leach, Steven D; Pandey, Akhilesh

    2014-11-01

    Accurate annotation of protein-coding genes is one of the primary tasks upon the completion of whole genome sequencing of any organism. In this study, we used an integrated transcriptomic and proteomic strategy to validate and improve the existing zebrafish genome annotation. We undertook high-resolution mass-spectrometry-based proteomic profiling of 10 adult organs, whole adult fish body, and two developmental stages of zebrafish (SAT line), in addition to transcriptomic profiling of six organs. More than 7,000 proteins were identified from proteomic analyses, and ∼ 69,000 high-confidence transcripts were assembled from the RNA sequencing data. Approximately 15% of the transcripts mapped to intergenic regions, the majority of which are likely long non-coding RNAs. These high-quality transcriptomic and proteomic data were used to manually reannotate the zebrafish genome. We report the identification of 157 novel protein-coding genes. In addition, our data led to modification of existing gene structures including novel exons, changes in exon coordinates, changes in frame of translation, translation in annotated UTRs, and joining of genes. Finally, we discovered four instances of genome assembly errors that were supported by both proteomic and transcriptomic data. Our study shows how an integrative analysis of the transcriptome and the proteome can extend our understanding of even well-annotated genomes.

  16. Proteomic approaches to dissect platelet function: half the story

    PubMed Central

    Gnatenko, Dmitri V.; Perrotta, Peter L.; Bahou, Wadie F.

    2006-01-01

    Platelets play critical roles in diverse hemostatic and pathologic disorders and are broadly implicated in various biological processes that include inflammation, wound healing, and thrombosis. Recent progress in high-throughput mRNA and protein profiling techniques has advanced our understanding of the biological functions of platelets. Platelet proteomics has been adopted to decode the complex processes that underlie platelet function by identifying novel platelet-expressed proteins, dissecting mechanisms of signal or metabolic pathways, and analyzing functional changes of the platelet proteome in normal and pathologic states. The integration of transcriptomics and proteomics, coupled with progress in bioinformatics, provides novel tools for dissecting platelet biology. In this review, we focus on current advances in platelet proteomic studies, with emphasis on the importance of parallel transcriptomic studies to optimally dissect platelet function. Applications of these global profiling approaches to investigate platelet genetic diseases and platelet-related disorders are also addressed. PMID:16926286

  17. Proteomic and comparative genomic analysis reveals adaptability of Brassica napus to phosphorus-deficient stress.

    PubMed

    Chen, Shuisen; Ding, Guangda; Wang, Zhenhua; Cai, Hongmei; Xu, Fangsen

    2015-03-18

    Given low solubility and immobility in many soils of the world, phosphorus (P) may be the most widely studied macronutrient for plants. In an attempt to gain an insight into the adaptability of Brassica napus to P deficiency, proteome alterations of roots and leaves in two B. napus contrasting genotypes, P-efficient 'Eyou Changjia' and P-inefficient 'B104-2', under long-term low P stress and short-term P-free starvation conditions were investigated, and proteomic combined with comparative genomic analyses were conducted to interpret the interrelation of differential abundance protein species (DAPs) responding to P deficiency with quantitative trait loci (QTLs) for P deficiency tolerance. P-efficient 'Eyou Changjia' had higher dry weight and P content, and showed high tolerance to low P stress compared with P-inefficient 'B104-2'. A total of 146 DAPs were successfully identified by MALDI TOF/TOF MS, which were categorized into several groups including defense and stress response, carbohydrate and energy metabolism, signaling and regulation, amino acid and fatty acid metabolism, protein process, biogenesis and cellular component, and function unknown. 94 of 146 DAPs were mapped to a linkage map constructed by a B. napus population derived from a cross between the two genotypes, and 72 DAPs were located in the confidence intervals of QTLs for P efficiency related traits. We conclude that the identification of these DAPs and the co-location of DAPs with QTLs in the B. napus linkage genetic map provide us novel information in understanding the adaptability of B. napus to P deficiency, and helpful to isolate P-efficient genes in B. napus. Low P seriously limits the production and quality of B. napus. Proteomics and genetic linkage map were widely used to study the adaptive strategies of B. napus response to P deficiency, proteomic combined with comparative genetic analysis to investigate the correlations between DAPs and QTLs are scarce. Thus, we herein investigated

  18. Clustered Xenopus keratin genes: A genomic, transcriptomic, and proteomic analysis.

    PubMed

    Suzuki, Ken-Ichi T; Suzuki, Miyuki; Shigeta, Mitsuki; Fortriede, Joshua D; Takahashi, Shuji; Mawaribuchi, Shuuji; Yamamoto, Takashi; Taira, Masanori; Fukui, Akimasa

    2017-06-15

    Keratin genes belong to the intermediate filament superfamily and their expression is altered following morphological and physiological changes in vertebrate epithelial cells. Keratin genes are divided into two groups, type I and II, and are clustered on vertebrate genomes, including those of Xenopus species. Various keratin genes have been identified and characterized by their unique expression patterns throughout ontogeny in Xenopus laevis; however, compilation of previously reported and newly identified keratin genes in two Xenopus species is required for our further understanding of keratin gene evolution, not only in amphibians but also in all terrestrial vertebrates. In this study, 120 putative type I and II keratin genes in total were identified based on the genome data from two Xenopus species. We revealed that most of these genes are highly clustered on two homeologous chromosomes, XLA9_10 and XLA2 in X. laevis, and XTR10 and XTR2 in X. tropicalis, which are orthologous to those of human, showing conserved synteny among tetrapods. RNA-Seq data from various embryonic stages and adult tissues highlighted the unique expression profiles of orthologous and homeologous keratin genes in developmental stage- and tissue-specific manners. Moreover, we identified dozens of epidermal keratin proteins from the whole embryo, larval skin, tail, and adult skin using shotgun proteomics. In light of our results, we discuss the radiation, diversification, and unique expression of the clustered keratin genes, which are closely related to epidermal development and terrestrial adaptation during amphibian evolution, including Xenopus speciation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Genomic and Proteomic Biomarkers for Cancer: A Multitude of Opportunities

    PubMed Central

    Tainsky, Michael A.

    2009-01-01

    Biomarkers are molecular indicators of a biological status, and as biochemical species can be assayed to evaluate the presence of cancer and therapeutic interventions. Through a variety of mechanisms cancer cells provide the biomarker material for their own detection. Biomarkers may be detectable in the blood, other body fluids, or tissues. The expectation is that the level of an informative biomarker is related to the specific type of disease present in the body. Biomarkers have potential both as diagnostic indicators and monitors of the effectiveness of clinical interventions. Biomarkers are also able to stratify cancer patients to the most appropriate treatment. Effective biomarkers for the early detection of cancer should provide a patient with a better outcome which in turn will translate into more efficient delivery of healthcare. Technologies for the early detection of cancer have resulted in reductions in disease-associated mortalities from cancers that are otherwise deadly if allowed to progress. Such screening technologies have proven that early detection will decrease the morbidity and mortality from cancer. An emerging theme in biomarker research is the expectation that panels of biomarker analytes rather than single markers will be needed to have sufficient sensitivity and specificity for the presymptomatic detection of cancer. Biomarkers may provide prognostic information of disease enabling interventions using targeted therapeutic agents as well as course-corrections in cancer treatment. Novel genomic, proteomic and metabolomic technologies are being used to discover and validate tumor biomarkers individually and in panels. PMID:19406210

  20. CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    PubMed Central

    Mahadevan, Padmanabhan; King, John F; Seto, Donald

    2009-01-01

    Background Viruses and small-genome bacteria (~2 megabases and smaller) comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG) is an in silico genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms. Findings CGUG is available at as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an in silico display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with Chlamydophila and Francisella genomes. Conclusion CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins. PMID:19706165

  1. Search for sarcoidosis candidate genes by integration of data from genomic, transcriptomic and proteomic studies.

    PubMed

    Maver, Ales; Medica, Igor; Peterlin, Borut

    2009-12-01

    The search for gene candidates in multifactorial diseases such as sarcoidosis can be based on the integration of linkage association data, gene expression data, and protein profile data from genomic, transcriptomic and proteomic studies, respectively. In this study we performed a literature-based search for studies reporting such data, followed by integration of collected information. Different databases were examined--Medline, HugGE Navigator, ArrayExpress and Gene Expression Omnibus (GEO). Candidate genes were defined as genes which were reported in at least 2 different types of omics studies. Genes previously investigated in sarcoidosis were excluded from further analyses. We identified 177 genes associated with sarcoidosis as potential new candidate genes. Subsequently, 9 gene candidates identified to overlap in 2 different types of studies (genomic, transcriptomic and/or proteomic) were consistently reported in at least 3 studies: SERPINB1, FABP4, S100A8, HBEGF, IL7R, LRIG1, PTPN23, DPM2 and NUP214. These genes are involved in regulation of immune response, cellular proliferation, apoptosis, inhibition of protease activity, lipid metabolism. Exact biological functions of HBEGF, LRIG1, PTPN23, DPM2 and NUP214 remain to be completely elucidated. We propose 9 candidate genes: SERPINB1, FABP4, S100A8, HBEGF, IL7R, LRIG1, PTPN23, DPM2 and NUP214, as genes with high potential for association with sarcoidosis.

  2. Genomics and proteomics in chemical warfare agent research: recent studies and future applications.

    PubMed

    Everley, Patrick A; Dillman, James F

    2010-10-20

    Medical research on the effects of chemical warfare agents (CWAs) has been ongoing for nearly 100 years, yet these agents continue to pose a serious threat to deployed military forces and civilian populations. CWAs are extremely toxic, relatively inexpensive, and easy to produce, making them a legitimate weapon of choice for terrorist organizations. While the mechanisms of action for many CWAs have been known for years, questions about their molecular effects following acute and chronic exposure remain largely unanswered. Global approaches that can pinpoint which cellular pathways are altered in response to CWAs and characterize long-term toxicity have not been widely used. Fortunately, innovations in genomics and proteomics technologies now allow for thousands of genes and proteins to be identified and subsequently quantified in a single experiment. Advanced bioinformatics software can also help decipher large-scale changes observed, leading to mapping of signaling pathways, functional characterization, and identification of potential therapeutic targets. Here we present an overview of how genomics and proteomics technologies have been applied to CWA research and also provide a series of questions focused on how these techniques could further our understanding of CWA toxicity.

  3. Methods for visual mining of genomic and proteomic data atlases.

    PubMed

    Boyle, John; Kreisberg, Richard; Bressler, Ryan; Killcoyne, Sarah

    2012-04-23

    As the volume, complexity and diversity of the information that scientists work with on a daily basis continues to rise, so too does the requirement for new analytic software. The analytic software must solve the dichotomy that exists between the need to allow for a high level of scientific reasoning, and the requirement to have an intuitive and easy to use tool which does not require specialist, and often arduous, training to use. Information visualization provides a solution to this problem, as it allows for direct manipulation and interaction with diverse and complex data. The challenge addressing bioinformatics researches is how to apply this knowledge to data sets that are continually growing in a field that is rapidly changing. This paper discusses an approach to the development of visual mining tools capable of supporting the mining of massive data collections used in systems biology research, and also discusses lessons that have been learned providing tools for both local researchers and the wider community. Example tools were developed which are designed to enable the exploration and analyses of both proteomics and genomics based atlases. These atlases represent large repositories of raw and processed experiment data generated to support the identification of biomarkers through mass spectrometry (the PeptideAtlas) and the genomic characterization of cancer (The Cancer Genome Atlas). Specifically the tools are designed to allow for: the visual mining of thousands of mass spectrometry experiments, to assist in designing informed targeted protein assays; and the interactive analysis of hundreds of genomes, to explore the variations across different cancer genomes and cancer types. The mining of massive repositories of biological data requires the development of new tools and techniques. Visual exploration of the large-scale atlas data sets allows researchers to mine data to find new meaning and make sense at scales from single samples to entire populations

  4. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction.

    PubMed

    Wang, Jing; Ma, Zihao; Carr, Steven A; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W; Ellis, Matthew J C; Townsend, R Reid; Smith, Richard D; McDermott, Jason E; Chen, Xian; Paulovich, Amanda G; Boja, Emily S; Mesri, Mehdi; Kinsinger, Christopher R; Rodriguez, Henry; Rodland, Karin D; Liebler, Daniel C; Zhang, Bing

    2017-01-01

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this "guilt-by-association" (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. © 2017 by

  5. Proteome Profiling Outperforms Transcriptome Profiling for Coexpression Based Gene Function Prediction*

    PubMed Central

    Wang, Jing; Ma, Zihao; Carr, Steven A.; Mertins, Philipp; Zhang, Hui; Zhang, Zhen; Chan, Daniel W.; Ellis, Matthew J. C.; Townsend, R. Reid; Smith, Richard D.; McDermott, Jason E.; Chen, Xian; Paulovich, Amanda G.; Boja, Emily S.; Mesri, Mehdi; Kinsinger, Christopher R.; Rodriguez, Henry; Rodland, Karin D.; Liebler, Daniel C.; Zhang, Bing

    2017-01-01

    Coexpression of mRNAs under multiple conditions is commonly used to infer cofunctionality of their gene products despite well-known limitations of this “guilt-by-association” (GBA) approach. Recent advancements in mass spectrometry-based proteomic technologies have enabled global expression profiling at the protein level; however, whether proteome profiling data can outperform transcriptome profiling data for coexpression based gene function prediction has not been systematically investigated. Here, we address this question by constructing and analyzing mRNA and protein coexpression networks for three cancer types with matched mRNA and protein profiling data from The Cancer Genome Atlas (TCGA) and the Clinical Proteomic Tumor Analysis Consortium (CPTAC). Our analyses revealed a marked difference in wiring between the mRNA and protein coexpression networks. Whereas protein coexpression was driven primarily by functional similarity between coexpressed genes, mRNA coexpression was driven by both cofunction and chromosomal colocalization of the genes. Functionally coherent mRNA modules were more likely to have their edges preserved in corresponding protein networks than functionally incoherent mRNA modules. Proteomic data strengthened the link between gene expression and function for at least 75% of Gene Ontology (GO) biological processes and 90% of KEGG pathways. A web application Gene2Net (http://cptac.gene2net.org) developed based on the three protein coexpression networks revealed novel gene-function relationships, such as linking ERBB2 (HER2) to lipid biosynthetic process in breast cancer, identifying PLG as a new gene involved in complement activation, and identifying AEBP1 as a new epithelial-mesenchymal transition (EMT) marker. Our results demonstrate that proteome profiling outperforms transcriptome profiling for coexpression based gene function prediction. Proteomics should be integrated if not preferred in gene function and human disease studies. PMID

  6. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

    PubMed Central

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A; Stott, Matthew B; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y; Koonin, Eugene V; Makarova, Kira S; Wolf, Yuri I; Rigden, Daniel J; Dunfield, Peter F; Wang, Lei; Alam, Maqsudul

    2008-01-01

    Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. Results We report here the complete genome sequence of A. flavithermus strain WK1, isolated from the waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Conclusions Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli. PMID:19014707

  7. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  8. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms.

    PubMed

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Nicora, Horacio D Lopez; Caetano-Anollés, Gustavo

    2011-11-08

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  9. Annotation of Protein Domains Reveals Remarkable Conservation in the Functional Make up of Proteomes Across Superkingdoms

    PubMed Central

    Nasir, Arshan; Naeem, Aisha; Khan, Muhammad Jawad; Lopez-Nicora, Horacio D.; Caetano-Anollés, Gustavo

    2011-01-01

    The functional repertoire of a cell is largely embodied in its proteome, the collection of proteins encoded in the genome of an organism. The molecular functions of proteins are the direct consequence of their structure and structure can be inferred from sequence using hidden Markov models of structural recognition. Here we analyze the functional annotation of protein domain structures in almost a thousand sequenced genomes, exploring the functional and structural diversity of proteomes. We find there is a remarkable conservation in the distribution of domains with respect to the molecular functions they perform in the three superkingdoms of life. In general, most of the protein repertoire is spent in functions related to metabolic processes but there are significant differences in the usage of domains for regulatory and extra-cellular processes both within and between superkingdoms. Our results support the hypotheses that the proteomes of superkingdom Eukarya evolved via genome expansion mechanisms that were directed towards innovating new domain architectures for regulatory and extra/intracellular process functions needed for example to maintain the integrity of multicellular structure or to interact with environmental biotic and abiotic factors (e.g., cell signaling and adhesion, immune responses, and toxin production). Proteomes of microbial superkingdoms Archaea and Bacteria retained fewer numbers of domains and maintained simple and smaller protein repertoires. Viruses appear to play an important role in the evolution of superkingdoms. We finally identify few genomic outliers that deviate significantly from the conserved functional design. These include Nanoarchaeum equitans, proteobacterial symbionts of insects with extremely reduced genomes, Tenericutes and Guillardia theta. These organisms spend most of their domains on information functions, including translation and transcription, rather than on metabolism and harbor a domain repertoire characteristic of

  10. Human cancer classification: a systems biology- based model integrating morphology, cancer stem cells, proteomics, and genomics.

    PubMed

    Idikio, Halliday A

    2011-02-22

    Human cancer classification is currently based on the idea of cell of origin, light and electron microscopic attributes of the cancer. What is not yet integrated into cancer classification are the functional attributes of these cancer cells. Recent innovative techniques in biology have provided a wealth of information on the genomic, transcriptomic and proteomic changes in cancer cells. The emergence of the concept of cancer stem cells needs to be included in a classification model to capture the known attributes of cancer stem cells and their potential contribution to treatment response, and metastases. The integrated model of cancer classification presented here incorporates all morphology, cancer stem cell contributions, genetic, and functional attributes of cancer. Integrated cancer classification models could eliminate the unclassifiable cancers as used in current classifications. Future cancer treatment may be advanced by using an integrated model of cancer classification.

  11. Proteomics-inferred genome typing (PIGT) demonstrates inter-populationrecombination as a strategy for environmental adaptation

    SciTech Connect

    Denef, Vincent; Verberkmoes, Nathan C; Shah, Manesh B; Abraham, Paul E; Lefsrud, Mark G; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    Analyses of ecological and evolutionary processes that shape microbial consortia are facilitated by comprehensive studies of ecosystems with low species richness. In the current study we evaluated the role of recombination in altering the fitness of chemoautotrophic bacteria in their natural environment. Proteomics-inferred genome typing (PIGT) was used to determine the genomic make-up of Leptospirillum group II populations in 27 biofilms sampled from six locations in the Richmond Mine acid mine drainage system (Iron Mountain, CA) over a four-year period. We observed six distinct genotypes that are recombinants comprised of segments from two parental genotypes. Community genomic analyses revealed additional low abundance recombinant variants. The dominance of some genotypes despite a larger available genome pool, and patterns of spatiotemporal distribution within the ecosystem, indicate selection for distinct recombinants. Genes involved in motility, signal transduction and transport were overrepresented in the tens to hundreds of kilobase recombinant blocks, whereas core metabolic functions were significantly underrepresented. Our findings demonstrate the power of PIGT and reveal that recombination is a mechanism for fine-scale adaptation in this system.

  12. Genomic and Proteomic Studies on Plesiomonas shigelloides Lipopolysaccharide Core Biosynthesis

    PubMed Central

    Aquilini, Eleonora; Merino, Susana; Regué, Miguel

    2014-01-01

    We report here the identification of waa clusters with the genes required for the biosynthesis of the core lipopolysaccharides (LPS) of two Plesiomonas shigelloides strains. Both P. shigelloides waa clusters shared all of the genes besides the ones flanking waaL. In both strains, all of the genes were found in the waa gene cluster, although one common core biosynthetic gene (wapG) was found in a different chromosome location outside the cluster. Since P. shigelloides and Klebsiella pneumoniae share a core LPS carbohydrate backbone extending up at least to the second outer-core residue, the functions of the common P. shigelloides genes were elucidated by genetic complementation studies using well-defined K. pneumoniae mutants. The function of strain-specific inner- or outer-core genes was identified by using as a surrogate acceptor LPS from three well-defined K. pneumoniae core LPS mutants. Using this strategy, we were able to assign a proteomic function to all of the P. shigelloides waa genes identified in the two strains encoding six new glycosyltransferases (WapA, -B, -C, -D, -F, and -G). P. shigelloides demonstrated an important variety of core LPS structures, despite being a single species of the genus, as well as high homologous recombination in housekeeping genes. PMID:24244003

  13. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    PubMed Central

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  14. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics.

    PubMed

    Takeuchi, Takeshi; Yamada, Lixy; Shinzato, Chuya; Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs.

  15. Effects of Space Environment on Genome, Transcriptome, and Proteome of Klebsiella pneumoniae.

    PubMed

    Guo, Yinghua; Li, Jia; Liu, Jinwen; Wang, Tong; Li, Yinhu; Yuan, Yanting; Zhao, Jiao; Chang, De; Fang, Xiangqun; Li, Tianzhi; Wang, Junfeng; Dai, Wenkui; Fang, Chengxiang; Liu, Changting

    2015-11-01

    The aim of this study was to explore the effects of space flight on Klebsiella pneumoniae. A strain of K. pneumoniae was sent to space for 398 h aboard the ShenZhou VIII spacecraft during November 1, 2011-November 17, 2011. At the same time, a ground simulation with similar temperature conditions during the space flight was performed as a control. After the space mission, the flight and control strains were analyzed using phenotypic, genomic, transcriptomic and proteomic techniques. The flight strains LCT-KP289 exhibited a higher cotrimoxazole resistance level and changes in metabolism relative to the ground control strain LCT-KP214. After the space flight, 73 SNPs and a plasmid copy number variation were identified in the flight strain. Based on the transcriptomic analysis, there are 232 upregulated and 1879 downregulated genes, of which almost all were for metabolism. Proteomic analysis revealed that there were 57 upregulated and 125 downregulated proteins. These differentially expressed proteins had several functions that included energy production and conversion, carbohydrate transport and metabolism, translation, ribosomal structure and biogenesis, posttranslational modification, protein turnover, and chaperone functions. At a systems biology level, the ytfG gene had a synonymous mutation that resulted in significantly downregulated expression at both transcriptomic and proteomic levels. The mutation of the ytfG gene may influence fructose and mannose metabolic processes of K. pneumoniae during space flight, which may be beneficial to the field of space microbiology, providing potential therapeutic strategies to combat or prevent infection in astronauts. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  16. Comparative analyses of nuclear proteome: extending its function

    PubMed Central

    Narula, Kanika; Datta, Asis; Chakraborty, Niranjan; Chakraborty, Subhra

    2013-01-01

    Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10–20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect. PMID:23637696

  17. Comparative analyses of nuclear proteome: extending its function.

    PubMed

    Narula, Kanika; Datta, Asis; Chakraborty, Niranjan; Chakraborty, Subhra

    2013-01-01

    Organeller proteomics is an emerging technology that is critical in determining the cellular signal transduction pathways. Nucleus, the regulatory hub of the eukaryotic cell is a dynamic system and a repository of various macromolecules that serve as modulators of such signaling that dictate cell fate decisions. Nuclear proteins (NPs) are predicted to comprise about 10-20% of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. Indeed, NPs constitute a highly organized but complex network that plays diverse roles during development and physiological processes. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating NP synthesis, their action and function. Proteomic study hold promise to understand the molecular basis of nuclear function using an unbiased comparative and differential approach. We identified a few hundred proteins that include classical and non-canonical nuclear components presumably associated with variety of cellular functions impinging on the complexity of nuclear proteome. Here, we review the nuclear proteome based on our own findings, available literature, and databases focusing on detailed comparative analysis of NPs and their functions in order to understand how plant nucleus works. The review also shed light on the current status of plant nuclear proteome and discusses the future prospect.

  18. Functional genomics of intracellular bacteria.

    PubMed

    de Barsy, Marie; Greub, Gilbert

    2013-07-01

    During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

  19. Bead Based Proteome Enrichment Enhances Features of the Protein Elution Plate (PEP) for Functional Proteomic Profiling

    PubMed Central

    Wang, Xing; Davies, Michael; Roy, Swapan; Kuruc, Matthew

    2015-01-01

    A novel functional proteomics technology called PEP(Protein Elution Plate) was developed to separate complex proteomes from natural sources and analyze protein functions systematically. The technology takes advantage of the powerful resolution of two-dimensional gel electrophoresis (2-D Gels). The modification of electrophoretic conditions in combination with a high-resolution protein elution plate supports the recovery of functionally active proteins. As 2DE(2-Dimensional Electrophoresis) resolution can be limited by protein load, we investigated the use of bead based enrichment technologies, called AlbuVoid™ and KinaSorb™ to determine their effect on the proteomic features which can be generated from the PEP platform. Using a variety of substrates and enzyme activity assays, we report on the benefits of combining bead based enrichment to improve the signal report and the features generated for Hexokinase, Protein Kinase, Protease, and Alkaline Phosphatase activities. As a result, the PEP technology allows systematic analysis of large enzyme families and can build a comprehensive picture of protein function from a complex proteome, providing biological insights that could otherwise not be observed if only protein abundances were analyzed. PMID:28248280

  20. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation.

    PubMed

    Charon, Justine; Theil, Sébastien; Nicaise, Valérie; Michon, Thierry

    2016-02-01

    Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs.

  1. CPTAC researchers report first large-scale integrated proteomic and genomic analysis of a human cancer | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Investigators from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) who comprehensively analyzed 95 human colorectal tumor samples, have determined how gene alterations identified in previous analyses of the same samples are expressed at the protein level. The integration of proteomic and genomic data, or proteogenomics, provides a more comprehensive view of the biological features that drive cancer than genomic analysis alone and may help identify the most important targets for cancer detection and intervention.

  2. Genomics, transcriptomics and proteomics: enabling insights into social evolution and disease challenges for managed and wild bees.

    PubMed

    Trapp, Judith; McAfee, Alison; Foster, Leonard J

    2017-02-01

    Globally, there are over 20 000 bee species (Hymenoptera: Apoidea: Anthophila) with a host of biologically fascinating characteristics. Although they have long been studied as models for social evolution, recent challenges to bee health (mainly diseases and pesticides) have gathered the attention of both public and research communities. Genome sequences of twelve bee species are now complete or under progress, facilitating the application of additional 'omic technologies. Here, we review recent developments in honey bee and native bee research in the genomic era. We discuss the progress in genome sequencing and functional annotation, followed by the enabled comparative genomics, proteomics and transcriptomics applications regarding social evolution and health. Finally, we end with comments on future challenges in the postgenomic era.

  3. Genome-wide survey of ds exonization to enrich transcriptomes and proteomes in plants.

    PubMed

    Liu, Li-Yu Daisy; Charng, Yuh-Chyang

    2012-01-01

    Insertion of transposable elements (TEs) into introns can lead to their activation as alternatively spliced cassette exons, an event called exonization which can enrich the complexity of transcriptomes and proteomes. Previously, we performed the first experimental assessment of TE exonization by inserting a Ds element into each intron of the rice epsps gene. Exonization of Ds in plants was biased toward providing splice donor sites from the beginning of the inserted Ds sequence. Additionally, Ds inserted in the reverse direction resulted in a continuous splice donor consensus region by offering 4 donor sites in the same intron. The current study involved genome-wide computational analysis of Ds exonization events in the dicot Arabidopsis thaliana and the monocot Oryza sativa (rice). Up to 71% of the exonized transcripts were putative targets for the nonsense-mediated decay (NMD) pathway. The insertion patterns of Ds and the polymorphic splice donor sites increased the transcripts and subsequent protein isoforms. Protein isoforms contain protein sequence due to unspliced intron-TE region and/or a shift of the reading frame. The number of interior protein isoforms would be twice that of C-terminal isoforms, on average. TE exonization provides a promising way for functional expansion of the plant proteome.

  4. ProtoBug: functional families from the complete proteomes of insects.

    PubMed

    Rappoport, Nadav; Linial, Michal

    2015-01-01

    ProtoBug (http://www.protobug.cs.huji.ac.il) is a database and resource of protein families in Arthropod genomes. ProtoBug platform presents the relatedness of complete proteomes from 17 insects as well as a proteome of the crustacean, Daphnia pulex. The represented proteomes from insects include louse, bee, beetle, ants, flies and mosquitoes. Based on an unsupervised clustering method, protein sequences were clustered into a hierarchical tree, called ProtoBug. ProtoBug covers about 300,000 sequences that are partitioned to families. At the default setting, all sequences are partitioned to ∼20,000 families (excluding singletons). From the species perspective, each of the 18 analysed proteomes is composed of 5000-8000 families. In the regime of the advanced operational mode, the ProtoBug provides rich navigation capabilities for touring the hierarchy of the families at any selected resolution. A proteome viewer shows the composition of sequences from any of the 18 analysed proteomes. Using functional annotation from an expert system (Pfam) we assigned domains, families and repeats by 4400 keywords that cover 73% of the sequences. A strict inference protocol is applied for expanding the functional knowledge. Consequently, secured annotations were associated with 81% of the proteins, and with 70% of the families (≥10 proteins each). ProtoBug is a database and webtool with rich visualization and navigation tools. The properties of each family in relation to other families in the ProtoBug tree, and in view of the taxonomy composition are reported. Furthermore, the user can paste its own sequences to find relatedness to any of the ProtoBug families. The database and the navigation tools are the basis for functional discoveries that span 350 million years of evolution of Arthropods. ProtoBug is available with no restriction at: www.protobug.cs.huji.ac.il. Database URL: www.protobug.cs.huji.ac.il

  5. ProtoBug: functional families from the complete proteomes of insects

    PubMed Central

    Rappoport, Nadav; Linial, Michal

    2015-01-01

    ProtoBug (http://www.protobug.cs.huji.ac.il) is a database and resource of protein families in Arthropod genomes. ProtoBug platform presents the relatedness of complete proteomes from 17 insects as well as a proteome of the crustacean, Daphnia pulex. The represented proteomes from insects include louse, bee, beetle, ants, flies and mosquitoes. Based on an unsupervised clustering method, protein sequences were clustered into a hierarchical tree, called ProtoBug. ProtoBug covers about 300 000 sequences that are partitioned to families. At the default setting, all sequences are partitioned to ∼20 000 families (excluding singletons). From the species perspective, each of the 18 analysed proteomes is composed of 5000–8000 families. In the regime of the advanced operational mode, the ProtoBug provides rich navigation capabilities for touring the hierarchy of the families at any selected resolution. A proteome viewer shows the composition of sequences from any of the 18 analysed proteomes. Using functional annotation from an expert system (Pfam) we assigned domains, families and repeats by 4400 keywords that cover 73% of the sequences. A strict inference protocol is applied for expanding the functional knowledge. Consequently, secured annotations were associated with 81% of the proteins, and with 70% of the families (≥10 proteins each). ProtoBug is a database and webtool with rich visualization and navigation tools. The properties of each family in relation to other families in the ProtoBug tree, and in view of the taxonomy composition are reported. Furthermore, the user can paste its own sequences to find relatedness to any of the ProtoBug families. The database and the navigation tools are the basis for functional discoveries that span 350 million years of evolution of Arthropods. ProtoBug is available with no restriction at: www.protobug.cs.huji.ac.il. Database URL: www.protobug.cs.huji.ac.il. PMID:25911153

  6. Cancer heterogeneity determined by functional proteomics.

    PubMed

    Szász, A Marcell; Győrffy, Balázs; Marko-Varga, György

    2016-08-26

    Current manuscript gives a synopsis of tumor heterogeneity related to patient samples analyzed by proteomics, protein expression analysis and imaging mass spectrometry. First, we discuss the pathophysiologocal background of cancer biology as a multifactorial and challenging diseases. Disease pathology forms the basis for protein target selection. Therefore, histopathological diagnostics and grading of tumors is highlighted. Pathology is the cornerstone of state-of-the-art diagnostics of tumors today both by establishing dignity and - when needed - describing molecular properties of the cancers. Drug development by the pharmaceutical industry utilizes proteomics studies to pinpoint the most relevant targets. Molecular studies profiling affinity-interactions of the protein(s) with targeted small drug molecules to reach efficacy and optimal patient safety are today requested by the FDA and other agencies for new drug development. An understading of basic mechanisms, controlling drug action and drug binding is central, as a new era of personalized medicine becomes an important milestone solution for the healthcare sector as well as the Pharma and Biotech industry. Development of further diagnostic, prognostic and predictive tests will aid current and future treatment of cancer patients. In the paper we present current status of Proteomics that we believe requires attention in order to collectively advance forward in the fight against cancer, addressing the burning opportunities and challenges.

  7. From functional genomics to systems biology: concepts and practices.

    PubMed

    Auffray, Charles; Imbeaud, Sandrine; Roux-Rouquié, Magali; Hood, Leroy

    2003-01-01

    Systems biology is the iterative and integrative study of biological systems as systems in response to perturbations. It is founded on hypotheses formalized in models built from the results of global functional genomics analyses of the complexity of the genome, transcriptome, proteome, metabolome, etc. Its implementation by cross-disciplinary teams in a standardized mode under quality assurance should allow accessing the small variations of the large number of elements determining functioning of biological systems. Galactose utilization in yeast, and sea urchin development are two examples of emerging systems biology.

  8. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1.

    PubMed

    Pic, Emilie; Gagné, Jean-Philippe; Poirier, Guy G

    2011-12-01

    PARP-1 is an abundant nuclear protein that plays an essential role in the regulation of many genome integrity and chromatin-based processes, such as DNA repair, replication or transcriptional regulation. PARP-1 modulates the function of chromatin and nuclear proteins through several poly(ADP-ribose) (pADPr)-dependent pathways. Aside from the clearly established role of PARP-1 in the maintenance of genome stability, PARP-1 also emerged as an important regulator that links chromatin functions with extranuclear compartments. pADPr signaling has notably been found to be responsible for PARP-1-mediated mitochondrial dysfunction and cell death. Defining the mechanisms that govern the intrinsic functions of PARP-1 is fundamental to the understanding of signaling networks regulated by pADPr. The emergence of mass spectrometry-based proteomics and its broad applications in the study of biological systems represents an outstanding opportunity to widen our knowledge of the functional spectrum of PARP-1. In this article, we summarize various PARP-1 targeted proteomics studies and proteome-wide analyses that shed light on its protein interaction partners, expression levels and post-translational modifications.

  9. Quantitative Proteomic Analysis of Mitochondrial Proteins Reveals Pro-Survival Mechanisms in the Perpetuation of Radiation-Induced Genomic Instability

    SciTech Connect

    Thomas, Stefani N.; Waters, Katrina M.; Morgan, William F.; Yang, Austin; Baulch, Janet E.

    2012-07-26

    Radiation induced genomic instability is a well-studied phenomenon that is measured as mitotically heritable genetic alterations observed in the progeny of an irradiated cell. The mechanisms that perpetuate this instability are unclear, however, a role for chronic oxidative stress has consistently been demonstrated. In the chromosomally unstable LS12 cell line, oxidative stress and genomic instability were correlated with mitochondrial dysfunction. To clarify this mitochondrial dysfunction and gain insight into the mechanisms underlying radiation induced genomic instability we have evaluated the mitochondrial sub-proteome and performed quantitative mass spectrometry (MS) analysis of LS12 cells. Of 98 quantified mitochondrial proteins, 17 met criteria for fold changes and reproducibility; and 11 were statistically significant in comparison with the stable parental GM10115 cell line. Previous observations implicated defects in the electron transport chain (ETC) in the LS12 cell mitochondrial dysfunction. Proteomic analysis supports these observations, demonstrating significantly reduced levels of mitochondrial cytochrome c, the intermediary between complexes III and IV of the ETC. Results also suggest that LS12 cells compensate for ETC dysfunction and oxidative stress through increased levels of tricarboxylic acid cycle enzymes and up-regulation of proteins that protect against oxidative stress and apoptosis. More than one cellular defect is likely to contribute to the genomic instability phenotype. These data suggest that LS12 cells have adapted mechanisms that allow survival under sub-optimal conditions of oxidative stress and compromised mitochondrial function to perpetuate genomic instability.

  10. The Role of Clinical Proteomics, Lipidomics, and Genomics in the Diagnosis of Alzheimer’s Disease

    PubMed Central

    Martins, Ian James

    2016-01-01

    The early diagnosis of Alzheimer’s disease (AD) has become important to the reversal and treatment of neurodegeneration, which may be relevant to premature brain aging that is associated with chronic disease progression. Clinical proteomics allows the detection of various proteins in fluids such as the urine, plasma, and cerebrospinal fluid for the diagnosis of AD. Interest in lipidomics has accelerated with plasma testing for various lipid biomarkers that may with clinical proteomics provide a more reproducible diagnosis for early brain aging that is connected to other chronic diseases. The combination of proteomics with lipidomics may decrease the biological variability between studies and provide reproducible results that detect a community’s susceptibility to AD. The diagnosis of chronic disease associated with AD that now involves genomics may provide increased sensitivity to avoid inadvertent errors related to plasma versus cerebrospinal fluid testing by proteomics and lipidomics that identify new disease biomarkers in body fluids, cells, and tissues. The diagnosis of AD by various plasma biomarkers with clinical proteomics may now require the involvement of lipidomics and genomics to provide interpretation of proteomic results from various laboratories around the world. PMID:28248224

  11. Microchip-based single-cell functional proteomics for biomedical applications.

    PubMed

    Lu, Yao; Yang, Liu; Wei, Wei; Shi, Qihui

    2017-03-29

    Cellular heterogeneity has been widely recognized but only recently have single cell tools become available that allow characterizing heterogeneity at the genomic and proteomic levels. We review the technological advances in microchip-based toolkits for single-cell functional proteomics. Each of these tools has distinct advantages and limitations, and a few have advanced toward being applied to address biological or clinical problems that traditional population-based methods fail to address. High-throughput single-cell proteomic assays generate high-dimensional data sets that contain new information and thus require developing new analytical frameworks to extract new biology. In this review article, we highlight a few biological and clinical applications in which microchip-based single-cell proteomic tools provide unique advantages. The examples include resolving functional heterogeneity and dynamics of immune cells, dissecting cell-cell interaction by creating a well-controlled on-chip microenvironment, capturing high-resolution snapshots of immune system functions in patients for better immunotherapy and elucidating phosphoprotein signaling networks in cancer cells for guiding effective molecularly targeted therapies.

  12. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics.

    PubMed

    Rai, Aswathy N; Epperson, William B; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches.

  13. Application of Functional Genomics for Bovine Respiratory Disease Diagnostics

    PubMed Central

    Rai, Aswathy N.; Epperson, William B.; Nanduri, Bindu

    2015-01-01

    Bovine respiratory disease (BRD) is the most common economically important disease affecting cattle. For developing accurate diagnostics that can predict disease susceptibility/resistance and stratification, it is necessary to identify the molecular mechanisms that underlie BRD. To study the complex interactions among the bovine host and the multitude of viral and bacterial pathogens, as well as the environmental factors associated with BRD etiology, genome-scale high-throughput functional genomics methods such as microarrays, RNA-seq, and proteomics are helpful. In this review, we summarize the progress made in our understanding of BRD using functional genomics approaches. We also discuss some of the available bioinformatics resources for analyzing high-throughput data, in the context of biological pathways and molecular interactions. Although resources for studying host response to infection are avail-able, the corresponding information is lacking for majority of BRD pathogens, impeding progress in identifying diagnostic signatures for BRD using functional genomics approaches. PMID:26526746

  14. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    SciTech Connect

    Brooks, Brandon; Mueller, R. S.; Young, Jacque C.; Morowitz, Michael J.; Robert L. Hettich; Banfield, Jillian F.

    2015-07-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13 21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  15. VESPA: Software to Facilitate Genomic Annotation of Prokaryotic Organisms Through Integration of Proteomic and Transcriptomic Data

    SciTech Connect

    Peterson, Elena S.; McCue, Lee Ann; Rutledge, Alexandra C.; Jensen, Jeffrey L.; Walker, Julia; Kobold, Mark A.; Webb, Samantha R.; Payne, Samuel H.; Ansong, Charles; Adkins, Joshua N.; Cannon, William R.; Webb-Robertson, Bobbie-Jo M.

    2012-04-25

    Visual Exploration and Statistics to Promote Annotation (VESPA) is an interactive visual analysis software tool that facilitates the discovery of structural mis-annotations in prokaryotic genomes. VESPA integrates high-throughput peptide-centric proteomics data and oligo-centric or RNA-Seq transcriptomics data into a genomic context. The data may be interrogated via visual analysis across multiple levels of genomic resolution, linked searches, exports and interaction with BLAST to rapidly identify location of interest within the genome and evaluate potential mis-annotations.

  16. Intimate evolution of proteins. Proteome atomic content correlates with genome base composition.

    PubMed

    Baudouin-Cornu, Peggy; Schuerer, Katja; Marlière, Philippe; Thomas, Dominique

    2004-02-13

    Discerning the significant relations that exist within and among genome sequences is a major step toward the modeling of biopolymer evolution. Here we report the systematic analysis of the atomic composition of proteins encoded by organisms representative of each kingdoms. Protein atomic contents are shown to vary largely among species, the larger variations being observed for the main architectural component of proteins, the carbon atom. These variations apply to the bulk proteins as well as to subsets of ortholog proteins. A pronounced correlation between proteome carbon content and genome base composition is further evidenced, with high G+C genome content being related to low protein carbon content. The generation of random proteomes and the examination of the canonical genetic code provide arguments for the hypothesis that natural selection might have driven genome base composition.

