Sample records for functional gradient material

  1. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature.

    PubMed

    Liu, Zengqian; Zhu, Yankun; Jiao, Da; Weng, Zhaoyong; Zhang, Zhefeng; Ritchie, Robert O

    2016-10-15

    Living organisms are adept at resisting contact deformation and damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the two prime characteristics of many biological materials to be translated into engineering design. Here, we examine one design motif from a variety of biological tissues and materials where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation over multiple length-scales, without manipulation of composition or microstructural dimension. Quantitative correlations are established between the structural orientations and local mechanical properties, such as stiffness, strength and fracture resistance; based on such gradients, the underlying mechanisms for the enhanced protective role of these materials are clarified. Theoretical analysis is presented and corroborated through numerical simulations of the indentation behavior of composites with distinct orientations. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally graded mechanical properties in synthetic materials for improved contact damage resistance. Living organisms are adept at resisting contact damage by assembling protective surfaces with spatially varied mechanical properties, i.e., by creating functionally-graded materials. Such gradients, together with multiple length-scale hierarchical structures, represent the prime characteristics of many biological materials. Here, we examine one design motif from a variety of biological tissues where site-specific mechanical properties are generated for enhanced protection by adopting gradients in structural orientation at multiple length-scales, without changes in composition or microstructural dimension. The design strategy of such bioinspired gradients is outlined in terms of the geometry of constituents. This study may offer a feasible approach towards generating functionally-graded mechanical properties in synthetic materials for improved damage resistance. Published by Elsevier Ltd.

  2. Fabrication and microstructures of functional gradient SiBCN–Nb composite by hot pressing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Min, E-mail: lcxsunmin@163.com; Fu, Ruoyu; Chen, Jun

    2016-04-15

    A functional gradient material with five layers composed of SiBCN ceramic and niobium (Nb) was prepared successfully by hot pressing. The phase composition, morphology features and microstructures were investigated in each layer of the gradient material. The Nb-containing compounds involving NbC, Nb{sub 6}C{sub 5}, Nb{sub 4}C{sub 3}, Nb{sub 5}Si{sub 3} and NbN increase with the volume fraction of Nb increasing in the sub-layer. They are randomly scattered (≤ 25 vol.% Nb), then strip-like, and finally distribute continuously (≥ 75 vol.% Nb). The size of BN(C) and SiC grains in Nb-containing layers is larger than in 100% SiBCN layer due tomore » the loss of the capsule-like structures. No distinct interfaces form in the transition regions indicating the gradual changes in phase composition and microstructures. - Highlights: • A functional gradient SiBCN–Nb material was prepared successfully by hot pressing. • Phase composition, morphology features and microstructures were investigated. • Thermodynamic calculation was used to aid in the phase analysis. • No distinct interfaces form typical of the functional gradient material.« less

  3. A Review on Functionally Gradient Materials (FGMs) and Their Applications

    NASA Astrophysics Data System (ADS)

    Bhavar, Valmik; Kattire, Prakash; Thakare, Sandeep; patil, Sachin; Singh, RKP, Dr.

    2017-09-01

    Functionally gradient materials (FGM) are innovative materials in which final properties varies gradually with dimensions. It is the recent development in traditional composite materials which retains their strengths and eliminates their weaknesses. It can be formed by varying chemical composition, microstructure or design attributes from one end to other as per requirement. This feature allows FGM to have best material properties in required quantities only where it is needed. Though there are several methods available for manufacturing FGMs, additive based metal deposition (by laser, electron beam, plasma etc.) technologies are reaping particular interest owing to their recent developments. This paper presents evolution, current status and challenges of functionally gradient materials (FGMs). Various manufacturing processes of different types of FGMs are also presented. In addition, applications of FGMs in various fields including aerospace, defence, mining, power and tools manufacturing sectors are discussed in detail.

  4. Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Barati, Mohammad Reza

    2017-11-01

    Up to now, nonlocal strain gradient theory (NSGT) is broadly applied to examine free vibration, static bending and buckling of nanobeams. This theory captures nonlocal stress field effects together with the microstructure-dependent strain gradient effects. In this study, forced vibrations of NSGT nanobeams on elastic substrate subjected to moving loads are examined. The nanobeam is made of functionally graded material (FGM) with even and uneven porosity distributions inside the material structure. The graded material properties with porosities are described by a modified power-law model. Dynamic deflection of the nanobeam is obtained via Galerkin and inverse Laplace transform methods. The importance of nonlocal parameter, strain gradient parameter, moving load velocity, porosity volume fraction, type of porosity distribution and elastic foundation on forced vibration behavior of nanobeams are discussed.

  5. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Suh, Eric J. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  6. High energy X-ray diffraction study of a dental ceramics–titanium functional gradient material prepared by field assisted sintering technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witte, K., E-mail: kerstin.witte@uni-rostock.de; Bodnar, W.; Schell, N.

    A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. Themore » crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength.« less

  7. Microstructure-property relationships and constitutive response of plastically graded case hardened steels

    NASA Astrophysics Data System (ADS)

    Klecka, Michael A.

    Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.

  8. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  9. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  10. Effect of gradient dielectric coefficient in a functionally graded material (FGM) substrate on the propagation behavior of love waves in an FGM-piezoelectric layered structure.

    PubMed

    Cao, Xiaoshan; Shi, Junping; Jin, Feng

    2012-06-01

    The propagation behavior of Love waves in a layered structure that includes a functionally graded material (FGM) substrate carrying a piezoelectric thin film is investigated. Analytical solutions are obtained for both constant and gradient dielectric coefficients in the FGM substrate. Numerical results show that the gradient dielectric coefficient decreases phase velocity in any mode, and the electromechanical coupling factor significantly increases in the first- and secondorder modes. In some modes, the difference in Love waves' phase velocity between these two types of structure might be more than 1%, resulting in significant differences in frequency of the surface acoustic wave devices.

  11. Optimal Design of Gradient Materials and Bi-Level Optimization of Topology Using Targets (BOTT)

    NASA Astrophysics Data System (ADS)

    Garland, Anthony

    The objective of this research is to understand the fundamental relationships necessary to develop a method to optimize both the topology and the internal gradient material distribution of a single object while meeting constraints and conflicting objectives. Functionally gradient material (FGM) objects possess continuous varying material properties throughout the object, and they allow an engineer to tailor individual regions of an object to have specific mechanical properties by locally modifying the internal material composition. A variety of techniques exists for topology optimization, and several methods exist for FGM optimization, but combining the two together is difficult. Understanding the relationship between topology and material gradient optimization enables the selection of an appropriate model and the development of algorithms, which allow engineers to design high-performance parts that better meet design objectives than optimized homogeneous material objects. For this research effort, topology optimization means finding the optimal connected structure with an optimal shape. FGM optimization means finding the optimal macroscopic material properties within an object. Tailoring the material constitutive matrix as a function of position results in gradient properties. Once, the target macroscopic properties are known, a mesostructure or a particular material nanostructure can be found which gives the target material properties at each macroscopic point. This research demonstrates that topology and gradient materials can both be optimized together for a single part. The algorithms use a discretized model of the domain and gradient based optimization algorithms. In addition, when considering two conflicting objectives the algorithms in this research generate clear 'features' within a single part. This tailoring of material properties within different areas of a single part (automated design of 'features') using computational design tools is a novel benefit of gradient material designs. A macroscopic gradient can be achieved by varying the microstructure or the mesostructures of an object. The mesostructure interpretation allows for more design freedom since the mesostructures can be tuned to have non-isotropic material properties. A new algorithm called Bi-level Optimization of Topology using Targets (BOTT) seeks to find the best distribution of mesostructure designs throughout a single object in order to minimize an objective value. On the macro level, the BOTT algorithm optimizes the macro topology and gradient material properties within the object. The BOTT algorithm optimizes the material gradient by finding the best constitutive matrix at each location with the object. In order to enhance the likelihood that a mesostructure can be generated with the same equivalent constitutive matrix, the variability of the constitutive matrix is constrained to be an orthotropic material. The stiffness in the X and Y directions (of the base coordinate system) can change in addition to rotating the orthotropic material to align with the loading at each region. Second, the BOTT algorithm designs mesostructures with macroscopic properties equal to the target properties found in step one while at the same time the algorithm seeks to minimize material usage in each mesostructure. The mesostructure algorithm maximizes the strain energy of the mesostructures unit cell when a pseudo strain is applied to the cell. A set of experiments reveals the fundamental relationship between target cell density and the strain (or pseudo strain) applied to a unit cell and the output effective properties of the mesostructure. At low density, a few mesostructure unit cell design are possible, while at higher density the mesostructure unit cell designs have many possibilities. Therefore, at low densities the effective properties of the mesostructure are a step function of the applied pseudo strain. At high densities, the effective properties of the mesostructure are continuous function of the applied pseudo strain. Finally, the macro and mesostructure designs are coordinated so that the macro and meso levels agree on the material properties at each macro region. In addition, a coordination effort seeks to coordinate the boundaries of adjacent mesostructure designs so that the macro load path is transmitted from one mesostructure design to its neighbors. The BOTT algorithm has several advantages over existing algorithms within the literature. First, the BOTT algorithm significantly reduces the computational power required to run the algorithm. Second, the BOTT algorithm indirectly enforces a minimum mesostructure density constraint which increases the manufacturability of the final design. Third, the BOTT algorithm seeks to transfer the load from one mesostructure to its neighbors by coordinating the boundaries of adjacent mesostructure designs. However, the BOTT algorithm can still be improved since it may have difficulty converging due to the step function nature of the mesostructure design problem at low density.

  12. Finite Element Analysis of Multilayered and Functionally Gradient Tribological Coatings With Measured Material Properties (Preprint)

    DTIC Science & Technology

    2006-11-01

    gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were assumed as a series of perfectly bonded layers with...resistance and low friction. Ti1-xCx (0≤ x ≤1) gradient coatings with diamond like carbon (DLC) coating on 440C stainless steel substrate were...indenter tip was used for the FEA model. Each coating sample consists of 1 μm thick coating and 440C stainless steel substrate. The area function for

  13. An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.

    2001-01-01

    We present below an analytical solution to model the one-dimensional transient flow of a Bingham viscoplastic material in a fracture with parallel walls (smooth or rough) that is subjected to an applied pressure gradient. The solution models the acceleration and the deceleration of the material as the pressure gradient changes with time. Two cases are considered: A pressure gradient applied over a finite time interval and an applied pressure gradient that is constant over time. The solution is expressed in dimensionless form and can therefore be used for a wide range of Bingham viscoplastic materials. The solution is also capable of capturing the transition that takes place in a fracture between viscoplastic flow and rigid plug flow. Also, it shows the development of a rigid central layer in fractures, the extent of which depends on the fluid properties (viscosity and yield stress), the magnitude of the pressure gradient, and the fracture aperture and surface roughness. Finally, it is shown that when a pressure gradient is applied and kept constant, the solution for the fracture flow rate converges over time to a steady-state solution that can be defined as a modified cubic law. In this case, the fracture transmissivity is found to be a non-linear function of the head gradient. This solution provides a tool for a better understanding of the flow of Bingham materials in rock fractures, interfaces, and cracks. ?? 2001 Elsevier Science Ltd. All rights reserved.

  14. Longitudinal Fracture Analysis of a Two-Dimensional Functionally Graded Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Longitudinal fracture in a two-dimensional functionally graded beam is analyzed. The modulus of elasticity varies continuously in the beam cross-section. The beam is clamped in its right-hand end. The external loading consists of one longitudinal force applied at the free end of the lower crack arm. The longitudinal crack is located in the beam mid-plane. The fracture is studied in terms of the strain energy release rate. The solution derived is used to elucidate the effects of material gradients along the height as well as along the width of the beam cross-section on the fracture behaviour. The results obtained indicate that the fracture in two-dimensional functionally graded beams can be regulated efficiently by employing appropriate material gradients.

  15. Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan M.; Arumugam, Prabhu U.

    2013-01-01

    A method has been developed for concentrating, or partly separating, particles of a selected species from a liquid or gas containing these particles, and flowing in a channel. An example of this is to promote an accumulation (and thus concentration) of the selected particle (e.g., biological species such as E. coli, salmonella, anthrax, tobacco mosaic virus or herpes simplex, and non-biological materials such as nano- and microparticles, quantum dots, nanowires, nano - tubes, and other inorganic particles) adjacent to the first surface. Additionally, this method can also determine if the particle species is present in the liquid. This is accomplished by providing an insulating material in an interstitial volume between two or more adjacent nanostructure electrodes. It can also be accomplished by providing a functionalizing substance, located on a selected region of the insulating material surface, which promotes attachment of the selected species particles to the functionalized surface, and measuring a selected electrical property such as electrical impedance, conductance, or capacitance. A time-varying electrical field E, having a root-mean-square intensity of E(sup 2) rms, with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array with a very high-magnitude gradient near exposed electrode tips. A dielectrophoretic force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected particle species to the surface. An electrical property value Z(meas) is measured at the functionalized surface, and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized surface. Some advantages of this innovation are that an array of nanostructure electrodes can provide an electric field intensity gradient that is one or more orders of magnitude greater than the corresponding gradient provided by a conventional microelectrode arrangement, and that, as a result of the high-magnitude field intensity gradients, a nanostructure concentrator can trap particles from high-speed microfluidic flows. This is critical for applications where the entire analysis must be performed in a few minutes

  16. Acoustic beam control in biomimetic projector via velocity gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  17. Acoustic beam control in biomimetic projector via velocity gradient

    NASA Astrophysics Data System (ADS)

    Gao, Xiaowei; Zhang, Yu; Cao, Wenwu; Dong, Erqian; Song, Zhongchang; Li, Songhai; Tang, Liguo; Zhang, Sai

    2016-07-01

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  18. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure.

    PubMed

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-12-12

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g 31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment.

  19. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Su, Yipin; Liu, Dongying; Chen, Weiqiu; Zhang, Chuanzeng

    2018-05-01

    Soft materials can be designed with a functionally graded (FG) property for specific applications. Such material inhomogeneity can also be found in many soft biological tissues whose functionality is only partly understood to date. In this paper, we analyze the axisymmetric guided wave propagation in a pressurized FG elastomeric hollow cylinder. The cylinder is subjected to a combined action of axial pre-stretch and pressure difference applied to the inner and outer cylindrical surfaces. We consider both torsional waves and longitudinal waves propagating in the FG cylinder made of incompressible isotropic elastomer, which is characterized by the Mooney-Rivlin strain energy function but with the material parameters varying with the radial coordinate in an affine way. The pressure difference generates an inhomogeneous deformation field in the FG cylinder, which dramatically complicates the superimposed wave problem described by the small-on-large theory. A particularly efficient approach is hence employed which combines the state-space formalism for the incremental wave motion with the approximate laminate or multi-layer technique. Dispersion relations for the two types of axisymmetric guided waves are then derived analytically. The accuracy and convergence of the proposed approach is validated numerically. The effects of the pressure difference, material gradient, and axial pre-stretch on both the torsional and the longitudinal wave propagation characteristics are discussed in detail through numerical examples. It is found that the frequency of axisymmetric waves depends nonlinearly on the pressure difference and the material gradient, and an increase in the material gradient enhances the capability of the pressure difference to adjust the wave behavior in the FG cylinder. This work provides a theoretical guidance for characterizing FG soft materials by in-situ ultrasonic nondestructive evaluation and for designing tunable waveguides via material tailoring along with an adjustment of the pre-stretch and pressure difference.

  20. Flight Performance of a Functionally Gradient Material, TUFI, on Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Leister, Daniel B.; Stewart, David A.; DiFiore, Robert; Tipton, Bradford; Gordon, Michael P.; Arnold, Jim (Technical Monitor)

    2001-01-01

    TUFI (Toughened Uni-Piece Fibrous Insulation), a functionally gradient material has been successfully flying on the Shuttle Orbiters in several locations on two insulation substrates over the past few years. TUFI is composed of insulation and a gradated surface treatment. The locations it has flown include the base heat shield where damage had been observed after every flight before its application. It was also applied to the body flap, the bottom of the body flap and around selected windows and doors where damage had been observed in the past. A description of the types of processing used including substrates will be presented and its overall performance will be reviewed.

  1. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices.

    PubMed

    Mu, Jiuke; Hou, Chengyi; Wang, Hongzhi; Li, Yaogang; Zhang, Qinghong; Zhu, Meifang

    2015-11-01

    Origami-inspired active graphene-based paper with programmed gradients in vertical and lateral directions is developed to address many of the limitations of polymer active materials including slow response and violent operation methods. Specifically, we used function-designed graphene oxide as nanoscale building blocks to fabricate an all-graphene self-folding paper that has a single-component gradient structure. A functional device composed of this graphene paper can (i) adopt predesigned shapes, (ii) walk, and (iii) turn a corner. These processes can be remote-controlled by gentle light or heating. We believe that this self-folding material holds potential for a wide range of applications such as sensing, artificial muscles, and robotics.

  2. An evaluation of a coupled microstructural approach for the analysis of functionally graded composites via the finite-element method

    NASA Technical Reports Server (NTRS)

    Pindera, Marek-Jerzy; Dunn, Patrick

    1995-01-01

    A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.

  3. Advanced Materials by Atom Transfer Radical Polymerization.

    PubMed

    Matyjaszewski, Krzysztof

    2018-06-01

    Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Engineering functionality gradients by dip coating process in acceleration mode.

    PubMed

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  5. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    PubMed

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials.

  6. Thermo-Electro-Mechanical Analysis of a Curved Functionally Graded Piezoelectric Actuator with Sandwich Structure

    PubMed Central

    Yan, Zhi; Zaman, Mostafa; Jiang, Liying

    2011-01-01

    In this work, the problem of a curved functionally graded piezoelectric (FGP) actuator with sandwich structure under electrical and thermal loads is investigated. The middle layer in the sandwich structure is functionally graded with the piezoelectric coefficient g31 varying continuously along the radial direction of the curved actuator. Based on the theory of linear piezoelectricity, analytical solutions are obtained by using Airy stress function to examine the effects of material gradient and heat conduction on the performance of the curved actuator. It is found that the material gradient and thermal load have significant influence on the electroelastic fields and the mechanical response of the curved FGP actuator. Without the sacrifice of actuation deflection, smaller internal stresses are generated by using the sandwich actuator with functionally graded piezoelectric layer instead of the conventional bimorph actuator. This work is very helpful for the design and application of curved piezoelectric actuators under thermal environment. PMID:28824130

  7. An analysis of the drying process in forest fuel material

    Treesearch

    G.M. Byram; R.M. Nelson

    2015-01-01

    It is assumed that the flow of moisture in forest fuels and other woody materials is determined by the gradient of a quantity g which is a function of some property, or properties, of the moisture content. There appears to be no preferred choice for this function, hence moisture transfer equations can be based on a number of equally valid definitions of g. The physical...

  8. Design and fabrication of integrated micro/macrostructure for 3D functional gradient systems based on additive manufacturing

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Xie, Luofeng; Jiang, Weifeng; Yin, Guofu

    2018-05-01

    Functional gradient systems have important applications in many areas. Although a 2D dielectric structure that serves as the gradient index medium for controlling electromagnetic waves is well established, it may not be suitable for application in 3D case. In this paper, we present a method to realize functional gradient systems with 3D integrated micro/macrostructure. The homogenization of the structure is studied in detail by conducting band diagram analysis. The analysis shows that the effective medium approximation is valid even when periodicity is comparable to wavelength. The condition to ensure the polarization-invariant, isotropic, and frequency-independent property is investigated. The scheme for the design and fabrication of 3D systems requiring spatial material property distribution is presented. By using the vat photopolymerization process, a large overall size of macrostructure at the system level and precise fine features of microstructure at the unit cell level are realized, thus demonstrating considerable scalability of the system for wave manipulation.

  9. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  10. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature, thermal protection materials (TPM), is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heatshield of Orbiter 105, Endeavor.

  11. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buda, I. G.; Lane, C.; Barbiellini, B.

    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less

  12. Characterization of Thin Film Materials using SCAN meta-GGA, an Accurate Nonempirical Density Functional

    DOE PAGES

    Buda, I. G.; Lane, C.; Barbiellini, B.; ...

    2017-03-23

    We discuss self-consistently obtained ground-state electronic properties of monolayers of graphene and a number of ’beyond graphene’ compounds, including films of transition-metal dichalcogenides (TMDs), using the recently proposed strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) to the density functional theory. The SCAN meta-GGA results are compared with those based on the local density approximation (LDA) as well as the generalized gradient approximation (GGA). As expected, the GGA yields expanded lattices and softened bonds in relation to the LDA, but the SCAN meta-GGA systematically improves the agreement with experiment. Our study suggests the efficacy of the SCAN functionalmore » for accurate modeling of electronic structures of layered materials in high-throughput calculations more generally.« less

  13. High temperature thermo-physical properties of SPS-ed W-Cu functional gradient materials

    NASA Astrophysics Data System (ADS)

    Galatanu, Magdalena; Enculescu, Monica; Galatanu, Andrei

    2018-02-01

    The divertor of a fusion reactor like DEMO requires materials able to withstand high heat fluxes and neutron irradiation for several years. For the water cooling concept of this essential part of the reactor, the most likely plasma facing material will be W, while the heatsink material considered is CuCrZr or an improved version of such a Cu-based alloy. To realize W-Cu alloy joints able to withstand thousands of thermal cycles can be difficult due to the difference between the thermal expansion coefficients of these materials. In this work we investigate the possibility to realize such joints by using W-Cu functional gradient materials (FGMs) produced from nanometric and micrometric metallic powders mixtures and consolidated by spark plasma sintering at about 900 °C. Morphological and thermal properties investigations, performed for typical compositions, shows that the best results are obtained using powders with micrometric dimensions. A resulting 1 mm thick, 3 layers W-Cu FGM produced by this simple method shows a remarkable almost constant thermal conductivity value of 200 W m-1 K-1, from room temperature up to 1000 °C.

  14. Convection driven generation of long-range material gradients

    PubMed Central

    Du, Yanan; Hancock, Matthew J.; He, Jiankang; Villa-Uribe, Jose; Wang, Ben; Cropek, Donald M.; Khademhosseini, Ali

    2009-01-01

    Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties. The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic materials. Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties. A poly(ethyleneglycol) hydrogel gradient, a porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response. This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interaction. PMID:20035990

  15. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  16. Chromatic Properties of Index of Refraction Gradients in Glass.

    NASA Astrophysics Data System (ADS)

    Ryan-Howard, Danette Patrice

    The chromatic properties of index of refraction gradients have been predicted theoretically and verified experimentally. The use of these materials in the design of color corrected optical systems has been investigated and confirmed by the evaluation of two fabricated lenses. A model for the chromatic properties of gradient index materials has been developed. The index of refraction is calculated based on the composition of the material. Since the index of refraction and the conventional Abbe number change as a function of the composition of the glass, a gradient Abbe number and a partial dispersion are defined. Analysis of combinations of ion exchange pairs and glasses result in a wide range of gradient Abbe numbers and partial dispersions. These ranges can be further extended by using glasses which contain more than one exchange ion or by using mixed salt baths. The chromatic properties were measured with a multiple wavelength A.C. interferometer. The gradient Abbe numbers and partial dispersions for a number of samples were calculated. Evaluation of the samples showed that the index and dispersion data correlated well with that predicted by the model. Thin lens formulae for the paraxial axial color and secondary spectrum of a radial gradient singlet with curves were examined. The design of a single element 10x microscope objective verified the applicability of these formulae. The design of a two element 40x microscope objective showed that a six element diffraction limited 40x objective can be replaced with a two element system composed of one homogeneous lens and one gradient lens without sacrificing either monochromatic performance or color correction. A previously fabricated axial gradient collimator and a fabricated Wood element were evaluated. Correlation of the directly measured quantities, paraxial axial color, secondary spectrum and spherochromatism with the values predicted by the model verified that the predicted superior performance of gradient-index lenses can be obtained.

  17. Energy changes in transforming solids. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, G.

    Research is reported on energy changes in transforming solids. Topics include: damage mechanics, functionally gradient materials with defects, problems in heterogenization, and conservation laws with application to fracture mechanics and defect mechanics.

  18. Microfluidic Synthesis of Composite Cross-Gradient Materials for Investigating Cell–Biomaterial Interactions

    PubMed Central

    He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali

    2010-01-01

    Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897

  19. Characterization of the thermal conductivity for Advanced Toughened Uni-piece Fibrous Insulations

    NASA Technical Reports Server (NTRS)

    Stewart, David A.; Leiser, Daniel B.

    1993-01-01

    Advanced Toughened Uni-piece Fibrous Insulations (TUFI) is discussed in terms of their thermal response to an arc-jet air stream. A modification of the existing Ames thermal conductivity program to predict the thermal response of these functionally gradient materials is described in the paper. The modified program was used to evaluate the effect of density, surface porosity, and density gradient through the TUFI materials on the thermal response of these insulations. Predictions using a finite-difference code and calculated thermal conductivity values from the modified program were compared with in-depth temperature measurements taken from TUFI insulations during short exposures to arc-jet hypersonic air streams.

  20. Effect of a Diffusion Zone on Fatigue Crack Propagation in Layered FGMs

    NASA Astrophysics Data System (ADS)

    Hauber, Brett; Brockman, Robert; Paulino, Glaucio

    2008-02-01

    Research into functionally graded materials (FGMs) has led to advances in our ability to analyze cracks. However, two prominent aspects remain relatively unexplored: 1) development and validation of modeling methods for fatigue crack propagation in FGMs, and 2) experimental validation of stress intensity models in engineered materials such as two phase monolithic and graded materials. This work addresses some of these problems for a limited set of conditions, material systems (e.g., Ti/TiB), and material gradients. Numerical analyses are conducted for single edge notch bend (SENB) specimens. Stress intensity factors are computed using the specialized finite element code I-Franc (Illinois Fracture Analysis Code), which is tailored for both homogeneous and graded materials, as well as Franc2DL and ABAQUS. Crack extension is considered by means of specified crack increments, together with fatigue evaluations to predict crack propagation life. Results will be used to determine linear material gradient parameters that are significant for prediction of fatigue crack growth behavior.

  1. Ternary gradient metal-organic frameworks.

    PubMed

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  2. Continuously graded extruded polymer composites for energetic applications fabricated using twin-screw extrusion processing technology

    NASA Astrophysics Data System (ADS)

    Gallant, Frederick M.

    A novel method of fabricating functionally graded extruded composite materials is proposed for propellant applications using the technology of continuous processing with a Twin-Screw Extruder. The method is applied to the manufacturing of grains for solid rocket motors in an end-burning configuration with an axial gradient in ammonium perchlorate volume fraction and relative coarse/fine particle size distributions. The fabrication of functionally graded extruded polymer composites with either inert or energetic ingredients has yet to be investigated. The lack of knowledge concerning the processing of these novel materials has necessitated that a number of research issues be addressed. Of primary concern is characterizing and modeling the relationship between the extruder screw geometry, transient processing conditions, and the gradient architecture that evolves in the extruder. Recent interpretations of the Residence Time Distributions (RTDs) and Residence Volume Distributions (RVDs) for polymer composites in the TSE are used to develop new process models for predicting gradient architectures in the direction of extrusion. An approach is developed for characterizing the sections of the extrudate using optical, mechanical, and compositional analysis to determine the gradient architectures. The effects of processing on the burning rate properties of extruded energetic polymer composites are characterized for homogeneous formulations over a range of compositions to determine realistic gradient architectures for solid rocket motor applications. The new process models and burning rate properties that have been characterized in this research effort will be the basis for an inverse design procedure that is capable of determining gradient architectures for grains in solid rocket motors that possess tailored burning rate distributions that conform to user-defined performance specifications.

  3. Numerical methods for the design of gradient-index optical coatings.

    PubMed

    Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana

    2012-12-01

    We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.

  4. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  5. Interfacial free energy and stiffness of aluminum during rapid solidification

    DOE PAGES

    Brown, Nicholas T.; Martinez, Enrique; Qu, Jianmin

    2017-05-01

    Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material properties, the standard capillary fluctuation method typically used for systems in equilibrium has been modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature gradient using the fluctuations in the defined interface height. This work includes the calculationmore » of interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are compared to a thermal equilibrium case using the same model and simulation technique with a zero gradient definition. We define the temperature gradient as the change in temperature over height perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude of the temperature gradient, however the anisotropic parameters remain independent of the non-equilibrium conditions applied in this analysis. As a result, the relationships of the interfacial free energy/stiffness are determined to be linearly related to the thermal gradient, and can be interpolated to find material characteristics at additional temperature gradients.« less

  6. Mechanical Properties of Porous, High Temperature Structural Materials: Sources of Toughness in Reaction Bonded Silicon Nitride.

    DTIC Science & Technology

    1995-10-15

    tensile extension. At each level of externally imposed displacements, internal equilibrium was achieved by a conjugate gradient method of energy...indentation cracks viewed by TEM. This could be due to either weaker grain boundaries or due to grain level internal stresses of misfit. The fact... internally using the conjugate gradient method until the overall elastic strain energy function 4 was minimized for a unit level of border displacement which

  7. Algorithm for ion beam figuring of low-gradient mirrors.

    PubMed

    Jiao, Changjun; Li, Shengyi; Xie, Xuhui

    2009-07-20

    Ion beam figuring technology for low-gradient mirrors is discussed. Ion beam figuring is a noncontact machining technique in which a beam of high-energy ions is directed toward a target workpiece to remove material in a predetermined and controlled fashion. Owing to this noncontact mode of material removal, problems associated with tool wear and edge effects, which are common in conventional contact polishing processes, are avoided. Based on the Bayesian principle, an iterative dwell time algorithm for planar mirrors is deduced from the computer-controlled optical surfacing (CCOS) principle. With the properties of the removal function, the shaping process of low-gradient mirrors can be approximated by the linear model for planar mirrors. With these discussions, the error surface figuring technology for low-gradient mirrors with a linear path is set up. With the near-Gaussian property of the removal function, the figuring process with a spiral path can be described by the conventional linear CCOS principle, and a Bayesian-based iterative algorithm can be used to deconvolute the dwell time. Moreover, the selection criterion of the spiral parameter is given. Ion beam figuring technology with a spiral scan path based on these methods can be used to figure mirrors with non-axis-symmetrical errors. Experiments on SiC chemical vapor deposition planar and Zerodur paraboloid samples are made, and the final surface errors are all below 1/100 lambda.

  8. An approach for maximizing the smallest eigenfrequency of structure vibration based on piecewise constant level set method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhengfang; Chen, Weifeng

    2018-05-01

    Maximization of the smallest eigenfrequency of the linearized elasticity system with area constraint is investigated. The elasticity system is extended into a large background domain, but the void is vacuum and not filled with ersatz material. The piecewise constant level set (PCLS) method is applied to present two regions, the original material region and the void region. A quadratic PCLS function is proposed to represent the characteristic function. Consequently, the functional derivative of the smallest eigenfrequency with respect to PCLS function takes nonzero value in the original material region and zero in the void region. A penalty gradient algorithm is proposed, which initializes the whole background domain with the original material and decreases the area of original material region till the area constraint is satisfied. 2D and 3D numerical examples are presented, illustrating the validity of the proposed algorithm.

  9. Effect of Interface Shape and Magnetic Field on the Microstructure of Bulk Ge:Ga

    NASA Technical Reports Server (NTRS)

    Cobb, S. D.; Szofran, F. R.; Volz, M. P.

    1999-01-01

    Thermal and compositional gradients induced during the growth process contribute significantly to the development of defects in the solidified boule. Thermal gradients and the solid-liquid interface shape can be greatly effected by ampoule material. Compositional gradients are strongly influenced by interface curvature and convective flow in the liquid. Results of this investigation illustrate the combined influences of interface shape and convective fluid flow. An applied magnetic field was used to reduce the effects of convective fluid flow in the electrically conductive melt during directional solidification. Several 8 mm diameter boules of Ga-doped Ge were grown at different field strengths, up to 5 Tesla, in four different ampoule materials. Compositional profiles indicate mass transfer conditions ranged from completely mixed to diffusion controlled. The influence of convection in the melt on the developing crystal microstructure and defect density was investigated as a function of field strength and ampoule material. Chemical etching and electron backscattered electron diffraction were used to map the crystal structure of each boule along the center plane. Dislocation etch pit densities were measured for each boule. Results show the influence of magnetic field strength and ampoule material on overall crystal quality.

  10. Multiscale structural gradients enhance the biomechanical functionality of the spider fang

    PubMed Central

    Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael

    2014-01-01

    The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935

  11. Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films

    NASA Astrophysics Data System (ADS)

    Liu, Jinxing; Kah Soh, Ai

    2016-08-01

    The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.

  12. Nanofiber scaffold gradients for interfacial tissue engineering.

    PubMed

    Ramalingam, Murugan; Young, Marian F; Thomas, Vinoy; Sun, Limin; Chow, Laurence C; Tison, Christopher K; Chatterjee, Kaushik; Miles, William C; Simon, Carl G

    2013-02-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues.

  13. Implementation and application of a gradient enhanced crystal plasticity model

    NASA Astrophysics Data System (ADS)

    Soyarslan, C.; Perdahcıoǧlu, E. S.; Aşık, E. E.; van den Boogaard, A. H.; Bargmann, S.

    2017-10-01

    A rate-independent crystal plasticity model is implemented in which description of the hardening of the material is given as a function of the total dislocation density. The evolution of statistically stored dislocations (SSDs) is described using a saturating type evolution law. The evolution of geometrically necessary dislocations (GNDs) on the other hand is described using the gradient of the plastic strain tensor in a non-local manner. The gradient of the incremental plastic strain tensor is computed explicitly during an implicit FE simulation after each converged step. Using the plastic strain tensor stored as state variables at each integration point and an efficient numerical algorithm to find the gradients, the GND density is obtained. This results in a weak coupling of the equilibrium solution and the gradient enhancement. The algorithm is applied to an academic test problem which considers growth of a cylindrical void in a single crystal matrix.

  14. Efficiency of unconstrained minimization techniques in nonlinear analysis

    NASA Technical Reports Server (NTRS)

    Kamat, M. P.; Knight, N. F., Jr.

    1978-01-01

    Unconstrained minimization algorithms have been critically evaluated for their effectiveness in solving structural problems involving geometric and material nonlinearities. The algorithms have been categorized as being zeroth, first, or second order depending upon the highest derivative of the function required by the algorithm. The sensitivity of these algorithms to the accuracy of derivatives clearly suggests using analytically derived gradients instead of finite difference approximations. The use of analytic gradients results in better control of the number of minimizations required for convergence to the exact solution.

  15. Three-dimensional Macroscopic Scaffolds With a Gradient in Stiffness for Functional Regeneration of Interfacial Tissues

    PubMed Central

    Singh, Milind; Dormer, Nathan; Salash, Jean R.; Christian, Jordan M.; Moore, David S.; Berkland, Cory; Detamore, Michael S.

    2010-01-01

    A novel approach has been demonstrated to construct biocompatible, macroporous 3-D tissue engineering scaffolds containing a continuous macroscopic gradient in composition that yields a stiffness gradient along the axis of the scaffold. Polymeric microspheres, made of poly(d,l-lactic-co-glycolic acid) (PLGA), and composite microspheres encapsulating a higher stiffness nano-phase material (PLGA encapsulating CaCO3 or TiO2 nanoparticles) were used for the construction of microsphere-based scaffolds. Using controlled infusion of polymeric and composite microspheres, gradient scaffolds displaying an anisotropic macroscopic distribution of CaCO3/TiO2 were fabricated via an ethanol sintering technique. The controllable mechanical characteristics and biocompatible nature of these scaffolds warrants further investigation for interfacial tissue engineering applications. PMID:20336753

  16. Flexoelectric effect in functionally graded materials: A numerical study

    NASA Astrophysics Data System (ADS)

    Kumar, Anuruddh; Kiran, Raj; Kumar, Rajeev; Chandra Jain, Satish; Vaish, Rahul

    2018-04-01

    The flexoelectric effect has been observed in a wide range of dielectric materials. However, the flexoelectric effect can only be induced using the strain gradient. Researchers have examined the flexoelectricity using non-uniform loading (cantilever type) or non-uniform shape in dielectric materials, which may be undesirable in many applications. In the present article, we demonstrate induced flexoelectricity in dielectric functionally graded materials (FGMs) due to non-uniform Youngs's modulus along the thickness. To examine flexoelectricity, Ba0.6Sr0.4TiO3 (BST) and polyvinylidene fluoride (PVDF) were used to numerically simulate the performance of FGMs. 2D simulation suggests that output voltage can drastically enhance for optimum grading index of FGMs.

  17. Dielectrophoresis-based particle sensor using nanoelectrode arrays

    NASA Technical Reports Server (NTRS)

    Arumugam, Prabhu U. (Inventor); Li, Jun (Inventor); Cassell, Alan M. (Inventor)

    2009-01-01

    A method for concentrating or partly separating particles of a selected species from a liquid or fluid containing these particles and flowing in a channel, and for determining if the selected species particle is present in the liquid or fluid. A time varying electrical field E, having a root-mean-square intensity E.sup.2.sub.rms with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array, with a very high magnitude gradient near exposed electrode tips. A dielectrophoresis force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of each of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected species particles to the surface. An electrical property value Z(meas) is measured at the functionalized surface and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized surface.

  18. Methods of electrophoretic deposition for functionally graded porous nanostructures and systems thereof

    DOEpatents

    Worsley, Marcus A; Baumann, Theodore F; Satcher, Joe H; Olson, Tammy Y; Kuntz, Joshua D; Rose, Klint A

    2015-03-03

    In one embodiment, an aerogel includes a layer of shaped particles having a particle packing density gradient in a thickness direction of the layer, wherein the shaped particles are characterized by being formed in an electrophoretic deposition (EPD) process using an impurity. In another embodiment, a method for forming a functionally graded porous nanostructure includes adding particles of an impurity and a solution to an EPD chamber, applying a voltage difference across the two electrodes of the EPD chamber to create an electric field in the EPD chamber, and depositing the material onto surfaces of the particles of the impurity to form shaped particles of the material. Other functionally graded materials and methods are described according to more embodiments.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Yoo Jai; Ki, Hyungson

    A novel picosecond-laser pulsed laser deposition method has been developed for fabricating functionally graded films with pre-designed gradient profiles. Theoretically, the developed method is capable of precisely fabricating films with any thicknesses and any gradient profiles by controlling the laser beam powers for the two different targets based on the film composition profiles. As an implementation example, we have successfully constructed functionally graded diamond-like carbon films with six different gradient profiles: linear, quadratic, cubic, square root, cubic root, and sinusoidal. Energy dispersive X-ray spectroscopy is employed for investigating the chemical composition along the thickness of the film, and the depositionmore » profile and thickness errors are found to be less than 3% and 1.04%, respectively. To the best of the authors' knowledge, this is the first method for fabricating films with designed gradient profiles and has huge potential in many areas of coatings and films, including multifunctional optical films. We believe that this method is not only limited to the example considered in this study, but also can be applied to all material combinations as long as they can be deposited using the pulsed laser deposition technique.« less

  20. 3D Printing of Materials with Tunable Failure via Bioinspired Mechanical Gradients.

    PubMed

    Kokkinis, Dimitri; Bouville, Florian; Studart, André R

    2018-05-01

    Mechanical gradients are useful to reduce strain mismatches in heterogeneous materials and thus prevent premature failure of devices in a wide range of applications. While complex graded designs are a hallmark of biological materials, gradients in manmade materials are often limited to 1D profiles due to the lack of adequate fabrication tools. Here, a multimaterial 3D-printing platform is developed to fabricate elastomer gradients spanning three orders of magnitude in elastic modulus and used to investigate the role of various bioinspired gradient designs on the local and global mechanical behavior of synthetic materials. The digital image correlation data and finite element modeling indicate that gradients can be effectively used to manipulate the stress state and thus circumvent the weakening effect of defect-rich interfaces or program the failure behavior of heterogeneous materials. Implementing this concept in materials with bioinspired designs can potentially lead to defect-tolerant structures and to materials whose tunable failure facilitates repair of biomedical implants, stretchable electronics, or soft robotics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Drop casting of stiffness gradients for chip integration into stretchable substrates

    NASA Astrophysics Data System (ADS)

    Naserifar, Naser; LeDuc, Philip R.; Fedder, Gary K.

    2017-04-01

    Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems.

  2. Generalization of the van der Pauw Method: Analyzing Longitudinal Magnetoresistance Asymmetry to Quantify Doping Gradients

    NASA Astrophysics Data System (ADS)

    Grayson, M.; Zhou, Wang; Yoo, Heun-Mo; Prabhu-Gaunkar, S.; Tiemann, L.; Reichl, C.; Wegscheider, W.

    A longitudinal magnetoresistance asymmetry (LMA) between a positive and negative magnetic field is known to occur in both the extreme quantum limit and the classical Drude limit in samples with a nonuniform doping density. By analyzing the current stream function in van der Pauw measurement geometry, it is shown that the electron density gradient can be quantitatively deduced from this LMA in the Drude regime. Results agree with gradients interpolated from local densities calibrated across an entire wafer, establishing a generalization of the van der Pauw method to quantify density gradients. Results will be shown of various semoconductor systems where this method is applied, from bulk doped semiconductors, to exfoliated 2D materials. McCormick Catalyst Award from Northwestern University, EECS Bridge Funding, and AFOSR FA9550-15-1-0247.

  3. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach.

    PubMed

    Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V

    2001-09-01

    The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.

  4. Microfluidic approaches for the fabrication of gradient crosslinked networks based on poly(ethylene glycol) and hyperbranched polymers for manipulation of cell interactions

    PubMed Central

    Pedron, S; Peinado, C; Bosch, P; Benton, J A; Anseth, K S

    2011-01-01

    High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. PMID:21105168

  5. Mapping polaronic states and lithiation gradients in individual V2O5 nanowires

    PubMed Central

    De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng; Parija, Abhishek; Jaye, Cherno; Wangoh, Linda; Wang, Jian; Fischer, Daniel A.; Piper, Louis F. J.; Prendergast, David; Banerjee, Sarbajit

    2016-01-01

    The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO2, lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V2O5, lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V2O5 framework couple to local structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation. PMID:27349567

  6. VPS Process for Copper Components in Thrust Chamber Assemblies

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Holmes, Richard; Hickman, Robert; McKechnie, Tim; Thom, George

    2005-01-01

    For several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc., (PPI) to fabricate thrust chamber liners with GRCop-84. Using the vacuum plasma spray (VPS) process, chamber liners of a variety of shapes and sizes have been created. Each has been formed as a functional gradient material (FGM) that creates a unique protective layer of NiCrAlY on the GRCop-84 liner s hot wall surface. Hot-fire testing was successfully conducted on a subscale unit to demonstrate the liner's durability and performance. Similar VPS technology has also been applied to create functional gradient coatings (FGC) on copper injector faceplates. Protective layers of NiCrAlY and zirconia were applied to both coaxial and impinging faceplate designs. Hot-fire testing is planned for these coated injectors in April 2005. The resulting material systems for both copper alloy components allows them to operate at higher temperatures with improved durability and operating margins.

  7. Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects

    DOE PAGES

    Yuk, Simuck F.; Pitike, Krishna Chaitanya; Nakhmanson, Serge M.; ...

    2017-03-03

    Using the van der Waals density functional with C09 exchange (vdW-DF-C09), which has been applied to describing a wide range of dispersion-bound systems, we explore the physical properties of prototypical ABO 3 bulk ferroelectric oxides. Surprisingly, vdW-DF-C09 provides a superior description of experimental values for lattice constants, polarization and bulk moduli, exhibiting similar accuracy to the modified Perdew-Burke-Erzenhoff functional which was designed specifically for bulk solids (PBEsol). The relative performance of vdW-DF-C09 is strongly linked to the form of the exchange enhancement factor which, like PBEsol, tends to behave like the gradient expansion approximation for small reduced gradients. These resultsmore » suggest the general-purpose nature of the class of vdW-DF functionals, with particular consequences for predicting material functionality across dense and sparse matter regimes.« less

  8. Towards an accurate description of perovskite ferroelectrics: exchange and correlation effects

    PubMed Central

    Yuk, Simuck F.; Pitike, Krishna Chaitanya; Nakhmanson, Serge M.; Eisenbach, Markus; Li, Ying Wai; Cooper, Valentino R.

    2017-01-01

    Using the van der Waals density functional with C09 exchange (vdW-DF-C09), which has been applied to describing a wide range of dispersion-bound systems, we explore the physical properties of prototypical ABO3 bulk ferroelectric oxides. Surprisingly, vdW-DF-C09 provides a superior description of experimental values for lattice constants, polarization and bulk moduli, exhibiting similar accuracy to the modified Perdew-Burke-Erzenhoff functional which was designed specifically for bulk solids (PBEsol). The relative performance of vdW-DF-C09 is strongly linked to the form of the exchange enhancement factor which, like PBEsol, tends to behave like the gradient expansion approximation for small reduced gradients. These results suggest the general-purpose nature of the class of vdW-DF functionals, with particular consequences for predicting material functionality across dense and sparse matter regimes. PMID:28256544

  9. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  10. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  11. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  12. Nanostructured high-energy cathode materials for advanced lithium batteries

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi1-xMxO2 (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g-1), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  13. Nanostructured high-energy cathode materials for advanced lithium batteries.

    PubMed

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi(1-x)M(x)O(2) (M = transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215 mA h g(-1)), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  14. Application of Advanced Materials in Petroleum Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  15. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2, 5/2, 7/2, and 9/2. These results may be used to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed. This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences, Heavy Element Chemistrymore » program.« less

  16. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.

    1980-01-01

    Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  17. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  18. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications

    PubMed Central

    2018-01-01

    Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612

  19. Delamination Analysis of a Multilayered Two-Dimensional Functionally Graded Cantilever Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2017-11-01

    Delamination fracture behaviour of a multilayered two-dimensional functionally graded cantilever beam is analyzed in terms of the strain energy release rate. The beam is made of an arbitrary number of layers. Perfect adhesion is assumed between layers. Each layer has individual thickness and material properties. Besides, the material is two-dimensional functionally graded in the cross-section of each layer. There is a delamination crack located arbitrary between layers. The beam is loaded by a bending moment applied at the free end of the lower crack arm. The upper crack arm is free of stresses. The solution to strain energy release rate derived is applied to investigate the influence of the crack location and the material gradient on the delamination fracture. The results obtained can be used to optimize the multilayered two-dimensional functionally graded beam structure with respect to the delamination fracture behaviour.

  20. Corrosion behaviour and mechanical properties of functionally gradient materials developed for possible hard-tissue applications.

    PubMed

    Becker, B S; Bolton, J D

    1997-12-01

    Artificial hip joints have an average lifetime of 10 years due to aseptic loosening of the femoral stem attributed to polymeric wear debris; however, there is a steadily increasing demand from younger osteoarthritis patients aged between 15 and 40 year for a longer lasting joint of 25 years or more. Compliant layers incorporated into the acetabular cup generate elastohydrodynamic lubrication conditions between the bearing surfaces, reduce joint friction coefficients and wear debris production and could increase the average life of total hip replacements, and other human load-bearing joint replacements, i.e. total knee replacements. Poor adhesion between a fully dense substrate and the compliant layer has so far prevented any further exploitation. This work investigated the possibility of producing porous metallic, functionally gradient type acetabular cups using powder metallurgy techniques - where a porous surface was supported by a denser core - into which the compliant layers could be incorporated. The corrosion behaviour and mechanical properties of three biomedically approved alloys containing two levels of total porosity (>30% and <10%) were established, resulting in Ti-6Al-4V being identified as the most promising biocompatible functionally graded material, not only for this application but for other hard-tissue implants.

  1. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jianwei; Remsing, Richard C.; Zhang, Yubo

    2016-06-13

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and vanmore » der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.« less

  2. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional.

    PubMed

    Sun, Jianwei; Remsing, Richard C; Zhang, Yubo; Sun, Zhaoru; Ruzsinszky, Adrienn; Peng, Haowei; Yang, Zenghui; Paul, Arpita; Waghmare, Umesh; Wu, Xifan; Klein, Michael L; Perdew, John P

    2016-09-01

    One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

  3. Multimaterial topology optimization of contact problems using phase field regularization

    NASA Astrophysics Data System (ADS)

    Myśliński, Andrzej

    2018-01-01

    The numerical method to solve multimaterial topology optimization problems for elastic bodies in unilateral contact with Tresca friction is developed in the paper. The displacement of the elastic body in contact is governed by elliptic equation with inequality boundary conditions. The body is assumed to consists from more than two distinct isotropic elastic materials. The materials distribution function is chosen as the design variable. Since high contact stress appears during the contact phenomenon the aim of the structural optimization problem is to find such topology of the domain occupied by the body that the normal contact stress along the boundary of the body is minimized. The original cost functional is regularized using the multiphase volume constrained Ginzburg-Landau energy functional rather than the perimeter functional. The first order necessary optimality condition is recalled and used to formulate the generalized gradient flow equations of Allen-Cahn type. The optimal topology is obtained as the steady state of the phase transition governed by the generalized Allen-Cahn equation. As the interface width parameter tends to zero the transition of the phase field model to the level set model is studied. The optimization problem is solved numerically using the operator splitting approach combined with the projection gradient method. Numerical examples confirming the applicability of the proposed method are provided and discussed.

  4. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A numerical study of the string function using a primitive equation ocean model

    NASA Astrophysics Data System (ADS)

    Tyler, R. H.; Käse, R.

