Tygert, Mark
2010-09-21
We discuss several tests for determining whether a given set of independent and identically distributed (i.i.d.) draws does not come from a specified probability density function. The most commonly used are Kolmogorov-Smirnov tests, particularly Kuiper's variant, which focus on discrepancies between the cumulative distribution function for the specified probability density and the empirical cumulative distribution function for the given set of i.i.d. draws. Unfortunately, variations in the probability density function often get smoothed over in the cumulative distribution function, making it difficult to detect discrepancies in regions where the probability density is small in comparison with its values in surrounding regions. We discuss tests without this deficiency, complementing the classical methods. The tests of the present paper are based on the plain fact that it is unlikely to draw a random number whose probability is small, provided that the draw is taken from the same distribution used in calculating the probability (thus, if we draw a random number whose probability is small, then we can be confident that we did not draw the number from the same distribution used in calculating the probability).
Lei, Youming; Zheng, Fan
2016-12-01
Stochastic chaos induced by diffusion processes, with identical spectral density but different probability density functions (PDFs), is investigated in selected lightly damped Hamiltonian systems. The threshold amplitude of diffusion processes for the onset of chaos is derived by using the stochastic Melnikov method together with a mean-square criterion. Two quasi-Hamiltonian systems, namely, a damped single pendulum and damped Duffing oscillator perturbed by stochastic excitations, are used as illustrative examples. Four different cases of stochastic processes are taking as the driving excitations. It is shown that in such two systems the spectral density of diffusion processes completely determines the threshold amplitude for chaos, regardless of the shape of their PDFs, Gaussian or otherwise. Furthermore, the mean top Lyapunov exponent is employed to verify analytical results. The results obtained by numerical simulations are in accordance with the analytical results. This demonstrates that the stochastic Melnikov method is effective in predicting the onset of chaos in the quasi-Hamiltonian systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2015-12-28
We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.
Local density variation of gold nanoparticles in aquatic environments
NASA Astrophysics Data System (ADS)
Hosseinzadeh, F.; Shirazian, F.; Shahsavari, R.; Khoei, A. R.
2016-10-01
Gold (Au) nanoparticles are widely used in diagnosing cancer, imaging, and identification of therapeutic methods due to their particular quantum characteristics. This research presents different types of aqueous models and potentials used in TIP3P, to study the effect of the particle size and density of Au clusters in aquatic environments; so it can be useful to facilitate future investigation of the interaction of proteins with Au nanoparticles. The EAM potential is used to model the structure of gold clusters. It is observed that in the systems with identical gold/water density and different cluster radii, gold particles are distributed in aqueous environment almost identically. Thus, Au particles have identical local densities, and the root mean square displacement (RMSD) increases with a constant slope. However in systems with constant cluster radii and different gold/water densities, Au particle dispersion increases with density; as a result, the local density decreases and the RMSD increases with a larger slope. In such systems, the larger densities result in more blunted second peaks in gold-gold radial distribution functions, owing to more intermixing of the clusters and less FCC crystalline features at longer range, a mechanism that is mediated by the competing effects of gold-water and gold-gold interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golub, R.; Rohm, Ryan M.; Swank, C. M.
2011-02-15
There is an extensive literature on magnetic-gradient-induced spin relaxation. Cates, Schaefer, and Happer, in a seminal publication, have solved the problem in the regime where diffusion theory (the Torrey equation) is applicable using an expansion of the density matrix in diffusion equation eigenfunctions and angular momentum tensors. McGregor has solved the problem in the same regime using a slightly more general formulation using the Redfield theory formulated in terms of the autocorrelation function of the fluctuating field seen by the spins and calculating the correlation functions using the diffusion-theory Green's function. The results of both calculations were shown to agreemore » for a special case. In the present work, we show that the eigenfunction expansion of the Torrey equation yields the expansion of the Green's function for the diffusion equation, thus showing the identity of this approach with that of the Redfield theory. The general solution can also be obtained directly from the Torrey equation for the density matrix. Thus, the physical content of the Redfield and Torrey approaches are identical. We then introduce a more general expression for the position autocorrelation function of particles moving in a closed cell, extending the range of applicability of the theory.« less
Kvaal, Simen; Helgaker, Trygve
2015-11-14
The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinkusch, Stefan; Tremblay, Jean Christophe
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electronmore » ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.« less
Biocontrol of fouling pests: Effect of diversity, identity and density of control agents.
Atalah, Javier; Newcombe, Emma M; Zaiko, Anastasija
2016-04-01
Augmentative biocontrol, using native natural enemies, has been suggested as a promising tool to control marine biofouling pests on artificial structures. However, there are still important knowledge gaps to be addressed before biocontrol can be considered as a management tool. In a field experiment on floating marine structures we examined intra- and interspecific consumer interactions among biocontrol agents on different surface orientations. We tested the effect of identity, density and diversity of three invertebrates (the 11-arm seastar Coscinasterias muricata, the sea urchin Evechinus chloroticus and the gastropod Cook's turban Cookia sulcata) to reduce established biofouling and to prevent fouling growth on defouled surfaces. High densities of biocontrol agents were not more effective at fouling control (cover and biomass) than low densities. Nor did multi-species treatments function more effectively than mono-specific ones. However, biocontrol agent identity was important, with the 11-arm seastar and Cook's turban being the most effective at fouling reduction and prevention, respectively. Surface orientation had a strong effect on the effectiveness of control agents, with the best results obtained on vertical compared to diagonal and underside surfaces. This study confirmed the potential of biocontrol as a management tool for marine pest, indicating that identity is more important than richness and density of control agents. It also highlighted the limitations of this approach on diagonal and underside surfaces, where control agents have limited retention ability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tobner, Cornelia M; Paquette, Alain; Reich, Peter B; Gravel, Dominique; Messier, Christian
2014-03-01
Increasing concern about loss of biodiversity and its effects on ecosystem functioning has triggered a series of manipulative experiments worldwide, which have demonstrated a general trend for ecosystem functioning to increase with diversity. General mechanisms proposed to explain diversity effects include complementary resource use and invoke a key role for species' functional traits. The actual mechanisms by which complementary resource use occurs remain, however, poorly understood, as well as whether they apply to tree-dominated ecosystems. Here we present an experimental approach offering multiple innovative aspects to the field of biodiversity-ecosystem functioning (BEF) research. The International Diversity Experiment Network with Trees (IDENT) allows research to be conducted at several hierarchical levels within individuals, neighborhoods, and communities. The network investigates questions related to intraspecific trait variation, complementarity, and environmental stress. The goal of IDENT is to identify some of the mechanisms through which individuals and species interact to promote coexistence and the complementary use of resources. IDENT includes several implemented and planned sites in North America and Europe, and uses a replicated design of high-density tree plots of fixed species-richness levels varying in functional diversity (FD). The design reduces the space and time needed for trees to interact allowing a thorough set of mixtures varying over different diversity gradients (specific, functional, phylogenetic) and environmental conditions (e.g., water stress) to be tested in the field. The intention of this paper is to share the experience in designing FD-focused BEF experiments with trees, to favor collaborations and expand the network to different conditions.
One-electron densities of freely rotating Wigner molecules
NASA Astrophysics Data System (ADS)
Cioslowski, Jerzy
2017-12-01
A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.
Magnetic exchange couplings from noncollinear perturbation theory: dinuclear CuII complexes.
Phillips, Jordan J; Peralta, Juan E
2014-08-07
To benchmark the performance of a new method based on noncollinear coupled-perturbed density functional theory [J. Chem. Phys. 138, 174115 (2013)], we calculate the magnetic exchange couplings in a series of triply bridged ferromagnetic dinuclear Cu(II) complexes that have been recently synthesized [Phys. Chem. Chem. Phys. 15, 1966 (2013)]. We find that for any basis-set the couplings from our noncollinear coupled-perturbed methodology are practically identical to those of spin-projected energy-differences when a hybrid density functional approximation is employed. This demonstrates that our methodology properly recovers a Heisenberg description for these systems, and is robust in its predictive power of magnetic couplings. Furthermore, this indicates that the failure of density functional theory to capture the subtle variation of the exchange couplings in these complexes is not simply an artifact of broken-symmetry methods, but rather a fundamental weakness of current approximate density functionals for the description of magnetic couplings.
Vertex functions at finite momentum: Application to antiferromagnetic quantum criticality
NASA Astrophysics Data System (ADS)
Wölfle, Peter; Abrahams, Elihu
2016-02-01
We analyze the three-point vertex function that describes the coupling of fermionic particle-hole pairs in a metal to spin or charge fluctuations at nonzero momentum. We consider Ward identities, which connect two-particle vertex functions to the self-energy, in the framework of a Hubbard model. These are derived using conservation laws following from local symmetries. The generators considered are the spin density and particle density. It is shown that at certain antiferromagnetic critical points, where the quasiparticle effective mass is diverging, the vertex function describing the coupling of particle-hole pairs to the spin density Fourier component at the antiferromagnetic wave vector is also divergent. Then we give an explicit calculation of the irreducible vertex function for the case of three-dimensional antiferromagnetic fluctuations, and show that it is proportional to the diverging quasiparticle effective mass.
NASA Astrophysics Data System (ADS)
Wilkinson, Michael; Grant, John
2018-03-01
We consider a stochastic process in which independent identically distributed random matrices are multiplied and where the Lyapunov exponent of the product is positive. We continue multiplying the random matrices as long as the norm, ɛ, of the product is less than unity. If the norm is greater than unity we reset the matrix to a multiple of the identity and then continue the multiplication. We address the problem of determining the probability density function of the norm, \
Multivariate η-μ fading distribution with arbitrary correlation model
NASA Astrophysics Data System (ADS)
Ghareeb, Ibrahim; Atiani, Amani
2018-03-01
An extensive analysis for the multivariate ? distribution with arbitrary correlation is presented, where novel analytical expressions for the multivariate probability density function, cumulative distribution function and moment generating function (MGF) of arbitrarily correlated and not necessarily identically distributed ? power random variables are derived. Also, this paper provides exact-form expression for the MGF of the instantaneous signal-to-noise ratio at the combiner output in a diversity reception system with maximal-ratio combining and post-detection equal-gain combining operating in slow frequency nonselective arbitrarily correlated not necessarily identically distributed ?-fading channels. The average bit error probability of differentially detected quadrature phase shift keying signals with post-detection diversity reception system over arbitrarily correlated and not necessarily identical fading parameters ?-fading channels is determined by using the MGF-based approach. The effect of fading correlation between diversity branches, fading severity parameters and diversity level is studied.
Universal series induced by approximate identities and some relevant applications
Nestoridis, Vassili; Schmutzhard, Sebastian; Stefanopoulos, Vangelis
2011-01-01
We prove the existence of series ∑anψn, whose coefficients (an) are in ∩p>1ℓp and whose terms (ψn) are translates by rational vectors in Rd of a family of approximations to the identity, having the property that the partial sums are dense in various spaces of functions such as Wiener’s algebra W(C0,ℓ1), Cb(Rd), C0(Rd), Lp(Rd), for every p∈[1,∞), and the space of measurable functions. Applying this theory to particular situations, we establish approximations by such series to solutions of the heat and Laplace equations as well as to probability density functions. PMID:28298658
Consistency condition for inflation from (broken) conformal symmetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schalm, Koenraad; Aalst, Ted van der; Shiu, Gary, E-mail: kschalm@lorentz.leidenuniv.nl, E-mail: shiu@physics.wisc.edu, E-mail: vdaalst@lorentz.leidenuniv.nl
2013-03-01
We investigate the symmetry constraints on the bispectrum, i.e. the three-point correlation function of primordial density fluctuations, in slow-roll inflation. It follows from the defining property of slow-roll inflation that primordial correlation functions inherit most of their structure from weakly broken de Sitter symmetries. Using holographic techniques borrowed from the AdS/CFT correspondence, the symmetry constraints on the bispectrum can be mapped to a set of stress-tensor Ward identities in a weakly broken 2+1-dimensional Euclidean CFT. We construct the consistency condition from these Ward identities using conformal perturbation theory. This requires a second order Ward identity and the use of themore » evolution equation. Our result also illustrates a subtle difference between conformal perturbation theory and the slow-roll expansion.« less
important in addressing energy and environmental challenges Elucidating reaction mechanisms using combined selectivity under reaction conditions Developing improved models to bridge the pressure gap and materials gap Identity," ACS Catalysis (2016) "Density Functional Theory Calculations and Analysis of Reaction
Čársky, Petr; Čurík, Roman; Varga, Štefan
2012-03-21
The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics
Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo
2015-01-01
Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance–resistance strategies to grazing and mixed acquisitive–conservative strategies in resource utilization. PMID:26655858
Zheng, Shuxia; Li, Wenhuai; Lan, Zhichun; Ren, Haiyan; Wang, Kaibo
2015-12-11
Abundant evidence has shown that grazing alters plant functional traits, community structure and ecosystem functioning of grasslands. Few studies, however, have tested how plant responses to grazing are mediated by resource availability and plant functional group identity. We examined the effects of grazing on functional traits across a broad range of species along a soil moisture gradient in Inner Mongolia grassland. Our results showed that trait syndromes of plant size (individual biomass) and shoot growth (leaf N content and leaf density) distinguished plant species responses to grazing. The effects of grazing on functional traits were mediated by soil moisture and dependent on functional group identity. For most species, grazing decreased plant height but increased leaf N and specific leaf area (SLA) along the moisture gradient. Grazing enhanced the community-weighted attributes (leaf NCWM and SLACWM), which were triggered mainly by the positive trait responses of annuals and biennials and perennial grasses, and increased relative abundance of perennial forbs. Our results suggest that grazing-induced species turnover and increased intraspecific trait variability are two drivers for the observed changes in community weighted attributes. The dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization.
Ziegler, Tom; Krykunov, Mykhaylo
2010-08-21
It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.
Entropy Inequalities for Stable Densities and Strengthened Central Limit Theorems
NASA Astrophysics Data System (ADS)
Toscani, Giuseppe
2016-10-01
We consider the central limit theorem for stable laws in the case of the standardized sum of independent and identically distributed random variables with regular probability density function. By showing decay of different entropy functionals along the sequence we prove convergence with explicit rate in various norms to a Lévy centered density of parameter λ >1 . This introduces a new information-theoretic approach to the central limit theorem for stable laws, in which the main argument is shown to be the relative fractional Fisher information, recently introduced in Toscani (Ricerche Mat 65(1):71-91, 2016). In particular, it is proven that, with respect to the relative fractional Fisher information, the Lévy density satisfies an analogous of the logarithmic Sobolev inequality, which allows to pass from the monotonicity and decay to zero of the relative fractional Fisher information in the standardized sum to the decay to zero in relative entropy with an explicit decay rate.
Alternative derivation of an exchange-only density-functional optimized effective potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joubert, D. P.
2007-10-15
An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock-common energy denominator Green's function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Goerling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term canmore » be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r{sup 4} for large r.« less
Alternative derivation of an exchange-only density-functional optimized effective potential
NASA Astrophysics Data System (ADS)
Joubert, D. P.
2007-10-01
An alternative derivation of the exchange-only density-functional optimized effective potential equation is given. It is shown that the localized Hartree-Fock common energy denominator Green’s function approximation (LHF-CEDA) for the density-functional exchange potential proposed independently by Della Sala and Görling [J. Chem. Phys. 115, 5718 (2001)] and Gritsenko and Baerends [Phys. Rev. A 64, 42506 (2001)] can be derived as an approximation to the OEP exchange potential in a similar way that the KLI approximation [Phys. Rev. A 45, 5453 (1992)] was derived. An exact expression for the correction term to the LHF-CEDA approximation can thus be found. The correction term can be expressed in terms of the first-order perturbation-theory many-electron wave function shift when the Kohn-Sham Hamiltonian is subjected to a perturbation equal to the difference between the density-functional exchange potential and the Hartree-Fock nonlocal potential, expressed in terms of the Kohn-Sham orbitals. An explicit calculation shows that the density weighted mean of the correction term is zero, confirming that the LHF-CEDA approximation can be interpreted as a mean-field approximation. The corrected LHF-CEDA equation and the optimized effective potential equation are shown to be identical, with information distributed differently between terms in the equations. For a finite system the correction term falls off at least as fast as 1/r4 for large r .
High throughput nonparametric probability density estimation.
Farmer, Jenny; Jacobs, Donald
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.
High throughput nonparametric probability density estimation
Farmer, Jenny
2018-01-01
In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference. PMID:29750803
Entropy: Thermodynamic definition and quantum expression
NASA Astrophysics Data System (ADS)
Gyftopoulos, Elias P.; Çubukçu, Erol
1997-04-01
Numerous expressions exist in the scientific literature purporting to represent entropy. Are they all acceptable? To answer this question, we review the thermodynamic definition of entropy, and establish eight criteria that must be satisfied by it. The definition and criteria are obtained by using solely the general, nonstatistical statements of the first and second laws presented in Thermodynamics: Foundations and Applications [Elias P. Gyftopoulos and Gian Paolo Beretta (Macmillan, New York, 1991)]. We apply the eight criteria to each of the entropy expressions proposed in the literature and find that only the relation S=-kTrρln ρ satisfies all the criteria, provided that the density operator ρ corresponds to a homogeneous ensemble of identical systems, identically prepared. Homogeneous ensemble means that every member of the ensemble is described by the same density operator ρ as any other member, that is, the ensemble is not a statistical mixture of projectors (wave functions).
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Karlson, Agnes M. L.; Niemand, Clarisse; Savage, Candida; Pilditch, Conrad A
2016-01-01
Accumulating evidence shows that increased biodiversity has a positive effect on ecosystem functioning, but the mechanisms that underpin this positive relationship are contentious. Complete extinctions of regional species pools are comparatively rare whereas compositional changes and reductions in abundance and biomass are common, although seldom the focus of biodiversity-ecosystem functioning studies. We use natural, small-scale patchiness in the density of two species of large bivalves with contrasting feeding modes (the suspension-feeding Austrovenus stutchburyi and deposit-feeding Macomona liliana) to examine their influence on the uptake of nitrogen from macroalgae detritus (i.e. measure of ecosystem function and food web efficiency) by other infauna in a 10-d laboratory isotope-tracer experiment. We predicted that densities of these key bivalve species and functional group diversity (calculated as Shannons H, a density-independent measure of community composition) of the intact infaunal community will be critical factors explaining variance in macroalgal per capita uptake rates by the community members and hence determine total uptake by the community. Results show that only two species, M. liliana and a large orbiniid polychaete (Scoloplos cylindrifer) dominated macroalgal nitrogen taken up by the whole community due to their large biomass. However, their densities were mostly not important or negatively influenced per capita uptake by other species. Instead, the density of a head-down deposit-feeder (the capitellid Heteromastus filiformis), scavengers (mainly nemertines and nereids) and species and functional group diversity, best explained per capita uptake rates in community members. Our results demonstrate the importance of species identity, density and large body size for ecosystem functioning and highlight the complex interactions underlying loss of ecological functions with declining biodiversity and compositional changes. PMID:27414032
Unbiased estimators for spatial distribution functions of classical fluids
NASA Astrophysics Data System (ADS)
Adib, Artur B.; Jarzynski, Christopher
2005-01-01
We use a statistical-mechanical identity closely related to the familiar virial theorem, to derive unbiased estimators for spatial distribution functions of classical fluids. In particular, we obtain estimators for both the fluid density ρ(r) in the vicinity of a fixed solute and the pair correlation g(r) of a homogeneous classical fluid. We illustrate the utility of our estimators with numerical examples, which reveal advantages over traditional histogram-based methods of computing such distributions.
Quantum mechanical probability current as electromagnetic 4-current from topological EM fields
NASA Astrophysics Data System (ADS)
van der Mark, Martin B.
2015-09-01
Starting from a complex 4-potential A = αdβ we show that the 4-current density in electromagnetism and the probability current density in relativistic quantum mechanics are of identical form. With the Dirac-Clifford algebra Cl1,3 as mathematical basis, the given 4-potential allows topological solutions of the fields, quite similar to Bateman's construction, but with a double field solution that was overlooked previously. A more general nullvector condition is found and wave-functions of charged and neutral particles appear as topological configurations of the electromagnetic fields.
Non-Fickian dispersion of groundwater age
Engdahl, Nicholas B.; Ginn, Timothy R.; Fogg, Graham E.