  17. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers

    PubMed Central

    Kerou, Melina; Offre, Pierre; Valledor, Luis; Abby, Sophie S.; Melcher, Michael; Nagler, Matthias; Weckwerth, Wolfram; Schleper, Christa

    2016-01-01

    Ammonia-oxidizing archaea (AOA) are among the most abundant microorganisms and key players in the global nitrogen and carbon cycles. They share a common energy metabolism but represent a heterogeneous group with respect to their environmental distribution and adaptions, growth requirements, and genome contents. We report here the genome and proteome of Nitrososphaera viennensis EN76, the type species of the archaeal class Nitrososphaeria of the phylum Thaumarchaeota encompassing all known AOA. N. viennensis is a soil organism with a 2.52-Mb genome and 3,123 predicted protein-coding genes. Proteomic analysis revealed that nearly 50% of the predicted genes were translated under standard laboratory growth conditions. Comparison with genomes of closely related species of the predominantly terrestrial Nitrososphaerales as well as the more streamlined marine Nitrosopumilales [Candidatus (Ca.) order] and the acidophile “Ca. Nitrosotalea devanaterra” revealed a core genome of AOA comprising 860 genes, which allowed for the reconstruction of central metabolic pathways common to all known AOA and expressed in the N. viennensis and “Ca. Nitrosopelagicus brevis” proteomes. Concomitantly, we were able to identify candidate proteins for as yet unidentified crucial steps in central metabolisms. In addition to unraveling aspects of core AOA metabolism, we identified specific metabolic innovations associated with the Nitrososphaerales mediating growth and survival in the soil milieu, including the capacity for biofilm formation, cell surface modifications and cell adhesion, and carbohydrate conversions as well as detoxification of aromatic compounds and drugs. PMID:27864514

  18. [FUNCTIONAL DIFFERENTIATION IN BRYOZOAN COLONY: A PROTEOMIC ANALYSIS].

    PubMed

    Kutyumov, V A; Maltseva, A L; Kotenko, N; Ostrovsky, A N

    2016-01-01

    Bryozoans are typical modular organisms. They consist of repetitive structural units, the zooids. Bryozoan colonies grow by zooidal budding, with the distribution pattern of the budding loci underlying the diversity of colony forms. Budding is usually restricted to the zooids at the periphery of the colony, which form a "growing edge" or local terminal growth zones. Non-budding parts of the colony can be functionally subdivided, too. In many species colonies consists of regular, often repetitive zones of feeding and non-feeding modules, associated with a periodical degeneration and regeneration of the polypide, retractile tentacle crown with a gut and the accompanying musculature. So, there is functional differentiation in bryozoan colonies but its mechanisms are unknown. Presumably, budding and/or polypide recycling in different colony parts are induced or inhibited by certain determinants of functional specialization. An effective tool of their identification is the comparison of proteomes of functionally different zones. Here we report the results of proteomic analysis of three bryozoan species from the White Sea, which have a different colony form: Flustrellidra hispida, Terminoflustra membranaceotruncata and Securiflustra securifrons. Using differential two-dimensional electrophoresis (2D-DIGE), we compared proteomes of the growing edge and the zones consisting of feeding and non-feeding zooids in these species. We estimated the overall proteome variability, revealed proteins whose relative abundance gradually changed along the proximal-distal colony axis and suggested that they might be involved in the functional differentiation of the colony.

  19. USING GENOMICS AND PROTEOMICS TO DIAGNOSE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biology allow the use of cutting-edge genomic and proteomic tools to assess the effects of environmental contaminants on aquatic organisms. Techniques are available to measure changes in expression of single genes (quantitative real-time PCR) or to measure g...

  20. USING GENOMICS AND PROTEOMICS TO DIAGNOSE EXPOSURE OF AQUATIC ORGANISMS TO ENVIRONMENTAL CONTAMINANTS

    EPA Science Inventory

    Advances in molecular biology allow the use of cutting-edge genomic and proteomic tools to assess the effects of environmental contaminants on aquatic organisms. Techniques are available to measure changes in expression of single genes (quantitative real-time PCR) or to measure g...

  1. GENOMIC AND PROTEOMIC ANALYSIS OF SURROGATE TISSUES FOR ASSESSING TOXIC EXPOSURES AND DISEASE STATES

    EPA Science Inventory

    Genomic and Proteomic Analysis of Surrogate Tissues for Assessing Toxic Exposures and Disease States
    David J. Dix and John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, ...

  2. The porcine translational research database: A manually curated, genomics and proteomics-based research resource

    USDA-ARS?s Scientific Manuscript database

    The use of swine in biomedical research has increased dramatically in the last decade. Diverse genomic- and proteomic databases have been developed to facilitate research using human and rodent models. Current porcine gene databases, however, lack the robust annotation to study pig models that are...

  3. GENOMIC AND PROTEOMIC ANALYSIS OF SURROGATE TISSUES FOR ASSESSING TOXIC EXPOSURES AND DISEASE STATES

    EPA Science Inventory

    Genomic and Proteomic Analysis of Surrogate Tissues for Assessing Toxic Exposures and Disease States
    David J. Dix and John C. Rockett
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, USEPA, ...

  4. The Changing Face of Scientific Discourse: Analysis of Genomic and Proteomic Database Usage and Acceptance.

    ERIC Educational Resources Information Center

    Brown, Cecelia

    2003-01-01

    Discusses the growth in use and acceptance of Web-based genomic and proteomic databases (GPD) in scholarly communication. Confirms the role of GPD in the scientific literature cycle, suggests GPD are a storage and retrieval mechanism for molecular biology information, and recommends that existing models of scientific communication be updated to…

  5. A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES WITH GENOMIC, PROTEOMIC AND METABONOMIC COMPONENTS

    EPA Science Inventory

    A Database for Tracking Toxicogenomic Samples and Procedures with Genomic, Proteomic and Metabonomic Components
    Wenjun Bao1, Jennifer Fostel2, Michael D. Waters2, B. Alex Merrick2, Drew Ekman3, Mitchell Kostich4, Judith Schmid1, David Dix1
    Office of Research and Developmen...

  6. A DATABASE FOR TRACKING TOXICOGENOMIC SAMPLES AND PROCEDURES WITH GENOMIC, PROTEOMIC AND METABONOMIC COMPONENTS

    EPA Science Inventory

    A Database for Tracking Toxicogenomic Samples and Procedures with Genomic, Proteomic and Metabonomic Components
    Wenjun Bao1, Jennifer Fostel2, Michael D. Waters2, B. Alex Merrick2, Drew Ekman3, Mitchell Kostich4, Judith Schmid1, David Dix1
    Office of Research and Developmen...

  7. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation.

    PubMed

    Intasqui, Paula; Camargo, Mariana; Del Giudice, Paula T; Spaine, Deborah M; Carvalho, Valdemir M; Cardozo, Karina H M; Cedenho, Agnaldo P; Bertolla, Ricardo P

    2013-09-01

    Sperm DNA fragmentation has been suggested as a marker for infertility diagnosis and prognosis. Hence, understanding its impact on male physiology and post-genomic pathways would be clinically important. We performed the proteomics and functional enrichment analyses of viable spermatozoa from ejaculates with low and high sperm DNA fragmentation to identify protein expression and pathways altered in association with sperm DNA fragmentation. Sperm DNA fragmentation using the Comet assay and the Komet 6.0.1 software was assessed in raw samples from 89 subjects from a human reproduction service. The Low and High sperm DNA fragmentation groups were formed according to the Olive Tail Moment variable. Spermatozoa proteins from these groups were pooled and analyzed by a shotgun proteomic approach (2D nanoUPLC-ESI-MS(E)). Differentially expressed proteins were used for a functional enrichment study. Two hundred and fifty-seven proteins were identified or quantified in sperm from the Low and High sperm DNA fragmentation groups. Of these, seventy-one proteins were exclusively or overexpressed in the Low group, whereas twenty-three proteins were exclusively or overexpressed in the High group. One hundred and sixty-three proteins were conserved between these groups. We also functionally related the differentially expressed proteins in viable spermatozoa from the groups. Processes such as triacylglycerol metabolism, energy production, protein folding, response to unfolded proteins, and cellular detoxification were found to be altered in these cells. Sperm DNA fragmentation is associated with differential protein expression in viable spermatozoa. These proteins may potentially be used as biomarkers for sperm DNA integrity.

  8. Proteomic profiling reveals insights into Triticeae stigma development and function.

    PubMed

    Nazemof, Nazila; Couroux, Philippe; Rampitsch, Christof; Xing, Tim; Robert, Laurian S

    2014-11-01

    To our knowledge, this study represents the first high-throughput characterization of a stigma proteome in the Triticeae. A total of 2184 triticale mature stigma proteins were identified using three different gel-based approaches combined with mass spectrometry. The great majority of these proteins are described in a Triticeae stigma for the first time. These results revealed many proteins likely to play important roles in stigma development and pollen-stigma interactions, as well as protection against biotic and abiotic stresses. Quantitative comparison of the triticale stigma transcriptome and proteome showed poor correlation, highlighting the importance of having both types of analysis. This work makes a significant contribution towards the elucidation of the Triticeae stigma proteome and provides novel insights into its role in stigma development and function. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the Archaea

    PubMed Central

    Zivanovic, Yvan; Armengaud, Jean; Lagorce, Arnaud; Leplat, Christophe; Guérin, Philippe; Dutertre, Murielle; Anthouard, Véronique; Forterre, Patrick; Wincker, Patrick; Confalonieri, Fabrice

    2009-01-01

    Background Thermococcus gammatolerans was isolated from samples collected from hydrothermal chimneys. It is one of the most radioresistant organisms known amongst the Archaea. We report the determination and annotation of its complete genome sequence, its comparison with other Thermococcales genomes, and a proteomic analysis. Results T. gammatolerans has a circular chromosome of 2.045 Mbp without any extra-chromosomal elements, coding for 2,157 proteins. A thorough comparative genomics analysis revealed important but unsuspected genome plasticity differences between sequenced Thermococcus and Pyrococcus species that could not be attributed to the presence of specific mobile elements. Two virus-related regions, tgv1 and tgv2, are the only mobile elements identified in this genome. A proteogenome analysis was performed by a shotgun liquid chromatography-tandem mass spectrometry approach, allowing the identification of 10,931 unique peptides corresponding to 951 proteins. This information concurrently validates the accuracy of the genome annotation. Semi-quantification of proteins by spectral count was done on exponential- and stationary-phase cells. Insights into general catabolism, hydrogenase complexes, detoxification systems, and the DNA repair toolbox of this archaeon are revealed through this genome and proteome analysis. Conclusions This work is the first archaeal proteome investigation done at the stage of primary genome annotation. This archaeon is shown to use a large variety of metabolic pathways even under a rich medium growth condition. This proteogenomic study also indicates that the high radiotolerance of T. gammatolerans is probably due to proteins that remain to be characterized rather than a larger arsenal of known DNA repair enzymes. PMID:19558674

  10. Functional inference by ProtoNet family tree: the uncharacterized proteome of Daphnia pulex

    PubMed Central

    2013-01-01

    Background Daphnia pulex (Water flea) is the first fully sequenced crustacean genome. The crustaceans and insects have diverged from a common ancestor. It is a model organism for studying the molecular makeup for coping with the environmental challenges. In the complete proteome, there are 30,550 putative proteins. However, about 10,000 of them have no known homologues. Currently, the UniProtoKB reports on 95% of the Daphnia's proteins as putative and uncharacterized proteins. Results We have applied ProtoNet, an unsupervised hierarchical protein clustering method that covers about 10 million sequences, for automatic annotation of the Daphnia's proteome. 98.7% (26,625) of the Daphnia full-length proteins were successfully mapped to 13,880 ProtoNet stable clusters, and only 1.3% remained unmapped. We compared the properties of the Daphnia's protein families with those of the mouse and the fruitfly proteomes. Functional annotations were successfully assigned for 86% of the proteins. Most proteins (61%) were mapped to only 2953 clusters that contain Daphnia's duplicated genes. We focused on the functionality of maximally amplified paralogs. Cuticle structure components and a variety of ion channels protein families were associated with a maximal level of gene amplification. We focused on gene amplification as a leading strategy of the Daphnia in coping with environmental toxicity. Conclusions Automatic inference is achieved through mapping of sequences to the protein family tree of ProtoNet 6.0. Applying a careful inference protocol resulted in functional assignments for over 86% of the complete proteome. We conclude that the scaffold of ProtoNet can be used as an alignment-free protocol for large-scale annotation task of uncharacterized proteomes. PMID:23514195

  11. A Genomic, Transcriptomic and Proteomic Look at the GE2270 Producer Planobispora rosea, an Uncommon Actinomycete

    PubMed Central

    Gallo, Giuseppe; Petiti, Luca; Corti, Giorgio; Alt, Silke; Cruz, Joao C. S.; Salzano, Anna Maria; Scaloni, Andrea; Puglia, Anna Maria; De Bellis, Gianluca; Peano, Clelia; Donadio, Stefano; Sosio, Margherita

    2015-01-01

    We report the genome sequence of Planobispora rosea ATCC 53733, a mycelium-forming soil-dweller belonging to one of the lesser studied genera of Actinobacteria and producing the thiopeptide GE2270. The P. rosea genome presents considerable convergence in gene organization and function with other members in the family Streptosporangiaceae, with a significant number (44%) of shared orthologs. Patterns of gene expression in P. rosea cultures during exponential and stationary phase have been analyzed using whole transcriptome shotgun sequencing and by proteome analysis. Among the differentially abundant proteins, those involved in protein metabolism are particularly represented, including the GE2270-insensitive EF-Tu. Two proteins from the pbt cluster, directing GE2270 biosynthesis, slightly increase their abundance values over time. While GE2270 production starts during the exponential phase, most pbt genes, as analyzed by qRT-PCR, are down-regulated. The exception is represented by pbtA, encoding the precursor peptide of the ribosomally synthesized GE2270, whose expression reached the highest level at the entry into stationary phase. PMID:26207753

  12. Comparative genomic and proteomic anatomy of Mycobacterium ubiquitous Esx family proteins: implications in pathogenicity and virulence.

    PubMed

    Deng, Wanyan; Xiang, Xiaohong; Xie, Jianping

    2014-04-01

    Secreted proteins are among the most important molecules involved in host-pathogen interaction of Mycobacterium tuberculosis, the etiological agent of human tuberculosis (TB). M. tuberculosis encodes five types of VII secretion systems (ESX-1 to ESX-5) responsible for the exportation of many proteins. This system mediated substrates including members of the Esx family implicated in tuberculosis pathogenesis and survival within host cells. However, the distribution and evolution of this family remain elusive. To explore the evolution and distribution of Esx family proteins, we analyzed all available Mycobacteria genomes. Interestingly, amino mutations among M. tuberculosis esx family proteins may relate to their functions. We further analyzed the differences between pathogenic Mycobacteria, the attenuated Mycobacteria and non-pathogenic Mycobacteria. The stability, the globular domains and the phosphorylation of serine/threonine residues of M. tuberculosis esx proteins with their homologies among other Mycoabcteria were analyzed. Our comparative genomic and proteomic analysis found that the change of stability, gain or loss of globular domains and phosphorylation of serine/threonine might be responsible for the difference between the pathogenesis and virulence of the esx proteins and its homolog widespread among Mycobacteria and related species, which may provide clues for novel anti-tuberculosis drug targets.

  13. High-Throughput Cloning and Expression Library Creation for Functional Proteomics

    PubMed Central

    Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua

    2013-01-01

    The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047

  14. FuGE: Functional Genomics Experiment Object Model.

    PubMed

    Jones, Andrew R; Pizarro, Angel; Spellman, Paul; Miller, Michael

    2006-01-01

    This is an interim report on the Functional Genomics Experiment (FuGE) Object Model. FuGE is a framework for creating data standards for high-throughput biological experiments, developed by a consortium of researchers from academia and industry. FuGE supports rich annotation of samples, protocols, instruments, and software, as well as providing extension points for technology specific details. It has been adopted by microarray and proteomics standards bodies as a basis for forthcoming standards. It is hoped that standards developers for other omics techniques will join this collaborative effort; widespread adoption will allow uniform annotation of common parts of functional genomics workflows, reduce standard development and learning times through the sharing of consistent practice, and ease the construction of software for accessing and integrating functional genomics data.

  15. Functional profiling of the Tritrichomonas foetus transcriptome and proteome.

    PubMed

    Huang, Kuo-Yang; Shin, Jyh-Wei; Huang, Po-Jung; Ku, Fu-Man; Lin, Wei-Chen; Lin, Rose; Hsu, Wei-Min; Tang, Petrus

    2013-01-01

    Tritrichomonas foetus is a potent veterinary pathogen, causing bovine and feline trichomoniasis. The principal clinical manifestation of infection in cattle is inflammation of the genital tract and infertility. In feline, the parasite causes large-bowel disease resulting in chronic diarrhea. In contrast to other well-studied protozoan, genetic data regarding the molecular characterization and expression in T. foetus is far less understood. In this study, the first large-scale T. foetus expressed sequence tag (TfEST) project was conducted on 5064 randomly selected EST clones from a non-normalized unidirectional Tf30924 cDNA library. Assembling of 5064 single-pass sequences from the 5' end resulted in 713 contigs and 1961 singlets. BLAST search revealed that 53.52% of the unigenes showed significant similarity to known sequences or protein motifs/domains. Functional classifications indicated that most of the unigenes are involved in translation, ribosomal structure and ribosome biogenesis. The average GC content of the T. foetus transcriptome is 40.93%. Intriguingly, only 31.29% of the unigenes contain the classical AAUAAA polyadenylation signal sequence at the 3'-UTR region. Furthermore, a panel of potential chemotherapeutic targets was also identified for the first time in T. foetus. The protein expression levels were verified by using two-dimensional electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. A total of 68 highly abundant protein spots were successfully identified in the reference 2-DE map based on our T. foetus-specific protein database. The EST dataset and the reference 2-DE map established in the present study will provide a foundation for future whole genome sequencing project and comparative transcriptomic/proteomic analyses to provide potential drug targets against T. foetus infection.

  16. LC-MS/MS Based Proteomic Analysis and Functional Inference of Hypothetical Proteins in Desulfovibrio Vulgaris

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Gritsenko, Marina A.; Moore, Ronald J.; Nie, Lei; Scholten, Johannes C.; Petritis, Konstantinos; Strittmatter, Eric F.; Camp, David G.; Smith, Richard D.; Brockman, Fred J.

    2006-11-03

    Direct liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to examine the proteins extracted from Desulfovibrio vulgaris cells. While our previous study provided a proteomic overview of the cellular metabolism based on proteins with known functions (Zhang et al., 2006a, Proteomics, 6: 4286-4299), this study describes the global detection and functional inference for hypothetical D. vulgaris proteins. Across six growth conditions, 15,841 tryptic peptides were identified with high confidence. Using a criterion of peptide identification from at least two out of three independent LC-MS/MS analyses per protein, 176 open reading frames (ORFs) originally annotated as hypothetical proteins were found to encode expressed proteins. These proteins ranged from 6.0 to 153 kDa, and had calculated pI values ranging from 3.7 to 11.5. Based on homology search results (with E value <= 0.01 as a cutoff), 159 proteins were defined as conserved hypothetical proteins, and 17 proteins were unique to the D. vulgaris genome. Functional inference of the conserved hypothetical proteins was performed by a combination of several non-homology based methods: genomic context analysis, phylogenomic profiling, and analysis of a combination of experimental information including peptide detection in cells grown under specific culture conditions and cellular location of the proteins. Using this approach we were able to assign possible functions to 27 conserved hypothetical proteins. This study demonstrated that a combination of proteomics and bioinformatics methodologies can provide verification for the authenticity of hypothetical proteins and improve annotation for the D. vulgaris genome.

  17. Association between the seminal plasma proteome and sperm functional traits.

    PubMed

    Intasqui, Paula; Camargo, Mariana; Antoniassi, Mariana Pereira; Cedenho, Agnaldo Pereira; Carvalho, Valdemir Melechco; Cardozo, Karina Helena Morais; Zylbersztejn, Daniel Suslik; Bertolla, Ricardo Pimenta

    2016-03-01

    To analyze the seminal plasma proteome and biological functions associated with sperm functional alterations. Cross-sectional study. University andrology and research laboratories. A total of 156 normozoospermic men. Sperm mitochondrial activity, acrosome integrity, and DNA fragmentation were evaluated in a semen aliquot. Remaining semen was centrifuged, and seminal plasma was utilized for proteomic analysis (liquid chromatography-tandem mass spectrometry). Patients were divided into percentiles (15%) to form the following groups: substudy 1, high (control, n = 26) and low (study, n = 23) sperm mitochondrial activity; substudy 2, high (control, n = 23) and low (study, n = 22) sperm acrosome integrity; and substudy 3, low (control, n = 22) and high (study, n = 22) sperm DNA fragmentation. Groups were compared using univariate and multivariate analyses. Differentially expressed proteins were used for functional enrichment analysis. Seminal plasma proteome and postgenomic pathways are associated with several sperm functional traits. In total, 506, 493, and 464 proteins were observed in substudies 1, 2, and 3, respectively. Enriched functions in substudy 1 were intramolecular oxidoreductase activity, aminoglycans catabolism, endopeptidases inhibition, lysosomes, and acute-phase response (study group). In substudy 2, main enriched functions were phospholipase inhibition, arachidonic acid metabolism, exocytosis, regulation of acute inflammation, response to hydrogen peroxide, and lysosomal transport (study group). In substudy 3, enriched functions were prostaglandin biosynthesis and fatty acid binding (study group). We proposed eight, six, and eight seminal biomarkers for substudies 1, 2, and 3, respectively. Seminal plasma proteome reflects sperm mitochondrial activity reduction, acrosome damage, and DNA fragmentation, with several postgenomic functions related to these alterations. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc

  18. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens Using Proteomic Data from a Field Biostimulation Experiment

    SciTech Connect

    Fang, Yilin; Wilkins, Michael J.; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-12-12

    Biomass and shotgun global proteomics data that reflected relative protein abundances from samples collected during the 2008 experiment at the U.S. Department of Energy Integrated Field-Scale Subsurface Research Challenge site in Rifle, Colorado, provided an unprecedented opportunity to validate a genome-scale metabolic model of Geobacter metallireducens and assess its performance with respect to prediction of metal reduction, biomass yield, and growth rate under dynamic field conditions. Reconstructed from annotated genomic sequence, biochemical, and physiological data, the constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low fluxes through amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  19. The Genomic Tree as Revealed from Whole Proteome Comparisons

    PubMed Central

    Tekaia, Fredj; Lazcano, Antonio; Dujon, Bernard

    1999-01-01

    The availability of a number of complete cellular genome sequences allows the development of organisms’ classification, taking into account their genome content, the loss or acquisition of genes, and overall gene similarities as signatures of common ancestry. On the basis of correspondence analysis and hierarchical classification methods, a methodological framework is introduced here for the classification of the available 20 completely sequenced genomes and partial information for Schizosaccharomyces pombe, Homo sapiens, and Mus musculus. The outcome of such an analysis leads to a classification of genomes that we call a genomic tree. Although these trees are phenograms, they carry with them strong phylogenetic signatures and are remarkably similar to 16S-like rRNA-based phylogenies. Our results suggest that duplication and deletion events that took place through evolutionary time were globally similar in related organisms. The genomic trees presented here place the Archaea in the proximity of the Bacteria when the whole gene content of each organism is considered, and when ancestral gene duplications are eliminated. Genomic trees represent an additional approach for the understanding of evolution at the genomic level and may contribute to the proper assessment of the evolutionary relationships between extant species. PMID:10400922

  20. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools

    PubMed Central

    Deshmukh, Rupesh K.; Sonah, Humira; Bélanger, Richard R.

    2016-01-01

    Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is

  1. Integration of molecular functions at the ecosystemic level: breakthroughs and future goals of environmental genomics and post-genomics

    PubMed Central

    Vandenkoornhuyse, Philippe; Dufresne, Alexis; Quaiser, Achim; Gouesbet, Gwenola; Binet, Françoise; Francez, André-Jean; Mahé, Stéphane; Bormans, Myriam; Lagadeuc, Yvan; Couée, Ivan

    2010-01-01

    Environmental genomics and genome-wide expression approaches deal with large-scale sequence-based information obtained from environmental samples, at organismal, population or community levels. To date, environmental genomics, transcriptomics and proteomics are arguably the most powerful approaches to discover completely novel ecological functions and to link organismal capabilities, organism–environment interactions, functional diversity, ecosystem processes, evolution and Earth history. Thus, environmental genomics is not merely a toolbox of new technologies but also a source of novel ecological concepts and hypotheses. By removing previous dichotomies between ecophysiology, population ecology, community ecology and ecosystem functioning, environmental genomics enables the integration of sequence-based information into higher ecological and evolutionary levels. However, environmental genomics, along with transcriptomics and proteomics, must involve pluridisciplinary research, such as new developments in bioinformatics, in order to integrate high-throughput molecular biology techniques into ecology. In this review, the validity of environmental genomics and post-genomics for studying ecosystem functioning is discussed in terms of major advances and expectations, as well as in terms of potential hurdles and limitations. Novel avenues for improving the use of these approaches to test theory-driven ecological hypotheses are also explored. PMID:20426792

  2. Functional genomics of pathogenic bacteria.

    PubMed Central

    Moxon, E R; Hood, D W; Saunders, N J; Schweda, E K H; Richards, J C

    2002-01-01

    Microbial diseases remain the commonest cause of global mortality and morbidity. Automated-DNA sequencing has revolutionized the investigation of pathogenic microbes by making the immense fund of information contained in their genomes available at reasonable cost. The challenge is how this information can be used to increase current understanding of the biology of commensal and virulence behaviour of pathogens with particular emphasis on in vivo function and novel approaches to prevention. One example of the application of whole-genome-sequence information is afforded by investigations of the pathogenic role of Haemophilus influenzae lipopolysaccharide and its candidacy as a vaccine. PMID:11839188

  3. Integrated Transcriptomic-Proteomic Analysis Using a Proteogenomic Workflow Refines Rat Genome Annotation.

    PubMed

    Kumar, Dhirendra; Yadav, Amit Kumar; Jia, Xinying; Mulvenna, Jason; Dash, Debasis

    2016-01-01

    Proteogenomic re-annotation and mRNA splicing information can lead to the discovery of various protein forms for eukaryotic model organisms like rat. However, detection of novel proteoforms using mass spectrometry proteomics data remains a formidable challenge. We developed EuGenoSuite, an open source multiple algorithmic proteomic search tool and utilized it in our in-house integrated transcriptomic-proteomic pipeline to facilitate automated proteogenomic analysis. Using four proteogenomic pipelines (integrated transcriptomic-proteomic, Peppy, Enosi, and ProteoAnnotator) on publicly available RNA-sequence and MS proteomics data, we discovered 363 novel peptides in rat brain microglia representing novel proteoforms for 249 gene loci in the rat genome. These novel peptides aided in the discovery of novel exons, translation of annotated untranslated regions, pseudogenes, and splice variants for various loci; many of which have known disease associations, including neurological disorders like schizophrenia, amyotrophic lateral sclerosis, etc. Novel isoforms were also discovered for genes implicated in cardiovascular diseases and breast cancer for which rats are considered model organisms. Our integrative multi-omics data analysis not only enables the discovery of new proteoforms but also generates an improved reference for human disease studies in the rat model.

  4. Plant Comparative and Functional Genomics

    DOE PAGES

    Yang, Xiaohan; Leebens-Mack, Jim; Chen, Feng; ...

    2015-01-01

    Plants form the foundation for our global ecosystem and are essential for environmental and human health. An increasing number of available plant genomes and tractable experimental systems, comparative and functional plant genomics research is greatly expanding our knowledge of the molecular basis of economically and nutritionally important traits in crop plants. Inferences drawn from comparative genomics are motivating experimental investigations of gene function and gene interactions. In this special issue aims to highlight recent advances made in comparative and functional genomics research in plants. Nine original research articles in this special issue cover five important topics: (1) transcription factor genemore » families relevant to abiotic stress tolerance; (2) plant secondary metabolism; (3) transcriptomebased markers for quantitative trait locus; (4) epigenetic modifications in plant-microbe interactions; and (5) computational prediction of protein-protein interactions. Finally, we studied the plant species in these articles which include model species as well as nonmodel plant species of economic importance (e.g., food crops and medicinal plants).« less

  5. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle

    PubMed Central

    Rougon-Cardoso, Alejandra; Flores-Ponce, Mitzi; Ramos-Aboites, Hilda Eréndira; Martínez-Guerrero, Christian Eduardo; Hao, You-Jin; Cunha, Luis; Rodríguez-Martínez, Jonathan Alejandro; Ovando-Vázquez, Cesaré; Bermúdez-Barrientos, José Roberto; Abreu-Goodger, Cei; Chavarría-Hernández, Norberto; Simões, Nelson; Montiel, Rafael

    2016-01-01

    The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode’s genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism. PMID:27876851

  6. The genome, transcriptome, and proteome of the nematode Steinernema carpocapsae: evolutionary signatures of a pathogenic lifestyle.

    PubMed

    Rougon-Cardoso, Alejandra; Flores-Ponce, Mitzi; Ramos-Aboites, Hilda Eréndira; Martínez-Guerrero, Christian Eduardo; Hao, You-Jin; Cunha, Luis; Rodríguez-Martínez, Jonathan Alejandro; Ovando-Vázquez, Cesaré; Bermúdez-Barrientos, José Roberto; Abreu-Goodger, Cei; Chavarría-Hernández, Norberto; Simões, Nelson; Montiel, Rafael

    2016-11-23

    The entomopathogenic nematode Steinernema carpocapsae has been widely used for the biological control of insect pests. It shares a symbiotic relationship with the bacterium Xenorhabdus nematophila, and is emerging as a genetic model to study symbiosis and pathogenesis. We obtained a high-quality draft of the nematode's genome comprising 84,613,633 bp in 347 scaffolds, with an N50 of 1.24 Mb. To improve annotation, we sequenced both short and long RNA and conducted shotgun proteomic analyses. S. carpocapsae shares orthologous genes with other parasitic nematodes that are absent in the free-living nematode C. elegans, it has ncRNA families that are enriched in parasites, and expresses proteins putatively associated with parasitism and pathogenesis, suggesting an active role for the nematode during the pathogenic process. Host and parasites might engage in a co-evolutionary arms-race dynamic with genes participating in their interaction showing signatures of positive selection. Our analyses indicate that the consequence of this arms race is better characterized by positive selection altering specific functions instead of just increasing the number of positively selected genes, adding a new perspective to these co-evolutionary theories. We identified a protein, ATAD-3, that suggests a relevant role for mitochondrial function in the evolution and mechanisms of nematode parasitism.

  7. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction

    PubMed Central

    2011-01-01

    Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ. PMID:21798097

  8. Subcellular Localization of Extracytoplasmic Proteins in Monoderm Bacteria: Rational Secretomics-Based Strategy for Genomic and Proteomic Analyses

    PubMed Central

    Renier, Sandra; Micheau, Pierre; Talon, Régine; Hébraud, Michel; Desvaux, Mickaël

    2012-01-01

    Genome-scale prediction of subcellular localization (SCL) is not only useful for inferring protein function but also for supporting proteomic data. In line with the secretome concept, a rational and original analytical strategy mimicking the secretion steps that determine ultimate SCL was developed for Gram-positive (monoderm) bacteria. Based on the biology of protein secretion, a flowchart and decision trees were designed considering (i) membrane targeting, (ii) protein secretion systems, (iii) membrane retention, and (iv) cell-wall retention by domains or post-translocational modifications, as well as (v) incorporation to cell-surface supramolecular structures. Using Listeria monocytogenes as a case study, results were compared with known data set from SCL predictors and experimental proteomics. While in good agreement with experimental extracytoplasmic fractions, the secretomics-based method outperforms other genomic analyses, which were simply not intended to be as inclusive. Compared to all other localization predictors, this method does not only supply a static snapshot of protein SCL but also offers the full picture of the secretion process dynamics: (i) the protein routing is detailed, (ii) the number of distinct SCL and protein categories is comprehensive, (iii) the description of protein type and topology is provided, (iv) the SCL is unambiguously differentiated from the protein category, and (v) the multiple SCL and protein category are fully considered. In that sense, the secretomics-based method is much more than a SCL predictor. Besides a major step forward in genomics and proteomics of protein secretion, the secretomics-based method appears as a strategy of choice to generate in silico hypotheses for experimental testing. PMID:22912771

  9. Primer: genomic and proteomic tools for the molecular dissection of disease.

    PubMed

    Walker, Erin J; Siminovitch, Katherine A

    2007-10-01

    Completion of the Human Genome Project has been rapidly followed by the emergence of high-throughput technologies that combine automation, miniaturization, and many other strategies and tools to enable systematic surveys of genome composition and gene expression. Of particular relevance to the prevention and management of disease are technologies such as high-throughput DNA genotyping, microarray-based gene-expression profiling, and mass spectrometry-facilitated protein profiling--platforms that collectively support the comprehensive analysis of DNA sequence variants across the genome and the global gene and protein expression changes that distinguish health from disease. Now used extensively in all facets of biomedical investigation, genomic and proteomic tools are already beginning to pinpoint molecular variants that influence risk and outcome in common diseases, and to thereby inform and direct development of novel molecular biomarkers and drug targets. As evidenced by recent advances in DNA sequencing methods, continued improvements in the scope, power, and cost efficiency of genomic and proteomic technologies should ensure their capacity to provide the scale and depth of knowledge required for translating genome sequence information into major medical impact.

  10. Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights

    PubMed Central

    Kumar, Amitha Sampath; Sowpati, Divya Tej; Mishra, Rakesh K.

    2016-01-01

    Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a consequence of SSR events. Certain amino acids are abundant in repeat regions indicating a positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes including the human proteome, we explored the functional and structural relationship of amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any known functional domain, while ~74% of repeats are present in the disordered regions, suggesting that SAARs add to the functionality of proteins by providing flexibility, stability and act as linker elements between domains. Comparison of SAAR containing proteins across species reveals that while shorter repeats are conserved among orthologs, proteins with longer repeats, >15 amino acids, are unique to the respective organism. Lysine repeats are well conserved among orthologs with respect to their length and number of occurrences in a protein. Other amino acids such as glutamic acid, proline, serine and alanine repeats are generally conserved among the orthologs with varying repeat lengths. These findings suggest that SAARs have accumulated in the proteome under positive selection pressure and that they provide flexibility for optimal folding of functional/structural domains of proteins. The insights gained from our observations can help in effective designing and engineering of proteins with novel features. PMID:27893794

  11. Functional Genomics in the Study of Mind-Body Therapies

    PubMed Central

    Niles, Halsey; Mehta, Darshan H.; Corrigan, Alexandra A.; Bhasin, Manoj K.; Denninger, John W.

    2014-01-01

    Background Mind-body therapies (MBTs) are used throughout the world in treatment, disease prevention, and health promotion. However, the mechanisms by which MBTs exert their positive effects are not well understood. Investigations into MBTs using functional genomics have revolutionized the understanding of MBT mechanisms and their effects on human physiology. Methods We searched the literature for the effects of MBTs on functional genomics determinants using MEDLINE, supplemented by a manual search of additional journals and a reference list review. Results We reviewed 15 trials that measured global or targeted transcriptomic, epigenomic, or proteomic changes in peripheral blood. Sample sizes ranged from small pilot studies (n=2) to large trials (n=500). While the reliability of individual genes from trial to trial was often inconsistent, genes related to inflammatory response, particularly those involved in the nuclear factor-kappa B (NF-κB) pathway, were consistently downregulated across most studies. Conclusion In general, existing trials focusing on gene expression changes brought about by MBTs have revealed intriguing connections to the immune system through the NF-κB cascade, to telomere maintenance, and to apoptotic regulation. However, these findings are limited to a small number of trials and relatively small sample sizes. More rigorous randomized controlled trials of healthy subjects and specific disease states are warranted. Future research should investigate functional genomics areas both upstream and downstream of MBT-related gene expression changes—from epigenomics to proteomics and metabolomics. PMID:25598735

  12. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology.

    PubMed

    Agrawal, Ganesh Kumar; Rakwal, Randeep

    2011-05-01

    Growing rice is an important socio-economic activity. Rice proteomics has achieved a tremendous progress in establishing techniques to proteomes of almost all tissues, organs, and organelles during the past one decade (year 2000-2010). We have compiled these progresses time to time over this period. The present compilation discusses proteomics research in rice published between 1st April 2008 and 30th July 2010. Progress continues mainly towards protein cataloging deep into the proteome with high-confident protein assignment and some functional significance than ever before by (i) identifying previously unreported/low-abundance proteins, (ii) quantifying relative/absolute values of proteins, (iii) assigning protein responses to biotic/abiotic stresses, (iv) protein localization into organelles, (v) validating previous proteomes and eliminating false-positive proteins, and (vi) discovering potential biomarkers for tissues, organs, organelles, and for screening transgenic plants and food-safety evaluation. The notable achievements in global mapping of phosphorylation sites and identifying several novel secreted proteins into the extracellular space are worth appreciating. Our ever-increasing knowledge on the rice proteomics is beginning to impact the biology of not only rice, but also crops and plants. These major achievements will be discussed in this review keeping in mind newcomers, young, and established scientists in proteomics and plants. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

    PubMed

    Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng

    2013-11-01

    Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.

  14. Cyanobacterial KnowledgeBase (CKB), a Compendium of Cyanobacterial Genomes and Proteomes

    PubMed Central

    Mohandass, Shylajanaciyar; Varadharaj, Sangeetha; Thilagar, Sivasudha; Abdul Kareem, Kaleel Ahamed; Dharmar, Prabaharan; Gopalakrishnan, Subramanian; Lakshmanan, Uma

    2015-01-01

    Cyanobacterial KnowledgeBase (CKB) is a free access database that contains the genomic and proteomic information of 74 fully sequenced cyanobacterial genomes belonging to seven orders. The database also contains tools for sequence analysis. The Species report and the gene report provide details about each species and gene (including sequence features and gene ontology annotations) respectively. The database also includes cyanoBLAST, an advanced tool that facilitates comparative analysis, among cyanobacterial genomes and genomes of E. coli (prokaryote) and Arabidopsis (eukaryote). The database is developed and maintained by the Sub-Distributed Informatics Centre (sponsored by the Department of Biotechnology, Govt. of India) of the National Facility for Marine Cyanobacteria, a facility dedicated to marine cyanobacterial research. CKB is freely available at http://nfmc.res.in/ckb/index.html. PMID:26305368

  15. Global analyses of Ceratocystis cacaofunesta mitochondria: from genome to proteome

    USDA-ARS?s Scientific Manuscript database

    Background The ascomycete fungus Ceratocystis cacaofunesta is the causal agent of wilt disease in cacao, which results in significant economic losses in the affected producing areas. Despite the economic importance of the Ceratocystis complex of species, no genomic data are available for any of its ...

  16. A New Literary Metaphor for the Genome or Proteome

    ERIC Educational Resources Information Center

    Pappas, Gus

    2005-01-01

    Previously, the idea of a blueprint has been used to explain the genome. The concept of a play's cast of characters, the Dramatis Personae, is a more fluid metaphor that allows for mutations and time-dependent phenomena to be taken into account. It also provides an educational and mnemonic exercise for students.

  17. A New Literary Metaphor for the Genome or Proteome

    ERIC Educational Resources Information Center

    Pappas, Gus

    2005-01-01

    Previously, the idea of a blueprint has been used to explain the genome. The concept of a play's cast of characters, the Dramatis Personae, is a more fluid metaphor that allows for mutations and time-dependent phenomena to be taken into account. It also provides an educational and mnemonic exercise for students.

  18. Public Access for Teaching Genomics, Proteomics, and Bioinformatics

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2003-01-01

    When the human genome project was conceived, its leaders wanted all researchers to have equal access to the data and associated research tools. Their vision of equal access provides an unprecedented teaching opportunity. Teachers and students have free access to the same databases that researchers are using. Furthermore, the recent movement to…

  19. Public Access for Teaching Genomics, Proteomics, and Bioinformatics

    ERIC Educational Resources Information Center

    Campbell, A. Malcolm

    2003-01-01

    When the human genome project was conceived, its leaders wanted all researchers to have equal access to the data and associated research tools. Their vision of equal access provides an unprecedented teaching opportunity. Teachers and students have free access to the same databases that researchers are using. Furthermore, the recent movement to…

  20. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach.

    PubMed

    Leiser, Owen P; Merkley, Eric D; Clowers, Brian H; Deatherage Kaiser, Brooke L; Lin, Andy; Hutchison, Janine R; Melville, Angela M; Wagner, David M; Keim, Paul S; Foster, Jeffrey T; Kreuzer, Helen W

    2015-01-01

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  1. Investigation of Yersinia pestis Laboratory Adaptation through a Combined Genomics and Proteomics Approach

    PubMed Central

    Clowers, Brian H.; Deatherage Kaiser, Brooke L.; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeffrey T.; Kreuzer, Helen W.

    2015-01-01

    The bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a parallel serial passage experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing, LC-MS/MS proteomic analysis, and GC/MS metabolomics. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS/MS proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism and cell envelope biogenesis. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement. PMID:26599979

  2. Novel Multivariate Methods for Integration of Genomics and Proteomics Data: Applications in a Kidney Transplant Rejection Study

    PubMed Central

    Günther, Oliver P.; Shin, Heesun; Ng, Raymond T.; McMaster, W. Robert; McManus, Bruce M.; Keown, Paul A.; Tebbutt, Scott. J.