    We use results from a primitive-equation ocean numerical model (SCRUM) to test a theoretical 'string function' formulation put forward by Tyler and Käse in another article in this issue. The string function acts as a stream function for the large-scale potential energy flow under the combined beta and topographic effects. The model results verify that large-scale anomalies propagate along the string function contours with a speed correctly given by the cross-string gradient. For anomalies having a scale similar to the Rossby radius, material rates of change in the layer mass following the string velocity are balanced by material rates of change in relative vorticity following the flow velocity. It is shown that large-amplitude anomalies can be generated when wind stress is resonant with the string function configuration.

  6. A multi-structural and multi-functional integrated fog collection system in cactus

    PubMed Central

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  7. A multi-structural and multi-functional integrated fog collection system in cactus.

    PubMed

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.

  8. Modeling Issues and Results for Hydrogen Isotopes in NIF Materials

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur A.; Doerner, R. P.; Luckhardt, S. C.; Seraydarian, R.; Sze, D.; Burnham, A.

    1998-11-01

    The TMAP4 (G. Longhurst, et al. INEL 1992) model of hydrogen isotope transport in solid materials includes a particle diffusion calculation with Fick's Law modified for Soret Effect (Thermal Diffusion or Thermomigration), coupled to heat transport calculations which are needed because of the strong temperature dependence of diffusivity. These TMAP4 calculations applied to NIF show that high temperatures approaching the melting point and strong thermal gradients of 10^6 K/cm are reached in the first micron of wall material during the SXR pulse. These strong thermal gradients can drive hydrogen isotope migration up or down the thermal gradient depending on the sign of the heat of transport (Soret coefficient) which depends on whether the material dissolves hydrogen endothermically or exothermically. Two candidates for NIF wall material-boron carbide and stainless steel are compared. Boron carbide dissolves hydrogen exothermically so it may drive Soret migration down the thermal gradient deeper into the material, although the thermal gradient is not as large and hydrogen is not as mobile as in stainless steel. Stainless steel dissolves hydrogen endothermically, with a negative Soret coefficient which can drive hydrogen up the thermal gradient and out of the wall.

  9. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  10. Surface-Plasmon-Mediated Gradient Force Enhancement and Mechanical State Transitions of Graphene Sheets

    DOE PAGES

    Zhang, Peng; Shen, Nian-Hai; Koschny, Thomas; ...

    2016-12-16

    Graphene, a two-dimensional material possessing extraordinary properties in electronics as well as mechanics, provides a great platform for various optoelectronic and opto-mechanical devices. Here in this article, we theoretically study the optical gradient force arising from the coupling of surface plasmon modes on parallel graphene sheets, which can be several orders stronger than that between regular dielectric waveguides. Furthermore, with an energy functional optimization model, possible force-induced deformation of graphene sheets is calculated. We show that the significantly enhanced optical gradient force may lead to mechanical state transitions of graphene sheets, which are accompanied by abrupt changes in reflection andmore » transmission spectra of the system. Our demonstrations illustrate the potential for a broader graphene-related applications such as force sensors and actuators.« less

  11. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.; Moorhead, Arthur J.

    2002-01-01

    A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  12. Quantification of cell response to polymeric composites using a two-dimensional gradient platform.

    PubMed

    Lin, Nancy J; Hu, Haiqing; Sung, Lipin; Lin-Gibson, Sheng

    2009-07-01

    A simple and straightforward screening process to assess the toxicity and corresponding cell response of dental composites would be useful prior to extensive in vitro or in vivo characterization. To this end, gradient composite samples were prepared with variations in filler content/type and in degree of conversion (DC). The DC was determined using near infrared spectroscopy (NIR), and the surface morphology was evaluated by laser scanning confocal microscopy (LSCM). RAW 264.7 macrophage-like cells were cultured directly on the composite gradient samples, and cell viability, density, and area were measured at 24 h. All three measures of cell response varied as a function of material properties. For instance, compositions with higher filler content had no reduction in cell viability or cell density, even at low conversions of 52%, whereas significant decreases in viability and density were present when the filler content was 35% or below (by mass). The overall results demonstrate the complexity of the cell-material interactions, with properties including DC, filler type, filler mass ratio, and surface morphology influencing the cell response. The combinatorial approach described herein enables simultaneous screening of multiple compositions and material properties, providing a more thorough characterization of cell response for the improved selection of biocompatible composite formulations and processing conditions.

  13. Gradient plasticity for thermo-mechanical processes in metals with length and time scales

    NASA Astrophysics Data System (ADS)

    Voyiadjis, George Z.; Faghihi, Danial

    2013-03-01

    A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.

  14. Fabrication and characterization of epoxy/silica functionally graded composite material

    NASA Astrophysics Data System (ADS)

    Misra, N.; Kapusetti, G.; Pattanayak, D. K.; Kumar, A.

    2011-09-01

    Increased use of composites in aerospace and defense application induces the search for heat resistant material. In present study silica reinforced epoxy functionally graded material using quartz fabric is prepared with different thickness. The gradation in silica : epoxy matrix is maintained with one side pure epoxy to opposite side pure silica. Thermal and mechanical behaviour of the composites were studied. It was found that the temperature gradient of 350°C to 950°C could be maintained for 2 to 5 min if the thickness of insulating silica layer is increased from 0.5 mm to 16 mm. Mechanical properties such as flexural modulus and strength of FGM composites were also evaluated. Strength and modulus decreased with increase of insulating layer.

  15. Love waves in functionally graded piezoelectric materials by stiffness matrix method.

    PubMed

    Ben Salah, Issam; Wali, Yassine; Ben Ghozlen, Mohamed Hédi

    2011-04-01

    A numerical matrix method relative to the propagation of ultrasonic guided waves in functionally graded piezoelectric heterostructure is given in order to make a comparative study with the respective performances of analytical methods proposed in literature. The preliminary obtained results show a good agreement, however numerical approach has the advantage of conceptual simplicity and flexibility brought about by the stiffness matrix method. The propagation behaviour of Love waves in a functionally graded piezoelectric material (FGPM) is investigated in this article. It involves a thin FGPM layer bonded perfectly to an elastic substrate. The inhomogeneous FGPM heterostructure has been stratified along the depth direction, hence each state can be considered as homogeneous and the ordinary differential equation method is applied. The obtained solutions are used to study the effect of an exponential gradient applied to physical properties. Such numerical approach allows applying different gradient variation for mechanical and electrical properties. For this case, the obtained results reveal opposite effects. The dispersive curves and phase velocities of the Love wave propagation in the layered piezoelectric film are obtained for electrical open and short cases on the free surface, respectively. The effect of gradient coefficients on coupled electromechanical factor, on the stress fields, the electrical potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the well known heterostructure PZT-5H/SiO(2), the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Love wave propagation behaviour. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Mapping polaronic states and lithiation gradients in individual V 2O 5 nanowires

    DOE PAGES

    De Jesus, Luis R.; Horrocks, Gregory A.; Liang, Yufeng; ...

    2016-06-28

    The rapid insertion and extraction of Li ions from a cathode material is imperative for the functioning of a Li-ion battery. In many cathode materials such as LiCoO 2 , lithiation proceeds through solid-solution formation, whereas in other materials such as LiFePO 4 lithiation/delithiation is accompanied by a phase transition between Li-rich and Li-poor phases. We demonstrate using scanning transmission X-ray microscopy (STXM) that in individual nanowires of layered V 2 O 5 , lithiation gradients observed on Li-ion intercalation arise from electron localization and local structural polarization. Electrons localized on the V 2 O 5 framework couple to localmore » structural distortions, giving rise to small polarons that serves as a bottleneck for further Li-ion insertion. The stabilization of this polaron impedes equilibration of charge density across the nanowire and gives rise to distinctive domains. The enhancement in charge/discharge rates for this material on nanostructuring can be attributed to circumventing challenges with charge transport from polaron formation.« less

  17. Near-electrode imager

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.; Woelk, Klaus; Gerald, II, Rex E.

    2000-01-01

    An apparatus, near-electrode imager, for employing nuclear magnetic resonance imaging to provide in situ measurements of electrochemical properties of a sample as a function of distance from a working electrode. The near-electrode imager uses the radio frequency field gradient within a cylindrical toroid cavity resonator to provide high-resolution nuclear magnetic resonance spectral information on electrolyte materials.

  18. Calorimeter measures high nuclear heating rates and their gradients across a reactor test hole

    NASA Technical Reports Server (NTRS)

    Burwell, D.; Coombe, J. R.; Mc Bride, J.

    1970-01-01

    Pedestal-type calorimeter measures gamma-ray heating rates from 0.5 to 7.0 watts per gram of aluminum. Nuclear heating rate is a function of cylinder temperature change, measured by four chromel-alumel thermocouples attached to the calorimeter, and known thermoconductivity of the tested material.

  19. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces.

    PubMed

    Boys, Alexander J; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J; Estroff, Lara A

    2017-09-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.

  20. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    PubMed Central

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  1. Multiphysics Modelling of Sodium Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Mason, Jerry Hunter

    Due to global climate change and the desire to decrease greenhouse gas emissions, large scale energy storage has become a critical issue. Renewable energy sources such as wind and solar will not be a viable energy source unless the storage problem is solved. One of the practical and cost effective solutions for this problem is sodium sulfur batteries. These batteries are comprised of liquid electrode materials suspended in porous media and operate at relatively high temperatures (>300°C). The sodium anode and the sulfur/sodium-polysulfide cathode are separated by a solid electrolyte made of beta-alumina or NASICON material. Due to the use of porous materials in the electrodes, capillary pressure and the combination of capillary action and gravity become important. Capillary pressure has a strong dependence on the wetting phase (liquid electrode material) saturation; therefore sharp concentration gradients can occur between the inert gas and the electrode liquid, especially within the cathode. These concentration gradients can have direct impacts on the electrodynamics of the battery as they may produce areas of high electrical potential variation, which can decrease efficiency and even cause failures. Then, thermal management also becomes vital since the electrochemistry and material properties are sensitive to temperature gradients. To investigate these phenomena in detail and to attempt to improve upon battery design a multi-dimensional, multi-phase code has been developed and validated in this study. Then a porous media flow model is implemented. Transport equations for charge, mass and heat are solved in a time marching fashion using finite volume method. Material properties are calculated and updated as a function of time. The porous media model is coupled with the continuity equation and a separate diffusion equation for the liquid sodium in the melt. The total mass transport model is coupled with charge transport via Faraday's law. Results show that overpotential is significantly higher in the porous region of the cathode as was predicted by models in the literature. Overpotential is also high on the electrolyte surface and wall. Alternative electrode configurations with high resistive layers recommended by previous researchers also produce areas of high potential gradient. New electrode designs including conductivity gradients and porous media property variations are simulated and compared to previous designs and then recommendations are made for optimum cell operating conditions.

  2. Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures

    NASA Astrophysics Data System (ADS)

    Tseng, Peter; Napier, Bradley; Zhao, Siwei; Mitropoulos, Alexander N.; Applegate, Matthew B.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.

    2017-05-01

    In natural systems, directed self-assembly of structural proteins produces complex, hierarchical materials that exhibit a unique combination of mechanical, chemical and transport properties. This controlled process covers dimensions ranging from the nano- to the macroscale. Such materials are desirable to synthesize integrated and adaptive materials and systems. We describe a bio-inspired process to generate hierarchically defined structures with multiscale morphology by using regenerated silk fibroin. The combination of protein self-assembly and microscale mechanical constraints is used to form oriented, porous nanofibrillar networks within predesigned macroscopic structures. This approach allows us to predefine the mechanical and physical properties of these materials, achieved by the definition of gradients in nano- to macroscale order. We fabricate centimetre-scale material geometries including anchors, cables, lattices and webs, as well as functional materials with structure-dependent strength and anisotropic thermal transport. Finally, multiple three-dimensional geometries and doped nanofibrillar constructs are presented to illustrate the facile integration of synthetic and natural additives to form functional, interactive, hierarchical networks.

  3. Morning Martian Atmospheric Temperature Gradients and Fluctuations Observed by Mars Pathfinder

    NASA Technical Reports Server (NTRS)

    Mihalov, John D.; Haberle, R. M.; Murphy, J. R.; Seiff, A.; Wilson, G. R.

    1999-01-01

    We have studied the most prominent atmospheric temperature fluctuations observed during Martian mornings by Mars Pathfinder and have concluded, based on comparisons with wind directions, that they appear to be a result of atmospheric heating associated with the Lander spacecraft. Also, we have examined the morning surface layer temperature lapse rates, which are found to decrease as autumn approaches at the Pathfinder location, and which have mean (and median) values as large as 7.3 K/m in the earlier portions of the Pathfinder landed mission. It is plausible that brief isolated periods with gradients twice as steep are associated with atmospheric heating adjacent to Lander air bag material. In addition, we have calculated the gradient with height of the structure function obtained with Mars Pathfinder, for Mars' atmospheric temperatures measured within about 1.3 m from the surface, assuming a power law dependence, and have found that these gradients superficially resemble those reported for the upper region of the terrestrial stable boundary layer.

  4. Rayleigh wave behavior in functionally graded magneto-electro-elastic material

    NASA Astrophysics Data System (ADS)

    Ezzin, Hamdi; Mkaoir, Mohamed; Amor, Morched Ben

    2017-12-01

    Piezoelectric-piezomagnetic functionally graded materials, with a gradual change of the mechanical and electromagnetic properties have greatly applying promises. Based on the ordinary differential equation and stiffness matrix methods, a dynamic solution is presented for the propagation of the wave on a semi-infinite piezomagnetic substrate covered with a functionally graded piezoelectric material (FGPM) layer. The materials properties are assumed to vary in the direction of the thickness according to a known variation law. The phase and group velocity of the Rayleigh wave is numerically calculated for the magneto-electrically open and short cases, respectively. The effect of gradient coefficients on the phase velocity, group velocity, coupled magneto-electromechanical factor, on the stress fields, the magnetic potential and the mechanical displacement are discussed, respectively. Illustration is achieved on the hetero-structure PZT-5A/CoFe2O4; the obtained results are especially useful in the design of high-performance acoustic surface devices and accurately prediction of the Rayleigh wave propagation behavior.

  5. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; Remington, Bruce A.; Hahn, Eric N.; More, Karren L.; Meyers, Marc A.

    2017-01-01

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition. PMID:28847926

  6. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E; Remington, Bruce A; Hahn, Eric N; More, Karren L; Meyers, Marc A

    2017-09-12

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.

  7. A class of fractional differential hemivariational inequalities with application to contact problem

    NASA Astrophysics Data System (ADS)

    Zeng, Shengda; Liu, Zhenhai; Migorski, Stanislaw

    2018-04-01

    In this paper, we study a class of generalized differential hemivariational inequalities of parabolic type involving the time fractional order derivative operator in Banach spaces. We use the Rothe method combined with surjectivity of multivalued pseudomonotone operators and properties of the Clarke generalized gradient to establish existence of solution to the abstract inequality. As an illustrative application, a frictional quasistatic contact problem for viscoelastic materials with adhesion is investigated, in which the friction and contact conditions are described by the Clarke generalized gradient of nonconvex and nonsmooth functionals, and the constitutive relation is modeled by the fractional Kelvin-Voigt law.

  8. Aggregation-Induced Emission Luminogen-Based Direct Visualization of Concentration Gradient Inside an Evaporating Binary Sessile Droplet.

    PubMed

    Cai, Xin; Xie, Ni; Qiu, Zijie; Yang, Junxian; He, Minghao; Wong, Kam Sing; Tang, Ben Zhong; Qiu, Huihe

    2017-08-30

    In this study, the concentration gradient inside evaporating binary sessile droplets of 30, 50, and 60 vol % tetrahydrofuran (THF)/water mixtures was investigated. The 5 μL THF/water droplets were evaporated on a transparent hydrophobic substrate. This is the first demonstration of local concentration mapping within an evaporating binary droplet utilizing the aggregation-induced emission material. During the first two evaporation stages of the binary droplet, the local concentration can be directly visualized by the change of fluorescence emission intensity. Time-resolved average and local concentrations can be estimated by using the pre-established function of fluorescence intensity versus water volume fraction.

  9. Acoustic propagation in rigid ducts with blockage

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  10. Protein gradient films of fibroin and gelatine.

    PubMed

    Claussen, Kai U; Lintz, Eileen S; Giesa, Reiner; Schmidt, Hans-Werner; Scheibel, Thomas

    2013-10-01

    Gradients are a natural design principle in biological systems that are used to diminish stress concentration where materials of differing mechanical properties connect. An interesting example of a natural gradient material is byssus, which anchors mussels to rocks and other hard substrata. Building upon previous work with synthetic polymers and inspired by byssal threads, protein gradient films are cast using glycerine-plasticized gelatine and fibroin exhibiting a highly reproducible and smooth mechanical gradient, which encompasses a large range of modulus from 160 to 550 MPa. The reproducible production of biocompatible gradient films represents a first step towards medical applications. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  12. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, J.; Pindera, M. J.; Arnold, Steven M.

    2001-01-01

    Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.

  13. Fabrication of microscale materials with programmable composition gradients.

    PubMed

    Laval, Cédric; Bouchaudy, Anne; Salmon, Jean-Baptiste

    2016-04-07

    We present an original microfluidic technique coupling pervaporation and the use of Quake valves to fabricate microscale materials (∼10 × 100 μm(2) × 1 cm) with composition gradients along their longest dimension. Our device exploits pervaporation of water through a thin poly(dimethylsiloxane) (PDMS) membrane to continuously pump solutions (or dispersions) contained in different reservoirs connected to a microfluidic channel. This pervaporation-induced flow concentrates solutes (or particles) at the tip of the channel up to the formation of a dense material. The latter invades the channel as it is constantly enriched by an incoming flux of solutes/particles. Upstream Quake valves are used to select which reservoir is connected to the pervaporation channel and thus which solution (or dispersion) enriches the material during its growth. The microfluidic configuration of the pervaporation process is used to impose controlled growth along the channel thus enabling one to program spatial composition gradients using appropriate actuations of the valves. We demonstrate the possibilities offered by our technique through the fabrication of dense assemblies of nanoparticles and polymer composites with programmed gradients of fluorescent dyes. We also address the key issue of the spatial resolution of our gradients and we show that well-defined spatial modulations down to ≈50 μm can be obtained within colloidal materials, whereas gradients within polymer materials are resolved on length scales down to ≈1 mm due to molecular diffusion.

  14. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.

  15. Improved enrichment culture technique for methane-oxidizing bacteria from marine ecosystems: the effect of adhesion material and gas composition.

    PubMed

    Vekeman, Bram; Dumolin, Charles; De Vos, Paul; Heylen, Kim

    2017-02-01

    Cultivation of microbial representatives of specific functional guilds from environmental samples depends largely on the suitability of the applied growth conditions. Especially the cultivation of marine methanotrophs has received little attention, resulting in only a limited number of ex situ cultures available. In this study we investigated the effect of adhesion material and headspace composition on the methane oxidation activity in methanotrophic enrichments obtained from marine sediment. Addition of sterilized natural sediment or alternatively the addition of acid-washed silicon dioxide significantly increased methane oxidation. This positive effect was attributed to bacterial adhesion on the particles via extracellular compounds, with a minimum amount of particles required for effect. As a result, the particles were immobilized, thus creating a stratified environment in which a limited diffusive gas gradients could build up and various microniches were formed. Such diffusive gas gradient might necessitate high headspace concentrations of CH 4 and CO 2 for sufficient concentrations to reach the methane-oxidizing bacteria in the enrichment culture technique. Therefore, high concentrations of methane and carbon dioxide, in addition to the addition of adhesion material, were tested and indeed further stimulated methane oxidation. Use of adhesion material in combination with high concentrations of methane and carbon dioxide might thus facilitate the cultivation and subsequent enrichment of environmentally important members of this functional guild. The exact mechanism of the observed positive effects on methane oxidation and the differential effect on methanotrophic diversity still needs to be explored.

  16. On the Convergence Analysis of the Optimized Gradient Method.

    PubMed

    Kim, Donghwan; Fessler, Jeffrey A

    2017-01-01

    This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov's fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization.

  17. On the Convergence Analysis of the Optimized Gradient Method

    PubMed Central

    Kim, Donghwan; Fessler, Jeffrey A.

    2016-01-01

    This paper considers the problem of unconstrained minimization of smooth convex functions having Lipschitz continuous gradients with known Lipschitz constant. We recently proposed the optimized gradient method for this problem and showed that it has a worst-case convergence bound for the cost function decrease that is twice as small as that of Nesterov’s fast gradient method, yet has a similarly efficient practical implementation. Drori showed recently that the optimized gradient method has optimal complexity for the cost function decrease over the general class of first-order methods. This optimality makes it important to study fully the convergence properties of the optimized gradient method. The previous worst-case convergence bound for the optimized gradient method was derived for only the last iterate of a secondary sequence. This paper provides an analytic convergence bound for the primary sequence generated by the optimized gradient method. We then discuss additional convergence properties of the optimized gradient method, including the interesting fact that the optimized gradient method has two types of worstcase functions: a piecewise affine-quadratic function and a quadratic function. These results help complete the theory of an optimal first-order method for smooth convex minimization. PMID:28461707

  18. Adaptive frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding

    NASA Astrophysics Data System (ADS)

    Nishimoto, Yoshio; Fedorov, Dmitri G.

    2018-02-01

    The exactly analytic gradient is derived and implemented for the fragment molecular orbital (FMO) method combined with density-functional tight-binding (DFTB) using adaptive frozen orbitals. The response contributions which arise from freezing detached molecular orbitals on the border between fragments are computed by solving Z-vector equations. The accuracy of the energy, its gradient, and optimized structures is verified on a set of representative inorganic materials and polypeptides. FMO-DFTB is applied to optimize the structure of a silicon nano-wire, and the results are compared to those of density functional theory and experiment. FMO accelerates the DFTB calculation of a boron nitride nano-ring with 7872 atoms by a factor of 406. Molecular dynamics simulations using FMO-DFTB applied to a 10.7 μm chain of boron nitride nano-rings, consisting of about 1.2 × 106 atoms, reveal the rippling and twisting of nano-rings at room temperature.

  19. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    NASA Astrophysics Data System (ADS)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping functions, and the 3D spatial gradients of these warping functions. Asymptotic analysis of the extended Hamiltonian's principle suggests dropping the terms of axial gradients of the warping functions. As a result, the solid mechanics problem resolved into a 3D continuum is dimensionally reduced to a problem of solving the warping functions on a 2D cross-sectional field by minimizing the information loss. The present theory is implemented using the finite element method (FEM) in Variational Asymptotic Beam Sectional Analysis (VABS), a general-purpose cross-sectional analysis tool. An iterative method is applied to solve the finite warping field for the classical-type model in the form of the Euler-Bernoulli beam theory. The deformation gradient tensor is directly used to enable the capability of dealing with finite deformation, various strain definitions, and several types of material constitutive laws regarding the nonlinear elasticity and progressive damage. Analytical and numerical examples are given for various problems including the trapeze effect, Poynting effect, Brazier effect, extension-bending coupling effect, and free edge damage. By comparison with the predictions from 3D finite element analyses (FEA), 2D FEA based on plane stress assumptions, and experimental data, the structural and material responses are proven to be rigorously captured by the present theory and the computational cost is significantly reduced. Due to the semi-analytical feature of the code developed, the unrealistic numerical issues widely seen in the conventional FEA with strain softening material behaviors are prevented by VABS. In light of these intrinsic features, the nonlinear elastic and inelastic 3D material models can be economically calibrated by data-matching the VABS predictions directly with the experimental measurements from slender coupons. Furthermore, the global behavior of slender composite structures in meters can also be effectively characterized by VABS without unnecessary loss of important information of its local laminae in micrometers.

  20. Analytic materials

    PubMed Central

    2016-01-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations. PMID:27956882

  1. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures.

    PubMed

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J

    2018-05-01

    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  2. Development and kinetic analysis of cobalt gradient formation in WC-Co composites

    NASA Astrophysics Data System (ADS)

    Guo, Jun

    2011-12-01

    Functionally graded cemented tungsten carbide (FG WC-Co) is one of the main research directions in the field of WC-Co over decades. Although it has long been recognized that FG WC-Co could outperform conventional homogeneous WC-Co owing to its potentially superior combinations of mechanical properties, until recently there has been a lack of effective and economical methods to make such materials. The lack of the technology has prevented the manufacturing and industrial applications of FG WC-Co from becoming a reality. This dissertation is a comprehensive study of an innovative atmosphere heat treatment process for producing FG WC-Co with a surface cobalt compositional gradient. The process exploited a triple phase field in W-C-Co phase diagram among three phases (solid WC, solid Co, and liquid Co) and the dependence of the migration of liquid Co on temperature and carbon content. WC-Co with a graded surface cobalt composition can be achieved by controlling the diffusion of carbon transported from atmosphere during sintering or during postsintering heat treatment. The feasibility of the process was validated by the successful preparations of FG WC-Co via both carburization and decarburization process following conventional liquid phase sintering. A study of the carburization process was undertaken to further understand and quantitatively modeled this process. The effects of key processing parameters (including heat treating temperature, atmosphere, and time) and key materials variables (involving Co content, WC grain size, and addition of grain growth inhibitors) on the formation of Co gradients were examined. Moreover, a carbon-diffusion controlled kinetic model was developed for simulating the formation of the gradient during the process. The parameters involved in this model were determined by thermodynamic calculations and regression-fit of simulation results with experimental data. In summary, this research first demonstrated the principle of the approach. Second, a model was developed to predict the gradients produced by the carbon-controlled atmosphere heat treatment process, which is useful for manufacturing WC-Co with designed gradients. FG WC-Co materials produced using this method are expected to exhibit superior performance in many applications and to have a profound impact on the manufacturing industries that use tungsten carbide tools.

  3. An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading

    NASA Astrophysics Data System (ADS)

    Jin, Zhi-He; Noda, Naotake

    1993-05-01

    This paper considers the crack problem for a semi-infinite nonhomogeneous thermoelastic solid subjected to steady heat flux over the boundary. The crack faces are assumed to be insulated. The research is aimed at understanding the effect of nonhomogeneities of materials on stress intensity factors. By using the Fourier transform, the problem is reduced to a system of singular integral equations which are solved numerically. Results are presented illustrating the influence of the nonhomogeneity of the material on the stress intensity factors. Zero Mode I stress intensity factors are found for some groups of the material constants, which may be interesting for the understanding of compositions of advanced Functionally Gradient Materials.

  4. Advanced technique for long term culture of epithelia in a continuous luminal-basal medium gradient.

    PubMed

    Schumacher, Karl; Strehl, Raimund; de, Vries Uwe; Minuth, Will W

    2002-02-01

    The majority of epithelia in our organism perform barrier functions on being exposed to different fluids at the luminal and basal sides. To simulate this natural situation under in vitro conditions for biomaterial testing and tissue engineering the epithelia have to withstand mechanical and fluid stress over a prolonged period of time. Leakage, edge damage and pressure differences in the culture system have to be avoided so that the epithelial barrier function is maintained. Besides, the environmental influences on important cell biological features such as, sealing or transport functions, have to remain upregulated and a loss of characteristics by dedifferentiation is prevented. Our aim is to expose embryonic renal collecting duct (CD) epithelia as model tissue for 14 days to fluid gradients and to monitor the development of tissue-specific features. For these experiments, cultured embryonic epithelia are placed in tissue carriers and in gradient containers, where different media are superfused at the luminal and basal sides. Epithelia growing on the tissue carriers act as a physiological barrier during the whole culture period. To avoid mechanical damage of the tissue and to suppress fluid pressure differences between the luminal and basal compartments improved transport of the medium and an elimination of unilaterally accumulated gas bubbles in the gradient container compartments by newly developed gas expander modules is introduced. By the application of these tools the yield of embryonic renal collecting duct epithelia with intact barrier function on a fragile natural support material could be increased significantly as compared to earlier experiments. Epithelia treated with a luminal NaCl load ranging from 3 to 24 mmol l were analyzed by immunohistochemical methods to determine the degree of differentiation. The tissue showed an upregulation of individual CD cell features as compared to embryonic epithelia in the neonatal kidney.

  5. Towards computational materials design from first principles using alchemical changes and derivatives.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Lilienfeld-Toal, Otto Anatole

    2010-11-01

    The design of new materials with specific physical, chemical, or biological properties is a central goal of much research in materials and medicinal sciences. Except for the simplest and most restricted cases brute-force computational screening of all possible compounds for interesting properties is beyond any current capacity due to the combinatorial nature of chemical compound space (set of stoichiometries and configurations). Consequently, when it comes to computationally optimizing more complex systems, reliable optimization algorithms must not only trade-off sufficient accuracy and computational speed of the models involved, they must also aim for rapid convergence in terms of number of compoundsmore » 'visited'. I will give an overview on recent progress on alchemical first principles paths and gradients in compound space that appear to be promising ingredients for more efficient property optimizations. Specifically, based on molecular grand canonical density functional theory an approach will be presented for the construction of high-dimensional yet analytical property gradients in chemical compound space. Thereafter, applications to molecular HOMO eigenvalues, catalyst design, and other problems and systems shall be discussed.« less

  6. Strain analysis of nanowire interfaces in multiscale composites

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Spears, John H.; Shankwitz, Timothy J.; Sodano, Henry A.

    2016-04-01

    Recently, the reinforcement-matrix interface of fiber reinforced polymers has been modified through grafting nanostructures - particularly carbon nanotubes and ZnO nanowires - on to the fiber surface. This type of interface engineering has made a great impact on the development of multiscale composites that have high stiffness, interfacial strength, toughness, and vibrational damping - qualities that are mutually exclusive to a degree in most raw materials. Although the efficacy of such nanostructured interfaces has been established, the reinforcement mechanisms of these multiscale composites have not been explored. Here, strain transfer across a nanowire interphase is studied in order to gain a heightened understanding of the working principles of physical interface modification and the formation of a functional gradient. This problem is studied using a functionally graded piezoelectric interface composed of vertically aligned lead zirconate titanate nanowires, as their piezoelectric properties can be utilized to precisely control the strain on one side of the interface. The displacement and strain across the nanowire interface is captured using digital image correlation. It is demonstrated that the material gradient created through nanowires cause a smooth strain transfer from reinforcement phase into matrix phase that eliminates the stress concentration between these phases, which have highly mismatched elasticity.

  7. A Simplified Model of Moisture Transport in Hydrophilic Porous Media With Applications to Pharmaceutical Tablets.

    PubMed

    Klinzing, Gerard R; Zavaliangos, Antonios

    2016-08-01

    This work establishes a predictive model that explicitly recognizes microstructural parameters in the description of the overall mass uptake and local gradients of moisture into tablets. Model equations were formulated based on local tablet geometry to describe the transient uptake of moisture. An analytical solution to a simplified set of model equations was solved to predict the overall mass uptake and moisture gradients with the tablets. The analytical solution takes into account individual diffusion mechanisms in different scales of porosity and diffusion into the solid phase. The time constant of mass uptake was found to be a function of several key material properties, such as tablet relative density, pore tortuosity, and equilibrium moisture content of the material. The predictions of the model are in excellent agreement with experimental results for microcrystalline cellulose tablets without the need for parameter fitting. The model presented provides a new method to analyze the transient uptake of moisture into hydrophilic materials with the knowledge of only a few fundamental material and microstructural parameters. In addition, the model allows for quick and insightful predictions of moisture diffusion for a variety of practical applications including pharmaceutical tablets, porous polymer systems, or cementitious materials. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; ...

    2017-08-28

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  9. A gradient enhanced plasticity-damage microplane model for concrete

    NASA Astrophysics Data System (ADS)

    Zreid, Imadeddin; Kaliske, Michael

    2018-03-01

    Computational modeling of concrete poses two main types of challenges. The first is the mathematical description of local response for such a heterogeneous material under all stress states, and the second is the stability and efficiency of the numerical implementation in finite element codes. The paper at hand presents a comprehensive approach addressing both issues. Adopting the microplane theory, a combined plasticity-damage model is formulated and regularized by an implicit gradient enhancement. The plasticity part introduces a new microplane smooth 3-surface cap yield function, which provides a stable numerical solution within an implicit finite element algorithm. The damage part utilizes a split, which can describe the transition of loading between tension and compression. Regularization of the model by the implicit gradient approach eliminates the mesh sensitivity and numerical instabilities. Identification methods for model parameters are proposed and several numerical examples of plain and reinforced concrete are carried out for illustration.

  10. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  11. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  12. Development of an arthroscopically compatible polymer additive layer manufacture technique.

    PubMed

    Partridge, Simon W; Benning, Matthew J; German, Matthew J; Dalgarno, Kenneth W

    2017-06-01

    This article describes a proof of concept study designed to evaluate the potential of an in vivo three-dimensional printing route to support minimally invasive repair of the musculoskeletal system. The study uses a photocurable material to additively manufacture in situ a model implant and demonstrates that this can be achieved effectively within a clinically relevant timescale. The approach has the potential to be applied with a wide range of light-curable materials and with development could be applied to create functionally gradient structures in vivo.

  13. Advanced characterization of lithium battery materials with positrons

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo; Kuriplach, Jan

    2017-01-01

    Cathode materials are crucial to improved battery performance, in part because there are not yet materials that can maintain high power and stable cycling with a capacity comparable to that of anode materials. Our parameter-free, gradient-corrected model for electron-positron correlations predicts that spectroscopies based on positron annihilation can be deployed to study the effect of lithium intercalation in the oxide matrix of the cathode. The positron characteristics in oxides can be reliably computed using methods based on first-principles. Thus, we can enable a fundamental characterization of lithium battery materials involving positron annihilation spectroscopy and first-principles calculations. The detailed information one can extract from positron experiments could be useful for understanding and optimizing both battery materials and bi-functional catalysts for oxygen reduction and evolution.

  14. Material and shape perception based on two types of intensity gradient information

    PubMed Central

    Nishida, Shin'ya

    2018-01-01

    Visual estimation of the material and shape of an object from a single image includes a hard ill-posed computational problem. However, in our daily life we feel we can estimate both reasonably well. The neural computation underlying this ability remains poorly understood. Here we propose that the human visual system uses different aspects of object images to separately estimate the contributions of the material and shape. Specifically, material perception relies mainly on the intensity gradient magnitude information, while shape perception relies mainly on the intensity gradient order information. A clue to this hypothesis was provided by the observation that luminance-histogram manipulation, which changes luminance gradient magnitudes but not the luminance-order map, effectively alters the material appearance but not the shape of an object. In agreement with this observation, we found that the simulated physical material changes do not significantly affect the intensity order information. A series of psychophysical experiments further indicate that human surface shape perception is robust against intensity manipulations provided they do not disturb the intensity order information. In addition, we show that the two types of gradient information can be utilized for the discrimination of albedo changes from highlights. These findings suggest that the visual system relies on these diagnostic image features to estimate physical properties in a distal world. PMID:29702644

  15. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Homel, Michael A.; Herbold, Eric B.

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  16. Field-gradient partitioning for fracture and frictional contact in the material point method: Field-gradient partitioning for fracture and frictional contact in the material point method [Fracture and frictional contact in material point method using damage-field gradients for velocity-field partitioning

    DOE PAGES

    Homel, Michael A.; Herbold, Eric B.

    2016-08-15

    Contact and fracture in the material point method require grid-scale enrichment or partitioning of material into distinct velocity fields to allow for displacement or velocity discontinuities at a material interface. We present a new method which a kernel-based damage field is constructed from the particle data. The gradient of this field is used to dynamically repartition the material into contact pairs at each node. Our approach avoids the need to construct and evolve explicit cracks or contact surfaces and is therefore well suited to problems involving complex 3-D fracture with crack branching and coalescence. A straightforward extension of this approachmore » permits frictional ‘self-contact’ between surfaces that are initially part of a single velocity field, enabling more accurate simulation of granular flow, porous compaction, fragmentation, and comminution of brittle materials. Finally, numerical simulations of self contact and dynamic crack propagation are presented to demonstrate the accuracy of the approach.« less

  17. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  18. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  19. High-pressure nuclear magnetic resonance studies of fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Mananga, Eugene Stephane

    This thesis focuses on the use of high pressure NMR to study transport properties in electrolyte membranes used for fuel cells. The main concern is in studying the self-diffusion coefficients of ions and molecules in membranes and solutions, which can be used to characterize electrolytes in fuel cells. For this purpose, a high-pressure fringe field NMR method to study transport properties in material systems useful for fuel cell and battery electrolytes, was designed, developed, and implemented. In this investigation, pressure is the thermodynamic variable to obtain additional information about the ionic transport process, which could yield the crucial parameter, activation volume. Most of the work involves proton NMR, with additional investigations of others nuclei, such as fluorine, phosphorus and lithium. Using the FFG method, two fuel cell membrane types (NAFION-117, SPTES), and different dilutions of phosphoric acid were investigated, as was LiTf salt in Diglyme solution, which is used as a lithium battery electrolyte. In addition to high-pressure NMR diffusion measurements carried out in the fringe field gradient for the investigation of SPTES, pulse field gradient spin echo NMR was also used to characterize the water diffusion, in addition to measuring diffusion rates as a function of temperature. This second method allows us to measure distinct diffusion coefficients in cases where the different nuclear (proton) environments can be resolved in the NMR spectrum. Polymer electrolyte systems, in which the mobility of both cations and anions is probed by NMR self-diffusion measurements using standard pulsed field gradient methods and static gradient measurements as a function of applied hydrostatic pressure, were also investigated. The material investigated is the low molecular weight liquid diglyme/LiCF3SO3 (LiTf) complexes which can be used as electrolytes in lithium batteries. Finally, high-pressure diffusion coefficient measurements of phosphoric acid in water at different concentrations: proton (1H) and phosphorus (31P) nuclei have been performed using the static field gradient spin-echo nuclear magnetic resonance. This study is expected to be helpful in improving the understanding of phosphoric acid fuel cell technology.

  20. Mixed finite-element formulations in piezoelectricity and flexoelectricity

    PubMed Central

    2016-01-01

    Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a ‘weighted integral sense’ to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application. PMID:27436967

  1. Mixed finite-element formulations in piezoelectricity and flexoelectricity.

    PubMed

    Mao, Sheng; Purohit, Prashant K; Aravas, Nikolaos

    2016-06-01

    Flexoelectricity, the linear coupling of strain gradient and electric polarization, is inherently a size-dependent phenomenon. The energy storage function for a flexoelectric material depends not only on polarization and strain, but also strain-gradient. Thus, conventional finite-element methods formulated solely on displacement are inadequate to treat flexoelectric solids since gradients raise the order of the governing differential equations. Here, we introduce a computational framework based on a mixed formulation developed previously by one of the present authors and a colleague. This formulation uses displacement and displacement-gradient as separate variables which are constrained in a 'weighted integral sense' to enforce their known relation. We derive a variational formulation for boundary-value problems for piezo- and/or flexoelectric solids. We validate this computational framework against available exact solutions. Our new computational method is applied to more complex problems, including a plate with an elliptical hole, stationary cracks, as well as tension and shear of solids with a repeating unit cell. Our results address several issues of theoretical interest, generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.

  2. Large Gradient High Magnetic Fields Affect Osteoblast Ultrastructure and Function by Disrupting Collagen I or Fibronectin/αβ1 Integrin

    PubMed Central

    Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng

    2013-01-01

    The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin. PMID:23382804

  3. Large gradient high magnetic fields affect osteoblast ultrastructure and function by disrupting collagen I or fibronectin/αβ1 integrin.

    PubMed

    Qian, Ai-Rong; Gao, Xiang; Zhang, Wei; Li, Jing-Bao; Wang, Yang; Di, Sheng-Meng; Hu, Li-Fang; Shang, Peng

    2013-01-01

    The superconducting magnet generates a field and field gradient product that can levitate diamagnetic materials. In this study a specially designed superconducting magnet with a large gradient high magnetic field (LG-HMF), which can provide three apparent gravity levels (μ-g, 1-g, and 2-g), was used to simulate a space-like gravity environment. The effects of LG-HMF on the ultrastructure and function of osteoblast-like cells (MG-63 and MC3T3-E1) and the underlying mechanism were investigated by transmission electromicroscopy (TEM), MTT, and cell western (ICW) assays. Under LG-HMF significant morphologic changes in osteoblast-like cells occurred, including expansion of endoplasmic reticulum and mitochondria, an increased number of lysosomes, distorted microvilli, and aggregates of actin filaments. Compared to controls, cell viability and alkaline phosphatase (ALP) secretion were significantly increased, and collagen I (col I), fibronectin (FN), vinculin, integrin α3, αv, and β1 expression were changed under LG-HMF conditions. In conclusion, LG-HMF affects osteoblast ultrastructure, cell viability, and ALP secretion, and the changes caused by LG-HMF may be related to disrupting col I or FN/αβ1 integrin.

  4. Justifying quasiparticle self-consistent schemes via gradient optimization in Baym-Kadanoff theory.

    PubMed

    Ismail-Beigi, Sohrab

    2017-09-27

    The question of which non-interacting Green's function 'best' describes an interacting many-body electronic system is both of fundamental interest as well as of practical importance in describing electronic properties of materials in a realistic manner. Here, we study this question within the framework of Baym-Kadanoff theory, an approach where one locates the stationary point of a total energy functional of the one-particle Green's function in order to find the total ground-state energy as well as all one-particle properties such as the density matrix, chemical potential, or the quasiparticle energy spectrum and quasiparticle wave functions. For the case of the Klein functional, our basic finding is that minimizing the length of the gradient of the total energy functional over non-interacting Green's functions yields a set of self-consistent equations for quasiparticles that is identical to those of the quasiparticle self-consistent GW (QSGW) (van Schilfgaarde et al 2006 Phys. Rev. Lett. 96 226402-4) approach, thereby providing an a priori justification for such an approach to electronic structure calculations. In fact, this result is general, applies to any self-energy operator, and is not restricted to any particular approximation, e.g., the GW approximation for the self-energy. The approach also shows that, when working in the basis of quasiparticle states, solving the diagonal part of the self-consistent Dyson equation is of primary importance while the off-diagonals are of secondary importance, a common observation in the electronic structure literature of self-energy calculations. Finally, numerical tests and analytical arguments show that when the Dyson equation produces multiple quasiparticle solutions corresponding to a single non-interacting state, minimizing the length of the gradient translates into choosing the solution with largest quasiparticle weight.

  5. Analysis of Advanced Thermoelectric Materials and Their Functional Limits

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Jung

    2015-01-01

    The world's demand for energy is increasing dramatically, but the best energy conversion systems operate at approximately 30% efficiency. One way to decrease energy loss is in the recovery of waste heat using thermoelectric (TE) generators. A TE generator is device that generates electricity by exploiting heat flow across a thermal gradient. The efficiency of a TE material for power generation and cooling is determined by the dimensionless Figure of Merit (ZT): ZT = S(exp. 2)sigmaT/?: where S is the Seebeck coefficient, sigma is the electrical conductivity, T is the absolute temperature, and ? is the thermal conductivity. The parameters are not physically independent, but intrinsically coupled since they are a function of the transport properties of electrons. Traditional research on TE materials has focused on synthesizing bulk semiconductor-type materials that have low thermal conductivity and high electrical conductivity affording ZT values of 1. The optimization of the s/? ratio is difficult to achieve using current material formats, as these material constants are complementary. Recent areas of research are focusing on using nanostructural artifacts that introduce specific dislocations and boundary conditions that scatter the phonons. This disrupts the physical link between thermal (phonon) and electrical (electron) transport. The result is that ? is decreased without decreasing s. These material formats give ZT values of up to 2 which represent approximately 18% energy gain from waste heat recovery. The next challenge in developing the next generation of TE materials with superior performance is to tailor the interconnected thermoelectric physical parameters of the material system. In order to approach this problem, the fundamental physics of each parameter S, sigma, and ? need to be physically understood in their context of electron/phonon interaction for the construction of new high ZT thermoelectric devices. Is it possible to overcome the physical limit imposed by of the effect of phonon lattice oscillation and energetic electrons towards thermal conductivity? Is the Seebeck coefficient, based on the difference in voltage over temperature gradient ( deltaV/deltaT), an intrinsic parameter of each material? All these parameters were manipulated using nano-bridge and twin-lattice structural concepts at the NASA Langley Research Center. This talk will review the current trend of TE research to optimize the ZT and discuss about new approaches on increasing ZT within functional limits of each parameter.

  6. Three-dimensional autoradiographic localization of quench-corrected glycine receptor specific activity in the mouse brain using sup 3 H-strychnine as the ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, W.F.; O'Gorman, S.; Roe, A.W.

    1990-03-01

    The autoradiographic analysis of neurotransmitter receptor distribution is a powerful technique that provides extensive information on the localization of neurotransmitter systems. Computer methodologies are described for the analysis of autoradiographic material which include quench correction, 3-dimensional display, and quantification based on anatomical boundaries determined from the tissue sections. These methodologies are applied to the problem of the distribution of glycine receptors measured by 3H-strychnine binding in the mouse CNS. The most distinctive feature of this distribution is its marked caudorostral gradient. The highest densities of binding sites within this gradient were seen in somatic motor and sensory areas; high densitiesmore » of binding were seen in branchial efferent and special sensory areas. Moderate levels were seen in nuclei related to visceral function. Densities within the reticular formation paralleled the overall gradient with high to moderate levels of binding. The colliculi had low and the diencephalon had very low levels of binding. No binding was seen in the cerebellum or the telencephalon with the exception of the amygdala, which had very low levels of specific binding. This distribution of glycine receptors correlates well with the known functional distribution of glycine synaptic function. These data are illustrated in 3 dimensions and discussed in terms of the significance of the analysis techniques on this type of data as well as the functional significance of the distribution of glycine receptors.« less

  7. Observation of Enhanced Hole Extraction in Br Concentration Gradient Perovskite Materials.

    PubMed

    Kim, Min-Cheol; Kim, Byeong Jo; Son, Dae-Yong; Park, Nam-Gyu; Jung, Hyun Suk; Choi, Mansoo

    2016-09-14

    Enhancing hole extraction inside the perovskite layer is the key factor for boosting photovoltaic performance. Realization of halide concentration gradient perovskite materials has been expected to exhibit rapid hole extraction due to the precise bandgap tuning. Moreover, a formation of Br-rich region on the tri-iodide perovskite layer is expected to enhance moisture stability without a loss of current density. However, conventional synthetic techniques of perovskite materials such as the solution process have not achieved the realization of halide concentration gradient perovskite materials. In this report, we demonstrate the fabrication of Br concentration gradient mixed halide perovskite materials using a novel and facile halide conversion method based on vaporized hydrobromic acid. Accelerated hole extraction and enhanced lifetime due to Br gradient was verified by observing photoluminescence properties. Through the combination of secondary ion mass spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy analysis, the diffusion behavior of Br ions in perovskite materials was investigated. The Br-gradient was found to be eventually converted into a homogeneous mixed halide layer after undergoing an intermixing process. Br-substituted perovskite solar cells exhibited a power conversion efficiency of 18.94% due to an increase in open circuit voltage from 1.08 to 1.11 V and an advance in fill-factor from 0.71 to 0.74. Long-term stability was also dramatically enhanced after the conversion process, i.e., the power conversion efficiency of the post-treated device has remained over 97% of the initial value under high humid conditions (40-90%) without any encapsulation for 4 weeks.

  8. First-row diatomics: Calculation of the geometry and energetics using self-consistent gradient-functional approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutzler, F.W.; Painter, G.S.

    1992-02-15

    A fully self-consistent series of nonlocal (gradient) density-functional calculations has been carried out using the augmented-Gaussian-orbital method to determine the magnitude of gradient corrections to the potential-energy curves of the first-row diatomics, Li{sub 2} through F{sub 2}. Both the Langreth-Mehl-Hu and the Perdew-Wang gradient-density functionals were used in calculations of the binding energy, bond length, and vibrational frequency for each dimer. Comparison with results obtained in the local-spin-density approximation (LSDA) using the Vosko-Wilk-Nusair functional, and with experiment, reveals that bond lengths and vibrational frequencies are rather insensitive to details of the gradient functionals, including self-consistency effects, but the gradient correctionsmore » reduce the overbinding commonly observed in the LSDA calculations of first-row diatomics (with the exception of Li{sub 2}, the gradient-functional binding-energy error is only 50--12 % of the LSDA error). The improved binding energies result from a large differential energy lowering, which occurs in open-shell atoms relative to the diatomics. The stabilization of the atom arises from the use of nonspherical charge and spin densities in the gradient-functional calculations. This stabilization is negligibly small in LSDA calculations performed with nonspherical densities.« less

  9. Higher-Order Theory for Functionally Graded Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1999-01-01

    This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.

  10. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  11. Optothermal Manipulations of Colloidal Particles and Living Cells.