2014-01-01
We expand the governing equation of groundwater age to account for non-Fickian dispersive fluxes using continuous random walks. Groundwater age is included as an additional (fifth) dimension on which the volumetric mass density of water is distributed and we follow the classical random walk derivation now in five dimensions. The general solution of the random walk recovers the previous conventional model of age when the low order moments of the transition density functions remain finite at their limits and describes non-Fickian age distributions when the transition densities diverge. Previously published transition densities are then used to show how the added dimension in age affects the governing differential equations. Depending on which transition densities diverge, the resulting models may be nonlocal in time, space, or age and can describe asymptotic or pre-asymptotic dispersion. A joint distribution function of time and age transitions is developed as a conditional probability and a natural result of this is that time and age must always have identical transition rate functions. This implies that a transition density defined for age can substitute for a density in time and this has implications for transport model parameter estimation. We present examples of simulated age distributions from a geologically based, heterogeneous domain that exhibit non-Fickian behavior and show that the non-Fickian model provides better descriptions of the distributions than the Fickian model. PMID:24976651
Novel Superdielectric Materials: Aqueous Salt Solution Saturated Fabric
Phillips, Jonathan
2016-01-01
The dielectric constants of nylon fabrics saturated with aqueous NaCl solutions, Fabric-Superdielectric Materials (F-SDM), were measured to be >105 even at the shortest discharge times (>0.001 s) for which reliable data could be obtained using the constant current method, thus demonstrating the existence of a third class of SDM. Hence, the present results support the general theoretical SDM hypothesis, which is also supported by earlier experimental work with powder and anodized foil matrices: Any material composed of liquid containing dissolved, mobile ions, confined in an electrically insulating matrix, will have a very high dielectric constant. Five capacitors, each composed of a different number of layers of salt solution saturated nylon fabric, were studied, using a galvanostat operated in constant current mode. Capacitance, dielectric constant, energy density and power density as a function of discharge time, for discharge times from ~100 s to nearly 0.001 s were recorded. The roll-off rate of the first three parameters was found to be nearly identical for all five capacitors tested. The power density increased in all cases with decreasing discharge time, but again the observed frequency response was nearly identical for all five capacitors. Operational limitations found for F-SDM are the same as those for other aqueous solution SDM, particularly a low maximum operating voltage (~2.3 V), and dielectric “constants” that are a function of voltage, decreasing for voltages higher than ~0.8 V. Extrapolations of the present data set suggest F-SDM could be the key to inexpensive, high energy density (>75 J/cm3) capacitors. PMID:28774037
Comparison of SOM point densities based on different criteria.
Kohonen, T
1999-11-15
Point densities of model (codebook) vectors in self-organizing maps (SOMs) are evaluated in this article. For a few one-dimensional SOMs with finite grid lengths and a given probability density function of the input, the numerically exact point densities have been computed. The point density derived from the SOM algorithm turned out to be different from that minimizing the SOM distortion measure, showing that the model vectors produced by the basic SOM algorithm in general do not exactly coincide with the optimum of the distortion measure. A new computing technique based on the calculus of variations has been introduced. It was applied to the computation of point densities derived from the distortion measure for both the classical vector quantization and the SOM with general but equal dimensionality of the input vectors and the grid, respectively. The power laws in the continuum limit obtained in these cases were found to be identical.
NASA Astrophysics Data System (ADS)
Skelton, Richard; Walker, Andrew M.
2018-03-01
The material properties of the common phosphate mineral apatite are influenced by the identity of the channel anion, which is usually F-, Cl-, or (OH)-. Density functional theory calculations have been used to determine the effect of channel anion identity on the compressibility and structure of apatite. Hydroxyapatite and fluorapatite are found to have similar zero pressure bulk moduli, of 79.2 and 82.1 GPa, respectively, while chlorapatite is considerably more compressible, with K 0 = 55.0 GPa. While the space groups of hydroxyapatite and fluorapatite do not change between 0 and 25 GPa, symmetrization of the Cl- site in chlorapatite at 7.5 GPa causes the space group to change from P2 1 /b to P6 3 /m. Examination of the valence electron density distribution in chlorapatite reveals that this symmetry change is associated with a change in the coordination of the Cl- anion from threefold to sixfold coordinated by Ca. We also calculate the pressure at which apatite decomposes to form tuite, a calcium orthophosphate mineral, and find that the transition pressure is sensitive to the identity of the channel anion, being lowest for fluorapatite (13.8 GPa) and highest for chlorapatite (26.9 GPa). Calculations are also performed within the DFT-D2 framework to investigate the influence of dispersion forces on the compressibility of apatite minerals.
Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations
NASA Astrophysics Data System (ADS)
Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik
2009-04-01
Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.
Constraint on the second functional derivative of the exchange-correlation energy
NASA Astrophysics Data System (ADS)
Joubert, D. P.
2012-09-01
Using the density functional adiabatic connection approach for an N-electron system it is shown that ? γ is the coupling constant that scales the electron-electron interaction strength. For the non-interacting Kohn-Sham Hamiltonian γ = 0 and for the fully interacting system γ = 1. ? is the Hartree plus exchange-correlation energy while f 0(r) and fγ(r) are the Fukui functions of the non-interacting and interacting systems, respectively. This identity can serve to test the internal self-consistency or quality of approximate functionals. The quality of some popular approximate exchange and correlation functionals are tested for a simple model system.
Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F
2009-04-15
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.
Preston, Daniel L; Henderson, Jeremy S; Falke, Landon P; Segui, Leah M; Layden, Tamara J; Novak, Mark
2018-05-08
Describing the mechanisms that drive variation in species interaction strengths is central to understanding, predicting, and managing community dynamics. Multiple factors have been linked to trophic interaction strength variation, including species densities, species traits, and abiotic factors. Yet most empirical tests of the relative roles of multiple mechanisms that drive variation have been limited to simplified experiments that may diverge from the dynamics of natural food webs. Here, we used a field-based observational approach to quantify the roles of prey density, predator density, predator-prey body-mass ratios, prey identity, and abiotic factors in driving variation in feeding rates of reticulate sculpin (Cottus perplexus). We combined data on over 6,000 predator-prey observations with prey identification time functions to estimate 289 prey-specific feeding rates at nine stream sites in Oregon. Feeding rates on 57 prey types showed an approximately log-normal distribution, with few strong and many weak interactions. Model selection indicated that prey density, followed by prey identity, were the two most important predictors of prey-specific sculpin feeding rates. Feeding rates showed a positive relationship with prey taxon densities that was inconsistent with predator saturation predicted by current functional response models. Feeding rates also exhibited four orders-of-magnitude in variation across prey taxonomic orders, with the lowest feeding rates observed on prey with significant anti-predator defenses. Body-mass ratios were the third most important predictor variable, showing a hump-shaped relationship with the highest feeding rates at intermediate ratios. Sculpin density was negatively correlated with feeding rates, consistent with the presence of intraspecific predator interference. Our results highlight how multiple co-occurring drivers shape trophic interactions in nature and underscore ways in which simplified experiments or reliance on scaling laws alone may lead to biased inferences about the structure and dynamics of species-rich food webs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Wang, Pei; Xianlong, Gao; Li, Haibin
2013-08-01
It is demonstrated in many thermodynamic textbooks that the equivalence of the different ensembles is achieved in the thermodynamic limit. In this present work we discuss the inequivalence of microcanonical and canonical ensembles in a finite ultracold system at low energies. We calculate the microcanonical momentum distribution function (MDF) in a system of identical fermions (bosons). We find that the microcanonical MDF deviates from the canonical one, which is the Fermi-Dirac (Bose-Einstein) function, in a finite system at low energies where the single-particle density of states and its inverse are finite.
Caruso, Fabio; Rohr, Daniel R; Hellgren, Maria; Ren, Xinguo; Rinke, Patrick; Rubio, Angel; Scheffler, Matthias
2013-04-05
For the paradigmatic case of H(2) dissociation, we compare state-of-the-art many-body perturbation theory in the GW approximation and density-functional theory in the exact-exchange plus random-phase approximation (RPA) for the correlation energy. For an unbiased comparison and to prevent spurious starting point effects, both approaches are iterated to full self-consistency (i.e., sc-RPA and sc-GW). The exchange-correlation diagrams in both approaches are topologically identical, but in sc-RPA they are evaluated with noninteracting and in sc-GW with interacting Green functions. This has a profound consequence for the dissociation region, where sc-RPA is superior to sc-GW. We argue that for a given diagrammatic expansion, sc-RPA outperforms sc-GW when it comes to bond breaking. We attribute this to the difference in the correlation energy rather than the treatment of the kinetic energy.
Consistency criteria for generalized Cuddeford systems
NASA Astrophysics Data System (ADS)
Ciotti, Luca; Morganti, Lucia
2010-01-01
General criteria to check the positivity of the distribution function (phase-space consistency) of stellar systems of assigned density and anisotropy profile are useful starting points in Jeans-based modelling. Here, we substantially extend previous results, and present the inversion formula and the analytical necessary and sufficient conditions for phase-space consistency of the family of multicomponent Cuddeford spherical systems: the distribution function of each density component of these systems is defined as the sum of an arbitrary number of Cuddeford distribution functions with arbitrary values of the anisotropy radius, but identical angular momentum exponent. The radial trend of anisotropy that can be realized by these models is therefore very general. As a surprising byproduct of our study, we found that the `central cusp-anisotropy theorem' (a necessary condition for consistency relating the values of the central density slope and of the anisotropy parameter) holds not only at the centre but also at all radii in consistent multicomponent generalized Cuddeford systems. This last result suggests that the so-called mass-anisotropy degeneracy could be less severe than what is sometimes feared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bezák, Viktor, E-mail: bezak@fmph.uniba.sk
Quantum theory of the non-harmonic oscillator defined by the energy operator proposed by Yurke and Buks (2006) is presented. Although these authors considered a specific problem related to a model of transmission lines in a Kerr medium, our ambition is not to discuss the physical substantiation of their model. Instead, we consider the problem from an abstract, logically deductive, viewpoint. Using the Yurke–Buks energy operator, we focus attention on the imaginary-time propagator. We derive it as a functional of the Mehler kernel and, alternatively, as an exact series involving Hermite polynomials. For a statistical ensemble of identical oscillators defined bymore » the Yurke–Buks energy operator, we calculate the partition function, average energy, free energy and entropy. Using the diagonal element of the canonical density matrix of this ensemble in the coordinate representation, we define a probability density, which appears to be a deformed Gaussian distribution. A peculiarity of this probability density is that it may reveal, when plotted as a function of the position variable, a shape with two peaks located symmetrically with respect to the central point.« less
Silliman, Brian R.; McCoy, Michael W.; Trussell, Geoffrey C.; Crain, Caitlin M.; Ewanchuk, Patrick J.; Bertness, Mark D.
2013-01-01
Although consumers can strongly influence community recovery from disturbance, few studies have explored the effects of consumer identity and density and how they may vary across abiotic gradients. On rocky shores in Maine, recent experiments suggest that recovery of plant- or animal- dominated community states is governed by rates of water movement and consumer pressure. To further elucidate the mechanisms of consumer control, we examined the species-specific and density-dependent effects of rocky shore consumers (crabs and snails) on community recovery under both high (mussel dominated) and low flow (plant dominated) conditions. By partitioning the direct impacts of predators (crabs) and grazers (snails) on community recovery across a flow gradient, we found that grazers, but not predators, are likely the primary agent of consumer control and that their impact is highly non-linear. Manipulating snail densities revealed that herbivorous and bull-dozing snails (Littorina littorea) alone can control recovery of high and low flow communities. After ∼1.5 years of recovery, snail density explained a significant amount of the variation in macroalgal coverage at low flow sites and also mussel recovery at high flow sites. These density-dependent grazer effects were were both non-linear and flow-dependent, with low abundance thresholds needed to suppress plant community recovery, and much higher levels needed to control mussel bed development. Our study suggests that consumer density and identity are key in regulating both plant and animal community recovery and that physical conditions can determine the functional forms of these consumer effects. PMID:23940510
Collisionless distribution function for the relativistic force-free Harris sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, C. R.; Neukirch, T.
A self-consistent collisionless distribution function for the relativistic analogue of the force-free Harris sheet is presented. This distribution function is the relativistic generalization of the distribution function for the non-relativistic collisionless force-free Harris sheet recently found by Harrison and Neukirch [Phys. Rev. Lett. 102, 135003 (2009)], as it has the same dependence on the particle energy and canonical momenta. We present a detailed calculation which shows that the proposed distribution function generates the required current density profile (and thus magnetic field profile) in a frame of reference in which the electric potential vanishes identically. The connection between the parameters ofmore » the distribution function and the macroscopic parameters such as the current sheet thickness is discussed.« less
Size-dependent error of the density functional theory ionization potential in vacuum and solution
Sosa Vazquez, Xochitl A.; Isborn, Christine M.
2015-12-22
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. As a result, in vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
Size-dependent error of the density functional theory ionization potential in vacuum and solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sosa Vazquez, Xochitl A.; Isborn, Christine M., E-mail: cisborn@ucmerced.edu
2015-12-28
Density functional theory is often the method of choice for modeling the energetics of large molecules and including explicit solvation effects. It is preferable to use a method that treats systems of different sizes and with different amounts of explicit solvent on equal footing. However, recent work suggests that approximate density functional theory has a size-dependent error in the computation of the ionization potential. We here investigate the lack of size-intensivity of the ionization potential computed with approximate density functionals in vacuum and solution. We show that local and semi-local approximations to exchange do not yield a constant ionization potentialmore » for an increasing number of identical isolated molecules in vacuum. Instead, as the number of molecules increases, the total energy required to ionize the system decreases. Rather surprisingly, we find that this is still the case in solution, whether using a polarizable continuum model or with explicit solvent that breaks the degeneracy of each solute, and we find that explicit solvent in the calculation can exacerbate the size-dependent delocalization error. We demonstrate that increasing the amount of exact exchange changes the character of the polarization of the solvent molecules; for small amounts of exact exchange the solvent molecules contribute a fraction of their electron density to the ionized electron, but for larger amounts of exact exchange they properly polarize in response to the cationic solute. In vacuum and explicit solvent, the ionization potential can be made size-intensive by optimally tuning a long-range corrected hybrid functional.« less
The correlation function of galaxy ellipticities produced by gravitational lensing
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lei; Cole, Jacqueline M.
2014-02-18
The optical and electronic properties of a TiO2 nanoparticle-assisted photo-isomerizable surface, prepared by an azo dye/TiO2 nanocomposite film, are examined experimentally and computationally. The azo dye, para-methyl red, undergoes photoisomerization at room temperature, catalyzed by the TiO2 nanoparticle supports, while it exhibits negligible photoisomerization in solvents under otherwise identical conditions. Density functional theory and time-dependent density functional theory are employed to explain the origin of this photoisomerization in these dye…TiO2 nanoparticle self-assembled monolayers (SAMs). The device performance of these SAMs when embedded into dye-sensitized solar cells is used to further elucidate the nature of this azo dye photoisomerization and relatemore » it to the ensuing optoelectronic properties.« less
Comparative studies of efficiency droop in polar and non-polar InGaN quantum wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, M. J.; Dawson, P.; Hammersley, S.
We report on a comparative study of efficiency droop in polar and non-polar InGaN quantum well structures at T = 10 K. To ensure that the experiments were carried out with identical carrier densities for any particular excitation power density, we used laser pulses of duration ∼100 fs at a repetition rate of 400 kHz. For both types of structures, efficiency droop was observed to occur for carrier densities of above 7 × 10{sup 11 }cm{sup −2 }pulse{sup −1} per quantum well; also both structures exhibited similar spectral broadening in the droop regime. These results show that efficiency droop is intrinsic in InGaN quantum wells, whether polar or non-polar,more » and is a function, specifically, of carrier density.« less
Communication: Biological applications of coupled-cluster frozen-density embedding
NASA Astrophysics Data System (ADS)
Heuser, Johannes; Höfener, Sebastian
2018-04-01
We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.
Chaoticity parameter λ in two-pion interferometry in an expanding boson gas model
Liu, Jie; Ru, Peng; Zhang, Wei-Ning; ...
2014-10-15
We investigate the chaoticity parameter λ in two-pion interferometry in an expanding boson gas model. The degree of Bose-Einstein condensation of identical pions, density distributions, and Hanbury-Brown-Twiss (HBT) correlation functions are calculated for the expanding gas within the mean-field description with a harmonic oscillator potential. The results indicate that a sources with thousands of identical pions may exhibit a degree of Bose-Einstein condensation at the temperatures during the hadronic phase in relativistic heavy-ion collisions. This finite condensation may decrease the chaoticity parameter λ in the two-pion interferometry measurements at low pion pair momenta, but influence only slightly the λ valuemore » at high pion pair momentum.« less
Computer Program for Vibration Prediction of Fighter Aircraft Equipments
1977-11-01
scribing a useful variety of flight vibration phases . Notice that identical variations can be reflected into the high frequency rolloff curve (equation 13...flight attitudes ranging from straight and level states to a variety of significant flight maneuvers and phases . Pro- gram outputs, digital and...R (f) adjusted value of R(f) due to c (g 2/Hz) SBT (f) special function for the buffet turn flight phase PBT (f) pressure spectral density speqtrum
Weak lensing shear and aperture mass from linear to non-linear scales
NASA Astrophysics Data System (ADS)
Munshi, Dipak; Valageas, Patrick; Barber, Andrew J.
2004-05-01
We describe the predictions for the smoothed weak lensing shear, γs, and aperture mass,Map, of two simple analytical models of the density field: the minimal tree model and the stellar model. Both models give identical results for the statistics of the three-dimensional density contrast smoothed over spherical cells and only differ by the detailed angular dependence of the many-body density correlations. We have shown in previous work that they also yield almost identical results for the probability distribution function (PDF) of the smoothed convergence, κs. We find that the two models give rather close results for both the shear and the positive tail of the aperture mass. However, we note that at small angular scales (θs<~ 2 arcmin) the tail of the PDF, , for negative Map shows a strong variation between the two models, and the stellar model actually breaks down for θs<~ 0.4 arcmin and Map < 0. This shows that the statistics of the aperture mass provides a very precise probe of the detailed structure of the density field, as it is sensitive to both the amplitude and the detailed angular behaviour of the many-body correlations. On the other hand, the minimal tree model shows good agreement with numerical simulations over all the scales and redshifts of interest, while both models provide a good description of the PDF, , of the smoothed shear components. Therefore, the shear and the aperture mass provide robust and complementary tools to measure the cosmological parameters as well as the detailed statistical properties of the density field.
Resonant frequencies of irregularly shaped microstrip antennas using method of moments
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Shively, David G.; Cockrell, C. R.
1993-01-01
This paper describes an application of the method of moments to determine resonant frequencies of irregularly shaped microstrip patches embedded in a grounded dielectric slab. For analysis, the microstrip patch is assumed to be excited by a linearly polarized plane wave that is normal to the patch. The surface-current density that is induced on the patch because of the incident field is expressed in terms of subdomain functions by dividing the patch into identical rectangular subdomains. The amplitudes of the subdomain functions, as a function of frequency, are determined using the electric-field integral equation (EFIE) approach in conjunction with the method of moments. The resonant frequencies of the patch are then obtained by selecting the frequency at which the amplitude of the surface-current density is real. The resonant frequencies of the equilateral triangular and other nonrectangular patches are computed using the present technique, and these frequencies are compared with measurements and other independent calculations.
Central charge from adiabatic transport of cusp singularities in the quantum Hall effect
NASA Astrophysics Data System (ADS)
Can, Tankut
2017-04-01
We study quantum Hall (QH) states on a punctured Riemann sphere. We compute the Berry curvature under adiabatic motion in the moduli space in the large N limit. The Berry curvature is shown to be finite in the large N limit and controlled by the conformal dimension of the cusp singularity, a local property of the mean density. Utilizing exact sum rules obtained from a Ward identity, we show that for the Laughlin wave function, the dimension of a cusp singularity is given by the central charge, a robust geometric response coefficient in the QHE. Thus, adiabatic transport of curvature singularities can be used to determine the central charge of QH states. We also consider the effects of threaded fluxes and spin-deformed wave functions. Finally, we give a closed expression for all moments of the mean density in the integer QH state on a punctured disk.
NASA Astrophysics Data System (ADS)
Noah, Joyce E.
Time correlation functions of density fluctuations of liquids at equilibrium can be used to relate the microscopic dynamics of a liquid to its macroscopic transport properties. Time correlation functions are especially useful since they can be generated in a variety of ways, from scattering experiments to computer simulation to analytic theory. The kinetic theory of fluctuations in equilibrium liquids is an analytic theory for calculating correlation functions using memory functions. In this work, we use a diagrammatic formulation of the kinetic theory to develop a series of binary collision approximations for the collisional part of the memory function. We define binary collisions as collisions between two distinct density fluctuations whose identities are fixed during the duration of a collsion. R approximations are for the short time part of the memory function, and build upon the work of Ranganathan and Andersen. These approximations have purely repulsive interactions between the fluctuations. The second type of approximation, RA approximations, is for the longer time part of the memory function, where the density fluctuations now interact via repulsive and attractive forces. Although RA approximations are a natural extension of R approximations, they permit two density fluctuations to become trapped in the wells of the interaction potential, leading to long-lived oscillatory behavior, which is unphysical. Therefore we consider S approximations which describe binary particles which experience the random effect of the surroundings while interacting via repulsive or repulsive and attractive interactions. For each of these approximations for the memory function we numerically solve the kinetic equation to generate correlation functions. These results are compared to molecular dynamics results for the correlation functions. Comparing the successes and failures of the different approximations, we conclude that R approximations give more accurate intermediate and long time results while RA and S approximations do particularly well at predicting the short time behavior. Lastly, we also develop a series of non-graphically derived approximations and use an optimization procedure to determine the underlying memory function from the simulation data. These approaches provide valuable information about the memory function that will be used in the development of future kinetic theories.