    2014-01-01

    Abstract Multi-omics research is a key ingredient of data-intensive life sciences research, permitting measurement of biological molecules at different functional levels in the same individual. For a complete picture at the biological systems level, appropriate statistical techniques must however be developed to integrate different ‘omics’ data sets (e.g., genomics and proteomics). We report here multivariate projection-based analyses approaches to genomics and proteomics data sets, using the case study of and applications to observations in kidney transplant patients who experienced an acute rejection event (n=20) versus non-rejecting controls (n=20). In this data sets, we show how these novel methodologies might serve as promising tools for dimension reduction and selection of relevant features for different analytical frameworks. Unsupervised analyses highlighted the importance of post transplant time-of-rejection, while supervised analyses identified gene and protein signatures that together predicted rejection status with little time effect. The selected genes are part of biological pathways that are representative of immune responses. Gene enrichment profiles revealed increases in innate immune responses and neutrophil activities and a depletion of T lymphocyte related processes in rejection samples as compared to controls. In all, this article offers candidate biomarkers for future detection and monitoring of acute kidney transplant rejection, as well as ways forward for methodological advances to better harness multi-omics data sets. PMID:25387159

  3. The Drosophila melanogaster PeptideAtlas facilitates the use of peptide data for improved fly proteomics and genome annotation

    PubMed Central

    Loevenich, Sandra N; Brunner, Erich; King, Nichole L; Deutsch, Eric W; Stein, Stephen E; Aebersold, Ruedi; Hafen, Ernst

    2009-01-01

    Background Crucial foundations of any quantitative systems biology experiment are correct genome and proteome annotations. Protein databases compiled from high quality empirical protein identifications that are in turn based on correct gene models increase the correctness, sensitivity, and quantitative accuracy of systems biology genome-scale experiments. Results In this manuscript, we present the Drosophila melanogaster PeptideAtlas, a fly proteomics and genomics resource of unsurpassed depth. Based on peptide mass spectrometry data collected in our laboratory the portal allows querying fly protein data observed with respect to gene model confirmation and splice site verification as well as for the identification of proteotypic peptides suited for targeted proteomics studies. Additionally, the database provides consensus mass spectra for observed peptides along with qualitative and quantitative information about the number of observations of a particular peptide and the sample(s) in which it was observed. Conclusion PeptideAtlas is an open access database for the Drosophila community that has several features and applications that support (1) reduction of the complexity inherently associated with performing targeted proteomic studies, (2) designing and accelerating shotgun proteomics experiments, (3) confirming or questioning gene models, and (4) adjusting gene models such that they are in line with observed Drosophila peptides. While the database consists of proteomic data it is not required that the user is a proteomics expert. PMID:19210778

  4. Proteomics as the final step in the functional metagenomics study of antimicrobial resistance

    PubMed Central

    Fouhy, Fiona; Stanton, Catherine; Cotter, Paul D.; Hill, Colin; Walsh, Fiona

    2015-01-01

    The majority of clinically applied antimicrobial agents are derived from natural products generated by soil microorganisms and therefore resistance is likely to be ubiquitous in such environments. This is supported by the fact that numerous clinically important resistance mechanisms are encoded within the genomes of such bacteria. Advances in genomic sequencing have enabled the in silico identification of putative resistance genes present in these microorganisms. However, it is not sufficient to rely on the identification of putative resistance genes, we must also determine if the resultant proteins confer a resistant phenotype. This will require an analysis pipeline that extends from the extraction of environmental DNA, to the identification and analysis of potential resistance genes and their resultant proteins and phenotypes. This review focuses on the application of functional metagenomics and proteomics to study antimicrobial resistance in diverse environments. PMID:25784907

  5. Exhaustive proteome mining for functional MHC-I ligands.

    PubMed

    Koch, Christian P; Perna, Anna M; Weissmüller, Sabrina; Bauer, Stefanie; Pillong, Max; Baleeiro, Renato B; Reutlinger, Michael; Folkers, Gerd; Walden, Peter; Wrede, Paul; Hiss, Jan A; Waibler, Zoe; Schneider, Gisbert

    2013-09-20

    We present the development and application of a new machine-learning approach to exhaustively and reliably identify major histocompatibility complex class I (MHC-I) ligands among all 20(8) octapeptides and in genome-derived proteomes of Mus musculus , influenza A H3N8, and vesicular stomatitis virus (VSV). Focusing on murine H-2K(b), we identified potent octapeptides exhibiting direct MHC-I binding and stabilization on the surface of TAP-deficient RMA-S cells. Computationally identified VSV-derived peptides induced CD8(+) T-cell proliferation after VSV-infection of mice. The study demonstrates that high-level machine-learning models provide a unique access to rationally designed peptides and a promising approach toward "reverse vaccinology".

  6. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    PubMed Central

    Brooks, Brandon; Mueller, Ryan S.; Young, Jacque C.; Morowitz, Michael J.; Hettich, Robert L.; Banfield, Jillian F.

    2015-01-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13–21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential. PMID:26191049

  7. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    DOE PAGES

    Brooks, Brandon; Mueller, R. S.; Young, Jacque C.; ...

    2015-07-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13 21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains ofmore » Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.« less

  8. Evaluation of a genome-scale in silico metabolic model for Geobacter metallireducens by using proteomic data from a field biostimulation experiment.

    PubMed

    Fang, Yilin; Wilkins, Michael J; Yabusaki, Steven B; Lipton, Mary S; Long, Philip E

    2012-12-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens-specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment.

  9. Evaluation of a Genome-Scale In Silico Metabolic Model for Geobacter metallireducens by Using Proteomic Data from a Field Biostimulation Experiment

    PubMed Central

    Fang, Yilin; Yabusaki, Steven B.; Lipton, Mary S.; Long, Philip E.

    2012-01-01

    Accurately predicting the interactions between microbial metabolism and the physical subsurface environment is necessary to enhance subsurface energy development, soil and groundwater cleanup, and carbon management. This study was an initial attempt to confirm the metabolic functional roles within an in silico model using environmental proteomic data collected during field experiments. Shotgun global proteomics data collected during a subsurface biostimulation experiment were used to validate a genome-scale metabolic model of Geobacter metallireducens—specifically, the ability of the metabolic model to predict metal reduction, biomass yield, and growth rate under dynamic field conditions. The constraint-based in silico model of G. metallireducens relates an annotated genome sequence to the physiological functions with 697 reactions controlled by 747 enzyme-coding genes. Proteomic analysis showed that 180 of the 637 G. metallireducens proteins detected during the 2008 experiment were associated with specific metabolic reactions in the in silico model. When the field-calibrated Fe(III) terminal electron acceptor process reaction in a reactive transport model for the field experiments was replaced with the genome-scale model, the model predicted that the largest metabolic fluxes through the in silico model reactions generally correspond to the highest abundances of proteins that catalyze those reactions. Central metabolism predicted by the model agrees well with protein abundance profiles inferred from proteomic analysis. Model discrepancies with the proteomic data, such as the relatively low abundances of proteins associated with amino acid transport and metabolism, revealed pathways or flux constraints in the in silico model that could be updated to more accurately predict metabolic processes that occur in the subsurface environment. PMID:23042184

  10. Temporal changes in milk proteomes reveal developing milk functions.

    PubMed

    Gao, Xinliu; McMahon, Robert J; Woo, Jessica G; Davidson, Barbara S; Morrow, Ardythe L; Zhang, Qiang

    2012-07-06

    Human milk proteins provide essential nutrition for growth and development, and support a number of vital developmental processes in the neonate. A complete understanding of the possible functions of human milk proteins has been limited by incomplete knowledge of the human milk proteome. In this report, we have analyzed the proteomes of whey from human transitional and mature milk using ion-exchange and SDS-PAGE based protein fractionation methods. With a larger-than-normal sample loading approach, we are able to largely extend human milk proteome to 976 proteins. Among them, 152 proteins are found to render significant regulatory changes between transitional milk and mature milk. We further found that immunoglobulins sIgA and IgM are more abundant in transitional milk, whereas IgG is more abundant in mature milk, suggesting a transformation in defense mechanism from newborns to young infants. Additionally, we report a more comprehensive view of a complement system and associated regulatory apparatus in human milk, demonstrating the presence and function of a system similar to that found in the circulation but prevailed by alternative pathway in complement activation. Proteins involved in various aspects of carbohydrate metabolism are also described, revealing either a transition in milk functionality to accommodate carbohydrate-rich secretions as lactation progresses, or a potentially novel way of looking at the metabolic state of the mammary tissue. Lately, a number of extracellular matrix (ECM) proteins are found to be in higher abundance in transitional milk and may be relevant to the development of infants' gastrointestinal tract in early life. In contrast, the ECM protein fibronectin and several of the actin cytoskeleton proteins that it regulates are more abundant in mature milk, which may indicate the important functional role for milk in regulating reactive oxygen species.

  11. Microbial genomics, transcriptomics and proteomics: new discoveries in decomposition research using complementary methods.

    PubMed

    Baldrian, Petr; López-Mondéjar, Rubén

    2014-02-01

    Molecular methods for the analysis of biomolecules have undergone rapid technological development in the last decade. The advent of next-generation sequencing methods and improvements in instrumental resolution enabled the analysis of complex transcriptome, proteome and metabolome data, as well as a detailed annotation of microbial genomes. The mechanisms of decomposition by model fungi have been described in unprecedented detail by the combination of genome sequencing, transcriptomics and proteomics. The increasing number of available genomes for fungi and bacteria shows that the genetic potential for decomposition of organic matter is widespread among taxonomically diverse microbial taxa, while expression studies document the importance of the regulation of expression in decomposition efficiency. Importantly, high-throughput methods of nucleic acid analysis used for the analysis of metagenomes and metatranscriptomes indicate the high diversity of decomposer communities in natural habitats and their taxonomic composition. Today, the metaproteomics of natural habitats is of interest. In combination with advanced analytical techniques to explore the products of decomposition and the accumulation of information on the genomes of environmentally relevant microorganisms, advanced methods in microbial ecophysiology should increase our understanding of the complex processes of organic matter transformation.

  12. Exploring the “dark matter” of a mammalian proteome by protein structure and function modeling

    PubMed Central

    2013-01-01

    Background A growing body of evidence shows that gene products encoded by short open reading frames play key roles in numerous cellular processes. Yet, they are generally overlooked in genome assembly, escaping annotation because small protein-coding genes are difficult to predict computationally. Consequently, there are still a considerable number of small proteins whose functions are yet to be characterized. Results To address this issue, we apply a collection of structural bioinformatics algorithms to infer molecular function of putative small proteins from the mouse proteome. Specifically, we construct 1,743 confident structure models of small proteins, which reveal a significant structural diversity with a noticeably high helical content. A subsequent structure-based function annotation of small protein models exposes 178,745 putative protein-protein interactions with the remaining gene products in the mouse proteome, 1,100 potential binding sites for small organic molecules and 987 metal-binding signatures. Conclusions These results strongly indicate that many small proteins adopt three-dimensional structures and are fully functional, playing important roles in transcriptional regulation, cell signaling and metabolism. Data collected through this work is freely available to the academic community at http://www.brylinski.org/content/databases to support future studies oriented on elucidating the functions of hypothetical small proteins. PMID:24321360

  13. Gene Chips and Functional Genomics

    NASA Astrophysics Data System (ADS)

    Hamadeh, Hisham; Afshari, Cynthia

    2000-11-01

    These past few years of scientific discovery will undoubtedly be remembered as the "genomics era," the period in which biologists succeeded in enumerating the sequence of nucleotides making up all, or at least most, of human DNA. And while this achievement has been heralded as a technological feat equal to the moon landing, it is only the first of many advances in DNA technology. Scientists are now faced with the task of understanding the meaning of the DNA sequence. Specifically, they want to learn how the DNA code relates to protein function. An important tool in the study of "functional genomics," is the cDNA microarray—also known as the gene chip. Inspired by computer microchips, gene chips allow scientists to monitor the expression of hundreds, even thousands, of genes in a fraction of the time it used to take to monitor the expression of a single one. By altering the conditions under which a particular tissue expresses genes—say, by exposing it to toxins or growth factors—scientists can determine the suite of genes expressed in different situations and hence start to get a handle on the function of these genes. The authors discuss this important new technology and some of its practical applications.

  14. Yeast Proteome Analysis

    NASA Astrophysics Data System (ADS)

    Matros, Andrea; Mock, Hans-Peter

    Yeast organisms, and specifically Saccharomyces cerevisiae, have become model systems for many aspects in fundamental and applied research. Consistently, many papers have been published applying proteome techniques to study these organisms. The review will give an overview on the proteome research performed on yeast systems so far; however, due to the large number of publications, only selected reports can be cited neglecting many more interesting ones in the interest of space. The review will focus on research involving mass spectrom-etry as a basic proteome technique, although many more approaches are relevant for the functional characterization of proteins in the cell, e.g. the yeast two-hybrid system. We will provide an overview on yeasts as models in the context of pro-teome analysis, and explain the basic techniques currently applied in proteome approaches. The main part of the review will deal with a survey on the current status of proteomic studies in yeasts. In a first part of this chapter, we will deal with the currently available proteome maps of yeasts, and in the following part we will discuss studies dealing with fundamental aspects, but also mention proteome studies related to applied microbiology. Finally, we will envisage future perspectives of the proteome technology for studying yeasts, and draw major conclusion on the current status reached in this field of functional genomics.

  15. Genome- and proteome-wide screening strategies for antigen discovery and immunogen design.

    PubMed

    Schussek, Sophie; Trieu, Angela; Doolan, Denise L

    2014-01-01

    Infectious diseases remain a leading global cause of morbidity and mortality and there is an urgent need for effective approaches to develop vaccines, especially against complex pathogens. The availability of comprehensive genomic, proteomic and transcriptomic datasets has shifted the paradigm of vaccine development from microbiological to sequence-based approaches. However, how to effectively translate raw data into candidate vaccines is not yet obvious. Herein, we review cutting-edge technologies and screening strategies to mine genomic sequence information for state-of-the-art rational vaccine design, and highlight recent trends. Interdisciplinary approaches which cross the traditional boundaries of genomics, molecular biology, cell biology, immunology and computer science, and which prioritise antigens according to clinically relevant criteria, offer potential solutions to the widespread threat that complex pathogens pose to public health.

  16. Comparative Analysis of Predicted Plastid-Targeted Proteomes of Sequenced Higher Plant Genomes

    PubMed Central

    Schaeffer, Scott; Harper, Artemus; Raja, Rajani; Jaiswal, Pankaj; Dhingra, Amit

    2014-01-01

    Plastids are actively involved in numerous plant processes critical to growth, development and adaptation. They play a primary role in photosynthesis, pigment and monoterpene synthesis, gravity sensing, starch and fatty acid synthesis, as well as oil, and protein storage. We applied two complementary methods to analyze the recently published apple genome (Malus × domestica) to identify putative plastid-targeted proteins, the first using TargetP and the second using a custom workflow utilizing a set of predictive programs. Apple shares roughly 40% of its 10,492 putative plastid-targeted proteins with that of the Arabidopsis (Arabidopsis thaliana) plastid-targeted proteome as identified by the Chloroplast 2010 project and ∼57% of its entire proteome with Arabidopsis. This suggests that the plastid-targeted proteomes between apple and Arabidopsis are different, and interestingly alludes to the presence of differential targeting of homologs between the two species. Co-expression analysis of 2,224 genes encoding putative plastid-targeted apple proteins suggests that they play a role in plant developmental and intermediary metabolism. Further, an inter-specific comparison of Arabidopsis, Prunus persica (Peach), Malus × domestica (Apple), Populus trichocarpa (Black cottonwood), Fragaria vesca (Woodland Strawberry), Solanum lycopersicum (Tomato) and Vitis vinifera (Grapevine) also identified a large number of novel species-specific plastid-targeted proteins. This analysis also revealed the presence of alternatively targeted homologs across species. Two separate analyses revealed that a small subset of proteins, one representing 289 protein clusters and the other 737 unique protein sequences, are conserved between seven plastid-targeted angiosperm proteomes. Majority of the novel proteins were annotated to play roles in stress response, transport, catabolic processes, and cellular component organization. Our results suggest that the current state of knowledge regarding

  17. Genomic and Proteomic Analyses of Prdm5 Reveal Interactions with Insulator Binding Proteins in Embryonic Stem Cells

    PubMed Central

    Galli, Giorgio Giacomo; Carrara, Matteo; Francavilla, Chiara; Honnens de Lichtenberg, Kristian; Olsen, Jesper Velgaard; Calogero, Raffaele Adolfo

    2013-01-01

    PRDM proteins belong to the SET domain protein family, which is involved in the regulation of gene expression. Although few PRDM members possess histone methyltransferase activity, the molecular mechanisms by which the other members exert transcriptional regulation remain to be delineated. In this study, we find that Prdm5 is highly expressed in mouse embryonic stem (mES) cells and exploit this cellular system to characterize molecular functions of Prdm5. By combining proteomics and next-generation sequencing technologies, we identify Prdm5 interaction partners and genomic occupancy. We demonstrate that although Prdm5 is dispensable for mES cell maintenance, it directly targets genomic regions involved in early embryonic development and affects the expression of a subset of developmental regulators during cell differentiation. Importantly, Prdm5 interacts with Ctcf, cohesin, and TFIIIC and cooccupies genomic loci. In summary, our data indicate how Prdm5 modulates transcription by interacting with factors involved in genome organization in mouse embryonic stem cells. PMID:24043305

  18. Comparative Analysis of Chloroplast Genomes: Functional Annotation, Genome-Based Phylogeny, and Deduced Evolutionary Patterns

    PubMed Central

    Rivas, Javier De Las; Lozano, Juan Jose; Ortiz, Angel R.

    2002-01-01

    All protein sequences from 19 complete chloroplast genomes (cpDNA) have been studied using a new computational method able to analyze functional correlations among series of protein sequences contained in complete proteomes. First, all open reading frames (ORFs) from the cpDNAs, comprising a total of 2266 protein sequences, were compared against the 3168 proteins from Synechocystis PCC6803 complete genome to find functionally related orthologous proteins. Additionally, all cpDNA genomes were pairwise compared to find orthologous groups not present in cyanobacteria. Annotations in the cluster of othologous proteins database and CyanoBase were used as reference for the functional assignments. Following this protocol, new functional assignments were made for ORFs of unknown function and for ycfs (hypothetical chloroplast frames), which still lack a functional assignment. Using this information, a matrix of functional relationships was derived from profiles of the presence and/or absence of orthologous proteins; the matrix included 1837 proteins in 277 orthologous clusters. A factor analysis study of this matrix, followed by cluster analysis, allowed us to obtain accurate phylogenetic reconstructions and the detection of genes probably involved in speciation as phylogenetic correlates. Finally, by grouping common evolutionary patterns, we show that it is possible to determine functionally linked protein networks. This has allowed us to suggest putative associations for some unknown ORFs. PMID:11932241

  19. Integration of Ixodes ricinus genome sequencing with transcriptome and proteome annotation of the naïve midgut.

    PubMed

    Cramaro, Wibke J; Revets, Dominique; Hunewald, Oliver E; Sinner, Regina; Reye, Anna L; Muller, Claude P

    2015-10-28

    In Europe, Ixodes ricinus ticks are the most important vectors of diseases threatening humans, livestock, wildlife and companion animals. Nevertheless, genomic sequence information is missing and functional annotation of transcripts and proteins is limited. This lack of information is restricting studies of the vector and its interactions with pathogens and hosts. Here we present and integrate the first analysis of the I. ricinus genome with the transcriptome and proteome of the unfed I. ricinus midgut. Whole genome sequencing was performed on I. ricinus ticks and the sequences were de novo assembled. In parallel, I. ricinus ticks were dissected and the midgut transcriptome sequenced. Both datasets were integrated by transcript discovery analysis to identify putative genes and genome contigs were screened for homology. An alignment-based and a motif-search-based approach were combined for the annotation of the midgut transcriptome. Additionally, midgut proteins were identified and annotated by mass spectrometry with public databases and the in-house built transcriptome database as references and results were cross-validated. The de novo assembly of 1 billion DNA sequences to a reference genome of 393 Mb length provides an unprecedented insight into the I. ricinus genome. A homology search revealed sequences in the assembled genome contigs homologous to 89% of the I. scapularis genome scaffolds indicating coverage of most genome regions. We identified moreover 6,415 putative genes. More than 10,000 transcripts from naïve midgut were annotated with respect of predicted function and/or cellular localization. By combining an alignment-based with a motif-search-based annotation approach, we doubled the number of annotations throughout all functional categories. In addition, 574 gel spots were significantly identified by mass spectrometry (p<0.05) and 285 distinct proteins expressed in the naïve midgut were annotated functionally and/or for cellular localization. Our

  20. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes

    PubMed Central

    Paul, Sandip; Bag, Sumit K; Das, Sabyasachi; Harvill, Eric T; Dutta, Chitra

    2008-01-01

    Background Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation. Results Comparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history. Conclusion The generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive. PMID:18397532

  1. Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes.

    PubMed

    Paul, Sandip; Bag, Sumit K; Das, Sabyasachi; Harvill, Eric T; Dutta, Chitra

    2008-04-09

    Halophilic prokaryotes are adapted to thrive in extreme conditions of salinity. Identification and analysis of distinct macromolecular characteristics of halophiles provide insight into the factors responsible for their adaptation to high-salt environments. The current report presents an extensive and systematic comparative analysis of genome and proteome composition of halophilic and non-halophilic microorganisms, with a view to identify such macromolecular signatures of haloadaptation. Comparative analysis of the genomes and proteomes of halophiles and non-halophiles reveals some common trends in halophiles that transcend the boundary of phylogenetic relationship and the genomic GC-content of the species. At the protein level, halophilic species are characterized by low hydrophobicity, over-representation of acidic residues, especially Asp, under-representation of Cys, lower propensities for helix formation and higher propensities for coil structure. At the DNA level, the dinucleotide abundance profiles of halophilic genomes bear some common characteristics, which are quite distinct from those of non-halophiles, and hence may be regarded as specific genomic signatures for salt-adaptation. The synonymous codon usage in halophiles also exhibits similar patterns regardless of their long-term evolutionary history. The generality of molecular signatures for environmental adaptation of extreme salt-loving organisms, demonstrated in the present study, advocates the convergent evolution of halophilic species towards specific genome and amino acid composition, irrespective of their varying GC-bias and widely disparate taxonomic positions. The adapted features of halophiles seem to be related to physical principles governing DNA and protein stability, in response to the extreme environmental conditions under which they thrive.

  2. Quantitative reactivity profiling predicts functional cysteines in proteomes

    PubMed Central

    Weerapana, Eranthie; Wang, Chu; Simon, Gabriel M.; Richter, Florian; Khare, Sagar; Dillon, Myles B.D.; Bachovchin, Daniel A.; Mowen, Kerri; Baker, David; Cravatt, Benjamin F.

    2010-01-01

    Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here, we describe a proteomics method to quantitatively profile the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyperreactivity was a rare feature among cysteines and found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyperreactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and involved in iron-sulfur protein biogenesis. Finally, we demonstrate that quantitative reactivity profiling can also form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs. PMID:21085121

  3. Medulloblastoma Exosome Proteomics Yield Functional Roles for Extracellular Vesicles

    PubMed Central

    Epple, Laura M.; Griffiths, Steve G.; Dechkovskaia, Anjelika M.; Dusto, Nathaniel L.; White, Jason; Ouellette, Rodney J.; Anchordoquy, Thomas J.; Bemis, Lynne T.; Graner, Michael W.

    2012-01-01

    Medulloblastomas are the most prevalent malignant pediatric brain tumors. Survival for these patients has remained largely the same for approximately 20 years, and our therapies for these cancers cause significant health, cognitive, behavioral and developmental sequelae for those who survive the tumor and their treatments. We obviously need a better understanding of the biology of these tumors, particularly with regard to their migratory/invasive behaviors, their proliferative propensity, and their abilities to deflect immune responses. Exosomes, virus-sized membrane vesicles released extracellularly from cells after formation in, and transit thru, the endosomal pathway, may play roles in medulloblastoma pathogenesis but are as yet unstudied in this disease. Here we characterized exosomes from a medulloblastoma cell line with biochemical and proteomic analyses, and included characterization of patient serum exosomes. Further scrutiny of the proteomic data suggested functional properties of the exosomes that are relevant to medulloblastoma tumor biology, including their roles as proliferation stimulants, their activities as attractants for tumor cell migration, and their immune modulatory impacts on lymphocytes. Aspects of this held true for exosomes from other medulloblastoma cell lines as well. Additionally, pathway analyses suggested a possible role for the transcription factor hepatocyte nuclear factor 4 alpha (HNF4A); however, inhibition of the protein’s activity actually increased D283MED cell proliferation/clonogenecity, suggesting that HNF4A may act as a tumor suppressor in this cell line. Our work demonstrates that relevant functional properties of exosomes may be derived from appropriate proteomic analyses, which translate into mechanisms of tumor pathophysiology harbored in these extracellular vesicles. PMID:22848702

  4. Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components.

    PubMed

    van Herwijnen, Martijn J C; Zonneveld, Marijke I; Goerdayal, Soenita; Nolte-'t Hoen, Esther N M; Garssen, Johan; Stahl, Bernd; Maarten Altelaar, A F; Redegeld, Frank A; Wauben, Marca H M

    2016-11-01

    Breast milk contains several macromolecular components with distinctive functions, whereby milk fat globules and casein micelles mainly provide nutrition to the newborn, and whey contains molecules that can stimulate the newborn's developing immune system and gastrointestinal tract. Although extracellular vesicles (EV) have been identified in breast milk, their physiological function and composition has not been addressed in detail. EV are submicron sized vehicles released by cells for intercellular communication via selectively incorporated lipids, nucleic acids, and proteins. Because of the difficulty in separating EV from other milk components, an in-depth analysis of the proteome of human milk-derived EV is lacking. In this study, an extensive LC-MS/MS proteomic analysis was performed of EV that had been purified from breast milk of seven individual donors using a recently established, optimized density-gradient-based EV isolation protocol. A total of 1963 proteins were identified in milk-derived EV, including EV-associated proteins like CD9, Annexin A5, and Flotillin-1, with a remarkable overlap between the different donors. Interestingly, 198 of the identified proteins are not present in the human EV database Vesiclepedia, indicating that milk-derived EV harbor proteins not yet identified in EV of different origin. Similarly, the proteome of milk-derived EV was compared with that of other milk components. For this, data from 38 published milk proteomic studies were combined in order to construct the total milk proteome, which consists of 2698 unique proteins. Remarkably, 633 proteins identified in milk-derived EV have not yet been identified in human milk to date. Interestingly, these novel proteins include proteins involved in regulation of cell growth and controlling inflammatory signaling pathways, suggesting that milk-derived EVs could support the newborn's developing gastrointestinal tract and immune system. Overall, this study provides an expansion of

  5. Evolution, language and analogy in functional genomics

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  6. Evolution, language and analogy in functional genomics

    NASA Technical Reports Server (NTRS)

    Benner, S. A.; Gaucher, E. A.

    2001-01-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  7. Evolution, language and analogy in functional genomics.

    PubMed

    Benner, S A; Gaucher, E A

    2001-07-01

    Almost a century ago, Wittgenstein pointed out that theory in science is intricately connected to language. This connection is not a frequent topic in the genomics literature. But a case can be made that functional genomics is today hindered by the paradoxes that Wittgenstein identified. If this is true, until these paradoxes are recognized and addressed, functional genomics will continue to be limited in its ability to extrapolate information from genomic sequences.

  8. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification

    PubMed Central

    Bezerra, Ana R.; Simões, João; Lee, Wanseon; Rung, Johan; Weil, Tobias; Gut, Ivo G.; Gut, Marta; Bayés, Mónica; Rizzetto, Lisa; Cavalieri, Duccio; Giovannini, Gloria; Bozza, Silvia; Romani, Luigina; Kapushesky, Misha; Moura, Gabriela R.; Santos, Manuel A. S.

    2013-01-01

    Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research. PMID:23776239

  9. Reversion of a fungal genetic code alteration links proteome instability with genomic and phenotypic diversification.

    PubMed

    Bezerra, Ana R; Simões, João; Lee, Wanseon; Rung, Johan; Weil, Tobias; Gut, Ivo G; Gut, Marta; Bayés, Mónica; Rizzetto, Lisa; Cavalieri, Duccio; Giovannini, Gloria; Bozza, Silvia; Romani, Luigina; Kapushesky, Misha; Moura, Gabriela R; Santos, Manuel A S

    2013-07-02

    Many fungi restructured their proteomes through incorporation of serine (Ser) at thousands of protein sites coded by the leucine (Leu) CUG codon. How these fungi survived this potentially lethal genetic code alteration and its relevance for their biology are not understood. Interestingly, the human pathogen Candida albicans maintains variable Ser and Leu incorporation levels at CUG sites, suggesting that this atypical codon assignment flexibility provided an effective mechanism to alter the genetic code. To test this hypothesis, we have engineered C. albicans strains to misincorporate increasing levels of Leu at protein CUG sites. Tolerance to the misincorporations was very high, and one strain accommodated the complete reversion of CUG identity from Ser back to Leu. Increasing levels of Leu misincorporation decreased growth rate, but production of phenotypic diversity on a phenotypic array probing various metabolic networks, drug resistance, and host immune cell responses was impressive. Genome resequencing revealed an increasing number of genotype changes at polymorphic sites compared with the control strain, and 80% of Leu misincorporation resulted in complete loss of heterozygosity in a large region of chromosome V. The data unveil unanticipated links between gene translational fidelity, proteome instability and variability, genome diversification, and adaptive phenotypic diversity. They also explain the high heterozygosity of the C. albicans genome and open the door to produce microorganisms with genetic code alterations for basic and applied research.

  10. Prediction of vaccine candidates against Pseudomonas aeruginosa: An integrated genomics and proteomics approach.

    PubMed

    Rashid, Muhammad Ibrahim; Naz, Anam; Ali, Amjad; Andleeb, Saadia

    2017-07-01

    Pseudomonas aeruginosa is among top critical nosocomial infectious agents due to its persistent infections and tendency for acquiring drug resistance mechanisms. To date, there is no vaccine available for this pathogen. We attempted to exploit the genomic and proteomic information of P. aeruginosa though reverse-vaccinology approaches to unveil the prospective vaccine candidates. P. aeruginosa strain PAO1 genome was subjected to sequential prioritization approach following genomic, proteomics and structural analyses. Among, the predicted vaccine candidates: surface components of antibiotic efflux pumps (Q9HY88, PA2837), chaperone-usher pathway components (CupC2, CupB3), penicillin binding protein of bacterial cell wall (PBP1a/mrcA), extracellular component of Type 3 secretory system (PscC) and three uncharacterized secretory proteins (PA0629, PA2822, PA0978) were identified as potential candidates qualifying all the set criteria. These proteins were then analyzed for potential immunogenic surface exposed epitopes. These predicted epitopes may provide a basis for development of a reliable subunit vaccine against P. aeruginosa. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    DOE PAGES

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; ...

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experimentmore » (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.« less

  12. Low viscous separation media for genomics and proteomics analysis on microchip electrophoresis system.

    PubMed

    Jabasini, Mohammad; Murakami, Yuji; Kaji, Noritada; Tokeshi, Manabu; Baba, Yoshinobu

    2006-04-01

    Microchip electrophoresis has widely grown during the past few years, and it has showed a significant result as a strong separation tool for genomic as well as proteomic researches. To enhance and expand the role of microchip electrophoresis, several studies have been proposed especially for the low viscous separation media, which is an important factor for the success of microchip with its narrow separation channels. In this paper we show an overview for the done researches in the field of low viscous media developed for the use in microchip electrophoresis. For genomic separation studies polyhydroxy additives have been used enhance the separation of DNA at low polymer concentration of HPMC (Hydroxypropylmethyl cellulose) which could keep the viscosity low. Mixtures of poly(ethylene oxide) as well as Hydroxyporpyl cellulose have been successfully introduced for chip separation. Furthermore high molecular mass polyacrylamides at low concentrations have been studied for DNA separation. A mixture of polymer nanoparticle with conventional polymers could show a better resolution for DNA at low concentration of the polymer. For the proteomic field isoelectric focusing on chip has been well overviewed since it is the most viscous separation media which is well used for the protein separation. The different types of isoelectric focusing such as the ampholyte-free type, the thermal type as well as the ampholyte-depended type have been introduced in this paper. Isoelectric focusing on chip with its combination with sodium dodecyl sulfate (SDS) page or free solution could give a better separation. Several application for this low viscous separation medias for either genomic or proteomic could clearly show the importance of this field.

  13. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi*

    PubMed Central

    Atanasova, Lea; Druzhinina, Irina S.

    2010-01-01

    Conidial fungi or molds and mildews are widely used in modern biotechnology as producers of antibiotics and other secondary metabolites, industrially important enzymes, chemicals and food. They are also important pathogens of animals including humans and agricultural crops. These various applications and extremely versatile natural phenotypes have led to the constantly growing list of complete genomes which are now available. Functional genomics and proteomics widely exploit the genomic information to study the cell-wide impact of altered genes on the phenotype of an organism and its function. This allows for global analysis of the information flow from DNA to RNA to protein, but it is usually not sufficient for the description of the global phenotype of an organism. More recently, Phenotype MicroArray (PM) technology has been introduced as a tool to characterize the metabolism of a (wild) fungal strain or a mutant. In this article, we review the background of PM applications for fungi and the methodic requirements to obtain reliable results. We also report examples of the versatility of this tool. PMID:20205302

  14. Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes.

    PubMed

    Casimiro-Soriguer, Carlos S; Muñoz-Mérida, Antonio; Pérez-Pulido, Antonio J

    2017-06-01

    The current cheapening of next-generation sequencing has led to an enormous growth in the number of sequenced genomes and transcriptomes, allowing wet labs to get the sequences from their organisms of study. To make the most of these data, one of the first things that should be done is the functional annotation of the protein-coding genes. But it used to be a slow and tedious step that can involve the characterization of thousands of sequences. Sma3s is an accurate computational tool for annotating proteins in an unattended way. Now, we have developed a completely new version, which includes functionalities that will be of utility for fundamental and applied science. Currently, the results provide functional categories such as biological processes, which become useful for both characterizing particular sequence datasets and comparing results from different projects. But one of the most important implemented innovations is that it has now low computational requirements, and the complete annotation of a simple proteome or transcriptome usually takes around 24 hours in a personal computer. Sma3s has been tested with a large amount of complete proteomes and transcriptomes, and it has demonstrated its potential in health science and other specific projects. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics.

    PubMed

    Yadav, Dinesh K; Yadav, Neelam; Yadav, Sarika; Haque, Shafiul; Tuteja, Narendra

    2016-12-15

    Advancements in peptide fusion technologies to maximize the protein production has taken a big leap to fulfill the demands of post-genomics era targeting elucidation of structure/function of the proteome and its therapeutic applications, by over-expression in heterologous expression systems. Despite being most preferred protein expression system armed with variety of cardinal fusion tags, expression of the functionally active recombinant protein in E. coli remains plagued. The present review critically analyses the aptness of well-characterized fusion tags utilized for over-expression of recombinant proteins with improved solubility and their compatibility with downstream purification procedures. The combinatorial tandem affinity strategies have shown to provide more versatile options. Solubility decreasing fusion tags have proved to facilitate the overproduction of antimicrobial peptides. Efficient removal of fusion tags prior to final usage is of utmost importance and has been summarized discussing the efficiency of various enzymatic and chemical methods of tag removal. Unfortunately, no single fusion tag works as a magic bullet to completely fulfill the requirements of protein expression and purification in active form. The information provided might help in selection and development of a successful protocol for efficient recombinant protein production for functional proteomics. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. After genomics, what proteomics tools could help us understand the antimicrobial resistance of Escherichia coli?

    PubMed

    Radhouani, Hajer; Pinto, Luís; Poeta, Patrícia; Igrejas, Gilberto

    2012-06-06

    Proteomic approaches have been considerably improved during the past decade and have been used to investigate the differences in protein expression profiles of cells grown under a broad spectrum of growth conditions and with different stress factors including antibiotics. In Europe, the most significant disease threat remains the presence of microorganisms that have become resistant to antimicrobials and so it is important that different scientific tools are combined to achieve the largest amount of knowledge in this area of expertise. The emergence and spread of the antibiotic-resistant Gram-negative pathogens, such as Escherichia coli, can lead to serious problem public health in humans. E. coli, a very well described prokaryote, has served as a model organism for several biological and biotechnological studies increasingly so since the completion of the E. coli genome-sequencing project. The purpose of this review is to present an overview of the different proteomic approaches to antimicrobial-resistant E. coli that will be helpful to obtain a better knowledge of the antibiotic-resistant mechanism(s). This can also aid to understand the molecular determinants involved with pathogenesis, which is essential for the development of effective strategies to combat infection and to reveal new therapeutic targets. This article is part of a Special Issue entitled: Proteomics: The clinical link. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu(2+) Treatment.

    PubMed

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu(2+.) Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain.

  18. Comparative Analysis of Genomics and Proteomics in the New Isolated Bacillus thuringiensis X022 Revealed the Metabolic Regulation Mechanism of Carbon Flux Following Cu2+ Treatment

    PubMed Central

    Quan, Meifang; Xie, Junyan; Liu, Xuemei; Li, Yang; Rang, Jie; Zhang, Tong; Zhou, Fengjuan; Xia, Liqiu; Hu, Shengbiao; Sun, Yunjun; Ding, Xuezhi

    2016-01-01

    Bacillus thuringiensis (Bt) X022 is a novel strain isolated from soil in China, and showed strong insecticidal activity against several Lepidopteran pests. In this work, we performed whole genome sequencing of this Bt strain using the next-generation sequencing technology, and further conducted a comparative analysis with the proteomics data of the specific spore-release period based on LC-MS/MS approach. The Bt X022 genome consisted of one circular chromosomal DNA and seven plasmids, which were further functionally annotated using the RAST server. Comparative analysis of insecticidal substances showed that X022 contained genes coding for three Cry proteins (Cry1Ac, Cry1Ia and Cry2Ab) and a vegetative insecticidal protein (Vip3A). However, three insecticidal crystal proteins (ICPs) (Cry1Ca, Cry1Ac and Cry1Da) were detected by proteomics in the spore-release period. Moreover, a putative biosynthetic gene cluster and the metabolic pathway for poly-β-hydroxybutyrate in Bt X022 were deduced based on the comparative analysis of genomic and proteomic data, which revealed the metabolic regulation mechanism of carbon flux correlated with increased production of ICPs caused by Cu2+. Hence, these results provided a deeper understanding of the genetic background and protein expression profile of Bt X022. This study established a foundation for directed genetic modification and further application of this new isolated Bt strain. PMID:27303381

  19. Genome and proteome analysis of Pseudomonas chloritidismutans AW-1(T) that grows on n-decane with chlorate or oxygen as electron acceptor.

    PubMed

    Mehboob, Farrakh; Oosterkamp, Margreet J; Koehorst, Jasper J; Farrakh, Sumaira; Veuskens, Teun; Plugge, Caroline M; Boeren, Sjef; de Vos, Willem M; Schraa, Gosse; Stams, Alfons J M; Schaap, Peter J

    2016-10-01

    Growth of Pseudomonas chloritidismutans AW-1(T) on C7 to C12 n-alkanes with oxygen or chlorate as electron acceptor was studied by genome and proteome analysis. Whole genome shotgun sequencing resulted in a 5 Mbp assembled sequence with a G + C content of 62.5%. The automatic annotation identified 4767 protein-encoding genes and a putative function could be assigned to almost 80% of the predicted proteins. The distinct phylogenetic position of P. chloritidismutans AW-1(T) within the Pseudomonas stutzeri cluster became clear by comparison of average nucleotide identity values of sequenced genomes. Analysis of the proteome of P. chloritidismutans AW-1(T) showed the versatility of this bacterium to adapt to aerobic and anaerobic growth conditions with acetate or n-decane as substrates. All enzymes involved in the alkane oxidation pathway were identified. An alkane monooxygenase was detected in n-decane-grown cells, but not in acetate-grown cells. The enzyme was found when grown in the presence of oxygen or chlorate, indicating that under both conditions an oxygenase-mediated pathway is employed for alkane degradation. Proteomic and biochemical data also showed that both chlorate reductase and chlorite dismutase are constitutively present, but most abundant under chlorate-reducing conditions. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. The Discovery of Novel Genomic, Transcriptomic, and Proteomic Biomarkers in Cardiovascular and Peripheral Vascular Disease: The State of the Art

    PubMed Central

    de Franciscis, Stefano; Metzinger, Laurent; Serra, Raffaele

    2016-01-01

    Cardiovascular disease (CD) and peripheral vascular disease (PVD) are leading causes of mortality and morbidity in western countries and also responsible of a huge burden in terms of disability, functional decline, and healthcare costs. Biomarkers are measurable biological elements that reflect particular physiological or pathological states or predisposition towards diseases and they are currently widely studied in medicine and especially in CD. In this context, biomarkers can also be used to assess the severity or the evolution of several diseases, as well as the effectiveness of particular therapies. Genomics, transcriptomics, and proteomics have opened new windows on disease phenomena and may permit in the next future an effective development of novel diagnostic and prognostic medicine in order to better prevent or treat CD. This review will consider the current evidence of novel biomarkers with clear implications in the improvement of risk assessment, prevention strategies, and medical decision making in the field of CD. PMID:27298828

  1. Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function*

    PubMed Central

    Dai, Shaojun; Chen, Sixue

    2012-01-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function. PMID:22982375

  2. Single-cell-type proteomics: toward a holistic understanding of plant function.

    PubMed

    Dai, Shaojun; Chen, Sixue

    2012-12-01

    Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.