    PubMed

    Lin, Linhan; Hill, Eric H; Peng, Xiaolei; Zheng, Yuebing

    2018-05-25

    Optical manipulation techniques are important in many fields. For instance, they enable bottom-up assembly of nanomaterials and high-resolution and in situ analysis of biological cells and molecules, providing opportunities for discovery of new materials, medical diagnostics, and nanomedicines. Traditional optical tweezers have their applications limited due to the use of rigorous optics and high optical power. New strategies have been established for low-power optical manipulation techniques. Optothermal manipulation, which exploits photon-phonon conversion and matter migration under a light-controlled temperature gradient, is one such emerging technique. Elucidation of the underlying physics of optothermo-matter interaction and rational engineering of optical environments are required to realize diverse optothermal manipulation functionalities. This Account covers the working principles, design concepts, and applications of a series of newly developed optothermal manipulation techniques, including bubble-pen lithography, opto-thermophoretic tweezers, opto-thermoelectric tweezers, optothermal assembly, and opto-thermoelectric printing. In bubble-pen lithography, optical heating of a plasmonic substrate generates microbubbles at the solid-liquid interface to print diverse colloidal particles on the substrates. Programmable bubble printing of semiconductor quantum dots on different substrates and haptic control of printing have also been achieved. The key to optothermal tweezers is the ability to deliver colloidal particles from cold to hot regions of a temperature gradient or a negative Soret effect. We explore different driving forces for the two types of optothermal tweezers. Opto-thermophoretic tweezers rely on an abnormal permittivity gradient built by structured solvent molecules in the electric double layer of colloidal particles and living cells in response to heat-induced entropy, and opto-thermoelectric tweezers exploit a thermophoresis-induced thermoelectric field for the low-power manipulation of small nanoparticles with minimum diameter around 20 nm. Furthermore, by incorporating depletion attraction into the optothermal tweezers system as particle-particle or particle-substrate binding force, we have achieved bottom-up assembly and reconfigurable optical printing of artificial colloidal matter. Beyond optothermal manipulation techniques in liquid environments, we also review recent progress of gas-phase optothermal manipulation based on photophoresis. Photophoretic trapping and transport of light-absorbing materials have been achieved through optical engineering to tune particle-molecule interactions during optical heating, and a novel optical trap display has been demonstrated. An improved understanding of the colloidal response to temperature gradients will surely facilitate further innovations in optothermal manipulation. With their low-power operation, simple optics, and diverse functionalities, optothermal manipulation techniques will find a wide range of applications in life sciences, colloidal science, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.

  12. Hybrid High-Order methods for finite deformations of hyperelastic materials

    NASA Astrophysics Data System (ADS)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  13. Numerical optimization in Hilbert space using inexact function and gradient evaluations

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    Trust region algorithms provide a robust iterative technique for solving non-convex unstrained optimization problems, but in many instances it is prohibitively expensive to compute high accuracy function and gradient values for the method. Of particular interest are inverse and parameter estimation problems, since function and gradient evaluations involve numerically solving large systems of differential equations. A global convergence theory is presented for trust region algorithms in which neither function nor gradient values are known exactly. The theory is formulated in a Hilbert space setting so that it can be applied to variational problems as well as the finite dimensional problems normally seen in trust region literature. The conditions concerning allowable error are remarkably relaxed: relative errors in the gradient error condition is automatically satisfied if the error is orthogonal to the gradient approximation. A technique for estimating gradient error and improving the approximation is also presented.

  14. Robotic Tactile Sensors Fabricated from a Monolithic Silicon Integrated Circuit and a Piezoelectric Polyvinylidene Fluoride Thin Film

    DTIC Science & Technology

    1991-12-01

    gradient will be presented. -Finally, a brief discussion of various piezoelectric materials will be presented, including Rochelle salt, quartz, barium...consideringr a microscopic-level dipole arrangement. The strain induced by ain external force or a tempem at ure gradient changes hie orientation of the...pyroelectric materials, an externally applied temperature gradient can be related to the resulting polarization by a l)yroelectric * constant.1 p (130

  15. Control and design heat flux bending in thermal devices with transformation optics.

    PubMed

    Xu, Guoqiang; Zhang, Haochun; Jin, Yan; Li, Sen; Li, Yao

    2017-04-17

    We propose a fundamental latent function of control heat transfer and heat flux density vectors at random positions on thermal materials by applying transformation optics. The expressions for heat flux bending are obtained, and the factors influencing them are investigated in both 2D and 3D cloaking schemes. Under certain conditions, more than one degree of freedom of heat flux bending exists corresponding to the temperature gradients of the 3D domain. The heat flux path can be controlled in random space based on the geometrical azimuths, radial positions, and thermal conductivity ratios of the selected materials.

  16. Al7CX (X=Li-Cs) clusters: Stability and the prospect for cluster materials

    NASA Astrophysics Data System (ADS)

    Ashman, C.; Khanna, S. N.; Pederson, M. R.; Kortus, J.

    2000-12-01

    Al7C clusters, recently found to have a high-electron affinity and exceptional stability, are shown to form ionic molecules when combined with alkali-metal atoms. Our studies, based on an ab initio gradient-corrected density-functional scheme, show that Al7CX (X=Li-Cs) clusters have a very low-electron affinity and a high-ionization potential. When combined, the two- and four-atom composite clusters of Al7CLi units leave the Al7C clusters almost intact. Preliminary studies indicate that Al7CLi may be suitable to form cluster-based materials.

  17. High Temperature Materials for Chemical Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  18. Generation of a Nernst Current from the Conformal Anomaly in Dirac and Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Chernodub, M. N.; Cortijo, Alberto; Vozmediano, María A. H.

    2018-05-01

    We show that a conformal anomaly in Weyl and Dirac semimetals generates a bulk electric current perpendicular to a temperature gradient and the direction of a background magnetic field. The associated conductivity of this novel contribution to the Nernst effect is fixed by a beta function associated with the electric charge renormalization in the material. We discuss the experimental feasibility of the proposed phenomenon.

  19. Electronic structure of ferromagnetic semiconductor material on the monoclinic and rhombohedral ordered double perovskites La{sub 2}FeCoO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuh, Huei-Ru; Chang, Ching-Ray; Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan

    2015-05-07

    Double perovskite La{sub 2}FeCoO{sub 6} with monoclinic structure and rhombohedra structure show as ferromagnetic semiconductor based on density functional theory calculation. The ferromagnetic semiconductor state can be well explained by the superexchange interaction. Moreover, the ferromagnetic semiconductor state remains under the generalized gradient approximation (GGA) and GGA plus onsite Coulomb interaction calculation.

  20. Tranpsort phenomena in solidification processing of functionally graded materials

    NASA Astrophysics Data System (ADS)

    Gao, Juwen

    A combined numerical and experimental study of the transport phenomena during solidification processing of metal matrix composite functionally graded materials (FGMs) is conducted in this work. A multiphase transport model for the solidification of metal-matrix composite FGMs has been developed that accounts for macroscopic particle segregation due to liquid-particle flow and particle-solid interactions. An experimental study has also been conducted to gain physical insight as well as to validate the model. A novel method to in-situ measure the particle volume fraction using fiber optic probes is developed for transparent analogue solidification systems. The model is first applied to one-dimensional pure matrix FGM solidification under gravity or centrifugal field and is extensively validated against the experimental results. The mechanisms for the formation of particle concentration gradient are identified. Two-dimensional solidification of pure matrix FGM with convection is then studied using the model as well as experiments. The interaction among convection flow, solidification process and the particle transport is demonstrated. The results show the importance of convection in the particle concentration gradient formation. Then, simulations for alloy FGM solidification are carried out for unidirectional solidification as well as two-dimensional solidification with convection. The interplay among heat and species transport, convection and particle motion is investigated. Finally, future theoretical and experimental work is outlined.

  1. High-gradient permanent magnet apparatus and its use in particle collection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Ludtka, Gerard Michael; Avens, Larry R.

    A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanentmore » magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.« less

  2. Using a trait-based approach to link microbial community composition and functioning to soil salinity

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Fierer, Noah; Rousk, Johannes

    2017-04-01

    Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared through 16S rRNA gene amplicon sequencing. Microbial community composition changed greatly along the salinity gradients. Using the salt-tolerance assessments to estimate bacterial trait-distributions we could determine substantial differences in tolerance to salt revealing a strong causal connection between environment and trait distributions. By constraining the community composition with salinity tolerance in ordinations, we could assign which community differences were directly due to a shift in community trait distributions. These analyses revealed that a substantial part (up to 30%) of the community composition differences were directly driven by environmental salt concentrations.. Even though communities in saline soils had trait-distributions aligned to their environment, their performance (respiration, growth rates) was lower than those in non-saline soils and remained low even after input of organic material. Using a trait-based approach we could connect filtered trait distributions along environmental gradients, to the composition of the microbial community. We show that soil salinity played an important role in shaping microbial community composition by selecting for communities with higher salt tolerance. The shift toward bacterial communities with trait distributions matched to salt environments probably compensated for much of the potential loss of function induced by salinity, resulting in a degree of apparent functional redundancy for decomposition. However, more tolerant communities still showed reduced functioning, suggesting a trade-off between salt tolerance and performance.

  3. Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films

    PubMed Central

    Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.

    2015-01-01

    Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185

  4. Echo planar imaging at 4 Tesla with minimum acoustic noise.

    PubMed

    Tomasi, Dardo G; Ernst, Thomas

    2003-07-01

    To minimize the acoustic sound pressure levels of single-shot echo planar imaging (EPI) acquisitions on high magnetic field MRI scanners. The resonance frequencies of gradient coil vibrations, which depend on the coil length and the elastic properties of the materials in the coil assembly, were measured using piezoelectric transducers. The frequency of the EPI-readout train was adjusted to avoid the frequency ranges of mechanical resonances. Our MRI system exhibited two sharp mechanical resonances (at 720 and 1220 Hz) that can increase vibrational amplitudes up to six-fold. A small adjustment of the EPI-readout frequency made it possible to reduce the sound pressure level of EPI-based perfusion and functional MRI scans by 12 dB. Normal vibrational modes of MRI gradient coils can dramatically increase the sound pressure levels during echo planar imaging (EPI) scans. To minimize acoustic noise, the frequency of EPI-readout trains and the resonance frequencies of gradient coil vibrations need to be different. Copyright 2003 Wiley-Liss, Inc.

  5. Effect of the laser heat treatment on the formation of the gradient structures in alloys based on Fe - Cr - Ni system

    NASA Astrophysics Data System (ADS)

    Andreev, A. O.; Bykovskiy, D. P.; Osintsev, A. V.; Petrovskiy, V. N.; Ryashko, I. I.; Blinova, E. N.; Libman, M. A.; Glezer, A. M.

    2017-12-01

    The possibility of producing gradient materials, i.e. materials with pre-set distribution of areas having fundamentally different physical and mechanical characteristics, with the help of laser heat treatment was investigated. Using as an example austenitic-martensitic alloys of iron-chromium-nickel, subjected to cold plastic deformation led to formation of martensite, we show that using laser at the temperature higher than the temperature of reverse martensite transformation leads to the formation of areas of high-strength austenite having predetermined form inside the martensite matrix. Influence of austenite areas geometry on mechanical properties of gradient material was studied.

  6. Functional response of osteoblasts in functionally gradient titanium alloy mesh arrays processed by 3D additive manufacturing.

    PubMed

    Nune, K C; Kumar, A; Misra, R D K; Li, S J; Hao, Y L; Yang, R

    2017-02-01

    We elucidate here the osteoblasts functions and cellular activity in 3D printed interconnected porous architecture of functionally gradient Ti-6Al-4V alloy mesh structures in terms of cell proliferation and growth, distribution of cell nuclei, synthesis of proteins (actin, vinculin, and fibronectin), and calcium deposition. Cell culture studies with pre-osteoblasts indicated that the interconnected porous architecture of functionally gradient mesh arrays was conducive to osteoblast functions. However, there were statistically significant differences in the cellular response depending on the pore size in the functionally gradient structure. The interconnected porous architecture contributed to the distribution of cells from the large pore size (G1) to the small pore size (G3), with consequent synthesis of extracellular matrix and calcium precipitation. The gradient mesh structure significantly impacted cell adhesion and influenced the proliferation stage, such that there was high distribution of cells on struts of the gradient mesh structure. Actin and vinculin showed a significant difference in normalized expression level of protein per cell, which was absent in the case of fibronectin. Osteoblasts present on mesh struts formed a confluent sheet, bridging the pores through numerous cytoplasmic extensions. The gradient mesh structure fabricated by electron beam melting was explored to obtain fundamental insights on cellular activity with respect to osteoblast functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A density gradient of VAPG peptides on a cell-resisting surface achieves selective adhesion and directional migration of smooth muscle cells over fibroblasts.

    PubMed

    Yu, Shan; Zuo, Xingang; Shen, Tao; Duan, Yiyuan; Mao, Zhengwei; Gao, Changyou

    2018-05-01

    Selective adhesion and migration of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. In this study, a uniform cell-resisting layer of poly(ethylene glycol) (PEG) with a density gradient of azide groups was generated on a substrate by immobilizing two kinds of PEG molecules in a gradient manner. A density gradient of alkynyl-functionalized Val-Ala-Pro-Gly (VAPG) peptides was then prepared on the PEG layer via click chemistry. The VAPG density gradient was characterized by fluorescence imaging, revealing the gradual enhancement of the fluorescent intensity along the substrate direction. The adhesion and mobility of SMCs were selectively enhanced on the VAPG density gradient, leading to directional migration toward the higher peptide density (up to 84%). In contrast, the adhesion and mobility of FIBs were significantly weakened. The net displacement of SMCs also significantly increased compared with that on tissue culture polystyrene (TCPS) and that of FIBs on the gradient. The mitogen-activated protein kinase (MAPK) signaling pathways related to cell migration were studied, showing higher expressions of functional proteins from SMCs on the VAPG-modified surface in a density-dependent manner. For the first time the selective adhesion and directional migration of SMCs over FIBs was achieved by an elaborative design of a gradient surface, leading to a new insight in design of novel vascular regenerative materials. Selective cell adhesion and migration guided by regenerative biomaterials are extremely important for the regeneration of targeted tissues, which can avoid the drawbacks of incorrect and uncontrolled responses of tissue cells to implants. For example, selectivity of smooth muscle cells (SMCs) over fibroblasts (FIBs) is required to prevent adventitia fibrosis in vascular regeneration. Herein we prepare a uniform cell-repelling layer, on which SMCs-selective Val-Ala-Pro-Gly (VAPG) peptides are immobilized in a continuous manner. Selective adhesion and enhanced and directional migration of SMCs over FIBs are achieved by the interplay of cell-repelling layer and gradient SMCs-selective VAPG peptides, paving a new way for the design of novel vascular grafts with enhanced biological performance. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Vertical Gradients in Regional Alveolar Oxygen Tension in Supine Human Lung Imaged by Hyperpolarized 3He MRI

    PubMed Central

    Hamedani, Hooman; Shaghaghi, Hoora; Kadlecek, Stephen J.; Xin, Yi; Han, Biao; Siddiqui, Sarmad; Rajaei, Jennia; Ishii, Masaru; Rossman, Milton; Rizi, Rahim R.

    2015-01-01

    Purpose To evaluate whether regional alveolar oxygen tension (PAO2) vertical gradients imaged with hyperpolarized 3He can identify smoking-induced pulmonary alterations. To compare these gradients with common clinical measurements including pulmonary function tests, the six minute walk test, and the St. George’s Respiratory Questionnaire. Materials and Methods 8 healthy nonsmokers, 12 asymptomatic smokers, and 7 symptomatic subjects with chronic obstructive pulmonary disease (COPD) underwent two sets of back-to-back PAO2 imaging acquisitions in supine position with two opposite directions (top to bottom and bottom to top), followed by clinically standard pulmonary tests. The whole-lung mean, standard deviation (DPAO2) and vertical gradients of PAO2 along the slices were extracted, and the results were compared with clinically derived metrics. Statistical tests were performed to analyze the differences between cohorts. Results The anterior-posterior vertical gradients and DPAO2 effectively differentiated all three cohorts (p<0.05). The average vertical gradient PAO2 in healthy subjects was −1.03 ± 0.51 Torr/cm toward lower values in the posterior/dependent regions. The directional gradient was absent in smokers (0.36 ± 1.22 Torr/cm) and was in the opposite direction in COPD subjects (2.18 ± 1.54 Torr/cm). The vertical gradients correlated with Smoking History (p=0.004); BMI (p=0.037), PFT metrics (FEV1, p=0.025; and %RV/TLC, p=0.033) and with distance walked in six minutes (p=0.009). Discussion Regional PAO2 data indicate that cigarette smoke induces physiological alterations that are not being detected by the most widely used physiologic tests. PMID:25395184

  9. On the Possibility of Elastic Strain Localisation in a Fault

    NASA Astrophysics Data System (ADS)

    Pasternak, E.; Mühlhaus, H.-B.; Dyskin, A. V.

    2004-12-01

    The phenomenon of strain localisation is often observed in shear deformation of particulate materials, e.g., fault gouge. This phenomenon is usually attributed to special types of plastic behaviour of the material (e.g., strain softening or mismatch between dilatancy and pressure sensitivity or both). Observations of strain localisation in situ or in experiments are usually based on displacement measurements and subsequent computation of the displacement gradient. While in conventional continua the symmetric part of the displacement gradient is equal to the strain, it is no longer the case in the more realistic descriptions within the framework of generalised continua. In such models the rotations of the gouge particles are considered as independent degrees of freedom the values of which usually differ from the rotation of an infinitesimal volume element of the continuum, the latter being described for infinitesimal deformations by the non-symmetric part of the displacement gradient. As a model for gouge material we propose a continuum description for an assembly of spherical particles of equal radius in which the particle rotation is treated as an independent degree of freedom. Based on this model we consider simple shear deformations of the fault gouge. We show that there exist values of the model parameters for which the displacement gradient exhibits a pronounced localisation at the mid-layers of the fault, even in the absence of inelasticity. Inelastic effects are neglected in order to highlight the role of the independent rotations and the associated additional parameters. The localisation-like behaviour occurs if (a) the particle rotations on the boundary of the shear layer are constrained (this type of boundary condition does not exist in a standard continuum) and (b) the contact moment—or bending stiffness is much smaller than the product of the effective shear modulus of the granulate and the square of the width of the gouge layer. It should be noted however that the virtual work functional is positive definite over the range of physically meaningful parameters (here: contact stiffnesses, solid volume fraction and coordination number) so that strictly speaking we are not dealing with a material instability.

  10. Evaluation of Thermoelectric Performance and Durability of Functionalized Skutterudite Legs

    NASA Astrophysics Data System (ADS)

    Skomedal, Gunstein; Kristiansen, Nils R.; Sottong, Reinhard; Middleton, Hugh

    2017-04-01

    Thermoelectric generators are a promising technology for waste heat recovery. As new materials and devices enter a market penetration stage, it is of interest to employ fast and efficient measurement methods to evaluate the long-term stability of thermoelectric materials in combination with metallization and coating (functionalized thermoelectric legs). We have investigated a method for measuring several thermoelectric legs simultaneously. The legs are put under a common temperature gradient, and the electrical characteristics of each leg are measured individually during thermal cycling. Using this method, one can test different types of metallization and coating applied to skutterudite thermoelectric legs and look at the relative changes over time. Postcharacterization of these initial tests with skutterudite legs using a potential Seebeck microprobe and an electron microscope showed that oxidation and interlayer diffusion are the main reasons for the gradual increase in internal resistance and the decrease in open-circuit voltage. Although we only tested skutterudite material in this work, the method is fully capable of testing all kinds of material, metallization, and coating. It is thus a promising method for studying the relationship between failure modes and mechanisms of functionalized thermoelectric legs.

  11. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    PubMed

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  12. Gradient Plasticity Model and its Implementation into MARMOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.

    2013-08-01

    The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less

  13. Synthesis and characterization of polymer layers for control of fluid transport

    NASA Astrophysics Data System (ADS)

    Vatansever, Fehime

    The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties. Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using "grafting to" technique. Specifically, modification of fabric with wettability gradient for facilitated one way-liquid transport, and pointed modification of yarn-based channels on textile microfluidic device for directional liquid transport are reported here. First, fabric was activated with alkali (NaOH) solution. Second, poly (glycidyl methacrylate) (PGMA) was deposited on fabric as an anchoring layer. Finally, polymers of interest were grafted to surface through the epoxy functionality of PGMA. Effect of polymer grafting on the wicking property of the fabric has been evaluated by vertical wicking technique at the each step of surface modification. The results shows that wicking performance of fabric can be altered by grafting of a thin nanoscale polymeric film. For the facilitated liquid transport, the gradient polymer coating was created using "grafting to" technique and its dependence on the grafting temperature. Wettability gradient from hydrophilic to hydrophobic (change in water contact angle from 0 to 140 degrees on fabric) was achieved by grafting of polystyrene (PS) and polyacrylic acid (PAA) sequentially with concentration gradient. This study proposes that fabric with wettability gradient property can be used to transfer sweat from skin and support moisture management when it is used in a laminated garment structure. For cooling performance evaluation, modified fabrics were tested with surface differential scanning calorimeter, and improved cooling effect was found with the fabric that has wettability gradient. Directional liquid transport can be achieved on amphiphilic fabric. To this end, fabric consisting of PET and PP yarn is fabricated. Activation and PGMA deposition yields an array of highly reactive PET channels that are constrained by hydrophobic PP boundaries. Aqueous solutions are transported in the channels by capillary forces where the direction of the liquid transport is defined by pH-response of the grafted polymers. The system of pH-selective channels in the developed textile based microfluidic chip could find analytical applications and can be used for smart cloth.

  14. An n -material thresholding method for improving integerness of solutions in topology optimization

    DOE PAGES

    Watts, Seth; Tortorelli, Daniel A.

    2016-04-10

    It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, themore » canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.« less

  15. COLLABORATIVE RESEARCH AND DEVELOPMENT (CR&D) Delivery Order 0060: Gradient Materials Morphology Modeling Support

    DTIC Science & Technology

    2007-08-01

    antiplane eigenstrain . ASME Journal of Applied Mechanics (In press, to appear in the September issue). [4] Wang, X., Pan, E., Roy, A. K, 2007. Three...problem of a functionally graded plane with a circular inclusion under a uniform antiplane eigenstrain is investigated, where the shear modulus varies...strain and stress fields inside the circular inclusion under uniform antiplane eigenstrains are intrinsically nOliuniform. This phenomenon differs

  16. Optimal error functional for parameter identification in anisotropic finite strain elasto-plasticity

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Kaygorodtseva, A. A.; Dranishnikov, N. S.

    2017-10-01

    A problem of parameter identification for a model of finite strain elasto-plasticity is discussed. The utilized phenomenological material model accounts for nonlinear isotropic and kinematic hardening; the model kinematics is described by a nested multiplicative split of the deformation gradient. A hierarchy of optimization problems is considered. First, following the standard procedure, the material parameters are identified through minimization of a certain least square error functional. Next, the focus is placed on finding optimal weighting coefficients which enter the error functional. Toward that end, a stochastic noise with systematic and non-systematic components is introduced to the available measurement results; a superordinate optimization problem seeks to minimize the sensitivity of the resulting material parameters to the introduced noise. The advantage of this approach is that no additional experiments are required; it also provides an insight into the robustness of the identification procedure. As an example, experimental data for the steel 42CrMo4 are considered and a set of weighting coefficients is found, which is optimal in a certain class.

  17. Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures

    PubMed Central

    Faivre, Magalie; Gelszinnis, Renaud; Degouttes, Jérôme; Terrier, Nicolas; Rivière, Charlotte; Ferrigno, Rosaria; Deman, Anne-Laure

    2014-01-01

    This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a function of the doping ratio, we investigated the molding resolution offered by i-PDMS to obtain microstructures of various sizes and shapes. Then, we implemented 500 μm i-PDMS microstructures in a microfluidic channel and studied the influence of flow rate on the deviation and trapping of superparamagnetic beads flowing at the neighborhood of the composite material. We characterized the attraction of the magnetic composite by measuring the distance from the i-PDMS microstructure, at which the beads are either deviated or captured. Finally, we demonstrated the interest of i-PDMS to perform magnetophoretic functions in microsystems for biological applications by performing capture of magnetically labeled cells. PMID:25332740

  18. Lateral Temperature-Gradient Method for High-Throughput Characterization of Material Processing by Millisecond Laser Annealing.

    PubMed

    Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O

    2016-09-12

    A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.

  19. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  20. Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.

    PubMed

    Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart

    2018-04-01

    In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.

  1. Bubbles are responsive materials interesting for nonequilibrium physics

    NASA Astrophysics Data System (ADS)

    Andreeva, Daria; Granick, Steve

    Understanding of nature and conditions of non-equilibrium transformations of bubbles, droplets, polysomes and vesicles in a gradient filed is a breath-taking question that dissipative systems raise. We ask: how to establish a dynamic control of useful characteristics, for example dynamic control of morphology and composition modulation in soft matter. A possible answer is to develop a new generation of dynamic impactors that can trigger spatiotemporal oscillations of structures and functions. We aim to apply acoustic filed for development of temperature and pressure oscillations at a microscale area. We demonstrate amazing dynamic behavior of gas-filled bubbles in pressure gradient field using a unique technique combining optical imaging, high intensity ultrasound and high speed camera. We find that pressure oscillations trigger continuous phase transformations that are considered to be impossible in physical systems.

  2. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  3. Electrokinetic Control of Viscous Fingering

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Mohammad; Bazant, Martin Z.

    2017-10-01

    We present a theory of the interfacial stability of two immiscible electrolytes under the coupled action of pressure gradients and electric fields in a Hele-Shaw cell or porous medium. Mathematically, our theory describes a phenomenon of "vector Laplacian growth," in which the interface moves in response to the gradient of a vector-valued potential function through a generalized mobility tensor. Physically, we extend the classical Saffman-Taylor problem to electrolytes by incorporating electrokinetic (EK) phenomena. A surprising prediction is that viscous fingering can be controlled by varying the injection ratio of electric current to flow rate. Beyond a critical injection ratio, stability depends only upon the relative direction of flow and current, regardless of the viscosity ratio. Possible applications include porous materials processing, electrically enhanced oil recovery, and EK remediation of contaminated soils.

  4. Continuous Optical 3D Printing of Green Aliphatic Polyurethanes.

    PubMed

    Pyo, Sang-Hyun; Wang, Pengrui; Hwang, Henry H; Zhu, Wei; Warner, John; Chen, Shaochen

    2017-01-11

    Photosensitive diurethanes were prepared from a green chemistry synthesis pathway based on methacrylate-functionalized six-membered cyclic carbonate and biogenic amines. A continuous optical 3D printing method for the diurethanes was developed to create user-defined gradient stiffness and smooth complex surface microstructures in seconds. The green chemistry-derived polyurethane (gPU) showed high optical transparency, and we demonstrate the ability to tune the material stiffness of the printed structure along a gradient by controlling the exposure time and selecting various amine compounds. High-resolution 3D biomimetic structures with smooth curves and complex contours were printed using our gPU. High cell viability (over 95%) was demonstrated during cytocompatibility testing using C3H 10T1/2 cells seeded directly on the printed structures.

  5. Representing Matrix Cracks Through Decomposition of the Deformation Gradient Tensor in Continuum Damage Mechanics Methods

    NASA Technical Reports Server (NTRS)

    Leone, Frank A., Jr.

    2015-01-01

    A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.

  6. Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process

    NASA Astrophysics Data System (ADS)

    Suk, Myung-Jin; Choi, Sung-II; Kim, Ji-Soon; Kim, Young Do; Kwon, Young-Soon

    2003-12-01

    A porous structure with a porosity gradient can be applied to the preparation of continuous FGM, where liquid or chemical vapor of the second phase is infiltrated into the graded pores. It also has applications in skeletal implant materials and ultrafiltration media. An attempt was made to fabricate a porous material with a porosity gradient by means of a pulsed electric current sintering (PECS) process. The present work describes not only the measured value of the temperature difference between the upper and lower part of the specimen, which brings about a gradual change in pore distribution, but also the sintering characteristics of the porous structure obtained by the pressureless PECS process.

  7. Functionally gradient hard carbon composites for improved adhesion and wear

    NASA Astrophysics Data System (ADS)

    Narayan, Roger Jagdish

    A new approach is proposed for fabricating biomedical devices that last longer and are more biocompatible than those presently available. In this approach, a bulk material is chosen that has desirable mechanical properties (low modulus, high strength, high ductility and high fatigue strength). This material is coated with corrosion-resistant, wear-resistant, hard, and biocompatible hard carbon films. One of the many forms of carbon, tetrahedral amorphous carbon, consists mainly of sp3-bonded atoms. Tetrahedral amorphous carbon possesses properties close to diamond in terms of hardness, atomic smoothness, and inertness. Tetrahedral amorphous carbon and diamond films usually contain large amounts of compressive and sometimes tensile stresses; adhesive failure from these stresses has limited widespread use of these materials. This research involves processing, characterization and modeling of functionally gradient tetrahedral amorphous carbon and diamond composite films on metals (cobalt-chromium and titanium alloys) and polymers (polymethylmethacrylate and polyethylene) used in biomedical applications. Multilayer discontinuous thin films of titanium carbide, titanium nitride, aluminum nitride, and tungsten carbide have been developed to control stresses and graphitization in diamond films. A morphology of randomly interconnected micron sized diamond crystallites provides increased toughness and stress reduction. Internal stresses in tetrahedral amorphous carbon were reduced via incorporation of carbide forming elements (silicon and titanium) and noncarbide forming elements (copper, platinum, and silver). These materials were produced using a novel target design during pulsed laser deposition. These alloying atoms reduce hardness and sp3-bonded carbon content, but increase adhesion and wear resistance. Silver and platinum provide the films with antimicrobial properties, and silicon provides bioactivity and aids bone formation. Bilayer coatings were created that couple the adherence, biocompatibility, erosion resistance, and long term release of functional elements from hard carbon coatings with bioactive properties of nanocrystalline hydroxyapatite and short term drug release properties of resorbable poly (D,L) lactide-based materials. Finally, these hard carbon coatings have a variety of non-medical applications, including use in microelectronics packaging, sensors, flat panel displays, photodiodes, cutting tools, optical switches, and wear-resistant magnetic disks.

  8. On continuous and discontinuous approaches for modeling groundwater flow in heterogeneous media using the Numerical Manifold Method: Model development and comparison

    NASA Astrophysics Data System (ADS)

    Hu, Mengsu; Wang, Yuan; Rutqvist, Jonny

    2015-06-01

    One major challenge in modeling groundwater flow within heterogeneous geological media is that of modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing approximation precision, and its integration precision, achieved by simplex integration. In this paper, we report on developing and comparing two new approaches for boundary constraints using the NMM, namely a continuous approach with jump functions and a discontinuous approach with Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces are regarded as discontinuities which divide mathematical covers into different physical covers. We define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfying the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the material interfaces are regarded as inner interfaces contained within physical covers. We briefly define jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction law. We then make a theoretical comparison between the two approaches in terms of global degrees of freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving interfaces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods. The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM for a Dirichlet boundary and then test both LMM and JFM for an idealized heterogeneous model, comparing the numerical results with analytical solutions. Then we test both approaches for a heterogeneous model and compare the results of hydraulic head and specific discharge. We show that both approaches are suitable for modeling material boundaries, considering high accuracy for the boundary constraints, the capability to deal with arbitrarily oriented or complexly intersected boundaries, and their efficiency using a fixed mathematical mesh.

  9. Separation of cells from the rat anterior pituitary gland

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Hatfield, J. Michael

    1983-01-01

    Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.

  10. Spatial gradient tuning in metamaterials

    NASA Astrophysics Data System (ADS)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  11. Orthonormal vector polynomials in a unit circle, Part I: Basis set derived from gradients of Zernike polynomials.

    PubMed

    Zhao, Chunyu; Burge, James H

    2007-12-24

    Zernike polynomials provide a well known, orthogonal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. A related set of orthogonal functions is given here which represent vector quantities, such as mapping distortion or wavefront gradient. These functions are generated from gradients of Zernike polynomials, made orthonormal using the Gram- Schmidt technique. This set provides a complete basis for representing vector fields that can be defined as a gradient of some scalar function. It is then efficient to transform from the coefficients of the vector functions to the scalar Zernike polynomials that represent the function whose gradient was fit. These new vector functions have immediate application for fitting data from a Shack-Hartmann wavefront sensor or for fitting mapping distortion for optical testing. A subsequent paper gives an additional set of vector functions consisting only of rotational terms with zero divergence. The two sets together provide a complete basis that can represent all vector distributions in a circular domain.

  12. A viscoelastic model for dielectric elastomers based on a continuum mechanical formulation and its finite element implementation

    NASA Astrophysics Data System (ADS)

    Bueschel, A.; Klinkel, S.; Wagner, W.

    2011-04-01

    Smart materials are active and multifunctional materials, which play an important part for sensor and actuator applications. These materials have the potential to transform passive structures into adaptive systems. However, a prerequisite for the design and the optimization of these materials is, that reliable models exist, which incorporate the interaction between the different combinations of thermal, electrical, magnetic, optical and mechanical effects. Polymeric electroelastic materials, so-called electroactive polymer (EAP), own the characteristic to deform if an electric field is applied. EAP's possesses the benefit that they share the characteristic of polymers, these are lightweight, inexpensive, fracture tolerant, elastic, and the chemical and physical structure is well understood. However, the description "electroactive polymer" is a generic term for many kinds of different microscopic mechanisms and polymeric materials. Based on the laws of electromagnetism and elasticity, a visco-electroelastic model is developed and implemented into the finite element method (FEM). The presented three-dimensional solid element has eight nodes and trilinear interpolation functions for the displacement and the electric potential. The continuum mechanics model contains finite deformations, the time dependency and the nearly incompressible behavior of the material. To describe the possible, large time dependent deformations, a finite viscoelastic model with a split of the deformation gradient is used. Thereby the time dependent characteristic of polymeric materials is incorporated through the free energy function. The electromechanical interactions are considered by the electrostatic forces and inside the energy function.

  13. General purpose rocket furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1979-01-01

    A multipurpose furnace for space vehicles used for material processing experiments in an outer space environment is described. The furnace contains three separate cavities designed to process samples of the widest possible range of materials and thermal requirements. Each cavity contains three heating elements capable of independent function under the direction of an automatic and programmable control system. A heat removable mechanism is also provided for each cavity which operates in conjunction with the control system for establishing an isothermally heated cavity or a wide range of thermal gradients and cool down rates. A monitoring system compatible with the rocket telemetry provides furnace performance and sample growth rate data throughout the processing cycle.

  14. Cell orientation gradients on an inverse opal substrate.

    PubMed

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.

  15. Mass transport in morphogenetic processes: A second gradient theory for volumetric growth and material remodeling

    NASA Astrophysics Data System (ADS)

    Ciarletta, P.; Ambrosi, D.; Maugin, G. A.

    2012-03-01

    In this work, we derive a novel thermo-mechanical theory for growth and remodeling of biological materials in morphogenetic processes. This second gradient hyperelastic theory is the first attempt to describe both volumetric growth and mass transport phenomena in a single-phase continuum model, where both stress- and shape-dependent growth regulations can be investigated. The diffusion of biochemical species (e.g. morphogens, growth factors, migration signals) inside the material is driven by configurational forces, enforced in the balance equations and in the set of constitutive relations. Mass transport is found to depend both on first- and on second-order material connections, possibly withstanding a chemotactic behavior with respect to diffusing molecules. We find that the driving forces of mass diffusion can be written in terms of covariant material derivatives reflecting, in a purely geometrical manner, the presence of a (first-order) torsion and a (second-order) curvature. Thermodynamical arguments show that the Eshelby stress and hyperstress tensors drive the rearrangement of the first- and second-order material inhomogeneities, respectively. In particular, an evolution law is proposed for the first-order transplant, extending a well-known result for inelastic materials. Moreover, we define the first stress-driven evolution law of the second-order transplant in function of the completely material Eshelby hyperstress. The theory is applied to two biomechanical examples, showing how an Eshelbian coupling can coordinate volumetric growth, mass transport and internal stress state, both in physiological and pathological conditions. Finally, possible applications of the proposed model are discussed for studying the unknown regulation mechanisms in morphogenetic processes, as well as for optimizing scaffold architecture in regenerative medicine and tissue engineering.

  16. Designing optimal nanofocusing with a gradient hyperlens

    NASA Astrophysics Data System (ADS)

    Shen, Lian; Prokopeva, Ludmila J.; Chen, Hongsheng; Kildishev, Alexander V.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  17. A review of gradient stiffness hydrogels used in tissue engineering and regenerative medicine.

    PubMed

    Xia, Tingting; Liu, Wanqian; Yang, Li

    2017-06-01

    Substrate stiffness is known to impact characteristics including cell differentiation, proliferation, migration and apoptosis. Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. Gradient stiffness hydrogels are designed by the need to develop biologically friendly materials as extracellular matrix (ECM) alternatives to replace the separated and narrow-ranged hydrogel substrates. Important new discoveries in cell behaviors have been realized with model gradient stiffness hydrogel systems from the two-dimensional (2D) to three-dimensional (3D) scale. Basic and clinical applications for gradient stiffness hydrogels in tissue engineering and regenerative medicine continue to drive the development of stiffness and structure varied hydrogels. Given the importance of gradient stiffness hydrogels in basic research and biomedical applications, there is a clear need for systems for gradient stiffness hydrogel design strategies and their applications. This review will highlight past work in the field of gradient stiffness hydrogels fabrication methods, mechanical property test, applications as well as areas for future study. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1799-1812, 2017. © 2017 Wiley Periodicals, Inc.

  18. Study of heat transfer on physiological driven movement with CNT nanofluids and variable viscosity.

    PubMed

    Akbar, Noreen Sher; Kazmi, Naeem; Tripathi, Dharmendra; Mir, Nazir Ahmed

    2016-11-01

    With ongoing interest in CNT nanofluids and materials in biotechnology, energy and environment, microelectronics, composite materials etc., the current investigation is carried out to analyze the effects of variable viscosity and thermal conductivity of CNT nanofluids flow driven by cilia induced movement through a circular cylindrical tube. Metachronal wave is generated by the beating of cilia and mathematically modeled as elliptical wave propagation by Blake (1971). The problem is formulated in the form of nonlinear partial differential equations, which are simplified by using the dimensional analysis to avoid the complicacy of dimensional homogeneity. Lubrication theory is employed to linearize the governing equations and it is also physically appropriate for cilia movement. Analytical solutions for velocity, temperature and pressure gradient and stream function are obtained. The analytical results are numerically simulated by using the Mathematica Software and plotted the graphs for velocity profile, temperature profile, pressure gradient and stream lines for better discussion and visualization. This model is applicable in physiological transport phenomena to explore the nanotechnology in engineering the artificial cilia and ciliated tube/pipe. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Engineering Ferroic and Multiferroic Materials for Active Cooling Applications

    DTIC Science & Technology

    2014-02-11

    large strain gradients (>105 m-1) – nearly 5-6 orders of magnitude larger than what can be achieved in bulk-versions of materials. These large strain...larger than what can be achieved in bulk-versions of materials. These large strain gradients gave rise to unexpected crystal and domain structure...parameters that are more favorable for generating a compressively strained variety of the Zr-rich phases. In this case, akin to what has been

  20. Differences in forest plant functional trait distributions across land-use and productivity gradients

    Treesearch

    Margaret M. Mayfield; John M. Dwyer; Loic Chalmandrier; Jessie A. Wells; Stephen P. Bonser; Carla P. Catterall; Fabrice DeClerck; Yi Ding; Jennifer M. Fraterrigo; Daniel J. Metcalfe; Cibele Queiroz; Peter A. Vesk; John W. Morgan

    2013-01-01

    • Premise of study: Plant functional traits are commonly used as proxies for plant responses to environmental challenges, yet few studies have explored how functional trait distributions differ across gradients of land-use change. By comparing trait distributions in intact forests with those across land-use change gradients, we can improve our understanding of the ways...

  1. On the effect of velocity gradients on the depth of correlation in μPIV

    NASA Astrophysics Data System (ADS)

    Mustin, B.; Stoeber, B.

    2016-03-01

    The present work revisits the effect of velocity gradients on the depth of the measurement volume (depth of correlation) in microscopic particle image velocimetry (μPIV). General relations between the μPIV weighting functions and the local correlation function are derived from the original definition of the weighting functions. These relations are used to investigate under which circumstances the weighting functions are related to the curvature of the local correlation function. Furthermore, this work proposes a modified definition of the depth of correlation that leads to more realistic results than previous definitions for the case when flow gradients are taken into account. Dimensionless parameters suitable to describe the effect of velocity gradients on μPIV cross correlation are derived and visual interpretations of these parameters are proposed. We then investigate the effect of the dimensionless parameters on the weighting functions and the depth of correlation for different flow fields with spatially constant flow gradients and with spatially varying gradients. Finally this work demonstrates that the results and dimensionless parameters are not strictly bound to a certain model for particle image intensity distributions but are also meaningful when other models for particle images are used.

  2. Designing gradient coils with reduced hot spot temperatures.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2010-03-01

    Gradient coil temperature is an important concern in the design and construction of MRI scanners. Closely spaced gradient coil windings cause temperature hot spots within the system as a result of Ohmic heating associated with large current being driven through resistive material, and can strongly affect the performance of the coils. In this paper, a model is presented for predicting the spatial temperature distribution of a gradient coil, including the location and extent of temperature hot spots. Subsequently, a method is described for designing gradient coils with improved temperature distributions and reduced hot spot temperatures. Maximum temperature represents a non-linear constraint and a relaxed fixed point iteration routine is proposed to adjust coil windings iteratively to minimise this coil feature. Several examples are considered that assume different thermal material properties and cooling mechanisms for the gradient system. Coil winding solutions are obtained for all cases considered that display a considerable drop in hot spot temperature (>20%) when compared to standard minimum power gradient coils with equivalent gradient homogeneity, efficiency and inductance. The method is semi-analytical in nature and can be adapted easily to consider other non-linear constraints in the design of gradient coils or similar systems. Crown Copyright (c) 2009. Published by Elsevier Inc. All rights reserved.

  3. Optimum gradient material for a functionally graded dental implant using metaheuristic algorithms.

    PubMed

    Sadollah, Ali; Bahreininejad, Ardeshir

    2011-10-01

    Despite dental implantation being a great success, one of the key issues facing it is a mismatch of mechanical properties between engineered and native biomaterials, which makes osseointegration and bone remodeling problematical. Functionally graded material (FGM) has been proposed as a potential upgrade to some conventional implant materials such as titanium for selection in prosthetic dentistry. The idea of an FGM dental implant is that the property would vary in a certain pattern to match the biomechanical characteristics required at different regions in the hosting bone. However, matching the properties does not necessarily guarantee the best osseointegration and bone remodeling. Little existing research has been reported on developing an optimal design of an FGM dental implant for promoting long-term success. Based upon remodeling results, metaheuristic algorithms such as the genetic algorithms (GAs) and simulated annealing (SA) have been adopted to develop a multi-objective optimal design for FGM implantation design. The results are compared with those in literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Recent work on material interface reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosso, S.J.; Swartz, B.K.

    1997-12-31

    For the last 15 years, many Eulerian codes have relied on a series of piecewise linear interface reconstruction algorithms developed by David Youngs. In a typical Youngs` method, the material interfaces were reconstructed based upon nearly cell values of volume fractions of each material. The interfaces were locally represented by linear segments in two dimensions and by pieces of planes in three dimensions. The first step in such reconstruction was to locally approximate an interface normal. In Youngs` 3D method, a local gradient of a cell-volume-fraction function was estimated and taken to be the local interface normal. A linear interfacemore » was moved perpendicular to the now known normal until the mass behind it matched the material volume fraction for the cell in question. But for distorted or nonorthogonal meshes, the gradient normal estimate didn`t accurately match that of linear material interfaces. Moreover, curved material interfaces were also poorly represented. The authors will present some recent work in the computation of more accurate interface normals, without necessarily increasing stencil size. Their estimate of the normal is made using an iterative process that, given mass fractions for nearby cells of known but arbitrary variable density, converges in 3 or 4 passes in practice (and quadratically--like Newton`s method--in principle). The method reproduces a linear interface in both orthogonal and nonorthogonal meshes. The local linear approximation is generally 2nd-order accurate, with a 1st-order accurate normal for curved interfaces in both two and three dimensional polyhedral meshes. Recent work demonstrating the interface reconstruction for curved surfaces will /be discussed.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiangfeng; Tanihata, Kimiaki; Miyamoto, Yoshinari

    A TiC/Ni functionally gradient material (FGM) fabricated via gas-pressure combustion sintering is presently investigated to establish its mechanical and thermal properties. Attention is given to the FGM's specific thermal conductivities with different thermal cycling conditions; these are found to decrease with thermal cycling in all samples tested, implying that the lateral cracks are generated in the FGM and then propagated by the thermal cycle. High compressive stresses are induced at the TiC surface when this is constrained by a Cu block. 6 refs.

  6. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in corrosive environments.

  7. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  8. Versatile van der Waals Density Functional Based on a Meta-Generalized Gradient Approximation

    DOE PAGES

    Peng, Haowei; Yang, Zeng-Hui; Perdew, John P.; ...

    2016-10-12

    A “best-of-both-worlds” van der Waals (vdW) density functional is constructed, seamlessly supplementing the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation for short- and intermediate-range interactions with the long-range vdW interaction from r VV 10 , the revised Vydrov–van Voorhis nonlocal correlation functional. The resultant SCAN + r VV 10 is the only vdW density functional to date that yields excellent interlayer binding energies and spacings, as well as intralayer lattice constants in 28 layered materials. Its versatility for various kinds of bonding is further demonstrated by its good performance for 22 interactions between molecules; the cohesive energies andmore » lattice constants of 50 solids; the adsorption energy and distance of a benzene molecule on coinage-metal surfaces; the binding energy curves for graphene on Cu(111), Ni(111), and Co(0001) surfaces; and the rare-gas solids. We argue that a good semilocal approximation should (as SCAN does) capture the intermediate-range vdW through its exchange term. We have found an effective range of the vdW interaction between 8 and 16 Å for systems considered here, suggesting that this interaction is negligibly small at the larger distances where it reaches its asymptotic power-law decay.« less

  9. Edge remap for solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamm, James R.; Love, Edward; Robinson, Allen C.

    We review the edge element formulation for describing the kinematics of hyperelastic solids. This approach is used to frame the problem of remapping the inverse deformation gradient for Arbitrary Lagrangian-Eulerian (ALE) simulations of solid dynamics. For hyperelastic materials, the stress state is completely determined by the deformation gradient, so remapping this quantity effectively updates the stress state of the material. A method, inspired by the constrained transport remap in electromagnetics, is reviewed, according to which the zero-curl constraint on the inverse deformation gradient is implicitly satisfied. Open issues related to the accuracy of this approach are identified. An optimization-based approachmore » is implemented to enforce positivity of the determinant of the deformation gradient. The efficacy of this approach is illustrated with numerical examples.« less

  10. Differentiation from First Principles Using Spreadsheets

    ERIC Educational Resources Information Center

    Lim, Kieran F.

    2008-01-01

    In the teaching of calculus, the algebraic derivation of the derivative (gradient function) enables the student to obtain an analytic "global" gradient function. However, to the best of this author's knowledge, all current technology-based approaches require the student to obtain the derivative (gradient) at a single point by…

  11. Polychromatic microdiffraction characterization of defect gradients in severely deformed materials.

    PubMed

    Barabash, Rozaliya I; Ice, Gene E; Liu, Wenjun; Barabash, Oleg M

    2009-01-01

    This paper analyzes local lattice rotations introduced in severely deformed polycrystalline titanium by friction stir welding. Nondestructive three-dimensional (3D) spatially resolved polychromatic X-ray microdiffraction, is used to resolve the local crystal structure of the restructured surface from neighboring local structures in the sample material. The measurements reveal strong gradients of strain and geometrically necessary dislocations near the surface and illustrate the potential of polychromatic microdiffraction for the study of deformation in complex materials systems.

  12. Design and Growth of Novel Compounds for Radiation Sensors: Multinary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Nagaradona, Teja; Arnold, Brad; Choa, Fow-Sen

    2016-01-01

    Increasing threats of radiological weapons have revitalized the researches for low cost large volume ?-ray and neutron ray sensors In the past few years we have designed and grown ternary and quaternary lead and thallium chalcogenides and lead selenoiodides for detectors to meet these challenges. These materials are congruent, can be tailored to enhance the parameters required for radiation sensors. In addition, this class of compounds can be grown by Bridgman method which promises for large volume productions. We have single crystals of several compounds from the melt including Tl3AsSe3, Tl3AsSe3-xSx, TlGaSe2, AgGaGe3Se8, AgxLi1-xAgGaGe3Se8 and PbTlI5-x Sex compounds. Experimental studies indicate that these have very low absorption coefficient, low defect density and can be fabricated in any shape and sizes. These crystals do not require post growth annealing and do not show any second phase precipitates when processed for electrode bonding and other fabrication steps. In this paper we report purification, growth and fabrication of large Tl3AsSe3 (TAS) crystals. We observed that TAS crystals grown by using further purification of as supplied high purity source materials followed by directionally solidified charge showed higher resistivity than previously reported values. TAS also showed constant value as the function of voltage. A low thermal gradient and high purity source material were used to reduce thermal stresses in large crystals. By improving the purification of the as supplied source materials very high quality thallium, selenium and arsenic was achieved for preparing stoichiometric Tl3AsSe3 compound. Low gradient (<20K/cm) and slow growth rate (1-2 cm/day) produced crystals with reduced stress. Crystals did not show any micro cracking during fabrication of crystals grown with high purity and at low thermal gradient. Since thallium is a major component and very sensitive to surface oxidation, removal of surface and bulk oxides is very important. Intentional increase in the growth rate from 1cm/day to higher speed (>5cm/day) showed very different morphologies on the surface of the crystals. Electrical resistivity was one order of magnitude higher than previously reported value and it was observed to be constant as the function of frequency.

  13. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOEpatents

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1991-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.