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; ...
2015-03-02
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less
Schwartz, Seth J.; Mason, Craig A.; Pantin, Hilda; Szapocznik, José
2009-01-01
The present study was designed to investigate trajectories of identity development and their relationship to family functioning in a sample of Hispanic adolescents and their primary caregivers. Two hundred fifty adolescents completed measures of identity coherence and confusion and of family functioning, and parents completed measures of family functioning. Significant variability over time and across individuals emerged in identity confusion, but not in identity coherence. As a result, the present analyses focused on identity confusion. Changes in adolescent-reported, but not parent-reported, family functioning were significantly related to changes in identity confusion. Follow-up analyses suggested that family functioning primarily influences identity confusion in early adolescence, but that identity confusion begins to exert a reciprocal effect in middle adolescence. Exploratory latent growth mixture modeling (LGMM) analyses produced three classes of adolescents based on their baseline values and change trajectories in identity confusion. The potential for family-strengthening interventions to affect identity development is discussed. PMID:19756226
Skinner, Dorothy M.; Beattie, Wanda G.
1973-01-01
A combination of both Ag+ and Hg2+ in Cs2SO4 effects the complete separation of two DNAs having identical densities in CsCl. Satellite DNAs of hermit crab, Pagurus pollicaris, and lobster, Homarus americanus, have been isolated by this means. PMID:4522292
Beyond Zipf's Law: The Lavalette Rank Function and Its Properties.
Fontanelli, Oscar; Miramontes, Pedro; Yang, Yaning; Cocho, Germinal; Li, Wentian
Although Zipf's law is widespread in natural and social data, one often encounters situations where one or both ends of the ranked data deviate from the power-law function. Previously we proposed the Beta rank function to improve the fitting of data which does not follow a perfect Zipf's law. Here we show that when the two parameters in the Beta rank function have the same value, the Lavalette rank function, the probability density function can be derived analytically. We also show both computationally and analytically that Lavalette distribution is approximately equal, though not identical, to the lognormal distribution. We illustrate the utility of Lavalette rank function in several datasets. We also address three analysis issues on the statistical testing of Lavalette fitting function, comparison between Zipf's law and lognormal distribution through Lavalette function, and comparison between lognormal distribution and Lavalette distribution.
NASA Astrophysics Data System (ADS)
Phillips, Nicholas G.; Hu, B. L.
2000-10-01
We present calculations of the variance of fluctuations and of the mean of the energy momentum tensor of a massless scalar field for the Minkowski and Casimir vacua as a function of an intrinsic scale defined by a smeared field or by point separation. We point out that, contrary to prior claims, the ratio of variance to mean-squared being of the order unity is not necessarily a good criterion for measuring the invalidity of semiclassical gravity. For the Casimir topology we obtain expressions for the variance to mean-squared ratio as a function of the intrinsic scale (defined by a smeared field) compared to the extrinsic scale (defined by the separation of the plates, or the periodicity of space). Our results make it possible to identify the spatial extent where negative energy density prevails which could be useful for studying quantum field effects in worm holes and baby universes, and for examining the design feasibility of real-life ``time machines.'' For the Minkowski vacuum we find that the ratio of the variance to the mean-squared, calculated from the coincidence limit, is identical to the value of the Casimir case at the same limit for spatial point separation while identical to the value of a hot flat space result with a temporal point separation. We analyze the origin of divergences in the fluctuations of the energy density and discuss choices in formulating a procedure for their removal, thus raising new questions about the uniqueness and even the very meaning of regularization of the energy momentum tensor for quantum fields in curved or even flat spacetimes when spacetime is viewed as having an extended structure.
General framework for fluctuating dynamic density functional theory
NASA Astrophysics Data System (ADS)
Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim
2017-12-01
We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier-Stokes equations, originally derived by Landau and Lifshitz. Our framework thus provides the formal apparatus for ab initio derivations of fluctuating DDFT equations capable of describing the dynamics of soft-matter systems in and out of equilibrium.
NASA Astrophysics Data System (ADS)
Frade, P. R.; Englebert, N.; Faria, J.; Visser, P. M.; Bak, R. P. M.
2008-12-01
The role of symbiont variation in the photobiology of reef corals was addressed by investigating the links among symbiont genetic diversity, function and ecological distribution in a single host species, Madracis pharensis. Symbiont distribution was studied for two depths (10 and 25 m), two different light habitats (exposed and shaded) and three host colour morphs (brown, purple and green). Two Symbiodinium genotypes were present, as defined by nuclear internal transcribed spacer 2 ribosomal DNA (ITS2-rDNA) variation. Symbiont distribution was depth- and colour morph-dependent. Type B15 occurred predominantly on the deeper reef and in green and purple colonies, while type B7 was present in shallow environments and brown colonies. Different light microhabitats at fixed depths had no effect on symbiont presence. This ecological distribution suggests that symbiont presence is potentially driven by light spectral niches. A reciprocal depth transplantation experiment indicated steady symbiont populations under environment change. Functional parameters such as pigment composition, chlorophyll a fluorescence and cell densities were measured for 25 m and included in multivariate analyses. Most functional variation was explained by two photobiological assemblages that relate to either symbiont identity or light microhabitat, suggesting adaptation and acclimation, respectively. Type B15 occurs with lower cell densities and larger sizes, higher cellular pigment concentrations and higher peridinin to chlorophyll a ratio than type B7. Type B7 relates to a larger xanthophyll-pool size. These unambiguous differences between symbionts can explain their distributional patterns, with type B15 being potentially more adapted to darker or deeper environments than B7. Symbiont cell size may play a central role in the adaptation of coral holobionts to the deeper reef. The existence of functional differences between B-types shows that the clade classification does not necessarily correspond to functional identity. This study supports the use of ITS2 as an ecological and functionally meaningful marker in Symbiodinium.
Excess algal symbionts increase the susceptibility of reef corals to bleaching
NASA Astrophysics Data System (ADS)
Cunning, Ross; Baker, Andrew C.
2013-03-01
Rising ocean temperatures associated with global climate change are causing mass coral bleaching and mortality worldwide. Understanding the genetic and environmental factors that mitigate coral bleaching susceptibility may aid local management efforts to help coral reefs survive climate change. Although bleaching susceptibility depends partly on the genetic identity of a coral's algal symbionts, the effect of symbiont density, and the factors controlling it, remain poorly understood. By applying a new metric of symbiont density to study the coral Pocillopora damicornis during seasonal warming and acute bleaching, we show that symbiont cell ratio density is a function of both symbiont type and environmental conditions, and that corals with high densities are more susceptible to bleaching. Higher vulnerability of corals with more symbionts establishes a quantitative mechanistic link between symbiont density and the molecular basis for coral bleaching, and indicates that high densities do not buffer corals from thermal stress, as has been previously suggested. These results indicate that environmental conditions that increase symbiont densities, such as nutrient pollution, will exacerbate climate-change-induced coral bleaching, providing a mechanistic explanation for why local management to reduce these stressors will help coral reefs survive future warming.
Cristaldo, P F; Almeida, C S; Cruz, N G; Ribeiro, E J M; Rocha, M L C; Santos, A A; Santana, A S; Araújo, A P A
2018-06-01
Organisms acquire energy from environment and must allocate it among different life traits (growth, maintenance and reproduction). Social insects must manage the energy allocation to various levels such as colony growth and caste functions. Here, we addressed the question of whether resource density affects the energy allocation to the number of individuals and caste functions as well as nest's growth rate in the Neotropical termite Nasutitermes aff. coxipoensis (Homgren) (Termitidae: Nasutitermitinae). In a manipulative field experiment, colonies of N. aff. coxipoensis, with known volume, were maintained in plots with three different resource's density (0.32, 0.64 and 1.92 baits/m 2 ) over 3 months. After this period, the number of individuals as well as the caste identity and nest volume were measured. Surprisingly, our results showed that colonies reared in the extremes of resource's density (0.32 and 1.92 baits/m 2 ) produced a higher number of individuals compared with colonies reared with intermediate resource density (0. 64 baits/m 2 ). The mean number of workers increased linearly with resource density; however, the average number of immature was higher in colonies reared with 0.32 baits/m 2 compared with colonies reared with 0.64 and 1.92 baits/m 2 . No significant differences of resource density were observed in the mean number of soldiers, worker/soldier ratio as well as in the nest's growth rate. In conclusion, the resource's density seems to play an important role in determining the investment of energy in the number of individuals and caste in N. aff. coxipoensis colonies.
Perceived beauty of random texture patterns: A preference for complexity.
Friedenberg, Jay; Liby, Bruce
2016-07-01
We report two experiments on the perceived aesthetic quality of random density texture patterns. In each experiment a square grid was filled with a progressively larger number of elements. Grid size in Experiment 1 was 10×10 with elements added to create a variety of textures ranging from 10%-100% fill levels. Participants rated the beauty of the patterns. Average judgments across all observers showed an inverted U-shaped function that peaked near middle densities. In Experiment 2 grid size was increased to 15×15 to see if observers preferred patterns with a fixed density or a fixed number of elements. The results of the second experiment were nearly identical to that of the first showing a preference for density over fixed element number. Ratings in both studies correlated positively with a GIF compression metric of complexity and with edge length. Within the range of stimuli used, observers judge more complex patterns to be more beautiful. Copyright © 2016 Elsevier B.V. All rights reserved.
Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger
2016-11-01
All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and gas influx due to gas oversaturation in the aqueous medium.
Metric anisotropies and emergent anisotropic hydrodynamics
NASA Astrophysics Data System (ADS)
Dash, Ashutosh; Jaiswal, Amaresh
2018-05-01
Expansion of a locally equilibrated fluid is considered in an anisotropic space-time given by the Bianchi type-I metric. Starting from the isotropic equilibrium phase-space distribution function in the local rest frame, we obtain expressions for components of the energy-momentum tensor and conserved current, such as number density, energy density, and pressure components. In the case of an axissymmetric Bianchi type-I metric, we show that they are identical to those obtained within the setup of anisotropic hydrodynamics. We further consider the case in which the Bianchi type-I metric is a vacuum solution of the Einstein equation: the Kasner metric. For the axissymmetric Kasner metric, we discuss the implications of our results in the context of anisotropic hydrodynamics.
Rapid Eye Movements (REMs) and visual dream recall in both congenitally blind and sighted subjects
NASA Astrophysics Data System (ADS)
Bértolo, Helder; Mestre, Tiago; Barrio, Ana; Antona, Beatriz
2017-08-01
Our objective was to evaluate rapid eye movements (REMs) associated with visual dream recall in sighted subjects and congenital blind. During two consecutive nights polysomnographic recordings were performed at subjects home. REMs were detected by visual inspection on both EOG channels (EOG-H, EOG-V) and further classified as occurring isolated or in bursts. Dream recall was defined by the existence of a dream report. The two groups were compared using t-test and also the two-way ANOVA and a post-hoc Fisher test (for the features diagnosis (blind vs. sighted) and dream recall (yes or no) as a function of time). The average of REM awakenings per subject and the recall ability were identical in both groups. CB had a lower REM density than CS; the same applied to REM bursts and isolated eye movements. In the two-way ANOVA, REM bursts and REM density were significantly different for positive dream recall, mainly for the CB group and for diagnosis; furthermore for both features significant results were obtained for the interaction of time, recall and diagnosis; the interaction of recall and time was however, stronger. In line with previous findings the data show that blind have lower REMs density. However the ability of dream recall in congenitally blind and sighted controls is identical. In both groups visual dream recall is associated with an increase in REM bursts and density. REM bursts also show differences in the temporal profile. REM visual dream recall is associated with increased REMs activity.
Ryugo, D.K.; Baker, C.A.; Montey, K.L.; Chang, L.Y.; Coco, A.; Fallon, J.B.; Shepherd, R.K.
2010-01-01
The effects of deafness on brain structure and function have been studied using animal models of congenital deafness that include surgical ablation of the organ of Corti, acoustic trauma, ototoxic drugs, and hereditary deafness. This report describes the morphologic plasticity of auditory nerve synapses in response to ototoxic deafening and chronic electrical stimulation of the auditory nerve. Normal kittens were deafened by neonatal administration of neomycin that eliminated auditory receptor cells. Some of these cats were raised deaf, whereas others were chronically implanted with cochlear electrodes at two months of age and electrically stimulated for up to 12 months. The large endings of the auditory nerve, endbulbs of Held, were studied because they hold a key position in the timing pathway for sound localization, are readily identifiable, and exhibit deafness-associated abnormalities. Compared to normal hearing cats, synapses of ototoxically deafened cats displayed expanded postsynaptic densities, a decrease in synaptic vesicle (SV) density, and a reduction in the somatic size of spherical bushy cells (SBCs). When compared to normal hearing cats, endbulbs of ototoxically deafened cats that received cochlear stimulation expressed postsynaptic densities (PSDs) that were statistically identical in size, showed a 32.8% reduction in SV density, and whose target SBCs had a 25.5% reduction in soma area. These results demonstrate that electrical stimulation via a cochlear implant in chemically-deafened cats preserves PSD size but not other aspects of synapse morphology. The results further suggest that the effects of ototoxic deafness are not identical to those of hereditary deafness. PMID:20127807
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedskjaer, Morten M., E-mail: mos@bio.aau.dk; Bauchy, Mathieu; Mauro, John C.
The properties of glass are determined not only by temperature, pressure, and composition, but also by their complete thermal and pressure histories. Here, we show that glasses of identical composition produced through thermal annealing and through quenching from elevated pressure can result in samples with identical density and mean interatomic distances, yet different bond angle distributions, medium-range structures, and, thus, macroscopic properties. We demonstrate that hardness is higher when the density increase is obtained through thermal annealing rather than through pressure-quenching. Molecular dynamics simulations reveal that this arises because pressure-quenching has a larger effect on medium-range order, while annealing hasmore » a larger effect on short-range structures (sharper bond angle distribution), which ultimately determine hardness according to bond constraint theory. Our work could open a new avenue towards industrially useful glasses that are identical in terms of composition and density, but with differences in thermodynamic, mechanical, and rheological properties due to unique structural characteristics.« less
Stephens, P J; McCann, D M; Devlin, F J; Smith, A B
2006-07-01
The determination of the absolute configurations (ACs) of chiral molecules using the chiroptical techniques of optical rotation (OR), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) has been revolutionized by the development of density functional theory (DFT) methods for the prediction of these properties. Here, we demonstrate the significance of these advances for the stereochemical characterization of natural products. Time-dependent DFT (TDDFT) calculations of the specific rotations, [alpha](D), of four cytotoxic natural products, quadrone (1), suberosenone (2), suberosanone (3), and suberosenol A acetate (4), are used to assign their ACs. TDDFT calculations of the ECD of 1 are used to assign its AC. The VCD spectrum of 1 is reported and also used, together with DFT calculations, to assign its AC. The ACs of 1 derived from its [alpha](D), ECD, and VCD are identical and in agreement with the AC previously determined via total synthesis. The previously undetermined ACs of 2-4, derived from their [alpha](D) values, have absolute configurations of their tricyclic cores identical to that of 1. Further studies of the ACs of these molecules using ECD and, especially, VCD are recommended to establish more definitively this finding. Our studies of the OR, ECD, and VCD of quadrone are the first to utilize DFT calculations of all three properties for the determination of the AC of a chiral natural product molecule.
A new estimator method for GARCH models
NASA Astrophysics Data System (ADS)
Onody, R. N.; Favaro, G. M.; Cazaroto, E. R.
2007-06-01
The GARCH (p, q) model is a very interesting stochastic process with widespread applications and a central role in empirical finance. The Markovian GARCH (1, 1) model has only 3 control parameters and a much discussed question is how to estimate them when a series of some financial asset is given. Besides the maximum likelihood estimator technique, there is another method which uses the variance, the kurtosis and the autocorrelation time to determine them. We propose here to use the standardized 6th moment. The set of parameters obtained in this way produces a very good probability density function and a much better time autocorrelation function. This is true for both studied indexes: NYSE Composite and FTSE 100. The probability of return to the origin is investigated at different time horizons for both Gaussian and Laplacian GARCH models. In spite of the fact that these models show almost identical performances with respect to the final probability density function and to the time autocorrelation function, their scaling properties are, however, very different. The Laplacian GARCH model gives a better scaling exponent for the NYSE time series, whereas the Gaussian dynamics fits better the FTSE scaling exponent.
A systematic way for the cost reduction of density fitting methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kállay, Mihály, E-mail: kallay@mail.bme.hu
2014-12-28
We present a simple approach for the reduction of the size of auxiliary basis sets used in methods exploiting the density fitting (resolution of identity) approximation for electron repulsion integrals. Starting out of the singular value decomposition of three-center two-electron integrals, new auxiliary functions are constructed as linear combinations of the original fitting functions. The new functions, which we term natural auxiliary functions (NAFs), are analogous to the natural orbitals widely used for the cost reduction of correlation methods. The use of the NAF basis enables the systematic truncation of the fitting basis, and thereby potentially the reduction of themore » computational expenses of the methods, though the scaling with the system size is not altered. The performance of the new approach has been tested for several quantum chemical methods. It is demonstrated that the most pronounced gain in computational efficiency can be expected for iterative models which scale quadratically with the size of the fitting basis set, such as the direct random phase approximation. The approach also has the promise of accelerating local correlation methods, for which the processing of three-center Coulomb integrals is a bottleneck.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.
Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo 2C) for the deoxygenation of acetic acid,more » an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo 2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less
Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.; ...
2016-01-21
Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo 2C) for the deoxygenation of acetic acid,more » an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo 2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less
Resolution of identity approximation for the Coulomb term in molecular and periodic systems.
Burow, Asbjörn M; Sierka, Marek; Mohamed, Fawzi
2009-12-07
A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 muhartree per atom, for both molecular and periodic systems.
Resolution of identity approximation for the Coulomb term in molecular and periodic systems
NASA Astrophysics Data System (ADS)
Burow, Asbjörn M.; Sierka, Marek; Mohamed, Fawzi
2009-12-01
A new formulation of resolution of identity approximation for the Coulomb term is presented, which uses atom-centered basis and auxiliary basis functions and treats molecular and periodic systems of any dimensionality on an equal footing. It relies on the decomposition of an auxiliary charge density into charged and chargeless components. Applying the Coulomb metric under periodic boundary conditions constrains the explicit form of the charged part. The chargeless component is determined variationally and converged Coulomb lattice sums needed for its determination are obtained using chargeless linear combinations of auxiliary basis functions. The lattice sums are partitioned in near- and far-field portions which are treated through an analytical integration scheme employing two- and three-center electron repulsion integrals and multipole expansions, respectively, operating exclusively in real space. Our preliminary implementation within the TURBOMOLE program package demonstrates consistent accuracy of the method across molecular and periodic systems. Using common auxiliary basis sets the errors of the approximation are small, in average about 20 μhartree per atom, for both molecular and periodic systems.
Equation of State for Detonation Product Gases
NASA Astrophysics Data System (ADS)
Nagayama, Kunihito; Kubota, Shiro
2013-06-01
Based on the empirical linear relationship between detonation velocity and loading density, an approximate description for the Chapman-Jouguet state for detonation product gases of solid phase high explosives has been developed. Provided that the Grüneisen parameter is a function only of volume, systematic and closed system of equations for the Grüneisen parameter and CJ volume have been formulated. These equations were obtained by combining this approximation with the Jones-Stanyukovich-Manson relation together with JWL isentrope for detonation of crystal density PETN. A thermodynamic identity between the Grüneisen parameter and another non-dimensional material parameter introduced by Wu and Jing can be used to derive the enthalpy-pressure-volume equation of state for detonation gases. This Wu-Jing parameter is found to be the ratio of the Grüneisen parameter and the adiabatic index. Behavior of this parameter as a function of pressure was calculated and revealed that their change with pressure is very gradual. By using this equation of state, several isentropes down from the Chapman-Jouguet states reached by four different lower initial density PETN have been calculated and compared with available cylinder expansion tests.
Remapping HELENA to incompressible plasma rotation parallel to the magnetic field
NASA Astrophysics Data System (ADS)
Poulipoulis, G.; Throumoulopoulos, G. N.; Konz, C.