  3. Genome and proteome analysis of phage E3 infecting the soil-borne actinomycete Rhodococcus equi.

    PubMed

    Salifu, Samson P; Valero-Rello, Ana; Campbell, Samantha A; Inglis, Neil F; Scortti, Mariela; Foley, Sophie; Vázquez-Boland, José A

    2013-02-01

    We report on the characterization and genomic analysis of bacteriophage E3 isolated from soil and propagating in Rhodococcus equi strains. Phage E3 has a circular genome of 142 563 bp and is the first Myoviridae reported for the genus Rhodococcus and for a non-mycobacterial actinomycete. Phylogenetic analyses placed E3 in a distinct Myoviridae clade together with Mycobacterium phages Bxz1 and Myrna. The highly syntenic genomes of this myoviridal group comprise vertically evolving core phage modules flanked by hyperplastic regions specific to each phage and rich in horizontally acquired DNA. The hyperplastic regions contain numerous tRNA genes in the mycobacteriophages which are absent in E3, possibly reflecting bacterial host-specific translation-related phage fitness constraints associated with rate-limiting tRNAs. A structural proteome analysis identified 28 E3 polypeptides, including 15 not previously known to be virion-associated proteins. The E3 genome and comparative analysis provide insight into short-term genome evolution and adaptive plasticity in tailed phages from the environmental microbiome. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Exploration of Genomic, Proteomic, and Histopathological Image Data Integration Methods for Clinical Prediction

    PubMed Central

    Poruthoor, A.; Phan, J.H.; Kothari, S.; Wang, May D.

    2016-01-01

    The emergence of large multi-platform and multi-scale data repositories in biomedicine has enabled the exploration of data integration for holistic decision making. In this research, we investigate multi-modal genomic, proteomic, and histopathological image data integration for prediction of ovarian cancer clinical endpoints in The Cancer Genome Atlas (TCGA). Specifically, we study two data integration techniques, simple data concatenation and ensemble classification, to determine whether they can improve prediction of ovarian cancer grade or patient survival. Results indicate that integration via ensemble classification is more effective than simple data concatenation. We also highlight several key factors impacting data integration outcome such as predictability of endpoint, class prevalence, and unbalanced representation of features from different data modalities.

  5. Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation.

    PubMed

    Tebbe, Andreas; Klein, Christian; Bisle, Birgit; Siedler, Frank; Scheffer, Beatrix; Garcia-Rizo, Carolina; Wolfertz, Jan; Hickmann, Volker; Pfeiffer, Friedhelm; Oesterhelt, Dieter

    2005-01-01

    The halophilic archaeon Halobacterium salinarum (strain R1, DSM 671) contains 2784 protein-coding genes as derived from the genome sequence. The cytosolic proteome containing 2042 proteins was separated by two-dimensional gel electrophoresis (2-DE) and systematically analyzed by a semi-automatic procedure. A reference map was established taking into account the narrow isoelectric point (pI) distribution of halophilic proteins between 3.5 and 5.5. Proteins were separated on overlapping gels covering the essential areas of pI and molecular weight. Every silver-stained spot was analyzed resulting in 661 identified proteins out of about 1800 different protein spots using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) peptide mass fingerprinting (PMF). There were 94 proteins that were found in multiple spots, indicating post-translational modification. An additional 141 soluble proteins were identified on 2-D gels not corresponding to the reference map. Thus about 40% of the cytosolic proteome was identified. In addition to the 2784 protein-coding genes, the H. salinarum genome contains more than 6000 spurious open reading frames longer than 100 codons. Proteomic information permitted an improvement in genome annotation by validating and correcting gene assignments. The correlation between theoretical pI and gel position is exceedingly good and was used as a tool to improve start codon assignments. The fraction of identified chromosomal proteins was much higher than that of those encoded on the plasmids. In combination with analysis of the GC content this observation permitted an unambiguous identification of an episomal insert of 60 kbp ("AT-rich island") in the chromosome, as well as a 70 kbp region from the chromosome that has integrated into one of the megaplasmids and carries a series of essential genes. About 63% of the chromosomally encoded proteins larger than 25 kDa were identified, proving the efficacy of 2-DE MALDI

  6. Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation

    PubMed Central

    Feng, Yun; Li, Xiaomin; Zou, Chenggang; Xu, Jianping; Ren, Yan; Mi, Qili; Wu, Junli; Liu, Shuqun; Liu, Yu; Huang, Xiaowei; Wang, Haiyan; Niu, Xuemei; Li, Juan; Liang, Lianming; Luo, Yanlu; Ji, Kaifang; Zhou, Wei; Yu, Zefen; Li, Guohong; Liu, Yajun; Li, Lei; Qiao, Min; Feng, Lu; Zhang, Ke-Qin

    2011-01-01

    Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions. PMID:21909256

  7. Integration and Querying of Genomic and Proteomic Semantic Annotations for Biomedical Knowledge Extraction.

    PubMed

    Masseroli, Marco; Canakoglu, Arif; Ceri, Stefano

    2016-01-01

    Understanding complex biological phenomena involves answering complex biomedical questions on multiple biomolecular information simultaneously, which are expressed through multiple genomic and proteomic semantic annotations scattered in many distributed and heterogeneous data sources; such heterogeneity and dispersion hamper the biologists' ability of asking global queries and performing global evaluations. To overcome this problem, we developed a software architecture to create and maintain a Genomic and Proteomic Knowledge Base (GPKB), which integrates several of the most relevant sources of such dispersed information (including Entrez Gene, UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc, KEGG, Reactome, and OMIM). Our solution is general, as it uses a flexible, modular, and multilevel global data schema based on abstraction and generalization of integrated data features, and a set of automatic procedures for easing data integration and maintenance, also when the integrated data sources evolve in data content, structure, and number. These procedures also assure consistency, quality, and provenance tracking of all integrated data, and perform the semantic closure of the hierarchical relationships of the integrated biomedical ontologies. At http://www.bioinformatics.deib.polimi.it/GPKB/, a Web interface allows graphical easy composition of queries, although complex, on the knowledge base, supporting also semantic query expansion and comprehensive explorative search of the integrated data to better sustain biomedical knowledge extraction.

  8. The genome and proteome of Serratia bacteriophage η which forms unstable lysogens

    PubMed Central

    2014-01-01

    Background Serratia marcescens phage η is a temperate unclassified member of the Siphoviridae which had been reported as containing hypermodified guanine residues. Methods The DNA was characterized by enzymatic digestion followed by HPLC analysis of the nucleoside composition, and by DNA sequencing and proteomic analysis. Its ability to form stable lysogens and integrate was also investigated. Results Enzymatic digestion and HPLC analysis revealed phage η DNA did not contain modified bases. The genome sequence of this virus, determined using pyrosequencing, is 42,724 nucleotides in length with a mol% GC of 49.9 and is circularly permuted. Sixty-nine putative CDSs were identified of which 19 encode novel proteins. While seven close genetic relatives were identified, they shared sequence similarity with only genes 40 to 69 of the phage η genome, while gp1 to gp39 shared no conserved relationship. The structural proteome, determined by SDS-PAGE and mass spectrometry, revealed seven unique proteins. This phage forms very unstable lysogens with its host S. marcescens. PMID:24433577

  9. Bioinformatics and Data Mining Studies in Oral Genomics and Proteomics: New Trends and Challenges

    PubMed Central

    Giacomelli, Luca; Covani, Ugo

    2010-01-01

    Genomics and proteomics have promised to change the practice of dentistry and oral pathology, allowing the identification and the characterization of risk factors and therapeutic targets at a molecular level. However, mass-scale molecular genomics and proteomics suffer from some pitfalls: gene/protein expression are significant only if inserted in a detailed network of molecular pathways and gene/gene, gene/protein and protein/protein interactions. The proper analysis of these complex pictures requires the contribution of theoretical disciplines, like bioinformatics and data mining. In particular, data-mining of existing information could become a strong starting point to formulate new targeted hypotheses and to plan ad hoc experimentation. In this review, advantages and disadvantages of the above-mentioned disciplines and their potential in oral pathology are discussed. The leader gene approach is a new data mining algorithm, recently applied to some oral diseases and their correlation with systemic conditions. The preliminary results of the application of the leader gene approach to the correlation between periodontitis and heart ischemia at a molecular level are presented for the first time. PMID:20871759

  10. Streptococcus iniae SF1: Complete Genome Sequence, Proteomic Profile, and Immunoprotective Antigens

    PubMed Central

    Zhang, Bao-cun; Zhang, Jian; Sun, Li

    2014-01-01

    Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control. PMID:24621602

  11. Cardiovascular translational medicine (III). Genomics and proteomics in heart failure research.

    PubMed

    González, Arantxa; López, Begoña; Beaumont, Javier; Ravassa, Susana; Arias, Teresa; Hermida, Nerea; Zudaire, Amaia; Díez, Javier

    2009-03-01

    Heart failure is a complex syndrome and is one of the main causes of morbidity and mortality in developed countries. Despite considerable research effort in recent years, heart failure prevention and treatment strategies still suffer significant limitations. New theoretical and technical approaches are, therefore, required. It is in this context that the "omic" sciences have a role to play in heart failure. The incorporation of "omic" methodologies into the study of human disease has substantially changed biological approaches to disease and has given an enormous impetus to the search for new disease mechanisms, as well as for novel biomarkers and therapeutic targets. The application of genomics, proteomics and metabonomics to heart failure research could increase our understanding of the origin and development of the different processes contributing to this syndrome, thereby enabling the establishment of specific diagnostic profiles and therapeutic templates that could help improve the poor prognosis associated with heart failure. This brief review contains a short description of the fundamental principles of the "omic" sciences and an evaluation of how these new techniques are currently contributing to research into human heart failure. The focus is mainly on the analysis of gene expression microarrays in the field of genomics and on studies using two-dimensional electrophoresis with mass spectrometry in the area of proteomics.

  12. Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat thymocytes.

    PubMed

    Billing, Anja M; Revets, Dominique; Hoffmann, Céline; Turner, Jonathan D; Vernocchi, Sara; Muller, Claude P

    2012-04-03

    In order to investigate rapid non-genomic effects of acute stress, rats were restrained for 15 min which was sufficient to activate the hypothalamus-pituitary-adrenal (HPA) axis but too short to induce massive genomic effects of cortisol. Subcellular fractions of thymocytes (cytosol, nucleus, membrane) were investigated using quantitative 2D DIGE with MALDI-TOF/TOF mass spectrometry. In total, 108 proteins with differential subcellular localizations were identified. The specificity of the changes induced by psychological stress was reflected by the prominent modulation of proteins involved in the HPA and sympathoadrenal medullar (SAM) axis such as HMGB1 and NHERF1. Intracellular trafficking was characterized by a dominant protein exodus from the cytosol. Real translocation was observed for 9 proteins with 6 that shuttled from the cytosol to the nucleus (HYOU1, HNRPF, HNRPC, STRAP, PSA1, PPA1) and 3 from the nucleus to the cytosol (HMGB1, NHERF1, PSMA1). Proteins showing subcellular reshuffling were largely involved in transcription and translation processes (39 of 108) with a significant enrichment of RNA splicing factors. Bioinformatics analysis revealed significant enrichment for protein kinase A and 14-3-3 signaling, probably reflecting real non-genomic effects. This is the first study investigating rapid effects of stress-induced HPA activation in vivo at the proteome level. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Comparative Proteomics Reveals a Significant Bias Toward Alternative Protein Isoforms with Conserved Structure and Function

    PubMed Central

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L.

    2012-01-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of “novel” and “putative” protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is

  14. Comparative proteomics reveals a significant bias toward alternative protein isoforms with conserved structure and function.

    PubMed

    Ezkurdia, Iakes; del Pozo, Angela; Frankish, Adam; Rodriguez, Jose Manuel; Harrow, Jennifer; Ashman, Keith; Valencia, Alfonso; Tress, Michael L

    2012-09-01

    Advances in high-throughput mass spectrometry are making proteomics an increasingly important tool in genome annotation projects. Peptides detected in mass spectrometry experiments can be used to validate gene models and verify the translation of putative coding sequences (CDSs). Here, we have identified peptides that cover 35% of the genes annotated by the GENCODE consortium for the human genome as part of a comprehensive analysis of experimental spectra from two large publicly available mass spectrometry databases. We detected the translation to protein of "novel" and "putative" protein-coding transcripts as well as transcripts annotated as pseudogenes and nonsense-mediated decay targets. We provide a detailed overview of the population of alternatively spliced protein isoforms that are detectable by peptide identification methods. We found that 150 genes expressed multiple alternative protein isoforms. This constitutes the largest set of reliably confirmed alternatively spliced proteins yet discovered. Three groups of genes were highly overrepresented. We detected alternative isoforms for 10 of the 25 possible heterogeneous nuclear ribonucleoproteins, proteins with a key role in the splicing process. Alternative isoforms generated from interchangeable homologous exons and from short indels were also significantly enriched, both in human experiments and in parallel analyses of mouse and Drosophila proteomics experiments. Our results show that a surprisingly high proportion (almost 25%) of the detected alternative isoforms are only subtly different from their constitutive counterparts. Many of the alternative splicing events that give rise to these alternative isoforms are conserved in mouse. It was striking that very few of these conserved splicing events broke Pfam functional domains or would damage globular protein structures. This evidence of a strong bias toward subtle differences in CDS and likely conserved cellular function and structure is remarkable and

  15. Open chromatin reveals the functional maize genome

    PubMed Central

    Rodgers-Melnick, Eli; Vera, Daniel L.; Bass, Hank W.

    2016-01-01

    Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome. PMID:27185945

  16. Biophotonics applied to proteomics.

    PubMed

    Faupel, Michel; Bonenfant, Débora; Schindler, Patrick; Bertrand, Eric; Mueller, Dieter; Stoeckli, Markus; Bitsch, Francis; Rohner, Tatiana; Staab, Dieter; Van Oostrum, Jan

    2007-01-01

    Since the completion of the human genome sequencing, our understanding of gene and protein function and their involvement in physiopathological states has increased dramatically, partly due to technological developments in photonics. Photonics is a very active area where new developments occur on a weekly basis, while established tools are adapted to fulfill the needs of other disciplines like genomics and proteomics. Biophotonics emerged at the interface of photonics and biology as a very straightforward and efficient approach to observe and manipulate living systems. In this chapter, we review the current applications of photonics and imaging to proteomics from 2D gels analysis to molecular imaging.

  17. Community Genomic and Proteomic Analyses of Chemoautotrophic Iron-Oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) Bacteria in Acid Mine Drainage Biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  18. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing "Leptospirillum rubarum" (Group II) and Leptospirillum ferrodiazotrophum (Group III) in acid mine drainage biofilms

    SciTech Connect

    Goltsman, Daniela; Denef, Vincent; Singer, Steven; Verberkmoes, Nathan C; Lefsrud, Mark G; Mueller, Ryan; Dick, Gregory J.; Sun, Christine; Wheeler, Korin; Zelma, Adam; Baker, Brett J.; Hauser, Loren John; Land, Miriam L; Shah, Manesh B; Thelen, Michael P.; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2009-01-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum Groups II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, CA acid mine drainage (AMD) biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum Groups II and III, respectively and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and > 60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid encodes conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacteria have genes for community-essential functions, including carbon fixation, biosynthesis of vitamins, fatty acids and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum Group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum Group II uses a methyl-dependent and Leptospirillum Group III a methyl-independent response pathway. Although only Leptospirillum Group III can fix nitrogen, these proteins were not identified by proteomics. Abundances of core proteins are similar in all communities, but abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum Groups II and III.

  19. Community genomic and proteomic analyses of chemoautotrophic iron-oxidizing "Leptospirillum rubarum" (Group II) and "Leptospirillum ferrodiazotrophum" (Group III) bacteria in acid mine drainage biofilms.

    PubMed

    Goltsman, Daniela S Aliaga; Denef, Vincent J; Singer, Steven W; VerBerkmoes, Nathan C; Lefsrud, Mark; Mueller, Ryan S; Dick, Gregory J; Sun, Christine L; Wheeler, Korin E; Zemla, Adam; Baker, Brett J; Hauser, Loren; Land, Miriam; Shah, Manesh B; Thelen, Michael P; Hettich, Robert L; Banfield, Jillian F

    2009-07-01

    We analyzed near-complete population (composite) genomic sequences for coexisting acidophilic iron-oxidizing Leptospirillum group II and III bacteria (phylum Nitrospirae) and an extrachromosomal plasmid from a Richmond Mine, Iron Mountain, CA, acid mine drainage biofilm. Community proteomic analysis of the genomically characterized sample and two other biofilms identified 64.6% and 44.9% of the predicted proteins of Leptospirillum groups II and III, respectively, and 20% of the predicted plasmid proteins. The bacteria share 92% 16S rRNA gene sequence identity and >60% of their genes, including integrated plasmid-like regions. The extrachromosomal plasmid carries conjugation genes with detectable sequence similarity to genes in the integrated conjugative plasmid, but only those on the extrachromosomal element were identified by proteomics. Both bacterial groups have genes for community-essential functions, including carbon fixation and biosynthesis of vitamins, fatty acids, and biopolymers (including cellulose); proteomic analyses reveal these activities. Both Leptospirillum types have multiple pathways for osmotic protection. Although both are motile, signal transduction and methyl-accepting chemotaxis proteins are more abundant in Leptospirillum group III, consistent with its distribution in gradients within biofilms. Interestingly, Leptospirillum group II uses a methyl-dependent and Leptospirillum group III a methyl-independent response pathway. Although only Leptospirillum group III can fix nitrogen, these proteins were not identified by proteomics. The abundances of core proteins are similar in all communities, but the abundance levels of unique and shared proteins of unknown function vary. Some proteins unique to one organism were highly expressed and may be key to the functional and ecological differentiation of Leptospirillum groups II and III.

  20. A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation

    PubMed Central

    Shao, Wenguang; Zhang, Min; Lam, Henry; Lau, Stanley C. K.

    2015-01-01

    Shotgun proteomics is an emerging tool for bacterial identification and differentiation. However, the identification of the mass spectra of peptides to genome-derived peptide sequences remains a key issue that limits the use of shotgun proteomics to bacteria with genome sequences available. In this proof-of-concept study, we report a novel bacterial fingerprinting method that enjoys the resolving power and accuracy of mass spectrometry without the burden of peptide identification (i.e. genome sequence-independent). This method uses a similarity-clustering algorithm to search for mass spectra that are derived from the same peptide and merge them into a unique consensus spectrum as the basis to generate proteomic fingerprints of bacterial isolates. In comparison to a traditional peptide identification-based shotgun proteomics workflow and a PCR-based DNA fingerprinting method targeting the repetitive extragenic palindromes elements in bacterial genomes, the novel method generated fingerprints that were richer in information and more discriminative in differentiating E. coli isolates by their animal sources. The novel method is readily deployable to any cultivable bacteria, and may be used for several fields of study such as environmental microbiology, applied microbiology, and clinical microbiology. PMID:26395646

  1. A peptide identification-free, genome sequence-independent shotgun proteomics workflow for strain-level bacterial differentiation.

    PubMed

    Shao, Wenguang; Zhang, Min; Lam, Henry; Lau, Stanley C K

    2015-09-23

    Shotgun proteomics is an emerging tool for bacterial identification and differentiation. However, the identification of the mass spectra of peptides to genome-derived peptide sequences remains a key issue that limits the use of shotgun proteomics to bacteria with genome sequences available. In this proof-of-concept study, we report a novel bacterial fingerprinting method that enjoys the resolving power and accuracy of mass spectrometry without the burden of peptide identification (i.e. genome sequence-independent). This method uses a similarity-clustering algorithm to search for mass spectra that are derived from the same peptide and merge them into a unique consensus spectrum as the basis to generate proteomic fingerprints of bacterial isolates. In comparison to a traditional peptide identification-based shotgun proteomics workflow and a PCR-based DNA fingerprinting method targeting the repetitive extragenic palindromes elements in bacterial genomes, the novel method generated fingerprints that were richer in information and more discriminative in differentiating E. coli isolates by their animal sources. The novel method is readily deployable to any cultivable bacteria, and may be used for several fields of study such as environmental microbiology, applied microbiology, and clinical microbiology.

  2. Whole genome/proteome based phylogeny reconstruction for prokaryotes using higher order Markov model and chaos game representation.

    PubMed

    Yang, Wei-Feng; Yu, Zu-Guo; Anh, Vo

    2016-03-01

    Traditional methods for sequence comparison and phylogeny reconstruction rely on pair wise and multiple sequence alignments. But alignment could not be directly applied to whole genome/proteome comparison and phylogenomic studies due to their high computational complexity. Hence alignment-free methods became popular in recent years. Here we propose a fast alignment-free method for whole genome/proteome comparison and phylogeny reconstruction using higher order Markov model and chaos game representation. In the present method, we use the transition matrices of higher order Markov models to characterize amino acid or DNA sequences for their comparison. The order of the Markov model is uniquely identified by maximizing the average Shannon entropy of conditional probability distributions. Using one-dimensional chaos game representation and linked list, this method can reduce large memory and time consumption which is due to the large-scale conditional probability distributions. To illustrate the effectiveness of our method, we employ it for fast phylogeny reconstruction based on genome/proteome sequences of two species data sets used in previous published papers. Our results demonstrate that the present method is useful and efficient. The source codes for our algorithm to get the distance matrix and genome/proteome sequences can be downloaded from ftp://121.199.20.25/. The software Phylip and EvolView we used to construct phylogenetic trees can be referred from their websites. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. CodaChrome: a tool for the visualization of proteome conservation across all fully sequenced bacterial genomes

    PubMed Central

    2014-01-01

    Background The relationships between bacterial genomes are complicated by rampant horizontal gene transfer, varied selection pressures, acquisition of new genes, loss of genes, and divergence of genes, even in closely related lineages. As more and more bacterial genomes are sequenced, organizing and interpreting the incredible amount of relational information that connects them becomes increasingly difficult. Results We have developed CodaChrome (http://www.sourceforge.com/p/codachrome), a one-versus-all proteome comparison tool that allows the user to visually investigate the relationship between a bacterial proteome of interest and the proteomes encoded by every other bacterial genome recorded in GenBank in a massive interactive heat map. This tool has allowed us to rapidly identify the most highly conserved proteins encoded in the bacterial pan-genome, fast-clock genes useful for subtyping of bacterial species, the evolutionary history of an indel in the Sphingobium lineage, and an example of horizontal gene transfer from a member of the genus Enterococcus to a recent ancestor of Helicobacter pylori. Conclusion CodaChrome is a user-friendly and powerful tool for simultaneously visualizing relationships between thousands of proteomes. PMID:24460813

  4. Resources for Functional Genomics Studies in Drosophila melanogaster

    PubMed Central

    Mohr, Stephanie E.; Hu, Yanhui; Kim, Kevin; Housden, Benjamin E.; Perrimon, Norbert

    2014-01-01

    Drosophila melanogaster has become a system of choice for functional genomic studies. Many resources, including online databases and software tools, are now available to support design or identification of relevant fly stocks and reagents or analysis and mining of existing functional genomic, transcriptomic, proteomic, etc. datasets. These include large community collections of fly stocks and plasmid clones, “meta” information sites like FlyBase and FlyMine, and an increasing number of more specialized reagents, databases, and online tools. Here, we introduce key resources useful to plan large-scale functional genomics studies in Drosophila and to analyze, integrate, and mine the results of those studies in ways that facilitate identification of highest-confidence results and generation of new hypotheses. We also discuss ways in which existing resources can be used and might be improved and suggest a few areas of future development that would further support large- and small-scale studies in Drosophila and facilitate use of Drosophila information by the research community more generally. PMID:24653003

  5. Applying functional genomics research to the study of pig reproduction.

    PubMed

    Pomp, D; Caetano, A R; Bertani, G R; Gladney, C D; Johnson, R K

    2001-01-01

    Functional genomics is an experimental approach that incorporates genome-wide or system-wide experimentation, expanding the scope of biological investigation from studying single genes to studying potentially all genes at once in a systematic manner. This technology is highly appealing because of its high throughput and relatively low cost. Furthermore, analysis of gene expression using microarrays is likely to be more biologically relevant than the conventional paradigm of reductionism, because it has the potential to uncover new biological connections between genes and biochemical pathways. However, functional genomics is still in its infancy, especially with regard to the study of pig reproduction. Currently, efforts are centred on developing the necessary resources to enable high throughput evaluation and comparison of gene expression. However, it is clear that in the near future functional genomics will be applied on a large scale to study the biology and physiology of reproduction in pigs, and to understand better the complex nature of genetic control over polygenic characteristics, such as ovulation rate and litter size. We can look forward to generating a significant amount of new data on differences in gene expression between genotypes, treatments, or at various temporal and spatial coordinates within a variety of reproductively relevant systems. Along with this capability will be the challenge of collating, analysing and interpreting datasets that are orders of magnitude more extensive and complex than those currently used. Furthermore, integration of functional genomics with traditional genetic approaches and with detailed analysis of the proteome and relevant whole animal phenotypes will be required to make full use of this powerful new experimental paradigm as a beneficial research tool.

  6. Characterization of the Genome, Proteome, and Structure of Yersiniophage ϕR1-37

    PubMed Central

    Hyytiäinen, Heidi J.; Happonen, Lotta J.; Kiljunen, Saija; Datta, Neeta; Mattinen, Laura; Williamson, Kirsty; Kristo, Paula; Szeliga, Magdalena; Kalin-Mänttäri, Laura; Ahola-Iivarinen, Elina; Kalkkinen, Nisse; Butcher, Sarah J.

    2012-01-01

    The bacteriophage vB_YecM-ϕR1-37 (ϕR1-37) is a lytic yersiniophage that can propagate naturally in different Yersinia species carrying the correct lipopolysaccharide receptor. This large-tailed phage has deoxyuridine (dU) instead of thymidine in its DNA. In this study, we determined the genomic sequence of phage ϕR1-37, mapped parts of the phage transcriptome, characterized the phage particle proteome, and characterized the virion structure by cryo-electron microscopy and image reconstruction. The 262,391-bp genome of ϕR1-37 is one of the largest sequenced phage genomes, and it contains 367 putative open reading frames (ORFs) and 5 tRNA genes. Mass-spectrometric analysis identified 69 phage particle structural proteins with the genes scattered throughout the genome. A total of 269 of the ORFs (73%) lack homologues in sequence databases. Based on terminator and promoter sequences identified from the intergenic regions, the phage genome was predicted to consist of 40 to 60 transcriptional units. Image reconstruction revealed that the ϕR1-37 capsid consists of hexameric capsomers arranged on a T=27 lattice similar to the bacteriophage ϕKZ. The tail of ϕR1-37 has a contractile sheath. We conclude that phage ϕR1-37 is a representative of a novel phage type that carries the dU-containing genome in a ϕKZ-like head. PMID:22973030

  7. Project management system for structural and functional proteomics: Sesame.

    PubMed

    Zolnai, Zsolt; Lee, Peter T; Li, Jing; Chapman, Michael R; Newman, Craig S; Phillips, George N; Rayment, Ivan; Ulrich, Eldon L; Volkman, Brian F; Markley, John L

    2003-01-01

    A computing infrastructure (Sesame) has been designed to manage and link individual steps in complex projects. Sesame is being developed to support a large-scale structural proteomics pilot project. When complete, the system is expected to manage all steps from target selection to data-bank deposition and report writing. We report here on the design criteria of the Sesame system and on results demonstrating successful achievement of the basic goals of its architecture. The Sesame software package, which follows the client/server paradigm, consists of a framework, which supports secure interactions among the three tiers of the system (the client, server, and database tiers), and application modules that carry out specific tasks. The framework utilizes industry standards. The client tier is written in Java2 and can be accessed anywhere through the Internet. All the development on the server tier is also carried out in Java2 so as to accommodate a wide variety of computer platforms. The database tier employs a commercial database management system. Each Sesame application module consists of a simple user interface in the client tier, corresponding objects in the server tier, and relevant data stored in the centralized database. For security, access to stored data is controlled by access privileges. The system facilitates both local and remote collaborations. Because users interact with the system using Java Web Start or through a web browser, access is limited only by the availability of an Internet connection. We describe several Sesame modules that have been developed to the point where they are being utilized routinely to support steps involved in structural and functional proteomics. This software is available to parties interested in using it and assisting to guide its further development.

  8. Shared and Unique Proteins in Human, Mouse and Rat Saliva Proteomes: Footprints of Functional Adaptation

    PubMed Central

    Karn, Robert C.; Chung, Amanda G.; Laukaitis, Christina M.

    2013-01-01

    The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with saliva collected from the genome mouse (C57BL/6) and the genome rat (BN/SsNHsd/Mcwi). Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals, as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals, because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals. PMID:24926433

  9. Functional Complexity of the Axonal Growth Cone: A Proteomic Analysis

    PubMed Central

    Estrada-Bernal, Adriana; Sanford, Staci D.; Sosa, Lucas J.; Simon, Glenn C.; Hansen, Kirk C.; Pfenninger, Karl H.

    2012-01-01

    The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions. PMID:22384089

  10. A computational interactome and functional annotation for the human proteome

    PubMed Central

    Garzón, José Ignacio; Deng, Lei; Murray, Diana; Shapira, Sagi; Petrey, Donald; Honig, Barry

    2016-01-01

    We present a database, PrePPI (Predicting Protein-Protein Interactions), of more than 1.35 million predicted protein-protein interactions (PPIs). Of these at least 127,000 are expected to constitute direct physical interactions although the actual number may be much larger (~500,000). The current PrePPI, which contains predicted interactions for about 85% of the human proteome, is related to an earlier version but is based on additional sources of interaction evidence and is far larger in scope. The use of structural relationships allows PrePPI to infer numerous previously unreported interactions. PrePPI has been subjected to a series of validation tests including reproducing known interactions, recapitulating multi-protein complexes, analysis of disease associated SNPs, and identifying functional relationships between interacting proteins. We show, using Gene Set Enrichment Analysis (GSEA), that predicted interaction partners can be used to annotate a protein’s function. We provide annotations for most human proteins, including many annotated as having unknown function. DOI: http://dx.doi.org/10.7554/eLife.18715.001 PMID:27770567

  11. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research.

    PubMed

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  12. metabolicMine: an integrated genomics, genetics and proteomics data warehouse for common metabolic disease research

    PubMed Central

    Lyne, Mike; Smith, Richard N; Lyne, Rachel; Aleksic, Jelena; Hu, Fengyuan; Kalderimis, Alex; Stepan, Radek; Micklem, Gos

    2013-01-01

    Common metabolic and endocrine diseases such as diabetes affect millions of people worldwide and have a major health impact, frequently leading to complications and mortality. In a search for better prevention and treatment, there is ongoing research into the underlying molecular and genetic bases of these complex human diseases, as well as into the links with risk factors such as obesity. Although an increasing number of relevant genomic and proteomic data sets have become available, the quantity and diversity of the data make their efficient exploitation challenging. Here, we present metabolicMine, a data warehouse with a specific focus on the genomics, genetics and proteomics of common metabolic diseases. Developed in collaboration with leading UK metabolic disease groups, metabolicMine integrates data sets from a range of experiments and model organisms alongside tools for exploring them. The current version brings together information covering genes, proteins, orthologues, interactions, gene expression, pathways, ontologies, diseases, genome-wide association studies and single nucleotide polymorphisms. Although the emphasis is on human data, key data sets from mouse and rat are included. These are complemented by interoperation with the RatMine rat genomics database, with a corresponding mouse version under development by the Mouse Genome Informatics (MGI) group. The web interface contains a number of features including keyword search, a library of Search Forms, the QueryBuilder and list analysis tools. This provides researchers with many different ways to analyse, view and flexibly export data. Programming interfaces and automatic code generation in several languages are supported, and many of the features of the web interface are available through web services. The combination of diverse data sets integrated with analysis tools and a powerful query system makes metabolicMine a valuable research resource. The web interface makes it accessible to first

  13. Molecular stratification and precision medicine in systemic sclerosis from genomic and proteomic data.

    PubMed

    Martyanov, Viktor; Whitfield, Michael L

    2016-01-01

    The goal of this review is to summarize recent advances into the pathogenesis and treatment of systemic sclerosis (SSc) from genomic and proteomic studies. Intrinsic gene expression-driven molecular subtypes of SSc are reproducible across three independent datasets. These subsets are a consistent feature of SSc and are found in multiple end-target tissues, such as skin and esophagus. Intrinsic subsets as well as baseline levels of molecular target pathways are potentially predictive of clinical response to specific therapeutics, based on three recent clinical trials. A gene expression-based biomarker of modified Rodnan skin score, a measure of SSc skin severity, can be used as a surrogate outcome metric and has been validated in a recent trial. Proteome analyses have identified novel biomarkers of SSc that correlate with SSc clinical phenotypes. Integrating intrinsic gene expression subset data, baseline molecular pathway information, and serum biomarkers along with surrogate measures of modified Rodnan skin score provides molecular context in SSc clinical trials. With validation, these approaches could be used to match patients with the therapies from which they are most likely to benefit and thus increase the likelihood of clinical improvement.

  14. Proteomic and genomic characterization of a yeast model for Ogden syndrome

    PubMed Central

    Dörfel, Max J.; Fang, Han; Crain, Jonathan; Klingener, Michael; Weiser, Jake

    2016-01-01

    Abstract Naa10 is an Nα‐terminal acetyltransferase that, in a complex with its auxiliary subunit Naa15, co‐translationally acetylates the α‐amino group of newly synthetized proteins as they emerge from the ribosome. Roughly 40–50% of the human proteome is acetylated by Naa10, rendering this an enzyme one of the most broad substrate ranges known. Recently, we reported an X‐linked disorder of infancy, Ogden syndrome, in two families harbouring a c.109 T > C (p.Ser37Pro) variant in NAA10. In the present study we performed in‐depth characterization of a yeast model of Ogden syndrome. Stress tests and proteomic analyses suggest that the S37P mutation disrupts Naa10 function and reduces cellular fitness during heat shock, possibly owing to dysregulation of chaperone expression and accumulation. Microarray and RNA‐seq revealed a pseudo‐diploid gene expression profile in ΔNaa10 cells, probably responsible for a mating defect. In conclusion, the data presented here further support the disruptive nature of the S37P/Ogden mutation and identify affected cellular processes potentially contributing to the severe phenotype seen in Ogden syndrome. Data are available via GEO under identifier GSE86482 or with ProteomeXchange under identifier PXD004923. © 2016 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:27668839

  15. Genomic, physiologic, and proteomic insights into metabolic versatility in Roseobacter clade bacteria isolated from deep-sea water

    PubMed Central

    Tang, Kai; Yang, Yujie; Lin, Dan; Li, Shuhui; Zhou, Wenchu; Han, Yu; Liu, Keshao; Jiao, Nianzhi

    2016-01-01

    Roseobacter clade bacteria are ubiquitous in marine environments and now thought to be significant contributors to carbon and sulfur cycling. However, only a few strains of roseobacters have been isolated from the deep-sea water column and have not been thoroughly investigated. Here, we present the complete genomes of phylogentically closed related Thiobacimonas profunda JLT2016 and Pelagibaca abyssi JLT2014 isolated from deep-sea water of the Southeastern Pacific. The genome sequences showed that the two deep-sea roseobacters carry genes for versatile metabolisms with functional capabilities such as ribulose bisphosphate carboxylase-mediated carbon fixation and inorganic sulfur oxidation. Physiological and biochemical analysis showed that T. profunda JLT2016 was capable of autotrophy, heterotrophy, and mixotrophy accompanied by the production of exopolysaccharide. Heterotrophic carbon fixation via anaplerotic reactions contributed minimally to bacterial biomass. Comparative proteomics experiments showed a significantly up-regulated carbon fixation and inorganic sulfur oxidation associated proteins under chemolithotrophic conditions compared to heterotrophic conditions. Collectively, rosebacters show a high metabolic flexibility, suggesting a considerable capacity for adaptation to the marine environment. PMID:27762339

  16. Genomic and proteomic characterization of SE-I, a temperate bacteriophage infecting Erysipelothrix rhusiopathiae.

    PubMed

    Yuan, Wentao; Zhang, Yaning; Wang, Guangcao; Bai, Juan; Wang, Xianwei; Li, Yufeng; Jiang, Ping

    2016-11-01

    A bacteriophage infecting pathogenic Erysipelothrix rhusiopathiae was isolated from a swine farm experiencing an outbreak of acute swine erysipelas; we designated this phage SE-I. SE-I has an icosahedral head, a long tail and a double-stranded DNA genome. The 34,997-bp genome has a GC content of 34 % and contains 43 open reading frames (ORFs) encoding packaging, structural, lysin-holin, and hypothetical proteins. Components of purified SE-I were separated using SDS-PAGE and analyzed using liquid chromatography-mass spectrometry. Nine proteins were identified, encoded by ORF9, ORF15, ORF23, ORF30, ORF31, ORF33, ORF39, ORF40 and ORF 42. A phylogenetic tree constructed based on the sequence of the large terminase subunit revealed that SE-I is closely related to Staphylococcus phages P954 and phi3396. The CHAP-domain-containing protein encoded by ORF25 was expressed in E. coli and which was able to inactivate host bacteria. SE-I was able to infect 7 of 13 E. rhusiopathiae strains, but was unable to infect Salmonella, Streptococcus suis, and Staphylococcus aureus. This is the first report of the isolation, characterization, and genomic and proteomic analysis of a temperate phage infecting E. rhusiopathiae, and it might lead to the development of new anti- E. rhusiopathiae agents.

  17. Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed.

    PubMed

    Leifso, Kirk; Cohen-Freue, Gabriela; Dogra, Nisha; Murray, Angus; McMaster, W Robert

    2007-03-01

    Leishmania are protozoan parasites that cause a wide spectrum of clinical diseases in humans and are a major public health risk in several countries. Leishmania life cycle consists of an extracellular flagellated promastigote stage within the midgut of a sandfly vector, and a morphological distinct intracellular amastigote stage within macrophages of a mammalian host. This study reports the use of DNA oligonucleotide genome microarrays representing 8160 genes to analyze the mRNA expression profiles of L. major promastigotes and lesion derived amastigotes. Over 94% of the genes were expressed in both life stages. Advanced statistical analysis identified a surprisingly low degree of differential mRNA expression: 1.4% of the total genes in amastigotes and 1.5% in promastigotes. These microarray results demonstrate that the L. major genome is essentially constitutively expressed in both life stages and suggest that Leishmania is constitutively adapted for survival and replication in either the sandfly vector or macrophage host utilizing an appropriate set of genes for each vastly different environment. Quantitative proteomics, using the isotope coded affinity tag (ICAT) technology and mass spectrometry, was used to identify L. infantum promastigote and axenic amastigote differentially expressed proteins. Of the 91 distinct proteins identified, 8% were differentially expressed in the amastigote stage, 20% were differentially expressed in the promastigote stage, and the remaining 72% were considered constitutively expressed. The differential expression was validated by the identification of previously reported stage specific proteins and identified several amastigote and promastigote novel stage specific proteins.

  18. The Present and Future of Biomarkers in Prostate Cancer: Proteomics, Genomics, and Immunology Advancements

    PubMed Central

    Gaudreau, Pierre-Olivier; Stagg, John; Soulières, Denis; Saad, Fred

    2016-01-01

    Prostate cancer (PC) is the second most common form of cancer in men worldwide. Biomarkers have emerged as essential tools for treatment and assessment since the variability of disease behavior, the cost and diversity of treatments, and the related impairment of quality of life have given rise to a need for a personalized approach. High-throughput technology platforms in proteomics and genomics have accelerated the development of biomarkers. Furthermore, recent successes of several new agents in PC, including immunotherapy, have stimulated the search for predictors of response and resistance and have improved the understanding of the biological mechanisms at work. This review provides an overview of currently established biomarkers in PC, as well as a selection of the most promising biomarkers within these particular fields of development. PMID:27168728

  19. Emerging genomic and proteomic evidence on relationships among the animal, plant and fungal kingdoms.

    PubMed

    Stiller, John W

    2004-05-01

    Sequence-based molecular phylogenies have provided new models of early eukaryotic evolution. This includes the widely accepted hypothesis that animals are related most closely to fungi, and that the two should be grouped together as the Opisthokonta. Although most published phylogenies have supported an opisthokont relationship, a number of genes contain a tree-building signal that clusters animal and green plant sequences, to the exclusion of fungi. The alternative tree-building signal is especially intriguing in light of emerging data from genomic and proteomic studies that indicate striking and potentially synapomorphic similarities between plants and animals. This paper reviews these new lines of evidence, which have yet to be incorporated into models of broad scale eukaryotic evolution.