  14. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins

    PubMed Central

    Wei, Yujie; Li, Yongqiang; Zhu, Lianchun; Liu, Yao; Lei, Xianqi; Wang, Gang; Wu, Yanxin; Mi, Zhenli; Liu, Jiabin; Wang, Hongtao; Gao, Huajian

    2014-01-01

    The strength–ductility trade-off has been a long-standing dilemma in materials science. This has limited the potential of many structural materials, steels in particular. Here we report a way of enhancing the strength of twinning-induced plasticity steel at no ductility trade-off. After applying torsion to cylindrical twinning-induced plasticity steel samples to generate a gradient nanotwinned structure along the radial direction, we find that the yielding strength of the material can be doubled at no reduction in ductility. It is shown that this evasion of strength–ductility trade-off is due to the formation of a gradient hierarchical nanotwinned structure during pre-torsion and subsequent tensile deformation. A series of finite element simulations based on crystal plasticity are performed to understand why the gradient twin structure can cause strengthening and ductility retention, and how sequential torsion and tension lead to the observed hierarchical nanotwinned structure through activation of different twinning systems. PMID:24686581

  15. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    PubMed

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, F. S.

    Functionally graded components exhibit spatial variations of mechanical properties in contrast with, and as an alternative to, purely homogeneous components. A large class of graded materials, however, are in fact mostly homogeneous materials with property variations (chemical or mechanical) restricted to a specific area or layer produced by applying for example a coating or by introducing sub-surface residual stresses. However, it is also possible to obtain graded materials with a smooth transition of mechanical properties along the entire component, for example in a 40 mm component. This is possible, for example, by using centrifugal casting technique or incremental melting andmore » solidification technique. In this paper we will study fully metallic functionally graded components with a smooth gradient, focusing on fatigue crack propagation. Fatigue propagation will be assessed in the direction parallel to the gradation (in different homogeneous layers of the functionally graded component) to assess what would be fatigue crack propagation on the direction perpendicular to the gradation. Fatigue crack growth rate (standard mode I fatigue crack growth) will be correlated to the mode I stress intensity factor range. Other mechanical properties of different layers of the component (Young's modulus) will also be considered in this analysis. The effect of residual stresses along the component gradation on crack propagation will also be taken into account. A qualitative analysis of the effects of some important features, present in functionally graded materials, will be made based on the obtained results.« less

  17. A projected preconditioned conjugate gradient algorithm for computing many extreme eigenpairs of a Hermitian matrix [A projected preconditioned conjugate gradient algorithm for computing a large eigenspace of a Hermitian matrix

    DOE PAGES

    Vecharynski, Eugene; Yang, Chao; Pask, John E.

    2015-02-25

    Here, we present an iterative algorithm for computing an invariant subspace associated with the algebraically smallest eigenvalues of a large sparse or structured Hermitian matrix A. We are interested in the case in which the dimension of the invariant subspace is large (e.g., over several hundreds or thousands) even though it may still be small relative to the dimension of A. These problems arise from, for example, density functional theory (DFT) based electronic structure calculations for complex materials. The key feature of our algorithm is that it performs fewer Rayleigh–Ritz calculations compared to existing algorithms such as the locally optimalmore » block preconditioned conjugate gradient or the Davidson algorithm. It is a block algorithm, and hence can take advantage of efficient BLAS3 operations and be implemented with multiple levels of concurrency. We discuss a number of practical issues that must be addressed in order to implement the algorithm efficiently on a high performance computer.« less

  18. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  19. Adjoint-based Sensitivity of Jet Noise to Near-nozzle Forcing

    NASA Astrophysics Data System (ADS)

    Chung, Seung Whan; Vishnampet, Ramanathan; Bodony, Daniel; Freund, Jonathan

    2017-11-01

    Past efforts have used optimal control theory, based on the numerical solution of the adjoint flow equations, to perturb turbulent jets in order to reduce their radiated sound. These efforts have been successful in that sound is reduced, with concomitant changes to the large-scale turbulence structures in the flow. However, they have also been inconclusive, in that the ultimate level of reduction seemed to depend upon the accuracy of the adjoint-based gradient rather than a physical limitation of the flow. The chaotic dynamics of the turbulence can degrade the smoothness of cost functional in the control-parameter space, which is necessary for gradient-based optimization. We introduce a route to overcoming this challenge, in part by leveraging the regularity and accuracy with a dual-consistent, discrete-exact adjoint formulation. We confirm its properties and use it to study the sensitivity and controllability of the acoustic radiation from a simulation of a M = 1.3 turbulent jet, whose statistics matches data. The smoothness of the cost functional over time is quantified by a minimum optimization step size beyond which the gradient cannot have a certain degree of accuracy. Based on this, we achieve a moderate level of sound reduction in the first few optimization steps. This material is based [in part] upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  20. Computer Code for Nanostructure Simulation

    NASA Technical Reports Server (NTRS)

    Filikhin, Igor; Vlahovic, Branislav

    2009-01-01

    Due to their small size, nanostructures can have stress and thermal gradients that are larger than any macroscopic analogue. These gradients can lead to specific regions that are susceptible to failure via processes such as plastic deformation by dislocation emission, chemical debonding, and interfacial alloying. A program has been developed that rigorously simulates and predicts optoelectronic properties of nanostructures of virtually any geometrical complexity and material composition. It can be used in simulations of energy level structure, wave functions, density of states of spatially configured phonon-coupled electrons, excitons in quantum dots, quantum rings, quantum ring complexes, and more. The code can be used to calculate stress distributions and thermal transport properties for a variety of nanostructures and interfaces, transport and scattering at nanoscale interfaces and surfaces under various stress states, and alloy compositional gradients. The code allows users to perform modeling of charge transport processes through quantum-dot (QD) arrays as functions of inter-dot distance, array order versus disorder, QD orientation, shape, size, and chemical composition for applications in photovoltaics and physical properties of QD-based biochemical sensors. The code can be used to study the hot exciton formation/relation dynamics in arrays of QDs of different shapes and sizes at different temperatures. It also can be used to understand the relation among the deposition parameters and inherent stresses, strain deformation, heat flow, and failure of nanostructures.

  1. A low-cost gradient system for high-performance liquid chromatography. Quantitation of complex pharmaceutical raw materials.

    PubMed

    Erni, F; Frei, R W

    1976-09-29

    A device is described that makes use of an eight-port motor valve to generate step gradients on the low-pressure side of a piston pump with a low dead volume. Such a gradient device with an automatic control unit, which also permits repetition of previous steps, can be built for about half the cost of a gradient system with two pumps. Applications of this gradient unit to the separation of complex mixtures of glycosides and alkaloids are discussed and compared with separations systems using two high-pressure pumps. The gradients that are used on reversed-phase material with solvent mixtures of water and completely miscible organic solvents are suitable for quantitative routine control of pharmaceutical products. The reproducibility of retention data is excellent over several months and, with the use of loop injectors, major components can be determined quantitatively with a reproducibility of better than 2% (relative standard deviation). The step gradient selector valve can also be used as an introduction system for very large sample volumes. Up to 11 can be injected and samples with concentrations of less than 1 ppb can be determined with good reproducibilities.

  2. Development of a Novel Continuous Processing Technology for Functionally Graded Composite Energetic Materials Using an Inverse Design Procedure

    DTIC Science & Technology

    2006-01-01

    is naturally suited to produce this type of gradient from one composition to another. Operating a twin screw extruder at one steady condition and...dynamically changing the ingredients to produce a new formulation will result in the extrudate changing from the original composition to second one...Because of the inherent backmixing in a twin screw extruder , an abrupt change in ingredients results in a more gradual change in the composition of

  3. The Transition from Stiff to Compliant Materials in Squid Beaks

    PubMed Central

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert

    2009-01-01

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-l-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications. PMID:18369144

  4. The transition from stiff to compliant materials in squid beaks.

    PubMed

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W; Waite, J Herbert

    2008-03-28

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.

  5. The Transition from Stiff to Compliant Materials in Squid Beaks

    NASA Astrophysics Data System (ADS)

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert

    2008-03-01

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.

  6. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.

    PubMed

    Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian

    2015-03-01

    We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.

  7. Synthesis and First Principles Investigation of HMX/NMP Cocrystal Explosive

    NASA Astrophysics Data System (ADS)

    Lin, He; Zhu, Shun-Guan; Zhang, Lin; Peng, Xin-Hua; LI, Hong-Zhen

    2013-10-01

    1,3,5,7-Tetranitro-l,3,5,7-tetrazocine (HMX)/N-methyl-2-pyrrolidone (NMP) cocrystal explosive was prepared by a solution evaporation method. This cocrystal explosive crystallized in the trigonal system (space group ? ), with cell parameters a = 16.605(8) Å and c = 31.496(4) Å. Theoretical investigations of the formation mechanism of HMX/NMP cocrystal were carried out in Cambridge serial total energy package (CASTEP) based on dispersion-corrected density functional theory (DFT-D) with a plane wave scheme. The exchange-correlation potential was treated with the Perdew-Burke-Ernzerhof function of generalized gradient approximation, and dispersion force was correlated using Grimme's method. The band structure, density of states, projected density of states, and Mulliken populations were calculated at the generalized gradient approximation level. The results showed that the main host-guest interactions in HMX/NMP cocrystal were hydrogen bonds and stacking interactions, which were the same as those analyzed using X-ray diffraction. Theoretical investigations of HMX/NMP cocrystal explosive may provide the basis for the preparation of cocrystal explosive composed of HMX and energetic materials.

  8. Non-destructive testing of ceramic materials using mid-infrared ultrashort-pulse laser

    NASA Astrophysics Data System (ADS)

    Sun, S. C.; Qi, Hong; An, X. Y.; Ren, Y. T.; Qiao, Y. B.; Ruan, Liming M.

    2018-04-01

    The non-destructive testing (NDT) of ceramic materials using mid-infrared ultrashort-pulse laser is investigated in this study. The discrete ordinate method is applied to solve the transient radiative transfer equation in 2D semitransparent medium and the emerging radiative intensity on boundary serves as input for the inverse analysis. The sequential quadratic programming algorithm is employed as the inverse technique to optimize objective function, in which the gradient of objective function with respect to reconstruction parameters is calculated using the adjoint model. Two reticulated porous ceramics including partially stabilized zirconia and oxide-bonded silicon carbide are tested. The retrieval results show that the main characteristics of defects such as optical properties, geometric shapes and positions can be accurately reconstructed by the present model. The proposed technique is effective and robust in NDT of ceramics even with measurement errors.

  9. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  10. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  11. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  12. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOEpatents

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1988-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is progpagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the marterials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggreated at a particular location, or physically separated from each other.

  13. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

    PubMed

    Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas

    2014-03-01

    The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The retrieval of a buried cylindrical obstacle by a constrained modified gradient method in the H-polarization case and for Maxwellian materials

    NASA Astrophysics Data System (ADS)

    Lambert, M.; Lesselier, D.; Kooij, B. J.

    1998-10-01

    The retrieval of an unknown, possibly inhomogeneous, penetrable cylindrical obstacle buried entirely in a known homogeneous half-space - the constitutive material parameters of the obstacle and of its embedding obey a Maxwell model - is considered from single- or multiple-frequency aspect-limited data collected by ideal sensors located in air above the embedding half-space, when a small number of time-harmonic transverse electric (TE)-polarized line sources - the magnetic field H is directed along the axis of the cylinder - is also placed in air. The wavefield is modelled from a rigorous H-field domain integral-differential formulation which involves the dot product of the gradients of the single component of H and of the Green function of the stratified environment times a scalar-valued contrast function which contains the obstacle parameters (the frequency-independent, position-dependent relative permittivity and conductivity). A modified gradient method is developed in order to reconstruct the maps of such parameters within a prescribed search domain from the iterative minimization of a cost functional which incorporates both the error in reproducing the data and the error on the field built inside this domain. Non-physical values are excluded and convergence reached by incorporating in the solution algorithm, from a proper choice of unknowns, the condition that the relative permittivity be larger than or equal to 1, and the conductivity be non-negative. The efficiency of the constrained method is illustrated from noiseless and noisy synthetic data acquired independently. The importance of the choice of the initial values of the sought quantities, the need for a periodic refreshment of the constitutive parameters to avoid the algorithm providing inconsistent results, and the interest of a frequency-hopping strategy to obtain finer and finer features of the obstacle when the frequency is raised, are underlined. It is also shown that though either the permittivity map or the conductivity map can be obtained for a fair variety of cases, retrieving both of them may be difficult unless further information is made available.

  15. Numerical experience with a class of algorithms for nonlinear optimization using inexact function and gradient information

    NASA Technical Reports Server (NTRS)

    Carter, Richard G.

    1989-01-01

    For optimization problems associated with engineering design, parameter estimation, image reconstruction, and other optimization/simulation applications, low accuracy function and gradient values are frequently much less expensive to obtain than high accuracy values. Here, researchers investigate the computational performance of trust region methods for nonlinear optimization when high accuracy evaluations are unavailable or prohibitively expensive, and confirm earlier theoretical predictions when the algorithm is convergent even with relative gradient errors of 0.5 or more. The proper choice of the amount of accuracy to use in function and gradient evaluations can result in orders-of-magnitude savings in computational cost.

  16. Dynamics of Metamorphic Core Complexes Inferred From Modeling and Metamorphic Petrology

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Rey, P.; Teyssier, C.

    2008-12-01

    Orogenic collapse involves extension and thinning of thick, hot, and in some cases partially molten, crust, leading to the formation of metamorphic core complexes (MCC) that are commonly cored by migmatite domes. 2D numerical modeling predicts that the geometry and P-T-t history of MCC varies as a function of the presence/absence of a partially molten layer in the deep crust; the nature of heterogeneities that localize the MCC (e.g. normal fault in upper crust vs. point-like anomaly in the deep crust); and extensional strain rate. The presence of melt in particular has a significant effect on the thermal and structural history of MCC because the presence of partially molten crust or magma bodies at depth enhances upward advection of material and heat. At high extension rate (cm/year in the region of the MCC), partially molten crust crystallizes as migmatite and cools along a high geothermal gradient (35-65 C/km); material remains partially molten during ascent, forming a migmatite dome when it crystallizes at shallower crustal levels (e.g. cordierite/sillimanite stability field). At low strain rate (mm/yr in the MCC region), the partially molten crust crystallizes at high pressure (e.g. kyanite zone); this material is subsequently deformed in the solid-state along a cooler geothermal gradient (20-35 C/km) during ascent. MCC that develop during extension of partially molten crust may therefore record distinct crystallization versus exhumation histories as a function of extensional strain rate. The mineral assemblages, metamorphic reaction histories, and structures of migmatite-cored (Mc) MCC can therefore be used to interpret the dynamics of MCC formation, e.g. "fast" McMCC in the northern N American Cordillera and Aegean regions.

  17. RES: Regularized Stochastic BFGS Algorithm

    NASA Astrophysics Data System (ADS)

    Mokhtari, Aryan; Ribeiro, Alejandro

    2014-12-01

    RES, a regularized stochastic version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is proposed to solve convex optimization problems with stochastic objectives. The use of stochastic gradient descent algorithms is widespread, but the number of iterations required to approximate optimal arguments can be prohibitive in high dimensional problems. Application of second order methods, on the other hand, is impracticable because computation of objective function Hessian inverses incurs excessive computational cost. BFGS modifies gradient descent by introducing a Hessian approximation matrix computed from finite gradient differences. RES utilizes stochastic gradients in lieu of deterministic gradients for both, the determination of descent directions and the approximation of the objective function's curvature. Since stochastic gradients can be computed at manageable computational cost RES is realizable and retains the convergence rate advantages of its deterministic counterparts. Convergence results show that lower and upper bounds on the Hessian egeinvalues of the sample functions are sufficient to guarantee convergence to optimal arguments. Numerical experiments showcase reductions in convergence time relative to stochastic gradient descent algorithms and non-regularized stochastic versions of BFGS. An application of RES to the implementation of support vector machines is developed.

  18. Differential abundance of microbial functional groups along the elevation gradient from the coast to the Luquillo Mountains

    Treesearch

    Sharon A. Cantrell; D. Jean Lodge; Carlos A. Cruz; Luis M. García; Jose R. Pérez-Jiménez; Marirosa Molina

    2013-01-01

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradient in eastern Puerto Rico. Previous studies within the Luquillo Mountains showed that...

  19. Usage of Nest Materials by House Sparrow (Passer domesticus) Along an Urban to Rural Gradient in Coimbatore, India.

    PubMed

    Radhamany, Dhanya; Das, Karumampoyil Sakthidas Anoop; Azeez, Parappurath Abdul; Wen, Longying; Sreekala, Leelambika Krishnan

    2016-08-01

    The house sparrow (Passer domesticus) is a widely distributed bird species found throughout the world. Being a species which has close association with humans, they chiefly nest on man-made structures. Here we describe the materials used by the house sparrow for making nests along an urban to rural gradient. For the current study, we selected the Coimbatore to Anaikatty road (State Highway-164), a 27 km inter-state highway, which traverses along an urban core to rural outstretch of Coimbatore. Of the 30 nests observed, 15 nests were from the rural, 8 were from the suburban, and 7 were from the urban areas. The nests had two distinct layers, specifically the structural layer and the inner lining. In the current study, we identified 11 plant species, 2 types of animal matter, and 6 types of anthropogenic matter, including plastic pieces and fine rope. The amount of anthropogenic materials in the nest formation varied along the gradients. The usage of anthropogenic materials was high in urban areas (p<0.05) whereas it did not differ at the sub-urban regions (p>0.05). A gradual decrease in the usage of plant matter towards the urban area was noticed (p<0.05). This study explicitly documents the links between nest material usage along an urban to rural gradient, in a human associated bird.

  20. Theoretical analysis of sheet metal formability

    NASA Astrophysics Data System (ADS)

    Zhu, Xinhai

    Sheet metal forming processes are among the most important metal-working operations. These processes account for a sizable proportion of manufactured goods made in industrialized countries each year. Furthermore, to reduce the cost and increase the performance of manufactured products, in addition to the environmental concern, more and more light weight and high strength materials have been used as a substitute to the conventional steel. These materials usually have limited formability, thus, a thorough understanding of the deformation processes and the factors limiting the forming of sound parts is important, not only from a scientific or engineering viewpoint, but also from an economic point of view. An extensive review of previous studies pertaining to theoretical analyses of Forming Limit Diagrams (FLDs) is contained in Chapter I. A numerical model to analyze the neck evolution process is outlined in Chapter II. With the use of strain gradient theory, the effect of initial defect profile on the necking process is analyzed. In the third chapter, the method proposed by Storen and Rice is adopted to analyze the initiation of localized neck and predict the corresponding FLDs. In view of the fact that the width of the localized neck is narrow, the deformation inside the neck region is constrained by the material in the neighboring homogeneous region. The relative rotation effect may then be assumed to be small and is thus neglected. In Chapter IV, Hill's 1948 yield criterion and strain gradient theory are employed to obtain FLDs, for planar anisotropic sheet materials by using bifurcation analysis. The effects of the strain gradient coefficient c and the material anisotropic parameters R's on the orientation of the neck and FLDs are analyzed in a systematic manner and compared with experiments. In Chapter V, Hill's 79 non-quadratic yield criterion with a deformation theory of plasticity is used along with bifurcation analyses to derive a general analytical expression for calculating FLDs. In the final chapter, a method is proposed to construct forming limit diagrams for sheet metals under different deformation histories. This analysis employs Hill's 79 anisotropic yield function and uses strain gradient theory to describe the constitutive equation for the flow stress. In order to utilize an analytical method developed earlier for proportional loading, the concept of "virtual deformation" is introduced. The actual deformation path is divided into a sequence of linear paths and an effective "virtual deformation" path is defined having a strain ratio identical to that of the linear part in the final deformation stage, and a plastic work identical to that of the prior actual deformation it is replacing. (Abstract shortened by UMI.)

  1. Using phylogeny and functional traits for assessing community assembly along environmental gradients: A deterministic process driven by elevation.

    PubMed

    Xu, Jinshi; Chen, Yu; Zhang, Lixia; Chai, Yongfu; Wang, Mao; Guo, Yaoxin; Li, Ting; Yue, Ming

    2017-07-01

    Community assembly processes is the primary focus of community ecology. Using phylogenetic-based and functional trait-based methods jointly to explore these processes along environmental gradients are useful ways to explain the change of assembly mechanisms under changing world. Our study combined these methods to test assembly processes in wide range gradients of elevation and other habitat environmental factors. We collected our data at 40 plots in Taibai Mountain, China, with more than 2,300 m altitude difference in study area and then measured traits and environmental factors. Variance partitioning was used to distinguish the main environment factors leading to phylogeny and traits change among 40 plots. Principal component analysis (PCA) was applied to colligate other environment factors. Community assembly patterns along environmental gradients based on phylogenetic and functional methods were studied for exploring assembly mechanisms. Phylogenetic signal was calculated for each community along environmental gradients in order to detect the variation of trait performance on phylogeny. Elevation showed a better explanatory power than other environment factors for phylogenetic and most traits' variance. Phylogenetic and several functional structure clustered at high elevation while some conserved traits overdispersed. Convergent tendency which might be caused by filtering or competition along elevation was detected based on functional traits. Leaf dry matter content (LDMC) and leaf nitrogen content along PCA 1 axis showed conflicting patterns comparing to patterns showed on elevation. LDMC exhibited the strongest phylogenetic signal. Only the phylogenetic signal of maximum plant height showed explicable change along environmental gradients. Synthesis . Elevation is the best environment factors for predicting phylogeny and traits change. Plant's phylogenetic and some functional structures show environmental filtering in alpine region while it shows different assembly processes in middle- and low-altitude region by different trait/phylogeny. The results highlight deterministic processes dominate community assembly in large-scale environmental gradients. Performance of phylogeny and traits along gradients may be independent with each other. The novel method for calculating functional structure which we used in this study and the focus of phylogenetic signal change along gradients may provide more useful ways to detect community assembly mechanisms.

  2. A nonlocal strain gradient model for dynamic deformation of orthotropic viscoelastic graphene sheets under time harmonic thermal load

    NASA Astrophysics Data System (ADS)

    Radwan, Ahmed F.; Sobhy, Mohammed

    2018-06-01

    This work presents a nonlocal strain gradient theory for the dynamic deformation response of a single-layered graphene sheet (SLGS) on a viscoelastic foundation and subjected to a time harmonic thermal load for various boundary conditions. Material of graphene sheets is presumed to be orthotropic and viscoelastic. The viscoelastic foundation is modeled as Kelvin-Voigt's pattern. Based on the two-unknown plate theory, the motion equations are obtained from the dynamic version of the virtual work principle. The nonlocal strain gradient theory is established from Eringen nonlocal and strain gradient theories, therefore, it contains two material scale parameters, which are nonlocal parameter and gradient coefficient. These scale parameters have two different effects on the graphene sheets. The obtained deflection is compared with that predicted in the literature. Additional numerical examples are introduced to illustrate the influences of the two length scale coefficients and other parameters on the dynamic deformation of the viscoelastic graphene sheets.

  3. Thermal rectification in thin films driven by gradient grain microstructure

    NASA Astrophysics Data System (ADS)

    Cheng, Zhe; Foley, Brian M.; Bougher, Thomas; Yates, Luke; Cola, Baratunde A.; Graham, Samuel

    2018-03-01

    As one of the basic components of phononics, thermal rectifiers transmit heat current asymmetrically similar to electronic rectifiers in microelectronics. Heat can be conducted through them easily in one direction while being blocked in the other direction. In this work, we report a thermal rectifier that is driven by the gradient grain structure and the inherent gradient in thermal properties as found in these materials. To demonstrate their thermal rectification properties, we build a spectral thermal conductivity model with complete phonon dispersion relationships using the thermophysical properties of chemical vapor deposited (CVD) diamond films which possess gradient grain microstructures. To explain the observed significant thermal rectification, the temperature and thermal conductivity distribution are studied. Additionally, the effects of temperature bias and film thickness are discussed, which shed light on tuning the thermal rectification based on the gradient microstructures. Our results show that the columnar grain microstructure makes CVD materials unique candidates for mesoscale thermal rectifiers without a sharp temperature change.

  4. Minimum maximum temperature gradient coil design.

    PubMed

    While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart

    2013-08-01

    Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.

  5. Finite element analysis of gradient z-coil induced eddy currents in a permanent MRI magnet.

    PubMed

    Li, Xia; Xia, Ling; Chen, Wufan; Liu, Feng; Crozier, Stuart; Xie, Dexin

    2011-01-01

    In permanent magnetic resonance imaging (MRI) systems, pulsed gradient fields induce strong eddy currents in the conducting structures of the magnet body. The gradient field for image encoding is perturbed by these eddy currents leading to MR image distortions. This paper presents a comprehensive finite element (FE) analysis of the eddy current generation in the magnet conductors. In the proposed FE model, the hysteretic characteristics of ferromagnetic materials are considered and a scalar Preisach hysteresis model is employed. The developed FE model was applied to study gradient z-coil induced eddy currents in a 0.5 T permanent MRI device. The simulation results demonstrate that the approach could be effectively used to investigate eddy current problems involving ferromagnetic materials. With the knowledge gained from this eddy current model, our next step is to design a passive magnet structure and active gradient coils to reduce the eddy current effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Adsorption and desorption characteristics of gradient distributed Bragg reflector porous silicon layers.

    PubMed

    Um, Sungyong; Lee, Sung Gi; Woo, Hee-Gweon; Cho, Sungdong; Sohn, Honglae

    2013-01-01

    Adsorption and desorption characteristics of gradient distributed Bragg reflector (DBR) porous silicon (PSi) were investigated under the exposure of organic vapors. Gradient DBR PSi whose average pore size decreased as the lateral distance from the Pt electrode increased was generated by using an asymmetric etching configuration. The reflection resonances were measured as a function of lateral distance from a point closest to the plate Pt electrode to a position on the silicon surface. Two types of gradient DBR PSi (H- and HO-terminated gradient DBR PSi) were used in this study. The detection of volatile organic compounds (VOCs) using the gradient DBR PSi had been achieved. When the vapor of VOCs condensed in the nanopores, the gradient DBR PSi modified with hydrophobic and hydrophilic functionality exhibited different pore adsorption and desorption characteristics.

  7. A new method of determining moisture gradient in wood

    Treesearch

    Zhiyong Cai

    2008-01-01

    Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...

  8. On the constrained minimization of smooth Kurdyka—Łojasiewicz functions with the scaled gradient projection method

    NASA Astrophysics Data System (ADS)

    Prato, Marco; Bonettini, Silvia; Loris, Ignace; Porta, Federica; Rebegoldi, Simone

    2016-10-01

    The scaled gradient projection (SGP) method is a first-order optimization method applicable to the constrained minimization of smooth functions and exploiting a scaling matrix multiplying the gradient and a variable steplength parameter to improve the convergence of the scheme. For a general nonconvex function, the limit points of the sequence generated by SGP have been proved to be stationary, while in the convex case and with some restrictions on the choice of the scaling matrix the sequence itself converges to a constrained minimum point. In this paper we extend these convergence results by showing that the SGP sequence converges to a limit point provided that the objective function satisfies the Kurdyka-Łojasiewicz property at each point of its domain and its gradient is Lipschitz continuous.

  9. Density functional theory for molecular and periodic systems using density fitting and continuous fast multipole method: Analytical gradients.

    PubMed

    Łazarski, Roman; Burow, Asbjörn Manfred; Grajciar, Lukáš; Sierka, Marek

    2016-10-30

    A full implementation of analytical energy gradients for molecular and periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. Its key component is a combination of density fitting (DF) approximation and continuous fast multipole method (CFMM) that allows for an efficient calculation of the Coulomb energy gradient. For exchange-correlation part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097) is extended to energy gradients. Computational efficiency and asymptotic O(N) scaling behavior of the implementation is demonstrated for various molecular and periodic model systems, with the largest unit cell of hematite containing 640 atoms and 19,072 basis functions. The overall computational effort of energy gradient is comparable to that of the Kohn-Sham matrix formation. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Use of total electron content data to analyze ionosphere electron density gradients

    NASA Astrophysics Data System (ADS)

    Nava, B.; Radicella, S. M.; Leitinger, R.; Coïsson, P.

    In the presence of electron density gradients the thin shell approximation for the ionosphere, used together with a simple mapping function to convert slant total electron content (TEC) to vertical TEC, could lead to TEC conversion errors. These "mapping function errors" can therefore be used to detect the electron density gradients in the ionosphere. In the present work GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions. In particular the data corresponding to the geographic area of the American Sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the "coinciding pierce point technique". The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere. In addition, the possibility to assess an ionospheric shell height able to minimize the mapping function errors has been verified.

  11. Enhanced fluidity liquid chromatography of inulin fructans using ternary solvent strength and selectivity gradients.

    PubMed

    Bennett, Raffeal; Olesik, Susan V

    2018-01-25

    The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A new leakage measurement method for damaged seal material

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Yao, Xue Feng; Yang, Heng; Yuan, Li; Dong, Yi Feng

    2018-07-01

    In this paper, a new leakage measurement method based on the temperature field and temperature gradient field is proposed for detecting the leakage location and measuring the leakage rate in damaged seal material. First, a heat transfer leakage model is established, which can calculate the leakage rate based on the temperature gradient field near the damaged zone. Second, a finite element model of an infinite plate with a damaged zone is built to calculate the leakage rate, which fits the simulated leakage rate well. Finally, specimens in a tubular rubber seal with different damage shapes are used to conduct the leakage experiment, validating the correctness of this new measurement principle for the leakage rate and the leakage position. The results indicate the feasibility of the leakage measurement method for damaged seal material based on the temperature gradient field from infrared thermography.

  13. Mechanisms of high-gradient microwave breakdown on metal surfaces in high power microwave source

    NASA Astrophysics Data System (ADS)

    Xie, Jialing; Chen, Changhua; Chang, Chao; Wu, Cheng; Huo, Yankun

    2017-12-01

    A breakdown cavity was designed to study the high-gradient microwave breakdown on a metal surface. The breakdown cavity can be distinguished into an electron emission boundary and a bombardment boundary as there is an evident difference in amplitude of the electric field between the two planes in the cavity. Breakdown tracks on the cavity were studied with an electron scanning microscope. The tracks on the electron emission boundary with the higher electric field were eroded; a component analysis indicates that these tracks contain an emission boundary material. On the bombardment boundary with a lower electric field, two kinds of tracks exist: an erosion track containing a bombardment boundary material and a sputtered track containing an emission boundary material. From these tracks, the mechanisms of high-gradient microwave breakdown on a metal surface have been analyzed.

  14. Temperature and diet effects on omnivorous fish performance: Implications for the latitudinal diversity gradient in herbivorous fishes

    USGS Publications Warehouse

    Behrens, M.D.; Lafferty, K.D.

    2007-01-01

    Herbivorous fishes show a clear latitudinal diversity gradient, making up a larger proportion of the fish species in a community in tropical waters than in temperate waters. One proposed mechanism that could drive this gradient is a physiological constraint due to temperature. One prediction based on this mechanism is that if herbivorous fishes could shift their diet to animal material, they would be better able to grow, survive, and reproduce in cold waters. We tested this prediction on the omnivore Girella nigricans under different temperature and diet regimes using RNA-DNA ratios as an indicator of performance. Fish had increased performance (100%) at low temperatures (12??C) when their diet was supplemented with animal material. In contrast, at higher temperatures (17, 22, and 27??C) fish showed no differences between diets. This indicates that omnivorous fishes could increase their performance at low temperatures by consuming more animal matter. This study supports the hypothesis that a relative increase in the nutritional value of plant material at warmer temperatures could drive the latitudinal diversity gradient in herbivorous fishes. ?? 2007 NRC.

  15. Suppression/Reversal of Natural Convection by Exploiting the Temperature/Composition Dependence of Magnetic Susceptibility

    NASA Technical Reports Server (NTRS)

    Seybert, C. D.; Evans, J. W.; Leslie, F.; Jones, W. K., Jr.

    2000-01-01

    Natural convection, driven by temperature-or concentration gradients or both, is an inherent phenomenon during solidification of materials on Earth. This convection has practical consequences (e.g effecting macrosegregation) but also renders difficult the scientific examination of diffusive/conductive phenomena during solidification. It is possible to halt, or even reverse, natural convection by exploiting the variation (with temperature, for example) of the susceptibility of a material. If the material is placed in a vertical magnetic field gradient, a buoyancy force of magnetic origin arises and, at a critical field gradient, can balance the normal buoyancy forces to halt convection. At higher field gradients the convection can be reversed. The effect has been demonstrated in experiments at Marshall Space Flight Center where flow was measured by PIV in MnCl2 solution in a superconducting magnet. In auxiliary experiments the field in the magnet and the properties of the solution were measured. Computations of the natural convection, its halting and reversal, using the commercial software FLUENT were in good agreement with the measurements.

  16. Stress analysis in cylindrical composition-gradient electrodes of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Zhong, Yaotian; Liu, Yulan; Wang, B.

    2017-07-01

    In recent years, the composition-gradient electrode material has been verified to be one of the most promising materials in lithium-ion battery. To investigate diffusion-induced stresses (DIS) generated in a cylindrical composition-gradient electrode, the finite deformation theory and the stress-induced diffusion hypothesis are adopted to establish the constitutive equations. Compared with stress distributions in a homogeneous electrode, the increasing forms of Young's modulus E(R) and partial molar volume Ω(R) from the electrode center to the surface along the radial direction drastically increase the maximal magnitudes of hoop and axial stresses, while both of the decreasing forms are able to make the stress fields smaller and flatter. Also, it is found that the slope of -1 for E(R) with that of -0.5 for Ω(R) is a preferable strategy to prevent the inhomogeneous electrode from cracking, while for the sake of protecting the electrode from compression failure, the optimal slope for inhomogeneous E(R) and the preferential one for Ω(R) are both -0.5. The results provide a theoretical guidance for the design of composition-gradient electrode materials.

  17. Interconfigurational energies in transition-metal atoms using gradient-corrected density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutzler, F.W.; Painter, G.S.

    1991-03-15

    The rapid variation of charge and spin densities in atoms and molecules provides a severe test for local-density-functional theory and for the use of gradient corrections. In the study reported in this paper, we use the Langreth, Mehl, and Hu (LMH) functional and the generalized gradient approximation (GGA) of Perdew and Yue to calculate {ital s}-{ital d} transition energies, 4{ital s} ionization energies, and 3{ital d} ionization energies for the 3{ital d} transition-metal atoms. These calculations are compared with results from the local-density functional of Vosko, Wilk, and Nusair. By comparison with experimental energies, we find that the gradient functionalsmore » are only marginally more successful than the local-density approximation in calculating energy differences between states in transition-metal atoms. The GGA approximation is somewhat better than the LMH functional for most of the atoms studied, although there are several exceptions.« less

  18. Mechanical characterization of hydroxyapatite, thermoelectric materials and doped ceria

    NASA Astrophysics Data System (ADS)

    Fan, Xiaofeng

    For a variety of applications of brittle ceramic materials, porosity plays a critical role structurally and/or functionally, such as in engineered bone scaffolds, thermoelectric materials and in solid oxide fuel cells. The presence of porosity will affect the mechanical properties, which are essential to the design and application of porous brittle materials. In this study, the mechanical property versus microstructure relations for bioceramics, thermoelectric (TE) materials and solid oxide fuel cells were investigated. For the bioceramic material hydroxyapatite (HA), the Young's modulus was measured using resonant ultrasound spectroscopy (RUS) as a function of (i) porosity and (ii) microcracking damage state. The fracture strength was measured as a function of porosity using biaxial flexure testing, and the distribution of the fracture strength was studied by Weibull analysis. For the natural mineral tetrahedrite based solid solution thermoelectric material (Cu10Zn2As4S13 - Cu 12Sb4S13), the elastic moduli, hardness and fracture toughness were studied as a function of (i) composition and (ii) ball milling time. For ZiNiSn, a thermoelectric half-Heusler compound, the elastic modulus---porosity and hardness---porosity relations were examined. For the solid oxide fuel cell material, gadolina doped ceria (GDC), the elastic moduli including Young's modulus, shear modulus, bulk modulus and Poisson's ratio were measured by RUS as a function of porosity. The hardness was evaluated by Vickers indentation technique as a function of porosity. The results of the mechanical property versus microstructure relations obtained in this study are of great importance for the design and fabrication of reliable components with service life and a safety factor. The Weibull modulus, which is a measure of the scatter in fracture strength, is the gauge of the mechanical reliability. The elastic moduli and Poisson's ratio are needed in analytical or numerical models of the thermal and mechanical stresses arising from in-service thermal gradients, thermal transients and/or mechanical loading. Hardness is related to a material's wear resistance and machinability, which are two essential considerations in fabrication and application.

  19. Redox gradients in distribution systems influence water quality, corrosion, and microbial ecology.

    PubMed

    Masters, Sheldon; Wang, Hong; Pruden, Amy; Edwards, Marc A

    2015-01-01

    Simulated distribution systems (SDSs) defined the interplay between disinfectant type (free chlorine and chloramines), water age (1-10.2 days), and pipe material (PVC, iron and cement surfaces) on water chemistry, redox zones and infrastructure degradation. Redox gradients developed as a function of water age and pipe material affected the quality of water consumers would receive. Free chlorine was most stable in the presence of PVC while chloramine was most stable in the presence of cement. At a 3.6 day water age the residual in the chlorinated PVC SDS was more than 3.5 times higher than in the chlorinated iron or cement systems. In contrast, the residual in the chloraminated cement SDS was more than 10 times greater than in the chloraminated iron or PVC systems. Near the point of entry to the SDSs where disinfectant residuals were present, free chlorine tended to cause as much as 4 times more iron corrosion when compared to chloramines. Facultative denitrifying bacteria were ubiquitous, and caused complete loss of nitrogen at distal points in systems with iron, and these bacteria co-occurred with very severe pitting attack (1.6-1.9 mm/year) at high water age.

  20. Modeling the Capillary Pressure for the Migration of the Liquid Phase in Granular Solid-Liquid-Vapor Systems: Application to the Control of the Composition Profile in W-Cu FGM Materials

    NASA Astrophysics Data System (ADS)

    Missiaen, Jean-Michel; Raharijaona, Jean-Joël; Delannay, Francis

    2016-11-01

    A model is developed to compute the capillary pressure for the migration of the liquid phase out or into a uniform solid-liquid-vapor system. The capillary pressure is defined as the reduction of the overall interface energy per volume increment of the transferred fluid phase. The model takes into account the particle size of the solid particle aggregate, the packing configuration (coordination number, porosity), the volume fractions of the different phases, and the values of the interface energies in the system. The model is used for analyzing the stability of the composition profile during processing of W-Cu functionally graded materials combining a composition gradient with a particle size gradient. The migration pressure is computed with the model in two stages: (1) just after the melting of copper, i.e., when sintering and shape accommodation of the W particle aggregate can still be neglected and (2) at high temperature, when the system is close to full density with equilibrium particle shape. The model predicts well the different stages of liquid-phase migration observed experimentally.

  1. Material Gradients in Oxygen System Components Improve Safety

    NASA Technical Reports Server (NTRS)

    Forsyth, Bradley S.

    2011-01-01

    Oxygen system components fabricated by Laser Engineered Net Shaping (TradeMark) (LENS(TradeMark)) could result in improved safety and performance. LENS(TradeMark) is a near-net shape manufacturing process fusing powdered materials injected into a laser beam. Parts can be fabricated with a variety of elemental metals, alloys, and nonmetallic materials without the use of a mold. The LENS(TradeMark) process allows the injected materials to be varied throughout a single workpiece. Hence, surfaces exposed to oxygen could be constructed of an oxygen-compatible material while the remainder of the part could be one chosen for strength or reduced weight. Unlike conventional coating applications, a compositional gradient would exist between the two materials, so no abrupt material boundary exists. Without an interface between dissimilar materials, there is less tendency for chipping or cracking associated with thermal-expansion mismatches.

  2. Mapping in vitro local material properties of intact and disrupted virions at high resolution using multi-harmonic atomic force microscopy.

    PubMed

    Cartagena, Alexander; Hernando-Pérez, Mercedes; Carrascosa, José L; de Pablo, Pedro J; Raman, Arvind

    2013-06-07

    Understanding the relationships between viral material properties (stiffness, strength, charge density, adhesion, hydration, viscosity, etc.), structure (protein sub-units, genome, surface receptors, appendages), and functions (self-assembly, stability, disassembly, infection) is of significant importance in physical virology and nanomedicine. Conventional Atomic Force Microscopy (AFM) methods have measured a single physical property such as the stiffness of the entire virus from nano-indentation at a few points which severely limits the study of structure-property-function relationships. We present an in vitro dynamic AFM technique operating in the intermittent contact regime which synthesizes anharmonic Lorentz-force excited AFM cantilevers to map quantitatively at nanometer resolution the local electro-mechanical force gradient, adhesion, and hydration layer viscosity within individual φ29 virions. Furthermore, the changes in material properties over the entire φ29 virion provoked by the local disruption of its shell are studied, providing evidence of bacteriophage depressurization. The technique significantly generalizes recent multi-harmonic theory (A. Raman, et al., Nat. Nanotechnol., 2011, 6, 809-814) and enables high-resolution in vitro quantitative mapping of multiple material properties within weakly bonded viruses and nanoparticles with complex structure that otherwise cannot be observed using standard AFM techniques.

  3. Progress in NMR Studies of Liquid Ceramic Materials

    NASA Astrophysics Data System (ADS)

    Marzke, Robert F.; Piwowarczyk, Jeremy; Boucher, Susan; Wolf, George H.

    2003-10-01

    The availability of molten, levitated samples of Al-containing ceramics at temperatures of 2,000^oC and higher permits a broad range of important materials to be investigated by the powerful techniques of NMR.footnote Coutures, J-P., Massiot, D., Bessada, C., Echegut, P., Rifflet, J-C. & Taulelle F., Etude par RMN 27Al daluminates liquides dans le domaine 1600-2100 ^oC. C.R. Acad. Sci. Paris, 1990, 310, 1041. Standard measurements of chemical shift as a function of composition yield information concerning the bonding of Al and the structure of liquid phases, for both novel and well-studied refractory materials. Studies of incoherent motions in a sample, such as Al diffusion or time-dependent convective currents, may also be performed when magnetic field gradients are incorporated into the experimental NMR probe. Recent advances are reviewed, in several research areas.

  4. Ab initio study of (Fe, Ni) doped GaAs: Magnetic, electronic properties and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Sbai, Y.; Ait Raiss, A.; Bahmad, L.; Benyoussef, A.

    2017-06-01

    The interesting diluted magnetic semiconductor (DMS), Gallium Arsenide (GaAs), was doped with the transition metals magnetic impurities: iron (Fe) and Nickel (Ni), in one hand to study the magnetic and magneto-optical properties of the material Ga(Fe, Ni) As, in the other hand to investigate the effect of the doping on the properties of this material, the calculations were performed within the spin polarized density functional theory (DFT) and generalized gradient approximation (GGA) with AKAI KKR-CPA method, the density of states (DOS) for different doping concentrations were calculated, giving the electronical properties, as well as the magnetic state and magnetic states energy, also the effect of these magnetic impurities on the Faraday rotation as magneto-optical property. Furthermore, we found the stable magnetic state for our doped material GaAs.

  5. Flexo-photovoltaic effect.

    PubMed

    Yang, Ming-Min; Kim, Dong Jik; Alexe, Marin

    2018-05-25

    It is highly desirable to discover photovoltaic mechanisms that enable enhanced efficiency of solar cells. Here we report that the bulk photovoltaic effect, which is free from the thermodynamic Shockley-Queisser limit but usually manifested only in noncentrosymmetric (piezoelectric or ferroelectric) materials, can be realized in any semiconductor, including silicon, by mediation of flexoelectric effect. We used either an atomic force microscope or a micrometer-scale indentation system to introduce strain gradients, thus creating very large photovoltaic currents from centrosymmetric single crystals of strontium titanate, titanium dioxide, and silicon. This strain gradient-induced bulk photovoltaic effect, which we call the flexo-photovoltaic effect, functions in the absence of a p-n junction. This finding may extend present solar cell technologies by boosting the solar energy conversion efficiency from a wide pool of established semiconductors. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  6. Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach

    NASA Astrophysics Data System (ADS)

    Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine

    2017-02-01

    This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.

  7. Optimum Material Composition for Minimizing the Stress Intensity Factor of Edge Crack in Thick-Walled FGM Circular Pipes Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Sekine, Hideki; Yoshida, Kimiaki

    This paper deals with the optimization problem of material composition for minimizing the stress intensity factor of radial edge crack in thick-walled functionally graded material (FGM) circular pipes under steady-state thermomechanical loading. Homogenizing the FGM circular pipes by simulating the inhomogeneity of thermal conductivity by a distribution of equivalent eigentemperature gradient and the inhomogeneity of Young's modulus and Poisson's ratio by a distribution of equivalent eigenstrain, we present an approximation method to obtain the stress intensity factor of radial edge crack in the FGM circular pipes. The optimum material composition for minimizing the stress intensity factor of radial edge crack is determined using a nonlinear mathematical programming method. Numerical results obtained for a thick-walled TiC/Al2O3 FGM circular pipe reveal that it is possible to decrease remarkably the stress intensity factor of radial edge crack by setting the optimum material composition profile.

  8. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  9. Flow-related Right Ventricular - Pulmonary Arterial Pressure Gradients during Exercise.

    PubMed

    Wright, Stephen P; Opotowsky, Alexander R; Buchan, Tayler A; Esfandiari, Sam; Granton, John T; Goodman, Jack M; Mak, Susanna

    2018-06-06

    The assumption of equivalence between right ventricular and pulmonary arterial systolic pressure is fundamental to several assessments of right ventricular or pulmonary vascular hemodynamic function. Our aims were to 1) determine whether systolic pressure gradients develop across the right ventricular outflow tract in healthy adults during exercise, 2) examine the potential correlates of such gradients, and 3) consider the effect of such gradients on calculated indices of right ventricular function. Healthy untrained and endurance-trained adult volunteers were studied using right-heart catheterization at rest and during submaximal cycle ergometry. Right ventricular and pulmonary artery pressures were simultaneously transduced, and cardiac output was determined by thermodilution. Systolic pressures, peak and mean gradients, and indices of chamber, vascular, and valve function were analyzed offline. Summary data are reported as mean ± standard deviation or median [interquartile range]. No significant right ventricular outflow tract gradients were observed at rest (mean gradient = 4 [3-5] mmHg), and calculated effective orifice area was 3.6±1.0 cm2. Right ventricular systolic pressure increases during exercise were greater than that of pulmonary artery systolic pressure. Accordingly, mean gradients developed during light exercise (8 [7-9] mmHg) and increased during moderate exercise (12 [9-14] mmHg, p < 0.001). The magnitude of the mean gradient was linearly related to cardiac output (r2 = 0.70, p < 0.001). In healthy adults without pulmonic stenosis, systolic pressure gradients develop during exercise, and the magnitude is related to blood flow rate.

  10. Thermal cloak-concentrator

    NASA Astrophysics Data System (ADS)

    Shen, Xiangying; Li, Ying; Jiang, Chaoran; Ni, Yushan; Huang, Jiping

    2016-07-01

    For macroscopically manipulating heat flow at will, thermal metamaterials have opened a practical way, which possesses a single function, such as either cloaking or concentrating the flow of heat even though environmental temperature varies. By developing a theory of transformation heat transfer for multiple functions, here we introduce the concept of intelligent thermal metamaterials with a dual function, which is in contrast to the existing thermal metamaterials with single functions. By assembling homogeneous isotropic materials and shape-memory alloys, we experimentally fabricate a kind of intelligent thermal metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or cloak) when the environmental temperature changes. This work paves an efficient way for a controllable gradient of heat, and also provides guidance both for arbitrarily manipulating the flow of heat and for efficiently designing similar intelligent metamaterials in other fields.

  11. Love-type waves in functionally graded piezoelectric material (FGPM) sandwiched between initially stressed layer and elastic substrate

    NASA Astrophysics Data System (ADS)

    Saroj, Pradeep K.; Sahu, S. A.; Chaudhary, S.; Chattopadhyay, A.

    2015-10-01

    This paper investigates the propagation behavior of Love-type surface waves in three-layered composite structure with initial stress. The composite structure has been taken in such a way that a functionally graded piezoelectric material (FGPM) layer is bonded between initially stressed piezoelectric upper layer and an elastic substrate. Using the method of separation of variables, frequency equation for the considered wave has been established in the form of determinant for electrical open and short cases on free surface. The bisection method iteration technique has been used to find the roots of the dispersion relations which give the modes for electrical open and short cases. The effects of gradient variation of material constant and initial stress on the phase velocity of surface waves are discussed. Dependence of thickness on each parameter of the study has been shown explicitly. Study has been also done to show the existence of cut-off frequency. Graphical representation has been done to exhibit the findings. The obtained results are significant for the investigation and characterization of Love-type waves in FGPM-layered media.

  12. Study of the possibility of growing germanium single crystals under low temperature gradients

    NASA Astrophysics Data System (ADS)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  13. Shape optimization using a NURBS-based interface-enriched generalized FEM

    DOE PAGES

    Najafi, Ahmad R.; Safdari, Masoud; Tortorelli, Daniel A.; ...