2016-07-01
Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Fabrizio, Eve F.; Ilhan, Faysal; Dass, Amala; Zhang, Guo-Hui; Vassilaras, Plousia; Johnston, J. Chris; Leventis, Nicholas
2005-01-01
The mesoporous surfaces of TMOS-derived silica aerogels have been modified with amines by co-polymerization of TMOS with APTES. The amine sites have become anchors for crosslinking the nanoparticles of the skeletal backbone of the aerogel by attachment of di-, tri and tetra-functional epoxies. The resulting conformal coatings increase the density of the native aerogels by a factor of 2-3 but the strength of the resulting materials may increase by more than two orders of magnitude. Processing variables such as amount of APTES used to make the gels, the epoxy type and concentration used for crosslinking, as well as the crosslinking temperature and time were varied according to a multivariable design-of-experiments (DOE) model. It was found that while elastic modulus follows a similar trend with density, maximum strength is attained neither at the maximum density nor at the highest concentration of -NH2 groups, suggesting surface saturation effects. Aerogels crosslinked with the tri-functional epoxide always show improved strength compared with aerogels crosslinked with the other two epoxides under identical conditions. Solid C-13 NMR studies show residual unreacted epoxides, which condense with ne another by heating crosslinked aerogels at 150 C.
Charge transfer in iridate-manganite superlattices
Okamoto, Satoshi; Nichols, John; Sohn, Changhee; ...
2017-03-03
Charge transfer in superlattices consisting of SrIrOmore » $$_3$$ and SrMnO$$_3$$ is investigated using density functional theory. Despite the nearly identical work function and non-polar interfaces between SrIrO$$_3$$ and SrMnO$$_3$$, rather large charge transfer was experimentally reported between them. Our results provide a qualitative understanding to such experimental reports. We further develop a microscopic model that captures the mechanism behind this phenomenon. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment. Lastly, our work thus demonstrates a new route to control electronic states in non-polar oxide heterostructures.« less
NASA Astrophysics Data System (ADS)
Kurutz, U.; Friedl, R.; Fantz, U.
2017-07-01
Caesium (Cs) is applied in high power negative hydrogen ion sources to reduce a converter surface’s work function and thus enabling an efficient negative ion surface formation. Inherent drawbacks with the usage of this reactive alkali metal motivate the search for Cs-free alternative materials for neutral beam injection systems in fusion research. In view of a future DEMOnstration power plant, a suitable material should provide a high negative ion formation efficiency and comply with the RAMI issues of the system: reliability, availability, maintainability, inspectability. Promising candidates, like low work function materials (molybdenum doped with lanthanum (MoLa) and LaB6), as well as different non-doped and boron-doped diamond samples were investigated in this context at identical and ion source relevant parameters at the laboratory experiment HOMER. Negative ion densities were measured above the samples by means of laser photodetachment and compared with two reference cases: pure negative ion volume formation with negative ion densities of about 1× {10}15 {{{m}}}-3 and the effect of H- surface production using an in situ caesiated stainless steel sample which yields 2.5 times higher densities. Compared to pure volume production, none of the diamond samples did exhibit a measurable increase in H- densities, while showing clear indications of plasma-induced erosion. In contrast, both MoLa and LaB6 produced systematically higher densities (MoLa: ×1.60 LaB6: ×1.43). The difference to caesiation can be attributed to the higher work functions of MoLa and LaB6 which are expected to be about 3 eV for both compared to 2.1 eV of a caesiated surface.
ASYMMETRIC ABSORPTION PROFILES OF Ly{alpha} AND Ly{beta} IN DAMPED Ly{alpha} SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hee-Won, E-mail: hwlee@sejong.ac.kr
2013-08-01
Damped Ly{alpha} systems observed in the quasar spectra are characterized by a high neutral hydrogen column density, N{sub HI} > 2 x 10{sup 20} cm{sup -2}. The absorption wing profiles are often fitted using the Voigt function due to the fact that the scattering cross section near the resonant line center is approximately described by the Lorentzian function. Since a hydrogen atom has infinitely many p states that participate in the electric dipole interaction, the cross section starts to deviate from the Lorentzian in an asymmetric way in the line wing regions. We investigate this asymmetry in the absorption linemore » profiles around Ly{alpha} and Ly{beta} as a function of the neutral hydrogen column density N{sub HI}. In terms of {Delta}{lambda} {identical_to} {lambda} - {lambda}{sub {alpha}}, we expand the Kramers-Heisenberg formula around Ly{alpha} to find {sigma}({lambda}) {approx_equal} (0.5f{sub 12}){sup 2}{sigma}{sub T}({Delta}{lambda}/{lambda}{sub {alpha}}){sup -2}[1 + 3.792({Delta}{lambda}/{lambda}{sub {alpha}})], where f{sub 12} and {sigma}{sub T} are the oscillator strength of Ly{alpha} and the Thomson scattering cross section, respectively. In terms of {Delta}{lambda}{sub 2} {identical_to} {lambda} - {lambda}{sub {beta}} in the vicinity of Ly{beta}, the total scattering cross section, given as the sum of cross sections for Rayleigh and Raman scattering, is shown to be {sigma}({lambda}) {approx_equal} {sigma}{sub T}(0.5f{sub 13}){sup 2}(1 + R{sub 0})({Delta}{lambda}{sub 2}/{lambda}{sub {beta}}){sup -2}[1 - 24.68({Delta}{lambda}{sub 2}/{lambda}{sub {beta}})] with f{sub 13} and the factor R{sub 0} = 0.1342 being the oscillator strength for Ly{beta} and the ratio of the Raman cross section to Rayleigh cross section, respectively. A redward asymmetry develops around Ly{alpha}, whereas a blue asymmetry is obtained for Ly{beta}. The absorption center shifts are found to be almost proportional to the neutral hydrogen column density.« less
Male gender identity in complete androgen insensitivity syndrome.
T'Sjoen, Guy; De Cuypere, Griet; Monstrey, Stan; Hoebeke, Piet; Freedman, F Kenneth; Appari, Mahesh; Holterhus, Paul-Martin; Van Borsel, John; Cools, Martine
2011-06-01
Women and girls with complete androgen insensitivity syndrome (CAIS) invariably have a female typical core gender identity. In this case report, we describe the first case of male gender identity in a CAIS individual raised female leading to complete sex reassignment involving both androgen treatment and phalloplasty. CAIS was diagnosed at age 17, based on an unambiguously female phenotype, a 46,XY karyotype, and a 2660delT androgen receptor (AR) gene mutation, leading to a premature stop in codon 807. Bilateral gonadectomy was performed but a short period of estrogen treatment induced a negative emotional reaction and treatment was stopped. Since the age of 3, childhood-onset cross gender behavior had been noticed. After a period of psychotherapy, persisting male gender identity was confirmed. There was no psychiatric co-morbidity and there was an excellent real life experience. Testosterone substitution was started, however without inducing any of the desired secondary male characteristics. A subcutaneous mastectomy was performed and the patient received phalloplasty by left forearm free flap and scrotoplasty. Testosterone treatment was continued, without inducing virilization, and bone density remained normal. The patient qualifies as female-to-male transsexual and was treated according to the Standards of Care by the World Professional Association for Transgender Health with good outcome. However, we do not believe that female sex of rearing as a standard procedure should be questioned in CAIS. Our case challenges the role of a functional AR pathway in the development of male gender identity.
NASA Astrophysics Data System (ADS)
Zheng, S. X.; Li, W. H.; Lan, Z. C.; Ren, H. Y.; Wang, K. B.; Bai, Y. F.
2014-09-01
Abundant evidence has shown that grazing alters plant functional traits, ecological strategies, community structure, and ecosystem functioning of grasslands. Few studies, however, have examined how plant responses to grazing are mediated by resource availability and functional group identity. We test functional trait-based mechanisms underlying the responses of different life forms to grazing and linkages to ecosystem functioning along a soil moisture gradient in the Inner Mongolia grassland. A principal component analysis (PCA) based on 9 traits × 276 species matrix showed that the plant size spectrum (i.e., individual biomass), leaf economics spectrum (leaf N content and leaf density), and light competition spectrum (height and stem-leaf biomass ratio) distinguished plant species responses to grazing. The three life forms exhibited differential strategies as indicated by trait responses to grazing. The annuals and biennials adopted grazing-tolerant strategies associated with high growth rate, reflected by high leaf N content and specific leaf area. The perennial grasses exhibited grazing-tolerant strategies associated with great regrowth capacity and high palatability scores, whereas perennial forbs showed grazing-avoidant strategies with short stature and low palatability scores. In addition, the dominant perennial bunchgrasses exhibited mixed tolerance-resistance strategies to grazing and mixed acquisitive-conservative strategies in resource utilization. Grazing increased the relative abundance of perennial forbs with low palatability in the wet and fertile meadow, but it promoted perennial grasses with high palatability in the dry and infertile typical steppe. Our findings suggest that the effects of grazing on plant functional traits are dependent on both the abiotic (e.g., soil moisture) and biotic (e.g., plant functional group identity and composition) factors. Grazing-induced shifts in functional group composition are largely dependent on resource availability, particularly water availability.
Models of violently relaxed galaxies
NASA Astrophysics Data System (ADS)
Merritt, David; Tremaine, Scott; Johnstone, Doug
1989-02-01
The properties of spherical self-gravitating models derived from two distribution functions that incorporate, in a crude way, the physics of violent relaxation are investigated. The first distribution function is identical to the one discussed by Stiavelli and Bertin (1985) except for a change in the sign of the 'temperature', i.e., e exp(-aE) to e exp(+aE). It is shown that these 'negative temperature' models provide a much better description of the end-state of violent relaxation than 'positive temperature' models. The second distribution function is similar to the first except for a different dependence on angular momentum. Both distribution functions yield single-parameter families of models with surface density profiles very similar to the R exp 1/4 law. Furthermore, the central concentration of models in both families increases monotonically with the velocity anisotropy, as expected in systems that formed through cold collapse.
Efficiency of Cs-free materials for negative ion production in H2 and D2 plasmas
NASA Astrophysics Data System (ADS)
Friedl, R.; Kurutz, U.; Fantz, U.
2017-08-01
High power negative ion sources use caesium to reduce the work function of the converter surface which significantly increases the negative ion yield. Caesium, however, is a very reactive alkali-metal and shows complex redistribution dynamics in consequence of plasma-surface-interaction. Thus, maintaining a stable and homogenous low work function surface is a demanding task, which is not easily compatible with the RAMI issues (reliability, availability, maintainability, inspectability) for a future DEMO fusion reactor. Hence, Cs-free alternative materials for efficient negative ion formation are desirable. At the laboratory experiment HOMER materials which are referred to as promising are investigated under identical and ion source relevant parameters: the refractory metals Ta and W, non-doped and boron-doped diamond as well as materials with inherent low work function (lanthanum-doped molybdenum, MoLa and lanthanum hexaboride, LaB6). The results are compared to the effect of in-situ caesiation, which at HOMER leads to a maximal increase of the negative ion density by a factor of 2.5. Among the examined samples low work function materials are most efficient. In particular, MoLa leads to an increase of almost 50 % compared to pure volume formation. The difference to a caesiated surface can be attributed to the still higher work function of MoLa, which is expected to be slightly below 3 eV. Using deuterium instead of hydrogen leads to increased atomic and positive ion densities, while comparable negative ion densities are achieved. In contrast to the low work function materials, bulk samples of the refractory metals as well as carbon based materials have no enhancing effect on H-, where the latter materials furthermore show severe erosion due to the hydrogen plasma.
Thomas, Justin; Bentall, Richard P; Hadden, Lowri; O'Hara, Lily
2017-09-01
Psychotic experiences including persecutory beliefs are elevated among immigrant and minority populations, especially when living in low ethnic density neighbourhoods (the ethnic density effect). Discrimination, victimization and experiencing a sense of 'not belonging' are hypothesized to play a role in this effect. Because a secure ethnic identity protects against poor self-esteem it may also protect against paranoia. This study explores the relationship between language proficiency (Arabic/English), in-group identity (implicit and explicit) and paranoia in female Emirati university students. Female citizens of the United Arab Emirates (UAE), Emirati college women (N = 208), reported English/Arabic language proficiencies, and performed a computerized affective priming task engineered to implicitly assess in-group (Emirati) versus out-group (American) positivity. Participants also completed self-report measures of in-group identity (MIIS), and paranoia (PaDs). Arabic proficiency was negatively correlated with paranoia, as was implicit in-group positivity. Furthermore, participants reporting English language dominance, and those demonstrating an implicit out-group preference, reported the highest levels of paranoia. The study is limited by its use of an all female sample. Implicit in-group attitudes and linguistic competence protect against paranoia and may help to explain the ethnic density effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hybridization wave as the cause of the metal-insulator transition in rare earth nickelates
NASA Astrophysics Data System (ADS)
Park, Hyowon; Marianetti, Chris A.; Millis, Andrew J.
2012-02-01
The metal-insulator transition driven by varying rare earth (Re) ion in ReNiO3 has been a longstanding challenge to materials theory. Experimental evidence suggesting charge order is seemingly incompatible with the strong Mott-Hubbard correlations characteristic of transition metals. We present density functional, Hartree-Fock and Dynamical Mean field calculations showing that the origin of the insulating phase is a hybridization wave, in which a two sublattice ordering of the oxygen breathing mode produces two Ni sites with almost identical Ni d-charge densities but very different magnetic moments and other properties. The high temperature crystal structure associated with smaller Re ions such as Lu is shown to be more susceptible to the distortion than the high temperature structure associated with larger Re ions such as La.
Zhang, Shuo; Maidenberg, Yanir; Luo, Kai; Koberstein, Jeffrey T
2014-06-03
Azide-alkyne click chemistry has emerged as an important and versatile means for tethering a wide variety of guest molecules to virtually any substrate. In many of these applications, it is important to exercise control over the areal density of surface functional groups to achieve a desired areal density of the tethered guest molecule of interest. We demonstrate herein that the areal density of surface azide groups on flat germanium surfaces and nanoparticle substrates (silica and iron oxide) can be controlled kinetically by appropriately timed quenching of the S(N)2 substitution reaction of bromo-alkane-silane monolayers induced by the addition of sodium azide. The kinetics of the azide substitution reaction on monolayers formed on flat Ge substrates, determined by attenuated total reflection infrared spectroscopy (ATR-IR), are found to be identical to those for monolayers formed on both silica and iron oxide nanoparticles, the latter determined by transmission infrared spectroscopy. To validate the method, the percentages of surface bromine groups converted to azide groups after various reaction times were measured by quenching the S(N)2 reaction followed by analysis with ATR-IR (for Ge) and thermogravimetric analysis (after a subsequent click reaction with an alkyne-terminal polymer) for the nanoparticle substrates. The conversions found after quenching agree well with those expected from the standard kinetic curves. The latter result suggests that the kinetic method for the control of azide group areal density is a versatile means for functionalizing substrates with a prescribed areal density of azide groups for subsequent click reactions, and that the method is universal for any substrate, flat or nanoparticle, that can be modified with bromo-alkane-silane monolayers. Regardless of the surface geometry, we find that the azide substitution reaction is complete within 2-3 h, in sharp contrast to previous reports that indicate times of 48-60 h required for completion of the reaction.
Temperature-Robust Neural Function from Activity-Dependent Ion Channel Regulation.
O'Leary, Timothy; Marder, Eve
2016-11-07
Many species of cold-blooded animals experience substantial and rapid fluctuations in body temperature. Because biological processes are differentially temperature dependent, it is difficult to understand how physiological processes in such animals can be temperature robust [1-8]. Experiments have shown that core neural circuits, such as the pyloric circuit of the crab stomatogastric ganglion (STG), exhibit robust neural activity in spite of large (20°C) temperature fluctuations [3, 5, 7, 8]. This robustness is surprising because (1) each neuron has many different kinds of ion channels with different temperature dependencies (Q 10 s) that interact in a highly nonlinear way to produce firing patterns and (2) across animals there is substantial variability in conductance densities that nonetheless produce almost identical firing properties. The high variability in conductance densities in these neurons [9, 10] appears to contradict the possibility that robustness is achieved through precise tuning of key temperature-dependent processes. In this paper, we develop a theoretical explanation for how temperature robustness can emerge from a simple regulatory control mechanism that is compatible with highly variable conductance densities [11-13]. The resulting model suggests a general mechanism for how nervous systems and excitable tissues can exploit degenerate relationships among temperature-sensitive processes to achieve robust function. Copyright © 2016 Elsevier Ltd. All rights reserved.
A white noise approach to the Feynman integrand for electrons in random media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grothaus, M., E-mail: grothaus@mathematik.uni-kl.de; Riemann, F., E-mail: riemann@mathematik.uni-kl.de; Suryawan, H. P., E-mail: suryawan@mathematik.uni-kl.de
2014-01-15
Using the Feynman path integral representation of quantum mechanics it is possible to derive a model of an electron in a random system containing dense and weakly coupled scatterers [see F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)]. The main goal of this paper is to give a mathematically rigorous realization of the corresponding Feynman integrand in dimension one based on the theory of white noise analysis. We refine and apply a Wick formula for the product of a square-integrable function with Donsker's delta functions and usemore » a method of complex scaling. As an essential part of the proof we also establish the existence of the exponential of the self-intersection local times of a one-dimensional Brownian bridge. As a result we obtain a neat formula for the propagator with identical start and end point. Thus, we obtain a well-defined mathematical object which is used to calculate the density of states [see, e.g., F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)].« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, E.K.H.; Funkenbusch, P.D.
1993-06-01
Hot isostatic pressing (HIP) of powder mixtures (containing differently sized components) and of composite powders is analyzed. Recent progress, including development of a simple scheme for estimating radial distribution functions, has made modeling of these systems practical. Experimentally, powders containing bimodal or continuous size distributions are observed to hot isostatically press to a higher density tinder identical processing conditions and to show large differences in the densification rate as a function of density when compared with the monosize powders usually assumed for modeling purposes. Modeling correctly predicts these trends and suggests that they can be partially, but not entirely, attributedmore » to initial packing density differences. Modeling also predicts increased deformation in the smaller particles within a mixture. This effect has also been observed experimentally and is associated with microstructural changes, such as preferential recrystallization of small particles. Finally, consolidation of a composite mixture containing hard, but deformable, inclusions has been modeled for comparison with existing experimental data. Modeling results match both the densification and microstructural observations reported experimentally. Densification is retarded due to contacts between the reinforcing particles which support a significant portion of the applied pressure. In addition, partitioning of deformation between soft matrix and hard inclusion powders results in increased deformation of the softer material.« less
Electronic structure and static dipole polarizability of C60@C240
NASA Astrophysics Data System (ADS)
Zope, Rajendra R.
2008-04-01
The electronic structure of C60@C240 and its first-order response to a static electric field is studied by an all-electron density functional theory calculation using large polarized Gaussian basis sets. Our results show that the outer C240 shell almost completely shields the inner C60 as inferred from the practically identical values of dipole polarizability of the C60@C240 onion (449 Å3) and that of the isolated C240 fullerene (441 Å3). The C60@C240 is thus a near-perfect Faraday cage.
Feenstra, Dine J; Hutsebaut, Joost; Verheul, Roel; van Limbeek, Jacques
2014-02-01
A renewed interest in identity as one of the core markers of personality disorders has been introduced by the DSM-5 Level of Personality Functioning Scale. However, little is known about the utility of the construct of identity in children and adolescents. This study aimed to broaden the knowledge of identity integration as a core component of personality functioning in adolescents. The authors investigated levels of identity integration, as measured by the Severity Indices of Personality Problems (SIPP-118; Verheul et al., 2008), in adolescents in both normal (n = 406) and clinical populations (n = 285). Furthermore, changes in levels of identity integration during treatment were investigated in a clinical subsample (n = 76). Levels of identity integration were not associated with age. They were, however, associated with the absence or presence of personality pathology. Most adolescents receiving inpatient psychotherapy gradually changed toward more healthy levels of identity integration; a significant number, however, remained at maladaptive levels of identity functioning after intensive psychotherapy.
Returning forests analyzed with the forest identity.
Kauppi, Pekka E; Ausubel, Jesse H; Fang, Jingyun; Mather, Alexander S; Sedjo, Roger A; Waggoner, Paul E
2006-11-14
Amid widespread reports of deforestation, some nations have nevertheless experienced transitions from deforestation to reforestation. In a causal relationship, the Forest Identity relates the carbon sequestered in forests to the changing variables of national or regional forest area, growing stock density per area, biomass per growing stock volume, and carbon concentration in the biomass. It quantifies the sources of change of a nation's forests. The Identity also logically relates the quantitative impact on forest expanse of shifting timber harvest to regions and plantations where density grows faster. Among 50 nations with extensive forests reported in the Food and Agriculture Organization's comprehensive Global Forest Resources Assessment 2005, no nation where annual per capita gross domestic product exceeded 4,600 dollars had a negative rate of growing stock change. Using the Forest Identity and national data from the Assessment report, a single synoptic chart arrays the 50 nations with coordinates of the rates of change of basic variables, reveals both clusters of nations and outliers, and suggests trends in returning forests and their attributes. The Forest Identity also could serve as a tool for setting forest goals and illuminating how national policies accelerate or retard the forest transitions that are diffusing among nations.