  20. Biomarkers for Bone Tumors: Discovery from Genomics and Proteomics Studies and Their Challenges

    PubMed Central

    Wan-Ibrahim, Wan I; Singh, Vivek A; Hashim, Onn H; Abdul-Rahman, Puteri S

    2015-01-01

    Diagnosis of bone tumor currently relies on imaging and biopsy, and hence, the need to find less invasive ways for its accurate detection. More recently, numerous promising deoxyribonucleic acid (DNA) and protein biomarkers with significant prognostic, diagnostic and/or predictive abilities for various types of bone tumors have been identified from genomics and proteomics studies. This article reviewed the putative biomarkers for the more common types of bone tumors (that is, osteosarcoma, Ewing sarcoma, chondrosarcoma [malignant] and giant cell tumor [benign]) that were unveiled from the studies. The benefits and drawbacks of these biomarkers, as well as the technology platforms involved in the research, were also discussed. Challenges faced in the biomarker discovery studies and the problems in their translation from the bench to the clinical settings were also addressed. PMID:26581086

  1. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function.

    PubMed

    Ramakrishnan, Gayatri; Ochoa-Montaño, Bernardo; Raghavender, Upadhyayula S; Mudgal, Richa; Joshi, Adwait G; Chandra, Nagasuma R; Sowdhamini, Ramanathan; Blundell, Tom L; Srinivasan, Narayanaswamy

    2015-01-01

    The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better

  2. Insight into proteomic investigations of Neisseria meningitidis serogroup C strain L91543 from analysis of its genome sequence.

    PubMed

    Karlyshev, Andrey V; Snyder, Lori A S; McFadden, Johnjoe; Griffin, Ruth

    2015-05-01

    Here, we describe the draft sequence of a virulent isolate of Neisseria meningitidis strain L91543, belonging to serogroup C. The findings from previous proteomic and metabolomic studies of this strain can now be further interpreted with genomic analysis. Comparative analysis of the genome sequence revealed close similarity and localized synteny with the genome sequence of N. meningitidis serogroup C strain, FAM18. Polymorphisms were identified in the signal peptide sequence of factor H binding protein, a target for new meningococcal vaccines, which may result in its inefficient translocation across the cytoplasmic membrane affecting its processing (lipidation and cleavage of the signal peptide) and transportation to the outer membrane in strain L91543. This would explain the unusual proteomic data for factor H binding protein for this strain. NadA, another target for new vaccines, and the MtrR regulator, which controls expression of NadA, both contain SNPs between strains L91543 and FAM18. The genome sequence data were generated using Ion Torrent PGM sequencing, assembled into 50 contigs with 64× coverage and annotated with 2262 genes, 14 rRNAs and 56 tRNAs. The availability of the genome of N. meningitidis strain L91543 will aid our understanding of the proteome of this organism, importantly its vaccine antigens.

  3. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics

    PubMed Central

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-01-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population. PMID:27252584

  4. Ascribing Functions to Genes: Journey Towards Genetic Improvement of Rice Via Functional Genomics.

    PubMed

    Mustafiz, Ananda; Kumari, Sumita; Karan, Ratna

    2016-06-01

    Rice, one of the most important cereal crops for mankind, feeds more than half the world population. Rice has been heralded as a model cereal owing to its small genome size, amenability to easy transformation, high synteny to other cereal crops and availability of complete genome sequence. Moreover, sequence wealth in rice is getting more refined and precise due to resequencing efforts. This humungous resource of sequence data has confronted research fraternity with a herculean challenge as well as an excellent opportunity to functionally validate expressed as well as regulatory portions of the genome. This will not only help us in understanding the genetic basis of plant architecture and physiology but would also steer us towards developing improved cultivars. No single technique can achieve such a mammoth task. Functional genomics through its diverse tools viz. loss and gain of function mutants, multifarious omics strategies like transcriptomics, proteomics, metabolomics and phenomics provide us with the necessary handle. A paradigm shift in technological advances in functional genomics strategies has been instrumental in generating considerable amount of information w.r.t functionality of rice genome. We now have several databases and online resources for functionally validated genes but despite that we are far from reaching the desired milestone of functionally characterizing each and every rice gene. There is an urgent need for a common platform, for information already available in rice, and collaborative efforts between researchers in a concerted manner as well as healthy public-private partnership, for genetic improvement of rice crop better able to handle the pressures of climate change and exponentially increasing population.

  5. Novel phage group infecting Lactobacillus delbrueckii subsp. lactis, as revealed by genomic and proteomic analysis of bacteriophage Ldl1.

    PubMed

    Casey, Eoghan; Mahony, Jennifer; Neve, Horst; Noben, Jean-Paul; Dal Bello, Fabio; van Sinderen, Douwe

    2015-02-01

    Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 +/- 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.

  6. Identification and validation of specific markers of Bacillus anthracis spores by proteomics and genomics approaches.

    PubMed

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R; Junot, Christophe; Ezan, Eric; Goossens, Pierre L; Becher, François

    2014-03-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  7. Genome-Wide Transcriptome and Proteome Analysis on Different Developmental Stages of Cordyceps militaris

    PubMed Central

    Yin, Yalin; Yu, Guojun; Chen, Yijie; Jiang, Shuai; Wang, Man; Jin, Yanxia; Lan, Xianqing; Liang, Yi; Sun, Hui

    2012-01-01

    Background Cordyceps militaris, an ascomycete caterpillar fungus, has been used as a traditional Chinese medicine for many years owing to its anticancer and immunomodulatory activities. Currently, artificial culturing of this beneficial fungus has been widely used and can meet the market, but systematic molecular studies on the developmental stages of cultured C. militaris at transcriptional and translational levels have not been determined. Methodology/Principal Findings We utilized high-throughput Illumina sequencing to obtain the transcriptomes of C. militaris mycelium and fruiting body. All clean reads were mapped to C. militaris genome and most of the reads showed perfect coverage. Alternative splicing and novel transcripts were predicted to enrich the database. Gene expression analysis revealed that 2,113 genes were up-regulated in mycelium and 599 in fruiting body. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to analyze the genes with expression differences. Moreover, the putative cordycepin metabolism difference between different developmental stages was studied. In addition, the proteome data of mycelium and fruiting body were obtained by one-dimensional gel electrophoresis (1-DGE) coupled with nano-electrospray ionization liquid chromatography tandem mass spectrometry (nESI-LC-MS/MS). 359 and 214 proteins were detected from mycelium and fruiting body respectively. GO, KEGG and Cluster of Orthologous Groups (COG) analysis were further conducted to better understand their difference. We analyzed the amounts of some noteworthy proteins in these two samples including lectin, superoxide dismutase, glycoside hydrolase and proteins involved in cordycepin metabolism, providing important information for further protein studies. Conclusions/Significance The results reveal the difference in gene expression between the mycelium and fruiting body of artificially cultivated C. militaris by transcriptome and proteome

  8. Identification and Validation of Specific Markers of Bacillus anthracis Spores by Proteomics and Genomics Approaches*

    PubMed Central

    Chenau, Jérôme; Fenaille, François; Caro, Valérie; Haustant, Michel; Diancourt, Laure; Klee, Silke R.; Junot, Christophe; Ezan, Eric; Goossens, Pierre L.; Becher, François

    2014-01-01

    Bacillus anthracis is the causative bacteria of anthrax, an acute and often fatal disease in humans. The infectious agent, the spore, represents a real bioterrorism threat and its specific identification is crucial. However, because of the high genomic relatedness within the Bacillus cereus group, it is still a real challenge to identify B. anthracis spores confidently. Mass spectrometry-based tools represent a powerful approach to the efficient discovery and identification of such protein markers. Here we undertook comparative proteomics analyses of Bacillus anthracis, cereus and thuringiensis spores to identify proteoforms unique to B. anthracis. The marker discovery pipeline developed combined peptide- and protein-centric approaches using liquid chromatography coupled to tandem mass spectrometry experiments using a high resolution/high mass accuracy LTQ-Orbitrap instrument. By combining these data with those from complementary bioinformatics approaches, we were able to highlight a dozen novel proteins consistently observed across all the investigated B. anthracis spores while being absent in B. cereus/thuringiensis spores. To further demonstrate the relevance of these markers and their strict specificity to B. anthracis, the number of strains studied was extended to 55, by including closely related strains such as B. thuringiensis 9727, and above all the B. cereus biovar anthracis CI, CA strains that possess pXO1- and pXO2-like plasmids. Under these conditions, the combination of proteomics and genomics approaches confirms the pertinence of 11 markers. Genes encoding these 11 markers are located on the chromosome, which provides additional targets complementary to the commonly used plasmid-encoded markers. Last but not least, we also report the development of a targeted liquid chromatography coupled to tandem mass spectrometry method involving the selection reaction monitoring mode for the monitoring of the 4 most suitable protein markers. Within a proof

  9. High radiation and desiccation tolerance of nitrogen-fixing cultures of the cyanobacterium Anabaena sp. strain PCC 7120 emanates from genome/proteome repair capabilities.

    PubMed

    Singh, Harinder; Anurag, Kirti; Apte, Shree Kumar

    2013-10-12

    The filamentous nitrogen-fixing cyanobacterium, Anabaena sp. strain PCC 7120 was found to tolerate very high doses of (60)Co-gamma radiation or prolonged desiccation. Post-stress, cells remained intact and revived all the vital functions. A remarkable capacity to repair highly disintegrated genome and recycle the damaged proteome appeared to underlie such high radioresistance and desiccation tolerance. The close similarity observed between the cellular response to irradiation or desiccation stress lends strong support to the notion that tolerance to these stresses may involve similar mechanisms.

  10. Functional proteomic and interactome analysis of proteins associated with beef tenderness in angus cattle

    USDA-ARS?s Scientific Manuscript database

    Beef is a source of high quality protein for the human population, and beef tenderness has significant influence on beef palatability, consumer expectation and industry profitability. To further elucidate the factors affecting beef tenderness, functional proteomics and bioinformatics interactome ana...

  11. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis.

    PubMed

    Zehr, Emilie S; Tabatabai, Louisa B; Bayles, Darrell O

    2012-07-23

    Haemophilus parasuis, the causative agent of Glässer's disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer's disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome's G + C content was

  12. Microbial proteomics: the quiet revolution

    SciTech Connect

    Seraphin, Bertrand; Hettich, Robert {Bob} L

    2012-01-01

    Technological developments in DNA sequencing and their application to study thousands of microbial genomes or even microbial ecosystems still today often make the headlines of general newspapers and scientific journals. These revolutionary changes are hiding another revolution that is unfolding more quietly in the background: the development of microbial proteomics to study genome expression products. It is important to recognize that while DNA sequencing reveals extensive details about the genomic potential of an organism or community, proteomic measurements reveal the functional gene products that are present and operational under specific environmental conditions, and thus perhaps better characterize the critical biomolecules that execute the life processes (enzymes, signaling, structural factors, etc.).

  13. Deciphering Clostridium tyrobutyricum Metabolism Based on the Whole-Genome Sequence and Proteome Analyses

    PubMed Central

    Lee, Joungmin; Jang, Yu-Sin; Han, Mee-Jung; Kim, Jin Young

    2016-01-01

    ABSTRACT Clostridium tyrobutyricum is a Gram-positive anaerobic bacterium that efficiently produces butyric acid and is considered a promising host for anaerobic production of bulk chemicals. Due to limited knowledge on the genetic and metabolic characteristics of this strain, however, little progress has been made in metabolic engineering of this strain. Here we report the complete genome sequence of C. tyrobutyricum KCTC 5387 (ATCC 25755), which consists of a 3.07-Mbp chromosome and a 63-kbp plasmid. The results of genomic analyses suggested that C. tyrobutyricum produces butyrate from butyryl-coenzyme A (butyryl-CoA) through acetate reassimilation by CoA transferase, differently from Clostridium acetobutylicum, which uses the phosphotransbutyrylase-butyrate kinase pathway; this was validated by reverse transcription-PCR (RT-PCR) of related genes, protein expression levels, in vitro CoA transferase assay, and fed-batch fermentation. In addition, the changes in protein expression levels during the course of batch fermentations on glucose were examined by shotgun proteomics. Unlike C. acetobutylicum, the expression levels of proteins involved in glycolytic and fermentative pathways in C. tyrobutyricum did not decrease even at the stationary phase. Proteins related to energy conservation mechanisms, including Rnf complex, NfnAB, and pyruvate-phosphate dikinase that are absent in C. acetobutylicum, were identified. Such features explain why this organism can produce butyric acid to a much higher titer and better tolerate toxic metabolites. This study presenting the complete genome sequence, global protein expression profiles, and genome-based metabolic characteristics during the batch fermentation of C. tyrobutyricum will be valuable in designing strategies for metabolic engineering of this strain. PMID:27302759

  14. Discovery and annotation of small proteins using genomics, proteomics and computational approaches

    SciTech Connect

    Yang, Xiaohan; Tschaplinski, Timothy J.; Hurst, Gregory B.; Jawdy, Sara; Abraham, Paul E.; Lankford, Patricia K.; Adams, Rachel M.; Shah, Manesh B.; Hettich, Robert L.; Lindquist, Erika; Kalluri, Udaya C.; Gunter, Lee E.; Pennacchio, Christa; Tuskan, Gerald A.

    2011-03-02

    Small proteins (10 200 amino acids aa in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained 2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) codingpotential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  15. Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans.

    PubMed

    Kruse, Thomas; van de Pas, Bram A; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M; van der Oost, John; Smidt, Hauke; Stams, Alfons J M

    2015-03-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Discovery and annotation of small proteins using genomics, proteomics, and computational approaches.

    PubMed

    Yang, Xiaohan; Tschaplinski, Timothy J; Hurst, Gregory B; Jawdy, Sara; Abraham, Paul E; Lankford, Patricia K; Adams, Rachel M; Shah, Manesh B; Hettich, Robert L; Lindquist, Erika; Kalluri, Udaya C; Gunter, Lee E; Pennacchio, Christa; Tuskan, Gerald A

    2011-04-01

    Small proteins (10-200 amino acids [aa] in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering, and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained ~2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10-200 aa in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: (1) coding-potential prediction, (2) evolutionary conservation between P. deltoides and other plant species, and (3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were supported by proteomics data. Of the 611 highest-confidence candidate sORF genes, 56 were new to the current Populus genome annotation. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  17. Proteomics for Validation of Automated Gene Model Predictions

    SciTech Connect

    Zhou, Kemin; Panisko, Ellen A.; Magnuson, Jon K.; Baker, Scott E.; Grigoriev, Igor V.

    2008-02-14

    High-throughput liquid chromatography mass spectrometry (LC-MS)-based proteomic analysis has emerged as a powerful tool for functional annotation of genome sequences. These analyses complement the bioinformatic and experimental tools used for deriving, verifying, and functionally annotating models of genes and their transcripts. Furthermore, proteomics extends verification and functional annotation to the level of the translation product of the gene model.

  18. Functional Module Search in Protein Networks based on Semantic Similarity Improves the Analysis of Proteomics Data*

    PubMed Central

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W.; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-01-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system. PMID:24807868

  19. Functional module search in protein networks based on semantic similarity improves the analysis of proteomics data.

    PubMed

    Boyanova, Desislava; Nilla, Santosh; Klau, Gunnar W; Dandekar, Thomas; Müller, Tobias; Dittrich, Marcus

    2014-07-01

    The continuously evolving field of proteomics produces increasing amounts of data while improving the quality of protein identifications. Albeit quantitative measurements are becoming more popular, many proteomic studies are still based on non-quantitative methods for protein identification. These studies result in potentially large sets of identified proteins, where the biological interpretation of proteins can be challenging. Systems biology develops innovative network-based methods, which allow an integrated analysis of these data. Here we present a novel approach, which combines prior knowledge of protein-protein interactions (PPI) with proteomics data using functional similarity measurements of interacting proteins. This integrated network analysis exactly identifies network modules with a maximal consistent functional similarity reflecting biological processes of the investigated cells. We validated our approach on small (H9N2 virus-infected gastric cells) and large (blood constituents) proteomic data sets. Using this novel algorithm, we identified characteristic functional modules in virus-infected cells, comprising key signaling proteins (e.g. the stress-related kinase RAF1) and demonstrate that this method allows a module-based functional characterization of cell types. Analysis of a large proteome data set of blood constituents resulted in clear separation of blood cells according to their developmental origin. A detailed investigation of the T-cell proteome further illustrates how the algorithm partitions large networks into functional subnetworks each representing specific cellular functions. These results demonstrate that the integrated network approach not only allows a detailed analysis of proteome networks but also yields a functional decomposition of complex proteomic data sets and thereby provides deeper insights into the underlying cellular processes of the investigated system.

  20. Proteomic Insight into the Molecular Function of the Vitreous

    PubMed Central

    Skeie, Jessica M.; Roybal, C. Nathaniel; Mahajan, Vinit B.

    2015-01-01

    The human vitreous contains primarily water, but also contains proteins which have yet to be fully characterized. To gain insight into the four vitreous substructures and their potential functions, we isolated and analyzed the vitreous protein profiles of three non-diseased human eyes. The four analyzed substructures were the anterior hyaloid, the vitreous cortex, the vitreous core, and the vitreous base. Proteins were separated by multidimensional liquid chromatography and identified by tandem mass spectrometry. Bioinformatics tools then extracted the expression profiles, signaling pathways, and interactomes unique to each tissue. From each substructure, a mean of 2,062 unique proteins were identified, with many being differentially expressed in a specific substructure: 278 proteins were unique to the anterior hyaloid, 322 to the vitreous cortex, 128 to the vitreous base, and 136 to the vitreous core. When the identified proteins were organized according to relevant functional pathways and networks, key patterns appeared. The blood coagulation pathway and extracellular matrix turnover networks were highly represented. Oxidative stress regulation and energy metabolism proteins were distributed throughout the vitreous. Immune functions were represented by high levels of immunoglobulin, the complement pathway, damage-associated molecular patterns (DAMPs), and evolutionarily conserved antimicrobial proteins. The majority of vitreous proteins detected were intracellular proteins, some of which originate from the retina, including rhodopsin (RHO), phosphodiesterase 6 (PDE6), and glial fibrillary acidic protein (GFAP). This comprehensive analysis uncovers a picture of the vitreous as a biologically active tissue, where proteins localize to distinct substructures to protect the intraocular tissues from infection, oxidative stress, and energy disequilibrium. It also reveals the retina as a potential source of inflammatory mediators. The vitreous proteome catalogues the

  1. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-04-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function.

  2. Aging synaptic mitochondria exhibit dynamic proteomic changes while maintaining bioenergetic function

    PubMed Central

    Stauch, Kelly L.; Purnell, Phillip R.; Fox, Howard S.

    2014-01-01

    Aging correlates with a progressive impairment of mitochondrial homeostasis and is an influential factor for several forms of neurodegeneration. However, the mechanisms underlying age-related alterations in synaptosomal mitochondria, a neuronal mitochondria population highly susceptible to insults and critical for brain function, remain incompletely understood. Therefore this study investigates the synaptic mitochondrial proteomic and bioenergetic alterations that occur with age. The utilization of a state of the art quantitative proteomics approach allowed for the comparison of protein expression levels in synaptic mitochondria isolated from 5 (mature), 12 (old), and 24 (aged) month old mice. During the process of aging we find that dynamic proteomic alterations occur in synaptic mitochondria. Despite direct (mitochondrial DNA deletions) and indirect (increased antioxidant protein levels) signs of mitochondrial damage in the aged mice, there was an overall maintenance of mitochondrial function. Therefore the synaptic mitochondrial proteomic changes that occur with aging correlate with preservation of synaptic mitochondrial function. PMID:24827396

  3. Rejuvenating rice proteomics: facts, challenges, and visions.

    PubMed

    Agrawal, Ganesh Kumar; Jwa, Nam-Soo; Iwahashi, Yumiko; Yonekura, Masami; Iwahashi, Hitoshi; Rakwal, Randeep

    2006-10-01

    Proteomics is progressing at an unprecedented pace, as can be exemplified by the progress in model organisms such as yeast, bacteria, and mammals. Proteomics research in plants, however, has not progressed at the same pace. Unscrambling of the genome sequences of the dicotyledoneous Arabidopsis thaliana (L.) and monocotyledoneous rice (Oryza sativa L.) plant species, respectively, has made them accessible reference organisms to study plant proteomics. Study of these two reference plants is expected to unravel the mystery of plant biology. Rice, a critically important food crop on the earth, has been termed a "cornerstone" and the "Rosetta stone" for functional genomics of cereal crops. Here, we look at the progress in unraveling rice proteomes and present the facts, challenges, and vision. The text is divided into two major parts: the first part presents the facts and the second part discusses the challenges and vision. The facts include the technology and its use in developing proteomes, which have been critically and constructively reviewed. The challenges and vision deal with the establishment of technologies to exhaustively investigate the protein components of a proteome, to generate high-resolution gel-based reference maps, and to give rice proteomics a functional dimension by studying PTMs and isolation of multiprotein complexes. Finally, we direct a vision on rice proteomics. This is our third review in series on rice proteomics, which aims to stimulate an objective discussion among rice researchers and to understand the necessity and impact of unraveling rice proteomes to their full potential.

  4. Hands-on workshops as an effective means of learning advanced technologies including genomics, proteomics and bioinformatics.

    PubMed

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-12-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications. Copyright © 2013. Production and hosting by Elsevier Ltd.

  5. Hands-on Workshops as An Effective Means of Learning Advanced Technologies Including Genomics, Proteomics and Bioinformatics

    PubMed Central

    Reisdorph, Nichole; Stearman, Robert; Kechris, Katerina; Phang, Tzu Lip; Reisdorph, Richard; Prenni, Jessica; Erle, David J.; Coldren, Christopher; Schey, Kevin; Nesvizhskii, Alexey; Geraci, Mark

    2013-01-01

    Genomics and proteomics have emerged as key technologies in biomedical research, resulting in a surge of interest in training by investigators keen to incorporate these technologies into their research. At least two types of training can be envisioned in order to produce meaningful results, quality publications and successful grant applications: (1) immediate short-term training workshops and (2) long-term graduate education or visiting scientist programs. We aimed to fill the former need by providing a comprehensive hands-on training course in genomics, proteomics and informatics in a coherent, experimentally-based framework. This was accomplished through a National Heart, Lung, and Blood Institute (NHLBI)-sponsored 10-day Genomics and Proteomics Hands-on Workshop held at National Jewish Health (NJH) and the University of Colorado School of Medicine (UCD). The course content included comprehensive lectures and laboratories in mass spectrometry and genomics technologies, extensive hands-on experience with instrumentation and software, video demonstrations, optional workshops, online sessions, invited keynote speakers, and local and national guest faculty. Here we describe the detailed curriculum and present the results of short- and long-term evaluations from course attendees. Our educational program consistently received positive reviews from participants and had a substantial impact on grant writing and review, manuscript submissions and publications. PMID:24316330

  6. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation.

    PubMed

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-02-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface.

  7. Functional environmental proteomics: elucidating the role of a c-type cytochrome abundant during uranium bioremediation

    PubMed Central

    Yun, Jiae; Malvankar, Nikhil S; Ueki, Toshiyuki; Lovley, Derek R

    2016-01-01

    Studies with pure cultures of dissimilatory metal-reducing microorganisms have demonstrated that outer-surface c-type cytochromes are important electron transfer agents for the reduction of metals, but previous environmental proteomic studies have typically not recovered cytochrome sequences from subsurface environments in which metal reduction is important. Gel-separation, heme-staining and mass spectrometry of proteins in groundwater from in situ uranium bioremediation experiments identified a putative c-type cytochrome, designated Geobacter subsurface c-type cytochrome A (GscA), encoded within the genome of strain M18, a Geobacter isolate previously recovered from the site. Homologs of GscA were identified in the genomes of other Geobacter isolates in the phylogenetic cluster known as subsurface clade 1, which predominates in a diversity of Fe(III)-reducing subsurface environments. Most of the gscA sequences recovered from groundwater genomic DNA clustered in a tight phylogenetic group closely related to strain M18. GscA was most abundant in groundwater samples in which Geobacter sp. predominated. Expression of gscA in a strain of Geobacter sulfurreducens that lacked the gene for the c-type cytochrome OmcS, thought to facilitate electron transfer from conductive pili to Fe(III) oxide, restored the capacity for Fe(III) oxide reduction. Atomic force microscopy provided evidence that GscA was associated with the pili. These results demonstrate that a c-type cytochrome with an apparent function similar to that of OmcS is abundant when Geobacter sp. are abundant in the subsurface, providing insight into the mechanisms for the growth of subsurface Geobacter sp. on Fe(III) oxide and suggesting an approach for functional analysis of other Geobacter proteins found in the subsurface. PMID:26140532

  8. Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Zdobnov, Evgeny M.; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R.; Christophides, George K.; Thomasova, Dana; Holt, Robert A.; Subramanian, G. Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H.; Wells, Michael A.; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L.; Kokoza, Elena; Kraft, Cheryl L.; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M.; Salzberg, Steven L.; Sutton, Granger G.; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H.; Ribeiro, Jose; Gelbart, William M.; Kafatos, Fotis C.; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small ``microsyntenic'' clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected.

  9. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis

    PubMed Central

    2012-01-01

    Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome

  10. A factor analysis model for functional genomics

    PubMed Central

    Kustra, Rafal; Shioda, Romy; Zhu, Mu

    2006-01-01

    Background Expression array data are used to predict biological functions of uncharacterized genes by comparing their expression profiles to those of characterized genes. While biologically plausible, this is both statistically and computationally challenging. Typical approaches are computationally expensive and ignore correlations among expression profiles and functional categories. Results We propose a factor analysis model (FAM) for functional genomics and give a two-step algorithm, using genome-wide expression data for yeast and a subset of Gene-Ontology Biological Process functional annotations. We show that the predictive performance of our method is comparable to the current best approach while our total computation time was faster by a factor of 4000. We discuss the unique challenges in performance evaluation of algorithms used for genome-wide functions genomics. Finally, we discuss extensions to our method that can incorporate the inherent correlation structure of the functional categories to further improve predictive performance. Conclusion Our factor analysis model is a computationally efficient technique for functional genomics and provides a clear and unified statistical framework with potential for incorporating important gene ontology information to improve predictions. PMID:16630343

  11. New Funding Opportunity - Illuminating the Druggable Genome | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The National Institutes of Health Common Fund announces two new Funding Opportunity Announcements with a focus on the Illuminating the Druggable Genome (IDG). These funding opportunities are designed to foster the development of technologies and information management to facilitate the unveiling of the functions of the poorly characterized and/or un-annotated members in four protein classes of the Druggable Genome. The IDG project is predicated on the need to fully explore the underlying biology and role in disease of genes linked to already drugged genes within the Druggable Genome.

  12. Proteome analysis of functionally differentiated bovine (Bos indicus) mammary epithelial cells isolated from milk.

    PubMed

    Janjanam, Jagadeesh; Jamwal, Manu; Singh, Surender; Kumar, Saravanan; Panigrahi, Aswini K; Hariprasad, Gururao; Jena, Manoj K; Anand, Vijay; Kumar, Sudarshan; Kaushik, Jai K; Dang, Ajay K; Mukesh, Manishi; Mishra, Bishnu P; Srinivasan, Alagiri; Reddy, Vanga S; Mohanty, Ashok K

    2013-11-01

    Mammary gland is made up of a branching network of ducts that end in alveoli. Terminally differentiated mammary epithelial cells (MECs) constitute the innermost layer of aveoli. They are milk-secreting cuboidal cells that secrete milk proteins during lactation. Little is known about the expression profile of proteins in the metabolically active MECs during lactation or their functional role in the lactation process. In the present investigation, we have reported the proteome map of MECs in lactating cows using 2DE MALDI-TOF/TOF MS and 1D-Gel-LC-MS/MS. MECs were isolated from milk using immunomagnetic beads and confirmed by RT-PCR and Western blotting. The 1D-Gel-LC-MS/MS and 2DE-MS/MS based approaches led to identification of 431 and 134 proteins, respectively, with a total of 497 unique proteins. Proteins identified in this study were clustered into functional groups using bioinformatics tools. Pathway analysis of the identified proteins revealed 28 pathways (p < 0.05) providing evidence for involvement of various proteins in lactation function. This study further provides experimental evidence for the presence of many proteins that have been predicted in annotated bovine genome. The data generated further provide a set of bovine MEC-specific proteins that will help the researchers to understand the molecular events taking place during lactation.

  13. Discovery and annotation of small proteins using genomics, proteomics, and computational approaches

    SciTech Connect

    Yang, Xiaohan; Tschaplinski, Timothy J; Hurst, Gregory {Greg} B; Jawdy, Sara; Abraham, Paul E; Lankford, Patricia K; Adams, Rachel M; Shah, Manesh B; Hettich, Robert {Bob} L; Kalluri, Udaya C; Gunter, Lee E; Pennacchio, Christa; Tuskan, Gerald A

    2011-01-01

    Small proteins (10 200 amino acids (AA) in length) encoded by short open reading frames (sORF) play important regulatory roles in various biological processes, including tumor progression, stress response, flowering and hormone signaling. However, ab initio discovery of small proteins has been relatively overlooked. Recent advances in deep transcriptome sequencing make it possible to efficiently identify sORFs at the genome level. In this study, we obtained ~2.6 million expressed sequence tag (EST) reads from Populus deltoides leaf transcriptome and reconstructed full-length transcripts from the EST sequences. We identified an initial set of 12,852 sORFs encoding proteins of 10 200 AA in length. Three computational approaches were then used to enrich for bona fide protein-coding sORFs from the initial sORF set: 1) coding-potential prediction, 2) evolutionary conservation between P. deltoides and other plant species, and 3) gene family clustering within P. deltoides. As a result, a high-confidence sORF candidate set containing 1,469 genes was obtained. Analysis of the protein domains, non-protein-coding RNA motifs, sequence length distribution, and protein mass spectrometry data supported this high-confidence sORF set. In the high-confidence sORF candidate set, known protein domains were identified in 1,282 genes (higher-confidence sORF candidate set), out of which 611 genes, designated as highest-confidence candidate sORF set, were also supported by proteomics data. This study not only demonstrates that there are potential sORF candidates to be annotated in sequenced genomes, but also presents an efficient strategy for discovery of sORFs in species with no genome annotation yet available.

  14. Evolutionary Trace Annotation of Protein Function in the Structural Proteome

    PubMed Central

    Erdin, Serkan; Ward, R. Matthew; Venner, Eric

    2010-01-01

    By design, structural genomics (SG) solves many structures that cannot be assigned function based on homology to known proteins. Alternative function annotation methods are therefore needed and this study focuses on function prediction with three-dimensional (3D) templates: small structural motifs built of just a few functionally critical residues. Although experimentally proven functional residues are scarce, we show here that Evolutionary Trace (ET) rankings of residue importance are sufficient to build 3D templates, match them, and then assign Gene Ontology (GO) functions in enzymes and non-enzymes alike. In a high specificity mode, this Evolutionary Trace Annotation (ETA) method covered half (53%) of the 2384 annotated SG protein controls. Three-quarters (76%) of predictions were both correct and complete. The positive predictive value for all GO depths (all-depth PPV) was 84%, and it rose to 94% over GO depths 1– 3 (depth 3 PPV). In a high sensitivity mode coverage rose significantly (84%) while accuracy fell moderately: 68% of predictions were both correct and complete, all-depth PPV was 75%, and depth 3 PPV was 86%. These data concur with prior mutational experiments showing that ET rank information identifies key functional determinants in proteins. In practice, ETA predicted functions in 42% of 3461 un-annotated SG proteins. In 529 cases—including 280 non-enzymes and 21 for metal ion ligands—the expected accuracy is 84% at any GO depth and 94% down to GO depth 3, while for the remaining 931 the expected accuracies are 60% and 71%, respectively. Thus local structural comparisons of evolutionarily important residues can help decipher protein functions to known reliability levels and without prior assumption on functional mechanisms. ETA is available at http://mammoth.bcm.tmc.edu/eta. PMID:20036248

  15. Potential biomarkers of human salivary function: a modified proteomic approach

    PubMed Central

    Rudney, J.D.; Staikov, R.K.; Johnson, J.D.

    2009-01-01

    Summary Objective In previous studies, we defined groups of subjects with opposite salivary function. Group membership was associated with clinically-relevant outcomes. High aggregation-adherence (HAA) groups showed lower levels of caries, supragingival plaque, total streptococci, and Tannerella forsythensis than low high aggregation-adherence (LAA) groups. In this study, we used a proteomic approach to search for biomarkers which could be useful as risk indicators for those outcomes. Design Clarified resting whole saliva from each of 41 HAA and LAA subjects was separated by preparative isoelectric focusing. Fractions showing the most distinctive protein profiles were pooled into four sets (pI 3–3.5, pI 4–4.7, pI 5.7–7.7, pI 10–11.5). Each pool then was compared by SDS-PAGE. Image analysis software was used to quantify matched bands. Partial least squares analysis (PLS) was used to determine which of the 65 bands from all four pools were the best predictors of group membership, caries, total plaque, total streptococci, and T. forsythensis counts. Those bands were identified by mass spectroscopy (MSMS). Results Two bands consistently were strong predictors in separate PLS analyses of each outcome variable. In follow-up univariate analyses, those bands showed the strongest significant differences between the HAA and LAA groups. They also showed significant inverse correlations with caries and all the microbiological variables. MSMS identified those bands as statherin, and a truncated cystatin S missing the first eight N-terminal amino acids. Conclusions Levels of statherin and truncated cystatin S may be potential risk indicators for the development of caries and other oral diseases. PMID:18804197

  16. Metabolic classification of microbial genomes using functional probes

    PubMed Central

    2012-01-01

    Background Microorganisms able to grow under artificial culture conditions comprise only a small proportion of the biosphere's total microbial community. Until recently, scientists have been unable to perform thorough analyses of difficult-to-culture microorganisms due to limitations in sequencing technology. As modern techniques have dramatically increased sequencing rates and rapidly expanded the number of sequenced genomes, in addition to traditional taxonomic classifications which focus on the evolutionary relationships of organisms, classifications of the genomes based on alternative points of view may help advance our understanding of the delicate relationships of organisms. Results We have developed a proteome-based method for classifying microbial species. This classification method uses a set of probes comprising short, highly conserved amino acid sequences. For each genome, in silico translation is performed to obtained its proteome, based on which a probe-set frequency pattern is generated. Then, the probe-set frequency patterns are used to cluster the proteomes/genomes. Conclusions Features of the proposed method include a high running speed in challenge of a large number of genomes, and high applicability for classifying organisms with incomplete genome sequences. Moreover, the probe-set clustering method is sensitive to the metabolic phenotypic similarities/differences among species and is thus supposed potential for the classification or differentiation of closely-related organisms. PMID:22537274

  17. Genome and proteome analysis of 7-7-1, a flagellotropic phage infecting Agrobacterium sp H13-3

    PubMed Central

    2012-01-01

    Background The flagellotropic phage 7-7-1 infects motile cells of Agrobacterium sp H13-3 by attaching to and traveling along the rotating flagellar filament to the secondary receptor at the base, where it injects its DNA into the host cell. Here we describe the complete genomic sequence of 69,391 base pairs of this unusual bacteriophage. Methods The sequence of the 7-7-1 genome was determined by pyro(454)sequencing to a coverage of 378-fold. It was annotated using MyRAST and a variety of internet resources. The structural proteome was analyzed by SDS-PAGE coupled electrospray ionization-tandem mass spectrometry (MS/MS). Results Sequence annotation and a structural proteome analysis revealed 127 open reading frames, 84 of which are unique. In six cases 7-7-1 proteins showed sequence similarity to proteins from the virulent Burkholderia myovirus BcepB1A. Unique features of the 7-7-1 genome are the physical separation of the genes encoding the small (orf100) and large (orf112) subunits of the DNA packaging complex and the apparent lack of a holin-lysin cassette. Proteomic analysis revealed the presence of 24 structural proteins, five of which were identified as baseplate (orf7), putative tail fibre (orf102), portal (orf113), major capsid (orf115) and tail sheath (orf126) proteins. In the latter case, the N-terminus was removed during capsid maturation, probably by a putative prohead protease (orf114). PMID:22650361

  18. The Karyote physico-chemical genomic, proteomic, metabolic cell modeling system.

    PubMed

    Ortoleva, P; Berry, E; Brun, Y; Fan, J; Fontus, M; Hubbard, K; Jaqaman, K; Jarymowycz, L; Navid, A; Sayyed-Ahmad, A; Shreif, Z; Stanley, F; Tuncay, K; Weitzke, E; Wu, L-C

    2003-01-01

    Modeling approaches to the dynamics of a living cell are presented that are strongly based on its underlying physical and chemical processes and its hierarchical spatio-temporal organization. Through the inclusion of a broad spectrum of processes and a rigorous analysis of the multiple scale nature of cellular dynamics, we are attempting to advance cell modeling and its applications. The presentation focuses on our cell modeling system, which integrates data archiving and quantitative physico-chemical modeling and information theory to provide a seamless approach to the modeling/data analysis endeavor. Thereby the rapidly growing mess of genomic, proteomic, metabolic, and cell physiological data can be automatically used to develop and calibrate a predictive cell model. The discussion focuses on the Karyote cell modeling system and an introduction to the CellX and VirusX models. The Karyote software system integrates three elements: (1) a model-building and data archiving module that allows one to define a cell type to be modeled through its reaction network, structure, and transport processes as well as to choose the surrounding medium and other parameters of the phenomenon to be modeled; (2) a genomic, proteomic, metabolic cell simulator that solves the equations of metabolic reaction, transcription/translation polymerization and the exchange of molecules between parts of the cell and with the surrounding medium; and (3) an information theory module (ITM) that automates model calibration and development, and integrates a variety of data types with the cell dynamic computations. In Karyote, reactions may be fast (equilibrated) or slow (finite rate), and the special effects of enzymes and other minority species yielding steady-state cycles of arbitrary complexities are accounted for. These features of the dynamics are handled via rigorous multiple scale analysis. A user interface allows for an automated generation and solution of the equations of multiple timescale

  19. Tomato functional genomics database (TFGD): a comprehensive collection and analysis package for tomato functional genomics

    USDA-ARS?s Scientific Manuscript database

    Tomato Functional Genomics Database (TFGD; http://ted.bti.cornell.edu) provides a comprehensive systems biology resource to store, mine, analyze, visualize and integrate large-scale tomato functional genomics datasets. The database is expanded from the previously described Tomato Expression Database...

  20. Proteomics of ovarian cancer: functional insights and clinical applications

    SciTech Connect

    Elzek, Mohamed A.; Rodland, Karin D.

    2015-03-04

    In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification of aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.

  1. Proteomics of ovarian cancer: functional insights and clinical applications

    DOE PAGES

    Elzek, Mohamed A.; Rodland, Karin D.

    2015-03-04

    In the past decade, there has been an increasing interest in applying proteomics to assist in understanding the pathogenesis of ovarian cancer, elucidating the mechanism of drug resistance, and in the development of biomarkers for early detection of ovarian cancer. Although ovarian cancer is a spectrum of different diseases, the strategies for diagnosis and treatment with surgery and adjuvant therapy are similar across ovarian cancer types, increasing the general applicability of discoveries made through proteomics research. While proteomic experiments face many difficulties which slow the pace of clinical applications, recent advances in proteomic technology contribute significantly to the identification ofmore » aberrant proteins and networks which can serve as targets for biomarker development and individualized therapies. This review provides a summary of the literature on proteomics’ contributions to ovarian cancer research and highlights the current issues, future directions, and challenges. In conclusion, we propose that protein-level characterization of primary lesion in ovarian cancer can decipher the mystery of this disease, improve diagnostic tools, and lead to more effective screening programs.« less

  2. Comparative proteomic analyses of the nuclear envelope and pore complex suggests a wide range of heretofore unexpected functions.

    PubMed

    Batrakou, Dzmitry G; Kerr, Alastair R W; Schirmer, Eric C

    2009-02-15

    Since the discovery of several inherited diseases linked to the nuclear envelope the number of functions ascribed to this subcellular organelle has skyrocketed. However the molecular pathways underlying these functions are not clear in most cases, perhaps because of missing components. Several recent proteomic analyses of the nuclear envelope and nuclear pore complex proteomes have yielded not only enough missing components to potentially elucidate these pathways, but suggest an exponentially greater number of functions at the nuclear periphery than ever imagined. Many of these functions appear to derive from recapitulation of pathways utilized at the plasma membrane and from other membrane systems. Additionally, many proteins identified in the comparative nuclear envelope studies have sequence characteristics suggesting that they might also contribute to nuclear pore complex functions. In particular, the striking enrichment for proteins in the nuclear envelope fractions that carry phenylalanine-glycine (FG) repeats may be significant for the mechanism of nuclear transport. In retrospect, these findings are only surprising in context of the notion held for many years that the nuclear envelope was only a barrier protecting the genome. In fact, it is arguably the most complex membrane organelle in the cell.