    2016-11-26

    This study presents a gradient-based shape optimization over a fixed mesh using a non-uniform rational B-splines-based interface-enriched generalized finite element method, applicable to multi-material structures. In the proposed method, non-uniform rational B-splines are used to parameterize the design geometry precisely and compactly by a small number of design variables. An analytical shape sensitivity analysis is developed to compute derivatives of the objective and constraint functions with respect to the design variables. Subtle but important new terms involve the sensitivity of shape functions and their spatial derivatives. As a result, verification and illustrative problems are solved to demonstrate the precision andmore » capability of the method.« less

  14. Use of Total Electron Content data to analyze ionosphere electron density gradients

    NASA Astrophysics Data System (ADS)

    Nava, B.; Radicella, S. M.; Leitinger, R.; Coisson, P.

    In presence of electron density gradients the thin shell approximation for the ionosphere used together with a simple mapping function to convert slant Total Electron Content TEC to vertical TEC could lead to TEC conversion errors Therefore these mapping function errors can be used to identify the effects of the electron density gradients in the ionosphere In the present work high precision GPS derived slant TEC data have been used to investigate the effects of the electron density gradients in the middle and low latitude ionosphere under geomagnetic quiet and disturbed conditions In particular the data corresponding to the geographic area of the American sector for the days 5-7 April 2000 have been used to perform a complete analysis of mapping function errors based on the coinciding pierce point technique The results clearly illustrate the electron density gradient effects according to the locations considered and to the actual levels of disturbance of the ionosphere

  15. Modified Fourth-Order Kinetic Energy Gradient Expansion with Hartree Potential-Dependent Coefficients.

    PubMed

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2017-09-12

    Using the semiclassical neutral atom theory, we developed a modified fourth-order kinetic energy (KE) gradient expansion (GE4m) that keeps unchanged all the linear-response terms of the uniform electron gas and gives a significant improvement with respect to the known semilocal functionals for both large atoms and jellium surfaces. On the other hand, GE4m is not accurate for light atoms; thus, we modified the GE4m coefficients making them dependent on a novel ingredient, the reduced Hartree potential, recently introduced in the Journal of Chemical Physics 2016, 145, 084110, in the context of exchange functionals. The resulting KE gradient expansion functional, named uGE4m, belongs to the novel class of u-meta-generalized-gradient-approximations (uMGGA) whose members depend on the conventional ingredients (i.e., the reduced gradient and Laplacian of the density) as well as on the reduced Hartree potential. To test uGE4m, we defined an appropriate benchmark (including total KE and KE differences for atoms, molecules and jellium clusters) for gradient expansion functionals, that is, including only those systems which are mainly described by a slowly varying density regime. While most of the GGA and meta-GGA KE functionals (we tested 18 of them) are accurate for some properties and inaccurate for others, uGE4m shows a consistently good performance for all the properties considered. This represents a qualitative boost in the KE functional development and highlights the importance of the reduced Hartree potential for the construction of next-generation KE functionals.

  16. Merging Marine Ecosystem Models and Genomics

    NASA Astrophysics Data System (ADS)

    Coles, V.; Hood, R. R.; Stukel, M. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2015-12-01

    oceanography. One of the grand challenges of oceanography is to develop model techniques to more effectively incorporate genomic information. As one approach, we developed an ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response cuves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Realistic community size spectra and chlorophyll-a concentrations emerge in the model. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  17. Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties.

    PubMed

    Graupner, Nina; Labonte, David; Humburg, Heide; Buzkan, Tayfun; Dörgens, Anna; Kelterer, Wiebke; Müssig, Jörg

    2017-02-28

    Here we investigate the mechanical properties and structural design of the pericarp of the green coconut (Cocos nucifera L.). The pericarp showed excellent impact characteristics, and mechanical tests of its individual components revealed gradients in stiffness, strength and elongation at break from the outer to the inner layer of the pericarp. In order to understand more about the potential effect of such gradients on 'bulk' material properties, we designed simple, graded, cellulose fibre-reinforced polylactide (PLA) composites by stacking layers reinforced with fibres of different mechanical properties. Tensile properties of the graded composites were largely determined by the 'weakest' fibre, irrespective of the fibre distribution. However, a graded design led to pronounced asymmetric bending and impact properties. Bio-inspired, asymmetrically graded composites showed a flexural strength and modulus comparable to that of the strongest reference samples, but the elongation at maximum load was dependent on the specimen orientation. The impact strength of the graded composites showed a similar orientation-dependence, and peak values exceeded the impact strength of a non-graded reference composite containing identical fibre fractions by up to a factor of three. In combination, our results show that an asymmetric, systematic variation of fibre properties can successfully combine desirable properties of different fibre types, suggesting new routes for the development of high-performance composites, and improving our understanding of the structure-function relationship of the coconut pericarp.

  18. Autonomic composite hydrogels by reactive printing: materials and oscillatory response.

    PubMed

    Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A

    2014-03-07

    Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).

  19. The notion of a plastic material spin in atomistic simulations

    NASA Astrophysics Data System (ADS)

    Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.

    2016-12-01

    A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.

  20. Band Gap Tuning in 2D Layered Materials by Angular Rotation.

    PubMed

    Polanco-Gonzalez, Javier; Carranco-Rodríguez, Jesús Alfredo; Enríquez-Carrejo, José L; Mani-Gonzalez, Pierre G; Domínguez-Esquivel, José Manuel; Ramos, Manuel

    2017-02-08

    We present a series of computer-assisted high-resolution transmission electron (HRTEM) simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using density functional methods (DFT) methods was completed using Cambridge serial total energy package (CASTEP) with a generalized gradient approximation to determine both the band structure and density of states on honeycomb-like new superlattices. Our results indicated metallic transitions when the rotation approached 8° with respect to each other laminates for most of the two-dimensional systems that were analyzed.

  1. Band Gap Tuning in 2D Layered Materials by Angular Rotation

    PubMed Central

    Polanco-Gonzalez, Javier; Carranco-Rodríguez, Jesús Alfredo; Enríquez-Carrejo, José L.; Mani-Gonzalez, Pierre G.; Domínguez-Esquivel, José Manuel; Ramos, Manuel

    2017-01-01

    We present a series of computer-assisted high-resolution transmission electron (HRTEM) simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using density functional methods (DFT) methods was completed using Cambridge serial total energy package (CASTEP) with a generalized gradient approximation to determine both the band structure and density of states on honeycomb-like new superlattices. Our results indicated metallic transitions when the rotation approached 8° with respect to each other laminates for most of the two-dimensional systems that were analyzed. PMID:28772507

  2. NASA-UVa light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Scully, John R.; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.

    1991-01-01

    The general objective of the NASA-UVa Light Aerospace Alloy and Structures Technology Program was to conduct research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. The following research areas were actively investigated: (1) mechanical and environmental degradation mechanisms in advanced light metals and composites; (2) aerospace materials science; (3) mechanics of materials and composites for aerospace structures; and (4) thermal gradient structures.

  3. Coupling of order parameters, chirality, and interfacial structures in multiferroic materials.

    PubMed

    Conti, Sergio; Müller, Stefan; Poliakovsky, Arkady; Salje, Ekhard K H

    2011-04-13

    We study optimal interfacial structures in multiferroic materials with a biquadratic coupling between two order parameters. We discover a new duality relation between the strong coupling and the weak coupling regime for the case of isotropic gradient terms. We analyze the phase diagram depending on the coupling constant and anisotropy of the gradient term, and show that in a certain regime the secondary order parameter becomes activated only in the interfacial region.

  4. Correlating the internal length in strain gradient plasticity theory with the microstructure of material

    NASA Astrophysics Data System (ADS)

    Zhao, Jianfeng; Zhang, Xu; Konstantinidis, Avraam A.; Kang, Guozheng

    2015-06-01

    The internal length is the governing parameter in strain gradient theories which among other things have been used successfully to interpret size effects at the microscale. Physically, the internal length is supposed to be related with the microstructure of the material and evolves during the deformation. Based on Taylor hardening law, we propose a power-law relationship to describe the evolution of the variable internal length with strain. Then, the classical Fleck-Hutchinson strain gradient theory is extended with a strain-dependent internal length, and the generalized Fleck-Hutchinson theory is confirmed here, by comparing our model predictions to recent experimental data on tension and torsion of thin wires with varying diameter and grain size. Our work suggests that the internal length is a configuration-dependent parameter, closely related to dislocation characteristics and grain size, as well as sample geometry when this affects either the underlying microstructure or the ductility of the material.

  5. Effects of temperature distribution and elastic properties of materials on gas-turbine-disk stresses

    NASA Technical Reports Server (NTRS)

    Holms, Arthur G; Faldetta, Richard D

    1947-01-01

    Calculations were made to determine the influence of changes in temperature distribution and in elastic material properties on calculated elastic stresses for a typical gas-turbine disk. Severe temperature gradients caused thermal stresses of sufficient magnitude to reduce the operating safety of the disk. Small temperature gradients were found to be desirable because they produced thermal stresses that subtracted from the centrifugal stresses in the region of the rim. The thermal gradients produced a tendency for a severe stress condition to exist near the rim but this stress condition could be shifted away from the region of blade attachment by altering the temperature distribution. The investigation of elastic material properties showed that centrifugal stresses are slightly affected by changes in modulus of elasticity, but that thermal stresses are approximately proportional to modulus of elasticity and to coefficient of thermal expansion.

  6. Temperature and Voltage Offsets in High- ZT Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Levy, George S.

    2018-06-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high- ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/ n + and p/ p + junctions, selecting appropriate dimensions, doping, and loading.

  7. Temperature and Voltage Offsets in High-ZT Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Levy, George S.

    2017-10-01

    Thermodynamic temperature can take on different meanings. Kinetic temperature is an expectation value and a function of the kinetic energy distribution. Statistical temperature is a parameter of the distribution. Kinetic temperature and statistical temperature, identical in Maxwell-Boltzmann statistics, can differ in other statistics such as those of Fermi-Dirac or Bose-Einstein when a field is present. Thermal equilibrium corresponds to zero statistical temperature gradient, not zero kinetic temperature gradient. Since heat carriers in thermoelectrics are fermions, the difference between these two temperatures may explain voltage and temperature offsets observed during meticulous Seebeck measurements in which the temperature-voltage curve does not go through the origin. In conventional semiconductors, temperature offsets produced by fermionic electrical carriers are not observable because they are shorted by heat phonons in the lattice. In high-ZT materials, however, these offsets have been detected but attributed to faulty laboratory procedures. Additional supporting evidence for spontaneous voltages and temperature gradients includes data collected in epistatic experiments and in the plasma Q-machine. Device fabrication guidelines for testing the hypothesis are suggested including using unipolar junctions stacked in a superlattice, alternating n/n + and p/p + junctions, selecting appropriate dimensions, doping, and loading.

  8. Study on the properties of infrared wavefront coding athermal system under several typical temperature gradient distributions

    NASA Astrophysics Data System (ADS)

    Cai, Huai-yu; Dong, Xiao-tong; Zhu, Meng; Huang, Zhan-hua

    2018-01-01

    Wavefront coding for athermal technique can effectively ensure the stability of the optical system imaging in large temperature range, as well as the advantages of compact structure and low cost. Using simulation method to analyze the properties such as PSF and MTF of wavefront coding athermal system under several typical temperature gradient distributions has directive function to characterize the working state of non-ideal temperature environment, and can effectively realize the system design indicators as well. In this paper, we utilize the interoperability of data between Solidworks and ZEMAX to simplify the traditional process of structure/thermal/optical integrated analysis. Besides, we design and build the optical model and corresponding mechanical model of the infrared imaging wavefront coding athermal system. The axial and radial temperature gradients of different degrees are applied to the whole system by using SolidWorks software, thus the changes of curvature, refractive index and the distance between the lenses are obtained. Then, we import the deformation model to ZEMAX for ray tracing, and obtain the changes of PSF and MTF in optical system. Finally, we discuss and evaluate the consistency of the PSF (MTF) of the wavefront coding athermal system and the image restorability, which provides the basis and reference for the optimal design of the wavefront coding athermal system. The results show that the adaptability of single material infrared wavefront coding athermal system to axial temperature gradient can reach the upper limit of temperature fluctuation of 60°C, which is much higher than that of radial temperature gradient.

  9. High-accuracy phase-field models for brittle fracture based on a new family of degradation functions

    NASA Astrophysics Data System (ADS)

    Sargado, Juan Michael; Keilegavlen, Eirik; Berre, Inga; Nordbotten, Jan Martin

    2018-02-01

    Phase-field approaches to fracture based on energy minimization principles have been rapidly gaining popularity in recent years, and are particularly well-suited for simulating crack initiation and growth in complex fracture networks. In the phase-field framework, the surface energy associated with crack formation is calculated by evaluating a functional defined in terms of a scalar order parameter and its gradients. These in turn describe the fractures in a diffuse sense following a prescribed regularization length scale. Imposing stationarity of the total energy leads to a coupled system of partial differential equations that enforce stress equilibrium and govern phase-field evolution. These equations are coupled through an energy degradation function that models the loss of stiffness in the bulk material as it undergoes damage. In the present work, we introduce a new parametric family of degradation functions aimed at increasing the accuracy of phase-field models in predicting critical loads associated with crack nucleation as well as the propagation of existing fractures. An additional goal is the preservation of linear elastic response in the bulk material prior to fracture. Through the analysis of several numerical examples, we demonstrate the superiority of the proposed family of functions to the classical quadratic degradation function that is used most often in the literature.

  10. Biomimetic water-collecting materials inspired by nature.

    PubMed

    Zhu, Hai; Guo, Zhiguang; Liu, Weimin

    2016-03-11

    Nowadays, water shortage is a severe issue all over the world, especially in some arid and undeveloped areas. Interestingly, a variety of natural creatures can collect water from fog, which can provide a source of inspiration to develop novel and functional water-collecting materials. Recently, as an increasingly hot research topic, bioinspired materials with the water collection ability have captured vast scientific attention in both practical applications and fundamental research studies. In this review, we summarize the mechanisms of water collection in various natural creatures and present the fabrications, functions, applications, and new developments of bioinspired materials in recent years. The theoretical basis related to the phenomenon of water collection containing wetting behaviors and water droplet transportations is described in the beginning, i.e., the Young's equation, Wenzel model, Cassie model, surface energy gradient model and Laplace pressure equation. Then, the water collection mechanisms of three typical and widely researched natural animals and plants are discussed and their corresponding bioinspired materials are simultaneously detailed, which are cactus, spider, and desert beetles, respectively. This is followed by introducing another eight animals and plants (butterfly, shore birds, wheat awns, green bristlegrass, the Cotula fallax plant, Namib grass, green tree frogs and Australian desert lizards) that are rarely reported, exhibiting water collection properties or similar water droplet transportation. Finally, conclusions and outlook concerning the future development of bioinspired fog-collecting materials are presented.

  11. In vitro cell-mediated immunity after thermal injury is not impaired. Density gradient purification of mononuclear cells is associated with spurious (artifactual) immunosuppression.

    PubMed Central

    Xu, D Z; Deitch, E A; Sittig, K; Qi, L; McDonald, J C

    1988-01-01

    Mononuclear cells isolated by density gradient centrifugation from the peripheral blood of burn patients, but not healthy volunteers, are contaminated with large numbers of nonmononuclear cells. These contaminating leukocytes could cause artifactual alterations in standard in vitro tests of lymphocyte function. Thus, we compared the in vitro blastogenic response of density gradient purified leukocytes and T-cell purified lymphocytes from 13 burn patients to mitogenic (PHA) and antigenic stimuli. The mitogenic and antigenic response of the patients' density gradient purified leukocytes were impaired compared to healthy volunteers (p less than 0.01). However, when the contaminating nonlymphocytes were removed, the patients' cells responded normally to both stimuli. Thus, density gradient purified mononuclear cells from burn patients are contaminated by leukocytes that are not phenotypically or functionally lymphocytes. Since the lymphocytes from burn patients respond normally to PHA and alloantigens after the contaminating nonlymphocyte cell population has been removed, it appears that in vitro assays of lymphocyte function using density gradient purified leukocytes may give spurious results. PMID:2973771

  12. Generating multiplex gradients of biomolecules for controlling cellular adhesion in parallel microfluidic channels.

    PubMed

    Didar, Tohid Fatanat; Tabrizian, Maryam

    2012-11-07

    Here we present a microfluidic platform to generate multiplex gradients of biomolecules within parallel microfluidic channels, in which a range of multiplex concentration gradients with different profile shapes are simultaneously produced. Nonlinear polynomial gradients were also generated using this device. The gradient generation principle is based on implementing parrallel channels with each providing a different hydrodynamic resistance. The generated biomolecule gradients were then covalently functionalized onto the microchannel surfaces. Surface gradients along the channel width were a result of covalent attachments of biomolecules to the surface, which remained functional under high shear stresses (50 dyn/cm(2)). An IgG antibody conjugated to three different fluorescence dyes (FITC, Cy5 and Cy3) was used to demonstrate the resulting multiplex concentration gradients of biomolecules. The device enabled generation of gradients with up to three different biomolecules in each channel with varying concentration profiles. We were also able to produce 2-dimensional gradients in which biomolecules were distributed along the length and width of the channel. To demonstrate the applicability of the developed design, three different multiplex concentration gradients of REDV and KRSR peptides were patterned along the width of three parallel channels and adhesion of primary human umbilical vein endothelial cell (HUVEC) in each channel was subsequently investigated using a single chip.

  13. LDRD final report on light-powered nanovehicles.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelnutt, John Allen; van Swol, Frank B.; Miller, James Edward

    2003-11-01

    We have investigated the possibility of constructing nanoscale metallic vehicles powered by biological motors or flagella that are activated and powered by visible light. The vehicle's body is to be composed of the surfactant bilayer of a liposome coated with metallic nanoparticles or nanosheets grown together into a porous single crystal. The diameter of the rigid metal vesicles is from about 50 nm to microns. Illumination with visible light activates a photosynthetic system in the bilayer that can generate a pH gradient across the liposomal membrane. The proton gradient can fuel a molecular motor that is incorporated into the membrane.more » Some molecular motors require ATP to fuel active transport. The protein ATP synthase, when embedded in the membrane, will use the pH gradient across the membrane to produce ATP from ADP and inorganic phosphate. The nanoscale vehicle is thus composed of both natural biological components (ATPase, flagellum; actin-myosin, kinesin-microtubules) and biomimetic components (metal vehicle casing, photosynthetic membrane) as functional units. Only light and storable ADP, phosphate, water, and weak electron donor are required fuel components. These nano-vehicles are being constructed by self-assembly and photocatalytic and autocatalytic reactions. The nano-vehicles can potentially respond to chemical gradients and other factors such as light intensity and field gradients, in a manner similar to the way that magnetic bacteria navigate. The delivery package might include decision-making and guidance components, drugs or other biological and chemical agents, explosives, catalytic reactors, and structural materials. We expected in one year to be able only to assess the problems and major issues at each stage of construction of the vehicle and the likely success of fabricating viable nanovehicles with our biomimetic photocatalytic approach. Surprisingly, we have been able to demonstrate that metallized photosynthetic liposomes can indeed be made. We have completed the synthesis of metallized liposomes with photosynthetic function included and studied these structures by electron microscopy. Both platinum and palladium nanosheeting have been used to coat the micelles. The stability of the vehicles to mechanical stress and the solution environment is enhanced by the single-crystalline platinum or palladium coating on the vesicle. With analogous platinized micelles, it is possible to dry the vehicles and re-suspend them with full functionality. However, with the liposomes drying on a TEM grid may cause the platinized liposomes to collapse, although probably stay viable in solution. It remains to be shown whether a proton motive force across the metallized bilayer membrane can be generated and whether we will also be able to incorporate various functional capabilities including ATP synthesis and functional molecular motors. Future tasks to complete the nanovehicles would be the incorporation of ATP synthase into metallized liposomes and the incorporation of a molecular motor into metallized liposomes.« less

  14. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  15. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems

    PubMed Central

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-01-01

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined. PMID:28773696

  16. A 3D Lattice Modelling Study of Drying Shrinkage Damage in Concrete Repair Systems.

    PubMed

    Luković, Mladena; Šavija, Branko; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2016-07-14

    Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined.

  17. Design strategies of sea urchin teeth: structure, composition and micromechanical relations to function.

    PubMed

    Wang, R Z; Addadi, L; Weiner, S

    1997-04-29

    The teeth of sea urchins comprise a variety of different structural entities, all of which are composed of magnesium-bearing calcite together with a small amount of organic material. The teeth are worn down continuously, but in such a way that they remain sharp and functional. Here we describe aspects of the structural, compositional and micromechanical properties of the teeth of Paracentrotus lividus using scanning electron microscopy, infrared spectrometry, atomic absorption. X-ray diffraction and microindentation. The S-shaped single crystalline calcitic fibres are one of the main structural elements of the tooth. They extend from the stone part to the keel. The diameter of the fibres increases gradually from less than 1 micron at the stone tip to about 20 microns at the keel end, while their MgCO3 contents decrease from about 13 mol% to about 4.5 mol%. Each fibre is coated by a thin organic sheath and surrounded by polycrystalline calcitic discs containing as much as 35 mol% MgCO3. This structure constitutes a unique kind of gradient fibre-reinforced ceramic matrix composite, whose microhardness and toughness decrease gradually from the stone part to the keel. Primary plates are also important structural elements of the tooth. Each primary plate has a very unusual sandwich-like structure with a calcitic envelope surrounding a thin apparently amorphous CaCO3 layer. This central layer, together with the primary plate/disc interface, improves the toughness of this zone by stopping and blunting cracks. The self-sharpening function of the teeth is believed to result from the combination of the geometrical shape of the main structural elements and their spatial arrangement, the interfacial strength between structural elements, and the hardness gradient extending from the working stone part to the surrounding zones. The sea urchin tooth structure possesses an array of interesting functional design features, some of which may possibly be applicable to materials science.

  18. Numerical Study on Density Gradient Carbon-Carbon Composite for Vertical Launching System

    NASA Astrophysics Data System (ADS)

    Yoon, Jin-Young; Kim, Chun-Gon; Lim, Juhwan

    2018-04-01

    This study presents new carbon-carbon (C/C) composite that has a density gradient within single material, and estimates its heat conduction performance by a numerical method. To address the high heat conduction of a high-density C/C, which can cause adhesion separation in the steel structures of vertical launching systems, density gradient carbon-carbon (DGCC) composite is proposed due to its exhibiting low thermal conductivity as well as excellent ablative resistance. DGCC is manufactured by hybridizing two different carbonization processes into a single carbon preform. One part exhibits a low density using phenolic resin carbonization to reduce heat conduction, and the other exhibits a high density using thermal gradient-chemical vapor infiltration for excellent ablative resistance. Numerical analysis for DGCC is performed with a heat conduction problem, and internal temperature distributions are estimated by the forward finite difference method. Material properties of the transition density layer, which is inevitably formed during DGCC manufacturing, are assumed to a combination of two density layers for numerical analysis. By comparing numerical results with experimental data, we validate that DGCC exhibits a low thermal conductivity, and it can serve as highly effective ablative material for vertical launching systems.

  19. Thermoelastic Theory for the Response of Materials Functionally Graded in Two Directions with Applications to the Free-Edge Problem

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1995-01-01

    A recently developed micromechanical theory for the thermoelastic response of functionally graded composites with nonuniform fiber spacing in the through-thickness direction is further extended to enable analysis of material architectures characterized by arbitrarily nonuniform fiber spacing in two directions. In contrast to currently employed micromechanical approaches applied to functionally graded materials, which decouple the local and global effects by assuming the existence of a representative volume element at every point within the composite, the new theory explicitly couples the local and global effects. The analytical development is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense. Results are presented that illustrate the capability of the derived theory to capture local stress gradients at the free edge of a laminated composite plate due to the application of a uniform temperature change. It is further shown that it is possible to reduce the magnitude of these stress concentrations by a proper management of the microstructure of the composite plies near the free edge. Thus by an appropriate tailoring of the microstructure it is possible to reduce or prevent the likelihood of delamination at free edges of standard composite laminates.

  20. Synthesis of functional ceramic supports by ice templating and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klotz, Michaela; Weber, Matthieu; Deville, Sylvain; Oison, Didier; Iatsunskyi, Igor; Coy, Emerson; Bechelany, Mikhael

    2018-05-01

    In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ) and atomic layer deposition (ALD) of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  1. Subpixel edge estimation with lens aberrations compensation based on the iterative image approximation for high-precision thermal expansion measurements of solids

    NASA Astrophysics Data System (ADS)

    Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.; Kompan, T. A.; Kondratjev, S. V.; Korenev, A. S.; Pukhov, N. F.

    2017-06-01

    A new method for precise subpixel edge estimation is presented. The principle of the method is the iterative image approximation in 2D with subpixel accuracy until the appropriate simulated is found, matching the simulated and acquired images. A numerical image model is presented consisting of three parts: an edge model, object and background brightness distribution model, lens aberrations model including diffraction. The optimal values of model parameters are determined by means of conjugate-gradient numerical optimization of a merit function corresponding to the L2 distance between acquired and simulated images. Computationally-effective procedure for the merit function calculation along with sufficient gradient approximation is described. Subpixel-accuracy image simulation is performed in a Fourier domain with theoretically unlimited precision of edge points location. The method is capable of compensating lens aberrations and obtaining the edge information with increased resolution. Experimental method verification with digital micromirror device applied to physically simulate an object with known edge geometry is shown. Experimental results for various high-temperature materials within the temperature range of 1000°C..2400°C are presented.

  2. Butterfly gyroid nanostructures as a time-frozen glimpse of intracellular membrane development

    PubMed Central

    Wilts, Bodo D.; Apeleo Zubiri, Benjamin; Klatt, Michael A.; Butz, Benjamin; Fischer, Michael G.; Kelly, Stephen T.; Spiecker, Erdmann; Steiner, Ullrich; Schröder-Turk, Gerd E.

    2017-01-01

    The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. It is hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. However, this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or sequential processes, cannot yet be elucidated by in vivo imaging. We report an unusual hierarchical ultrastructure in the butterfly Thecla opisena that, as a solid material, allows high-resolution three-dimensional microscopy. Rather than the conventional polycrystalline space-filling arrangement, a gyroid occurs in isolated facetted crystallites with a pronounced size gradient. When interpreted as a sequence of time-frozen snapshots of the morphogenesis, this arrangement provides insight into the formation mechanisms of the nanoporous gyroid material as well as of the intracellular organelle membrane that acts as the template. PMID:28508050

  3. Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices.

    PubMed

    Consolati, Tanja; Bolivar, Juan M; Petrasek, Zdenek; Berenguer, Jose; Hidalgo, Aurelio; Guisán, Jose M; Nidetzky, Bernd

    2018-02-28

    The pH is fundamental to biological function and its measurement therefore crucial across all biosciences. Unlike homogenous bulk solution, solids often feature internal pH gradients due to partition effects and confined biochemical reactions. Thus, a full spatiotemporal mapping for pH characterization in solid materials with biological systems embedded in them is essential. In here, therefore, a fully biocompatible methodology for real-time optical sensing of pH within porous materials is presented. A genetically encoded ratiometric pH sensor, the enhanced superfolder yellow fluorescent protein (sYFP), is used to functionalize the internal surface of different materials, including natural and synthetic organic polymers as well as silica frameworks. By using controlled, tailor-made immobilization, sYFP is homogenously distributed within these materials and so enables, via self-referenced imaging analysis, pH measurements in high accuracy and with useful spatiotemporal resolution. Evolution of internal pH is monitored in consequence of a proton-releasing enzymatic reaction, the hydrolysis of penicillin by a penicillin acylase, taking place in solution or confined to the solid surface of the porous matrix. Unlike optochemical pH sensors, which often interfere with biological function, labeling with sYFP enables pH sensing without altering the immobilized enzyme's properties in any of the materials used. Fast response of sYFP to pH change permits evaluation of biochemical kinetics within the solid materials. Thus, pH sensing based on immobilized sYFP represents a broadly applicable technique to the study of biology confined to the internally heterogeneous environment of solid matrices.

  4. Generalized Wall Function for Complex Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Chen, Kuo-Huey

    2000-01-01

    A generalized wall function was proposed by Shih et al., (1999). It accounts the effect of pressure gradients on the flow near the wall. Theory shows that the effect of pressure gradients on the flow in the inertial sublayer is very significant and the standard wall function should be replaced by a generalized wall function. Since the theory is also valid for boundary layer flows toward separation, the generalized wall function may be applied to complex turbulent flows with acceleration, deceleration, separation and recirculation. This paper is to verify the generalized wall function with numerical simulations for boundary layer flows with various adverse and favorable pressure gradients, including flows about to separate. Furthermore, a general procedure of implementation of the generalized wall function for National Combustion Code (NCC) is described, it can be applied to both structured and unstructured CFD codes.

  5. Resistance to forced airflow through layers of composting organic material.

    PubMed

    Teixeira, Denis Leocádio; de Matos, Antonio Teixeira; Melo, Evandro de Castro

    2015-02-01

    The objective of this study was to adjust equations to estimate the static pressure gradient of airflow through layers of organic residues submitted to two stages of biochemical degradation, and to evaluate the static pressure drop of airflow thought the material layer. Measurements of static pressure drop in the layers of sugarcane bagasse and coffee husks mixed with poultry litter on day 0 and after 30 days of composting were performed using a prototype with specific airflow rates ranging from 0.02 to 0.13 m(3) s(-1) m(-2). Static pressure gradient and specific airflow rate data were properly fit to the Shedd, Hukill & Ives and Ergun models, which may be used to predict the static pressure gradient of air to be blown through the organic residue layers. However, the Shedd model was that which best represented the phenomenon studied. The static pressure drop of airflow increased as a power of the material layer thickness and showed tendency for decreasing with the biochemical degradation time of the organic material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.

    PubMed

    Li, Yiwei; Feng, Xiaojun; Wang, Yachao; Du, Wei; Chen, Peng; Liu, Chao; Liu, Bi-Feng

    2015-08-07

    Active control over the cell gradient is essential for understanding biological systems and the reconstitution of the functionality of many types of tissues, particularly for organ-on-a-chip. Here, we propose a three-dimensional (3D) microfluidic strategy for generating controllable cell gradients. In this approach, a homogeneous cell suspension is loaded into a 3D stair-shaped PDMS microchannel to generate a cell gradient within 10 min by sedimentation. We demonstrate that cell gradients of various profiles (exponential and piecewise linear) can be achieved by precisely controlling the height of each layer during the fabrication. With sequential seeding, we further demonstrate the generation of two overlapping cell gradients on the same glass substrate with pre-defined designs. The cell gradient-based QD cytotoxicity assay also demonstrated that cell behaviors and resistances were regulated by the changes in cell density. These results reveal that the proposed 3D microfluidic strategy provides a simple and versatile means for establishing controllable gradients in cell density, opening up a new avenue for reconstructing functional tissues.

  7. Morphogengineering roots: comparing mechanisms of morphogen gradient formation

    PubMed Central

    2012-01-01

    Background In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. Results We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. Conclusions We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism. PMID:22583698

  8. Towards an Optimal Gradient-dependent Energy Functional of the PZ-SIC Form

    DOE PAGES

    Jónsson, Elvar Örn; Lehtola, Susi; Jónsson, Hannes

    2015-06-01

    Results of Perdew–Zunger self-interaction corrected (PZ-SIC) density functional theory calculations of the atomization energy of 35 molecules are compared to those of high-level quantum chemistry calculations. While the PBE functional, which is commonly used in calculations of condensed matter, is known to predict on average too high atomization energy (overbinding of the molecules), the application of PZ-SIC gives a large overcorrection and leads to significant underestimation of the atomization energy. The exchange enhancement factor that is optimal for the generalized gradient approximation within the Kohn-Sham (KS) approach may not be optimal for the self-interaction corrected functional. The PBEsol functional, wheremore » the exchange enhancement factor was optimized for solids, gives poor results for molecules in KS but turns out to work better than PBE in PZ-SIC calculations. The exchange enhancement is weaker in PBEsol and the functional is closer to the local density approximation. Furthermore, the drop in the exchange enhancement factor for increasing reduced gradient in the PW91 functional gives more accurate results than the plateaued enhancement in the PBE functional. A step towards an optimal exchange enhancement factor for a gradient dependent functional of the PZ-SIC form is taken by constructing an exchange enhancement factor that mimics PBEsol for small values of the reduced gradient, and PW91 for large values. The average atomization energy is then in closer agreement with the high-level quantum chemistry calculations, but the variance is still large, the F 2 molecule being a notable outlier.« less

  9. Limited-memory trust-region methods for sparse relaxation

    NASA Astrophysics Data System (ADS)

    Adhikari, Lasith; DeGuchy, Omar; Erway, Jennifer B.; Lockhart, Shelby; Marcia, Roummel F.

    2017-08-01

    In this paper, we solve the l2-l1 sparse recovery problem by transforming the objective function of this problem into an unconstrained differentiable function and applying a limited-memory trust-region method. Unlike gradient projection-type methods, which uses only the current gradient, our approach uses gradients from previous iterations to obtain a more accurate Hessian approximation. Numerical experiments show that our proposed approach eliminates spurious solutions more effectively while improving computational time.

  10. Variation of alluvial-channel width with discharge and character of sediment

    USGS Publications Warehouse

    Osterkamp, W.R.

    1979-01-01

    Use of channel measurements to estimate discharge characteristics of alluvial streams has shown that little agreement exists for the exponent of the width-discharge relation. For the equation Q = aWAb, where Q is mean discharge and WA is active-channel width, it is proposed that the exponent, b, should be of fixed value for most natural, perennial, alluvial stream channels and that the coefficient, a, varies with the characteristics of the bed and bank material.Three groups of perennial stream channels with differing characteristics were selected for study using consistent procedures of data collection. A common feature of the groups was general channel stability, that is, absence of excessive widening by erosive discharges. Group 1 consisted of 32 channels of gradient exceeding 0.0080, low suspended-sediment discharge, high channel roughness, and low discharge variability. Group 2 consisted of 13 streams in Kansas having at least 70 percent silt and clay in the bed material and having similar discharge variability, climate, gradient, and riparian vegetation. Group 3, in southern Missouri, consisted of discharge channels of 18 springs having similar conditions of very low discharge variability, climate and vegetation, but variable bed and bank material. Values for the exponent for the three groups of data are 1.98, 1.97, and 1.97, respectively, whereas values of the coefficients are 0.017, 0.042, and 0.011 when discharge is expressed in cubic meters per second and width is in meters. The relation for high-gradient channels (group 1) is supported by published data from laboratory flumes.The similarity of the three values of the exponent demonstrates that a standard exponent of 2.0, significant to two figures, is reasonable for the width-mean discharge relation of perennial, alluvial stream channels, and that the exponent is independent of other variables. Using a fixed exponent of 2.0, a family of simple power-function equations was developed expressing the manner in which channel sediment affects the width-discharge relation.

  11. A Single-Lap Joint Adhesive Bonding Optimization Method Using Gradient and Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Finckenor, Jeffrey L.

    1999-01-01

    A natural process for any engineer, scientist, educator, etc. is to seek the most efficient method for accomplishing a given task. In the case of structural design, an area that has a significant impact on the structural efficiency is joint design. Unless the structure is machined from a solid block of material, the individual components which compose the overall structure must be joined together. The method for joining a structure varies depending on the applied loads, material, assembly and disassembly requirements, service life, environment, etc. Using both metallic and fiber reinforced plastic materials limits the user to two methods or a combination of these methods for joining the components into one structure. The first is mechanical fastening and the second is adhesive bonding. Mechanical fastening is by far the most popular joining technique; however, in terms of structural efficiency, adhesive bonding provides a superior joint since the load is distributed uniformly across the joint. The purpose of this paper is to develop a method for optimizing single-lap joint adhesive bonded structures using both gradient and genetic algorithms and comparing the solution process for each method. The goal of the single-lap joint optimization is to find the most efficient structure that meets the imposed requirements while still remaining as lightweight, economical, and reliable as possible. For the single-lap joint, an optimum joint is determined by minimizing the weight of the overall joint based on constraints from adhesive strengths as well as empirically derived rules. The analytical solution of the sin-le-lap joint is determined using the classical Goland-Reissner technique for case 2 type adhesive joints. Joint weight minimization is achieved using a commercially available routine, Design Optimization Tool (DOT), for the gradient solution while an author developed method is used for the genetic algorithm solution. Results illustrate the critical design variables as a function of adhesive properties and convergences of different joints based on the two optimization methods.

  12. The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bykov, Dmytro; Kristensen, Kasper; Kjærgaard, Thomas

    We report an implementation of the molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory (DEC-RI-MP2). The new DEC-RI-MP2 gradient method combines the precision control as well as the linear-scaling and massively parallel features of the DEC scheme with efficient evaluations of the gradient contributions using the RI approximation. We further demonstrate that the DEC-RI-MP2 gradient method is capable of calculating molecular gradients for very large molecular systems. A test set of supramolecular complexes containing up to 158 atoms and 1960 contracted basis functions has been employed to demonstrate the general applicability of the DEC-RI-MP2 methodmore » and to analyze the errors of the DEC approximation. Moreover, the test set contains molecules of complicated electronic structures and is thus deliberately chosen to stress test the DEC-RI-MP2 gradient implementation. Additionally, as a showcase example the full molecular gradient for insulin (787 atoms and 7604 contracted basis functions) has been evaluated.« less

  13. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme.

    PubMed

    Li, Shaohong L; Truhlar, Donald G

    2015-07-14

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations and atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.

  14. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shaohong L.; Truhlar, Donald G.

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  15. Improving Rydberg Excitations within Time-Dependent Density Functional Theory with Generalized Gradient Approximations: The Exchange-Enhancement-for-Large-Gradient Scheme

    DOE PAGES

    Li, Shaohong L.; Truhlar, Donald G.

    2015-05-22

    Time-dependent density functional theory (TDDFT) with conventional local and hybrid functionals such as the local and hybrid generalized gradient approximations (GGA) seriously underestimates the excitation energies of Rydberg states, which limits its usefulness for applications such as spectroscopy and photochemistry. We present here a scheme that modifies the exchange-enhancement factor to improve GGA functionals for Rydberg excitations within the TDDFT framework while retaining their accuracy for valence excitations and for the thermochemical energetics calculated by ground-state density functional theory. The scheme is applied to a popular hybrid GGA functional and tested on data sets of valence and Rydberg excitations andmore » atomization energies, and the results are encouraging. The scheme is simple and flexible. It can be used to correct existing functionals, and it can also be used as a strategy for the development of new functionals.« less

  16. Structural kinematics based damage zone prediction in gradient structures using vibration database

    NASA Astrophysics Data System (ADS)

    Talha, Mohammad; Ashokkumar, Chimpalthradi R.

    2014-05-01

    To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.

  17. FP-LAPW calculations of the elastic, electronic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankar, A., E-mail: amitshan2009@gmail.com; Rai, D.P.; Chettri, Sandeep

    2016-08-15

    We have investigated the electronic structure, elastic and thermoelectric properties of the filled skutterudite CeRu{sub 4}Sb{sub 12} using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) approach is used to perform the calculations presented here. The electronic structure calculation suggests an indirect band gap semiconducting nature of the material with energy band gap of 0.08 eV. The analysis of the elastic constants at relaxed positions reveals the ductile nature of the sample material with covalent contribution in the inter-atomic bonding. The narrow band gap semiconductingmore » nature with high value of Seebeck coefficient suggests the possibility of the thermoelectric application of the material. The analysis of the thermal transport properties confirms the result obtained from the energy band structure of the material with high thermopower and dimensionless figure of merit 0.19 at room temperature.« less

  18. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    NASA Astrophysics Data System (ADS)

    Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.

    2018-03-01

    Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

  19. A theoretical and practical clarification on the calculation of reflection loss for microwave absorbing materials

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhao, Kun; Drew, Michael G. B.; Liu, Yue

    2018-01-01

    Reflection loss is usually calculated and reported as a function of the thickness of microwave absorption material. However, misleading results are often obtained since the principles imbedded in the popular methods contradict the fundamental facts that electromagnetic waves cannot be reflected in a uniform material except when there is an interface and that there are important differences between the concepts of characteristic impedance and input impedance. In this paper, these inconsistencies have been analyzed theoretically and corrections provided. The problems with the calculations indicate a gap between the background knowledge of material scientists and microwave engineers and for that reason a concise review of transmission line theory is provided along with the mathematical background needed for a deeper understanding of the theory of reflection loss. The expressions of gradient, divergence, Laplacian, and curl operators in a general orthogonal coordinate system have been presented including the concept of reciprocal vectors. Gauss's and Stokes's theorems have been related to Green's theorem in a novel way.

  20. Plasma-assisted interface engineering of boron nitride nanostructure films.

    PubMed

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-10-28

    Today many aspects of science and technology are progressing into the nanoscale realm where surfaces and interfaces are intrinsically important in determining properties and performances of materials and devices. One familiar phenomenon in which interfacial interactions play a major role is the wetting of solids. In this work we use a facile one-step plasma method to control the wettability of boron nitride (BN) nanostructure films via covalent chemical functionalization, while their surface morphology remains intact. By tailoring the concentration of grafted hydroxyl groups, superhydrophilic, hydrophilic, and hydrophobic patterns are created on the initially superhydrophobic BN nanosheet and nanotube films. Moreover, by introducing a gradient of the functional groups, directional liquid spreading toward increasing [OH] content is achieved on the films. The resulting insights are meant to illustrate great potentials of this method to tailor wettability of ceramic films, control liquid flow patterns for engineering applications such as microfluidics and biosensing, and improve the interfacial contact and adhesion in nanocomposite materials.

  1. First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4

    NASA Astrophysics Data System (ADS)

    Khan, Amin; Ali, Zahid; Khan, Imad; Ahmad, Iftikhar

    2018-03-01

    Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke-Johnson, and spin-orbit coupling (GGA-SOC) exchange-correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.

  2. Quantifying confidence in density functional theory predictions of magnetic ground states

    NASA Astrophysics Data System (ADS)

    Houchins, Gregory; Viswanathan, Venkatasubramanian

    2017-10-01

    Density functional theory (DFT) simulations, at the generalized gradient approximation (GGA) level, are being routinely used for material discovery based on high-throughput descriptor-based searches. The success of descriptor-based material design relies on eliminating bad candidates and keeping good candidates for further investigation. While DFT has been widely successfully for the former, oftentimes good candidates are lost due to the uncertainty associated with the DFT-predicted material properties. Uncertainty associated with DFT predictions has gained prominence and has led to the development of exchange correlation functionals that have built-in error estimation capability. In this work, we demonstrate the use of built-in error estimation capabilities within the BEEF-vdW exchange correlation functional for quantifying the uncertainty associated with the magnetic ground state of solids. We demonstrate this approach by calculating the uncertainty estimate for the energy difference between the different magnetic states of solids and compare them against a range of GGA exchange correlation functionals as is done in many first-principles calculations of materials. We show that this estimate reasonably bounds the range of values obtained with the different GGA functionals. The estimate is determined as a postprocessing step and thus provides a computationally robust and systematic approach to estimating uncertainty associated with predictions of magnetic ground states. We define a confidence value (c-value) that incorporates all calculated magnetic states in order to quantify the concurrence of the prediction at the GGA level and argue that predictions of magnetic ground states from GGA level DFT is incomplete without an accompanying c-value. We demonstrate the utility of this method using a case study of Li-ion and Na-ion cathode materials and the c-value metric correctly identifies that GGA-level DFT will have low predictability for NaFePO4F . Further, there needs to be a systematic test of a collection of plausible magnetic states, especially in identifying antiferromagnetic (AFM) ground states. We believe that our approach of estimating uncertainty can be readily incorporated into all high-throughput computational material discovery efforts and this will lead to a dramatic increase in the likelihood of finding good candidate materials.

  3. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  4. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  5. A Novel Gradient Vector Flow Snake Model Based on Convex Function for Infrared Image Segmentation

    PubMed Central

    Zhang, Rui; Zhu, Shiping; Zhou, Qin

    2016-01-01

    Infrared image segmentation is a challenging topic because infrared images are characterized by high noise, low contrast, and weak edges. Active contour models, especially gradient vector flow, have several advantages in terms of infrared image segmentation. However, the GVF (Gradient Vector Flow) model also has some drawbacks including a dilemma between noise smoothing and weak edge protection, which decrease the effect of infrared image segmentation significantly. In order to solve this problem, we propose a novel generalized gradient vector flow snakes model combining GGVF (Generic Gradient Vector Flow) and NBGVF (Normally Biased Gradient Vector Flow) models. We also adopt a new type of coefficients setting in the form of convex function to improve the ability of protecting weak edges while smoothing noises. Experimental results and comparisons against other methods indicate that our proposed snakes model owns better ability in terms of infrared image segmentation than other snakes models. PMID:27775660

  6. Pressure chamber tests of eustachian tube function document lower efficiency in adults with colds when compared to without colds.

    PubMed

    Doyle, William J; Singla, Alok; Banks, Juliane; El-Wagaa, Jenna; Swarts, J Douglas

    2014-07-01

    Fractional gradient equilibrated (FGE) for ears with applied positive but not negative middle ear (ME)-ambient pressure gradients is highly sensitive to a cold-like illness (CLI). The sequential development of eustachian tube (ET) dysfunction, ME under-pressure, and otitis media (OM) characterizes many children during a CLI. If linked, OM burden would be lessened by interventions that promote/preserve good ET function during a CLI. Evaluating this requires a quantitative ET function test for MEs with an intact tympanic membrane responsive to a CLI. Pressure chamber testing of ET function was performed at +200 and -200 daPa in 3 groups of adults: group I, 21 subjects with an extant CLI and groups II and III, 14 and 57 adults, respectively, without a CLI. ME-chamber pressure gradient was recorded by tympanometry before and after the subject swallowed twice. ET functional efficiency was quantified as the FGE, which was then compared among groups using a Mann-Whitney U test. At chamber pressures of 200 daPa, the ME-chamber pressure gradient was negative, and FGE was low and not different among groups. At chamber pressures of -200 daPa that gradient was positive, and FGE was significantly higher in groups II and III when compared with group I.

  7. Applications of a new wall function to turbulent flow computations

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.

    1986-01-01

    A new wall function approach is developed based on a wall law suitable for incompressible turbulent boundary layers under strong adverse pressure gradients. This wall law was derived from a one-dimensional analysis of the turbulent kinetic energy equation with gradient diffusion concept employed in modeling the near-wall shear stress gradient. Numerical testing cases for the present wall functions include turbulent separating flows around an airfoil and turbulent recirculating flows in several confined regions. Improvements on the predictions using the present wall functions are illustrated. For cases of internal recirculating flows, one modification factor for improving the performance of the k-epsilon turbulence model in the flow recirculation regions is also included.

  8. Diffusion pore imaging with generalized temporal gradient profiles.

    PubMed

    Laun, Frederik B; Kuder, Tristan A

    2013-09-01

    In porous material research, one main interest of nuclear magnetic resonance diffusion (NMR) experiments is the determination of the shape of pores. While it has been a longstanding question if this is in principle achievable, it has been shown recently that it is indeed possible to perform NMR-based diffusion pore imaging. In this work we present a generalization of these previous results. We show that the specific temporal gradient profiles that were used so far are not unique as more general temporal diffusion gradient profiles may be used. These temporal gradient profiles may consist of any number of "short" gradient pulses, which fulfil the short-gradient approximation. Additionally, "long" gradient pulses of small amplitude may be present, which can be used to fulfil the rephasing condition for the complete profile. Some exceptions exist. For example, classical q-space gradients consisting of two short gradient pulses of opposite sign cannot be used as the phase information is lost due to the temporal antisymmetry of this profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Inferring regional vertical crustal velocities from averaged relative sea level trends: A proof of concept

    NASA Astrophysics Data System (ADS)

    Bâki Iz, H.; Shum, C. K.; Zhang, C.; Kuo, C. Y.

    2017-11-01

    We report the design of a high-throughput gradient hyperbolic lenslet built with real-life materials and capable of focusing a beam into a deep sub-wavelength spot of λ/23. This efficient design is achieved through high-order transformation optics and circular effective-medium theory (CEMT), which are used to engineer the radially varying anisotropic artificial material based on the thin alternating cylindrical metal and dielectric layers. The radial gradient of the effective anisotropic optical constants allows for matching the impedances at the input and output interfaces, drastically improving the throughput of the lenslet. However, it is the use of the zeroth-order CEMT that enables the practical realization of a gradient hyperlens with realistic materials. To illustrate the importance of using the CEMT versus the conventional planar effective-medium theory (PEMT) for cylindrical anisotropic systems, such as our hyperlens, both the CEMT and PEMT are adopted to design gradient hyperlenses with the same materials and order of elemental layers. The CEMT- and PEMT-based designs show similar performance if the number of metal-dielectric binary layers is sufficiently large (9+ pairs) and if the layers are sufficiently thin. However, for the manufacturable lenses with realistic numbers of layers (e.g. five pairs) and thicknesses, the performance of the CEMT design continues to be practical, whereas the PEMT-based design stops working altogether. The accurate design of transformation optics-based layered cylindrical devices enabled by CEMT allow for a new class of robustly manufacturable nanophotonic systems, even with relatively thick layers of real-life materials.

  10. Synthesis of Polycrystalline CdSiP2 in a Gradient Temperature Field

    NASA Astrophysics Data System (ADS)

    Bereznaya, S. A.; Korotchenko, Z. V.; Kurasova, A. S.; Sarkisov, S. Yu.; Sarkisov, Yu. S.; Chernyshov, A. I.; Korolkov, I. V.; Kuchumov, B. M.; Saprykin, A. I.; Atuchin, V. V.