Identity Functions and Empathetic Tendencies of Teacher Candidates
ERIC Educational Resources Information Center
Ay, Alpaslan; Kadi, Aysegul
2016-01-01
Objective of this research is to investigate identity functions and empathetic tendencies of teacher candidates. Sample consists of 232 teacher candidates in social studies teacher education. Survey model is preferred to investigate the difference between identity functions and empathetic tendencies of teacher candidates. And also correlational…
Intramolecular Nuclear Flux Densities
NASA Astrophysics Data System (ADS)
Barth, I.; Daniel, C.; Gindensperger, E.; Manz, J.; PéRez-Torres, J. F.; Schild, A.; Stemmle, C.; Sulzer, D.; Yang, Y.
The topic of this survey article has seen a renaissance during the past couple of years. Here we present and extend the results for various phenomena which we have published from 2012-2014, with gratitude to our coauthors. The new phenomena include (a) the first reduced nuclear flux densities in vibrating diatomic molecules or ions which have been deduced from experimental pump-probe spectra; these "experimental" nuclear flux densities reveal several quantum effects including (b) the "quantum accordion", i.e., during the turn from bond stretch to bond compression, the diatomic system never stands still — instead, various parts of it with different bond lengths flow into opposite directions. (c) Wavepacket interferometry has been extended from nuclear densities to flux densities, again revealing new phenomena: For example, (d) a vibrating nuclear wave function with compact initial shape may split into two partial waves which run into opposite directions, thus causing interfering flux densities. (e) Tunneling in symmetric 1-dimensional double-well systems yields maximum values of the associated nuclear flux density just below the potential barrier; this is in marked contrast with negligible values of the nuclear density just below the barrier. (f) Nuclear flux densities of pseudorotating nuclei may induce huge magnetic fields. A common methodologic theme of all topics is the continuity equation which connects the time derivative of the nuclear density to the divergence of the flux density, subject to the proper boundary conditions. (g) Nearly identical nuclear densities with different boundary conditions may be related to entirely different flux densities, e.g., during tunneling in cyclic versus non-cyclic systems. The original continuity equation, density and flux density of all nuclei, or of all nuclear degrees of freedom, may be reduced to the corresponding quantities for just a single nucleus, or just a single degree of freedom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R., E-mail: chou@astro.utoronto.ca, E-mail: abraham@astro.utoronto.ca, E-mail: bridge@astro.caltech.edu
2011-03-15
We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z {approx} 0.7, although the wet and dry populations have different evolutionarymore » trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M{sub stellar}>10{sup 11} M{sub sun}) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of {approx}0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.« less
Molecular hyperdiversity and evolution in very large populations.
Cutter, Asher D; Jovelin, Richard; Dey, Alivia
2013-04-01
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements. © 2013 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Appleby, Stephen; Chingangbam, Pravabati; Park, Changbom; Hong, Sungwook E.; Kim, Juhan; Ganesan, Vidhya
2018-05-01
We apply the Minkowski tensor statistics to two-dimensional slices of the three-dimensional matter density field. The Minkowski tensors are a set of functions that are sensitive to directionally dependent signals in the data and, furthermore, can be used to quantify the mean shape of density fields. We begin by reviewing the definition of Minkowski tensors and introducing a method of calculating them from a discretely sampled field. Focusing on the statistic {W}21,1—a 2 × 2 matrix—we calculate its value for both the entire excursion set and individual connected regions and holes within the set. To study the morphology of structures within the excursion set, we calculate the eigenvalues λ 1, λ 2 for the matrix {W}21,1 of each distinct connected region and hole and measure their mean shape using the ratio β \\equiv < {λ }2/{λ }1> . We compare both {W}21,1 and β for a Gaussian field and a smoothed density field generated from the latest Horizon Run 4 cosmological simulation to study the effect of gravitational collapse on these functions. The global statistic {W}21,1 is essentially independent of gravitational collapse, as the process maintains statistical isotropy. However, β is modified significantly, with overdensities becoming relatively more circular compared to underdensities at low redshifts. When applying the statistics to a redshift-space distorted density field, the matrix {W}21,1 is no longer proportional to the identity matrix, and measurements of its diagonal elements can be used to probe the large-scale velocity field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veldman, Joseph W.; Mattingly, W. Brett; Brudvig, Lars A.
Although savanna trees and forest trees are thought to represent distinct functional groups with different effects on ecosystem processes, few empirical studies have examined these effects. In particular, it remains unclear if savanna and forest trees differ in their ability to coexist with understory plants, which comprise the majority of plant diversity in most savannas. We used structural equation modeling (SEM) and data from 157 sites across three locations in the southeastern United States to understand the effects of broadleaf savanna trees, broadleaf forest trees, and pine trees on savanna understory plant communities. After accounting for underlying gradients in firemore » frequency and soil moisture, abundances (i.e., basal area and stem density) of forest trees and pines, but not savanna trees, were negatively correlated with the cover and density (i.e., local-scale species richness) of C4 graminoid species, a defining savanna understory functional group that is linked to ecosystem flammability. In analyses of the full understory community, abundances of trees from all functional groups were negatively correlated with species density and cover. For both the C4 and full communities, fire frequency promoted understory plants directly, and indirectly by limiting forest tree abundance. There was little indirect influence of fire on the understory mediated through savanna trees and pines, which are more fire tolerant than forest trees. We conclude that tree functional identity is an important factor that influences overstory tree relationships with savanna understory plant communities. In particular, distinct relationships between trees and C4 graminoids have implications for grass-tree coexistence and vegetation-fire feedbacks that maintain savanna environments and their associated understory plant diversity.« less
Entropy and density of states from isoenergetic nonequilibrium processes
NASA Astrophysics Data System (ADS)
Adib, Artur B.
2005-05-01
Two identities in statistical mechanics involving entropy differences (or ratios of densities of states) at constant energy are derived. The first provides a nontrivial extension of the Jarzynski equality to the microcanonical ensemble [C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)], which can be seen as a “fast-switching” version of the adiabatic switching method for computing entropies [M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990)]. The second is a thermodynamic integration formula analogous to a well-known expression for free energies, and follows after taking the quasistatic limit of the first. Both identities can be conveniently used in conjunction with a scaling relation (herein derived) that allows one to extrapolate measurements taken at a single energy to a wide range of energy values. Practical aspects of these identities in the context of numerical simulations are discussed.
Harvey, Eric; Séguin, Annie; Nozais, Christian; Archambault, Philippe; Gravel, Dominique
2013-01-01
Understanding the impacts of species extinctions on the functioning of food webs is a challenging task because of the complexity of ecological interactions. We report the impacts of experimental species extinctions on the functioning of two food webs of freshwater and marine systems. We used a linear model to partition the variance among the multiple components of the diversity effect (linear group richness, nonlinear group richness, and identity). The identity of each functional group was the best explaining variable of ecosystem functioning for both systems. We assessed the contribution of each functional group in multifunctional space and found that, although the effect of functional group varied across ecosystem functions, some functional groups shared common effects on functions. This study is the first experimental demonstration that functional identity dominates the effects of extinctions on ecosystem functioning, suggesting that generalizations are possible despite the inherent complexity of interactions.
ERIC Educational Resources Information Center
Schwartz, Seth J.; Mason, Craig A.; Pantin, Hilda; Szapocznik, Jose
2009-01-01
The present study was designed to investigate trajectories of identity development and their relationship to family functioning in a sample of Hispanic adolescents and their primary caregivers. Two hundred fifty adolescents completed measures of identity coherence and confusion and of family functioning, and parents completed measures of family…
Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas
NASA Astrophysics Data System (ADS)
Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun
2017-10-01
As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.
Milne, S C
1996-12-24
In this paper, we give two infinite families of explicit exact formulas that generalize Jacobi's (1829) 4 and 8 squares identities to 4n(2) or 4n(n + 1) squares, respectively, without using cusp forms. Our 24 squares identity leads to a different formula for Ramanujan's tau function tau(n), when n is odd. These results arise in the setting of Jacobi elliptic functions, Jacobi continued fractions, Hankel or Turánian determinants, Fourier series, Lambert series, inclusion/exclusion, Laplace expansion formula for determinants, and Schur functions. We have also obtained many additional infinite families of identities in this same setting that are analogous to the eta-function identities in appendix I of Macdonald's work [Macdonald, I. G. (1972) Invent. Math. 15, 91-143]. A special case of our methods yields a proof of the two conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin, V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp. 415-456] identities involving representing a positive integer by sums of 4n(2) or 4n(n + 1) triangular numbers, respectively. Our 16 and 24 squares identities were originally obtained via multiple basic hypergeometric series, Gustafson's C(l) nonterminating (6)phi(5) summation theorem, and Andrews' basic hypergeometric series proof of Jacobi's 4 and 8 squares identities. We have (elsewhere) applied symmetry and Schur function techniques to this original approach to prove the existence of similar infinite families of sums of squares identities for n(2) or n(n + 1) squares, respectively. Our sums of more than 8 squares identities are not the same as the formulas of Mathews (1895), Glaisher (1907), Ramanujan (1916), Mordell (1917, 1919), Hardy (1918, 1920), Kac and Wakimoto, and many others.
Simulation of electric double-layer capacitors: evaluation of constant potential method
NASA Astrophysics Data System (ADS)
Wang, Zhenxing; Laird, Brian; Yang, Yang; Olmsted, David; Asta, Mark
2014-03-01
Atomistic simulations can play an important role in understanding electric double-layer capacitors (EDLCs) at a molecular level. In such simulations, typically the electrode surface is modeled using fixed surface charges, which ignores the charge fluctuation induced by local fluctuations in the electrolyte solution. In this work we evaluate an explicit treatment of charges, namely constant potential method (CPM)[1], in which the electrode charges are dynamically updated to maintain constant electrode potential. We employ a model system with a graphite electrode and a LiClO4/acetonitrile electrolyte, examined as a function of electrode potential differences. Using various molecular and macroscopic properties as metrics, we compare CPM simulations on this system to results using fixed surface charges. Specifically, results for predicted capacity, electric potential gradient and solvent density profile are identical between the two methods; However, ion density profiles and solvation structure yield significantly different results.
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; Zhu, Jian-Xin; Balatsky, Alexander V.; Haraldsen, Jason T.
2015-01-01
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, where the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction. PMID:26235646
The Study of Interpenetration Length between dPS Films and PS-grafted Layers
NASA Astrophysics Data System (ADS)
Lee, Hoyeon; Jo, Seongjun; Hirata, Toyoaki; Yamada, Norifumi L.; Tanaka, Keiji; Ryu, Du Yeol
In polymer thin film system, the type of interfacial interaction is a critical parameter to determining the thermal and physical properties of polymer films. Interestingly, the interfacial energy of grafted substrates with polymer chains is remarkably altered by simply controlling grafting density, which has been referred to as autophobicity. In this study, we investigated the interpenetrating interfaces between deuterated polystyrene (dPS) and grafted substrates with the same chemical identity. PS-grafted substrates were prepared using a grafting-to approach with hydroxyl end-functionalized polystyrene (PSOH) in a dry brush regime, where the brush thickness and grafting density were determined based on the chain length (or molecular weight, Mn) of PSOHs. The interpenetration lengths (ξ) at interfaces between dPS and PS-grafted layers were characterized using neutron reflectivity (NR) measurements (performed at the SOFIA beam-line at J-PARC, Japan). Academic adviser.
Functions of the gene products of Escherichia coli.
Riley, M
1993-01-01
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome. PMID:7508076
NASA Astrophysics Data System (ADS)
Ruth, Anthony; Collins, Laura; Gomes, Kenjiro; Janko, Boldizsar
We present a real-space representation of molecules which results in the normal bonding rules and electronic structure of chemistry without atom-centered coulomb potentials. Using a simple mapping, we can generate atomless molecules from the structure of real molecules. Additionally, molecules without atoms show similar covalent bonding energies and transfer of charge in ionic bonds as real molecules. The atomless molecules contain only the valence and conduction electronic structure of the real molecule. Using the framework of the Atoms in Molecules (AIM) theory of Bader, we prove that the topological features of the valence charge distribution of molecules without atoms are identical to that of real molecules. In particular, the charge basins of atomless molecules show identical location and quantities of representative charge. We compare the accuracy, computational cost, and intuition gained from electronic structure calculations of molecules without atoms with the use of pseudopotentials to represent atomic cores in density functional theory. A. R. acknowledges support from a NASA Space Technology Research Fellowship.
Guevara, V R
2004-02-01
A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.
NASA Astrophysics Data System (ADS)
Mestdagh, Sebastiaan; Bagaço, Leila; Braeckman, Ulrike; Ysebaert, Tom; De Smet, Bart; Moens, Tom; Van Colen, Carl
2018-05-01
Human activities, among which dredging and land use change in river basins, are altering estuarine ecosystems. These activities may result in changes in sedimentary processes, affecting biodiversity of sediment macrofauna. As macrofauna controls sediment chemistry and fluxes of energy and matter between water column and sediment, changes in the structure of macrobenthic communities could affect the functioning of an entire ecosystem. We assessed the impact of sediment deposition on intertidal macrobenthic communities and on rates of an important ecosystem function, i.e. sediment community oxygen consumption (SCOC). An experiment was performed with undisturbed sediment samples from the Scheldt river estuary (SW Netherlands). The samples were subjected to four sedimentation regimes: one control and three with a deposited sediment layer of 1, 2 or 5 cm. Oxygen consumption was measured during incubation at ambient temperature. Luminophores applied at the surface, and a seawater-bromide mixture, served as tracers for bioturbation and bio-irrigation, respectively. After incubation, the macrofauna was extracted, identified, and counted and then classified into functional groups based on motility and sediment reworking capacity. Total macrofaunal densities dropped already under the thinnest deposits. The most affected fauna were surficial and low-motility animals, occurring at high densities in the control. Their mortality resulted in a drop in SCOC, which decreased steadily with increasing deposit thickness, while bio-irrigation and bioturbation activity showed increases in the lower sediment deposition regimes but decreases in the more extreme treatments. The initial increased activity likely counteracted the effects of the drop in low-motility, surficial fauna densities, resulting in a steady rather than sudden fall in oxygen consumption. We conclude that the functional identity in terms of motility and sediment reworking can be crucial in our understanding of the regulation of ecosystem functioning and the impact of habitat alterations such as sediment deposition.
NASA Astrophysics Data System (ADS)
Bezák, V.
2003-02-01
The Waxman-Peck theory of population genetics is discussed in regard of soil bacteria. Each bacterium is understood as a carrier of a phenotypic parameter p. The central objective is the calculation of the probability density with respect to p, Φ(p,t;p0), of the carriers living at time t>0, provided that initially at t0=0, all bacteria carried the phenotypic parameter p0=0. The theory involves two small parameters: the mutation probability μ and a parameter γ involved in a function w(p) defining the fitness of the bacteria to survive the generation time τ and give birth to an offspring. The mutation from a state p to a state q is defined by a Gaussian with a dispersion σ2m. The author focuses our attention on a function φ(p,t) which determines uniquely the function Φ(p,t;p0) and satisfies a linear equation (Waxman’s equation). The Green function of this equation is mathematically identical with the one-particle Bloch density matrix, where μ characterizes the order of magnitude of the potential energy. (In the x representation, the potential energy is proportional to the inverted Gaussian with the dispersion σ2m). The author solves Waxman’s equation in the standard style of a perturbation theory and discusses how the solution depends on the choice of the fitness function w(p). In a sense, the function c(p)=1-w(p)/w(0) is analogous to the dispersion function E(p) of fictitious quasiparticles. In contrast to Waxman’s approximation, where c(p) was taken as a quadratic function, c(p)≈γp2, the author exemplifies the problem with another function, c(p)=γ[1-exp(-ap2)], where γ is small but a may be large. The author shows that the use of this function in the theory of the population genetics is the same as the use of a nonparabolic dispersion law E=E(p) in the density-matrix theory. With a general function c(p), the distribution function Φ(p,t;0) is composed of a δ-function component, N(t)δ(p), and a blurred component. When discussing the limiting transition for t→∞, the author shows that his function c(p) implies that N(t)→N(∞)≠0 in contrast with the asymptotics N(t)→0 resulting from the use of Waxman’s function c(p)˜p2.
Illness Identity in Adults with a Chronic Illness.
Oris, Leen; Luyckx, Koen; Rassart, Jessica; Goubert, Liesbet; Goossens, Eva; Apers, Silke; Arat, Seher; Vandenberghe, Joris; Westhovens, René; Moons, Philip
2018-02-21
The present study examines the concept of illness identity, the degree to which a chronic illness is integrated into one's identity, in adults with a chronic illness by validating a new self-report questionnaire, the Illness Identity Questionnaire (IIQ). Self-report questionnaires on illness identity, psychological, and physical functioning were assessed in two samples: adults with congenital heart disease (22-78 year old; n = 276) and with multisystem connective tissue disorders (systemic lupus erythematosus or systemic sclerosis; 17-81 year old; n = 241). The IIQ could differentiate four illness identity states (i.e., engulfment, rejection, acceptance, and enrichment) in both samples, based on exploratory and confirmatory factor analysis. All four subscales proved to be reliable. Rejection and engulfment were related to maladaptive psychological and physical functioning, whereas acceptance and enrichment were related to adaptive psychological and physical functioning. The present findings underscore the importance of the concept of illness identity. The IIQ, a self-report questionnaire, is introduced to measure four different illness identity states in adults with a chronic illness.
Stochastic analysis of particle movement over a dune bed
Lee, Baum K.; Jobson, Harvey E.
1977-01-01
Stochastic models are available that can be used to predict the transport and dispersion of bed-material sediment particles in an alluvial channel. These models are based on the proposition that the movement of a single bed-material sediment particle consists of a series of steps of random length separated by rest periods of random duration and, therefore, application of the models requires a knowledge of the probability distributions of the step lengths, the rest periods, the elevation of particle deposition, and the elevation of particle erosion. The procedure was tested by determining distributions from bed profiles formed in a large laboratory flume with a coarse sand as the bed material. The elevation of particle deposition and the elevation of particle erosion can be considered to be identically distributed, and their distribution can be described by either a ' truncated Gaussian ' or a ' triangular ' density function. The conditional probability distribution of the rest period given the elevation of particle deposition closely followed the two-parameter gamma distribution. The conditional probability distribution of the step length given the elevation of particle erosion and the elevation of particle deposition also closely followed the two-parameter gamma density function. For a given flow, the scale and shape parameters describing the gamma probability distributions can be expressed as functions of bed-elevation. (Woodard-USGS)
Zheng, Yong; Chen, Liang; Luo, Cai-Yun; Zhang, Zhen-Hua; Wang, Shi-Ping; Guo, Liang-Dong
2016-10-01
Arbuscular mycorrhizal (AM) fungi play key roles in plant nutrition and plant productivity. AM fungal responses to either plant identity or fertilization have been investigated. However, the interactive effects of different plant species and fertilizer types on these symbiotic fungi remain poorly understood. We evaluated the effects of the factorial combinations of plant identity (grasses Avena sativa and Elymus nutans and legume Vicia sativa) and fertilization (urea and sheep manure) on AM fungi following 2-year monocultures in a sown pasture field study. AM fungal extraradical hyphal density was significantly higher in E. nutans than that in A. sativa and V. sativa in the unfertilized control and was significantly increased by urea and manure in A. sativa and by manure only in E. nutans, but not by either fertilizers in V. sativa. AM fungal spore density was not significantly affected by plant identity or fertilization. Forty-eight operational taxonomic units (OTUs) of AM fungi were obtained through 454 pyrosequencing of 18S rDNA. The OTU richness and Shannon diversity index of AM fungi were significantly higher in E. nutans than those in V. sativa and/or A. sativa, but not significantly affected by any fertilizer in all of the three plant species. AM fungal community composition was significantly structured directly by plant identity only and indirectly by both urea addition and plant identity through soil total nitrogen content. Our findings highlight that plant identity has stronger influence than fertilization on belowground AM fungal community in this converted pastureland from an alpine meadow.