  3. Establishing Research Strategies, Methodologies and Technologies to Link Genomics and Proteomics to Seagrass Productivity, Community Metabolism, and Ecosystem Carbon Fluxes

    PubMed Central

    Mazzuca, Silvia; Björk, M.; Beer, S.; Felisberto, P.; Gobert, S.; Procaccini, G.; Runcie, J.; Silva, J.; Borges, A. V.; Brunet, C.; Buapet, P.; Champenois, W.; Costa, M. M.; D’Esposito, D.; Gullström, M.; Lejeune, P.; Lepoint, G.; Olivé, I.; Rasmusson, L. M.; Richir, J.; Ruocco, M.; Serra, I. A.; Spadafora, A.; Santos, Rui

    2013-01-01

    A complete understanding of the mechanistic basis of marine ecosystem functioning is only possible through integrative and interdisciplinary research. This enables the prediction of change and possibly the mitigation of the consequences of anthropogenic impacts. One major aim of the European Cooperation in Science and Technology (COST) Action ES0609 “Seagrasses productivity. From genes to ecosystem management,” is the calibration and synthesis of various methods and the development of innovative techniques and protocols for studying seagrass ecosystems. During 10 days, 20 researchers representing a range of disciplines (molecular biology, physiology, botany, ecology, oceanography, and underwater acoustics) gathered at The Station de Recherches Sous-marines et Océanographiques (STARESO, Corsica) to study together the nearby Posidonia oceanica meadow. STARESO is located in an oligotrophic area classified as “pristine site” where environmental disturbances caused by anthropogenic pressure are exceptionally low. The healthy P. oceanica meadow, which grows in front of the research station, colonizes the sea bottom from the surface to 37 m depth. During the study, genomic and proteomic approaches were integrated with ecophysiological and physical approaches with the aim of understanding changes in seagrass productivity and metabolism at different depths and along daily cycles. In this paper we report details on the approaches utilized and we forecast the potential of the data that will come from this synergistic approach not only for P. oceanica but for seagrasses in general. PMID:23515425

  4. A clinically feasible multiplex proteomic immunoassay as a novel functional diagnostic for pancreatic ductal adenocarcinoma

    PubMed Central

    Lim, Kian-Huat; Langley, Emma; Gao, Feng; Luo, Jingqin; Li, Lin; Meyer, Gary; Kim, Phillip; Singh, Sharat; Kushnir, Vladamir M.; Early, Dayna S.; Mullady, Daniel K.; Edmundowicz, Steven A.; Wani, Sachin; Murad, Faris M.; Cao, Dengfeng; Azar, Riad R.; Wang-Gillam, Andrea

    2017-01-01

    To date, targeted therapy for pancreatic ductal adenocarcinoma (PDAC) remains largely unsuccessful in the clinic. Current genomics-based technologies are unable to reflect the quantitative, dynamic signaling changes in the tumor, and require larger tumor samples that are difficult to obtain in PDAC patients. Therefore, a highly sensitive functional tool that can reliably and comprehensively inform intra-tumoral signaling events is direly needed to guide treatment decision. We tested the utility of a highly sensitive proteomics-based functional diagnostic platform, Collaborative Enzyme Enhanced Reactive-immunoassay (CEERTM), on fine-needle aspiration (FNA) samples obtained from 102 patients with radiographically-evident pancreatic tumors. Two FNA passes were collected from each patient, hybridized to customized chips coated with an array of capture antibodies, and detected using two enzyme-conjugated antibodies which emit quantifiable signals. We demonstrate that this technique is highly sensitive in detecting total and phosphorylated forms of multiple signaling molecules in FNA specimens, with reasonable correlation of marker intensities between two different FNA passes. Notably, signals of several markers were significantly higher in PDAC compared to non-cancerous samples. In PDAC samples, we found high total c-Met signal to be associated with poor survival, and confirmed this finding using an independent PDAC tissue microarray. PMID:28445954

  5. Tracing the origin of functional and conserved domains in the human proteome: implications for protein evolution at the modular level.

    PubMed

    Pal, Lipika R; Guda, Chittibabu

    2006-11-07

    The functional repertoire of the human proteome is an incremental collection of functions accomplished by protein domains evolved along the Homo sapiens lineage. Therefore, knowledge on the origin of these functionalities provides a better understanding of the domain and protein evolution in human. The lack of proper comprehension about such origin has impelled us to study the evolutionary origin of human proteome in a unique way as detailed in this study. This study reports a unique approach for understanding the evolution of human proteome by tracing the origin of its constituting domains hierarchically, along the Homo sapiens lineage. The uniqueness of this method lies in subtractive searching of functional and conserved domains in the human proteome resulting in higher efficiency of detecting their origins. From these analyses the nature of protein evolution and trends in domain evolution can be observed in the context of the entire human proteome data. The method adopted here also helps delineate the degree of divergence of functional families occurred during the course of evolution. This approach to trace the evolutionary origin of functional domains in the human proteome facilitates better understanding of their functional versatility as well as provides insights into the functionality of hypothetical proteins present in the human proteome. This work elucidates the origin of functional and conserved domains in human proteins, their distribution along the Homo sapiens lineage, occurrence frequency of different domain combinations and proteome-wide patterns of their distribution, providing insights into the evolutionary solution to the increased complexity of the human proteome.

  6. Functional Profiling of Human Fungal Pathogen Genomes

    PubMed Central

    Goranov, Alexi I.; Madhani, Hiten D.

    2015-01-01

    Fungal infections are challenging to diagnose and often difficult to treat, with only a handful of drug classes existing. Understanding the molecular mechanisms by which pathogenic fungi cause human disease is imperative. Here, we discuss how the development and use of genome-scale genetic resources, such as whole-genome knockout collections, can address this unmet need. Using work in Saccharomcyes cerevisiae as a guide, studies of Cryptococcus neoformans and Candida albicans have shown how the challenges of large-scale gene deletion can be overcome, and how such collections can be effectively used to obtain insights into mechanisms of pathogenesis. We conclude that, with concerted efforts, full genome-wide functional analysis of human fungal pathogen genomes is within reach. PMID:25377143

  7. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences.

    PubMed

    Meinicke, Peter

    2009-09-02

    Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address.

  8. UFO: a web server for ultra-fast functional profiling of whole genome protein sequences

    PubMed Central

    Meinicke, Peter

    2009-01-01

    Background Functional profiling is a key technique to characterize and compare the functional potential of entire genomes. The estimation of profiles according to an assignment of sequences to functional categories is a computationally expensive task because it requires the comparison of all protein sequences from a genome with a usually large database of annotated sequences or sequence families. Description Based on machine learning techniques for Pfam domain detection, the UFO web server for ultra-fast functional profiling allows researchers to process large protein sequence collections instantaneously. Besides the frequencies of Pfam and GO categories, the user also obtains the sequence specific assignments to Pfam domain families. In addition, a comparison with existing genomes provides dissimilarity scores with respect to 821 reference proteomes. Considering the underlying UFO domain detection, the results on 206 test genomes indicate a high sensitivity of the approach. In comparison with current state-of-the-art HMMs, the runtime measurements show a considerable speed up in the range of four orders of magnitude. For an average size prokaryotic genome, the computation of a functional profile together with its comparison typically requires about 10 seconds of processing time. Conclusion For the first time the UFO web server makes it possible to get a quick overview on the functional inventory of newly sequenced organisms. The genome scale comparison with a large number of precomputed profiles allows a first guess about functionally related organisms. The service is freely available and does not require user registration or specification of a valid email address. PMID:19725959

  9. Green systems biology - From single genomes, proteomes and metabolomes to ecosystems research and biotechnology.

    PubMed

    Weckwerth, Wolfram

    2011-12-10

    biochemical networks up to whole species populations. This process relies on the development of new technologies for the analysis of molecular data, especially genomics, metabolomics and proteomics data. The ambitious aim of these non-targeted 'omic' technologies is to extend our understanding beyond the analysis of separated parts of the system, in contrast to traditional reductionistic hypothesis-driven approaches. The consequent integration of genotyping, pheno/morphotyping and the analysis of the molecular phenotype using metabolomics, proteomics and transcriptomics will reveal a novel understanding of plant metabolism and its interaction with the environment. The analysis of single model systems - plants, fungi, animals and bacteria - will finally emerge in the analysis of populations of plants and other organisms and their adaptation to the ecological niche. In parallel, this novel understanding of ecophysiology will translate into knowledge-based approaches in crop plant biotechnology and marker- or genome-assisted breeding approaches. In this review the foundations of green systems biology are described and applications in ecosystems research are presented. Knowledge exchange of ecosystems research and green biotechnology merging into green systems biology is anticipated based on the principles of natural variation, biodiversity and the genotype-phenotype environment relationship as the fundamental drivers of ecology and evolution. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Genomic and Proteomic Analyses of the Agarolytic System Expressed by Saccharophagus degradans 2-40†

    PubMed Central

    Ekborg, Nathan A.; Taylor, Larry E.; Longmire, Atkinson G.; Henrissat, Bernard; Weiner, Ronald M.; Hutcheson, Steven W.

    2006-01-01

    Saccharophagus degradans 2-40 (formerly Microbulbifer degradans 2-40) is a marine gamma-subgroup proteobacterium capable of degrading many complex polysaccharides, such as agar. While several agarolytic systems have been characterized biochemically, the genetics of agarolytic systems have been only partially determined. By use of genomic, proteomic, and genetic approaches, the components of the S. degradans 2-40 agarolytic system were identified. Five agarases were identified in the S. degradans 2-40 genome. Aga50A and Aga50D include GH50 domains. Aga86C and Aga86E contain GH86 domains, whereas Aga16B carries a GH16 domain. Novel family 6 carbohydrate binding modules (CBM6) were identified in Aga16B and Aga86E. Aga86C has an amino-terminal acylation site, suggesting that it is surface associated. Aga16B, Aga86C, and Aga86E were detected by mass spectrometry in agarolytic fractions obtained from culture filtrates of agar-grown cells. Deletion analysis revealed that aga50A and aga86E were essential for the metabolism of agarose. Aga16B was shown to endolytically degrade agarose to release neoagarotetraose, similarly to a β-agarase I, whereas Aga86E was demonstrated to exolytically degrade agarose to form neoagarobiose. The agarolytic system of S. degradans 2-40 is thus predicted to be composed of a secreted endo-acting GH16-dependent depolymerase, a surface-associated GH50-dependent depolymerase, an exo-acting GH86-dependent agarase, and an α-neoagarobiose hydrolase to release galactose from agarose. PMID:16672483

  11. Mining the Giardia genome and proteome for conserved and unique basal body proteins

    PubMed Central

    Lauwaet, Tineke; Smith, Alias J.; Reiner, David S.; Romijn, Edwin P.; Wong, Catherine C. L.; Davids, Barbara J.; Shah, Sheila A.; Yates, John R.; Gillin, Frances D.

    2015-01-01

    Giardia lamblia is a flagellated protozoan parasite and a major cause of diarrhea in humans. Its microtubular cytoskeleton mediates trophozoite motility, attachment and cytokinesis, and is characterized by an attachment disk and eight flagella that are each nucleated in a basal body. To date, only 10 giardial basal body proteins have been identified, including universal signaling proteins that are important for regulating mitosis or differentiation. In this study, we have exploited bioinformatics and proteomic approaches to identify new Giardia basal body proteins and confocal microscopy to confirm their localization in interphase trophozoites. This approach identified 75 homologs of conserved basal body proteins in the genome including 65 not previously known to be associated with Giardia basal bodies. Thirteen proteins were confirmed to co-localize with centrin to the Giardia basal bodies. We also demonstrate that most basal body proteins localize to additional cytoskeletal structures in interphase trophozoites. This might help to explain the roles of the four pairs of flagella and Giardia-specific organelles in motility and differentiation. A deeper understanding of the composition of the Giardia basal bodies will contribute insights into the complex signaling pathways that regulate its unique cytoskeleton and the biological divergence of these conserved organelles. PMID:21723868

  12. Schizophrenia genomics and proteomics: are we any closer to biomarker discovery?

    PubMed Central

    2009-01-01

    The field of proteomics has made leaps and bounds in the last 10 years particularly in the fields of oncology and cardiovascular medicine. In comparison, neuroproteomics is still playing catch up mainly due to the relative complexity of neurological disorders. Schizophrenia is one such disorder, believed to be the results of multiple factors both genetic and environmental. Affecting over 2 million people in the US alone, it has become a major clinical and public health concern worldwide. This paper gives an update of schizophrenia biomarker research as reviewed by Lakhan in 2006 and gives us a rundown of the progress made during the last two years. Several studies demonstrate the potential of cerebrospinal fluid as a source of neuro-specific biomarkers. Genetic association studies are making headway in identifying candidate genes for schizophrenia. In addition, metabonomics, bioinformatics, and neuroimaging techniques are aiming to complete the picture by filling in knowledge gaps. International cooperation in the form of genomics and protein databases and brain banks is facilitating research efforts. While none of the recent developments described here in qualifies as biomarker discovery, many are likely to be stepping stones towards that goal. PMID:19128481

  13. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function

    SciTech Connect

    Pohludka, Michal; Simeckova, Katerina; Vohanka, Jaroslav; Yilma, Petr; Novak, Petr; Krause, Michael W.; Kostrouchova, Marta; Kostrouch, Zdenek

    2008-09-12

    Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.

  14. Biotechnology and vaccines: application of functional genomics to Neisseria meningitidis and other bacterial pathogens.

    PubMed

    Serruto, Davide; Adu-Bobie, Jeannette; Capecchi, Barbara; Rappuoli, Rino; Pizza, Mariagrazia; Masignani, Vega

    2004-09-30

    Since its introduction, vaccinology has been very effective in preventing infectious diseases. However, in several cases, the conventional approach to identify protective antigens, based on biochemical, immunological and microbiological methods, has failed to deliver successful vaccine candidates against major bacterial pathogens. The recent development of powerful biotechnological tools applied to genome-based approaches has revolutionized vaccine development, biological research and clinical diagnostics. The availability of a genome provides an inclusive virtual catalogue of all the potential antigens from which it is possible to select the molecules that are likely to be more effective. Here, we describe the use of "reverse vaccinology", which has been successful in the identification of potential vaccines candidates against Neisseria meningitidis serogroup B and review the use of functional genomics approaches as DNA microarrays, proteomics and comparative genome analysis for the identification of virulence factors and novel vaccine candidates. In addition, we describe the potential of these powerful technologies in understanding the pathogenesis of various bacteria.

  15. Functional genomics of root growth and development in Arabidopsis.

    PubMed

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N

    2009-04-01

    Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics, and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal.

  16. Subcellular proteomics in neuroscience.

    PubMed

    Li, Ka Wan; Smit, August B

    2008-05-01

    The brain is the most complex and dynamically organized organ of the human body, with a high degree of computation capability enabling the execution of a wide spectrum of physiological processes and behaviors. In the past decades a large number of genomics studies have been undertaken to investigate brain function and brain disorders, but despite these efforts many of the underlying molecular mechanisms still remain largely unknown. The implementation of mass spectrometry based quantitative proteomics in recent years enabled to tap into condition-specific protein trafficking and protein interaction that are the key to organelle proteome (dys)function. The technology for neuroproteomics is still evolving; currently there are no standardized protocols. In this review we describe the most commonly used methods to prepare brain subcellular fractions suitable for proteomics analysis, and highlight the various approaches for quantitative neuroproteomics.

  17. Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis.

    PubMed

    Jiang, Shu-Ye; Ramachandran, Srinivasan

    2010-12-01

    Rice is the first cereal genome to be completely sequenced. Since the completion of its genome sequencing, considerable progress has been made in multiple areas including the whole genome annotation, gene expression profiling, mutant collection, etc. Here, we summarize the current status of rice genome annotation and review the methodology of assigning biological functions to hundreds of thousands of rice genes as well as discuss the major limitations and the future perspective in rice functional genomics. Available data analysis shows that the rice genome encodes around 32,000 protein-coding genes. Expression analysis revealed at least 31,000 genes with expression evidence from full-length cDNA/EST collection or other transcript profiling. In addition, we have summarized various strategies to generate mutant population including natural, physical, chemical, T-DNA, transposon/retrotransposon or gene silencing based mutagenesis. Currently, more than 1 million of mutants have been generated and 27,551 of them have their flanking sequence tags. To assign biological functions to hundreds of thousands of rice genes, global co-operations are required, various genetic resources should be more easily accessible and diverse data from transcriptomics, proteomics, epigenetics, comparative genomics and bioinformatics should be integrated to better understand the functions of these genes and their regulatory mechanisms.

  18. Cell wall proteomics contributes to explore the functional proteins of Brachypodium distachyon grains.

    PubMed

    Fang, Xianping; Chen, Wenyue; Ma, Huasheng

    2015-07-01

    The plant cell wall is the first barrier in response to external stimuli and cell wall proteins (CWPs) can play an important role in the modulation of plant growth and development. In the past 10 years, the plant cell wall proteomics has increasingly become a very active research filed, which provides a broader understanding of CWPs for people. The cell wall proteome of Arabidopsis, rice, and other model plants has begun to take shape, and proteomic technology has become an effective way to identify the candidate functional CWPs in large scale. The challenging work of Francin-Allami et al. (Proteomics 2015, 15, 2296-2306) is a vital step toward building the most extensive cell wall proteome of a monocot species. They identified 299 cell wall proteins in Brachypodium distachyon grains, and also compared the grain cell wall proteome with those of B. distachyon culms and leaves, which provides a new perspective for further explaining the plant cell wall structures and remodeling mechanism.

  19. Integrating highly quantitative proteomics and genome-scale metabolic modeling to study pH adaptation in the human pathogen Enterococcus faecalis.

    PubMed

    Großeholz, Ruth; Koh, Ching-Chiek; Veith, Nadine; Fiedler, Tomas; Strauss, Madlen; Olivier, Brett; Collins, Ben C; Schubert, Olga T; Bergmann, Frank; Kreikemeyer, Bernd; Aebersold, Ruedi; Kummer, Ursula

    2016-01-01

    Genome-scale metabolic models represent the entirety of metabolic reactions of an organism based on the annotation of the respective genome. These models commonly allow all reactions to proceed concurrently, disregarding the fact that at no point all proteins will be present in a cell. The metabolic reaction space can be constrained to a more physiological state using experimentally obtained information on enzyme abundances. However, high-quality, genome-wide protein measurements have been challenging and typically transcript abundances have been used as a surrogate for protein measurements. With recent developments in mass spectrometry-based proteomics, exemplified by SWATH-MS, the acquisition of highly quantitative proteome-wide data at reasonable throughput has come within reach. Here we present methodology to integrate such proteome-wide data into genome-scale models. We applied this methodology to study cellular changes in Enterococcus faecalis during adaptation to low pH. Our results indicate reduced proton production in the central metabolism and decreased membrane permeability for protons due to different membrane composition. We conclude that proteomic data constrain genome-scale models to a physiological state and, in return, genome-scale models are useful tools to contextualize proteomic data.

  20. An evolutionary classification of genomic function.

    PubMed

    Graur, Dan; Zheng, Yichen; Azevedo, Ricardo B R

    2015-01-28

    The pronouncements of the ENCODE Project Consortium regarding "junk DNA" exposed the need for an evolutionary classification of genomic elements according to their selected-effect function. In the classification scheme presented here, we divide the genome into "functional DNA," that is, DNA sequences that have a selected-effect function, and "rubbish DNA," that is, sequences that do not. Functional DNA is further subdivided into "literal DNA" and "indifferent DNA." In literal DNA, the order of nucleotides is under selection; in indifferent DNA, only the presence or absence of the sequence is under selection. Rubbish DNA is further subdivided into "junk DNA" and "garbage DNA." Junk DNA neither contributes to nor detracts from the fitness of the organism and, hence, evolves under selective neutrality. Garbage DNA, on the other hand, decreases the fitness of its carriers. Garbage DNA exists in the genome only because natural selection is neither omnipotent nor instantaneous. Each of these four functional categories can be 1) transcribed and translated, 2) transcribed but not translated, or 3) not transcribed. The affiliation of a DNA segment to a particular functional category may change during evolution: Functional DNA may become junk DNA, junk DNA may become garbage DNA, rubbish DNA may become functional DNA, and so on; however, determining the functionality or nonfunctionality of a genomic sequence must be based on its present status rather than on its potential to change (or not to change) in the future. Changes in functional affiliation are divided into pseudogenes, Lazarus DNA, zombie DNA, and Jekyll-to-Hyde DNA.

  1. An Evolutionary Classification of Genomic Function

    PubMed Central

    Graur, Dan; Zheng, Yichen; Azevedo, Ricardo B.R.

    2015-01-01

    The pronouncements of the ENCODE Project Consortium regarding “junk DNA” exposed the need for an evolutionary classification of genomic elements according to their selected-effect function. In the classification scheme presented here, we divide the genome into “functional DNA,” that is, DNA sequences that have a selected-effect function, and “rubbish DNA,” that is, sequences that do not. Functional DNA is further subdivided into “literal DNA” and “indifferent DNA.” In literal DNA, the order of nucleotides is under selection; in indifferent DNA, only the presence or absence of the sequence is under selection. Rubbish DNA is further subdivided into “junk DNA” and “garbage DNA.” Junk DNA neither contributes to nor detracts from the fitness of the organism and, hence, evolves under selective neutrality. Garbage DNA, on the other hand, decreases the fitness of its carriers. Garbage DNA exists in the genome only because natural selection is neither omnipotent nor instantaneous. Each of these four functional categories can be 1) transcribed and translated, 2) transcribed but not translated, or 3) not transcribed. The affiliation of a DNA segment to a particular functional category may change during evolution: Functional DNA may become junk DNA, junk DNA may become garbage DNA, rubbish DNA may become functional DNA, and so on; however, determining the functionality or nonfunctionality of a genomic sequence must be based on its present status rather than on its potential to change (or not to change) in the future. Changes in functional affiliation are divided into pseudogenes, Lazarus DNA, zombie DNA, and Jekyll-to-Hyde DNA. PMID:25635041

  2. Proteome-wide analysis of functional divergence in bacteria: exploring a host of ecological adaptations.

    PubMed

    Caffrey, Brian E; Williams, Tom A; Jiang, Xiaowei; Toft, Christina; Hokamp, Karsten; Fares, Mario A

    2012-01-01

    Functional divergence is the process by which new genes and functions originate through the modification of existing ones. Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria.

  3. Functional Proteomic And Structural Insights Into Molecular Recognition in the Nitrilase Family Enzymes

    SciTech Connect

    Barglow, K.T.; Saikatendu, K.; Bracey, M.H.; Huey, R.; Morris, G.M.; Olson, A.J.; Stevens, R.C.; Cravatt, B.F.

    2009-05-11

    Nitrilases are a large and diverse family of nonpeptidic C-N hydrolases. The mammalian genome encodes eight nitrilase enzymes, several of which remain poorly characterized. Prominent among these are nitrilase-1 (Nit1) and nitrilase-2 (Nit2), which, despite having been shown to exert effects on cell growth and possibly serving as tumor suppressor genes, are without known substrates or selective inhibitors. In previous studies, we identified several nitrilases, including Nit1 and Nit2, as targets for dipeptide-chloroacetamide activity-based proteomics probes. Here, we have used these probes, in combination with high-resolution crystallography and molecular modeling, to systematically map the active site of Nit2 and identify residues involved in molecular recognition. We report the 1.4 {angstrom} crystal structure of mouse Nit2 and use this structure to identify residues that discriminate probe labeling between the Nit1 and Nit2 enzymes. Interestingly, some of these residues are conserved across all vertebrate Nit2 enzymes and, conversely, not found in any vertebrate Nit1 enzymes, suggesting that they are key discriminators of molecular recognition between these otherwise highly homologous enzymes. Our findings thus point to a limited set of active site residues that establish distinct patterns of molecular recognition among nitrilases and provide chemical probes to selectively perturb the function of these enzymes in biological systems.

  4. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response

    DOE PAGES

    Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.; ...

    2015-04-08

    Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σRPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequencemore » GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σRPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.« less

  5. Discovery metabolite profiling--forging functional connections between the proteome and metabolome.

    PubMed

    Saghatelian, Alan; Cravatt, Benjamin F

    2005-08-19

    Of primary interest for every enzyme is the identification of its physiological substrates. However, the vast structural diversity of endogenous metabolites, coupled with the overlapping activities of numerous enzymes, makes it difficult to deduce the identity of natural substrates for a given enzyme based on in vitro experiments. To address this challenge, we recently introduced an LC-MS based analytical method termed discovery metabolite profiling (DMP) to evaluate the global metabolic effects of enzyme inactivation in vivo. We have applied DMP to study mice lacking the enzyme fatty acid amide hydrolase (FAAH), which degrades the endocannabinoid family of signaling lipids. DMP identified several previously uncharacterized FAAH substrates, including a structurally novel class of brain lipids that represent conjugates of very long chain fatty acids with the amino acid derivative taurine [N-acyl taurines (NATs)]. These findings show that DMP can establish direct connections between the proteome and metabolome and thus offers a powerful strategy to assign physiological functions to enzymes in the post-genomic era.

  6. Rhodopseudomonas palustris CGA010 Proteome Implicates Extracytoplasmic Function Sigma Factor in Stress Response

    SciTech Connect

    Allen, Michael S.; Hurst, Gregory B.; Lu, Tse-Yuan S.; Perry, Leslie M.; Pan, Chongle; Lankford, Patricia K.; Pelletier, Dale A.

    2015-04-08

    Rhodopseudomonas palustris encodes 16 extracytoplasmic function (ECF) σ factors. In this paper, to begin to investigate the regulatory network of one of these ECF σ factors, the whole proteome of R. palustris CGA010 was quantitatively analyzed by tandem mass spectrometry from cultures episomally expressing the ECF σRPA4225 (ecfT) versus a WT control. Among the proteins with the greatest increase in abundance were catalase KatE, trehalose synthase, a DPS-like protein, and several regulatory proteins. Alignment of the cognate promoter regions driving expression of several upregulated proteins suggested a conserved binding motif in the -35 and -10 regions with the consensus sequence GGAAC-18N-TT. Additionally, the putative anti-σ factor RPA4224, whose gene is contained in the same predicted operon as RPA4225, was identified as interacting directly with the predicted response regulator RPA4223 by mass spectrometry of affinity-isolated protein complexes. Furthermore, another gene (RPA4226) coding for a protein that contains a cytoplasmic histidine kinase domain is located immediately upstream of RPA4225. The genomic organization of orthologs for these four genes is conserved in several other strains of R. palustris as well as in closely related α-Proteobacteria. Finally, taken together, these data suggest that ECF σRPA4225 and the three additional genes make up a sigma factor mimicry system in R. palustris.

  7. Open chromatin reveals the functional maize genome

    USDA-ARS?s Scientific Manuscript database

    Every cellular process mediated through nuclear DNA must contend with chromatin. As results from ENCODE show, open chromatin assays can efficiently integrate across diverse regulatory elements, revealing functional non-coding genome. In this study, we use a MNase hypersensitivity assay to discover o...

  8. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes.

    PubMed

    Simmons, Shaneka S; Isokpehi, Raphael D; Brown, Shyretha D; McAllister, Donee L; Hall, Charnia C; McDuffy, Wanaki M; Medley, Tamara L; Udensi, Udensi K; Rajnarayanan, Rajendram V; Ayensu, Wellington K; Cohly, Hari H P

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  9. Functional Annotation Analytics of Rhodopseudomonas palustris Genomes

    PubMed Central

    Simmons, Shaneka S.; Isokpehi, Raphael D.; Brown, Shyretha D.; McAllister, Donee L.; Hall, Charnia C.; McDuffy, Wanaki M.; Medley, Tamara L.; Udensi, Udensi K.; Rajnarayanan, Rajendram V.; Ayensu, Wellington K.; Cohly, Hari H.P.

    2011-01-01

    Rhodopseudomonas palustris, a nonsulphur purple photosynthetic bacteria, has been extensively investigated for its metabolic versatility including ability to produce hydrogen gas from sunlight and biomass. The availability of the finished genome sequences of six R. palustris strains (BisA53, BisB18, BisB5, CGA009, HaA2 and TIE-1) combined with online bioinformatics software for integrated analysis presents new opportunities to determine the genomic basis of metabolic versatility and ecological lifestyles of the bacteria species. The purpose of this investigation was to compare the functional annotations available for multiple R. palustris genomes to identify annotations that can be further investigated for strain-specific or uniquely shared phenotypic characteristics. A total of 2,355 protein family Pfam domain annotations were clustered based on presence or absence in the six genomes. The clustering process identified groups of functional annotations including those that could be verified as strain-specific or uniquely shared phenotypes. For example, genes encoding water/glycerol transport were present in the genome sequences of strains CGA009 and BisB5, but absent in strains BisA53, BisB18, HaA2 and TIE-1. Protein structural homology modeling predicted that the two orthologous 240 aa R. palustris aquaporins have water-specific transport function. Based on observations in other microbes, the presence of aquaporin in R. palustris strains may improve freeze tolerance in natural conditions of rapid freezing such as nitrogen fixation at low temperatures where access to liquid water is a limiting factor for nitrogenase activation. In the case of adaptive loss of aquaporin genes, strains may be better adapted to survive in conditions of high-sugar content such as fermentation of biomass for biohydrogen production. Finally, web-based resources were developed to allow for interactive, user-defined selection of the relationship between protein family annotations and the R

  10. Genome-Based Bioinformatic Selection of Chromosomal Bacillus anthracis Putative Vaccine Candidates Coupled with Proteomic Identification of Surface-Associated Antigens

    PubMed Central

    Ariel, N.; Zvi, A.; Makarova, K. S.; Chitlaru, T.; Elhanany, E.; Velan, B.; Cohen, S.; Friedlander, A. M.; Shafferman, A.

    2003-01-01

    Bacillus anthracis (Ames strain) chromosome-derived open reading frames (ORFs), predicted to code for surface exposed or virulence related proteins, were selected as B. anthracis-specific vaccine candidates by a multistep computational screen of the entire draft chromosome sequence (February 2001 version, 460 contigs, The Institute for Genomic Research, Rockville, Md.). The selection procedure combined preliminary annotation (sequence similarity searches and domain assignments), prediction of cellular localization, taxonomical and functional screen and additional filtering criteria (size, number of paralogs). The reductive strategy, combined with manual curation, resulted in selection of 240 candidate ORFs encoding proteins with putative known function, as well as 280 proteins of unknown function. Proteomic analysis of two-dimensional gels of a B. anthracis membrane fraction, verified the expression of some gene products. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analyses allowed identification of 38 spots cross-reacting with sera from B. anthracis immunized animals. These spots were found to represent eight in vivo immunogens, comprising of EA1, Sap, and 6 proteins whose expression and immunogenicity was not reported before. Five of these 8 immunogens were preselected by the bioinformatic analysis (EA1, Sap, 2 novel SLH proteins and peroxiredoxin/AhpC), as vaccine candidates. This study demonstrates that a combination of the bioinformatic and proteomic strategies may be useful in promoting the development of next generation anthrax vaccine. PMID:12874336

  11. Application of an improved proteomics method for abundant protein cleanup: molecular and genomic mechanisms study in plant defense.

    PubMed

    Zhang, Yixiang; Gao, Peng; Xing, Zhuo; Jin, Shumei; Chen, Zhide; Liu, Lantao; Constantino, Nasie; Wang, Xinwang; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2013-11-01

    High abundance proteins like ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco) impose a consistent challenge for the whole proteome characterization using shot-gun proteomics. To address this challenge, we developed and evaluated Polyethyleneimine Assisted Rubisco Cleanup (PARC) as a new method by combining both abundant protein removal and fractionation. The new approach was applied to a plant insect interaction study to validate the platform and investigate mechanisms for plant defense against herbivorous insects. Our results indicated that PARC can effectively remove Rubisco, improve the protein identification, and discover almost three times more differentially regulated proteins. The significantly enhanced shot-gun proteomics performance was translated into in-depth proteomic and molecular mechanisms for plant insect interaction, where carbon re-distribution was used to play an essential role. Moreover, the transcriptomic validation also confirmed the reliability of PARC analysis. Finally, functional studies were carried out for two differentially regulated genes as revealed by PARC analysis. Insect resistance was induced by over-expressing either jacalin-like or cupin-like genes in rice. The results further highlighted that PARC can serve as an effective strategy for proteomics analysis and gene discovery.

  12. RNAi for functional genomics in plants.

    PubMed

    McGinnis, Karen M

    2010-03-01

    RNAi refers to several different types of gene silencing mediated by small, dsRNA molecules. Over the course of 20 years, the scientific understanding of RNAi has developed from the initial observation of unexpected expression patterns to a sophisticated understanding of a multi-faceted, evolutionarily conserved network of mechanisms that regulate gene expression in many organisms. It has also been developed as a genetic tool that can be exploited in a wide range of species. Because transgene-induced RNAi has been effective at silencing one or more genes in a wide range of plants, this technology also bears potential as a powerful functional genomics tool across the plant kingdom. Transgene-induced RNAi has indeed been shown to be an effective mechanism for silencing many genes in many organisms, but the results from multiple projects which attempted to exploit RNAi on a genome-wide scale suggest that there is a great deal of variation in the silencing efficacy between transgenic events, silencing targets and silencing-induced phenotype. The results from these projects indicate several important variables that should be considered in experimental design prior to the initiation of functional genomics efforts based on RNAi silencing. In recent years, alternative strategies have been developed for targeted gene silencing, and a combination of approaches may also enhance the use of targeted gene silencing for functional genomics.

  13. Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: An ammonia-oxidizing archaeon from the open ocean

    PubMed Central

    Santoro, Alyson E.; Dupont, Christopher L.; Richter, R. Alex; Craig, Matthew T.; Carini, Paul; McIlvin, Matthew R.; Yang, Youngik; Orsi, William D.; Moran, Dawn M.; Saito, Mak A.

    2015-01-01

    Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name “Candidatus Nitrosopelagicus brevis” str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean. PMID:25587132

  14. Genomic and proteomic characterization of "Candidatus Nitrosopelagicus brevis": an ammonia-oxidizing archaeon from the open ocean.

    PubMed

    Santoro, Alyson E; Dupont, Christopher L; Richter, R Alex; Craig, Matthew T; Carini, Paul; McIlvin, Matthew R; Yang, Youngik; Orsi, William D; Moran, Dawn M; Saito, Mak A

    2015-01-27

    Thaumarchaeota are among the most abundant microbial cells in the ocean, but difficulty in cultivating marine Thaumarchaeota has hindered investigation into the physiological and evolutionary basis of their success. We report here a closed genome assembled from a highly enriched culture of the ammonia-oxidizing pelagic thaumarchaeon CN25, originating from the open ocean. The CN25 genome exhibits strong evidence of genome streamlining, including a 1.23-Mbp genome, a high coding density, and a low number of paralogous genes. Proteomic analysis recovered nearly 70% of the predicted proteins encoded by the genome, demonstrating that a high fraction of the genome is translated. In contrast to other minimal marine microbes that acquire, rather than synthesize, cofactors, CN25 encodes and expresses near-complete biosynthetic pathways for multiple vitamins. Metagenomic fragment recruitment indicated the presence of DNA sequences >90% identical to the CN25 genome throughout the oligotrophic ocean. We propose the provisional name "Candidatus Nitrosopelagicus brevis" str. CN25 for this minimalist marine thaumarchaeon and suggest it as a potential model system for understanding archaeal adaptation to the open ocean.

  15. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis.

    PubMed

    Li, Yan; Zhang, Xiangmin; Deng, Chunhui

    2013-11-07

    Sample preparation is a fundamental step in the proteomics and peptidomics workflow. Due to their good biocompatibility, superparamagnetic property, and high binding capacity, magnetic nanoparticles (MNPs) functionalized with different active moieties have been widely applied in recent years in various sample preparation procedures in proteomics and peptidomics analysis. The magnetic cores of the MNPs facilitate elegant handling using only magnetic devices and their small diameters are advantageous for increasing the sensitivity when using subsequent mass spectrometry (MS) analysis or gel electrophoresis. This review mainly focuses on overviewing present advances in the preparation and application of functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis, including protein digestion, enrichment of low-abundance peptides/proteins and specific enrichment of peptides/proteins with post-translational modifications, such as phosphorylation and glycosylation.

  16. Projection of gene-protein networks to the functional space of the proteome and its application to analysis of organism complexity.

    PubMed

    Kanapin, Alexander A; Mulder, Nicola; Kuznetsov, Vladimir A

    2010-02-10

    We consider the problem of biological complexity via a projection of protein-coding genes of complex organisms onto the functional space of the proteome. The latter can be defined as a set of all functions committed by proteins of an organism. Alternative splicing (AS) allows an organism to generate diverse mature RNA transcripts from a single mRNA strand and thus it could be one of the key mechanisms of increasing of functional complexity of the organism's proteome and a driving force of biological evolution. Thus, the projection of transcription units (TU) and alternative splice-variant (SV) forms onto proteome functional space could generate new types of relational networks (e.g. SV-protein function networks, SFN) and lead to discoveries of novel evolutionarily conservative functional modules. Such types of networks might provide new reliable characteristics of organism complexity and a better understanding of the evolutionary integration and plasticity of interconnection of genome-transcriptome-proteome functions. We use the InterPro and UniProt databases to attribute descriptive features (keywords) to protein sequences. UniProt database includes a controlled and curated vocabulary of specific descriptors or keywords. The keywords have been assigned to a protein sequence via conserved domains or via similarity with annotated sequences. Then we consider the unique combinations of keywords as the protein functional labels (FL), which characterize the biological functions of the given protein and construct the contingency tables and graphs providing the projections of transcription units (TU) and alternative splice-variants (SV) onto all FL of the proteome of a given organism. We constructed SFNs for organisms with different evolutionary history and levels of complexity, and performed detailed statistical parameterization of the networks. The application of the algorithm to organisms with different evolutionary history and level of biological complexity (nematode

  17. The genome sequence and proteome of bacteriophage ΦCPV1 virulent for Clostridium perfringens.

    PubMed

    Volozhantsev, Nikolay V; Verevkin, Vladimir V; Bannov, Vasily A; Krasilnikova, Valentina M; Myakinina, Vera P; Zhilenkov, Eugeni L; Svetoch, Edward A; Stern, Norman J; Oakley, Brian B; Seal, Bruce S

    2011-02-01

    Application of bacteriophages and their lytic enzymes to control Clostridium perfringens is one potential approach to reduce the pathogen on poultry farms and in poultry-processing facilities. Bacteriophages lytic for C. perfringens were isolated from sewage, feces and broiler intestinal contents and ΦCPV1, a virulent bacteriophage, was classified in the family Podoviridae. The purified virus had an icosahedral head and collar of approximately 42nm and 23nm in diameter, respectively, with a structurally complex tail of 37nm lengthwise and a basal plate of 30nm. The ΦCPV1 double-stranded DNA genome was 16,747 base pairs with a GC composition of 30.5%. Twenty-two open reading frames (ORFs) coding for putative peptides containing 30 or more amino acid residues were identified and analyzed in the genome. Amino acid sequences of the predicted proteins from the ΦCPV1 genome ORFs were compared with those from the NCBI database and potential functions of 12 proteins were predicted by sequence homology. Three putative proteins were similar to hypothetical proteins with unknown functions, whereas seven proteins did not have similarity with any known bacteriophage or bacterial proteins. Identified ORFs formed at least four genomic clusters that accounted for predicted proteins involved with replication of the viral DNA, its folding, production of structural components and lytic properties. One bacteriophage genome encoded lysin was predicted to share homology with N-acetylmuramoyl-l-alanine amidases and a second structural lysin was predicted to be a lysozyme-endopeptidase. These enzymes digest peptidoglycan of the bacterial cell wall and could be considered potential therapeutics to control C. perfringens. Published by Elsevier B.V.

  18. Investigation of Yersinia pestis laboratory adaptation through a combined genomics and proteomics approach

    SciTech Connect

    Leiser, Owen P.; Merkley, Eric D.; Clowers, Brian H.; Kaiser, Brooke L. Deatherage; Lin, Andy; Hutchison, Janine R.; Melville, Angela M.; Wagner, David M.; Keim, Paul S.; Foster, Jeff; Kreuzer, Helen W.

    2015-11-24

    Here, the bacterial pathogen Yersinia pestis, the cause of plague in humans and animals, normally has a sylvatic lifestyle, cycling between fleas and mammals. In contrast, laboratory-grown Y. pestis experiences a more constant environment and conditions that it would not normally encounter. The transition from the natural environment to the laboratory results in a vastly different set of selective pressures, and represents what could be considered domestication. Understanding the kinds of adaptations Y. pestis undergoes as it becomes domesticated will contribute to understanding the basic biology of this important pathogen. In this study, we performed a Parallel Serial Passage Experiment (PSPE) to explore the mechanisms by which Y. pestis adapts to laboratory conditions, hypothesizing that cells would undergo significant changes in virulence and nutrient acquisition systems. Two wild strains were serially passaged in 12 independent populations each for ~750 generations, after which each population was analyzed using whole-genome sequencing. We observed considerable parallel evolution in the endpoint populations, detecting multiple independent mutations in ail, pepA, and zwf, suggesting that specific selective pressures are shaping evolutionary responses. Complementary LC-MS-based proteomic data provide physiological context to the observed mutations, and reveal regulatory changes not necessarily associated with specific mutations, including changes in amino acid metabolism, envelope biogenesis, iron storage and acquisition, and a type VI secretion system. Proteomic data support hypotheses generated by genomic data in addition to suggesting future mechanistic studies, indicating that future whole-genome sequencing studies be designed to leverage proteomics as a critical complement.

  19. Functional genomics approaches in parasitic helminths.

    PubMed

    Hagen, J; Lee, E F; Fairlie, W D; Kalinna, B H

    2012-01-01

    As research on parasitic helminths is moving into the post-genomic era, an enormous effort is directed towards deciphering gene function and to achieve gene annotation. The sequences that are available in public databases undoubtedly hold information that can be utilized for new interventions and control but the exploitation of these resources has until recently remained difficult. Only now, with the emergence of methods to genetically manipulate and transform parasitic worms will it be possible to gain a comprehensive understanding of the molecular mechanisms involved in nutrition, metabolism, developmental switches/maturation and interaction with the host immune system. This review focuses on functional genomics approaches in parasitic helminths that are currently used, to highlight potential applications of these technologies in the areas of cell biology, systems biology and immunobiology of parasitic helminths. © 2011 Blackwell Publishing Ltd.