    2018-05-01

    A procedure for the synthesis of a CdSiP2 compound from the initial elementary components in a gradient thermal field has been developed. The phase and chemical composition of the synthesized and recrystallized material is confirmed by the data of X-ray diffraction analysis and scanning electron microscopy with an energy-dispersive system. The polycrystalline material obtained by the developed method will be used to grow bulk nonlinear optical CdSiP2 crystals.

  11. Nonseparable exchange–correlation functional for molecules, including homogeneous catalysis involving transition metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Haoyu S.; Zhang, Wenjing; Verma, Pragya

    2015-01-01

    The goal of this work is to develop a gradient approximation to the exchange–correlation functional of Kohn–Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange–correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newlymore » extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange–correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all the key properties needed for molecular catalysis make the GAM functional very promising for future applications.« less

  12. Bending efficiency through property gradients in bamboo, palm, and wood-based composites.

    PubMed

    Wegst, Ulrike G K

    2011-07-01

    Nature, to a greater extent than engineering, takes advantage of hierarchical structures. These allow for optimization at each structural level to achieve mechanical efficiency, meaning mechanical performance per unit mass. Palms and bamboos do this exceptionally well; both are fibre-reinforced cellular materials in which the fibres are aligned parallel to the stem or culm, respectively. The distribution of these fibres is, however, not uniform: there is a density and modulus gradient across the section. This property gradient increases the flexural rigidity of the plants per unit mass, mass being a measure of metabolic investment made into an organism's construction. An analytical model is presented with which a 'gradient shape factor' can be calculated that describes by how much a plant's bending efficiency is increased through gradient structures. Combining the 'gradient shape factor' with a 'microstructural shape factor' that captures the efficiency gained through the cellular nature of the fibre composite's matrix, and a 'macroscopical shape factor' with which the tubular shape of bamboo can be described, for example, it is possible to explore how much each of these three structural levels of the hierarchy contributes to the overall bending performance of the stem or culm. In analogy, the bending efficiency of the commonly used wood-based composite medium-density fibreboard can be analysed; its property gradient is due to its manufacture by hot pressing. A few other engineered materials exist that emulate property gradients; new manufacturing routes to prepare them are currently being explored. It appears worthwhile to pursue these further. Copyright © 2011. Published by Elsevier Ltd.

  13. Bio-microfluidics: biomaterials and biomimetic designs.

    PubMed

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca; Pasini, D.

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and themore » Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.« less

  15. The effects of thermal gradients on the Mars Observer Camera primary mirror

    NASA Technical Reports Server (NTRS)

    Applewhite, Roger W.; Telkamp, Arthur R.

    1992-01-01

    The paper discusses the effect of thermal gradients on the optical performance of the primary mirror of Mars Observer Camera (MOC), which will be launched on the Mars Observer spacecraft in September 1992. It was found that mild temperature gradients can have a large effect on the mirror surface figure, even for relatively low coefficient-of-thermal-expansion materials. However, in the case of the MOC primary mirror, it was found that the radius of curvature (ROC) of the reflective surface of the mirror changed in a nearly linear fashion with the radial temperature gradient, with little additional aberration. A solid-state ROC controller using the thermal gradient effect was implemented and verified.

  16. Performance of the strongly constrained and appropriately normed density functional for solid-state materials

    DOE PAGES

    Isaacs, Eric B.; Wolverton, Chris

    2018-06-22

    Constructed to satisfy 17 known exact constraints for a semilocal density functional, the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient-approximation functional has shown early promise for accurately describing the electronic structure of molecules and solids. One open question is how well SCAN predicts the formation energy, a key quantity for describing the thermodynamic stability of solid-state compounds. To answer this question, we perform an extensive benchmark of SCAN by computing the formation energies for a diverse group of nearly 1000 crystalline compounds for which experimental values are known. Due to an enhanced exchange interaction in the covalent bonding regime, SCANmore » substantially decreases the formation energy errors for strongly bound compounds, by approximately 50% to 110 meV/atom, as compared to the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE). However, for intermetallic compounds, SCAN performs moderately worse than PBE with an increase in formation energy error of approximately 20%, stemming from SCAN's distinct behavior in the weak bonding regime. The formation energy errors can be further reduced via elemental chemical potential fitting. We find that SCAN leads to significantly more accurate predicted crystal volumes, moderately enhanced magnetism, and mildly improved band gaps as compared to PBE. Altogether, SCAN represents a significant improvement in accurately describing the thermodynamics of strongly bound compounds.« less

  17. Performance of the strongly constrained and appropriately normed density functional for solid-state materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, Eric B.; Wolverton, Chris

    Constructed to satisfy 17 known exact constraints for a semilocal density functional, the strongly constrained and appropriately normed (SCAN) meta-generalized-gradient-approximation functional has shown early promise for accurately describing the electronic structure of molecules and solids. One open question is how well SCAN predicts the formation energy, a key quantity for describing the thermodynamic stability of solid-state compounds. To answer this question, we perform an extensive benchmark of SCAN by computing the formation energies for a diverse group of nearly 1000 crystalline compounds for which experimental values are known. Due to an enhanced exchange interaction in the covalent bonding regime, SCANmore » substantially decreases the formation energy errors for strongly bound compounds, by approximately 50% to 110 meV/atom, as compared to the generalized gradient approximation of Perdew, Burke, and Ernzerhof (PBE). However, for intermetallic compounds, SCAN performs moderately worse than PBE with an increase in formation energy error of approximately 20%, stemming from SCAN's distinct behavior in the weak bonding regime. The formation energy errors can be further reduced via elemental chemical potential fitting. We find that SCAN leads to significantly more accurate predicted crystal volumes, moderately enhanced magnetism, and mildly improved band gaps as compared to PBE. Altogether, SCAN represents a significant improvement in accurately describing the thermodynamics of strongly bound compounds.« less

  18. A Simple Temperature Gradient Apparatus To Determine Thermal Preference in "Daphnia."

    ERIC Educational Resources Information Center

    Fenske, Christiane; McCauley, Robert

    2002-01-01

    Explores the dominant factor controlling the distribution of Daphnia. Describes components of a temperature gradient apparatus that can be assembled from materials readily obtainable in the laboratory and hardware stores. Investigates whether the mean depth of Daphnia is determined by temperature. (KHR)

  19. Gradient Tempering Of Bearing Races

    NASA Technical Reports Server (NTRS)

    Parr, Richardson A.

    1991-01-01

    Gradient-tempering process increases fracture toughness and resistance to stress-corrosion cracking of ball-bearing races made of hard, strong steels and subject to high installation stresses and operation in corrosive media. Also used in other applications in which local toughening of high-strength/low-toughness materials required.

  20. A parametric heat transfer study for cryogenic ball bearings in SSME HPOTP

    NASA Technical Reports Server (NTRS)

    Chyu, Mingking K.

    1989-01-01

    A numerical modeling is to examine the effects of coolant convective heat transfer coefficient and frictional heating on the local temperature characteristics of a ball element in Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) bearing. The present modeling uses a control-volume based, finite-difference method to solve the non-dimensionalized heat conduction equation in spherical coordinate system. The dimensionless temperature is found as a function of Biot number, heat flux ratio between the two race contacts, and location in the ball. The current results show that, for a given cooling capability, the ball temperature generally increases almost linearly with the heat input from the race-contacts. This increase is always very high at one of the two contacts. An increase in heat transfer coefficient generally reduces the ball temperature and alleviates the temperature gradient, except for the regions very close to the race contacts. For a 10-fold increase of heat transfer coefficient, temperature decrease is 35 percent for the average over entire ball, and 10 percent at the inner-race contact. The corresponding change of temperature gradient displays opposing trends between the regions immediately adjacent to the contacts and the remaining portion of the ball. The average temperature gradient in the vicinity of both contacts increases approximately 70 to 100 percent. A higher temperature gradient produces excessive thermal stress locally which may be detrimental to the material integrity. This, however, is the only unfavorable issue for an increase of heat transfer coefficient.

  1. Modeling the nitrogen cycle one gene at a time

    NASA Astrophysics Data System (ADS)

    Coles, V.; Stukel, M. R.; Hood, R. R.; Moran, M. A.; Paul, J. H.; Satinsky, B.; Zielinski, B.; Yager, P. L.

    2016-02-01

    Marine ecosystem models are lagging the revolution in microbial oceanography. As a result, modeling of the nitrogen cycle has largely failed to leverage new genomic information on nitrogen cycling pathways and the organisms that mediate them. We developed a nitrogen based ecosystem model whose community is determined by randomly assigning functional genes to build each organism's "DNA". Microbes are assigned a size that sets their baseline environmental responses using allometric response curves. These responses are modified by the costs and benefits conferred by each gene in an organism's genome. The microbes are embedded in a general circulation model where environmental conditions shape the emergent population. This model is used to explore whether organisms constructed from randomized combinations of metabolic capability alone can self-organize to create realistic oceanic biogeochemical gradients. Community size spectra and chlorophyll-a concentrations emerge in the model with reasonable fidelity to observations. The model is run repeatedly with randomly-generated microbial communities and each time realistic gradients in community size spectra, chlorophyll-a, and forms of nitrogen develop. This supports the hypothesis that the metabolic potential of a community rather than the realized species composition is the primary factor setting vertical and horizontal environmental gradients. Vertical distributions of nitrogen and transcripts for genes involved in nitrification are broadly consistent with observations. Modeled gene and transcript abundance for nitrogen cycling and processing of land-derived organic material match observations along the extreme gradients in the Amazon River plume, and they help to explain the factors controlling observed variability.

  2. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less

  3. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    DOE PAGES

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong; ...

    2017-12-28

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands.more » Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.« less

  4. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction

    PubMed Central

    Li, Runguang; Xie, Qingge; Wang, Yan-Dong; Liu, Wenjun; Wang, Mingguang; Wu, Guilin; Li, Xiaowu; Zhang, Minghe; Lu, Zhaoping; Geng, Chang; Zhu, Ting

    2018-01-01

    Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial−temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (μXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem μXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands. Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through μXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials. PMID:29284751

  5. A projection gradient method for computing ground state of spin-2 Bose–Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hanquan, E-mail: hanquan.wang@gmail.com; Yunnan Tongchang Scientific Computing and Data Mining Research Center, Kunming, Yunnan Province, 650221

    In this paper, a projection gradient method is presented for computing ground state of spin-2 Bose–Einstein condensates (BEC). We first propose the general projection gradient method for solving energy functional minimization problem under multiple constraints, in which the energy functional takes real functions as independent variables. We next extend the method to solve a similar problem, where the energy functional now takes complex functions as independent variables. We finally employ the method into finding the ground state of spin-2 BEC. The key of our method is: by constructing continuous gradient flows (CGFs), the ground state of spin-2 BEC can bemore » computed as the steady state solution of such CGFs. We discretized the CGFs by a conservative finite difference method along with a proper way to deal with the nonlinear terms. We show that the numerical discretization is normalization and magnetization conservative and energy diminishing. Numerical results of the ground state and their energy of spin-2 BEC are reported to demonstrate the effectiveness of the numerical method.« less

  6. Incompressible material point method for free surface flow

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan

    2017-02-01

    To overcome the shortcomings of the weakly compressible material point method (WCMPM) for modeling the free surface flow problems, an incompressible material point method (iMPM) is proposed based on operator splitting technique which splits the solution of momentum equation into two steps. An intermediate velocity field is first obtained by solving the momentum equations ignoring the pressure gradient term, and then the intermediate velocity field is corrected by the pressure term to obtain a divergence-free velocity field. A level set function which represents the signed distance to free surface is used to track the free surface and apply the pressure boundary conditions. Moreover, an hourglass damping is introduced to suppress the spurious velocity modes which are caused by the discretization of the cell center velocity divergence from the grid vertexes velocities when solving pressure Poisson equations. Numerical examples including dam break, oscillation of a cubic liquid drop and a droplet impact into deep pool show that the proposed incompressible material point method is much more accurate and efficient than the weakly compressible material point method in solving free surface flow problems.

  7. Long-time behavior of material-surface curvature in isotropic turbulence

    NASA Technical Reports Server (NTRS)

    Girimaji, S. S.

    1992-01-01

    The behavior at large times of the curvature of material elements in turbulence is investigated using Lagrangian velocity-gradient time series obtained from direct numerical simulations of isotropic turbulence. The main objectives are: to study the asymptotic behavior of the pdf curvature as a function of initial curvature and shape; and to establish whether the curvature of an initially plane material element goes to a stationary probability distribution. The evidence available in the literature about the asymptotic curvature-pdf of initially flat surfaces is ambiguous, and the conjecture is that it is quasi-stationary. In this work several material-element ensembles of different initial curvatures and shapes are studied. It is found that, at long times the moments of the logarithm of curvature are independent of the initial pdf of curvature. This, it is argued, supports the view that the curvature attains a stationary distribution at long times. It is also shown that, irrespective of initial shape or curvature, the shape of any material element at long times is cylindrical with a high probability.

  8. Giant thermally-enhanced electrostriction and polar surface phase in L a2M o2O9 oxygen ion conductors

    NASA Astrophysics Data System (ADS)

    Li, Qian; Lu, Teng; Schiemer, Jason; Laanait, Nouamane; Balke, Nina; Zhang, Zhan; Ren, Yang; Carpenter, Michael A.; Wen, Haidan; Li, Jiangyu; Kalinin, Sergei V.; Liu, Yun

    2018-04-01

    Ferroelectrics possess spontaneous electric polarization at macroscopic scales which nonetheless imposes strict limitations on the material classes. Recent discoveries of untraditional symmetry-breaking phenomena in reduced material dimensions have indicated feasibilities to extend polar properties to broader types of materials, potentially opening up the freedom for designing materials with hybrid functionalities. Here, we report the unusual electromechanical properties of L a2M o2O9 (LAMOX) oxygen ion conductors, systematically investigated at both bulk and surface length levels. We first observed giant electrostriction effects in L a2M o2O9 bulk ceramics that are thermally enhanced in concert with their low-energy oxygen-vacancy hopping dynamics. Moreover, while no clear bulk polarization was detected, the surface phases of LAMOX were found to be manifestly polar, likely originating from the coupling between the intrinsic structural flexibilities with strain gradients (i.e., flexoelectricity) and/or chemical heterogeneities present in the materials. These findings identify L a2M o2O9 as a promising electromechanical material system and suggest that the flexible structural and chemical configurations in ionically active materials could enable fundamentally different venues to accommodate electric polarization.

  9. Functional diversity of benthic ciliate communities in response to environmental gradients in a wetland of Yangtze Estuary, China.

    PubMed

    Xu, Yuan; Fan, Xinpeng; Warren, Alan; Zhang, Liquan; Xu, Henglong

    2018-02-01

    Researches on the functional diversity of benthic ecosystems have mainly focused on macrofauna, and studies on functional structure of ciliate communities have been based only on trophic- or size-groups. Current research was carried out on the changing patterns of classical and functional diversity of benthic ciliates in response to environmental gradients at three sites in a wetland in Yangtze Estuary. The results showed that changes of environmental factors (e.g. salinity, sediment grain size and hydrodynamic conditions) in the Yangtze Estuary induce variability in species composition and functional trait distribution. Furthermore, increased species richness and diversity did not lead to significant changes in functional diversity due to functional redundancy. However, salt water intrusion of Yangtze Estuary during the dry season could cause reduced functional diversity of ciliate communities. Current study provides the first insight into the functional diversity of ciliate communities in response to environmental gradients. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Design and investigation of potential Sn-Te-P and Zr-Te-P class of Dirac materials

    NASA Astrophysics Data System (ADS)

    Sarswat, Prashant; Sarkar, Sayan; Free, Michael

    A motivation of new Dirac materials design and synthesis by perturbing the symmetry, was explored by substitution of a Sn vacancy by P that maintains the intrinsic band inversion at the L point but also the direct bandgap shrinkage upon the incorporation of spin-orbit coupling. In a similar line of investigation, Zr-Te-P was also systematically studied. The synthesis of both Sn-Te-P and Zr-Te-P system of compounds resulted in the formation of long needles type crystals and the bulk porous deposits. The exotic morphology of the P-doped SnTe needles possesses the pierced surface throughout its extension. First principle based calculations were also carried out for these sets of compounds using General Gradient Approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional. In order to ensure structural optimization, a limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm was employed and the total energy in PBE exchange-correlation functional was considered for the calculation of the formation energy per atom. The new modifications have a potential to establish the new class of Dirac materials ushering upon new frontiers of interest.

  11. In situ investigation of explosive crystallization in a-Ge: Experimental determination of the interface response function using dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.

    2014-09-01

    The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

  12. Analysis of the numerical differentiation formulas of functions with large gradients

    NASA Astrophysics Data System (ADS)

    Tikhovskaya, S. V.

    2017-10-01

    The solution of a singularly perturbed problem corresponds to a function with large gradients. Therefore the question of interpolation and numerical differentiation of such functions is relevant. The interpolation based on Lagrange polynomials on uniform mesh is widely applied. However, it is known that the use of such interpolation for the function with large gradients leads to estimates that are not uniform with respect to the perturbation parameter and therefore leads to errors of order O(1). To obtain the estimates that are uniform with respect to the perturbation parameter, we can use the polynomial interpolation on a fitted mesh like the piecewise-uniform Shishkin mesh or we can construct on uniform mesh the interpolation formula that is exact on the boundary layer components. In this paper the numerical differentiation formulas for functions with large gradients based on the interpolation formulas on the uniform mesh, which were proposed by A.I. Zadorin, are investigated. The formulas for the first and the second derivatives of the function with two or three interpolation nodes are considered. Error estimates that are uniform with respect to the perturbation parameter are obtained in the particular cases. The numerical results validating the theoretical estimates are discussed.

  13. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber/matrix structure, allowing them to function in a synergistic fashion yet remain physically separated. This latter aspect is critical since it enables the control of overall composite properties and functions by separately tuning each component. Utilizing the intrinsic versatility of this approach, composites with novel properties and functions (in addition to "regular" shape memory) have been developed, including (1) shape memory elastomeric composites (SMECs; Chapter 4), (2) triple-shape polymeric composites (TSPCs; Chapter 5), and (3) electrically conductive nanocomposites (Chapter 6). Then in Chapter 7, by combining the success in both thermoplastic based self-healing and shape memory polymer composites, we demonstrate a thermally triggered self-healing coating. This coating features a unique "shape memory assisted self-healing" mechanism in which crack closure (via shape memory) and crack re-bonding (via melting and diffusion of the thermoplastic healing agent) are achieved simultaneously upon a single heating step, leading to both structural and functional (corrosion resistance) recovery. Finally, Chapter 8 presents for the first time the preparation of functionally graded shape memory polymers (SMPs) that, unlike conventional SMPs, have a range of glass transition temperatures that are spatially graded. This was achieved using a temperature gradient curing method that imposes different vitrification limits at different positions along the gradient. The resulting material is capable of responding to a wide range of thermal triggers and a good candidate for low-cost, material based temperature sensors. All the aforementioned materials and methods show great potential for practical applications due to their high performance, low cost and broad applicability. Some recommendations for future research and development are given in Chapter 9.

  14. Peak-Seeking Control Using Gradient and Hessian Estimates

    NASA Technical Reports Server (NTRS)

    Ryan, John J.; Speyer, Jason L.

    2010-01-01

    A peak-seeking control method is presented which utilizes a linear time-varying Kalman filter. Performance function coordinate and magnitude measurements are used by the Kalman filter to estimate the gradient and Hessian of the performance function. The gradient and Hessian are used to command the system toward a local extremum. The method is naturally applied to multiple-input multiple-output systems. Applications of this technique to a single-input single-output example and a two-input one-output example are presented.

  15. Recent developments in LIBXC - A comprehensive library of functionals for density functional theory

    NASA Astrophysics Data System (ADS)

    Lehtola, Susi; Steigemann, Conrad; Oliveira, Micael J. T.; Marques, Miguel A. L.

    2018-01-01

    LIBXC is a library of exchange-correlation functionals for density-functional theory. We are concerned with semi-local functionals (or the semi-local part of hybrid functionals), namely local-density approximations, generalized-gradient approximations, and meta-generalized-gradient approximations. Currently we include around 400 functionals for the exchange, correlation, and the kinetic energy, spanning more than 50 years of research. Moreover, LIBXC is by now used by more than 20 codes, not only from the atomic, molecular, and solid-state physics, but also from the quantum chemistry communities.

  16. All-angle Negative Reflection with An Ultrathin Acoustic Gradient Metasurface: Floquet-Bloch Modes Perspective and Experimental Verification.

    PubMed

    Liu, Bingyi; Zhao, Jiajun; Xu, Xiaodong; Zhao, Wenyu; Jiang, Yongyuan

    2017-10-23

    Metasurface with gradient phase response offers new alternative for steering the propagation of waves. Conventional Snell's law has been revised by taking the contribution of local phase gradient into account. However, the requirement of momentum matching along the metasurface sets its nontrivial beam manipulation functionality within a limited-angle incidence. In this work, we theoretically and experimentally demonstrate that the acoustic gradient metasurface supports the negative reflection for all-angle incidence. The mode expansion theory is developed to help understand how the gradient metasurface tailors the incident beams, and the all-angle negative reflection occurs when the first negative order Floquet-Bloch mode dominates inside the metasurface slab. The coiling-up space structures are utilized to build desired acoustic gradient metasurface, and the all-angle negative reflections have been perfectly verified by experimental measurements. Our work offers the Floquet-Bloch modes perspective for qualitatively understanding the reflection behaviors of the acoustic gradient metasurface, and the all-angle negative reflection characteristic possessed by acoustic gradient metasurface could enable a new degree of the acoustic wave manipulating and be applied in the functional diffractive acoustic elements, such as the all-angle acoustic back reflector.

  17. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  18. Fabrication of high wettability gradient on copper substrate

    NASA Astrophysics Data System (ADS)

    Huang, Ding-Jun; Leu, Tzong-Shyng

    2013-09-01

    Copper is one of the most widely used materials in condensation heat transfer. Recently there has been great interest in improving the condensation heat transfer efficiency through copper surface modification. In this study, we describe the fabrication processes of how copper surfaces were modified to be superhydrophilic (CA ≤ 10°) and superhydrophobic (CA > 150°) by means of H2O2 immersion and fluorination with Teflon. The wettability gradient of copper surfaces with contact angles (CA) changing from superhydrophilic to superhydrophobic are also demonstrated. Unlike previous studies on gradient surfaces in which the wettability gradient is controlled either non-precisely or entirely uncontrolled, in this study, the contact angles along wettability gradient copper surfaces vary with a precisely designed gradient. It is demonstrated that a high wettability gradient copper surface can be successfully fabricated using photolithography to define the area ratios between superhydrophilic and superhydrophobic patterns within a short distance. The fabricated wettability gradient of copper surfaces is expected to be able to enhance the condensation heat transfer efficiency.

  19. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  20. Differential Abundance of Microbial Functional Groups along the Elevation Gradient from the Coast to the Luquillo Mountains

    EPA Science Inventory

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradi...

  1. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with no apparent wear. Material physical properties and the hot firing tests are reviewed.

  2. Ab-initio calculation for cation vacancy formation energy in anti-fluorite structure

    NASA Astrophysics Data System (ADS)

    Saleel, V. P. Saleel Ahammad; Chitra, D.; Veluraja, K.; Eithiraj, R. D.

    2018-04-01

    Lithium oxide (Li2O) has been suggested as a suitable breeder blanket material for fusion reactors. Li+ vacancies are created by neutron irradiation, forming bulk defect complex whose extra character is experimentally unclear. We present a theoretical study of Li2O using density functional theory (DFT) with a plane-wave basis set. The generalized gradient approximation (GGA) and local-density approximation (LDA) were used for exchange and correlation. Here we address the total energy for defect free, cation defect, cation vacancy and vacancy formation energy in Li2O crystal in anti-fluorite structure.

  3. Adaptive microfluidic gradient generator for quantitative chemotaxis experiments.

    PubMed

    Anielski, Alexander; Pfannes, Eva K B; Beta, Carsten

    2017-03-01

    Chemotactic motion in a chemical gradient is an essential cellular function that controls many processes in the living world. For a better understanding and more detailed modelling of the underlying mechanisms of chemotaxis, quantitative investigations in controlled environments are needed. We developed a setup that allows us to separately address the dependencies of the chemotactic motion on the average background concentration and on the gradient steepness of the chemoattractant. In particular, both the background concentration and the gradient steepness can be kept constant at the position of the cell while it moves along in the gradient direction. This is achieved by generating a well-defined chemoattractant gradient using flow photolysis. In this approach, the chemoattractant is released by a light-induced reaction from a caged precursor in a microfluidic flow chamber upstream of the cell. The flow photolysis approach is combined with an automated real-time cell tracker that determines changes in the cell position and triggers movement of the microscope stage such that the cell motion is compensated and the cell remains at the same position in the gradient profile. The gradient profile can be either determined experimentally using a caged fluorescent dye or may be alternatively determined by numerical solutions of the corresponding physical model. To demonstrate the function of this adaptive microfluidic gradient generator, we compare the chemotactic motion of Dictyostelium discoideum cells in a static gradient and in a gradient that adapts to the position of the moving cell.

  4. Development of Fast and Reliable Free-Energy Density Functional Methods for Simulations of Dense Plasmas from Cold- to Hot-Temperature Regimes

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.

    2017-10-01

    Free-energy density functional theory (DFT) is one of the standard tools in high-energy-density physics used to determine the fundamental properties of dense plasmas, especially in cold and warm regimes when quantum effects are essential. DFT is usually implemented via the orbital-dependent Kohn-Sham (KS) procedure. There are two challenges of conventional implementation: (1) KS computational cost becomes prohibitively expensive at high temperatures; and (2) ground-state exchange-correlation (XC) functionals do not take into account the XC thermal effects. This talk will address both challenges and report details of the formal development of new generalized gradient approximation (GGA) XC free-energy functional which bridges low-temperature (ground state) and high-temperature (plasma) limits. Recent progress on development of functionals for orbital-free DFT as a way to address the second challenge will also be discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  5. Preventing hypoxia-induced cell death in beta cells and islets via hydrolytically activated, oxygen-generating biomaterials

    PubMed Central

    Pedraza, Eileen; Coronel, Maria M.; Fraker, Christopher A.; Ricordi, Camillo; Stabler, Cherie L.

    2012-01-01

    A major hindrance in engineering tissues containing highly metabolically active cells is the insufficient oxygenation of these implants, which results in dying or dysfunctional cells in portions of the graft. The development of methods to increase oxygen availability within tissue-engineered implants, particularly during the early engraftment period, would serve to allay hypoxia-induced cell death. Herein, we designed and developed a hydrolytically activated oxygen-generating biomaterial in the form of polydimethylsiloxane (PDMS)-encapsulated solid calcium peroxide, PDMS-CaO2. Encapsulation of solid peroxide within hydrophobic PDMS resulted in sustained oxygen generation, whereby a single disk generated oxygen for more than 6 wk at an average rate of 0.026 mM per day. The ability of this oxygen-generating material to support cell survival was evaluated using a β cell line and pancreatic rat islets. The presence of a single PDMS-CaO2 disk eliminated hypoxia-induced cell dysfunction and death for both cell types, resulting in metabolic function and glucose-dependent insulin secretion comparable to that in normoxic controls. A single PDMS-CaO2 disk also sustained enhanced β cell proliferation for more than 3 wk under hypoxic culture conditions. Incorporation of these materials within 3D constructs illustrated the benefits of these materials to prevent the development of detrimental oxygen gradients within large implants. Mathematical simulations permitted accurate prediction of oxygen gradients within 3D constructs and highlighted conditions under which supplementation of oxygen tension would serve to benefit cellular viability. Given the generality of this platform, the translation of these materials to other cell-based implants, as well as ischemic tissues in general, is envisioned. PMID:22371586

  6. Broadband absorption with gradient metasurfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Hoyeong; Chalabi, Hamidreza; Alù, Andrea

    2018-03-01

    A metasurface with appropriately designed transverse spatial inhomogeneities can provide the desired phase redistribution in response to an incident wave with arbitrary incident angle. This property of gradient metasurfaces has been used to modify light propagation in unusual manners, to transform the impinging optical wavefront with large flexibility. In this work, we show how gradient metasurfaces can be tailored to offer high absorption in thin absorptive layers, and how to design realistic metasurfaces for this purpose using dielectric materials.

  7. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration

    PubMed Central

    Bailey, Brennan M.; Nail, Lindsay N.; Grunlan, Melissa A.

    2013-01-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior including regeneration. Thus, a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight “hybrid” hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer [methacrylated star polydimethylsiloxane, PDMSstar-MA] and organic macromer [poly(ethylene glycol)diacrylate, PEG-DA] as well both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four “zones” perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well-suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. PMID:23707502

  8. Combinatorial refinement of thin-film microstructure, properties and process conditions: iterative nanoscale search for self-assembled TiAlN nanolamellae.

    PubMed

    Zalesak, J; Todt, J; Pitonak, R; Köpf, A; Weißenbacher, R; Sartory, B; Burghammer, M; Daniel, R; Keckes, J

    2016-12-01

    Because of the tremendous variability of crystallite sizes and shapes in nano-materials, it is challenging to assess the corresponding size-property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self-organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross-sectional synchrotron X-ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients. The results indicate the formation of self-organized hexagonal-cubic and cubic-cubic nanolamellae with varying compositions and thicknesses in the range of ∼3-15 nm across the film thicknesses, depending on the actual composition of the reactive gas mixtures. On the basis of the occurrence of the nanolamellae and their correlation with the local film hardness, progressively narrower ranges of the composition and hardness were refined in three steps. The third film was produced using an AlCl 3 /TiCl 4 precursor ratio of ∼1.9, resulting in the formation of an optimized lamellar microstructure with ∼1.3 nm thick cubic Ti(Al)N and ∼12 nm thick cubic Al(Ti)N nanolamellae which exhibits a maximal hardness of ∼36 GPa and an indentation modulus of ∼522 GPa. The presented approach of an iterative nanoscale search based on the application of cross-sectional synchrotron X-ray nanodiffraction and cross-sectional nanoindentation allows one to refine the relationship between (i) varying deposition conditions, (ii) gradients of microstructure and (iii) gradients of mechanical properties in nanostructured materials prepared as thin films. This is done in a combinatorial way in order to screen a wide range of deposition conditions, while identifying those that result in the formation of a particular microstructure with optimized functional attributes.

  9. Isolation of mitochondria from Saccharomyces cerevisiae using magnetic bead affinity purification

    PubMed Central

    Liao, Pin-Chao; Boldogh, Istvan R.; Siegmund, Stephanie E.

    2018-01-01

    Isolated mitochondria are widely used to study the function of the organelle. Typically, mitochondria are prepared using differential centrifugation alone or in conjunction with density gradient ultracentrifugation. However, mitochondria isolated using differential centrifugation contain membrane or organelle contaminants, and further purification of crude mitochondria by density gradient ultracentrifugation requires large amounts of starting material, and is time-consuming. Mitochondria have also been isolated by irreversible binding to antibody-coated magnetic beads. We developed a method to prepare mitochondria from budding yeast that overcomes many of the limitations of other methods. Mitochondria are tagged by insertion of 6 histidines (6xHis) into the TOM70 (Translocase of outer membrane 70) gene at its chromosomal locus, isolated using Ni-NTA (nickel (II) nitrilotriacetic acid) paramagnetic beads and released from the magnetic beads by washing with imidazole. Mitochondria prepared using this method contain fewer contaminants, and are similar in ultrastructure as well as protein import and cytochrome c oxidase complex activity compared to mitochondria isolated by differential centrifugation. Moreover, this isolation method is amenable to small samples, faster than purification by differential and density gradient centrifugation, and more cost-effective than purification using antibody-coated magnetic beads. Importantly, this method can be applied to any cell type where the genetic modification can be introduced by CRISPR or other methods. PMID:29698455

  10. A compressible two-phase model for dispersed particle flows with application from dense to dilute regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrath, Thomas P., E-mail: thomas.p.mcgrath@navy.mil; St Clair, Jeffrey G.; Department of Mechanical and Aerospace Engineering, University of Florida, 231 MAE-A, P.O. Box 116250, Gainesville, Florida 32611

    2016-05-07

    Multiphase flows are present in many important fields ranging from multiphase explosions to chemical processing. An important subset of multiphase flow applications involves dispersed materials, such as particles, droplets, and bubbles. This work presents an Eulerian–Eulerian model for multiphase flows containing dispersed particles surrounded by a continuous media such as air or water. Following a large body of multiphase literature, the driving force for particle acceleration is modeled as a direct function of both the continuous-phase pressure gradient and the gradient of intergranular stress existing within the particle phase. While the application of these two components of driving force ismore » well accepted in much of the literature, other models exist in which the particle-phase pressure gradient itself drives particle motion. The multiphase model treats all phases as compressible and is derived to ensure adherence to the 2nd Law of Thermodynamics. The governing equations are presented and discussed, and a characteristic analysis shows the model to be hyperbolic, with a degeneracy in the case that the intergranular stress, which is modeled as a configuration pressure, is zero. Finally, results from a two sample problems involving shock-induced particle dispersion are presented. The results agree well with experimental measurements, providing initial confidence in the proposed model.« less

  11. Finite Element Analysis of Surface Residual Stress in Functionally Gradient Cemented Carbide Tool

    NASA Astrophysics Data System (ADS)

    Su, Chuangnan; Liu, Deshun; Tang, Siwen; Li, Pengnan; Qiu, Xinyi

    2018-03-01

    A component distribution model is proposed for three-component functionally gradient cemented carbide (FGCC) based on electron probe microanalysis results obtained for gradient layer thickness, microstructure, and elemental distribution. The residual surface stress of FGCC-T5 tools occurring during the fabrication process is analyzed using an ANSYS-implemented finite element method (FEM) and X-ray diffraction. A comparison of the experimental and calculated values verifies the feasibility of using FEM to analyze the residual surface stress in FGCC-T5 tools. The effects of the distribution index, geometrical shape, substrate thickness, gradient layer thickness, and position of the cobalt-rich layer on residual surface stress are studied in detail.

  12. Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming

    2013-01-01

    Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.

  13. Semi-local machine-learned kinetic energy density functional with third-order gradients of electron density

    NASA Astrophysics Data System (ADS)

    Seino, Junji; Kageyama, Ryo; Fujinami, Mikito; Ikabata, Yasuhiro; Nakai, Hiromi

    2018-06-01

    A semi-local kinetic energy density functional (KEDF) was constructed based on machine learning (ML). The present scheme adopts electron densities and their gradients up to third-order as the explanatory variables for ML and the Kohn-Sham (KS) kinetic energy density as the response variable in atoms and molecules. Numerical assessments of the present scheme were performed in atomic and molecular systems, including first- and second-period elements. The results of 37 conventional KEDFs with explicit formulae were also compared with those of the ML KEDF with an implicit formula. The inclusion of the higher order gradients reduces the deviation of the total kinetic energies from the KS calculations in a stepwise manner. Furthermore, our scheme with the third-order gradient resulted in the closest kinetic energies to the KS calculations out of the presented functionals.

  14. In Situ Gold Nanoparticle Gradient Formation in a 3D Meso- and Macroporous Polymer Matrix.

    PubMed

    Penders, Jelle; Rajasekharan, Anand K; Hulander, Mats; Andersson, Martin

    2017-08-01

    Herein, the development and characterization of a 3D gradient structure of gold nanoparticles is described. The gradient of gold nanoparticles is made in situ in a macroporous nonionic block copolymer hydrogel matrix, through gold ion diffusion control. The polymer provides a matrix for diffusion of gold ions, acts as a template for controlling nanoparticle growth, and facilitates the in situ reduction of gold ions to gold nanoparticles. A clear gradient in gold nanoparticles is observed across the 3D space of the polymer matrix using scanning electron microscopy, fluorescence microscopy, atomic force microscopy, and thermogravimetric analysis. The particle gradient is further functionalized with both hydrophobic and hydrophilic groups via thiol-gold linkage to demonstrate the ability to form gradients with different chemical functionalities. Using additive manufacturing, the polymer can also be printed as a porous network with possible applications for 3D cell culturing in, e.g., biomaterials research. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Regularized magnetotelluric inversion based on a minimum support gradient stabilizing functional

    NASA Astrophysics Data System (ADS)

    Xiang, Yang; Yu, Peng; Zhang, Luolei; Feng, Shaokong; Utada, Hisashi

    2017-11-01

    Regularization is used to solve the ill-posed problem of magnetotelluric inversion usually by adding a stabilizing functional to the objective functional that allows us to obtain a stable solution. Among a number of possible stabilizing functionals, smoothing constraints are most commonly used, which produce spatially smooth inversion results. However, in some cases, the focused imaging of a sharp electrical boundary is necessary. Although past works have proposed functionals that may be suitable for the imaging of a sharp boundary, such as minimum support and minimum gradient support (MGS) functionals, they involve some difficulties and limitations in practice. In this paper, we propose a minimum support gradient (MSG) stabilizing functional as another possible choice of focusing stabilizer. In this approach, we calculate the gradient of the model stabilizing functional of the minimum support, which affects both the stability and the sharp boundary focus of the inversion. We then apply the discrete weighted matrix form of each stabilizing functional to build a unified form of the objective functional, allowing us to perform a regularized inversion with variety of stabilizing functionals in the same framework. By comparing the one-dimensional and two-dimensional synthetic inversion results obtained using the MSG stabilizing functional and those obtained using other stabilizing functionals, we demonstrate that the MSG results are not only capable of clearly imaging a sharp geoelectrical interface but also quite stable and robust. Overall good performance in terms of both data fitting and model recovery suggests that this stabilizing functional is effective and useful in practical applications.[Figure not available: see fulltext.

  16. Light metal decorated graphdiyne nanosheets for reversible hydrogen storage.

    PubMed

    Panigrahi, P; Dhinakaran, A K; Naqvi, S R; Gollu, S R; Ahuja, R; Hussain, T

    2018-05-29

    The sensitive nature of molecular hydrogen (H 2 ) interaction with the surfaces of pristine and functionalized nanostructures, especially two-dimensional materials, has been a subject of debate for a while now. An accurate approximation of the H 2 adsorption mechanism has vital significance for fields such as H 2 storage applications. Owing to the importance of this issue, we have performed a comprehensive density functional theory (DFT) study by means of several different approximations to investigate the structural, electronic, charge transfer and energy storage properties of pristine and functionalized graphdiyne (GDY) nanosheets. The dopants considered here include the light metals Li, Na, K, Ca, Sc and Ti, which have a uniform distribution over GDY even at high doping concentration due to their strong binding and charge transfer mechanism. Upon 11% of metal functionalization, GDY changes into a metallic state from being a small band-gap semiconductor. Such situations turn the dopants to a partial positive state, which is favorable for adsorption of H 2 molecules. The adsorption mechanism of H 2 on GDY has been studied and compared by different methods like generalized gradient approximation, van der Waals density functional and DFT-D3 functionals. It has been established that each functionalized system anchors multiple H 2 molecules with adsorption energies that fall into a suitable range regardless of the functional used for approximations. A significantly high H 2 storage capacity would guarantee that light metal-doped GDY nanosheets could serve as efficient and reversible H 2 storage materials.

  17. The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations.

    PubMed

    Lefebvre, Corentin; Khartabil, Hassan; Boisson, Jean-Charles; Contreras-García, Julia; Piquemal, Jean-Philip; Hénon, Eric

    2018-03-19

    Extraction of the chemical interaction signature from local descriptors based on electron density (ED) is still a fruitful field of development in chemical interpretation. In a previous work that used promolecular ED (frozen ED), the new descriptor, δg , was defined. It represents the difference between a virtual upper limit of the ED gradient (∇ρIGM , IGM=independent gradient model) that represents a noninteracting system and the true ED gradient (∇ρ ). It can be seen as a measure of electron sharing brought by ED contragradience. A compelling feature of this model is to provide an automatic workflow that extracts the signature of interactions between selected groups of atoms. As with the noncovalent interaction (NCI) approach, it provides chemists with a visual understanding of the interactions present in chemical systems. ∇ρIGM is achieved simply by using absolute values upon summing the individual gradient contributions that make up the total ED gradient. Hereby, we extend this model to relaxed ED calculated from a wave function. To this end, we formulated gradient-based partitioning (GBP) to assess the contribution of each orbital to the total ED gradient. We highlight these new possibilities across two prototypical examples of organic chemistry: the unconventional hexamethylbenzene dication, with a hexa-coordinated carbon atom, and β-thioaminoacrolein. It will be shown how a bond-by-bond picture can be obtained from a wave function, which opens the way to monitor specific interactions along reaction paths. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Floristic composition and across-track reflectance gradient in Landsat images over Amazonian forests

    NASA Astrophysics Data System (ADS)

    Muro, Javier; doninck, Jasper Van; Tuomisto, Hanna; Higgins, Mark A.; Moulatlet, Gabriel M.; Ruokolainen, Kalle

    2016-09-01

    Remotely sensed image interpretation or classification of tropical forests can be severely hampered by the effects of the bidirectional reflection distribution function (BRDF). Even for narrow swath sensors like Landsat TM/ETM+, the influence of reflectance anisotropy can be sufficiently strong to introduce a cross-track reflectance gradient. If the BRDF could be assumed to be linear for the limited swath of Landsat, it would be possible to remove this gradient during image preprocessing using a simple empirical method. However, the existence of natural gradients in reflectance caused by spatial variation in floristic composition of the forest can restrict the applicability of such simple corrections. Here we use floristic information over Peruvian and Brazilian Amazonia acquired through field surveys, complemented with information from geological maps, to investigate the interaction of real floristic gradients and the effect of reflectance anisotropy on the observed reflectances in Landsat data. In addition, we test the assumption of linearity of the BRDF for a limited swath width, and whether different primary non-inundated forest types are characterized by different magnitudes of the directional reflectance gradient. Our results show that a linear function is adequate to empirically correct for view angle effects, and that the magnitude of the across-track reflectance gradient is independent of floristic composition in the non-inundated forests we studied. This makes a routine correction of view angle effects possible. However, floristic variation complicates the issue, because different forest types have different mean reflectances. This must be taken into account when deriving the correction function in order to avoid eliminating natural gradients.

  19. Unraveling Deformation Mechanisms in Gradient Structured Metals

    NASA Astrophysics Data System (ADS)

    Moering, Jordan Alexander

    Gradient structures have demonstrated high strength and high ductility, introducing new mechanisms to challenge conventional mechanics. This work develops a method for characterizing the shear strain in gradient structured steel and presents evidence of a texture gradient that develops in Surface Mechanical Attrition Treatment (SMAT). Mechanics underlying some theories of the strengthening mechanisms in gradient structured metals are introduced, followed by the fabrication and testing of gradient structured aluminum rod. The round geometry is intrinsically different from its flat counterparts, which leads to a multiaxial stress state evolving in tension. The aluminum exhibits strengthening beyond rule of mixtures, and texture evolution in the post-mortem sample indicates that out of plane stresses operate within the gradient. Finally, another gradient structured aluminum rod is shown to exhibit higher strength and higher elongation to failure in a variety of sample diameters and processing conditions. The GND density and microstructural evolution showed no significant changes during mechanical testing, and high resolution strain mapping was successfully completed within the core of the material. These discoveries and contributions to the field should help continue unraveling the deformation mechanisms of gradient structured metals.

  20. Differential heating: A versatile method for thermal conductivity measurements in high-energy-density matter

    DOE PAGES

    Ping, Y.; Fernandez-Panella, A.; Sio, H.; ...

    2015-09-04

    We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. As a result, the sensitivity of the measurements to thermal conductivity is confirmed by simulations.

  1. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds.

    PubMed

    Pigot, Alex L; Trisos, Christopher H; Tobias, Joseph A

    2016-01-13

    Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. © 2016 The Author(s).

  2. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds

    PubMed Central

    Pigot, Alex L.; Trisos, Christopher H.; Tobias, Joseph A.

    2016-01-01

    Variation in species richness across environmental gradients may be associated with an expanded volume or increased packing of ecological niche space. However, the relative importance of these alternative scenarios remains unknown, largely because standardized information on functional traits and their ecological relevance is lacking for major diversity gradients. Here, we combine data on morphological and ecological traits for 523 species of passerine birds distributed across an Andes-to-Amazon elevation gradient. We show that morphological traits capture substantial variation in species dietary (75%) and foraging niches (60%) when multiple independent trait dimensions are considered. Having established these relationships, we show that the 14-fold increase in species richness towards the lowlands is associated with both an increased volume and density of functional trait space. However, we find that increases in volume contribute little to changes in richness, with most (78%) lowland species occurring within the range of trait space occupied at high elevations. Taken together, our results suggest that high species richness is mainly associated with a denser occupation of functional trait space, implying an increased specialization or overlap of ecological niches, and supporting the view that niche packing is the dominant trend underlying gradients of increasing biodiversity towards the lowland tropics. PMID:26740616

  3. Algorithms for accelerated convergence of adaptive PCA.

    PubMed

    Chatterjee, C; Kang, Z; Roychowdhury, V P

    2000-01-01

    We derive and discuss new adaptive algorithms for principal component analysis (PCA) that are shown to converge faster than the traditional PCA algorithms due to Oja, Sanger, and Xu. It is well known that traditional PCA algorithms that are derived by using gradient descent on an objective function are slow to converge. Furthermore, the convergence of these algorithms depends on appropriate choices of the gain sequences. Since online applications demand faster convergence and an automatic selection of gains, we present new adaptive algorithms to solve these problems. We first present an unconstrained objective function, which can be minimized to obtain the principal components. We derive adaptive algorithms from this objective function by using: 1) gradient descent; 2) steepest descent; 3) conjugate direction; and 4) Newton-Raphson methods. Although gradient descent produces Xu's LMSER algorithm, the steepest descent, conjugate direction, and Newton-Raphson methods produce new adaptive algorithms for PCA. We also provide a discussion on the landscape of the objective function, and present a global convergence proof of the adaptive gradient descent PCA algorithm using stochastic approximation theory. Extensive experiments with stationary and nonstationary multidimensional Gaussian sequences show faster convergence of the new algorithms over the traditional gradient descent methods.We also compare the steepest descent adaptive algorithm with state-of-the-art methods on stationary and nonstationary sequences.

  4. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe

    PubMed Central

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.

    2016-01-01

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation. PMID:27571971

  5. Vibration control of beams using constrained layer damping with functionally graded viscoelastic cores: theory and experiments

    NASA Astrophysics Data System (ADS)

    El-Sabbagh, A.; Baz, A.

    2006-03-01

    Conventionally, the viscoelastic cores of Constrained Layer Damping (CLD) treatments are made of materials that have uniform shear modulus. Under such conditions, it is well-recognized that these treatments are only effective near their edges where the shear strains attain their highest values. In order to enhance the damping characteristics of the CLD treatments, we propose to manufacture the cores from Functionally Graded ViscoElastic Materials (FGVEM) that have optimally selected gradient of the shear modulus over the length of the treatments. With such optimized distribution of the shear modulus, the shear strain can be enhanced, and the energy dissipation can be maximized. The theory governing the vibration of beams treated with CLD, that has functionally graded viscoelastic cores, is presented using the finite element method (FEM). The predictions of the FEM are validated experimentally for plain beams, beams treated conventional CLD, and beams with CLD/FGVEM of different configurations. The obtained results indicate a close agreement between theory and experiments. Furthermore, the obtained results demonstrate the effectiveness of the new class of CLD with functionally graded cores in enhancing the energy dissipation over the conventional CLD over a broad frequency band. Extension of the proposed one-dimensional beam/CLD/FGVEM system to more complex structures is a natural extension to the present study.

  6. Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

    PubMed Central

    Cheng, Christine

    2017-01-01

    3D printing is a useful fabrication technique because it offers design flexibility and rapid prototyping. The ability to functionalize the surfaces of 3D-printed objects allows the bulk properties, such as material strength or printability, to be chosen separately from surface properties, which is critical to expanding the breadth of 3D printing applications. In this work, we studied the ability of the initiated chemical vapor deposition (iCVD) process to coat 3D-printed shapes composed of poly(lactic acid) and acrylonitrile butadiene styrene. The thermally insulating properties of 3D-printed plastics pose a challenge to the iCVD process due to large thermal gradients along the structures during processing. In this study, processing parameters such as the substrate temperature and the filament temperature were systematically varied to understand how these parameters affect the uniformity of the coatings along the 3D-printed objects. The 3D-printed objects were coated with both hydrophobic and hydrophilic polymers. Contact angle goniometry and X-ray photoelectron spectroscopy were used to characterize the functionalized surfaces. Our results can enable the use of iCVD to functionalize 3D-printed materials for a range of applications such as tissue scaffolds and microfluidics. PMID:28875099

  7. Velocity Gradient Power Functional for Brownian Dynamics.

    PubMed

    de Las Heras, Daniel; Schmidt, Matthias

    2018-01-12

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  8. Velocity Gradient Power Functional for Brownian Dynamics

    NASA Astrophysics Data System (ADS)

    de las Heras, Daniel; Schmidt, Matthias

    2018-01-01

    We present an explicit and simple approximation for the superadiabatic excess (over ideal gas) free power functional, admitting the study of the nonequilibrium dynamics of overdamped Brownian many-body systems. The functional depends on the local velocity gradient and is systematically obtained from treating the microscopic stress distribution as a conjugate field. The resulting superadiabatic forces are beyond dynamical density functional theory and are of a viscous nature. Their high accuracy is demonstrated by comparison to simulation results.