Steep, Transient Density Gradients in the Martian Ionosphere Similar to the Ionopause at Venus
NASA Astrophysics Data System (ADS)
Duru, Firdevs; Gurnett, Donald; Frahm, Rudy; Winningham, D. L.; Morgan, David; Howes, Gregory
Using Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on the Mars Express (MEX) spacecraft, the electron density can be measured by two methods: from the excitation of local plasma oscillations and from remote sounding. A study of the local electron density versus time for 1664 orbits revealed that in 132 orbits very sharp gradients in the electron density occurred that are similar to the ionopause boundary commonly observed at Venus. In 40 of these cases, remote sounding data have also confirmed identical locations of steep ionopause-like density gradients. Measurements from the Analyzer of Space Plasma and Energetic Atoms (ASPERA-3) Electron Spectrometer (ELS) and Ion Mass Analyzer (IMA) instruments (also on Mars Express) verify that these sharp decreases in the electron density occur somewhere between the end of the region where ionospheric photoelectrons are dominant and the magnetosheath. Combined studies of the two experiments reveal that the steep density gradients define a boundary where the magnetic fields change from open to closed. This study shows that, although the individual cases are from a wide range of altitudes, the average altitude of the boundary as a function of solar zenith angle is almost constant. The average altitude is approximately 500 km up to solar zenith angles of 60o, after which it shows a slight increase. The average thickness of the boundary is about 22 km according to remote sounding measurements. The altitude of the steep gradients shows an increase at locations with strong crustal magnetic fields.
On the identity of the last known stable radical in X-irradiated sucrose
NASA Astrophysics Data System (ADS)
Kusakovskij, Jevgenij; De Cooman, Hendrik; Sagstuen, Einar; Callens, Freddy; Vrielinck, Henk
2017-04-01
Identification of radiation-induced radicals in relatively simple molecules is a prerequisite for the understanding of reaction pathways of the radiation chemistry of complex systems. Sucrose presents an additional practical interest as a versatile radiation dosimetric system. In this work, we present a periodic density functional theory study aimed to identify the fourth stable radical species in this carbohydrate. The proposed model is a fragment suspended in the lattice by hydrogen bonds with an unpaired electron at the original C5' carbon of the fructose unit. It requires a double scission of the ring accompanied by substantial chemical and geometric reorganization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Margareta; Lackner, Peter; Seiler, Steffen
Metal deposition on oxide surfaces usually results in adatoms, clusters, or islands of the deposited material, where defects in the surface often act as nucleation centers. An alternate configuration is reported. Afterwards the vapor deposition of Fe on the In 2O 3(111) surface at room temperature, ordered adatoms are observed with scanning tunneling microscopy (STM). These are identical to the In adatoms that form when the sample is reduced by heating in ultrahigh vacuum. Our density functional theory (DFT) calculations confirm that Fe interchanges with In in the topmost layer, pushing the excess In atoms to the surface where theymore » arrange as a well-ordered adatom array.« less
Understanding and Communicating through Narratives
2012-05-17
distinctions, and may affect the fundamental contents of personal identity . It comes as no surprise that because of these influences stories are...activists.”16 Narrative serves an inherently strategic role, it serves as living embodiment of identity and ideology at personal, organizational, and as...applied by Freeman, national level. This identity function is one of the most critical functions of narrative. The logic expressed by the identity
Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S
2017-07-01
Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Chen, Jeng-Tzong; Lee, Jia-Wei
2013-09-01
In this paper, we focus on the water wave scattering by an array of four elliptical cylinders. The null-field boundary integral equation method (BIEM) is used in conjunction with degenerate kernels and eigenfunctions expansion. The closed-form fundamental solution is expressed in terms of the degenerate kernel containing the Mathieu and the modified Mathieu functions in the elliptical coordinates. Boundary densities are represented by using the eigenfunction expansion. To avoid using the addition theorem to translate the Mathieu functions, the present approach can solve the water wave problem containing multiple elliptical cylinders in a semi-analytical manner by introducing the adaptive observer system. Regarding water wave problems, the phenomena of numerical instability of fictitious frequencies may appear when the BIEM/boundary element method (BEM) is used. Besides, the near-trapped mode for an array of four identical elliptical cylinders is observed in a special layout. Both physical (near-trapped mode) and mathematical (fictitious frequency) resonances simultaneously appear in the present paper for a water wave problem by an array of four identical elliptical cylinders. Two regularization techniques, the combined Helmholtz interior integral equation formulation (CHIEF) method and the Burton and Miller approach, are adopted to alleviate the numerical resonance due to fictitious frequency.
Keener, M T; Fournier, J C; Mullin, B C; Kronhaus, D; Perlman, S B; LaBarbara, E; Almeida, J C; Phillips, M L
2012-09-01
Individuals with bipolar disorder demonstrate abnormal social function. Neuroimaging studies in bipolar disorder have shown functional abnormalities in neural circuitry supporting face emotion processing, but have not examined face identity processing, a key component of social function. We aimed to elucidate functional abnormalities in neural circuitry supporting face emotion and face identity processing in bipolar disorder. Twenty-seven individuals with bipolar disorder I currently euthymic and 27 healthy controls participated in an implicit face processing, block-design paradigm. Participants labeled color flashes that were superimposed on dynamically changing background faces comprising morphs either from neutral to prototypical emotion (happy, sad, angry and fearful) or from one identity to another identity depicting a neutral face. Whole-brain and amygdala region-of-interest (ROI) activities were compared between groups. There was no significant between-group difference looking across both emerging face emotion and identity. During processing of all emerging emotions, euthymic individuals with bipolar disorder showed significantly greater amygdala activity. During facial identity and also happy face processing, euthymic individuals with bipolar disorder showed significantly greater amygdala and medial prefrontal cortical activity compared with controls. This is the first study to examine neural circuitry supporting face identity and face emotion processing in bipolar disorder. Our findings of abnormally elevated activity in amygdala and medial prefrontal cortex (mPFC) during face identity and happy face emotion processing suggest functional abnormalities in key regions previously implicated in social processing. This may be of future importance toward examining the abnormal self-related processing, grandiosity and social dysfunction seen in bipolar disorder.
Freyhult, Eva; Cui, Yuanyuan; Nilsson, Olle; Ardell, David H
2007-10-01
There are at least 21 subfunctional classes of tRNAs in most cells that, despite a very highly conserved and compact common structure, must interact specifically with different cliques of proteins or cause grave organismal consequences. Protein recognition of specific tRNA substrates is achieved in part through class-restricted tRNA features called tRNA identity determinants. In earlier work we used TFAM, a statistical classifier of tRNA function, to show evidence of unexpectedly large diversity among bacteria in tRNA identity determinants. We also created a data reduction technique called function logos to visualize identity determinants for a given taxon. Here we show evidence that determinants for lysylated isoleucine tRNAs are not the same in Proteobacteria as in other bacterial groups including the Cyanobacteria. Consistent with this, the lysylating biosynthetic enzyme TilS lacks a C-terminal domain in Cyanobacteria that is present in Proteobacteria. We present here, using function logos, a map estimating all potential identity determinants generally operational in Cyanobacteria and Proteobacteria. To further isolate the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria, we created two new data reduction visualizations to contrast sequence and function logos between two taxa. One, called Information Difference logos (ID logos), shows the evolutionary gain or retention of functional information associated to features in one lineage. The other, Kullback-Leibler divergence Difference logos (KLD logos), shows recruitments or shifts in the functional associations of features, especially those informative in both lineages. We used these new logos to specifically isolate and visualize the differences in potential tRNA identity determinants between Proteobacteria and Cyanobacteria. Our graphical results point to numerous differences in potential tRNA identity determinants between these groups. Although more differences in general are explained by shifts in functional association rather than gains or losses, the apparent identity differences in lysylated isoleucine tRNAs appear to have evolved through both mechanisms.
Riemannian geometry of thermodynamics and systems with repulsive power-law interactions.
Ruppeiner, George
2005-07-01
A Riemannian geometric theory of thermodynamics based on the postulate that the curvature scalar R is proportional to the inverse free energy density is used to investigate three-dimensional fluid systems of identical classical point particles interacting with each other via a power-law potential energy gamma r(-alpha) . Such systems are useful in modeling melting transitions. The limit alpha-->infinity corresponds to the hard sphere gas. A thermodynamic limit exists only for short-range (alpha>3) and repulsive (gamma>0) interactions. The geometric theory solutions for given alpha>3 , gamma>0 , and any constant temperature T have the following properties: (1) the thermodynamics follows from a single function b (rho T(-3/alpha) ) , where rho is the density; (2) all solutions are equivalent up to a single scaling constant for rho T(-3/alpha) , related to gamma via the virial theorem; (3) at low density, solutions correspond to the ideal gas; (4) at high density there are solutions with pressure and energy depending on density as expected from solid state physics, though not with a Dulong-Petit heat capacity limit; (5) for 3
NASA Astrophysics Data System (ADS)
Aittala, Pekka J.; Cramariuc, Oana; Hukka, Terttu I.
2011-01-01
The potential energy curves (PECs) of the Q, B, and the lowest charge transfer (CT) states of a porphine-2,5-dimethyl-1,4-benzoquinone (PQ) complex have been studied by using the time-dependent density functional theory (TDDFT) with the CAM-B3LYP functional without and with the presence of an external electrostatic field. The PECs calculated using CAM-B3LYP with the original parameters α = 0.19, β = 0.65, and μ = 0.33 a0-1 are practically identical with those obtained using BH&HLYP. Applying of CAM-B3LYP with parameters α = 0.19, β = 0.81, and μ = 0.25 a0-1 yields PECs of the excited states that agree well with the PECs calculated previously using the CC2 method.
Constructing the dead: Retrospective sensemaking in eulogies.
Davis, Christine S; Quinlan, Margaret M; Baker, Debra K
2016-01-01
Eulogies serve a sensemaking function of identity construction--both for the deceased and for the survivors. This work examines the communicative construction of identity in eulogies and shows how eulogia discourse affirms and reconstructs our relational identity through communication. The article extends scholarship on eulogies by using relational communication theories to investigate how eulogic discourse functions as identity construction, considering eulogies of ordinary people, and exploring the gendered nature of eulogies. We discuss how eulogies are specific ritualized forms of communication in which the bereaved focus on self-identity as they articulate their experience of grief.
Schwartz, Seth J.; Mason, Craig A.; Pantin, Hilda; Wang, Wei; Brown, C. Hendricks; Campo, Ana; Szapocznik, José
2008-01-01
The present study was designed to examine the extent to which (a) family and school functioning and (b) personal and ethnic identity is associated with conduct problems, drug use, and sexual risk taking in a sample of 227 high-risk Hispanic adolescents. Adolescents participated in the study with their primary parents, who were mostly mothers. Adolescents completed measures of family and school functioning, personal and ethnic identity, conduct problems, and drug use. Parents completed measures of family functioning and adolescent conduct problems. Results indicated that school functioning and personal identity confusion were related to alcohol use, illicit drug use, and sexual risk taking indirectly through adolescent reports of conduct problems. Adolescent reports of family functioning were related to alcohol use, illicit drug use, and sexual risk taking through school functioning and conduct problems. Results are discussed in terms of the problem behavior syndrome and in terms of the finding of relative independence of contextual and identity variables vis-à-vis conduct problems, substance use, and sexual risk taking. PMID:19412356
NASA Astrophysics Data System (ADS)
Shintani, Masaru; Umeno, Ken
2018-04-01
The power law is present ubiquitously in nature and in our societies. Therefore, it is important to investigate the characteristics of power laws in the current era of big data. In this paper we prove that the superposition of non-identical stochastic processes with power laws converges in density to a unique stable distribution. This property can be used to explain the universality of stable laws that the sums of the logarithmic returns of non-identical stock price fluctuations follow stable distributions.
Analytical potential-density pairs for bars
NASA Astrophysics Data System (ADS)
Vogt, D.; Letelier, P. S.
2010-11-01
An identity that relates multipolar solutions of the Einstein equations to Newtonian potentials of bars with linear densities proportional to Legendre polynomials is used to construct analytical potential-density pairs of infinitesimally thin bars with a given linear density profile. By means of a suitable transformation, softened bars that are free of singularities are also obtained. As an application we study the equilibrium points and stability for the motion of test particles in the gravitational field for three models of rotating bars.
Stephen W. Feldberg; Lewis, Ernie R.
2016-02-17
In this study, the principle of unchanging total concentration as described by Oldham and Feldberg [J. Phys. Chem. B, 103, 1699 (1999)] is invoked to analyze systems comprising a redox pair (X z1 1 and X z2 2) plus one or more non-electroactive species (X z3 3,X z4 4...X zjmax jmax) where X zj j is the j th species with charge z j and concentration; c j. The principle states that if the diffusion coefficients for all species are identical and mass transport is governed by the Nernst-Planck expression, the total concentration does not change during any electrochemical perturbation,more » i.e.: Σ jmax j=1[X zj j]=Σ jmax j=1 c j = S P With this principle we deduce the electrochemically induced difference between the surface and bulk concentrations for each species. Those concentration differences are translated into density differences which are a function of the density of the solvent and of the concentration differences, molecular masses and the standard partial molar volumes of all species. Those density differences in turn can induce convection that will ultimately modify the observed current. However, we did not attempt to quantify details of the natural convection and current modification produced by those density differences.« less
Racial-Ethnic Identity and Adjustment in Canadian Indigenous Adolescents
ERIC Educational Resources Information Center
Gfellner, Barbara M.; Armstrong, Helen D.
2013-01-01
This study supported associations between three theoretically driven conceptualizations of racial and ethnic identity (REI; Multigroup Ethnic Identity Measure; Multidimensional Racial Identity Measure; Bicultural Identity Measure) and with adaptive functioning among Canadian indigenous adolescents in middle school to high school. Age differences…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen W. Feldberg; Lewis, Ernie R.
In this study, the principle of unchanging total concentration as described by Oldham and Feldberg [J. Phys. Chem. B, 103, 1699 (1999)] is invoked to analyze systems comprising a redox pair (X z1 1 and X z2 2) plus one or more non-electroactive species (X z3 3,X z4 4...X zjmax jmax) where X zj j is the j th species with charge z j and concentration; c j. The principle states that if the diffusion coefficients for all species are identical and mass transport is governed by the Nernst-Planck expression, the total concentration does not change during any electrochemical perturbation,more » i.e.: Σ jmax j=1[X zj j]=Σ jmax j=1 c j = S P With this principle we deduce the electrochemically induced difference between the surface and bulk concentrations for each species. Those concentration differences are translated into density differences which are a function of the density of the solvent and of the concentration differences, molecular masses and the standard partial molar volumes of all species. Those density differences in turn can induce convection that will ultimately modify the observed current. However, we did not attempt to quantify details of the natural convection and current modification produced by those density differences.« less
Non-identical multiplexing promotes chimera states
NASA Astrophysics Data System (ADS)
Ghosh, Saptarshi; Zakharova, Anna; Jalan, Sarika
2018-01-01
We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world complex systems can promote chimera states in a sparse homogeneous first layer.
Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen
NASA Astrophysics Data System (ADS)
Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.
2018-05-01
We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.
Fractionation of Cl/Br during fluid phase separation in magmatic-hydrothermal fluids
NASA Astrophysics Data System (ADS)
Seo, Jung Hun; Zajacz, Zoltán
2016-06-01
Brine and vapor inclusions were synthesized to study Cl/Br fractionation during magmatic-hydrothermal fluid phase separation at 900 °C and pressures of 90, 120, and 150 MPa in Li/Na/K halide salt-H2O systems. Laser ablation ICP-MS microanalysis of high-density brine inclusions show an elevated Cl/Br ratio compared to the coexisting low-density vapor inclusions. The degree of Cl/Br fractionation between vapor and brine is significantly dependent on the identity of the alkali metal in the system: stronger vapor partitioning of Br occurs in the Li halide-H2O system compared to the systems of K and Na halide-H2O. The effect of the identity of alkali-metals in the system is stronger compared to the effect of vapor-brine density contrast. We infer that competition between alkali-halide and alkali-OH complexes in high-temperature fluids might cause the Cl/Br fractionation, consistent with the observed molar imbalances of alkali metals compared to halides in the analyzed brine inclusions. Our experiments show that the identity of alkali metals controls the degrees of Cl/Br fractionation between the separating aqueous fluid phases at 900 °C, and suggest that a significant variability in the Cl/Br ratios of magmatic fluids can arise in Li-rich systems.
Function and Evolution of Vibrato-like Frequency Modulation in Mammals.
Charlton, Benjamin D; Taylor, Anna M; Reby, David
2017-09-11
Why do distantly related mammals like sheep, giant pandas, and fur seals produce bleats that are characterized by vibrato-like fundamental frequency (F0) modulation? To answer this question, we used psychoacoustic tests and comparative analyses to investigate whether this distinctive vocal feature has evolved to improve the perception of formants, key acoustic components of animal calls that encode important information about the caller's size and identity [1]. Psychoacoustic tests on humans confirmed that vibrato-like F0 modulation improves the ability of listeners to detect differences in the formant patterns of synthetic bleat-like stimuli. Subsequent phylogenetically controlled comparative analyses revealed that vibrato-like F0 modulation has evolved independently in six mammalian orders in vocal signals with relatively high F0 and, therefore, low spectral density (i.e., less harmonic overtones). We also found that mammals modulate the vibrato in these calls over greater frequency extents when the number of harmonic overtones per formant is low, suggesting that this is a mechanism to improve formant perception in calls with low spectral density. Our findings constitute the first evidence that formant perception in non-speech sounds is improved by fundamental frequency modulation and provide a mechanism for the convergent evolution of bleat-like calls in mammals. They also indicate that selection pressures for animals to transmit important information encoded by formant frequencies (on size and identity, for example) are likely to have been a key driver in the evolution of mammal vocal diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Near-identical star formation rate densities from Hα and FUV at redshift zero
NASA Astrophysics Data System (ADS)
Audcent-Ross, Fiona M.; Meurer, Gerhardt R.; Wong, O. I.; Zheng, Z.; Hanish, D.; Zwaan, M. A.; Bland-Hawthorn, J.; Elagali, A.; Meyer, M.; Putman, M. E.; Ryan-Weber, E. V.; Sweet, S. M.; Thilker, D. A.; Seibert, M.; Allen, R.; Dopita, M. A.; Doyle-Pegg, M. T.; Drinkwater, M.; Ferguson, H. C.; Freeman, K. C.; Heckman, T. M.; Kennicutt, R. C.; Kilborn, V. A.; Kim, J. H.; Knezek, P. M.; Koribalski, B.; Smith, R. C.; Staveley-Smith, L.; Webster, R. L.; Werk, J. K.
2018-06-01
For the first time both Hα and far-ultraviolet (FUV) observations from an H I-selected sample are used to determine the dust-corrected star formation rate density (SFRD: \\dot{ρ }) in the local Universe. Applying the two star formation rate indicators on 294 local galaxies we determine log(\\dot{ρ } _{Hα }) = -1.68 ^{+0.13}_{-0.05} [M⊙ yr-1 Mpc-3] and log(\\dot{ρ }_{FUV}) = -1.71 ^{+0.12}_{-0.13} [M⊙ yr-1 Mpc-3]. These values are derived from scaling Hα and FUV observations to the H I mass function. Galaxies were selected to uniformly sample the full H I mass (M_{H I}) range of the H I Parkes All-Sky Survey (M_{H I} ˜ 107 to ˜1010.7 M⊙). The approach leads to relatively larger sampling of dwarf galaxies compared to optically-selected surveys. The low H I mass, low luminosity and low surface brightness galaxy populations have, on average, lower Hα/FUV flux ratios than the remaining galaxy populations, consistent with the earlier results of Meurer. The near-identical Hα- and FUV-derived SFRD values arise with the low Hα/FUV flux ratios of some galaxies being offset by enhanced Hα from the brightest and high mass galaxy populations. Our findings confirm the necessity to fully sample the H I mass range for a complete census of local star formation to include lower stellar mass galaxies which dominate the local Universe.
Andrew M. Liebhold; Derek M. Johnson; Ottar N. Bj& #248rnstad
2006-01-01
Explanations for the ubiquitous presence of spatially synchronous population dynamics have assumed that density-dependent processes governing the dynamics of local populations are identical among disjunct populations, and low levels of dispersal or small amounts of regionalized stochasticity ("Moran effect") can act to synchronize populations. In this study...
NASA Astrophysics Data System (ADS)
Filatov, Michael; Cremer, Dieter
2005-02-01
The regular approximation to the normalized elimination of the small component (NESC) in the modified Dirac equation has been developed and presented in matrix form. The matrix form of the infinite-order regular approximation (IORA) expressions, obtained in [Filatov and Cremer, J. Chem. Phys. 118, 6741 (2003)] using the resolution of the identity, is the exact matrix representation and corresponds to the zeroth-order regular approximation to NESC (NESC-ZORA). Because IORA (=NESC-ZORA) is a variationally stable method, it was used as a suitable starting point for the development of the second-order regular approximation to NESC (NESC-SORA). As shown for hydrogenlike ions, NESC-SORA energies are closer to the exact Dirac energies than the energies from the fifth-order Douglas-Kroll approximation, which is much more computationally demanding than NESC-SORA. For the application of IORA (=NESC-ZORA) and NESC-SORA to many-electron systems, the number of the two-electron integrals that need to be evaluated (identical to the number of the two-electron integrals of a full Dirac-Hartree-Fock calculation) was drastically reduced by using the resolution of the identity technique. An approximation was derived, which requires only the two-electron integrals of a nonrelativistic calculation. The accuracy of this approach was demonstrated for heliumlike ions. The total energy based on the approximate integrals deviates from the energy calculated with the exact integrals by less than 5×10-9hartree units. NESC-ZORA and NESC-SORA can easily be implemented in any nonrelativistic quantum chemical program. Their application is comparable in cost with that of nonrelativistic methods. The methods can be run with density functional theory and any wave function method. NESC-SORA has the advantage that it does not imply a picture change.