  20. Evolution of complexity in the zebrafish synapse proteome

    PubMed Central

    Bayés, Àlex; Collins, Mark O.; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S.; Emes, Richard D.; Grant, Seth G. N.

    2017-01-01

    The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases. PMID:28252024

  1. Evolution of complexity in the zebrafish synapse proteome.

    PubMed

    Bayés, Àlex; Collins, Mark O; Reig-Viader, Rita; Gou, Gemma; Goulding, David; Izquierdo, Abril; Choudhary, Jyoti S; Emes, Richard D; Grant, Seth G N

    2017-03-02

    The proteome of human brain synapses is highly complex and is mutated in over 130 diseases. This complexity arose from two whole-genome duplications early in the vertebrate lineage. Zebrafish are used in modelling human diseases; however, its synapse proteome is uncharacterized, and whether the teleost-specific genome duplication (TSGD) influenced complexity is unknown. We report the characterization of the proteomes and ultrastructure of central synapses in zebrafish and analyse the importance of the TSGD. While the TSGD increases overall synapse proteome complexity, the postsynaptic density (PSD) proteome of zebrafish has lower complexity than mammals. A highly conserved set of ∼1,000 proteins is shared across vertebrates. PSD ultrastructural features are also conserved. Lineage-specific proteome differences indicate that vertebrate species evolved distinct synapse types and functions. The data sets are a resource for a wide range of studies and have important implications for the use of zebrafish in modelling human synaptic diseases.

  2. Functional genomic Landscape of Human Breast Cancer drivers, vulnerabilities, and resistance

    PubMed Central

    Marcotte, Richard; Sayad, Azin; Brown, Kevin R.; Sanchez-Garcia, Felix; Reimand, Jüri; Haider, Maliha; Virtanen, Carl; Bradner, James E.; Bader, Gary D.; Mills, Gordon B.; Pe’er, Dana; Moffat, Jason; Neel, Benjamin G.

    2016-01-01

    Summary Large-scale genomic studies have identified multiple somatic aberrations in breast cancer, including copy number alterations, and point mutations. Still, identifying causal variants and emergent vulnerabilities that arise as a consequence of genetic alterations remain major challenges. We performed whole genome shRNA “dropout screens” on 77 breast cancer cell lines. Using a hierarchical linear regression algorithm to score our screen results and integrate them with accompanying detailed genetic and proteomic information, we identify vulnerabilities in breast cancer, including candidate “drivers,” and reveal general functional genomic properties of cancer cells. Comparisons of gene essentiality with drug sensitivity data suggest potential resistance mechanisms, effects of existing anti-cancer drugs, and opportunities for combination therapy. Finally, we demonstrate the utility of this large dataset by identifying BRD4 as a potential target in luminal breast cancer, and PIK3CA mutations as a resistance determinant for BET-inhibitors. PMID:26771497

  3. From data to function: functional modeling of poultry genomics data.

    PubMed

    McCarthy, F M; Lyons, E

    2013-09-01

    One of the challenges of functional genomics is to create a better understanding of the biological system being studied so that the data produced are leveraged to provide gains for agriculture, human health, and the environment. Functional modeling enables researchers to make sense of these data as it reframes a long list of genes or gene products (mRNA, ncRNA, and proteins) by grouping based upon function, be it individual molecular functions or interactions between these molecules or broader biological processes, including metabolic and signaling pathways. However, poultry researchers have been hampered by a lack of functional annotation data, tools, and training to use these data and tools. Moreover, this lack is becoming more critical as new sequencing technologies enable us to generate data not only for an increasingly diverse range of species but also individual genomes and populations of individuals. We discuss the impact of these new sequencing technologies on poultry research, with a specific focus on what functional modeling resources are available for poultry researchers. We also describe key strategies for researchers who wish to functionally model their own data, providing background information about functional modeling approaches, the data and tools to support these approaches, and the strengths and limitations of each. Specifically, we describe methods for functional analysis using Gene Ontology (GO) functional summaries, functional enrichment analysis, and pathways and network modeling. As annotation efforts begin to provide the fundamental data that underpin poultry functional modeling (such as improved gene identification, standardized gene nomenclature, temporal and spatial expression data and gene product function), tool developers are incorporating these data into new and existing tools that are used for functional modeling, and cyberinfrastructure is being developed to provide the necessary extendibility and scalability for storing and

  4. Genomics and proteomics of mycobacteriophage patience, an accidental tourist in the Mycobacterium neighborhood.

    PubMed

    Pope, Welkin H; Jacobs-Sera, Deborah; Russell, Daniel A; Rubin, Daniel H F; Kajee, Afsana; Msibi, Zama N P; Larsen, Michelle H; Jacobs, William R; Lawrence, Jeffrey G; Hendrix, Roger W; Hatfull, Graham F

    2014-12-02

    Patience genes are ill matched to the host expression apparatus, this is of little functional consequence and has not evidently imposed a barrier to migration across the microbial landscape. Interestingly, comparison of expression levels and codon usage profiles reveals evidence of codon selection as the genome evolves and adapts to its new environment. Copyright © 2014 Pope et al.

  5. Functional Proteomic Analysis of Lipid Raft Kinase Complexes

    DTIC Science & Technology

    2009-08-01

    NADPH -- cytochrome P450 reductase Non-raft 6 95/677 + 3.0 1.5 2.0 3 1 3.0 3 2 1.5 584 + IPI00015018 PPA1 Inorganic pyrophosphatase Non-raft 2 38/289...Freeman M.R. Proteome-scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membrane domains. Molecular & Cellular...IPI00013847 UQCRC1 Ubiquinol- cytochrome -c reductase complex core protein I,mitochondrial precursor Non-raft 2 24/480 – 0.5 1.0 0.5 1 2 0.5 0 0 0.0 891

  6. Bioinformatics as a tool for assessing the quality of sub-cellular proteomic strategies and inferring functions of proteins: plant cell wall proteomics as a test case.

    PubMed

    Clemente, Hélène San; Pont-Lezica, Rafael; Jamet, Elisabeth

    2009-02-18

    Bioinformatics is used at three different steps of proteomic studies of sub-cellular compartments. First one is protein identification from mass spectrometry data. Second one is prediction of sub-cellular localization, and third one is the search of functional domains to predict the function of identified proteins in order to answer biological questions. The aim of the work was to get a new tool for improving the quality of proteomics of sub-cellular compartments. Starting from the analysis of problems found in databases, we designed a new Arabidopsis database named ProtAnnDB (http://www.polebio.scsv.ups-tlse.fr/ProtAnnDB/). It collects in one page predictions of sub-cellular localization and of functional domains made by available software. Using this database allows not only improvement of interpretation of proteomic data (top-down analysis), but also of procedures to isolate sub-cellular compartments (bottom-up quality control).

  7. Orchidstra: an integrated orchid functional genomics database.

    PubMed

    Su, Chun-lin; Chao, Ya-Ting; Yen, Shao-Hua; Chen, Chun-Yi; Chen, Wan-Chieh; Chang, Yao-Chien Alex; Shih, Ming-Che

    2013-02-01

    A specialized orchid database, named Orchidstra (URL: http://orchidstra.abrc.sinica.edu.tw), has been constructed to collect, annotate and share genomic information for orchid functional genomics studies. The Orchidaceae is a large family of Angiosperms that exhibits extraordinary biodiversity in terms of both the number of species and their distribution worldwide. Orchids exhibit many unique biological features; however, investigation of these traits is currently constrained due to the limited availability of genomic information. Transcriptome information for five orchid species and one commercial hybrid has been included in the Orchidstra database. Altogether, these comprise >380,000 non-redundant orchid transcript sequences, of which >110,000 are protein-coding genes. Sequences from the transcriptome shotgun assembly (TSA) were obtained either from output reads from next-generation sequencing technologies assembled into contigs, or from conventional cDNA library approaches. An annotation pipeline using Gene Ontology, KEGG and Pfam was built to assign gene descriptions and functional annotation to protein-coding genes. Deep sequencing of small RNA was also performed for Phalaenopsis aphrodite to search for microRNAs (miRNAs), extending the information archived for this species to miRNA annotation, precursors and putative target genes. The P. aphrodite transcriptome information was further used to design probes for an oligonucleotide microarray, and expression profiling analysis was carried out. The intensities of hybridized probes derived from microarray assays of various tissues were incorporated into the database as part of the functional evidence. In the future, the content of the Orchidstra database will be expanded with transcriptome data and genomic information from more orchid species.

  8. Genomic and proteomic responses to environmentally relevant exposures to dieldrin: indicators of neurodegeneration?

    PubMed

    Martyniuk, Christopher J; Kroll, Kevin J; Doperalski, Nicholas J; Barber, David S; Denslow, Nancy D

    2010-09-01

    Dieldrin is a persistent organochlorine pesticide that induces neurotoxicity in the vertebrate central nervous system and impairs reproductive processes in fish. This study examined the molecular events produced by subchronic dietary exposures to 2.95 mg dieldrin/kg feed in the neuroendocrine brain of largemouth bass, an apex predator. Microarrays, proteomics, and pathway analysis were performed to identify genes, proteins, and cell processes altered in the male hypothalamus. Fifty-four genes were induced, and 220 genes were reduced in steady-state levels (p < 0.001; fold change greater than +/- 1.5). Functional enrichment analysis revealed that the biological gene ontology categories of stress response, nucleotide base excision repair, response to toxin, and metabolic processes were significantly impacted by dieldrin. Using isobaric tagging for relative and absolute quantitation, 90 proteins in the male hypothalamus were statistically evaluated for changes in protein abundance. Several proteins altered by dieldrin are known to be associated with human neurodegenerative diseases, including apolipoprotein E, microtubule-associated tau protein, enolase 1, stathmin 1a, myelin basic protein, and parvalbumin. Proteins altered by dieldrin were involved in oxidative phosphorylation, differentiation, proliferation, and cell survival. This study demonstrates that a subchronic exposure to dieldrin alters the abundance of messenger RNAs and proteins in the hypothalamus that are associated with cell metabolism, cell stability and integrity, stress, and DNA repair.

  9. Genomic and Proteomic Responses to Environmentally Relevant Exposures to Dieldrin: Indicators of Neurodegeneration?

    PubMed Central

    Martyniuk, Christopher J.; Kroll, Kevin J.; Doperalski, Nicholas J.; Barber, David S.; Denslow, Nancy D.

    2010-01-01

    Dieldrin is a persistent organochlorine pesticide that induces neurotoxicity in the vertebrate central nervous system and impairs reproductive processes in fish. This study examined the molecular events produced by subchronic dietary exposures to 2.95 mg dieldrin/kg feed in the neuroendocrine brain of largemouth bass, an apex predator. Microarrays, proteomics, and pathway analysis were performed to identify genes, proteins, and cell processes altered in the male hypothalamus. Fifty-four genes were induced, and 220 genes were reduced in steady-state levels (p < 0.001; fold change greater than ± 1.5). Functional enrichment analysis revealed that the biological gene ontology categories of stress response, nucleotide base excision repair, response to toxin, and metabolic processes were significantly impacted by dieldrin. Using isobaric tagging for relative and absolute quantitation, 90 proteins in the male hypothalamus were statistically evaluated for changes in protein abundance. Several proteins altered by dieldrin are known to be associated with human neurodegenerative diseases, including apolipoprotein E, microtubule-associated tau protein, enolase 1, stathmin 1a, myelin basic protein, and parvalbumin. Proteins altered by dieldrin were involved in oxidative phosphorylation, differentiation, proliferation, and cell survival. This study demonstrates that a subchronic exposure to dieldrin alters the abundance of messenger RNAs and proteins in the hypothalamus that are associated with cell metabolism, cell stability and integrity, stress, and DNA repair. PMID:20584760

  10. Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells.

    PubMed

    Kiel, Jan A K W; van den Berg, Marco A; Fusetti, Fabrizia; Poolman, Bert; Bovenberg, Roel A L; Veenhuis, Marten; van der Klei, Ida J

    2009-05-01

    In the filamentous fungus Penicillium chrysogenum, microbodies are essential for penicillin biosynthesis. To better understand the role of these organelles in antibiotics production, we determined the matrix enzyme contents of P. chrysogenum microbodies. Using a novel in silico approach, we first obtained a catalogue of 200 P. chrysogenum proteins with putative microbody targeting signals (PTSs). This included two orthologs of proteins involved in cephalosporin biosynthesis, which we demonstrate to be bona fide microbody matrix constituents. Subsequently, we performed a proteomics based inventory of P. chrysogenum microbody matrix proteins using nano-LC-MS/MS analysis. We identified 89 microbody proteins, 79 with a PTS, including the two known microbody-borne penicillin biosynthesis enzymes, isopenicillin N:acyl CoA acyltransferase and phenylacetyl-CoA ligase. Comparative analysis revealed that 69 out of 79 PTS proteins identified experimentally were in the reference list. A prominent microbody protein was identified as a novel fumarate reductase-cytochrome b5 fusion protein, which contains an internal PTS2 between the two functional domains. We show that this protein indeed localizes to P. chrysogenum microbodies.

  11. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    DOE PAGES

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; ...

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs.more » disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.« less

  12. Microbial community proteomics for characterizing the range of metabolic functions and activities of human gut microbiota

    SciTech Connect

    Xiong, Weili; Abraham, Paul E.; Li, Zhou; Pan, Chongle; Robert L. Hettich

    2015-01-01

    We found that the human gastrointestinal (GI) tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome component is not insignificant, but rather provides important functions that are absolutely critical to many aspects of human health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial community proteomics (sometimes referred to as metaproteomics) provides a powerful approach to measure the range and details of human gut microbiota functions and metabolic activities, revealing information about microbiome development and stability especially with regard to human health vs. disease states. In most cases, both microbial and human proteins are extracted from fecal samples and then measured by the high performance MS-based proteomics technology. We review the field of human gut microbiome community proteomics, with a focus on the experimental and informatics considerations involved in characterizing systems that range from low complexity defined model gut microbiota in gnotobiotic mice, to the simple gut microbiota in the GI tract of newborn infants, and finally to the complex gut microbiota in adults. Moreover, the current state-of-the-art in experimental and bioinformatics capabilities for community proteomics enable a detailed measurement of the gut microbiota, yielding valuable insights into the broad functional profiles of even complex microbiota. Future developments are likely to expand into improved analysis throughput and coverage depth, as well as post-translational modification characterizations.

  13. Elucidating the Molecular Basis and Regulation of Chromium(VI) Reduction by Shewanella oneidensis MR-1 and Resistance to Metal Toxicity Using Integrated Biochemical, Genomic, and Proteomic Approaches

    SciTech Connect

    Dorothea K. Thompson; Steven D. Brown; Robert L. Hettich; Nathan VerBerkmoes; Jizhong Zhou

    2004-03-17

    The mediation of metal reduction by microorganisms has been investigated intensively from physiological and biochemical perspectives; however, little is known about the genetic basis and regulatory mechanisms underlying the ability of certain bacteria to transform or immobilize a wide array of heavy metals contaminating DOE field sites. Chromium(VI), for example, is one of several risk-driving contaminants at DOE sites and has been targeted by the DOE for bioremediation research. The bacterium Shewanella oneidensis MR-1 can potentially be used to immobilize chromium, a toxic and mutagenic metal, by reducing soluble Cr(VI) to the insoluble and less bioavailable form of Cr(III), thus facilitating its removal from contained-storage and natural sites. The overall goal of this study is to integrate targeted biochemical and proteomic analyses with genome-wide gene expression profiling to examine the molecular basis and regulation of chromium(VI) reduction by Shewanella oneidensis MR-1. Towards this goal, we will (1) isolate and identify the terminal chromium(VI) reductase and the gene(s) encoding this activity using whole-genome sequence information for MR-1 and liquid chromatography-tandem mass spectrometry (LC-MS/MS) in conjunction with conventional protein purification and characterization techniques; (2) verify the function of the gene(s) encoding the terminal Cr(VI) reductase and compare whole transcriptome data with whole proteome data in order to understand the regulation of chromium reduction; and (3) investigate the molecular stress response and adaptation of S. oneidensis to toxic levels of soluble Cr(VI) and other heavy metals. This research will provide important information on the functional components and regulatory mechanisms of microbial metal reduction, which should prove valuable in developing effective assessment strategies for in situ bioremediation and genetically engineering desired bacteria for enhanced bioremediation.

  14. An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation

    PubMed Central

    Mandal, Kamal; Bader, Samuel L.; Kumar, Pankaj; Malakar, Dipankar; Campbell, David S.; Pradhan, Bhola Shankar; Sarkar, Rajesh K.; Wadhwa, Neerja; Sensharma, Souvik; Jain, Vaibhav; Moritz, Robert L.

    2017-01-01

    Abstract Differential next-generation-omics approaches aid in the visualization of biological processes and pave the way for divulging important events and/or interactions leading to a functional output at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptomics and proteomics approach to divulge differential gene expression of infant and pubertal rat Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogenesis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide computational analysis of relevant promoters employing 220 Positional Weight Matrices from the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant binding sites on promoters of genes upregulated during puberty. To determine its significance, we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised spermatogenesis. PMID:28065881

  15. An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation.

    PubMed

    Mandal, Kamal; Bader, Samuel L; Kumar, Pankaj; Malakar, Dipankar; Campbell, David S; Pradhan, Bhola Shankar; Sarkar, Rajesh K; Wadhwa, Neerja; Sensharma, Souvik; Jain, Vaibhav; Moritz, Robert L; Majumdar, Subeer S

    2017-04-01

    Differential next-generation-omics approaches aid in the visualization of biological processes and pave the way for divulging important events and/or interactions leading to a functional output at cellular or systems level. To this end, we undertook an integrated Nextgen transcriptomics and proteomics approach to divulge differential gene expression of infant and pubertal rat Sertoli cells (Sc).Unlike, pubertal Sc, infant Sc are immature and fail to support spermatogenesis. We found exclusive association of 14 and 19 transcription factor binding sites to infantile and pubertal states of Sc, respectively, using differential transcriptomics-guided genome-wide computational analysis of relevant promoters employing 220 Positional Weight Matrices from the TRANSFAC database. Proteomic SWATH-MS analysis provided extensive quantification of nuclear and cytoplasmic protein fractions revealing 1,670 proteins differentially located between the nucleus and cytoplasm of infant Sc and 890 proteins differentially located within those of pubertal Sc. Based on our multi-omics approach, the transcription factor YY1 was identified as one of the lead candidates regulating differentiation of Sc.YY1 was found to have abundant binding sites on promoters of genes upregulated during puberty. To determine its significance, we generated transgenic rats with Sc specific knockdown of YY1 that led to compromised spermatogenesis. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  16. Functional genomic screening to enhance oncolytic virotherapy.

    PubMed

    Mahoney, D J; Stojdl, D F

    2013-02-05

    Functional genomic screening has emerged as a powerful approach for understanding complex biological phenomena. Of the available tools, genome-wide RNA interference (RNAi) technology is unquestionably the most incisive, as it directly probes gene function. Recent applications of RNAi screening have been impressive. Notable amongst these are its use in elucidated mechanism(s) for signal transduction, various aspects of cell biology, tumourigenesis and metastasis, resistance to cancer therapeutics, and the host's response to a pathogen. Herein we discuss how recent RNAi screening efforts have helped turn our attention to the targetability of non-oncogene support pathways for cancer treatment, with a particular focus on a recent study that identified a non-oncogene addiction to the ER stress response as a synergist target for oncolytic virus therapy (OVT). Moreover, we give our thoughts on the future of RNAi screening as a tool to enhance OVT and describe recent technical improvements that are poised to make genome-scale RNAi experiments more sensitive, less noisy, more applicable in vivo, and more easily validated in clinically relevant animal models.

  17. Open-Access Cancer Genomics - Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The completion of the Human Genome Project sparked a revolution in high-throughput genomics applied towards deciphering genetically complex diseases, like cancer. Now, almost 10 years later, we have a mountain of genomics data on many different cancer type

  18. Current advances in esophageal cancer proteomics.

    PubMed

    Uemura, Norihisa; Kondo, Tadashi

    2015-06-01

    We review the current status of proteomics for esophageal cancer (EC) from a clinician's viewpoint. The ultimate goal of cancer proteomics is the improvement of clinical outcome. The proteome as a functional translation of the genome is a straightforward representation of genomic mechanisms that trigger carcinogenesis. Cancer proteomics has identified the mechanisms of carcinogenesis and tumor progression, detected biomarker candidates for early diagnosis, and provided novel therapeutic targets for personalized treatments. Our review focuses on three major topics in EC proteomics: diagnostics, treatment, and molecular mechanisms. We discuss the major histological differences between EC types, i.e., esophageal squamous cell carcinoma and adenocarcinoma, and evaluate the clinical significance of published proteomics studies, including promising diagnostic biomarkers and novel therapeutic targets, which should be further validated prior to launching clinical trials. Multi-disciplinary collaborations between basic scientists, clinicians, and pathologists should be established for inter-institutional validation. In conclusion, EC proteomics has provided significant results, which after thorough validation, should lead to the development of novel clinical tools and improvement of the clinical outcome for esophageal cancer patients. This article is part of a Special Issue entitled: Medical Proteomics.

  19. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics.

    PubMed

    Asgari, Ehsaneddin; Mofrad, Mohammad R K

    2015-01-01

    We introduce a new representation and feature extraction method for biological sequences. Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. In the present paper, we focus on protein-vectors that can be utilized in a wide array of bioinformatics investigations such as family classification, protein visualization, structure prediction, disordered protein identification, and protein-protein interaction prediction. In this method, we adopt artificial neural network approaches and represent a protein sequence with a single dense n-dimensional vector. To evaluate this method, we apply it in classification of 324,018 protein sequences obtained from Swiss-Prot belonging to 7,027 protein families, where an average family classification accuracy of 93%±0.06% is obtained, outperforming existing family classification methods. In addition, we use ProtVec representation to predict disordered proteins from structured proteins. Two databases of disordered sequences are used: the DisProt database as well as a database featuring the disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups). Using support vector machine classifiers, FG-Nup sequences are distinguished from structured protein sequences found in Protein Data Bank (PDB) with a 99.8% accuracy, and unstructured DisProt sequences are differentiated from structured DisProt sequences with 100.0% accuracy. These results indicate that by only providing sequence data for various proteins into this model, accurate information about protein structure can be determined. Importantly, this model needs to be trained only once and can then be applied to extract a comprehensive set of information regarding proteins of interest. Moreover, this representation can be considered as

  20. Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics

    PubMed Central

    Asgari, Ehsaneddin; Mofrad, Mohammad R. K.

    2015-01-01

    We introduce a new representation and feature extraction method for biological sequences. Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can be widely used in applications of deep learning in proteomics and genomics. In the present paper, we focus on protein-vectors that can be utilized in a wide array of bioinformatics investigations such as family classification, protein visualization, structure prediction, disordered protein identification, and protein-protein interaction prediction. In this method, we adopt artificial neural network approaches and represent a protein sequence with a single dense n-dimensional vector. To evaluate this method, we apply it in classification of 324,018 protein sequences obtained from Swiss-Prot belonging to 7,027 protein families, where an average family classification accuracy of 93%±0.06% is obtained, outperforming existing family classification methods. In addition, we use ProtVec representation to predict disordered proteins from structured proteins. Two databases of disordered sequences are used: the DisProt database as well as a database featuring the disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups). Using support vector machine classifiers, FG-Nup sequences are distinguished from structured protein sequences found in Protein Data Bank (PDB) with a 99.8% accuracy, and unstructured DisProt sequences are differentiated from structured DisProt sequences with 100.0% accuracy. These results indicate that by only providing sequence data for various proteins into this model, accurate information about protein structure can be determined. Importantly, this model needs to be trained only once and can then be applied to extract a comprehensive set of information regarding proteins of interest. Moreover, this representation can be considered as

  1. Impact of a short-term exposure to spaceflight on the phenotype, genome, transcriptome and proteome of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Li, Tianzhi; Chang, De; Xu, Huiwen; Chen, Jiapeng; Su, Longxiang; Guo, Yinghua; Chen, Zhenhong; Wang, Yajuan; Wang, Li; Wang, Junfeng; Fang, Xiangqun; Liu, Changting

    2015-07-01

    Escherichia coli (E. coli) is the most widely applied model organism in current biological science. As a widespread opportunistic pathogen, E. coli can survive not only by symbiosis with human, but also outside the host as well, which necessitates the evaluation of its response to the space environment. Therefore, to keep humans safe in space, it is necessary to understand how the bacteria respond to this environment. Despite extensive investigations for a few decades, the response of E. coli to the real space environment is still controversial. To better understand the mechanisms how E. coli overcomes harsh environments such as microgravity in space and to investigate whether these factors may induce pathogenic changes in E. coli that are potentially detrimental to astronauts, we conducted detailed genomics, transcriptomic and proteomic studies on E. coli that experienced 17 days of spaceflight. By comparing two flight strains LCT-EC52 and LCT-EC59 to a control strain LCT-EC106 that was cultured under the same temperature conditions on the ground, we identified metabolism changes, polymorphism changes, differentially expressed genes and proteins in the two flight strains. The flight strains differed from the control in the utilization of more than 30 carbon sources. Two single nucleotide polymorphisms (SNPs) and one deletion were identified in the flight strains. The expression level of more than 1000 genes altered in flight strains. Genes involved in chemotaxis, lipid metabolism and cell motility express differently. Moreover, the two flight strains also differed extensively from each other in terms of metabolism, transcriptome and proteome, indicating the impact of space environment on individual cells is heterogeneous and probably genotype-dependent. This study presents the first systematic profile of E. coli genome, transcriptome and proteome after spaceflight, which helps to elucidate the mechanism that controls the adaptation of microbes to the space

  2. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3

    PubMed Central

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F.; Cortez, Néstor; Farias, María E.; Albarracín, Virginia H.

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth’s surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an “UV-resistome” was defined, encompassing the genes that would support the outstanding UV-resistance of this strain. PMID:25954258

  3. Genomic and proteomic evidences unravel the UV-resistome of the poly-extremophile Acinetobacter sp. Ver3.

    PubMed

    Kurth, Daniel; Belfiore, Carolina; Gorriti, Marta F; Cortez, Néstor; Farias, María E; Albarracín, Virginia H

    2015-01-01

    Ultraviolet radiation can damage biomolecules, with detrimental or even lethal effects for life. Even though lower wavelengths are filtered by the ozone layer, a significant amount of harmful UV-B and UV-A radiation reach Earth's surface, particularly in high altitude environments. high-altitude Andean lakes (HAALs) are a group of disperse shallow lakes and salterns, located at the Dry Central Andes region in South America at altitudes above 3,000 m. As it is considered one of the highest UV-exposed environments, HAAL microbes constitute model systems to study UV-resistance mechanisms in environmental bacteria at various complexity levels. Herein, we present the genome sequence of Acinetobacter sp. Ver3, a gammaproteobacterium isolated from Lake Verde (4,400 m), together with further experimental evidence supporting the phenomenological observations regarding this bacterium ability to cope with increased UV-induced DNA damage. Comparison with the genomes of other Acinetobacter strains highlighted a number of unique genes, such as a novel cryptochrome. Proteomic profiling of UV-exposed cells identified up-regulated proteins such as a specific cytoplasmic catalase, a putative regulator, and proteins associated to amino acid and protein synthesis. Down-regulated proteins were related to several energy-generating pathways such as glycolysis, beta-oxidation of fatty acids, and electronic respiratory chain. To the best of our knowledge, this is the first report on a genome from a polyextremophilic Acinetobacter strain. From the genomic and proteomic data, an "UV-resistome" was defined, encompassing the genes that would support the outstanding UV-resistance of this strain.

  4. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae

    PubMed Central

    Frampton, Rebekah A.; Lopez Acedo, Elena; Young, Vivienne L.; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A.; Pitman, Andrew R.; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C.

    2015-01-01

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae. PMID:26114474

  5. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    PubMed

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-06-24

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  6. Unravelling the one-carbon metabolism of the acetogen Sporomusa strain An4 by genome and proteome analysis.

    PubMed

    Visser, Michael; Pieterse, Mervin M; Pinkse, Martijn W H; Nijsse, Bart; Verhaert, Peter D E M; de Vos, Willem M; Schaap, Peter J; Stams, Alfons J M

    2016-09-01

    The Sporomusa genus comprises anaerobic spore-forming acetogenic bacteria that stain Gram-negative. Sporomusa species typically grow with one-carbon substrates and N-methylated compounds. In the degradation of these compounds methyltransferases are involved. In addition, Sporomusa species can grow autotrophically with H2 and CO2 , and use a variety of sugars for acetogenic growth. Here we describe a genome analysis of Sporomusa strain An4 and a proteome analysis of cells grown under five different conditions. Comparison of the genomes of Sporomusa strain An4 and Sporomusa ovata strain H1 indicated that An4 is a S. ovata strain. Proteome analysis showed a high abundance of several methyltransferases, predominantly trimethylamine methyltransferases, during growth with betaine, whereas trimethylamine is one of the main end-products of betaine degradation. In methanol degradation methyltransferases are also involved. In methanol-utilizing methanogens, two methyltransferases catalyse methanol conversion, methyltransferase 1 composed of subunits MtaB and MtaC and methyltransferase 2, also called MtaA. The two methyltransferase 1 subunits MtaB and MtaC were highly abundant when strain An4 was grown with methanol. However, instead of MtaA a methyltetrahydrofolate methyltransferase was synthesized. We propose a novel methanol degradation pathway in Sporomusa strain An4 that uses a methyltetrahydrofolate methyltransferase instead of MtaA. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Tracing the origin of functional and conserved domains in the human proteome: implications for protein evolution at the modular level

    PubMed Central

    Pal, Lipika R; Guda, Chittibabu

    2006-01-01

    Background The functional repertoire of the human proteome is an incremental collection of functions accomplished by protein domains evolved along the Homo sapiens lineage. Therefore, knowledge on the origin of these functionalities provides a better understanding of the domain and protein evolution in human. The lack of proper comprehension about such origin has impelled us to study the evolutionary origin of human proteome in a unique way as detailed in this study. Results This study reports a unique approach for understanding the evolution of human proteome by tracing the origin of its constituting domains hierarchically, along the Homo sapiens lineage. The uniqueness of this method lies in subtractive searching of functional and conserved domains in the human proteome resulting in higher efficiency of detecting their origins. From these analyses the nature of protein evolution and trends in domain evolution can be observed in the context of the entire human proteome data. The method adopted here also helps delineate the degree of divergence of functional families occurred during the course of evolution. Conclusion This approach to trace the evolutionary origin of functional domains in the human proteome facilitates better understanding of their functional versatility as well as provides insights into the functionality of hypothetical proteins present in the human proteome. This work elucidates the origin of functional and conserved domains in human proteins, their distribution along the Homo sapiens lineage, occurrence frequency of different domain combinations and proteome-wide patterns of their distribution, providing insights into the evolutionary solution to the increased complexity of the human proteome. PMID:17090320

  8. Functional proteomics of light-harvesting complex proteins under varying light-conditions in diatoms.

    PubMed

    Büchel, Claudia; Wilhelm, Christian; Wagner, Volker; Mittag, Maria

    2017-10-01

    Comparative proteome analysis of subcellular compartments like thylakoid membranes and their associated supercomplexes can deliver important in-vivo information on the molecular basis of physiological functions which go far beyond to that what can be learnt from transcriptional-based gene expression studies. For instance, the finding that light intensity influences mainly the relative stoichiometry of subunits could be obtained only by high resolution proteome analysis. The high sensitivity of LC-ESI-MS/MS based proteome analysis allows the determination of proteins in very small subfractions along with their non-labeled semi quantitative analysis. This provides insights in the protein-protein interactions of supercomplexes that are the operative units in intact cells. Here, we have focused on functional proteome approaches for the identification of microalgal light-harvesting complex proteins in chloroplasts and the eyespot in general and in detail for those of diatoms that are exposed to varying light conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics.

    PubMed

    Xiong, Jie; Lu, Yuming; Feng, Jinmei; Yuan, Dongxia; Tian, Miao; Chang, Yue; Fu, Chengjie; Wang, Guangying; Zeng, Honghui; Miao, Wei

    2013-01-01

    The ciliated protozoan Tetrahymena thermophila is a useful unicellular model organism for studies of eukaryotic cellular and molecular biology. Researches on T. thermophila have contributed to a series of remarkable basic biological principles. After the macronuclear genome was sequenced, substantial progress has been made in functional genomics research on T. thermophila, including genome-wide microarray analysis of the T. thermophila life cycle, a T. thermophila gene network analysis based on the microarray data and transcriptome analysis by deep RNA sequencing. To meet the growing demands for the Tetrahymena research community, we integrated these data to provide a public access database: Tetrahymena functional genomics database (TetraFGD). TetraFGD contains three major resources, including the RNA-Seq transcriptome, microarray and gene networks. The RNA-Seq data define gene structures and transcriptome, with special emphasis on exon-intron boundaries; the microarray data describe gene expression of 20 time points during three major stages of the T. thermophila life cycle; the gene network data identify potential gene-gene interactions of 15 049 genes. The TetraFGD provides user-friendly search functions that assist researchers in accessing gene models, transcripts, gene expression data and gene-gene relationships. In conclusion, the TetraFGD is an important functional genomic resource for researchers who focus on the Tetrahymena or other ciliates. Database URL: http://tfgd.ihb.ac.cn/

  10. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome

    PubMed Central

    2013-01-01

    Background Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. Description Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. Conclusions We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of

  11. Functional Analysis of Shewanella, a cross genome comparison.

    SciTech Connect

    Serres, Margrethe H.

    2009-05-15

    The bacterial genus Shewanella includes a group of highly versatile organisms that have successfully adapted to life in many environments ranging from aquatic (fresh and marine) to sedimentary (lake and marine sediments, subsurface sediments, sea vent). A unique respiratory capability of the Shewanellas, initially observed for Shewanella oneidensis MR-1, is the ability to use metals and metalloids, including radioactive compounds, as electron acceptors. Members of the Shewanella genus have also been shown to degrade environmental pollutants i.e. halogenated compounds, making this group highly applicable for the DOE mission. S. oneidensis MR-1 has in addition been found to utilize a diverse set of nutrients and to have a large set of genes dedicated to regulation and to sensing of the environment. The sequencing of the S. oneidensis MR-1 genome facilitated experimental and bioinformatics analyses by a group of collaborating researchers, the Shewanella Federation. Through the joint effort and with support from Department of Energy S. oneidensis MR-1 has become a model organism of study. Our work has been a functional analysis of S. oneidensis MR-1, both by itself and as part of a comparative study. We have improved the annotation of gene products, assigned metabolic functions, and analyzed protein families present in S. oneidensis MR-1. The data has been applied to analysis of experimental data (i.e. gene expression, proteome) generated for S. oneidensis MR-1. Further, this work has formed the basis for a comparative study of over 20 members of the Shewanella genus. The species and strains selected for genome sequencing represented an evolutionary gradient of DNA relatedness, ranging from close to intermediate, and to distant. The organisms selected have also adapted to a variety of ecological niches. Through our work we have been able to detect and interpret genome similarities and differences between members of the genus. We have in this way contributed to the

  12. Human-mouse comparative genomics: successes and failures to reveal functional regions of the human genome

    SciTech Connect

    Pennacchio, Len A.; Baroukh, Nadine; Rubin, Edward M.

    2003-05-15

    Deciphering the genetic code embedded within the human genome remains a significant challenge despite the human genome consortium's recent success at defining its linear sequence (Lander et al. 2001; Venter et al. 2001). While useful strategies exist to identify a large percentage of protein encoding regions, efforts to accurately define functional sequences in the remaining {approx}97 percent of the genome lag. Our primary interest has been to utilize the evolutionary relationship and the universal nature of genomic sequence information in vertebrates to reveal functional elements in the human genome. This has been achieved through the combined use of vertebrate comparative genomics to pinpoint highly conserved sequences as candidates for biological activity and transgenic mouse studies to address the functionality of defined human DNA fragments. Accordingly, we describe strategies and insights into functional sequences in the human genome through the use of comparative genomics coupled wit h functional studies in the mouse.

  13. Arabidopsis proteomics: a simple and standardizable workflow for quantitative proteome characterization.

    PubMed

    Rödiger, Anja; Agne, Birgit; Baerenfaller, Katja; Baginsky, Sacha

    2014-01-01

    Arabidopsis is the model plant of choice for large-scale proteome analyses, because its genome is well annotated, essentially free of sequencing errors, and relatively small with little redundancy. Furthermore, most Arabidopsis organs are susceptible to standard protein solubilization protocols making protein extraction relatively simple. Many different facets of functional plant proteomics were established with Arabidopsis such as mapping the subcellular proteomes of organelles, proteo-genomic peptide mapping, and numerous studies on the dynamic changes in protein modification and protein abundances. As most standard proteomics technologies are now routinely applied, research interest is increasingly shifting towards the reverse genetic characterization of gene function at the proteome level, i.e., by profiling the quantitative proteome of wild type in comparison with mutant plant tissue. We report here a simple, standardizable protocol for the large-scale comparative quantitative proteome characterization of different Arabidopsis organs based on normalized spectral counting and suggest a statistical framework for data interpretation. Based on existing organellar proteome maps, proteins can be assigned to organelles, thus allowing the identification of organelle-specific responses.

  14. Exploring the human genome with functional maps

    PubMed Central

    Huttenhower, Curtis; Haley, Erin M.; Hibbs, Matthew A.; Dumeaux, Vanessa; Barrett, Daniel R.; Coller, Hilary A.; Troyanskaya, Olga G.

    2009-01-01

    Human genomic data of many types are readily available, but the complexity and scale of human molecular biology make it difficult to integrate this body of data, understand it from a systems level, and apply it to the study of specific pathways or genetic disorders. An investigator could best explore a particular protein, pathway, or disease if given a functional map summarizing the data and interactions most relevant to his or her area of interest. Using a regularized Bayesian integration system, we provide maps of functional activity and interaction networks in over 200 areas of human cellular biology, each including information from ∼30,000 genome-scale experiments pertaining to ∼25,000 human genes. Key to these analyses is the ability to efficiently summarize this large data collection from a variety of biologically informative perspectives: prediction of protein function and functional modules, cross-talk among biological processes, and association of novel genes and pathways with known genetic disorders. In addition to providing maps of each of these areas, we also identify biological processes active in each data set. Experimental investigation of five specific genes, AP3B1, ATP6AP1, BLOC1S1, LAMP2, and RAB11A, has confirmed novel roles for these proteins in the proper initiation of macroautophagy in amino acid-starved human fibroblasts. Our functional maps can be explored using HEFalMp (Human Experimental/Functional Mapper), a web interface allowing interactive visualization and investigation of this large body of information. PMID:19246570

  15. Birth of plant proteomics in India: a new horizon.

    PubMed

    Narula, Kanika; Pandey, Aarti; Gayali, Saurabh; Chakraborty, Niranjan; Chakraborty, Subhra

    2015-09-08

    In the post-genomic era, proteomics is acknowledged as the next frontier for biological research. Although India has a long and distinguished tradition in protein research, the initiation of proteomics studies was a new horizon. Protein research witnessed enormous progress in protein separation, high-resolution refinements, biochemical identification of the proteins, protein-protein interaction, and structure-function analysis. Plant proteomics research, in India, began its journey on investigation of the proteome profiling, complexity analysis, protein trafficking, and biochemical modeling. The research article by Bhushan et al. in 2006 marked the birth of the plant proteomics research in India. Since then plant proteomics studies expanded progressively and are now being carried out in various institutions spread across the country. The compilation presented here seeks to trace the history of development in the area during the past decade based on publications till date. In this review, we emphasize on outcomes of the field providing prospects on proteomic pathway analyses. Finally, we discuss the connotation of strategies and the potential that would provide the framework of plant proteome research. The past decades have seen rapidly growing number of sequenced plant genomes and associated genomic resources. To keep pace with this increasing body of data, India is in the provisional phase of proteomics research to develop a comparative hub for plant proteomes and protein families, but it requires a strong impetus from intellectuals, entrepreneurs, and government agencies. Here, we aim to provide an overview of past, present and future of Indian plant proteomics, which would serve as an evaluation platform for those seeking to incorporate proteomics into their research programs. This article is part of a Special Issue entitled: Proteomics in India. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. [The application of proteomics in epididymis researches].

    PubMed

    Zou, Mei; Wang, Hai-Feng; Hu, Jian-Min

    2008-04-01

    Proteomics, a hot new research area studied by biologists in the post-genome era, leads an integrated study of the expression and function of proteins on a large scale. Epididymis is responsible for the sperm maturation and storage, and its gene expression is highly region-specific, so it maybe an ideal model for proteomics, especially for differential proteomics study. This paper gives a brief introduction of the application of proteomics in the epididymis and the differential proteins expressed in different epididymal regions. These epididymis-specific/selective proteins identified by proteomics technology may prove to be targets for contraception or may provide insight to the unique responsibilities of the epididymis in supporting male fertility.

  17. Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors

    PubMed Central

    Béliveau, Catherine; Cohen, Alejandro; Stewart, Don; Periquet, Georges; Djoumad, Abdelmadjid; Kuhn, Lisa; Stoltz, Don; Boyle, Brian; Volkoff, Anne-Nathalie; Herniou, Elisabeth A.; Drezen, Jean-Michel

    2015-01-01

    ABSTRACT Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were “captured” by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. IMPORTANCE Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes

  18. Genomic and Proteomic Analyses Indicate that Banchine and Campoplegine Polydnaviruses Have Similar, if Not Identical, Viral Ancestors.