  9. Free-standing supramolecular hydrogel objects by reaction-diffusion

    PubMed Central

    Lovrak, Matija; Hendriksen, Wouter E. J.; Maity, Chandan; Mytnyk, Serhii; van Steijn, Volkert; Eelkema, Rienk; van Esch, Jan H.

    2017-01-01

    Self-assembly provides access to a variety of molecular materials, yet spatial control over structure formation remains difficult to achieve. Here we show how reaction–diffusion (RD) can be coupled to a molecular self-assembly process to generate macroscopic free-standing objects with control over shape, size, and functionality. In RD, two or more reactants diffuse from different positions to give rise to spatially defined structures on reaction. We demonstrate that RD can be used to locally control formation and self-assembly of hydrazone molecular gelators from their non-assembling precursors, leading to soft, free-standing hydrogel objects with sizes ranging from several hundred micrometres up to centimeters. Different chemical functionalities and gradients can easily be integrated in the hydrogel objects by using different reactants. Our methodology, together with the vast range of organic reactions and self-assembling building blocks, provides a general approach towards the programmed fabrication of soft microscale objects with controlled functionality and shape. PMID:28580948

  10. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, Edward S.; Chen, Guoying

    1990-05-01

    A method and means for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived.

  11. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions.

    PubMed

    Karasiev, Valentin V; Dufty, James W; Trickey, S B

    2018-02-16

    Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (XC) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T. Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.

  12. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    2018-02-01

    Realizing the potential for predictive density functional calculations of matter under extreme conditions depends crucially upon having an exchange-correlation (X C ) free-energy functional accurate over a wide range of state conditions. Unlike the ground-state case, no such functional exists. We remedy that with systematic construction of a generalized gradient approximation X C free-energy functional based on rigorous constraints, including the free-energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T , high-T , and homogeneous electron gas limits. Its accuracy in the warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated T . Pressure shifts for hot electrons in compressed static fcc Al and for low-density Al demonstrate the combined magnitude of thermal and gradient effects handled well by this functional over a wide T range.

  13. Renormalizability of the gradient flow in the 2D O(N) non-linear sigma model

    NASA Astrophysics Data System (ADS)

    Makino, Hiroki; Suzuki, Hiroshi

    2015-03-01

    It is known that the gauge field and its composite operators evolved by the Yang-Mills gradient flow are ultraviolet (UV) finite without any multiplicative wave function renormalization. In this paper, we prove that the gradient flow in the 2D O(N) non-linear sigma model possesses a similar property: The flowed N-vector field and its composite operators are UV finite without multiplicative wave function renormalization. Our proof in all orders of perturbation theory uses a (2+1)-dimensional field theoretical representation of the gradient flow, which possesses local gauge invariance without gauge field. As an application of the UV finiteness of the gradient flow, we construct the energy-momentum tensor in the lattice formulation of the O(N) non-linear sigma model that automatically restores the correct normalization and the conservation law in the continuum limit.

  14. Biofunctionalization of carbon nanostructures through enzyme immobilization in colloidal silica

    NASA Astrophysics Data System (ADS)

    Goulet, Evan M.

    Multi-walled carbon nanotubes (MWNT) and carbon nanopipettes (CNP) provide interesting high aspect ratio scaffolds on which to base functionally gradient materials. In this dissertation, we present a general method for the production of an enzymatically active composite material based on MWNTs. Polyethyleneimine (PEI) was applied to purified MWNTs, generating a positive electrostatic potential on the MWNTs. This positive potential was used to apply negatively charged colloidal silica particle in the presence of a high concentration of enzyme. The silica coating continued to grow via localized condensation of silica particles driven by the buffered saline conditions, immobilizing the enzyme within the coating. The mesoporous nanostructure was characterized via transmission electron microscopy. Optical spectroscopy experiments on the material employed as an active suspension showed that the immobilized enzymes horseradish peroxidase (HRP) and tyrosinase (TV) retained their activity upon incorporation into the material. Using HRP as a model enzyme, it was determined that the MWNT-HRP-Silica material showed similar pH and temperature dependencies in activity to those of free HRP in solution. An examination of the Michaelis-Menten kinetics showed that the material had a slightly higher value of KM than did free HRP. The MWNT-HRP-Silica material was also employed as an active filter membrane, which allowed us to explore the reusable nature of the material. We were able to show the denaturation of the filter due to the loss of Ca2+ cations at low pH and then restore the activity by soaking the filter membrane in 1 mM CaCl2. The MWNT-HRP-Silica material was used to modify a carbon microelectrode and produce a functioning electrochemical sensor for H2O2 . Utilizing cyclic voltammetry, the sensor was shown to have a linear response in limiting current versus concentration of H2O2 of 4.26 pA/microM. We also determined a lower detection limit of 0.67 microM H2O2. CNPs were investigated as functional microelectrodes. Colloidal silica was applied to the CNP with HRP, but it was difficult to prove functionality. One irregularly coated CNP showed a clear response to H2O2, but we were not able to reproduce the response in other samples. This work indicated the CNPs have promise as functional microelectrodes.

  15. Integration of graphene sensor with electrochromic device on modulus-gradient polymer for instantaneous strain visualization

    NASA Astrophysics Data System (ADS)

    Yang, Tingting; Zhong, Yujia; Tao, Dashuai; Li, Xinming; Zang, Xiaobei; Lin, Shuyuan; Jiang, Xin; Li, Zhihong; Zhu, Hongwei

    2017-09-01

    In nature, some animals change their deceptive coloration for camouflage, temperature preservation or communication. This astonishing function has inspired scientists to replicate the color changing abilities of animals with artificial skin. Recently, some studies have focused on the smart materials and devices with reversible color changing or light-emitting properties for instantaneous strain visualization. However, most of these works only show eye-detectable appearance change when subjected to large mechanical deformation (100%-500% strain), and conspicuous color change at small strain remains rarely explored. In the present study, we developed a user-interactive electronic skin with human-readable optical output by assembling a highly sensitive resistive strain sensor with a stretchable organic electrochromic device (ECD) together. We explored the substrate effect on the electromechanical behavior of graphene and designed a strategy of modulus-gradient structure to employ graphene as both the highly sensitive strain sensing element and the insensitive stretchable electrode of the ECD layer. Subtle strain (0-10%) was enough to evoke an obvious color change, and the RGB value of the color quantified the magnitude of the applied strain. Such high sensitivity to smaller strains (0-10%) with color changing capability will potentially enhance the function of wearable devices, robots and prosthetics in the future.

  16. Monte Carlo grain growth modeling with local temperature gradients

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Maniatty, A. M.; Zheng, C.; Wen, J. T.

    2017-09-01

    This work investigated the development of a Monte Carlo (MC) simulation approach to modeling grain growth in the presence of non-uniform temperature field that may vary with time. We first scale the MC model to physical growth processes by fitting experimental data. Based on the scaling relationship, we derive a grid site selection probability (SSP) function to consider the effect of a spatially varying temperature field. The SSP function is based on the differential MC step, which allows it to naturally consider time varying temperature fields too. We verify the model and compare the predictions to other existing formulations (Godfrey and Martin 1995 Phil. Mag. A 72 737-49 Radhakrishnan and Zacharia 1995 Metall. Mater. Trans. A 26 2123-30) in simple two-dimensional cases with only spatially varying temperature fields, where the predicted grain growth in regions of constant temperature are expected to be the same as for the isothermal case. We also test the model in a more realistic three-dimensional case with a temperature field varying in both space and time, modeling grain growth in the heat affected zone of a weld. We believe the newly proposed approach is promising for modeling grain growth in material manufacturing processes that involves time-dependent local temperature gradient.

  17. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates

    PubMed Central

    Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242

  18. Situating the default-mode network along a principal gradient of macroscale cortical organization

    PubMed Central

    Margulies, Daniel S.; Goulas, Alexandros; Falkiewicz, Marcel; Huntenburg, Julia M.; Langs, Georg; Bezgin, Gleb; Eickhoff, Simon B.; Castellanos, F. Xavier; Petrides, Michael; Jefferies, Elizabeth; Smallwood, Jonathan

    2016-01-01

    Understanding how the structure of cognition arises from the topographical organization of the cortex is a primary goal in neuroscience. Previous work has described local functional gradients extending from perceptual and motor regions to cortical areas representing more abstract functions, but an overarching framework for the association between structure and function is still lacking. Here, we show that the principal gradient revealed by the decomposition of connectivity data in humans and the macaque monkey is anchored by, at one end, regions serving primary sensory/motor functions and at the other end, transmodal regions that, in humans, are known as the default-mode network (DMN). These DMN regions exhibit the greatest geodesic distance along the cortical surface—and are precisely equidistant—from primary sensory/motor morphological landmarks. The principal gradient also provides an organizing spatial framework for multiple large-scale networks and characterizes a spectrum from unimodal to heteromodal activity in a functional metaanalysis. Together, these observations provide a characterization of the topographical organization of cortex and indicate that the role of the DMN in cognition might arise from its position at one extreme of a hierarchy, allowing it to process transmodal information that is unrelated to immediate sensory input. PMID:27791099

  19. A geometric projection method for designing three-dimensional open lattices with inverse homogenization

    DOE PAGES

    Watts, Seth; Tortorelli, Daniel A.

    2017-04-13

    Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less

  20. A geometric projection method for designing three-dimensional open lattices with inverse homogenization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, Seth; Tortorelli, Daniel A.

    Topology optimization is a methodology for assigning material or void to each point in a design domain in a way that extremizes some objective function, such as the compliance of a structure under given loads, subject to various imposed constraints, such as an upper bound on the mass of the structure. Geometry projection is a means to parameterize the topology optimization problem, by describing the design in a way that is independent of the mesh used for analysis of the design's performance; it results in many fewer design parameters, necessarily resolves the ill-posed nature of the topology optimization problem, andmore » provides sharp descriptions of the material interfaces. We extend previous geometric projection work to 3 dimensions and design unit cells for lattice materials using inverse homogenization. We perform a sensitivity analysis of the geometric projection and show it has smooth derivatives, making it suitable for use with gradient-based optimization algorithms. The technique is demonstrated by designing unit cells comprised of a single constituent material plus void space to obtain light, stiff materials with cubic and isotropic material symmetry. Here, we also design a single-constituent isotropic material with negative Poisson's ratio and a light, stiff material comprised of 2 constituent solids plus void space.« less

  1. Matrix metalloproteinase 9 (MMP-9) mediated release of MMP-9 resistant stromal cell-derived factor 1α (SDF-1α) from surface modified polymer films.

    PubMed

    Steinhagen, Max; Hoffmeister, Peter-Georg; Nordsieck, Karoline; Hötzel, Rudi; Baumann, Lars; Hacker, Michael C; Schulz-Siegmund, Michaela; Beck-Sickinger, Annette G

    2014-04-23

    Preparation of smart materials by coatings of established surfaces with biomolecules will lead to the next generation of functionalized biomaterials. Rejection of implants is still a major problem in medical applications but masking the implant material with protein coatings is a promising approach. These layers not only disguise the material but also equip it with a certain biological function. The anti-inflammatory chemokine stromal cell-derived factor 1α (SDF-1α) is well suited to take over this function, because it efficiently attracts stem cells and promotes their differentiation and proliferation. At least the initial stem cell homing requires the formation of a concentration gradient. Thus, a reliable and robust release mechanism of SDF-1α from the material is essential. Several proteases, most notably matrix metalloproteinases, are upregulated during inflammation, which, in principle, can be exploited for a tightly controlled release of SDF-1α. Herein, we present the covalent immobilization of M-[S4V]-SDF-1α on novel biodegradable polymer films, which consist of heterobifunctional poly(ethylene glycol) and oligolactide-based functionalized macromers. A peptidic linker with a trimeric matrix metalloproteinase 9 (MMP-9) cleavage site (MCS) was used as connection and the linkage between the three components was achieved by combination of expressed protein ligation and Cu(I) catalyzed azide/alkyne cycloaddition. The MCS was used for MMP-9 mediated release of M-[S4V]-SDF-1α from the biomaterial and the released SDF-1α derivative was biologically active and induced strong cell migration, which demonstrates the great potential of this system.

  2. Gradient waveform pre-emphasis based on the gradient system transfer function.

    PubMed

    Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert

    2018-02-25

    The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.

  3. Functionally graded Ti6Al4V and Inconel 625 by Laser Metal Deposition

    NASA Astrophysics Data System (ADS)

    Pulugurtha, Syamala R.

    The objective of the current work was to fabricate a crack-free functionally graded Ti6Al4V and Inconel 625 thin wall structure by Laser Metal Deposition (LMD). One potential application for the current material system is the ability to fabricate a functionally graded alloy that can be used in a space heat exchanger. The two alloys, Inconel 625 and Ti6Al4V are currently used for aerospace applications. They were chosen as candidates for grading because functionally grading those combines the properties of high strength/weight ratio of Ti6Al4V and high temperature oxidation resistance of Inconel 625 into one multifunctional material for the end application. However, there were challenges associated with the presence of Ni-Ti intermetallic phases (IMPs). The study focused on several critical areas such as (1) understanding microstructural evolution, (2) reducing macroscopic cracking, and (3) reducing mixing between graded layers. Finite element analysis (FEA) was performed to understand the effect of process conditions on multilayer claddings for simplified material systems such as SS316L and Inconel 625 where complex microstructures did not form. The thermo-mechanical models were developed using Abaqus(TM) (and some of them experimentally verified) to predict temperature-gradients; remelt layer depths and residual stresses. Microstructure evolution along the functionally graded Ti6Al4V and Inconel 625 was studied under different processing and grading conditions. Thermodynamic modeling using Factsage (v 6.1) was used to construct phase diagrams and predict the possible equilibrium major/minor phases (verified experimentally by XRD) that may be present along the functionally graded Ti6Al4V and Inconel 625 thin wall structures.

  4. Light-responsive smart surface with controllable wettability and excellent stability.

    PubMed

    Zhou, Yin-Ning; Li, Jin-Jin; Zhang, Qing; Luo, Zheng-Hong

    2014-10-21

    Novel fluorinated gradient copolymer was designed for smart surface with light-responsive controllable wettability and excellent stability. The switchable mechanism and physicochemical characteristics of the as-prepared surface decorated by designed polymeric material were investigated by ultraviolet-visible (UV-vis) spectrum, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray photoelectron spectroscopy (XPS). Thanks to the functional film and surface roughening, etched silicon surface fabricated by copolymer involving spiropyran (Sp) moieties possesses a fairly large variation range of WCA (28.1°) and achieves the transformation between hydrophilicity (95.2° < 109.2°) and hydrophobicity (123.3° > 109.2°) relative to blank sample (109.2°). The synthetic strategy and developed smart surface offer a promising application in coating with controllable wettability, which bridge the gap between chemical structure and material properties.

  5. Vector calculus in non-integer dimensional space and its applications to fractal media

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  6. The Influence of High Pressure Thermal Behavior on Friction-induced material transfer During Dry Machining of Titanium

    NASA Astrophysics Data System (ADS)

    Abdel-Aal, H. A.; El Mansori, M.

    2011-05-01

    In this paper we study failure of coated carbide tools due to thermal loading. The study emphasizes the role assumed by the thermo-physical properties of the tool material in enhancing or preventing mass attrition of the cutting elements within the tool. It is shown that within a comprehensive view of the nature of conduction in the tool zone, thermal conduction is not solely affected by temperature. Rather it is a function of the so called thermodynamic forces. These are the stress, the strain, strain rate, rate of temperature rise, and the temperature gradient. Although that within such consideration description of thermal conduction is non-linear, it is beneficial to employ such a form because it facilitates a full mechanistic understanding of thermal activation of tool wear.

  7. The discrete adjoint method for parameter identification in multibody system dynamics.

    PubMed

    Lauß, Thomas; Oberpeilsteiner, Stefan; Steiner, Wolfgang; Nachbagauer, Karin

    2018-01-01

    The adjoint method is an elegant approach for the computation of the gradient of a cost function to identify a set of parameters. An additional set of differential equations has to be solved to compute the adjoint variables, which are further used for the gradient computation. However, the accuracy of the numerical solution of the adjoint differential equation has a great impact on the gradient. Hence, an alternative approach is the discrete adjoint method , where the adjoint differential equations are replaced by algebraic equations. Therefore, a finite difference scheme is constructed for the adjoint system directly from the numerical time integration method. The method provides the exact gradient of the discretized cost function subjected to the discretized equations of motion.

  8. Axial postbuckling analysis of multilayer functionally graded composite nanoplates reinforced with GPLs based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Sahmani, S.; Aghdam, M. M.

    2017-11-01

    In this paper, a new size-dependent inhomogeneous plate model is constructed to analyze the nonlinear buckling and postbuckling characteristics of multilayer functionally graded composite nanoplates reinforced with graphene platelet (GPL) nanofillers under axial compressive load. To this purpose, the nonlocal strain gradient theory of elasticity is implemented into a refined hyperbolic shear deformation plate theory. The mechanical properties of multilayer graphene platelet-reinforced composite (GPLRC) nanoplates are evaluated based upon the Halpin-Tsai micromechanical scheme. The weight fraction of randomly dispersed GPLs remain constant in each individual layer, which results in U-GPLRC nanoplate, or changes layerwise in accordance with three different functionally graded patterns, which make X-GPLRC, O-GPLRC and A-GPLRC nanoplates. Via a two-stepped perturbation technique, explicit analytical expressions for nonlocal strain gradient stability paths are established for layerwise functionally graded GPLRC nanoplates. It is demonstrated that both the nonlocal and strain gradient size dependencies are more significant for multilayer GPLRC nanoplates filling by GPL nanofillers with higher length-to-thickness and width-to-thickness ratios.

  9. Course 4: Density Functional Theory, Methods, Techniques, and Applications

    NASA Astrophysics Data System (ADS)

    Chrétien, S.; Salahub, D. R.

    Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions

  10. Preparation of asymmetric porous materials

    DOEpatents

    Coker, Eric N [Albuquerque, NM

    2012-08-07

    A method for preparing an asymmetric porous material by depositing a porous material film on a flexible substrate, and applying an anisotropic stress to the porous media on the flexible substrate, where the anisotropic stress results from a stress such as an applied mechanical force, a thermal gradient, and an applied voltage, to form an asymmetric porous material.

  11. Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject's axial position.

    PubMed

    Mullinger, Karen J; Yan, Winston X; Bowtell, Richard

    2011-02-01

    Large artefacts that compromise EEG data quality are generated when electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are carried out concurrently. The gradient artefact produced by the time-varying magnetic field gradients is the largest of these artefacts. Although average artefact correction (AAS) and related techniques can remove the majority of this artefact, the need to avoid amplifier saturation necessitates the use of a large dynamic range and strong low-pass filtering in EEG recording. Any intrinsic reduction in the gradient artefact amplitude would allow data with a higher bandwidth to be acquired without amplifier saturation, thus increasing the frequency range of neuronal activity that can be investigated using combined EEG-fMRI. Furthermore, gradient artefact correction methods assume a constant artefact morphology over time, so their performance is compromised by subject movement. Since the resulting, residual gradient artefacts can easily swamp signals from brain activity, any reduction in their amplitude would be highly advantageous for simultaneous EEG-fMRI studies. The aim of this work was to investigate whether adjustment of the subject's axial position in the MRI scanner can reduce the amplitude of the induced gradient artefact, before and after artefact correction using AAS. The variation in gradient artefact amplitude as a function of the subject's axial position was first investigated in six subjects by applying gradient pulses along the three Cartesian axes. The results of this study showed that a significant reduction in the gradient artefact magnitude can be achieved by shifting the subject axially by 4 cm towards the feet relative to the standard subject position (nasion at iso-centre). In a further study, the 4-cm shift was shown to produce a 40% reduction in the RMS amplitude (and a 31% reduction in the range) of the gradient artefact generated during the execution of a standard multi-slice, EPI sequence. By picking out signals occurring at harmonics of the slice acquisition frequency, it was also shown that the 4-cm shift led to a 36% reduction in the residual gradient artefact after AAS. Functional and anatomical MR data quality is not affected by the 4-cm shift, as the head remains in the homogeneous region of the static magnet field and gradients. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions

    NASA Astrophysics Data System (ADS)

    Volkov-Bogorodskii, D. B.; Lurie, S. A.

    2016-03-01

    We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich-Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby-Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976. This paper is the first to present the exact analytical solution of the Eshelby-Christensen problem for the gradient theory, which permits estimating the influence of scale effects on the stress state and the effective properties of the dispersed composites under study.We also analyze the influence of scale factors.

  13. Combinatorial techniques to efficiently investigate and optimize organic thin film processing and properties.

    PubMed

    Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner

    2013-04-08

    In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.

  14. Advanced Gradient Heating Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Advanced Gradient Heating Facility (AGHF) is a European Space Agency (ESA) developed hardware. The AGHF was flown on STS-78, which featured four European PI's and two NASA PI's. The AGHFsupports the production of advanced semiconductor materials and alloys using the directional process, which depends on establishing a hot side and a cold side in the sample.

  15. Microstructures and Mechanical Properties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peening

    PubMed Central

    Huang, Zhaowen; Cao, Yang; Nie, Jinfeng; Zhou, Hao; Li, Yusheng

    2018-01-01

    Gradient structured materials possess good combinations of strength and ductility, rendering the materials attractive in industrial applications. In this research, a surface nanocrystallization (SNC) technique, rotationally accelerated shot peening (RASP), was employed to produce a gradient nanostructured pure Ti with a deformation layer that had a thickness of 2000 μm, which is thicker than those processed by conventional SNC techniques. It is possible to fabricate a gradient structured Ti workpiece without delamination. Moreover, based on the microstructural features, the microstructure of the processed sample can be classified into three regions, from the center to the surface of the RASP-processed sample: (1) a twinning-dominated core region; (2) a “twin intersection”-dominated twin transition region; and (3) the nanostructured region, featuring nanograins. A microhardness gradient was detected from the RASP-processed Ti. The surface hardness was more than twice that of the annealed Ti sample. The RASP-processed Ti sample exhibited a good combination of yield strength and uniform elongation, which may be attributed to the high density of deformation twins and a strong back stress effect. PMID:29498631

  16. Minimizing hot spot temperature in asymmetric gradient coil design.

    PubMed

    While, Peter T; Forbes, Larry K; Crozier, Stuart

    2011-08-01

    Heating caused by gradient coils is a considerable concern in the operation of magnetic resonance imaging (MRI) scanners. Hot spots can occur in regions where the gradient coil windings are closely spaced. These problem areas are particularly common in the design of gradient coils with asymmetrically located target regions. In this paper, an extension of an existing coil design method is described, to enable the design of asymmetric gradient coils with reduced hot spot temperatures. An improved model is presented for predicting steady-state spatial temperature distributions for gradient coils. A great amount of flexibility is afforded by this model to consider a wide range of geometries and system material properties. A feature of the temperature distribution related to the temperature gradient is used in a relaxed fixed point iteration routine for successively altering coil windings to have a lower hot spot temperature. Results show that significant reductions in peak temperature are possible at little or no cost to coil performance when compared to minimum power coils of equivalent field error.

  17. Process design of press hardening with gradient material property influence

    NASA Astrophysics Data System (ADS)

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-01

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  18. Process design of press hardening with gradient material property influence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neugebauer, R.; Professorship for Machine Tools and Forming Technology, TU Chemnitz; Schieck, F.

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steelmore » sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.« less

  19. Analytical instrumentation infrastructure for combinatorial and high-throughput development of formulated discrete and gradient polymeric sensor materials arrays

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Hassib, Lamyaa

    2005-06-01

    Multicomponent polymer-based formulations of optical sensor materials are difficult and time consuming to optimize using conventional approaches. To address these challenges, our long-term goal is to determine relationships between sensor formulation and sensor response parameters using new scientific methodologies. As the first step, we have designed and implemented an automated analytical instrumentation infrastructure for combinatorial and high-throughput development of polymeric sensor materials for optical sensors. Our approach is based on the fabrication and performance screening of discrete and gradient sensor arrays. Simultaneous formation of multiple sensor coatings into discrete 4×6, 6×8, and 8×12 element arrays (3-15μL volume per element) and their screening provides not only a well-recognized acceleration in the screening rate, but also considerably reduces or even eliminates sources of variability, which are randomly affecting sensors response during a conventional one-at-a-time sensor coating evaluation. The application of gradient sensor arrays provides additional capabilities for rapid finding of the optimal formulation parameters.

  20. Three-dimensional Gravity Inversion with a New Gradient Scheme on Unstructured Grids

    NASA Astrophysics Data System (ADS)

    Sun, S.; Yin, C.; Gao, X.; Liu, Y.; Zhang, B.

    2017-12-01

    Stabilized gradient-based methods have been proved to be efficient for inverse problems. Based on these methods, setting gradient close to zero can effectively minimize the objective function. Thus the gradient of objective function determines the inversion results. By analyzing the cause of poor resolution on depth in gradient-based gravity inversion methods, we find that imposing depth weighting functional in conventional gradient can improve the depth resolution to some extent. However, the improvement is affected by the regularization parameter and the effect of the regularization term becomes smaller with increasing depth (shown as Figure 1 (a)). In this paper, we propose a new gradient scheme for gravity inversion by introducing a weighted model vector. The new gradient can improve the depth resolution more efficiently, which is independent of the regularization parameter, and the effect of regularization term will not be weakened when depth increases. Besides, fuzzy c-means clustering method and smooth operator are both used as regularization terms to yield an internal consecutive inverse model with sharp boundaries (Sun and Li, 2015). We have tested our new gradient scheme with unstructured grids on synthetic data to illustrate the effectiveness of the algorithm. Gravity forward modeling with unstructured grids is based on the algorithm proposed by Okbe (1979). We use a linear conjugate gradient inversion scheme to solve the inversion problem. The numerical experiments show a great improvement in depth resolution compared with regular gradient scheme, and the inverse model is compact at all depths (shown as Figure 1 (b)). AcknowledgeThis research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900). ReferencesSun J, Li Y. 2015. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy c-means clustering. Geophysics, 80(4): ID1-ID18. Okabe M. 1979. Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics, 44(4), 730-741.

  1. New head gradient coil design and construction techniques

    PubMed Central

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2013-01-01

    Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485

  2. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, Banu Priya; Mellott, Adam J; Easley, Jeremiah T; Palmer, Ross H; Galbraith, Richard A; Key, Vincent H; Berkland, Cory J; Detamore, Michael S

    2015-01-01

    Background: The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. Aim: The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. Materials & methods: The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. Results: The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. Conclusion: This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture. PMID:26418471

  3. Using simple environmental variables to estimate below-ground productivity in grasslands

    USGS Publications Warehouse

    Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; Zhang, X.S.

    2002-01-01

    In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass (r2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive (r2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values (r2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.

  4. Temperature-gradient-induced

    NASA Astrophysics Data System (ADS)

    Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel; Trittel, Torsten; Stannarius, Ralf

    Freely-suspended smectic films of sub-micrometer thickness and lateral extensions of several millimeters were used to study thermally driven migration and convection in the film plane. Film experiments were performed during the 6 minute microgravity phase of a TEXUS suborbital rocket flight (Texus 52, launched April 27, 2015). We have found an attraction of the smectic material towards the cold edge of the film in a temperature gradient, similar to the Soret effect. This process is reversed when this edge is heated up again. Thermal convection driven by two thermocontacts in the film is practically absent, even at temperature gradients up to 10 K/mm, with thermally driven convection only setting in when the hot post reaches the transition temperature to the nematic phase. The Observation and Analysis of Smectic Islands in Space (OASIS) flight hardware was launched on SpaceX-6 in April 2015 and experiments on smectic bubbles were carried out on the International Space Station using four different smectic A and C liquid crystal materials in separate sample chambers. We observed that smectic islands on the surface of the bubbles migrated towards the colder part of the bubble in a temperature gradient. This work was supported by NASA Grant No. NNX-13AQ81G, by the Soft Materials Research Center under NSF MRSEC Grants No. DMR-0820579 and No. DMR-1420736, and by DLR Grants 50WM1127 and 50WM1430.

  5. Novel concepts in near-field optics: from magnetic near-field to optical forces

    NASA Astrophysics Data System (ADS)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic near-field response of a linear rod antenna is studied with Babinet's principle. Babinet's principle connects the magnetic field of a structure to the electric field of its complement structure. Using combined far- and near-field spectroscopy, imaging, and theory, I identify magnetic dipole and higher order bright and dark magnetic resonances at mid-infrared frequencies. From resonant length scaling and spatial field distributions, I confirm that the theoretical requirement of Babinet's principle for a structure to be infinitely thin and perfectly conducting is still fulfilled to a good approximation in the mid-infrared. Thus Babinet's principle provides access to spatial and spectral magnetic field properties, leading to targeted design and control of magnetic optical antennas. Lastly, a novel form of nanoscale optical spectroscopy based on mechanical detection of optical gradient force is explored. It is to measure the optical gradient force between induced dipole moments of a sample and an atomic force microscope (AFM) tip. My study provides the theoretical basis in terms of spectral behavior, resonant enhancement, and distance dependence of the optical gradient force from numerical simulations for a coupled nanoparticle model geometry. I show that the optical gradient force is dispersive for local electronic and vibrational resonances, yet can be absorptive for collective polaronic excitations. This spectral behavior together with the distance dependence scaling provides the key characteristics for its measurement and distinction from competing processes such as thermal expansion. Furthermore, I provide a perspective for resonant enhancement and control of optical forces in general.

  6. 3D hierarchical interface-enriched finite element method: Implementation and applications

    NASA Astrophysics Data System (ADS)

    Soghrati, Soheil; Ahmadian, Hossein

    2015-10-01

    A hierarchical interface-enriched finite element method (HIFEM) is proposed for the mesh-independent treatment of 3D problems with intricate morphologies. The HIFEM implements a recursive algorithm for creating enrichment functions that capture gradient discontinuities in nonconforming finite elements cut by arbitrary number and configuration of materials interfaces. The method enables the mesh-independent simulation of multiphase problems with materials interfaces that are in close proximity or contact while providing a straightforward general approach for evaluating the enrichments. In this manuscript, we present a detailed discussion on the implementation issues and required computational geometry considerations associated with the HIFEM approximation of thermal and mechanical responses of 3D problems. A convergence study is provided to investigate the accuracy and convergence rate of the HIFEM and compare them with standard FEM benchmark solutions. We will also demonstrate the application of this mesh-independent method for simulating the thermal and mechanical responses of two composite materials systems with complex microstructures.

  7. Design and fabrication of a metamaterial gradient index diffraction grating at infrared wavelengths.

    PubMed

    Tsai, Yu-Ju; Larouche, Stéphane; Tyler, Talmage; Lipworth, Guy; Jokerst, Nan M; Smith, David R

    2011-11-21

    We demonstrate the design, fabrication and characterization of an artificially structured, gradient index metamaterial with a linear index variation of Δn ~ 3.0. The linear gradient profile is repeated periodically to form the equivalent of a blazed grating, with the gradient occurring across a spatial distance of 61 μm. The grating, which operates at a wavelength of 10.6 μm, is composed of non-resonant, progressively modified "I-beam" metamaterial elements and approximates a linear phase shift gradient using 61 distinguishable phase levels. The grating structure consists of four layers of lithographically patterned metallic I-beam elements separated by dielectric layers of SiO(2). The index gradient is confirmed by comparing the measured magnitudes of the -1, 0 and +1 diffracted orders to those obtained from full wave simulations incorporating all material properties of the metals and dielectrics of the structures. The large index gradient has the potential to enable compact infrared diffractive and gradient index optics, as well as more exotic transformation optical media. © 2011 Optical Society of America

  8. Protein Self-Assemblies That Can Generate, Hold, and Discharge Electric Potential in Response to Changes in Relative Humidity.

    PubMed

    Carter, Nathan A; Grove, Tijana Z

    2018-05-30

    Generation of electric potential upon external stimulus has attracted much attention for the development of highly functional sensors and devices. Herein, we report large-displacement, fast actuation in the self-assembled engineered repeat protein Consensus Tetratricopeptide Repeat protein (CTPR18) materials. The ionic nature of the CTPR18 protein coupled to the long-range alignment upon self-assembly results in the measured conductivity of 7.1 × 10 -2 S cm -1 , one of the highest reported for protein materials. The change of through-thickness morphological gradient in the self-assembled materials provides the means to select between faster, highly water-sensitive actuation or vastly increased mechanical strength. Tuning of the mode of motion, e.g., bending, twisting, and folding, is achieved by changing the morphological director. We further show that the highly ionic character of CTPR18 gives rise to piezo-like behavior in these materials, exemplified by low-voltage, ionically driven actuation and mechanically driven generation/discharge of voltage. This work contributes to our understanding of the emergence of stimuli-responsiveness in biopolymer assemblies.

  9. Gradient optimization and nonlinear control

    NASA Technical Reports Server (NTRS)

    Hasdorff, L.

    1976-01-01

    The book represents an introduction to computation in control by an iterative, gradient, numerical method, where linearity is not assumed. The general language and approach used are those of elementary functional analysis. The particular gradient method that is emphasized and used is conjugate gradient descent, a well known method exhibiting quadratic convergence while requiring very little more computation than simple steepest descent. Constraints are not dealt with directly, but rather the approach is to introduce them as penalty terms in the criterion. General conjugate gradient descent methods are developed and applied to problems in control.

  10. Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, Robert; Legg, Robert A.

    2013-12-01

    The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.

  11. Formation of the long range Dpp morphogen gradient.

    PubMed

    Schwank, Gerald; Dalessi, Sascha; Yang, Schu-Fee; Yagi, Ryohei; de Lachapelle, Aitana Morton; Affolter, Markus; Bergmann, Sven; Basler, Konrad

    2011-07-01

    The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.

  12. Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue regeneration.

    PubMed

    Bailey, Brennan M; Nail, Lindsay N; Grunlan, Melissa A

    2013-09-01

    In tissue engineering, the physical and chemical properties of the scaffold mediates cell behavior, including regeneration. Thus a strategy that permits rapid screening of cell-scaffold interactions is critical. Herein, we have prepared eight "hybrid" hydrogel scaffolds in the form of continuous gradients such that a single scaffold contains spatially varied properties. These scaffolds are based on combining an inorganic macromer (methacrylated star polydimethylsiloxane, PDMSstar-MA) and organic macromer (poly(ethylene glycol)diacrylate, PEG-DA) as well as both aqueous and organic fabrication solvents. Having previously demonstrated its bioactivity and osteoinductivity, PDMSstar-MA is a particularly powerful component to incorporate into instructive gradient scaffolds based on PEG-DA. The following parameters were varied to produce the different gradients or gradual transitions in: (1) the wt.% ratio of PDMSstar-MA to PEG-DA macromers, (2) the total wt.% macromer concentration, (3) the number average molecular weight (Mn) of PEG-DA and (4) the Mn of PDMSstar-MA. Upon dividing each scaffold into four "zones" perpendicular to the gradient, we were able to demonstrate the spatial variation in morphology, bioactivity, swelling and modulus. Among these gradient scaffolds are those in which swelling and modulus are conveniently decoupled. In addition to rapid screening of cell-material interactions, these scaffolds are well suited for regeneration of interfacial tissues (e.g. osteochondral tissues) that transition from one tissue type to another. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Strain gradient drives shear banding in metallic glasses

    NASA Astrophysics Data System (ADS)

    Tian, Zhi-Li; Wang, Yun-Jiang; Chen, Yan; Dai, Lan-Hong

    2017-09-01

    Shear banding is a nucleation-controlled process in metallic glasses (MGs) involving multiple temporal-spatial scales, which hinders a concrete understanding of its structural origin down to the atomic scale. Here, inspired by the morphology of composite materials, we propose a different perspective of MGs as a hard particle-reinforced material based on atomic-scale structural heterogeneity. The local stable structures indicated by a high level of local fivefold symmetry (L5FS) act as hard "particles" which are embedded in the relatively soft matrix. We demonstrate this concept by performing atomistic simulations of shear banding in CuZr MG. A shear band is prone to form in a sample with a high degree of L5FS which is slowly quenched from the liquid. An atomic-scale analysis on strain and the structural evolution reveals that it is the strain gradient effect that has originated from structural heterogeneity that facilitates shear transformation zones (STZs) to mature shear bands. An artificial composite model with a high degree of strain gradient, generated by inserting hard MG strips into a soft MG matrix, demonstrates a great propensity for shear banding. It therefore confirms the critical role strain gradient plays in shear banding. The strain gradient effect on shear banding is further quantified with a continuum model and a mechanical instability analysis. These physical insights might highlight the strain gradient as the hidden driving force in transforming STZs into shear bands in MGs.

  14. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  15. Modeling quantum yield, emittance, and surface roughness effects from metallic photocathodes

    DOE PAGES

    Dimitrov, D. A.; Bell, G. I.; Smedley, J.; ...

    2017-10-26

    Here, detailed measurements of momentum distributions of emitted electrons have allowed the investigation of the thermal limit of the transverse emittance from metal photocathodes. Furthermore, recent developments in material design and growth have resulted in photocathodes that can deliver high quantum efficiency and are sufficiently robust to use in high electric field gradient photoinjectors and free electron lasers. The growth process usually produces photoemissive material layers with rough surface profiles that lead to transverse accelerating fields and possible work function variations, resulting in emittance growth. To better understand the effects of temperature, density of states, and surface roughness on themore » properties of emitted electrons, we have developed realistic three-dimensional models for photocathode materials with grated surface structures. They include general modeling of electron excitation due to photon absorption, charge transport, and emission from flat and rough metallic surfaces. The models also include image charge and field enhancement effects. We report results from simulations with flat and rough surfaces to investigate how electron scattering, controlled roughness, work function variation, and field enhancement affect emission properties. Comparison of simulation results with measurements of the quantum yield and transverse emittance from flat Sb emission surfaces shows the importance of including efficient modeling of photon absorption, temperature effects, and the material density of states to achieve agreement with the experimental data.« less

  16. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    NASA Astrophysics Data System (ADS)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  17. Magnetic susceptibility induced echo time shifts: Is there a bias in age-related fMRI studies?

    PubMed Central

    Ngo, Giang-Chau; Wong, Chelsea N.; Guo, Steve; Paine, Thomas; Kramer, Arthur F.; Sutton, Bradley P.

    2016-01-01

    Purpose To evaluate the potential for bias in functional MRI (fMRI) aging studies resulting from age-related differences in magnetic field distributions which can impact echo time and functional contrast. Materials and Methods Magnetic field maps were taken on 31 younger adults (age: 22 ± 2.9 years) and 46 older adults (age: 66 ± 4.5 years) on a 3 T scanner. Using the spatial gradients of the magnetic field map for each participant, an echo planar imaging (EPI) trajectory was simulated. The effective echo time, time at which the k-space trajectory is the closest to the center of k-space, was calculated. This was used to examine both within-subject and across-age-group differences in the effective echo time maps. The Blood Oxygenation Level Dependent (BOLD) percent signal change resulting from those echo time shifts was also calculated to determine their impact on fMRI aging studies. Result For a single subject, the effective echo time varied as much as ± 5 ms across the brain. An unpaired t-test between the effective echo time across age group resulted in significant differences in several regions of the brain (p<0.01). The difference in echo time was only approximately 1 ms, however which is not expected to have an important impact on BOLD fMRI percent signal change (< 4%). Conclusion Susceptibility-induced magnetic field gradients induce local echo time shifts in gradient echo fMRI images, which can cause variable BOLD sensitivity across the brain. However, the age-related differences in BOLD signal are expected to be small for an fMRI study at 3 T. PMID:27299727

  18. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue engineering showing great promise, as changes in the behavior of the growing cells were observed as a result of the photochemical treatment of the material. We present these natural and readily available, polysaccharide-based, metal-coordination materials as convenient building blocks in the formulation of new stimuli responsive materials. The photochemical methods developed here can be used as convenient tools for creating advanced materials with tailored patterns and gradients of mechanical properties.

  19. The adsorption of NO, NH3, N2 on carbon surface: a density functional theory study.

    PubMed

    Wang, Jiayong; Yang, Mo; Deng, Debing; Qiu, Shuxia

    2017-08-11

    To explore the adsorption mechanism of NO, NH 3 , N 2 on a carbon surface, and the effect of basic and acidic functional groups, density functional theory was employed to investigate the interactions between these molecules and carbon surfaces. Molecular electrostatic potential, Mulliken population analyses, reduced density gradient, and Mayer bond order analyses were used to clarify the adsorption mechanism. The results indicate that van der Waals interactions are responsible for N 2 physisorption, and N 2 is the least likely to adsorb on a carbon surface. Modification of carbon materials to decorate basic or acidic functional groups could enhance the NH 3 physisorption because of hydrogen bonding or electrostatic interactions, however, NO physisorption on a carbon surface is poor. Zig-zag sites are more reactive than armchair sites when these gas molecules absorb on the edge sites of carbon surface. Graphical abstract NH 3 , N 2 , NO adsortion on carbon surface.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, andmore » recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob’s ladder classification of non-empirical density functionals.« less

  1. Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.

    PubMed

    Mejía-López, J; Velásquez, E A; Mazo-Zuluaga, J; Altbir, D

    2018-08-24

    By means of Monte Carlo simulations we studied field driven nucleation and propagation of transverse domain walls (DWs) in magnetic nanowires subjected to temperature gradients. Simulations identified the existence of critical thermal gradients that allow the existence of reversal processes driven by a single DW. Critical thermal gradients depend on external parameters such as temperature, magnetic field and wire length, and can be experimentally obtained through the measurement of the mean velocity of the magnetization reversal as a function of the temperature gradient. Our results show that temperature gradients provide a high degree of control over DW propagation, which is of great importance for technological applications.

  2. Convective and interfacial instabilities during solidification of succinonitrile containing ethanol

    NASA Technical Reports Server (NTRS)

    Schaefer, R. J.; Coriell, S. R.

    1982-01-01

    Even though slow convective flow is difficult to detect in solidifying metals, it can readily be observed in transparent materials by observing the motion of small neutrally buoyant particles. Succinonitrile, which solidifies with an unfaceted solid/liquid interface and has well characterized physical properties, is considered an excellent material for such studies. For studies of solute-induced convection, ethanol is a useful addition to succinonitrile since it has a lower density and a somewhat similar molecular structure. Samples of high purity and ethanol-doped succinonitrile are unidirectionally solidified in a vertical temperature gradient. Latex mimcrospheres 2 microns in diameter are suspended in the liquid to reveal the convective flow. Convective and morphological stability is observed as a function of solute concentration and growth velocity. These measurements are compared with theoretical calculations that predict the transition from stability to instability as a function of solidification conditions. The predicted transitions occur at low concentrations and solidification velocities; for this reason, extreme care must be taken in order to eliminate the effects of impurities or thermally induced convection.

  3. The anelastic Ericksen problem: universal eigenstrains and deformations in compressible isotropic elastic solids.

    PubMed

    Yavari, Arash; Goriely, Alain

    2016-12-01

    The elastic Ericksen problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is, we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains. In a nonlinear solid, these eigenstrains can be modelled by a Riemannian material manifold whose metric depends on their distribution. In this framework, we show that the natural generalization of the concept of homogeneous deformations is the notion of covariantly homogeneous deformations -deformations with covariantly constant deformation gradients. We prove that these deformations are the only universal deformations and that they put severe restrictions on possible universal eigenstrains . We show that, in a simply-connected body, for any distribution of universal eigenstrains the material manifold is a symmetric Riemannian manifold and that in dimensions 2 and 3 the universal eigenstrains are zero-stress.

  4. The anelastic Ericksen problem: universal eigenstrains and deformations in compressible isotropic elastic solids

    PubMed Central

    2016-01-01

    The elastic Ericksen problem consists of finding deformations in isotropic hyperelastic solids that can be maintained for arbitrary strain-energy density functions. In the compressible case, Ericksen showed that only homogeneous deformations are possible. Here, we solve the anelastic version of the same problem, that is, we determine both the deformations and the eigenstrains such that a solution to the anelastic problem exists for arbitrary strain-energy density functions. Anelasticity is described by finite eigenstrains. In a nonlinear solid, these eigenstrains can be modelled by a Riemannian material manifold whose metric depends on their distribution. In this framework, we show that the natural generalization of the concept of homogeneous deformations is the notion of covariantly homogeneous deformations—deformations with covariantly constant deformation gradients. We prove that these deformations are the only universal deformations and that they put severe restrictions on possible universal eigenstrains. We show that, in a simply-connected body, for any distribution of universal eigenstrains the material manifold is a symmetric Riemannian manifold and that in dimensions 2 and 3 the universal eigenstrains are zero-stress. PMID:28119554

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoynov, Y.; Dineva, P.

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamentalmore » solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.« less

  6. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.

    PubMed

    Weiss, Emily A

    2013-11-19

    In order to achieve efficient and reliable technology that can harness solar energy, the behavior of electrons and energy at interfaces between different types or phases of materials must be understood. Conversion of light to chemical or electrical potential in condensed phase systems requires gradients in free energy that allow the movement of energy or charge carriers and facilitate redox reactions and dissociation of photoexcited states (excitons) into free charge carriers. Such free energy gradients are present at interfaces between solid and liquid phases or between inorganic and organic materials. Nanostructured materials have a higher density of these interfaces than bulk materials. Nanostructured materials, however, have a structural and chemical complexity that does not exist in bulk materials, which presents a difficult challenge: to lower or eliminate energy barriers to electron and energy flux that inevitably result from forcing different materials to meet in a spatial region of atomic dimensions. Chemical functionalization of nanostructured materials is perhaps the most versatile and powerful strategy for controlling the potential energy landscape of their interfaces and for minimizing losses in energy conversion efficiency due to interfacial structural and electronic defects. Colloidal quantum dots are semiconductor nanocrystals synthesized with wet-chemical methods and coated in organic molecules. Chemists can use these model systems to study the effects of chemical functionalization of nanoscale organic/inorganic interfaces on the optical and electronic properties of a nanostructured material, and the behavior of electrons and energy at interfaces. The optical and electronic properties of colloidal quantum dots have an intense sensitivity to their surface chemistry, and their organic adlayers make them dispersible in solvent. This allows researchers to use high signal-to-noise solution-phase spectroscopy to study processes at interfaces. In this Account, I describe the varied roles of organic molecules in controlling the structure and properties of colloidal quantum dots. Molecules serve as surfactant that determines the mechanism and rate of nucleation and growth and the final size and surface structure of a quantum dot. Anionic surfactant in the reaction mixture allows precise control over the size of the quantum dot core but also drives cation enrichment and structural disordering of the quantum dot surface. Molecules serve as chemisorbed ligands that dictate the energetic distribution of surface states. These states can then serve as thermodynamic traps for excitonic charge carriers or couple to delocalized states of the quantum dot core to change the confinement energy of excitonic carriers. Ligands, therefore, in some cases, dramatically shift the ground state absorption and photoluminescence spectra of quantum dots. Molecules also act as protective layers that determine the probability of redox processes between quantum dots and other molecules. How much the ligand shell insulates the quantum dot from electron exchange with a molecular redox partner depends less on the length or degree of conjugation of the native ligand and more on the density and packing structure of the adlayer and the size and adsorption mode of the molecular redox partner. Control of quantum dot properties in these examples demonstrates that nanoscale interfaces, while complex, can be rationally designed to enhance or specify the functionality of a nanostructured system.

  7. Hemodynamic changes in systolic and diastolic function during isoproterenol challenge predicts symptomatic response to myectomy in hypertrophic cardiomyopathy with labile obstruction.

    PubMed

    Prasad, Megha; Geske, Jeffrey B; Sorajja, Paul; Ommen, Steve R; Schaff, Hartzell V; Gersh, Bernard J; Nishimura, Rick A

    2016-11-15

    We aimed to assess the utility of changes in systolic and diastolic function by isoproterenol challenge in predicting symptom resolution post-myectomy in selected patients with hypertrophic cardiomyopathy (HCM) and labile obstruction. In a subset of symptomatic HCM patients without resting/provocable obstruction on noninvasive assessment, isoproterenol challenge during hemodynamic catheterization may elicit labile left ventricular outflow tract (LVOT) obstruction, and demonstrate the effect of obstruction on diastolic function. These changes may determine whether patients achieve complete symptom resolution post-myectomy. Between February 2003 and April 2009, 18 symptomatic HCM patients without LVOT obstruction on noninvasive testing underwent isoproterenol provocation and septal myectomy due to presence of provocable gradient and were followed for 4 (IQR 3-7) years. Thirteen (72.2%) had complete symptom resolution, while 5 (27.8%) had improved, but persistent symptoms. Those with provoked gradient >100 mm Hg or increase in left atrial pressure (LAP) with isoproterenol had symptom resolution. Symptomatic HCM patients without LVOT gradient on noninvasive testing may demonstrate labile obstruction with isoproterenol. With isoproterenol, patients with high LVOT gradient or increase in LAP concomitant with an increase in gradient achieved complete symptom resolution post-myectomy. Thus, improved diastolic filling as well as outflow gradient production in patients with HCM may predict symptom response to myectomy. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Hierarchical Self-Assembly of Light Guided Spinning Microgears

    NASA Astrophysics Data System (ADS)

    Aubret, Antoine; Youssef, Mena; Sacanna, Stefano; Palacci, Jeremie; Sacanna Group, NYU Team

    2017-11-01

    In this work, we demonstrate the self-assembly of microgears obtained from the guided construction of tailored self-propelled particles used as primary building blocks. The experiment relies on our control of phoretic phenomena: the migration of particles in a solute gradient. We activate a photocatalytic material, the hematite, and trigger the decomposition of hydrogen peroxide to set concentration gradient. We use this effect to engineer phototactic swimmers, attracted to the region of high illumination. We guide the swimmers to form robust and highly persistent microgears. They interact with each other through hydrodynamics and diffusiophoretically through the chemical clouds of fuel consumption. Multiple rotors are studied and we specifically address the dynamics of two rotors. We show that the microgears move collectively or synchronize thanks to the interaction of their chemical clouds. Increasing the number of microrotors (N = 2 - 7), we form an active crystal which can rotate, re-organize, change shape, and exhibit phase synchronization between its individual components. Such crystal made of non-equilibrium rotating gears at the microscale is unique. Our study paves the way for better understanding and control of emergent phenomena in collection of active spinning particles. It is a promising avenue for the creation of cutting-edge materials using emergent behavior from hierarchical self-assembly to unveil untapped functionalities. This work is supported by NSF CAREER DMR 1554724.