Westermann, Andrea; Krumova, Elena K; Pennekamp, Werner; Horch, Christoph; Baron, Ralf; Maier, Christoph
2012-07-01
Pain following spinal cord injury has been classified as nociceptive (musculoskeletal, visceral) or neuropathic (above, at, below level). There is no clear relation between the etiology and reported symptoms. Thus, due to different underlying mechanisms, the treatment is often ineffective. We report on a patient with spinal cord injury with neurological level of injury at T8 suffering from bilateral burning and prickling pain in the T9-11 dermatomes bilaterally (at-level pain), as well as diffusely in both legs from below the torso (below-level pain), accompanied by musculoskeletal low back pain. Bilateral comparison of quantitative sensory testing (QST) and skin biopsy revealed completely different findings in the dermatome T9 despite identical at-level pain characteristics. On the right side, QST revealed a normal sensory profile; the intraepidermal nerve fiber density (IENFD) was reduced, but not as severe as the contralateral side. On the left side there was a severe sensory loss with a stronger reduction of the IENDF, similar to the areas below the neurological level. These findings were significantly related to the treatment results. Pregabalin induced unilateral pain relief only in the area with remaining sensory function, whereas the left-sided at-level pain was unchanged. Thus, 2 different underlying mechanisms leading to bilaterally neuropathic pain with identical symptoms and with different treatment success were demonstrated in a single patient. The at-level pain in areas with remaining sensory function despite IENFD reduction could be relieved by pregabalin. Thus, in an individual case, QST may be helpful to better understand pain-generating mechanisms and to initiate successful treatment. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nawa, Kenji; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Weinert, Michael
Effective on-site Coulomb interactions (Ueff) and electron configurations in the localized d and f orbitals of metal complexes in transition-metal oxides and organometallic molecules, play a key role in the first-principles search for the true ground-state. However, wide ranges of values in the Ueff parameter of a material, even in the same ionic state, are often reported. Here, we revisit this issue from constraint density functional theory (DFT) by using the full-potential linearized augmented plane wave method. The Ueff parameters for prototypical transition-metal oxides, TMO (TM =Mn, Fe, Co, Ni), were calculated by the second derivative of the total energy functional with respect to the d occupation numbers inside the muffin-tin (MT) spheres as a function of the sphere radius. We find that the calculated Ueff values depend significantly on the MT radius, with a variation of more than 3 eV when the MT radius changes from 2.0 to 2.7 a.u., but importantly an identical valence band structure can be produced in all the cases, with an approximate scaling of Ueff. This indicates that a simple transferability of the Ueff value among different calculation methods is not allowed. We further extend the constraint DFT to treat various electron configurations of the localized d-orbitals in organometallic molecules, TMCp2 (TM =Cr, Mn, Fe, Co, Ni), and find that the calculated Ueff values can reproduce the experimentally determined ground-state electron configurations.
Stochastic von Bertalanffy models, with applications to fish recruitment.
Lv, Qiming; Pitchford, Jonathan W
2007-02-21
We consider three individual-based models describing growth in stochastic environments. Stochastic differential equations (SDEs) with identical von Bertalanffy deterministic parts are formulated, with a stochastic term which decreases, remains constant, or increases with organism size, respectively. Probability density functions for hitting times are evaluated in the context of fish growth and mortality. Solving the hitting time problem analytically or numerically shows that stochasticity can have a large positive impact on fish recruitment probability. It is also demonstrated that the observed mean growth rate of surviving individuals always exceeds the mean population growth rate, which itself exceeds the growth rate of the equivalent deterministic model. The consequences of these results in more general biological situations are discussed.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kubacsi, M. C.; Kong, J. A.
1981-01-01
The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.
Instability analysis of expansion-free sphere in f(𝒢) gravity
NASA Astrophysics Data System (ADS)
Sharif, M.; Ikram, Ayesha
The aim of this paper is to study the dynamical instability of expansion-free spherically symmetric anisotropic fluid in the framework of f(𝒢) gravity. We apply perturbation scheme of the first-order to the metric functions as well as matter variables and construct modified field equations for both static and perturbed configurations using power-law f(𝒢) model. To discuss the instability dynamics, we use the contracted Bianchi identities to formulate the dynamical equations in both Newtonian and post-Newtonian regimes. It is found that the range of instability is independent of adiabatic index for expansion-free fluid but depends on anisotropic pressures, energy density and Gauss-Bonnet (GB) terms.
Magnetic recording performance of keepered media
NASA Astrophysics Data System (ADS)
Coughlin, T. M.; Tang, Y. S.; Velu, E. M. T.; Lairson, B.
1997-04-01
Using low flying and proximity inductive heads, keepered media show improved on- and off-track performance leading us to conclude that a greater than 20% areal density improvement is possible with a keeper layer over the magnetic storage layer. For Sendust keeper layers there is an optimal range of thickness and an optimal bias point for best performance. There are both amplitude and timing asymmetries that are functions of the read-back bias. For a peak detect channel the best performance corresponds to the minimum timing asymmetry although this is not the point where the pulses are narrowest. Keepered media may have an advantage in total jitter and partial erasure. NLTS is almost identical for keepered versus unkeepered media.
NASA Astrophysics Data System (ADS)
Barry, J. H.; Muttalib, K. A.; Tanaka, T.
2008-01-01
We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.
NASA Astrophysics Data System (ADS)
Biel, R.; Hacker, S.; Ruggiero, P.
2016-12-01
Coastal dunes provide valuable infrastructure for mitigating flooding and erosion hazard exposure by dissipating wave energy. Although vegetation is essential for foredune establishment and growth by facilitating sand deposition and stabilization, few have examined how plant distribution and abundance relates to foredune morphology in the field. The US Pacific Northwest coastal dune system presents an excellent case study for examining ecomorphodynamic processes on sand dunes. It exhibits a diverse array of geomorphological conditions, including a range of dissipative to reflective beaches and highly varied foredune morphology. Ecologically, the region contains two invasive, dune-building beachgrasses of the same genus (Ammophila arenaria and A. breviligulata). To explore how geomorphological and ecological drivers alter foredune morphology, we used a Bayesian network to assess the role of nearshore bathymetry, sand supply (measured as shoreline change rate), and beachgrass species identity and density in determining foredune morphology. At a finer scale, we also examined whether beachgrass density and species identity altered sand accretion between 2012 and 2014 at multiple points across the foredune using a mixed model. Our Bayesian network analysis indicates that nearshore slope, shoreline change rate, beach width, and beachgrass density directly or indirectly affect foredune width, slope, and height. However, we observed no relationships between species identity and foredune morphology. When examining the finer-scale relationship between beachgrass density and sand accretion at points along the foredune, we found that sand accretion was correlated with beachgrass stem density in 2012, new stem growth between 2012 and 2014, beach width, and elevation. Moreover, A. arenaria accreted more sand than A. breviligulata on the foredune face, suggesting that subtle differences in beachgrass morphology or growth patterns may produce differing accretion patterns across the foredune. Both analyses indicate that beachgrass density alters foredune morphology. Although A. arenaria and A. breviligulata exhibit differing sand accretion patterns at points across the foredune face, it is unclear whether these fine-scale differences produce coarse-scale changes in foredune morphology.
Blanquie, Oriane; Yang, Jenq-Wei; Kilb, Werner; Sharopov, Salim; Sinning, Anne; Luhmann, Heiko J
2017-08-21
Programmed cell death widely but heterogeneously affects the developing brain, causing the loss of up to 50% of neurons in rodents. However, whether this heterogeneity originates from neuronal identity and/or network-dependent processes is unknown. Here, we report that the primary motor cortex (M1) and primary somatosensory cortex (S1), two adjacent but functionally distinct areas, display striking differences in density of apoptotic neurons during the early postnatal period. These differences in rate of apoptosis negatively correlate with region-dependent levels of activity. Disrupting this activity either pharmacologically or by electrical stimulation alters the spatial pattern of apoptosis and sensory deprivation leads to exacerbated amounts of apoptotic neurons in the corresponding functional area of the neocortex. Thus, our data demonstrate that spontaneous and periphery-driven activity patterns are important for the structural and functional maturation of the neocortex by refining the final number of cortical neurons in a region-dependent manner.
Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J
2015-06-28
We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.
Formation of Supported Graphene Oxide: Evidence for Enolate Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novotny, Zbynek; Nguyen, Manh-Thuong; Netzer, Falko P.
Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the oxygen binding on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites. We employ scanning tunneling microscopy and density functional theory to map out the chemical identity and stability of prepared oxygen functionalities in different Gr regions. We demonstrate that in the regions that are close to the metal substrate, the terminally-bonded enolate groups are strongly preferred over bridge-bonded epoxy configurations.more » No oxygen species are observed on the graphene regions that are far from the underlying Ru, indicating their low relative stability. This study provides a clear fundamental basis for understanding the structural and electronic factors that affect the stability of enolate and epoxy species as a function of Gr/Ru interactions.« less
Grutters, Bart M. C.; Pollux, Bart J. A.; Verberk, Wilco C. E. P.; Bakker, Elisabeth S.
2015-01-01
Non-native species introductions are widespread and can affect ecosystem functioning by altering the structure of food webs. Invading plants often modify habitat structure, which may affect the suitability of vegetation as refuge and could thus impact predator-prey dynamics. Yet little is known about how the replacement of native by non-native vegetation affects predator-prey dynamics. We hypothesize that plant refuge provisioning depends on (1) the plant’s native status, (2) plant structural complexity and morphology, (3) predator identity, and (4) prey identity, as well as that (5) structurally similar living and artificial plants provide similar refuge. We used aquatic communities as a model system and compared the refuge provided by plants to macroinvertebrates (Daphnia pulex, Gammarus pulex and damselfly larvae) in three short-term laboratory predation experiments. Plant refuge provisioning differed between plant species, but was generally similar for native (Myriophyllum spicatum, Ceratophyllum demersum, Potamogeton perfoliatus) and non-native plants (Vallisneria spiralis, Myriophyllum heterophyllum, Cabomba caroliniana). However, plant refuge provisioning to macroinvertebrate prey depended primarily on predator (mirror carp: Cyprinus carpio carpio and dragonfly larvae: Anax imperator) and prey identity, while the effects of plant structural complexity were only minor. Contrary to living plants, artificial plant analogues did improve prey survival, particularly with increasing structural complexity and shoot density. As such, plant rigidity, which was high for artificial plants and one of the living plant species evaluated in this study (Ceratophyllum demersum), may interact with structural complexity to play a key role in refuge provisioning to specific prey (Gammarus pulex). Our results demonstrate that replacement of native by structurally similar non-native vegetation is unlikely to greatly affect predator-prey dynamics. We propose that modification of predator-prey interactions through plant invasions only occurs when invading plants radically differ in growth form, density and rigidity compared to native plants. PMID:25885967
Proximity-induced magnetism in transition-metal substituted graphene
Crook, Charles B.; Constantin, Costel; Ahmed, Towfiq; ...
2015-08-03
We investigate the interactions between two identical magnetic impurities substituted into a graphene superlattice. Using a first-principles approach, we calculate the electronic and magnetic properties for transition-metal substituted graphene systems with varying spatial separation. These calculations are compared for three different magnetic impurities, manganese, chromium, and vanadium. We determine the electronic band structure, density of states, and Millikan populations (magnetic moment) for each atom, as well as calculate the exchange parameter between the two magnetic atoms as a function of spatial separation. We find that the presence of magnetic impurities establishes a distinct magnetic moment in the graphene lattice, wheremore » the interactions are highly dependent on the spatial and magnetic characteristic between the magnetic and carbon atoms, which leads to either ferromagnetic or antiferromagnetic behavior. Furthermore, through an analysis of the calculated exchange energies and partial density of states, it is determined that interactions between the magnetic atoms can be classified as an RKKY interaction.« less
Identity processing styles and the need for self-esteem in middle-aged and older adults.
Sneed, J R; Whitbourne, S K
2001-01-01
This study was a test of the relationship between self-esteem and the identity processing styles of identity assimilation (i.e., maintaining consistent views of the self), accommodation (i.e., changing the self ), and a balance between consistency seeking and identity change. A community sample of 242 older adults ranging in age from forty to ninety-five (M = 63.31) completed measures of identity processing and self-esteem. Previous research has demonstrated that identity assimilation increases with age in order to maintain self-esteem in the domain of physical and cognitive functioning; this is referred to as the identity assimilation effect (IAE). Based on this research, a similar result was expected in the domain of personality. Although identity assimilation and balance predicted increases in self-esteem, and identity accommodation predicted decreases in self-esteem, as predicted, no interaction effects were observed. The results of this study suggest the IAE may be domain specific to physical and cognitive functioning.
Spatial capture–recapture with partial identity: An application to camera traps
Augustine, Ben C.; Royle, J. Andrew; Kelly, Marcella J.; Satter, Christopher B.; Alonso, Robert S.; Boydston, Erin E.; Crooks, Kevin R.
2018-01-01
Camera trapping surveys frequently capture individuals whose identity is only known from a single flank. The most widely used methods for incorporating these partial identity individuals into density analyses discard some of the partial identity capture histories, reducing precision, and, while not previously recognized, introducing bias. Here, we present the spatial partial identity model (SPIM), which uses the spatial location where partial identity samples are captured to probabilistically resolve their complete identities, allowing all partial identity samples to be used in the analysis. We show that the SPIM outperforms other analytical alternatives. We then apply the SPIM to an ocelot data set collected on a trapping array with double-camera stations and a bobcat data set collected on a trapping array with single-camera stations. The SPIM improves inference in both cases and, in the ocelot example, individual sex is determined from photographs used to further resolve partial identities—one of which is resolved to near certainty. The SPIM opens the door for the investigation of trapping designs that deviate from the standard two camera design, the combination of other data types between which identities cannot be deterministically linked, and can be extended to the problem of partial genotypes.
Validity of reciprocity rule on mouse skin thermal damage due to CO2 laser irradiation
NASA Astrophysics Data System (ADS)
Parvin, P.; Dehghanpour, H. R.; Moghadam, M. S.; Daneshafrooz, V.
2013-07-01
CO2 laser (10.6 μm) is a well-known infrared coherent light source as a tool in surgery. At this wavelength there is a high absorbance coefficient (860 cm-1), because of vibration mode resonance of H2O molecules. Therefore, the majority of the irradiation energy is absorbed in the tissue and the temperature of the tissue rises as a function of power density and laser exposure duration. In this work, the tissue damage caused by CO2 laser (1-10 W, ˜40-400 W cm-2, 0.1-6 s) was measured using 30 mouse skin samples. Skin damage assessment was based on measurements of the depth of cut, mean diameter of the crater and the carbonized layer. The results show that tissue damage as assessed above parameters increased with laser fluence and saturated at 1000 J cm-2. Moreover, the damage effect due to high power density at short duration was not equivalent to that with low power density at longer irradiation time even though the energy delivered was identical. These results indicate the lack of validity of reciprocity (Bunsen-Roscoe) rule for the thermal damage.
Accelerating molecular property calculations with nonorthonormal Krylov space methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
On a modification method of Lefschetz thimbles
NASA Astrophysics Data System (ADS)
Tsutsui, Shoichiro; Doi, Takahiro M.
2018-03-01
The QCD at finite density is not well understood yet, where standard Monte Carlo simulation suffers from the sign problem. In order to overcome the sign problem, the method of Lefschetz thimble has been explored. Basically, the original sign problem can be less severe in a complexified theory due to the constancy of the imaginary part of an action on each thimble. However, global phase factors assigned on each thimble still remain. Their interference is not negligible in a situation where a large number of thimbles contribute to the partition function, and this could also lead to a sign problem. In this study, we propose a method to resolve this problem by modifying the structure of Lefschetz thimbles such that only a single thimble is relevant to the partition function. It can be shown that observables measured in the original and modified theories are connected by a simple identity. We exemplify that our method works well in a toy model.
Dynamical class of a two-dimensional plasmonic Dirac system.
Silva, Érica de Mello
2015-10-01
A current goal in plasmonic science and technology is to figure out how to manage the relaxational dynamics of surface plasmons in graphene since its damping constitutes a hinder for the realization of graphene-based plasmonic devices. In this sense we believe it might be of interest to enlarge the knowledge on the dynamical class of two-dimensional plasmonic Dirac systems. According to the recurrence relations method, different systems are said to be dynamically equivalent if they have identical relaxation functions at all times, and such commonality may lead to deep connections between seemingly unrelated physical systems. We employ the recurrence relations approach to obtain relaxation and memory functions of density fluctuations and show that a two-dimensional plasmonic Dirac system at long wavelength and zero temperature belongs to the same dynamical class of standard two-dimensional electron gas and classical harmonic oscillator chain with an impurity mass.
The Psychology of Globalization.
ERIC Educational Resources Information Center
Arnett, Jeffrey Jensen
2002-01-01
Examines the influence of globalization on psychological functioning, describing globalization worldwide and its psychological consequences. Notes that most people now develop bicultural identities that combine local identity with global culture-related identity. Identity confusion is increasing among young people in non-western cultures because…
Wu, Ying; Waite, Lindsay L.; Jackson, Anne U.; Sheu, Wayne H-H.; Buyske, Steven; Absher, Devin; Arnett, Donna K.; Boerwinkle, Eric; Bonnycastle, Lori L.; Carty, Cara L.; Cheng, Iona; Cochran, Barbara; Croteau-Chonka, Damien C.; Dumitrescu, Logan; Eaton, Charles B.; Franceschini, Nora; Guo, Xiuqing; Henderson, Brian E.; Hindorff, Lucia A.; Kim, Eric; Kinnunen, Leena; Komulainen, Pirjo; Lee, Wen-Jane; Le Marchand, Loic; Lin, Yi; Lindström, Jaana; Lingaas-Holmen, Oddgeir; Mitchell, Sabrina L.; Narisu, Narisu; Robinson, Jennifer G.; Schumacher, Fred; Stančáková, Alena; Sundvall, Jouko; Sung, Yun-Ju; Swift, Amy J.; Wang, Wen-Chang; Wilkens, Lynne; Wilsgaard, Tom; Young, Alicia M.; Adair, Linda S.; Ballantyne, Christie M.; Bůžková, Petra; Chakravarti, Aravinda; Collins, Francis S.; Duggan, David; Feranil, Alan B.; Ho, Low-Tone; Hung, Yi-Jen; Hunt, Steven C.; Hveem, Kristian; Juang, Jyh-Ming J.; Kesäniemi, Antero Y.; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lee, I-Te; Leppert, Mark F.; Matise, Tara C.; Moilanen, Leena; Njølstad, Inger; Peters, Ulrike; Quertermous, Thomas; Rauramaa, Rainer; Rotter, Jerome I.; Saramies, Jouko; Tuomilehto, Jaakko; Uusitupa, Matti; Wang, Tzung-Dau; Mohlke, Karen L.