    PubMed

    Béliveau, Catherine; Cohen, Alejandro; Stewart, Don; Periquet, Georges; Djoumad, Abdelmadjid; Kuhn, Lisa; Stoltz, Don; Boyle, Brian; Volkoff, Anne-Nathalie; Herniou, Elisabeth A; Drezen, Jean-Michel; Cusson, Michel

    2015-09-01

    Polydnaviruses form a group of unconventional double-stranded DNA (dsDNA) viruses transmitted by endoparasitic wasps during egg laying into caterpillar hosts, where viral gene expression is essential to immature wasp survival. A copy of the viral genome is present in wasp chromosomes, thus ensuring vertical transmission. Polydnaviruses comprise two taxa, Bracovirus and Ichnovirus, shown to have distinct viral ancestors whose genomes were "captured" by ancestral wasps. While evidence indicates that bracoviruses derive from a nudivirus ancestor, the identity of the ichnovirus progenitor remains unknown. In addition, ichnoviruses are found in two ichneumonid wasp subfamilies, Campopleginae and Banchinae, where they constitute morphologically and genomically different virus types. To address the question of whether these two ichnovirus subgroups have distinct ancestors, we used genomic, proteomic, and transcriptomic analyses to characterize particle proteins of the banchine Glypta fumiferanae ichnovirus and the genes encoding them. Several proteins were found to be homologous to those identified earlier for campoplegine ichnoviruses while the corresponding genes were located in clusters of the wasp genome similar to those observed previously in a campoplegine wasp. However, for the first time in a polydnavirus system, these clusters also revealed sequences encoding enzymes presumed to form the replicative machinery of the progenitor virus and observed to be overexpressed in the virogenic tissue. Homology searches pointed to nucleocytoplasmic large DNA viruses as the likely source of these genes. These data, along with an analysis of the chromosomal form of five viral genome segments, provide clear evidence for the relatedness of the banchine and campoplegine ichnovirus ancestors. Recent work indicates that the two recognized polydnavirus taxa, Bracovirus and Ichnovirus, are derived from distinct viruses whose genomes integrated into the genomes of ancestral wasps

  19. The rabbit as an experimental and production animal: from genomics to proteomics.

    PubMed

    Miller, Ingrid; Rogel-Gaillard, Claire; Spina, Domenico; Fontanesi, Luca; de Almeida, Andre M

    2014-03-01

    The rabbit (Oryctolagus cuniculus) is an important animal species widely used for biomedical research purposes, meat production and as a pet animal. There are numerous biomedical and scientific applications that include important areas such as antibody production, muscle, eye and circulatory physiology. The use of proteomics has been limited when considering this species. The aim of this article is to provide a review on applications of proteomics to the rabbit species, including those that are most relevant and where rabbit is a key species: muscle and circulatory system physiology.

  20. Functional Proteomics of Arabidopsis thaliana Guard Cells Uncovers New Stomatal Signaling Pathways[W][OA

    PubMed Central

    Zhao, Zhixin; Zhang, Wei; Stanley, Bruce A.; Assmann, Sarah M.

    2008-01-01

    We isolated a total of 3 × 108 guard cell protoplasts from 22,000 Arabidopsis thaliana plants and identified 1734 unique proteins using three complementary proteomic methods: protein spot identification from broad and narrow pH range two-dimensional (2D) gels, and 2D liquid chromatography–matrix assisted laser desorption/ionization multidimensional protein identification technology. This extensive single-cell-type proteome includes 336 proteins not previously represented in transcriptome analyses of guard cells and 52 proteins classified as signaling proteins by Gene Ontology analysis, of which only two have been previously assessed in the context of guard cell function. THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1), a myrosinase that catalyzes the production of toxic isothiocyanates from glucosinolates, showed striking abundance in the guard cell proteome. tgg1 mutants were hyposensitive to abscisic acid (ABA) inhibition of guard cell inward K+ channels and stomatal opening, revealing that the glucosinolate-myrosinase system, previously identified as a defense against biotic invaders, is required for key ABA responses of guard cells. Our results also suggest a mechanism whereby exposure to abiotic stresses may enhance plant defense against subsequent biotic stressors and exemplify how enhanced knowledge of the signaling networks of a specific cell type can be gained by proteomics approaches. PMID:19114538

  1. Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status

    PubMed Central

    Coscia, F.; Watters, K. M.; Curtis, M.; Eckert, M. A.; Chiang, C. Y.; Tyanova, S.; Montag, A.; Lastra, R. R.; Lengyel, E.; Mann, M.

    2016-01-01

    A cell line representative of human high-grade serous ovarian cancer (HGSOC) should not only resemble its tumour of origin at the molecular level, but also demonstrate functional utility in pre-clinical investigations. Here, we report the integrated proteomic analysis of 26 ovarian cancer cell lines, HGSOC tumours, immortalized ovarian surface epithelial cells and fallopian tube epithelial cells via a single-run mass spectrometric workflow. The in-depth quantification of >10,000 proteins results in three distinct cell line categories: epithelial (group I), clear cell (group II) and mesenchymal (group III). We identify a 67-protein cell line signature, which separates our entire proteomic data set, as well as a confirmatory publicly available CPTAC/TCGA tumour proteome data set, into a predominantly epithelial and mesenchymal HGSOC tumour cluster. This proteomics-based epithelial/mesenchymal stratification of cell lines and human tumours indicates a possible origin of HGSOC either from the fallopian tube or from the ovarian surface epithelium. PMID:27561551

  2. The Proteomic Investigation of Chromatin Functional Domains Reveals Novel Synergisms among Distinct Heterochromatin Components*

    PubMed Central

    Soldi, Monica; Bonaldi, Tiziana

    2013-01-01

    Chromatin is a highly dynamic, well-structured nucleoprotein complex of DNA and proteins that controls virtually all DNA transactions. Chromatin dynamicity is regulated at specific loci by the presence of various associated proteins, histones, post-translational modifications, histone variants, and DNA methylation. Until now the characterization of the proteomic component of chromatin domains has been held back by the challenge of enriching distinguishable, homogeneous regions for subsequent mass spectrometry analysis. Here we describe a modified protocol for chromatin immunoprecipitation combined with quantitative proteomics based on stable isotope labeling by amino acids in cell culture to identify known and novel histone modifications, variants, and complexes that specifically associate with silent and active chromatin domains. Our chromatin proteomics strategy revealed unique functional interactions among various chromatin modifiers, suggesting new regulatory pathways, such as a heterochromatin-specific modulation of DNA damage response involving H2A.X and WICH, both enriched in silent domains. Chromatin proteomics expands the arsenal of tools for deciphering how all the distinct protein components act together to enforce a given region-specific chromatin status. PMID:23319141

  3. Proteome analysis of the rice etioplast: metabolic and regulatory networks and novel protein functions.

    PubMed

    von Zychlinski, Anne; Kleffmann, Torsten; Krishnamurthy, Nandini; Sjölander, Kimmen; Baginsky, Sacha; Gruissem, Wilhelm

    2005-08-01

    We report an extensive proteome analysis of rice etioplasts, which were highly purified from dark-grown leaves by a novel protocol using Nycodenz density gradient centrifugation. Comparative protein profiling of different cell compartments from leaf tissue demonstrated the purity of the etioplast preparation by the absence of diagnostic marker proteins of other cell compartments. Systematic analysis of the etioplast proteome identified 240 unique proteins that provide new insights into heterotrophic plant metabolism and control of gene expression. They include several new proteins that were not previously known to localize to plastids. The etioplast proteins were compared with proteomes from Arabidopsis chloroplasts and plastid from tobacco Bright Yellow 2 cells. Together with computational structure analyses of proteins without functional annotations, this comparative proteome analysis revealed novel etioplast-specific proteins. These include components of the plastid gene expression machinery such as two RNA helicases, an RNase II-like hydrolytic exonuclease, and a site 2 protease-like metalloprotease all of which were not known previously to localize to the plastid and are indicative for so far unknown regulatory mechanisms of plastid gene expression. All etioplast protein identifications and related data were integrated into a data base that is freely available upon request.

  4. Functional genomics of root growth and development in Arabidopsis

    PubMed Central

    Iyer-Pascuzzi, Anjali; Simpson, June; Herrera-Estrella, Luis; Benfey, Philip N.

    2009-01-01

    Summary Roots are vital for the uptake of water and nutrients, and for anchorage in the soil. They are highly plastic, able to adapt developmentally and physiologically to changing environmental conditions. Understanding the molecular mechanisms behind this growth and development requires knowledge of root transcriptomics, proteomics and metabolomics. Genomics approaches, including the recent publication of a root expression map, root proteome, and environment-specific root expression studies, are uncovering complex transcriptional and post-transcriptional networks underlying root development. The challenge is in further capitalizing on the information in these datasets to understand the fundamental principles of root growth and development. In this review, we highlight progress researchers have made toward this goal. PMID:19117793

  5. Genomic and proteomic analyses of Mycobacterium bovis BCG Mexico 1931 reveal a diverse immunogenic repertoire against tuberculosis infection

    PubMed Central

    2011-01-01

    Background Studies of Mycobacterium bovis BCG strains used in different countries and vaccination programs show clear variations in the genomes and immune protective properties of BCG strains. The aim of this study was to characterise the genomic and immune proteomic profile of the BCG 1931 strain used in Mexico. Results BCG Mexico 1931 has a circular chromosome of 4,350,386 bp with a G+C content and numbers of genes and pseudogenes similar to those of BCG Tokyo and BCG Pasteur. BCG Mexico 1931 lacks Region of Difference 1 (RD1), RD2 and N-RD18 and one copy of IS6110, indicating that BCG Mexico 1931 belongs to DU2 group IV within the BCG vaccine genealogy. In addition, this strain contains three new RDs, which are 53 (RDMex01), 655 (RDMex02) and 2,847 bp (REDMex03) long, and 55 single-nucleotide polymorphisms representing non-synonymous mutations compared to BCG Pasteur and BCG Tokyo. In a comparative proteomic analysis, the BCG Mexico 1931, Danish, Phipps and Tokyo strains showed 812, 794, 791 and 701 protein spots, respectively. The same analysis showed that BCG Mexico 1931 shares 62% of its protein spots with the BCG Danish strain, 61% with the BCG Phipps strain and only 48% with the BCG Tokyo strain. Thirty-nine reactive spots were detected in BCG Mexico 1931 using sera from subjects with active tuberculosis infections and positive tuberculin skin tests. Conclusions BCG Mexico 1931 has a smaller genome than the BCG Pasteur and BCG Tokyo strains. Two specific deletions in BCG Mexico 1931 are described (RDMex02 and RDMex03). The loss of RDMex02 (fadD23) is associated with enhanced macrophage binding and RDMex03 contains genes that may be involved in regulatory pathways. We also describe new antigenic proteins for the first time. PMID:21981907

  6. Challenges and Solutions in Proteomics

    PubMed Central

    Hongzhan, Huang; Shukla, Hem D; Cathy, Wu; Satya, Saxena

    2007-01-01

    The accelerated growth of proteomics data presents both opportunities and challenges. Large-scale proteomic profiling of biological samples such as cells, organelles or biological fluids has led to discovery of numerous key and novel proteins involved in many biological/disease processes including cancers, as well as to the identification of novel disease biomarkers and potential therapeutic targets. While proteomic data analysis has been greatly assisted by the many bioinformatics tools developed in recent years, a careful analysis of the major steps and flow of data in a typical highthroughput analysis reveals a few gaps that still need to be filled to fully realize the value of the data. To facilitate functional and pathway discovery for large-scale proteomic data, we have developed an integrated proteomic expression analysis system, iProXpress, which facilitates protein identification using a comprehensive sequence library and functional interpretation using integrated data. With its modular design, iProXpress complements and can be integrated with other software in a proteomic data analysis pipeline. This novel approach to complex biological questions involves the interrogation of multiple data sources, thereby facilitating hypothesis generation and knowledge discovery from the genomic-scale studies and fostering disease diagnosis and drug development. PMID:18645629

  7. From bacterial genome to functionality; case bifidobacteria.

    PubMed

    Ventura, Marco; O'Connell-Motherway, Mary; Leahy, Sinead; Moreno-Munoz, Jose Antonio; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-11-30

    The availability of complete bacterial genome sequences has significantly furthered our understanding of the genetics, physiology and biochemistry of the microorganisms in question, particularly those that have commercially important applications. Bifidobacteria are among such microorganisms, as they constitute mammalian commensals of biotechnological significance due to their perceived role in maintaining a balanced gastrointestinal (GIT) microflora. Bifidobacteria are therefore frequently used as health-promoting or probiotic components in functional food products. A fundamental understanding of the metabolic activities employed by these commensal bacteria, in particular their capability to utilize a wide range of complex oligosaccharides, can reveal ways to provide in vivo growth advantages relative to other competing gut bacteria or pathogens. Furthermore, an in depth analysis of adaptive responses to nutritional or environmental stresses may provide methodologies to retain viability and improve functionality during commercial preparation, storage and delivery of the probiotic organism.

  8. Selfish drive can trump function when animal mitochondrial genomes compete

    PubMed Central

    Ma, Hansong; O’Farrell, Patrick H.

    2016-01-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that the non-coding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, within each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection promoting change in the sequences influencing transmission. PMID:27270106

  9. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.

  10. A Proteomic Approach to Investigating Gene Cluster Expression and Secondary Metabolite Functionality in Aspergillus fumigatus

    PubMed Central

    Owens, Rebecca A.; Hammel, Stephen; Sheridan, Kevin J.; Jones, Gary W.; Doyle, Sean

    2014-01-01

    A combined proteomics and metabolomics approach was utilised to advance the identification and characterisation of secondary metabolites in Aspergillus fumigatus. Here, implementation of a shotgun proteomic strategy led to the identification of non-redundant mycelial proteins (n = 414) from A. fumigatus including proteins typically under-represented in 2-D proteome maps: proteins with multiple transmembrane regions, hydrophobic proteins and proteins with extremes of molecular mass and pI. Indirect identification of secondary metabolite cluster expression was also achieved, with proteins (n = 18) from LaeA-regulated clusters detected, including GliT encoded within the gliotoxin biosynthetic cluster. Biochemical analysis then revealed that gliotoxin significantly attenuates H2O2-induced oxidative stress in A. fumigatus (p>0.0001), confirming observations from proteomics data. A complementary 2-D/LC-MS/MS approach further elucidated significantly increased abundance (p<0.05) of proliferating cell nuclear antigen (PCNA), NADH-quinone oxidoreductase and the gliotoxin oxidoreductase GliT, along with significantly attenuated abundance (p<0.05) of a heat shock protein, an oxidative stress protein and an autolysis-associated chitinase, when gliotoxin and H2O2 were present, compared to H2O2 alone. Moreover, gliotoxin exposure significantly reduced the abundance of selected proteins (p<0.05) involved in de novo purine biosynthesis. Significantly elevated abundance (p<0.05) of a key enzyme, xanthine-guanine phosphoribosyl transferase Xpt1, utilised in purine salvage, was observed in the presence of H2O2 and gliotoxin. This work provides new insights into the A. fumigatus proteome and experimental strategies, plus mechanistic data pertaining to gliotoxin functionality in the organism. PMID:25198175

  11. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes

    PubMed Central

    Mende, Daniel R.; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S.; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-01

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de. PMID:28053165

  12. proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes.

    PubMed

    Mende, Daniel R; Letunic, Ivica; Huerta-Cepas, Jaime; Li, Simone S; Forslund, Kristoffer; Sunagawa, Shinichi; Bork, Peer

    2017-01-04

    The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de.

  13. A novel approach to the study of the functional proteome in breast cancer

    SciTech Connect

    Hennessy, Bryan; Lu, Yiling; Gonzalez-Angulo, Ana Maria; Carey, Mark; Myhre, Simen; Ju, Zhenlin; Coombes, Kevin; Meric-Bernstam, Funda; Bedrosian, Isabelle; Davies, Michael A.; Siwak, Doris; Agarwal, Roshan; Zhang, Fan; Overgaard, Jens; Alsner, Jan; Neve, Richard M.; Kuo, Wen-Lin; Gray, Joe W.; Borresen-Dale, Anne-Lise; Mills, Gordon B.

    2008-10-10

    Factors including intratumoral heterogeneity and variability in tissue handling potentially hamper the application of reverse phase protein arrays (RPPA) to study of the solid tumor functional proteome. To address this, RPPA was applied to quantify protein expression and activation in 233 human breast tumors and 52 breast cancer cell lines. Eighty-two antibodies that recognize kinase and steroid signaling events and their effectors were validated for RPPA because of the importance of these proteins to breast carcinogenesis. Reproducibility in replicate lysates was excellent. Intratumoral protein expression was less variable than intertumoral expression, and prognostic biomarkers retained the ability to accurately predict patient outcomes when analyzed in different tumor sites. Although 21/82 total and phosphoproteins demonstrated time-dependent instability in breast tumors that were placed at room temperature after surgical excision for 24 hours prior to freezing, the functional proteomic 'fingerprint' was robust in most tumors until at least 24 hours before tissue freezing. Correlations between RPPA and immunohistochemistry were statistically significant for assessed proteins but RPPA demonstrated a superior dynamic range and detected, for example, an 866-fold difference in estrogen receptor alpha level across breast tumors. Protein and mRNA levels were concordant (at p {le} 0.05) for 41.3% and 61.1% of assayed targets in breast tumors and cell lines, respectively. Several phosphorylation and cleavage products did not correlate with the corresponding transcript levels. In conclusion, the reproducibility of RPPA, the faithfulness with which proteins and the functional proteomic 'fingerprint' are preserved in different sections derived from primary breast tumors, and the surprising stability of this 'fingerprint' with increasing time to freezing all facilitate the application of RPPA to the accurate study of protein biomarkers in non-microdissected tumor specimens

  14. Tackling the plant proteome: practical approaches, hurdles and experimental tools.

    PubMed

    Rose, Jocelyn K C; Bashir, Sajid; Giovannoni, James J; Jahn, Molly M; Saravanan, Ramu Subramanian

    2004-09-01

    The study of complex biological questions through comparative proteomics is becoming increasingly attractive to plant biologists as the rapidly expanding plant genomic and expressed sequence tag databases provide improved opportunities for protein identification. This review focuses on practical issues associated with comparative proteomic analysis, including the challenges of effective protein extraction and separation from plant tissues, the pros and cons of two-dimensional gel-based analysis and the problems of identifying proteins from species that are not recognized models for functional genomic studies. Specific points are illustrated using data from an ongoing study of the tomato and pepper fruit proteomes.

  15. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism

    PubMed Central

    Khairy, Heba; Meinert, Christina; Wübbeler, Jan Hendrik; Poehlein, Anja; Daniel, Rolf; Voigt, Birgit; Riedel, Katharina; Steinbüchel, Alexander

    2016-01-01

    Rhodococcus erythropolis MI2 has the extraordinary ability to utilize the xenobiotic 4,4´-dithiodibutyric acid (DTDB). Cleavage of DTDB by the disulfide-reductase Nox, which is the only verified enzyme involved in DTDB-degradation, raised 4-mercaptobutyric acid (4MB). 4MB could act as building block of a novel polythioester with unknown properties. To completely unravel the catabolism of DTDB, the genome of R. erythropolis MI2 was sequenced, and subsequently the proteome was analyzed. The draft genome sequence consists of approximately 7.2 Mbp with an overall G+C content of 62.25% and 6,859 predicted protein-encoding genes. The genome of strain MI2 is composed of three replicons: one chromosome and two megaplasmids with sizes of 6.45, 0.4 and 0.35 Mbp, respectively. When cells of strain MI2 were cultivated with DTDB as sole carbon source and compared to cells grown with succinate, several interesting proteins with significantly higher expression levels were identified using 2D-PAGE and MALDI-TOF mass spectrometry. A putative luciferase-like monooxygenase-class F420-dependent oxidoreductase (RERY_05640), which is encoded by one of the 126 monooxygenase-encoding genes of the MI2-genome, showed a 3-fold increased expression level. This monooxygenase could oxidize the intermediate 4MB into 4-oxo-4-sulfanylbutyric acid. Next, a desulfurization step, which forms succinic acid and volatile hydrogen sulfide, is proposed. One gene coding for a putative desulfhydrase (RERY_06500) was identified in the genome of strain MI2. However, the gene product was not recognized in the proteome analyses. But, a significant expression level with a ratio of up to 7.3 was determined for a putative sulfide:quinone oxidoreductase (RERY_02710), which could also be involved in the abstraction of the sulfur group. As response to the toxicity of the intermediates, several stress response proteins were strongly expressed, including a superoxide dismutase (RERY_05600) and an osmotically induced

  16. Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement.

    PubMed

    Maghuly, Fatemeh; Laimer, Margit

    2013-10-01

    Jatropha curcas is currently attracting much attention as an oilseed crop for biofuel, as Jatropha can grow under climate and soil conditions that are unsuitable for food production. However, little is known about Jatropha, and there are a number of challenges to be overcome. In fact, Jatropha has not really been domesticated; most of the Jatropha accessions are toxic, which renders the seedcake unsuitable for use as animal feed. The seeds of Jatropha contain high levels of polyunsaturated fatty acids, which negatively impact the biofuel quality. Fruiting of Jatropha is fairly continuous, thus increasing costs of harvesting. Therefore, before starting any improvement program using conventional or molecular breeding techniques, understanding gene function and the genome scale of Jatropha are prerequisites. This review presents currently available and relevant information on the latest technologies (genomics, transcriptomics, proteomics and metabolomics) to decipher important metabolic pathways within Jatropha, such as oil and toxin synthesis. Further, it discusses future directions for biotechnological approaches in Jatropha breeding and improvement.

  17. The function of genomes in bioenergetic organelles.

    PubMed Central

    Allen, John F

    2003-01-01

    Mitochondria and chloroplasts are energy-transducing organelles of the cytoplasm of eukaryotic cells. They originated as bacterial symbionts whose host cells acquired respiration from the precursor of the mitochondrion, and oxygenic photosynthesis from the precursor of the chloroplast. The host cells also acquired genetic information from their symbionts, eventually incorporating much of it into their own genomes. Genes of the eukaryotic cell nucleus now encode most mitochondrial and chloroplast proteins. Genes are copied and moved between cellular compartments with relative ease, and there is no obvious obstacle to successful import of any protein precursor from the cytosol. So why are any genes at all retained in cytoplasmic organelles? One proposal is that these small but functional genomes provide a location for genes that is close to, and in the same compartment as, their gene products. This co-location facilitates rapid and direct regulatory coupling. Redox control of synthesis de novo is put forward as the common property of those proteins that must be encoded and synthesized within mitochondria and chloroplasts. This testable hypothesis is termed CORR, for co-location for redox regulation. Principles, predictions and consequences of CORR are examined in the context of competing hypotheses and current evidence. PMID:12594916

  18. A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains

    PubMed Central

    Wood, G. Craig; Chu, Xin; Argyropoulos, George; Benotti, Peter; Rolston, David; Mirshahi, Tooraj; Petrick, Anthony; Gabrielson, John; Carey, David J.; DiStefano, Johanna K.; Still, Christopher D.; Gerhard, Glenn S.

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) represents a spectrum of conditions that include steatohepatitis and fibrosis that are thought to emanate from hepatic steatosis. Few robust biomarkers or diagnostic tests have been developed for hepatic steatosis in the setting of obesity. We have developed a multi-component classifier for hepatic steatosis comprised of phenotypic, genomic, and proteomic variables using data from 576 adults with extreme obesity who underwent bariatric surgery and intra-operative liver biopsy. Using a 443 patient training set, protein biomarker discovery was performed using the highly multiplexed SOMAscan® proteomic assay, a set of 19 clinical variables, and the steatosis predisposing PNPLA3 rs738409 single nucleotide polymorphism genotype status. The most stable markers were selected using a stability selection algorithm with a L1-regularized logistic regression kernel and were then fitted with logistic regression models to classify steatosis, that were then tested against a 133 sample blinded verification set. The highest area under the ROC curve (AUC) for steatosis of PNPLA3 rs738409 genotype, 8 proteins, or 19 phenotypic variables was 0.913, whereas the final classifier that included variables from all three domains had an AUC of 0.935. These data indicate that multi-domain modeling has better predictive power than comprehensive analysis of variables from a single domain. PMID:28266614

  19. Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reverse-genomics

    PubMed Central

    Dong, Wen; Kieliszewski, Marcia; Held, Michael A.

    2014-01-01

    The regulation of plant cell growth and early defense response involves the insolubilization of hydroxyproline-rich glycoproteins (HRGPs), such as extensin, in the primary cell wall. In tomato (Lycopersicon esculentum), insolublization occurs by the formation of tyrosyl-crosslinks catalyzed specifically by the pI 4.6 extensin peroxidase (EP). To date, neither the gene encoding EP nor the protein itself has been identified. Here, we’ve identified tomato EP candidates using both proteomic and bioinformatic approaches. Bioinformatic screening of the tomato genome yielded eight EP candidates, which contained a putative signal sequence and a predicted pI near 4.6. Biochemical fractionation of tomato culture media followed by proteomic detection further refined our list of EP candidates to three, with the lead candidate designated (CG5). To test for EP crosslinking activity, we cloned into a bacterial expression vector the CG5 open-reading frame from tomato cDNA. The CG5 was expressed in E. coli, fractionated from inclusion bodies, and folded in vitro. The peroxidase activity of CG5 was assayed and quantified by ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) assay. Subsequent extensin crosslinking assays showed that CG5 can covalently crosslink authentic tomato P1 extensin and P3-type extensin analogs in vitro supporting our hypothesis that CG5 encodes a tomato EP. PMID:25446231

  20. Identification of the pI 4.6 extensin peroxidase from Lycopersicon esculentum using proteomics and reverse-genomics.

    PubMed

    Dong, Wen; Kieliszewski, Marcia; Held, Michael A

    2015-04-01

    The regulation of plant cell growth and early defense response involves the insolubilization of hydroxyproline-rich glycoproteins (HRGPs), such as extensin, in the primary cell wall. In tomato (Lycopersicon esculentum), insolubilization occurs by the formation of tyrosyl-crosslinks catalyzed specifically by the pI 4.6 extensin peroxidase (EP). To date, neither the gene encoding EP nor the protein itself has been identified. Here, we have identified tomato EP candidates using both proteomic and bioinformatic approaches. Bioinformatic screening of the tomato genome yielded eight EP candidates, which contained a putative signal sequence and a predicted pI near 4.6. Biochemical fractionation of tomato culture media followed by proteomic detection further refined our list of EP candidates to three, with the lead candidate designated (CG5). To test for EP crosslinking activity, we cloned into a bacterial expression vector the CG5 open-reading frame from tomato cDNA. The CG5 was expressed in Escherichia coli, fractionated from inclusion bodies, and folded in vitro. The peroxidase activity of CG5 was assayed and quantified by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)) assay. Subsequent extensin crosslinking assays showed that CG5 can covalently crosslink authentic tomato P1 extensin and P3-type extensin analogs in vitro supporting our hypothesis that CG5 encodes a tomato EP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The effect of fluoride on the structure, function, and proteome of a renal epithelial cell monolayer.

    PubMed

    Antonio, Ligia S; Jeggle, Pia; MacVinish, Lesley J; Bartram, James C; Miller, Henry; Jarvis, Gavin E; Levy, Flávia M; Santesso, Mariana R; Leite, Aline L; Oliveira, Rodrigo C; Buzalaf, Marília A R; Edwardson, J Michael

    2017-04-01

    High concentrations of fluoride in the body may cause toxic effects. Here, we investigated the effects of fluoride on the structure, function, and proteome of a cortical collecting duct epithelium in vitro. Kidney tubule cells (M-1) were chosen because the concentration of fluoride in the kidney is 4-5-fold higher than that in plasma. Mouse M-1 cell monolayers were incubated in fluoride-containing media, and the amiloride-sensitive short-circuit current and transepithelial resistance were measured. The Young's modulus of the epithelium was determined using atomic force microscopy, and the effect of fluoride on epithelial structure was assessed using scanning and transmission electron microscopy, and immunofluorescence. Differences in the expression of membrane proteins were evaluated using proteomics and bioinformatics. Fluoride exposure reduced both transepithelial Na(+) transport and resistance. The IC50 for fluoride was ∼300 µM for both effects, and the half-times for the decays of ion transport and resistance were 8.4 h and 3.6 days, respectively. Fluoride treatment did not affect the sensitivity of Na(+) transport to amiloride. The Young's modulus of the epithelium was also unaffected by fluoride; however, the functional effects of fluoride were accompanied by marked structural effects. Proteomic analysis revealed changes in expression of a number of proteins, and particularly mitochondrial proteins. Treatment with fluoride had profound effects on the structure, function and proteome of a model cortical collecting duct epithelium. Significantly, however, these effects were produced only at concentrations considerably higher than those likely to be encountered in vivo. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1455-1467, 2017. © 2016 Wiley Periodicals, Inc.

  2. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir.

    PubMed

    Feng, Lu; Wang, Wei; Cheng, Jiansong; Ren, Yi; Zhao, Guang; Gao, Chunxu; Tang, Yun; Liu, Xueqian; Han, Weiqing; Peng, Xia; Liu, Rulin; Wang, Lei

    2007-03-27

    The complete genome sequence of Geobacillus thermodenitrificans NG80-2, a thermophilic bacillus isolated from a deep oil reservoir in Northern China, consists of a 3,550,319-bp chromosome and a 57,693-bp plasmid. The genome reveals that NG80-2 is well equipped for adaptation into a wide variety of environmental niches, including oil reservoirs, by possessing genes for utilization of a broad range of energy sources, genes encoding various transporters for efficient nutrient uptake and detoxification, and genes for a flexible respiration system including an aerobic branch comprising five terminal oxidases and an anaerobic branch comprising a complete denitrification pathway for quick response to dissolved oxygen fluctuation. The identification of a nitrous oxide reductase gene has not been previously described in Gram-positive bacteria. The proteome further reveals the presence of a long-chain alkane degradation pathway; and the function of the key enzyme in the pathway, the long-chain alkane monooxygenase LadA, is confirmed by in vivo and in vitro experiments. The thermophilic soluble monomeric LadA is an ideal candidate for treatment of environmental oil pollutions and biosynthesis of complex molecules.

  3. Population perspectives on functional genomic variation in yeast.

    PubMed

    Skelly, Daniel A; Magwene, Paul M

    2016-03-01

    Advances in high-throughput sequencing have facilitated large-scale surveys of genomic variation in the budding yeast,Saccharomyces cerevisiae These surveys have revealed extensive sequence variation between yeast strains. However, much less is known about how such variation influences the amount and nature of variation for functional genomic traits within and between yeast lineages. We review population-level studies of functional genomic variation, with a particular focus on how population functional genomic approaches can provide insights into both genome function and the evolutionary process. Although variation in functional genomics phenotypes is pervasive, our understanding of the consequences of this variation, either in physiological or evolutionary terms, is still rudimentary and thus motivates increased attention to appropriate null models. To date, much of the focus of population functional genomic studies has been on gene expression variation, but other functional genomic data types are just as likely to reveal important insights at the population level, suggesting a pressing need for more studies that go beyond transcription. Finally, we discuss how a population functional genomic perspective can be a powerful approach for developing a mechanistic understanding of the processes that link genomic variation to organismal phenotypes through gene networks.

  4. Ecological venomics: How genomics, transcriptomics and proteomics can shed new light on the ecology and evolution of venom.

    PubMed

    Sunagar, Kartik; Morgenstern, David; Reitzel, Adam M; Moran, Yehu

    2016-03-01

    Animal venom is a complex cocktail of bioactive chemicals that traditionally drew interest mostly from biochemists and pharmacologists. However, in recent years the evolutionary and ecological importance of venom is realized as this trait has direct and strong influence on interactions between species. Moreover, venom content can be modulated by environmental factors. Like many other fields of biology, venom research has been revolutionized in recent years by the introduction of systems biology approaches, i.e., genomics, transcriptomics and proteomics. The employment of these methods in venom research is known as 'venomics'. In this review we describe the history and recent advancements of venomics and discuss how they are employed in studying venom in general and in particular in the context of evolutionary ecology. We also discuss the pitfalls and challenges of venomics and what the future may hold for this emerging scientific field. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science.

    PubMed

    Turetschek, Reinhard; Lyon, David; Desalegn, Getinet; Kaul, Hans-Peter; Wienkoop, Stefanie

    2016-01-01

    The proteomic study of non-model organisms, such as many crop plants, is challenging due to the lack of comprehensive genome information. Changing environmental conditions require the study and selection of adapted cultivars. Mutations, inherent to cultivars, hamper protein identification and thus considerably complicate the qualitative and quantitative comparison in large-scale systems biology approaches. With this workflow, cultivar-specific mutations are detected from high-throughput comparative MS analyses, by extracting sequence polymorphisms with de novo sequencing. Stringent criteria are suggested to filter for confidential mutations. Subsequently, these polymorphisms complement the initially used database, which is ready to use with any preferred database search algorithm. In our example, we thereby identified 26 specific mutations in two cultivars of Pisum sativum and achieved an increased number (17 %) of peptide spectrum matches.

  6. Proteomic Analysis of Chinese Hamster Ovary Cells

    PubMed Central

    Baycin-Hizal, Deniz; Tabb, David L.; Chaerkady, Raghothama; Chen, Lily; Lewis, Nathan E.; Nagarajan, Harish; Sarkaria, Vishaldeep; Kumar, Amit; Wolozny, Daniel; Colao, Joe; Jacobson, Elena; Tian, Yuan; O'Meally, Robert N.; Krag, Sharon S.; Cole, Robert N.; Palsson, Bernhard O.; Zhang, Hui; Betenbaugh, Michael

    2013-01-01

    In order to complement the recent genomic sequencing of Chinese hamster ovary (CHO) cells, proteomic analysis was performed on CHO including the cellular proteome, secretome, and glycoproteome using tandem mass spectrometry (MS/MS) of multiple fractions obtained from gel electrophoresis, multi-dimensional liquid chromatography, and solid phase extraction of glycopeptides (SPEG). From the 120 different mass spectrometry analyses generating 682,097 MS/MS spectra, 93,548 unique peptide sequences were identified with at most a 0.02 false discovery rate (FDR). A total of 6164 grouped proteins were identified from both glycoproteome and proteome analysis, representing an 8-fold increase in the number of proteins currently identified in the CHO proteome. Furthermore, this is the first proteomic study done using CHO genome exclusively which provides for more accurate identification of proteins. From this analysis, the CHO codon frequency was determined and found to be distinct from humans, which will facilitate expression of human proteins in CHO cells. Analysis of the combined proteomic and mRNA data sets indicated the enrichment of a number of pathways including protein processing and apoptosis but depletion of proteins involved in steroid hormone and glycosphingolipid metabolism. 504 of the detected proteins included N-acetylation modifications and 1292 different proteins were observed to be N-glycosylated. This first large-scale proteomic analysis will enhance the knowledge base about CHO capabilities for recombinant expression and provide information useful in cell engineering efforts aimed at modifying CHO cellular functions. PMID:22971049

  7. Application of resequencing to rice genomics, functional genomics and evolutionary analysis

    PubMed Central

    2014-01-01

    Rice is a model system used for crop genomics studies. The completion of the rice genome draft sequences in 2002 not only accelerated functional genome studies, but also initiated a new era of resequencing rice genomes. Based on the reference genome in rice, next-generation sequencing (NGS) using the high-throughput sequencing system can efficiently accomplish whole genome resequencing of various genetic populations and diverse germplasm resources. Resequencing technology has been effectively utilized in evolutionary analysis, rice genomics and functional genomics studies. This technique is beneficial for both bridging the knowledge gap between genotype and phenotype and facilitating molecular breeding via gene design in rice. Here, we also discuss the limitation, application and future prospects of rice resequencing. PMID:25006357

  8. The restricted metabolism of the obligate organohalide respiring bacterium Dehalobacter restrictus: lessons from tiered functional genomics

    PubMed Central

    Rupakula, Aamani; Kruse, Thomas; Boeren, Sjef; Holliger, Christof; Smidt, Hauke; Maillard, Julien

    2013-01-01

    Dehalobacter restrictus strain PER-K23 is an obligate organohalide respiring bacterium, which displays extremely narrow metabolic capabilities. It grows only via coupling energy conservation to anaerobic respiration of tetra- and trichloroethene with hydrogen as sole electron donor. Dehalobacter restrictus represents the paradigmatic member of the genus Dehalobacter, which in recent years has turned out to be a major player in the bioremediation of an increasing number of organohalides, both in situ and in laboratory studies. The recent elucidation of the D. restrictus genome revealed a rather elaborate genome with predicted pathways that were not suspected from its restricted metabolism, such as a complete corrinoid biosynthetic pathway, the Wood–Ljungdahl (WL) pathway for CO2 fixation, abundant transcriptional regulators and several types of hydrogenases. However, one important feature of the genome is the presence of 25 reductive dehalogenase genes, from which so far only one, pceA, has been characterized on genetic and biochemical levels. This study describes a multi-level functional genomics approach on D. restrictus across three different growth phases. A global proteomic analysis allowed consideration of general metabolic pathways relevant to organohalide respiration, whereas the dedicated genomic and transcriptomic analysis focused on the diversity, composition and expression of genes associated with reductive dehalogenases. PMID:23479754

  9. Proteomic and functional consequences of hexokinase deficiency in glucose-repressible Kluyveromyces lactis.

    PubMed

    Mates, Nadia; Kettner, Karina; Heidenreich, Falk; Pursche, Theresia; Migotti, Rebekka; Kahlert, Günther; Kuhlisch, Eberhard; Breunig, Karin D; Schellenberger, Wolfgang; Dittmar, Gunnar; Hoflack, Bernard; Kriegel, Thomas M

    2014-03-01

    The analysis of glucose signaling in the Crabtree-positive eukaryotic model organism Saccharomyces cerevisiae has disclosed a dual role of its hexokinase ScHxk2, which acts as a glycolytic enzyme and key signal transducer adapting central metabolism to glucose availability. In order to identify evolutionarily conserved characteristics of hexokinase structure and function, the cellular response of the Crabtree-negative yeast Kluyveromyces lactis to rag5 null mutation and concomitant deficiency of its unique hexokinase KlHxk1 was analyzed by means of difference gel electrophoresis. In total, 2,851 fluorescent spots containing different protein species were detected in the master gel representing all of the K. lactis proteins that were solubilized from glucose-grown KlHxk1 wild-type and mutant cells. Mass spectrometric peptide analysis identified 45 individual hexokinase-dependent proteins related to carbohydrate, short-chain fatty acid and tricarboxylic acid metabolism as well as to amino acid and protein turnover, but also to general stress response and chromatin remodeling, which occurred as a consequence of KlHxk1 deficiency at a minimum 3-fold enhanced or reduced level in the mutant proteome. In addition, three proteins exhibiting homology to 2-methylcitrate cycle enzymes of S. cerevisiae were detected at increased concentrations, suggesting a stimulation of pyruvate formation from amino acids and/or fatty acids. Experimental validation of the difference gel electrophoresis approach by post-lysis dimethyl labeling largely confirmed the abundance changes detected in the mutant proteome via the former method. Taking into consideration the high proportion of identified hexokinase-dependent proteins exhibiting increased proteomic levels, KlHxk1 is likely to have a repressive function in a multitude of metabolic pathways. The proteomic alterations detected in the mutant classify KlHxk1 as a multifunctional enzyme and support the view of evolutionary conservation of

  10. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes.

    PubMed

    Wheeler, Nicole E; Barquist, Lars; Kingsley, Robert A; Gardner, Paul P

    2016-12-01

    Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS CONTACT: nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.deSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  11. A profile-based method for identifying functional divergence of orthologous genes in bacterial genomes

    PubMed Central

    Wheeler, Nicole E.; Barquist, Lars; Kingsley, Robert A.; Gardner, Paul P.

    2016-01-01

    Motivation: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. Results: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica. We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. Availability and Implementation: A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS. Contact: nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27503221

  12. Genomic, transcriptomic, and proteomic approaches towards understanding the molecular mechanisms of salt tolerance in Frankia strains isolated from Casuarina trees.

    PubMed

    Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S

    2017-08-18

    Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the

  13. Comparative analysis indicates that alternative splicing in plants has a limited role in functional expansion of the proteome.

    PubMed

    Severing, Edouard I; van Dijk, Aalt D J; Stiekema, Willem J; van Ham, Roeland C H J

    2009-04-09

    Alternative splicing (AS) is a widespread phenomenon in higher eukaryotes but the extent to which it leads to functional protein isoforms and to proteome expansion at large is still a matter of debate. In contrast to animal species, for which AS has been studied extensively at the protein and functional level, protein-centered studies of AS in plant species are scarce. Here we investigate the functional impact of AS in dicot and monocot plant species using a comparative approach. Detailed comparison of AS events in alternative spliced orthologs from the dicot Arabidopsis thaliana and the monocot Oryza sativa (rice) revealed that the vast majority of AS events in both species do not result from functional conservation. Transcript isoforms that are putative targets for the nonsense-mediated decay (NMD) pathway are as likely to contain conserved AS events as isoforms that are translated into proteins. Similar results were obtained when the same comparison was performed between the two more closely related monocot species rice and Zea mays (maize).Genome-wide computational analysis