  9. Tunable nano-wrinkling of chiral surfaces: Structure and diffraction optics

    NASA Astrophysics Data System (ADS)

    Rofouie, P.; Pasini, D.; Rey, A. D.

    2015-09-01

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations' amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC's surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.

  10. Measuring stress variation with depth using Barkhausen signals

    NASA Astrophysics Data System (ADS)

    Kypris, O.; Nlebedim, I. C.; Jiles, D. C.

    2016-06-01

    Magnetic Barkhausen noise analysis (BNA) is an established technique for the characterization of stress in ferromagnetic materials. An important application is the evaluation of residual stress in aerospace components, where shot-peening is used to strengthen the part by inducing compressive residual stresses on its surface. However, the evaluation of the resulting stress-depth gradients cannot be achieved by conventional BNA methods, where signals are interpreted in the time domain. The immediate alternative of using x-ray diffraction stress analysis is less than ideal, as the use of electropolishing to remove surface layers renders the part useless after inspection. Thus, a need for advancing the current BNA techniques prevails. In this work, it is shown how a parametric model for the frequency spectrum of Barkhausen emissions can be used to detect variations of stress along depth in ferromagnetic materials. Proof of concept is demonstrated by inducing linear stress-depth gradients using four-point bending, and fitting the model to the frequency spectra of measured Barkhausen signals, using a simulated annealing algorithm to extract the model parameters. Validation of our model suggests that in bulk samples the Barkhausen frequency spectrum can be expressed by a multi-exponential function with a dependence on stress and depth. One practical application of this spectroscopy method is the non-destructive evaluation of residual stress-depth profiles in aerospace components, thus helping to prevent catastrophic failures.

  11. Upscaling from particle models to entropic gradient flows

    NASA Astrophysics Data System (ADS)

    Dirr, Nicolas; Laschos, Vaios; Zimmer, Johannes

    2012-06-01

    We prove that, for the case of Gaussians on the real line, the functional derived by a time discretization of the diffusion equation as entropic gradient flow is asymptotically equivalent to the rate functional derived from the underlying microscopic process. This result strengthens a conjecture that the same statement is actually true for all measures with second finite moment.

  12. Discontinuous gradient differential equations and trajectories in the calculus of variations

    NASA Astrophysics Data System (ADS)

    Bogaevskii, I. A.

    2006-12-01

    The concept of gradient of smooth functions is generalized for their sums with concave functions. An existence, uniqueness, and continuous dependence theorem for increasing time is formulated and proved for solutions of an ordinary differential equation the right-hand side of which is the gradient of the sum of a concave and a smooth function. With the use of this result a physically natural motion of particles, well defined even at discontinuities of the velocity field, is constructed in the variational problem of the minimal mechanical action in a space of arbitrary dimension. For such a motion of particles in the plane all typical cases of the birth and the interaction of point clusters of positive mass are described.

  13. A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components.

    PubMed

    Ackerly, D D; Cornwell, W K

    2007-02-01

    Plant functional traits vary both along environmental gradients and among species occupying similar conditions, creating a challenge for the synthesis of functional and community ecology. We present a trait-based approach that provides an additive decomposition of species' trait values into alpha and beta components: beta values refer to a species' position along a gradient defined by community-level mean trait values; alpha values are the difference between a species' trait values and the mean of co-occurring taxa. In woody plant communities of coastal California, beta trait values for specific leaf area, leaf size, wood density and maximum height all covary strongly, reflecting species distributions across a gradient of soil moisture availability. Alpha values, on the other hand, are generally not significantly correlated, suggesting several independent axes of differentiation within communities. This trait-based framework provides a novel approach to integrate functional ecology and gradient analysis with community ecology and coexistence theory.

  14. Spin and charge thermopower effects in the ferromagnetic graphene junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahedi, Javad, E-mail: javahedi@gmail.com; Center for Theoretical Physics of Complex Systems, Institute for Basic Science; Barimani, Fattaneh

    2016-08-28

    Using wave function matching approach and employing the Landauer-Buttiker formula, a ferromagnetic graphene junction with temperature gradient across the system is studied. We calculate the thermally induced charge and spin current as well as the thermoelectric voltage (Seebeck effect) in the linear and nonlinear regimes. Our calculation revealed that due to the electron-hole symmetry, the charge Seebeck coefficient is, for an undoped magnetic graphene, an odd function of chemical potential while the spin Seebeck coefficient is an even function regardless of the temperature gradient and junction length. We have also found with an accurate tuning external parameter, namely, the exchangemore » filed and gate voltage, the temperature gradient across the junction drives a pure spin current without accompanying the charge current. Another important characteristic of thermoelectric transport, thermally induced current in the nonlinear regime, is examined. It would be our main finding that with increasing thermal gradient applied to the junction the spin and charge thermovoltages decrease and even become zero for non zero temperature bias.« less

  15. Spectral Diffusion: An Algorithm for Robust Material Decomposition of Spectral CT Data

    PubMed Central

    Clark, Darin P.; Badea, Cristian T.

    2014-01-01

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piece-wise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg/mL), gold (0.9 mg/mL), and gadolinium (2.9 mg/mL) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen. PMID:25296173

  16. Spectral diffusion: an algorithm for robust material decomposition of spectral CT data.

    PubMed

    Clark, Darin P; Badea, Cristian T

    2014-11-07

    Clinical successes with dual energy CT, aggressive development of energy discriminating x-ray detectors, and novel, target-specific, nanoparticle contrast agents promise to establish spectral CT as a powerful functional imaging modality. Common to all of these applications is the need for a material decomposition algorithm which is robust in the presence of noise. Here, we develop such an algorithm which uses spectrally joint, piecewise constant kernel regression and the split Bregman method to iteratively solve for a material decomposition which is gradient sparse, quantitatively accurate, and minimally biased. We call this algorithm spectral diffusion because it integrates structural information from multiple spectral channels and their corresponding material decompositions within the framework of diffusion-like denoising algorithms (e.g. anisotropic diffusion, total variation, bilateral filtration). Using a 3D, digital bar phantom and a material sensitivity matrix calibrated for use with a polychromatic x-ray source, we quantify the limits of detectability (CNR = 5) afforded by spectral diffusion in the triple-energy material decomposition of iodine (3.1 mg mL(-1)), gold (0.9 mg mL(-1)), and gadolinium (2.9 mg mL(-1)) concentrations. We then apply spectral diffusion to the in vivo separation of these three materials in the mouse kidneys, liver, and spleen.

  17. Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.

    PubMed

    Zhang, Lei; Le Coz-Botrel, Ronan; Beddoes, Charlotte; Sjöström, Terje; Su, Bo

    2017-01-17

    Titanium is a material commonly used for dental and orthopaedic implants. However, due to large differences in properties between the titanium metal and the natural bone, stress shielding has been observed in the surrounding area, resulting in bone atrophy, and thus has raised concerns of the use of this material. Ideally implant materials should possess similar properties to the surrounding tissues in order to distribute the load as the joint would naturally, while also possessing a similar porous structure to the bone to enable interaction with the surrounding material. In this paper we report the formation of aligned porous titanium alloy scaffolds with the use of unidirectional freeze casting with a temperature gradient. The resulting scaffolds had a dense bottom part with sufficient strength for loading, while the top part remaining porous in order to allow bone growth in the scaffold and fully integrating with the surrounding tissue. The anisotropic nature of the pores within the titanium alloy samples were observed via micro computed tomography, where a gradient structure similar to bone was observed. The compressive strength of the fabricated scaffolds was found to be up to 427 MPa when measured with the pores aligned with the applied load, depending on the pore density. This is within the range of cortical bone.

  18. Some opinions about matter and material substances: from inanimate system -- to living according to A. Einstein general theory of relativity.

    PubMed

    Topuria, T; Gogebashvili, N; Korsantia, B

    2005-11-01

    During transformation from inanimate to living, change of the space position of the matter causes the change of the field, as the space does not exist without the field, therefore the time-space as the properties of material substances, should undergo certain changes. The outside inanimate system, in this case a matrix, has its own time. The living system, in this case a cell, where the matter undergoes space conformation with the change of field and space-time, has its own time and it has begun to flow more rapidly than in matrix. From the surface of the body, from different energetic reservoirs oppositely charged matter substances following from special transport systems from the life system transmitted into lifeless one and change their matter space conformation, create transmission gradient that is the gradient border of time from lifeless system into live. In the case of a human, hypothetically, the gradient system of time must be of a complex scheme counting the inter-transformation and interaction gradients of outer and inner abdominal systems. Subconscious and consciousness by means of special links and messages, information selection interact and form unique connection between the systems. Subconscious serves for accelerated time system. Conscious by means of permanent contact with the environment collects and reacts in matrix time system By interconnection of these two systems ideal adaptation with the environment takes place. Time difference gradient system is an additional energy factor, by means of which respective ordered geometrical structures special for the given types are formed. The living organism is an inter-regulated interconnection global system resulting from the changes of matter and material substances space configuration.

  19. Establishing Functional Relationships between Abiotic Environment, Macrophyte Coverage, Resource Gradients and the Distribution of Mytilus trossulus in a Brackish Non-Tidal Environment.

    PubMed

    Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen

    2015-01-01

    Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels.

  20. Establishing Functional Relationships between Abiotic Environment, Macrophyte Coverage, Resource Gradients and the Distribution of Mytilus trossulus in a Brackish Non-Tidal Environment

    PubMed Central

    Kotta, Jonne; Oganjan, Katarina; Lauringson, Velda; Pärnoja, Merli; Kaasik, Ants; Rohtla, Liisa; Kotta, Ilmar; Orav-Kotta, Helen

    2015-01-01

    Benthic suspension feeding mussels are an important functional guild in coastal and estuarine ecosystems. To date we lack information on how various environmental gradients and biotic interactions separately and interactively shape the distribution patterns of mussels in non-tidal environments. Opposing to tidal environments, mussels inhabit solely subtidal zone in non-tidal waterbodies and, thereby, driving factors for mussel populations are expected to differ from the tidal areas. In the present study, we used the boosted regression tree modelling (BRT), an ensemble method for statistical techniques and machine learning, in order to explain the distribution and biomass of the suspension feeding mussel Mytilus trossulus in the non-tidal Baltic Sea. BRT models suggested that (1) distribution patterns of M. trossulus are largely driven by separate effects of direct environmental gradients and partly by interactive effects of resource gradients with direct environmental gradients. (2) Within its suitable habitat range, however, resource gradients had an important role in shaping the biomass distribution of M. trossulus. (3) Contrary to tidal areas, mussels were not competitively superior over macrophytes with patterns indicating either facilitative interactions between mussels and macrophytes or co-variance due to common stressor. To conclude, direct environmental gradients seem to define the distribution pattern of M. trossulus, and within the favourable distribution range, resource gradients in interaction with direct environmental gradients are expected to set the biomass level of mussels. PMID:26317668

  1. Gradients of microhabitat and crappie (Pomoxis spp.) distributions in reservoir coves

    USGS Publications Warehouse

    Kaczka, Levi J.; Miranda, Leandro E.

    2013-01-01

    Embayments are among the most widespread littoral habitats found in Mississippi flood-control reservoirs. These macrohabitats represent commonly used nursery zones for age-0 crappies, Pomoxis spp., despite barren and eroded shorelines formed over 60–70 years of annual water level fluctuations. We tested if embayments displayed microhabitat gradients linked to the effect of water level fluctuations on riparian vegetation and if these gradients were paralleled by gradients in age-0 crappie distribution. Habitat composition changed longitudinally along the embayments with the most pronounced gradient representing a shift from nonvegetated mudflats near the mouth of embayments to herbaceous material upstream. The degree of habitat change depended on the water level. Similarly, catch rates of crappies increased upstream toward the rear of embayments, differing among water levels and reservoirs, but the longitudinal pattern persisted. Our results indicate that habitat composition gradients occur in embayments of northwest Mississippi flood-control reservoirs and that these gradients may influence a similar gradient in age-0 crappie distribution. While the biotic interactions behind the gradients may be less clear, we speculate that water level is the main factor influencing the observed gradients in habitat composition and fish. Management to benefit age-0 crappies may involve habitat improvement along embayment shorelines and water level regimes that foster growth of herbaceous plants.

  2. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    PubMed

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  3. On the combined gradient-stochastic plasticity model: Application to Mo-micropillar compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinidis, A. A., E-mail: akonsta@civil.auth.gr; Zhang, X., E-mail: zhangxu26@126.com; Aifantis, E. C., E-mail: mom@mom.gen.auth.gr

    2015-02-17

    A formulation for addressing heterogeneous material deformation is proposed. It is based on the use of a stochasticity-enhanced gradient plasticity model implemented through a cellular automaton. The specific application is on Mo-micropillar compression, for which the irregularities of the strain bursts observed have been experimentally measured and theoretically interpreted through Tsallis' q-statistics.

  4. Material and Optical Densities

    ERIC Educational Resources Information Center

    Gluck, Paul

    2007-01-01

    The bending of a laser beam in a medium with a density and refractive index gradient in the same direction has been described previously. When a transparent container is half filled with a salt or sugar solution and an equal amount of water is floated on top of it, then diffusion will create a concentration gradient from top to bottom. A laser…

  5. Modeling of silicon in femtosecond laser-induced modification regimes: accounting for ambipolar diffusion

    NASA Astrophysics Data System (ADS)

    Derrien, Thibault J.-Y.; Bulgakova, Nadezhda M.

    2017-05-01

    During the last decades, femtosecond laser irradiation of materials has led to the emergence of various applications based on functionalization of surfaces at the nano- and microscale. Via inducing a periodic modification on material surfaces (band gap modification, nanostructure formation, crystallization or amorphization), optical and mechanical properties can be tailored, thus turning femtosecond laser to a key technology for development of nanophotonics, bionanoengineering, and nanomechanics. Although modification of semiconductor surfaces with femtosecond laser pulses has been studied for more than two decades, the dynamics of coupling of intense laser light with excited matter remains incompletely understood. In particular, swift formation of a transient overdense electron-hole plasma dynamically modifies optical properties in the material surface layer and induces large gradients of hot charge carriers, resulting in ultrafast charge-transport phenomena. In this work, the dynamics of ultrafast laser excitation of a semiconductor material is studied theoretically on the example of silicon. A special attention is paid to the electron-hole pair dynamics, taking into account ambipolar diffusion effects. The results are compared with previously developed simulation models, and a discussion of the role of charge-carrier dynamics in localization of material modification is provided.

  6. Nanoscale Thermoelectrics: A Study of the Absolute Seebeck Coefficient of Thin Films

    NASA Astrophysics Data System (ADS)

    Mason, Sarah J.

    The worlds demand for energy is ever increasing. Likewise, the environmental impact of climate change due generating that energy through combustion of fossil fuels is increasingly alarming. Due to these factors new sources of renewable energies are constantly being sought out. Thermoelectric devices have the ability to generate clean, renewable, energy out of waste heat. However promising that is, their inefficiency severely inhibits applicability and practical use. The usefulness of a thermoelectric material increases with the dimensionless quantity, ZT, which depends on the Seebeck coefficient and electrical and thermal conductivity. These characteristic material parameters have interdependent energy transport contributions that classically prohibit the optimization of one with out the detriment of another. Encouraging advancements of ZT have occurred in the past ten years due to the decoupling of the thermal and electrical conductivity. Further advancements are necessary in order to produce applicable devices. One auspicious way of decoupling or tuning energy transport properties, is through size reduction to the nanoscale. However, with reduced dimensions come complications in measuring material properties. Measurements of properties such as the Seebeck coefficient, S, are primarily contingent upon the measurement apparatus. The Seebeck coefficient is defined as the amount of voltage generated by a thermal gradient. Measuring a thermally generated voltage by traditional methods gives, the voltage measured as a linear function of the Seebeck coefficient of the leads and of the material being tested divided by the applied thermal gradient. If accurate values of the Seebeck coefficients of the leads are available, simple subtraction provides the answer. This is rarely the case in nanoscale measurement devices with leads exclusively made from thin film materials that do not have well known bulk-like thermopower values. We have developed a technique to directly measure, S, as a function of temperature using a micro-machined thermal isolation platform consisting of a suspended, patterned SiN membrane. By measuring a series of thicknesses of metallic films up to the infinitely thin film limit, in which the electrical resistivity is no longer decreasing with increasing film thickness, but still not at bulk values, along with the effective electron mean free path, we are able to show the contribution of the leads needed to measure this property. Having a comprehensive understanding of the background contribution we are able to determine the absolute Seebeck coefficient of a wide variety of thin films. The nature of the design of the SiN membrane also allows the ability to accurately and directly measure thermal and electrical transport of the thin films yielding a comprehensive measurement of the three quantities that characterize a material's efficiency. This can serve to further the development of thermoelectric materials through precise measurements of the material properties that dictate efficiency.

  7. First-principles calculations for elastic properties of OsB 2 under pressure

    NASA Astrophysics Data System (ADS)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  8. Solid-state structures and properties of scandium hydride; hydrogen storage and switchable mirrors application

    NASA Astrophysics Data System (ADS)

    Khodja, Khadidja; Bouhadda, Youcef; Seddik, Larbi; Benyelloul, Kamel

    2016-05-01

    First-principles calculation has been performed on the rare earth hydride ScH2 for hydrogen storage and switchable mirror applications, using the pseudo-potentials and plane waves based on the density-functional theory (DFT). The electronic and structural properties are studied within both local-density and generalized gradient approximations for exchange energy. The formation energy and the optical properties have been investigated and discussed. Our calculated results are generally in good agreement with theoretical and experimental data. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  9. Method for single crystal growth of photovoltaic perovskite material and devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinsong; Dong, Qingfeng

    Systems and methods for perovskite single crystal growth include using a low temperature solution process that employs a temperature gradient in a perovskite solution in a container, also including at least one small perovskite single crystal, and a substrate in the solution upon which substrate a perovskite crystal nucleates and grows, in part due to the temperature gradient in the solution and in part due to a temperature gradient in the substrate. For example, a top portion of the substrate external to the solution may be cooled.

  10. Method and means for a spatial and temporal probe for laser-generated plumes based on density gradients

    DOEpatents

    Yeung, E.S.; Chen, G.

    1990-05-01

    A method and means are disclosed for a spatial and temporal probe for laser generated plumes based on density gradients includes generation of a plume of vaporized material from a surface by an energy source. The probe laser beam is positioned so that the plume passes through the probe laser beam. Movement of the probe laser beam caused by refraction from the density gradient of the plume is monitored. Spatial and temporal information, correlated to one another, is then derived. 15 figs.

  11. Reinforcement of mono- and bi-layer poly(ethylene glycol) hydrogels with a fibrous collagen scaffold

    PubMed Central

    Kinneberg, K. R. C.; Nelson, A.; Stender, M.; Aziz, A. H.; Mozdzen, L. C.; Harley, B. A. C.; Bryant, S. J.; Ferguson, V. L.

    2015-01-01

    Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bilayer, multi-phase hydrogel interpenetrated with a fibrous collagen scaffold. ‘Soft’ 10% (w/w) and ‘stiff’ 30% (w/w) PEGDM was formed into mono- or bilayer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single- (hydrogel only) or multi-phase (hydrogel+fibrous scaffold penetrating throughout the stiff layer and extending >500μm into the soft layer). Including a fibrous scaffold into both soft and stiff single-phase hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. In multi-phase hydrogels, finite element simulations predict substantially reduced stress and strain gradients across the soft—stiff hydrogel interface. When combining two low moduli constituent material, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function – the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion. PMID:26001970

  12. The role of the CeO 2 /BiVO 4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes

    DOE PAGES

    Shinde, A.; Li, G.; Zhou, L.; ...

    2016-09-09

    Solar fuel generators entail a high degree of materials integration, and efficient photoelectrocatalysis of the constituent reactions hinges upon the establishment of highly functional interfaces. Our recent application of high throughput experimentation to interface discovery for solar fuels photoanodes has revealed several surprising and promising mixed-metal oxide coatings for BiVO 4. Furthermore, when using sputter deposition of composition and thickness gradients on a uniform BiVO 4 film, we systematically explore photoanodic performance as a function of the composition and loading of Fe–Ce oxide coatings. This combinatorial materials integration study not only enhances the performance of this new class of materialsmore » but also identifies CeO 2 as a critical ingredient that merits detailed study. A heteroepitaxial CeO 2(001)/BiVO4(010) interface is identified in which Bi and V remain fully coordinated to O such that no surface states are formed. Ab initio calculations of the integrated materials and inspection of the electronic structure reveals mechanisms by which CeO 2 facilitates charge transport while mitigating deleterious recombination. Our results support the observations that addition of Ce to BiVO 4 coatings greatly enhances photoelectrocatalytic activity, providing an important strategy for developing a scalable solar fuels technology.« less

  13. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE PAGES

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    2018-02-14

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  14. Nonempirical Semilocal Free-Energy Density Functional for Matter under Extreme Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasiev, Valentin V.; Dufty, James W.; Trickey, S. B.

    The potential for density functional calculations to predict the properties of matter under extreme conditions depends crucially upon having a non-empirical approximate free energy functional valid over a wide range of state conditions. Unlike the ground-state case, no such free-energy exchange- correlation (XC) functional exists. We remedy that with systematic construction of a generalized gradient approximation XC free-energy functional based on rigorous constraints, including the free energy gradient expansion. The new functional provides the correct temperature dependence in the slowly varying regime and the correct zero-T, high-T, and homogeneous electron gas limits. Application in Kohn-Sham calculations for hot electrons inmore » a static fcc Aluminum lattice demon- strates the combined magnitude of thermal and gradient effects handled by this functional. Its accuracy in the increasingly important warm dense matter regime is attested by excellent agreement of the calculated deuterium equation of state with reference path integral Monte Carlo results at intermediate and elevated temperatures and by low density Al calculations over a wide T range.« less

  15. Polychaete functional diversity in shallow habitats: Shelter from the storm

    NASA Astrophysics Data System (ADS)

    Wouters, Julia M.; Gusmao, Joao B.; Mattos, Gustavo; Lana, Paulo

    2018-05-01

    Innovative approaches are needed to help understanding how species diversity is related to the latitudinal gradient at large or small scales. We have applied a novel approach, by combining morphological and biological traits, to assess the relative importance of the large scale latitudinal gradient and regional morphodynamic drivers in shaping the functional diversity of polychaete assemblages in shallow water habitats, from exposed to estuarine sandy beaches. We used literature data on polychaetes from beaches along the southern and southeastern Brazilian coast together with data on beach types, slope, grain size, temperature, salinity, and chlorophyll a concentration. Generalized linear models on the FDis index for functional diversity calculated for each site and a combined RLQ and fourth-corner analysis were used to investigate relationships between functional traits and environmental variables. Functional diversity was not related to the latitudinal gradient but negatively correlated with grain size and beach slope. Functional diversity was highest in flat beaches with small grain size, little wave exposure and enhanced primary production, indicating that small scale morphodynamic conditions are the primary drivers of polychaete functional diversity.

  16. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.

    PubMed

    Ng, Joanna L; Collins, Ciara E; Knothe Tate, Melissa L

    2017-07-01

    Nonwoven and textile membranes have been applied both externally and internally to prescribe boundary conditions for medical conditions as diverse as oedema and tissue defects. Incorporation of mechanical gradients in next generation medical membrane design offers great potential to enhance function in a dynamic, physiological context. Yet the gradient properties and resulting mechanical performance of current membranes are not well described. To bridge this knowledge gap, we tested and compared the mechanical properties of bounding membranes used in both external (compression sleeves for oedema, exercise bands) and internal (surgical membranes) physiological contexts. We showed that anisotropic compression garment textiles, isotropic exercise bands and surgical membranes exhibit similar ranges of resistance to tension under physiologic strains. However, their mechanical gradients and resulting stress-strain relationships show differences in work capacity and energy expenditure. Exercise bands' moduli of elasticity and respective thicknesses allow for controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. In contrast, the gradients intrinsic to compression sleeve design exhibit gaps in the middle range (1-5N) of physiological strains and also inconsistencies along the length of the sleeve, resulting in less than optimal performance of these devices. These current shortcomings in compression textile and garment design may be addressed in the future through implementation of novel approaches. For example, patterns, fibre compositions, and fibre anisotropy can be incorporated into biomaterial design to achieve seamless mechanical gradients in structure and resulting dynamic function, which would be particularly useful in physiological contexts. These concepts can be applied further to biomaterial design to deliver pressure gradients during movement of oedematous limbs (compression garments) and facilitate transport of molecules and cells during tissue genesis within tissue defects (surgical membranes). External and internal biomaterial membranes prescribe boundary conditions for treatment of medical disorders, from oedema to tissue defects. Studies are needed to guide the design of next generation biomaterials and devices that incorporate gradient engineering approaches, which offer great potential to enhance function in a dynamic and physiological context. Mechanical gradients intrinsic to currently implemented biomaterials such as medical textiles and surgical interface membranes are poorly understood. Here we characterise quantitatively the mechanics of textile and nonwoven biomaterial membranes for external and internal use. The lack of seamless gradients in compression medical textiles contrasts with the graded mechanical effects achieved by elastomeric exercise bands, which are designed to deliver controlled, incremental increases in loading to facilitate healing as injured tissues return to normal structure and function. Engineering textiles with a prescient choice of fibre composition/size, type of knit/weave and inlay fibres, and weave density/anisotropy will enable creation of fabrics that can deliver spatially and temporally controlled mechanical gradients to maintain force balances at tissue boundaries, e.g. to treat oedema or tissue defects. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Functional integrative levels in the human interactome recapitulate organ organization.

    PubMed

    Souiai, Ouissem; Becker, Emmanuelle; Prieto, Carlos; Benkahla, Alia; De las Rivas, Javier; Brun, Christine

    2011-01-01

    Interactome networks represent sets of possible physical interactions between proteins. They lack spatio-temporal information by construction. However, the specialized functions of the differentiated cell types which are assembled into tissues or organs depend on the combinatorial arrangements of proteins and their physical interactions. Is tissue-specificity, therefore, encoded within the interactome? In order to address this question, we combined protein-protein interactions, expression data, functional annotations and interactome topology. We first identified a subnetwork formed exclusively of proteins whose interactions were observed in all tested tissues. These are mainly involved in housekeeping functions and are located at the topological center of the interactome. This 'Largest Common Interactome Network' represents a 'functional interactome core'. Interestingly, two types of tissue-specific interactions are distinguished when considering function and network topology: tissue-specific interactions involved in regulatory and developmental functions are central whereas tissue-specific interactions involved in organ physiological functions are peripheral. Overall, the functional organization of the human interactome reflects several integrative levels of functions with housekeeping and regulatory tissue-specific functions at the center and physiological tissue-specific functions at the periphery. This gradient of functions recapitulates the organization of organs, from cells to organs. Given that several gradients have already been identified across interactomes, we propose that gradients may represent a general principle of protein-protein interaction network organization.

  18. Fungal communities and functional guilds shift along an elevational gradient in the southern Appalachian Mountains

    Treesearch

    Allison M. Veach; C. Elizabeth Stokes; Jennifer Knoepp; Ari Jumpponen; Richard Baird

    2017-01-01

    Nitrogen deposition alters forest ecosystems particularly in high elevation, montane habitats where nitrogen deposition is greatest and continues to increase. We collected soils across an elevational (788–1940 m) gradient, encompassing both abiotic (soil chemistry) and biotic (vegetation community) gradients, at eight locations in the southern Appalachian...

  19. Uniform gradient estimates on manifolds with a boundary and applications

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Juan; Thalmaier, Anton; Thompson, James

    2018-04-01

    We revisit the problem of obtaining uniform gradient estimates for Dirichlet and Neumann heat semigroups on Riemannian manifolds with boundary. As applications, we obtain isoperimetric inequalities, using Ledoux's argument, and uniform quantitative gradient estimates, firstly for C^2_b functions with boundary conditions and then for the unit spectral projection operators of Dirichlet and Neumann Laplacians.

  20. Investigating the roots of successful IT adoption processes - an empirical study exploring the shared awareness-knowledge of Directors of Nursing and Chief Information Officers.

    PubMed

    Liebe, J D; Hüsers, J; Hübner, U

    2016-01-27

    The majority of health IT adoption research focuses on the later stages of the IT adoption process: namely on the implementation phase. The first stage, however, which is defined as the knowledge-stage, remains widely unobserved. Following Rogers' Diffusion of Innovation Theory (DOI) this paper presents a research framework to examine the possible lack of shared IT awareness-knowledge, i.e. an information gradient, of two crucial stakeholders, the Chief Information Officer (CIO) and the Director of Nursing (DoN). This study shall answer the following research questions: (1.) Does this gradient exist? (2.) Which direction does it have? (3.) Are certain health IT (HIT) attributes associated with a potential gradient? (4.) Which determinants of diffusion go along with this gradient? Results of two surveys that focused on the topic "IT support of clinical workflows" from the viewpoint of CIOs and DoNs with corresponding datasets from 75 hospitals were used in a secondary data analysis. The gradient was operationalised by measuring the disagreement of CIOs and DoNs on the availability and implementation status of 29 IT functions. HIT attributes tested were relevance and market penetration of the IT functions, determinants of diffusion were inter-professional leadership and IT service density. The analysis revealed a significant disagreement on the availability of 9 out of 29 HIT functions. In 23 HIT functions, the CIOs reported a higher implementation status than the DoNs, which pointed to a trend for a unidirectional gradient. The disagreement was significantly lower when the relevance of the IT function was high. Both determinants of diffusion correlated significantly negative with the degree of disagreement. This is the first study to empirically examine shared awareness-knowledge of two IT-stakeholders that are crucial for triggering IT adoption on the frontline level in hospitals. It could be shown that a gradient and thus a lack of shared awareness-knowledge existed and was associated with certain factors. In conclusion, hospitals should implement improved cooperation between IT staff and clinicians and IT service density when establishing the prerequisites for successful IT adoption processes.

  1. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex.

    PubMed

    Olulade, O A; Flowers, D L; Napoliello, E M; Eden, G F

    2015-01-01

    fMRI studies using a region-of-interest approach have revealed that the ventral portion of the left occipito-temporal cortex, which is specialized for orthographic processing of visually presented words (and includes the so-called "visual word form area", VWFA), is characterized by a posterior-to-anterior gradient of increasing selectivity for words in typically reading adults, adolescents, and children (e.g. Brem et al., 2006, 2009). Similarly, the left inferior frontal cortex (IFC) has been shown to exhibit a medial-to-lateral gradient of print selectivity in typically reading adults (Vinckier et al., 2007). Functional brain imaging studies of dyslexia have reported relative underactivity in left hemisphere occipito-temporal and inferior frontal regions using whole-brain analyses during word processing tasks. Hence, the question arises whether gradient sensitivities in these regions are altered in dyslexia. Indeed, a region-of-interest analysis revealed the gradient-specific functional specialization in the occipito-temporal cortex to be disrupted in dyslexic children (van der Mark et al., 2009). Building on these studies, we here (1) investigate if a word-selective gradient exists in the inferior frontal cortex in addition to the occipito-temporal cortex in normally reading children, (2) compare typically reading with dyslexic children, and (3) examine functional connections between these regions in both groups. We replicated the previously reported anterior-to-posterior gradient of increasing selectivity for words in the left occipito-temporal cortex in typically reading children, and its absence in the dyslexic children. Our novel finding is the detection of a pattern of increasing selectivity for words along the medial-to-lateral axis of the left inferior frontal cortex in typically reading children and evidence of functional connectivity between the most lateral aspect of this area and the anterior aspects of the occipito-temporal cortex. We report absence of an IFC gradient and connectivity between the lateral aspect of the IFC and the anterior occipito-temporal cortex in the dyslexic children. Together, our results provide insights into the source of the anomalies reported in previous studies of dyslexia and add to the growing evidence of an orthographic role of IFC in reading.

  2. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  3. Electronic and Magnetic Structures, Magnetic Hyperfine Fields and Electric Field Gradients in UX3 (X = In, Tl, Pb) Intermetallic Compounds

    NASA Astrophysics Data System (ADS)

    Khan, Sajid; Yazdani-Kachoei, Majid; Jalali-Asadabadi, Saeid; Farooq, Muhammad Bilal; Ahmad, Iftikhar

    2018-02-01

    Cubic uranium compounds such as UX3 (X is a non-transition element of groups IIIA or IVA) exhibit highly diverse magnetic properties, including Pauli paramagnetism, spin fluctuation and anti-ferromagnetism. In the present paper, we explore the structural, electronic and magnetic properties as well as the hyperfine fields (HFFs) and electric field gradients (EFGs) with quadrupole coupling constant of UX3 (X = In, Tl, Pb) compounds using local density approximation, Perdew-Burke-Ernzerhof parametrization of generalized gradient approximation (PBE-GGA) including the Hubbard U parameter (GGA + U), a revised version of PBE-GGA that improves equilibrium properties of densely packed solids and their surfaces (PBEsol-GGA), and a hybrid functional (HF-PBEsol). The spin orbit-coupling calculations have been added to investigate the relativistic effect of electrons in these materials. The comparison between the experimental parameters and our calculated structural parameters we confirm the consistency and effectiveness of our theoretical tools. The computed magnetic moments show that magnetic moment increases from indium to lead in the UX3 family, and all these compounds are antiferromagnetic in nature. The EFGs and HFFs, as well as the quadrupole coupling constant of UX3 (X = In, Tl, Pb), are discussed in detail. These properties primarily originate from f and p states of uranium and post-transition sites.

  4. [Terrain gradient effect of ecosystem service value in middle reach of Yangtze River, China].

    PubMed

    Yang, Suo Hua; Hu, Shou Geng; Qu, Shi Jin

    2018-03-01

    Using land use data in the year 1995, 2005 and 2014, this study estimated the ecosystem service value (ESV) in each county located in the middle reach of Yangtze River and analyzed its spatiotemporal variation features and terrain gradient effects based on "the equivalent value per unit area of ecosystem services in China". The results showed that ESV in the middle reach of Yangtze River was generally higher in mountainous area but lower in plain region, with an obvious terrain gradient effect. Specifically, the relationship of the relief degree of land surface (RDLS) and the ESV showed significant logarithm function at county scale with a high curve fitting degree of 0.53. The ESV increased from 400.35×10 4 yuan·km -2 to 554.57×10 4 yuan·km -2 with the increasing RDLS (grade 1-5) in 2014. During 1995-2004, the ecosystem service value variation changed from decreasing to stable with the increases of the RDLS. With a perspective of ecosystem service values, the value of food production and waste treatment service value decreased with the increase of the RDLS, while the others increased in general, such as the production of raw materials and gas regulation service value, because of the influences of dynamic land use structure in varied topography and distinct dominant ecosystem services from different land types.

  5. MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids.

    PubMed

    Yu, Haoyu S; He, Xiao; Truhlar, Donald G

    2016-03-08

    Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology.

  6. Magnified gradient function with deterministic weight modification in adaptive learning.

    PubMed

    Ng, Sin-Chun; Cheung, Chi-Chung; Leung, Shu-Hung

    2004-11-01

    This paper presents two novel approaches, backpropagation (BP) with magnified gradient function (MGFPROP) and deterministic weight modification (DWM), to speed up the convergence rate and improve the global convergence capability of the standard BP learning algorithm. The purpose of MGFPROP is to increase the convergence rate by magnifying the gradient function of the activation function, while the main objective of DWM is to reduce the system error by changing the weights of a multilayered feedforward neural network in a deterministic way. Simulation results show that the performance of the above two approaches is better than BP and other modified BP algorithms for a number of learning problems. Moreover, the integration of the above two approaches forming a new algorithm called MDPROP, can further improve the performance of MGFPROP and DWM. From our simulation results, the MDPROP algorithm always outperforms BP and other modified BP algorithms in terms of convergence rate and global convergence capability.

  7. Bioinspired large-scale aligned porous materials assembled with dual temperature gradients

    PubMed Central

    Bai, Hao; Chen, Yuan; Delattre, Benjamin; Tomsia, Antoni P.; Ritchie, Robert O.

    2015-01-01

    Natural materials, such as bone, teeth, shells, and wood, exhibit outstanding properties despite being porous and made of weak constituents. Frequently, they represent a source of inspiration to design strong, tough, and lightweight materials. Although many techniques have been introduced to create such structures, a long-range order of the porosity as well as a precise control of the final architecture remain difficult to achieve. These limitations severely hinder the scale-up fabrication of layered structures aimed for larger applications. We report on a bidirectional freezing technique to successfully assemble ceramic particles into scaffolds with large-scale aligned, lamellar, porous, nacre-like structure and long-range order at the centimeter scale. This is achieved by modifying the cold finger with a polydimethylsiloxane (PDMS) wedge to control the nucleation and growth of ice crystals under dual temperature gradients. Our approach could provide an effective way of manufacturing novel bioinspired structural materials, in particular advanced materials such as composites, where a higher level of control over the structure is required. PMID:26824062

  8. Covariation in Plant Functional Traits and Soil Fertility within Two Species-Rich Forests

    PubMed Central

    Liu, Xiaojuan; Swenson, Nathan G.; Wright, S. Joseph; Zhang, Liwen; Song, Kai; Du, Yanjun; Zhang, Jinlong; Mi, Xiangcheng; Ren, Haibao; Ma, Keping

    2012-01-01

    The distribution of plant species along environmental gradients is expected to be predictable based on organismal function. Plant functional trait research has shown that trait values generally vary predictably along broad-scale climatic and soil gradients. This work has also demonstrated that at any one point along these gradients there is a large amount of interspecific trait variation. The present research proposes that this variation may be explained by the local-scale sorting of traits along soil fertility and acidity axes. Specifically, we predicted that trait values associated with high resource acquisition and growth rates would be found on soils that are more fertile and less acidic. We tested the expected relationships at the species-level and quadrat-level (20×20 m) using two large forest plots in Panama and China that contain over 450 species combined. Predicted relationships between leaf area and wood density and soil fertility were supported in some instances, but the majority of the predicted relationships were rejected. Alternative resource axes, such as light gradients, therefore likely play a larger role in determining the interspecific variability in plant functional traits in the two forests studied. PMID:22509355

  9. Gradient descent for robust kernel-based regression

    NASA Astrophysics Data System (ADS)

    Guo, Zheng-Chu; Hu, Ting; Shi, Lei

    2018-06-01

    In this paper, we study the gradient descent algorithm generated by a robust loss function over a reproducing kernel Hilbert space (RKHS). The loss function is defined by a windowing function G and a scale parameter σ, which can include a wide range of commonly used robust losses for regression. There is still a gap between theoretical analysis and optimization process of empirical risk minimization based on loss: the estimator needs to be global optimal in the theoretical analysis while the optimization method can not ensure the global optimality of its solutions. In this paper, we aim to fill this gap by developing a novel theoretical analysis on the performance of estimators generated by the gradient descent algorithm. We demonstrate that with an appropriately chosen scale parameter σ, the gradient update with early stopping rules can approximate the regression function. Our elegant error analysis can lead to convergence in the standard L 2 norm and the strong RKHS norm, both of which are optimal in the mini-max sense. We show that the scale parameter σ plays an important role in providing robustness as well as fast convergence. The numerical experiments implemented on synthetic examples and real data set also support our theoretical results.

  10. Elimination of Trans-coarctation Pressure Gradients Has No Impact on Left Ventricular Function or Aortic Shear Stress Post Intervention in Patients with Mild Coarctation

    PubMed Central

    Keshavarz-Motamed, Zahra; Nezami, Farhad Rikhtegar; Partida, Ramon A.; Nakamura, Kenta; Staziaki, Pedro Vinícius; Ben-Assa, Eyal; Ghoshhajra, Brian; Bhatt, Ami B.; Edelman, Elazer R.

    2017-01-01

    OBJECTIVES To investigate the impact of transcatheter intervention on left ventricular (LV) function and aortic hemodynamics in patients with mild coarctation of the aorta (COA). BACKGROUND The optimal method and timing of transcatheter intervention for COA remains unclear, especially when the severity of COA is mild (peak-to-peak trans-coarctation pressure gradient, PKdP < 20 mmHg). Debate rages regarding the risk/benefit ratio of intervention vs. long-term effects of persistent minimal gradient in this heterogeneous population with differing blood pressures, ventricular function and peripheral perfusion. METHODS We developed a unique computational fluid dynamics and lumped parameter modeling framework based on patient-specific hemodynamic input parameters and validated it against patient-specific clinical outcomes (pre- and post-intervention). We used clinically measured hemodynamic metrics and imaging of the aorta and the LV in thirty-four patients with mild COA to make these correlations. RESULTS Despite dramatic reduction in trans-coarctation pressure gradient (catheter and Doppler echocardiography pressure gradients reduced 75% and 47.3%,), there was only modest effect on aortic flow and no significant impact on aortic shear stress (maximum time-averaged wall shear stress in descending aorta was reduced 5.1%). In no patient did transcatheter intervention improve LV function (e.g., stroke work and normalized stroke work were reduced by only 4.48% and 3.9%). CONCLUSIONS Transcatheter intervention which successfully relieves mild COA pressure gradients does not translate to decrease myocardial strain. The effects of intervention were determined to the greatest degree by ventricular-vascular coupling hemodynamics, and provide a novel valuable mechanism to evaluate patients with COA which may influence clinical practice. PMID:27659574

  11. Wideband dichroic-filter design for LED-phosphor beam-combining

    DOEpatents

    Falicoff, Waqidi

    2010-12-28

    A general method is disclosed of designing two-component dichroic short-pass filters operable for incidence angle distributions over the 0-30.degree. range, and specific preferred embodiments are listed. The method is based on computer optimization algorithms for an N-layer design, specifically the N-dimensional conjugate-gradient minimization of a merit function based on difference from a target transmission spectrum, as well as subsequent cycles of needle synthesis for increasing N. A key feature of the method is the initial filter design, upon which the algorithm proceeds to iterate successive design candidates with smaller merit functions. This initial design, with high-index material H and low-index L, is (0.75 H, 0.5 L, 0.75 H)^m, denoting m (20-30) repetitions of a three-layer motif, giving rise to a filter with N=2 m+1.

  12. Radial basis function network learns ceramic processing and predicts related strength and density

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y.; Vary, Alex; Tjia, Robert E.

    1993-01-01

    Radial basis function (RBF) neural networks were trained using the data from 273 Si3N4 modulus of rupture (MOR) bars which were tested at room temperature and 135 MOR bars which were tested at 1370 C. Milling time, sintering time, and sintering gas pressure were the processing parameters used as the input features. Flexural strength and density were the outputs by which the RBF networks were assessed. The 'nodes-at-data-points' method was used to set the hidden layer centers and output layer training used the gradient descent method. The RBF network predicted strength with an average error of less than 12 percent and density with an average error of less than 2 percent. Further, the RBF network demonstrated a potential for optimizing and accelerating the development and processing of ceramic materials.

  13. Purification of Piscirickettsia salmonis and partial characterisation of antigens

    USGS Publications Warehouse

    Barnes, M.N.; Landolt, M.L.; Powell, D.B.; Winton, J.R.

    1998-01-01

    Piscirickettsia salmonis is the etiological agent of salmonid rickettsial septicemia, an economically significant disease affecting the salmon aquaculture industry. As with other rickettsial pathogens, antigenic analysis of P. salmonis has been limited by the inherent difficulties of purifying an intracellular organism away from host cell material. In this report, we describe the use of diatrizoate meglumine and diatrizoate sodium (DMDS) density gradient centrifugation to purify P. salmonis grown in chinook salmon embryo (CHSE-214) cells. Plaque assay titers and total protein assays confirmed that viable P. salmonis was consistently concentrated in a visible band within the DMDS density gradient at a density of 1.15 to 1.16 g ml-1. Recovery of purified, viable organisms from DMDS density gradients varied from 0.6 to 3%. Preparations of uninfected CHSE-214 cells, CHSE-214 cells infected with P. salmonis, and gradient-purified P. salmonis were compared using sodium dodecyl sulfate polyacrylamide gel electrophoresis to assess the degree of purification and to identify P. salmonis-specific proteins. Although gradient-purified P. salmonis preparations were not completely free of host cell material, 8 bacterial proteins were identified. Polyclonal rabbit antiserum was used in an immunoblot of proteins from purified P. salmonis to identify 3 major and 5 minor antigens. The major antigens of 56, 30 and 20 kDa were potential candidates for experimental vaccines and development of novel diagnostic assays.

  14. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  15. Thermal conductive heating in fractured bedrock: Screening calculations to assess the effect of groundwater influx

    NASA Astrophysics Data System (ADS)

    Baston, Daniel P.; Kueper, Bernard H.

    2009-02-01

    A two-dimensional semi-analytical heat transfer solution is developed and a parameter sensitivity analysis performed to determine the relative importance of rock material properties (density, thermal conductivity and heat capacity) and hydrogeological properties (hydraulic gradient, fracture aperture, fracture spacing) on the ability to heat fractured rock using thermal conductive heating (TCH). The solution is developed using a Green's function approach in which an integral equation is constructed for the temperature in the fracture. Subsurface temperature distributions are far more sensitive to hydrogeological properties than material properties. The bulk ground water influx ( q) can provide a good estimate of the extent of influx cooling when influx is low to moderate, allowing the prediction of temperatures during heating without specific knowledge of the aperture and spacing of fractures. Target temperatures may not be reached or may be significantly delayed when the groundwater influx is large.

  16. Hierarchical organization of butterfly gyroid nanostructures provide a time-frozen glimpse of intracellular membrane development

    NASA Astrophysics Data System (ADS)

    Wilts, Bodo; Winter, Benjamin; Klatt, Michael; Butz, Benjamin; Fischer, Michael; Kelly, Stephen; Spieker, Erdmann; Steiner, Ullrich; Schroeder-Turk, Gerd

    The formation of the biophotonic gyroid material in butterfly wing scales is an exceptional feat of evolutionary engineering of functional nanostructures. Previous work hypothesized that this nanostructure forms by chitin polymerization inside a convoluted membrane of corresponding shape in the endoplasmic reticulum. In vivo imaging however cannot yet elucidate this dynamic formation process, including whether membrane folding and chitin expression are simultaneous or subsequent processes. Here we show an unusual hierarchical ultrastructure in a Hairstreak butterfly that allows high-resolution 3D microscopy. Rather than the conventional polycrystalline space-filling arrangement, the gyroid occurs in isolated facetted crystallites with a pronounced size-gradient. This arrangement is interpreted as a sequence of time-frozen snapshots of the morphogenesis. This provides insight into the formation mechanisms of the nanoporous gyroid material, especially when compared among other butterflies with different arrangements. Financially supported through DFG, the NCCR Bio-inspired Mateirals and the SNF Ambizione programme.

  17. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization

    PubMed Central

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742

  18. A Conjugate Gradient Algorithm with Function Value Information and N-Step Quadratic Convergence for Unconstrained Optimization.

    PubMed

    Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang

    2015-01-01

    It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.

  19. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients

    NASA Astrophysics Data System (ADS)

    Shiozaki, Toru; Győrffy, Werner; Celani, Paolo; Werner, Hans-Joachim

    2011-08-01

    The extended multireference quasi-degenerate perturbation theory, proposed by Granovsky [J. Chem. Phys. 134, 214113 (2011)], is combined with internally contracted multi-state complete active space second-order perturbation theory (XMS-CASPT2). The first-order wavefunction is expanded in terms of the union of internally contracted basis functions generated from all the reference functions, which guarantees invariance of the theory with respect to unitary rotations of the reference functions. The method yields improved potentials in the vicinity of avoided crossings and conical intersections. The theory for computing nuclear energy gradients for MS-CASPT2 and XMS-CASPT2 is also presented and the first implementation of these gradient methods is reported. A number of illustrative applications of the new methods are presented.

  20. Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control.

    PubMed

    Luo, Biao; Liu, Derong; Wu, Huai-Ning; Wang, Ding; Lewis, Frank L

    2017-10-01

    The model-free optimal control problem of general discrete-time nonlinear systems is considered in this paper, and a data-based policy gradient adaptive dynamic programming (PGADP) algorithm is developed to design an adaptive optimal controller method. By using offline and online data rather than the mathematical system model, the PGADP algorithm improves control policy with a gradient descent scheme. The convergence of the PGADP algorithm is proved by demonstrating that the constructed Q -function sequence converges to the optimal Q -function. Based on the PGADP algorithm, the adaptive control method is developed with an actor-critic structure and the method of weighted residuals. Its convergence properties are analyzed, where the approximate Q -function converges to its optimum. Computer simulation results demonstrate the effectiveness of the PGADP-based adaptive control method.

Top