2013-01-01
Genome-wide association studies (GWAS) have identified ∼100 loci associated with blood lipid levels, but much of the trait heritability remains unexplained, and at most loci the identities of the trait-influencing variants remain unknown. We conducted a trans-ethnic fine-mapping study at 18, 22, and 18 GWAS loci on the Metabochip for their association with triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), respectively, in individuals of African American (n = 6,832), East Asian (n = 9,449), and European (n = 10,829) ancestry. We aimed to identify the variants with strongest association at each locus, identify additional and population-specific signals, refine association signals, and assess the relative significance of previously described functional variants. Among the 58 loci, 33 exhibited evidence of association at P<1×10−4 in at least one ancestry group. Sequential conditional analyses revealed that ten, nine, and four loci in African Americans, Europeans, and East Asians, respectively, exhibited two or more signals. At these loci, accounting for all signals led to a 1.3- to 1.8-fold increase in the explained phenotypic variance compared to the strongest signals. Distinct signals across ancestry groups were identified at PCSK9 and APOA5. Trans-ethnic analyses narrowed the signals to smaller sets of variants at GCKR, PPP1R3B, ABO, LCAT, and ABCA1. Of 27 variants reported previously to have functional effects, 74% exhibited the strongest association at the respective signal. In conclusion, trans-ethnic high-density genotyping and analysis confirm the presence of allelic heterogeneity, allow the identification of population-specific variants, and limit the number of candidate SNPs for functional studies. PMID:23555291
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yachao, E-mail: yczhang@nano.gznc.edu.cn
2014-12-07
A first-principles study of critical temperatures (T{sub c}) of spin crossover (SCO) materials requires accurate description of the strongly correlated 3d electrons as well as much computational effort. This task is still a challenge for the widely used local density or generalized gradient approximations (LDA/GGA) and hybrid functionals. One remedy, termed density functional theory plus U (DFT+U) approach, introduces a Hubbard U term to deal with the localized electrons at marginal computational cost, while treats the delocalized electrons with LDA/GGA. Here, we employ the DFT+U approach to investigate the T{sub c} of a pair of iron(II) SCO molecular crystals (αmore » and β phase), where identical constituent molecules are packed in different ways. We first calculate the adiabatic high spin-low spin energy splitting ΔE{sub HL} and molecular vibrational frequencies in both spin states, then obtain the temperature dependent enthalpy and entropy changes (ΔH and ΔS), and finally extract T{sub c} by exploiting the ΔH/T − T and ΔS − T relationships. The results are in agreement with experiment. Analysis of geometries and electronic structures shows that the local ligand field in the α phase is slightly weakened by the H-bondings involving the ligand atoms and the specific crystal packing style. We find that this effect is largely responsible for the difference in T{sub c} of the two phases. This study shows the applicability of the DFT+U approach for predicting T{sub c} of SCO materials, and provides a clear insight into the subtle influence of the crystal packing effects on SCO behavior.« less
Preciado, Mariana A; Johnson, Kerri L
2014-04-01
Most people organize their sexual orientation under a single sexual identity label. However, people may have sexual experiences that are inconsistent with their categorical sexual identity label. A man might identify as heterosexual but still experience some attraction to men; a woman might identify as lesbian yet enter into a romantic relationship with a man. Identity-inconsistent experiences are likely to have consequences. In the present study, we examined lay perceptions of the consequences of identity-inconsistent sexual experiences for self-perceived sexuality and for social relationships among a sexually diverse sample (N = 283). We found that the perceived consequences of identity-inconsistent experiences for self-perception, for social stigmatization, and for social relationships varied as a function of participant sex, participant sexual identity (heterosexual, gay, lesbian), and experience type (fantasy, attraction, behavior, love). We conclude that not all identity-inconsistent sexual experiences are perceived as equally consequential and that the perceived consequences of such experiences vary predictably as a function of perceiver sex and sexual identity. We discuss the role lay perceptions of the consequences of identity-inconsistent sexual experiences may play in guiding attitudes and behavior.
Methods and circuitry for reconfigurable SEU/SET tolerance
NASA Technical Reports Server (NTRS)
Shuler, Jr., Robert L. (Inventor)
2010-01-01
A device is disclosed in one embodiment that has multiple identical sets of programmable functional elements, programmable routing resources, and majority voters that correct errors. The voters accept a mode input for a redundancy mode and a split mode. In the redundancy mode, the programmable functional elements are identical and are programmed identically so the voters produce an output corresponding to the majority of inputs that agree. In a split mode, each voter selects a particular programmable functional element output as the output of the voter. Therefore, in the split mode, the programmable functional elements can perform different functions, operate independently, and/or be connected together to process different parts of the same problem.
Religiosity as identity: toward an understanding of religion from a social identity perspective.
Ysseldyk, Renate; Matheson, Kimberly; Anisman, Hymie
2010-02-01
As a social identity anchored in a system of guiding beliefs and symbols, religion ought to serve a uniquely powerful function in shaping psychological and social processes. Religious identification offers a distinctive "sacred" worldview and "eternal" group membership, unmatched by identification with other social groups. Thus, religiosity might be explained, at least partially, by the marked cognitive and emotional value that religious group membership provides. The uniqueness of a positive social group, grounded in a belief system that offers epistemological and ontological certainty, lends religious identity a twofold advantage for the promotion of well-being. However, that uniqueness may have equally negative impacts when religious identity itself is threatened through intergroup conflict. Such consequences are illustrated by an examination of identities ranging from religious fundamentalism to atheism. Consideration of religion's dual function as a social identity and a belief system may facilitate greater understanding of the variability in its importance across individuals and groups.
Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking
Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka
2017-01-01
Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430
Social identity and cooperation in cultural evolution.
Smaldino, Paul E
2017-12-06
I discuss the function of social identity signaling in facilitating cooperative group formation, and how the nature of that function changes with the structure of social organization. I propose that signals of social identity facilitate assortment for successful coordination in large-scale societies, and that the multidimensional, context-dependent nature of social identity is crucial for successful coordination when individuals have to cooperate in different contexts. Furthermore, the structure of social identity is tied to the structure of society, so that as societies grow larger and more interconnected, the landscape of social identities grows more heterogeneous. This discussion bears directly on the need to articulate the dynamics of emergent, ephemeral groups as a major factor in human cultural evolution. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Tine, Michele; Gotlieb, Rebecca
2013-01-01
This study compared the relative impact of gender-, race-, and income-based stereotype threat and examined if individuals with multiple stigmatized aspects of identity experience a larger stereotype threat effect on math performance and working memory function than people with one stigmatized aspect of identity. Seventy-one college students of the…
ERIC Educational Resources Information Center
Sellers, Robert M.; Copeland-Linder, Nikeea; Martin, Pamela P.; Lewis, R. L'Heureux
2006-01-01
This study examines the interrelationships among racial discrimination, racial identity, and psychological functioning in a sample of 314 African American adolescents. Racial discrimination was associated with lower levels of psychological functioning as measured by perceived stress, depressive symptomatology, and psychological well-being.…
Oizumi, Ryo; Kuniya, Toshikazu; Enatsu, Yoichi
2016-01-01
Despite the fact that density effects and individual differences in life history are considered to be important for evolution, these factors lead to several difficulties in understanding the evolution of life history, especially when population sizes reach the carrying capacity. r/K selection theory explains what types of life strategies evolve in the presence of density effects and individual differences. However, the relationship between the life schedules of individuals and population size is still unclear, even if the theory can classify life strategies appropriately. To address this issue, we propose a few equations on adaptive life strategies in r/K selection where density effects are absent or present. The equations detail not only the adaptive life history but also the population dynamics. Furthermore, the equations can incorporate temporal individual differences, which are referred to as internal stochasticity. Our framework reveals that maximizing density effects is an evolutionarily stable strategy related to the carrying capacity. A significant consequence of our analysis is that adaptive strategies in both selections maximize an identical function, providing both population growth rate and carrying capacity. We apply our method to an optimal foraging problem in a semelparous species model and demonstrate that the adaptive strategy yields a lower intrinsic growth rate as well as a lower basic reproductive number than those obtained with other strategies. This study proposes that the diversity of life strategies arises due to the effects of density and internal stochasticity.
Umaña-Taylor, Adriana J; Kornienko, Olga; Douglass Bayless, Sara; Updegraff, Kimberly A
2018-01-01
Ethnic-racial identity formation represents a key developmental task that is especially salient during adolescence and has been associated with many indices of positive adjustment. The Identity Project intervention, which targeted ethnic-racial identity exploration and resolution, was designed based on the theory that program-induced changes in ethnic-racial identity would lead to better psychosocial adjustment (e.g., global identity cohesion, self-esteem, mental health, academic achievement). Adolescents (N =215; Mage =15.02, SD =.68; 50% female) participated in a small-scale randomized control trial with an attention control group. A cascading mediation model was tested using pre-test and three follow-up assessments (12, 18, and 67 weeks after baseline). The program led to increases in exploration, subsequent increases in resolution and, in turn, higher global identity cohesion, higher self-esteem, lower depressive symptoms, and better grades. Results support the notion that increasing adolescents' ethnic-racial identity can promote positive psychosocial functioning among youth.
Dávila, Ma Celeste; Finkelstein, Marcia A
2010-05-01
Organizational citizenship behavior (OCB) is a prosocial activity with similarities to volunteerism. The purpose of this work is to contribute new evidence about the relevance to OCB of two models of sustained volunteerism, functional analysis and role identity theory. A total of 983 Spanish employees at49 organizations completed surveys measuring amount of OCB, motives for engaging in citizenship behavior, and the degree to which respondents developed an organizational citizen role identity. The results showed that both motives and role identity were significant predictors of OCB, with motive partially mediating the role identity-OCB relationship. The findings suggest that similar mechanisms are involved in sustaining volunteerism and OCB.
Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank
2016-06-20
Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation.
An infinite set of Ward identities for adiabatic modes in cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinterbichler, Kurt; Hui, Lam; Khoury, Justin, E-mail: khinterbichler@perimeterinstitute.ca, E-mail: lh399@columbia.edu, E-mail: jkhoury@sas.upenn.edu
2014-01-01
We show that the correlation functions of any single-field cosmological model with constant growing-modes are constrained by an infinite number of novel consistency relations, which relate N+1-point correlation functions with a soft-momentum scalar or tensor mode to a symmetry transformation on N-point correlation functions of hard-momentum modes. We derive these consistency relations from Ward identities for an infinite tower of non-linearly realized global symmetries governing scalar and tensor perturbations. These symmetries can be labeled by an integer n. At each order n, the consistency relations constrain — completely for n = 0,1, and partially for n ≥ 2 — themore » q{sup n} behavior of the soft limits. The identities at n = 0 recover Maldacena's original consistency relations for a soft scalar and tensor mode, n = 1 gives the recently-discovered conformal consistency relations, and the identities for n ≥ 2 are new. As a check, we verify directly that the n = 2 identity is satisfied by known correlation functions in slow-roll inflation.« less
Bhattacharjee, Biplab
2003-04-01
The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a nu-dimensional space. The nth-NND functions, W(n,r) (for n=1,2,3, em leader) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Biplab
2003-04-01
The paper presents a general formalism for the nth-nearest-neighbor distribution (NND) of identical interacting particles in a fluid confined in a ν-dimensional space. The nth-NND functions, W(n,r¯) (for n=1,2,3,…) in a fluid are obtained hierarchically in terms of the pair correlation function and W(n-1,r¯) alone. The radial distribution function (RDF) profiles obtained from the molecular dynamics (MD) simulation of Lennard-Jones (LJ) fluid is used to illustrate the results. It is demonstrated that the collective structural information contained in the maxima and minima of the RDF profiles being resolved in terms of individual NND functions may provide more insights about the microscopic neighborhood structure around a reference particle in a fluid. Representative comparison between the results obtained from the formalism and the MD simulation data shows good agreement. Apart from the quantities such as nth-NND functions and nth-nearest-neighbor distances, the average neighbor population number is defined. These quantities are evaluated for the LJ model system and interesting density dependence of the microscopic neighborhood shell structures are discussed in terms of them. The relevance of the NND functions in various phenomena is also pointed out.
Branch xylem density variations across the Amazon Basin
NASA Astrophysics Data System (ADS)
Patiño, S.; Lloyd, J.; Paiva, R.; Baker, T. R.; Quesada, C. A.; Mercado, L. M.; Schmerler, J.; Schwarz, M.; Santos, A. J. B.; Aguilar, A.; Czimczik, C. I.; Gallo, J.; Horna, V.; Hoyos, E. J.; Jimenez, E. M.; Palomino, W.; Peacock, J.; Peña-Cruz, A.; Sarmiento, C.; Sota, A.; Turriago, J. D.; Villanueva, B.; Vitzthum, P.; Alvarez, E.; Arroyo, L.; Baraloto, C.; Bonal, D.; Chave, J.; Costa, A. C. L.; Herrera, R.; Higuchi, N.; Killeen, T.; Leal, E.; Luizão, F.; Meir, P.; Monteagudo, A.; Neil, D.; Núñez-Vargas, P.; Peñuela, M. C.; Pitman, N.; Priante Filho, N.; Prieto, A.; Panfil, S. N.; Rudas, A.; Salomão, R.; Silva, N.; Silveira, M.; Soares Dealmeida, S.; Torres-Lezama, A.; Vásquez-Martínez, R.; Vieira, I.; Malhi, Y.; Phillips, O. L.
2009-04-01
Xylem density is a physical property of wood that varies between individuals, species and environments. It reflects the physiological strategies of trees that lead to growth, survival and reproduction. Measurements of branch xylem density, ρx, were made for 1653 trees representing 598 species, sampled from 87 sites across the Amazon basin. Measured values ranged from 218 kg m-3 for a Cordia sagotii (Boraginaceae) from Mountagne de Tortue, French Guiana to 1130 kg m-3 for an Aiouea sp. (Lauraceae) from Caxiuana, Central Pará, Brazil. Analysis of variance showed significant differences in average ρx across regions and sampled plots as well as significant differences between families, genera and species. A partitioning of the total variance in the dataset showed that species identity (family, genera and species) accounted for 33% with environment (geographic location and plot) accounting for an additional 26%; the remaining "residual" variance accounted for 41% of the total variance. Variations in plot means, were, however, not only accountable by differences in species composition because xylem density of the most widely distributed species in our dataset varied systematically from plot to plot. Thus, as well as having a genetic component, branch xylem density is a plastic trait that, for any given species, varies according to where the tree is growing in a predictable manner. Within the analysed taxa, exceptions to this general rule seem to be pioneer species belonging for example to the Urticaceae whose branch xylem density is more constrained than most species sampled in this study. These patterns of variation of branch xylem density across Amazonia suggest a large functional diversity amongst Amazonian trees which is not well understood.
Testing a new scale of place identity in the Texas Hill Country
Po-Hsin Lai; C. Scott Shafer; Gerard Kyle
2009-01-01
In this study, we proposed a three-factor structure of place identity comprising the dimensions of structure, function, and affect. This conception of place identity was tested against three competing models that viewed place identity as consisting of either: 1) a single dimension of place identity; 2) two dimensions of cognition and affection; or 3) a second-order...
Effect of polyaniline on MWCNTs supercapacitor properties prepared by electrophoretic deposition
NASA Astrophysics Data System (ADS)
Razak, Rozelia Azila Abd; Eleas, Nor Hamizah; Mohammad, Nurul Nazwa; Yusof, Azmi Mohamed; Zaine, Intan Syaffinazzilla
2017-08-01
Multi-walled carbon nanotubes (MWCNTs) is widely used as supercapacitor electrode material. However, the specific capacitance of MWCNTs cannot achieve optimum value to facilitate required demand. Conducting polymers have been introduced to achieve optimum energy density and power density of supercapacitor electrode material. Previous work had demonstrated the effects of adding conducting polymer into carbon base material to get pseudocapacitance effect. Nevertheless the effects specifically of polyaniline (PANi) to MWCNTs were significantly low. This work describes the effect of PANi adding on MWCNTs film prepared by electrophoretic deposition (EPD) technique in order to increase the specific capacitance of MWCNTs. The commercial MWCNTs is dispersed in deionized water by using crystal violet. The admixtures without PANi (sample A), 5wt.% of PANi (sample B) and 10wt.% of PANi (sample C) have been prepared by ex-situ polymerization. The voltage supplied for film deposition is 8 V for 5 minutes. The morphology, functional group and electrochemical properties of MWCNTs due to the presence of PANi had been studied. From FESEM analysis, the presence of PANi can be clearly observed for sample B and sample C while FTIR analysis, proves PANi structure on MWCNTs with its functional group presence in sample B and sample C through the absorbtion band which obviously shifted to higher value compare to sample A. Cyclic voltammogram (CV) analysis shown redox activity occurred in sample B and sample C with identical anodic and cathodic peaks. Sample B hold the higher specific capacitance and higher energy density compared than sample A and sample B. From galvanostatic charge-discharge (CD) measurement, the charge and discharge process for sample B is longer than sample A and sample C which consequently lower its power density. The presence of PANi at 5wt.% is able to increase specific capacitance as well as energy density to optimum value.
Rinker, Dipali Venkataraman; Neighbors, Clayton
2014-01-01
Perceived descriptive norms are one of the strongest predictors of college drinking. Social Identity Theory posits that much of our identity is based on groups with which we affiliate. Prior research suggests that there is an association between perceived descriptive norms and drinking among those who identify more strongly with the normative referent group. However, no studies to date have examined how different facets of social identity affect the relationship between perceived descriptive norms and drinking. The purpose of this study was to examine whether the interaction between perceived descriptive norms and social identity on drinking varied as a function of different dimensions of social identity among college students. Participants were 1,095 college students from a large, public, southern university who completed an online survey about drinking behaviors and related attitudes. Drinks per week was examined as a function of norms, the Importance, Commitment, Deference, and Superiority subscales of the Measure of Identification with Groups, as well as the two-way interactions between each dimension of social identity and norms. Results indicated that norms were associated with drinking, but that this relationship varied as a function of identity dimension. The association between norms and drinking was stronger among those who viewed the university’s student body as part of their own identity and were more committed to their fellow students, but weaker among those who reported greater deference to student leaders. This research suggests the importance of examining multiple dimensions of social identity in considering social influences on drinking. PMID:24836160
Rinker, Dipali Venkataraman; Neighbors, Clayton
2014-09-01
Perceived descriptive norms are one of the strongest predictors of college drinking. Social Identity Theory posits that much of our identity is based on groups with which we affiliate. Prior research suggests that there is an association between perceived descriptive norms and drinking among those who identify more strongly with the normative referent group. However, no studies to date have examined how different facets of social identity affect the relationship between perceived descriptive norms and drinking. The purpose of this study was to examine whether the interaction between perceived descriptive norms and social identity on drinking varied as a function of different dimensions of social identity among college students. Participants were 1095 college students from a large, public, southern university who completed an online survey about drinking behaviors and related attitudes. Drinks per week was examined as a function of norms, the Importance, Commitment, Deference, and Superiority subscales of the Measure of Identification with Groups, as well as the two-way interactions between each dimension of social identity and norms. Results indicated that norms were associated with drinking, but that this relationship varied as a function of identity dimension. The association between norms and drinking was stronger among those who viewed the university's student body as part of their own identity and were more committed to their fellow students, but weaker among those who reported greater deference to student leaders. This research suggests the importance of examining multiple dimensions of social identity in considering social influences on drinking. Published by Elsevier Ltd.
M.T. Curzon; A.W. D' Amato; S. Fraver; B.J. Palik; A. Bottero; J.R. Foster; K.E. Gleason
2017-01-01
Concern over global environmental change and associated uncertainty has given rise to greater emphasis on fostering resilience through forest management. We examined the impact of standard silvicultural systems (including clearcutting, shelterwood, and selection) compared with unharvested controls on tree functional identity and functional diversity in three forest...
Recursion Operators and Tri-Hamiltonian Structure of the First Heavenly Equation of Plebański
NASA Astrophysics Data System (ADS)
Sheftel, Mikhail; Yazıcı, Devrim
2016-09-01
We present first heavenly equation of Plebański in a two-component evolutionary form and obtain Lagrangian and Hamiltonian representations of this system. We study all point symmetries of the two-component system and, using the inverse Noether theorem in the Hamiltonian form, obtain all the integrals of motion corresponding to each variational (Noether) symmetry. We derive two linearly independent recursion operators for symmetries of this system related by a discrete symmetry of both the two-component system and its symmetry condition. Acting by these operators on the first Hamiltonian operator J_0 we obtain second and third Hamiltonian operators. However, we were not able to find Hamiltonian densities corresponding to the latter two operators. Therefore, we construct two recursion operators, which are either even or odd, respectively, under the above-mentioned discrete symmetry. Acting with them on J_0, we generate another two Hamiltonian operators J_+ and J_- and find the corresponding Hamiltonian densities, thus obtaining second and third Hamiltonian representations for the first heavenly equation in a two-component form. Using P. Olver's theory of the functional multi-vectors, we check that the linear combination of J_0, J_+ and J_- with arbitrary constant coefficients satisfies Jacobi identities. Since their skew symmetry is obvious, these three operators are compatible Hamiltonian operators and hence we obtain a tri-Hamiltonian representation of the first heavenly equation. Our well-founded conjecture applied here is that P. Olver's method works fine for nonlocal operators and our proof of the Jacobi identities and bi-Hamiltonian structures crucially depends on the validity of this conjecture.
Bilinear identities for an extended B-type Kadomtsev-Petviashvili hierarchy
NASA Astrophysics Data System (ADS)
Lin, Runliang; Cao, Tiancheng; Liu, Xiaojun; Zeng, Yunbo
2016-03-01
We construct bilinear identities for wave functions of an extended B-type Kadomtsev-Petviashvili (BKP) hierarchy containing two types of (2+1)-dimensional Sawada-Kotera equations with a self-consistent source. Introducing an auxiliary variable corresponding to the extended flow for the BKP hierarchy, we find the τ -function and bilinear identities for this extended BKP hierarchy. The bilinear identities generate all the Hirota bilinear equations for the zero-curvature forms of this extended BKP hierarchy. As examples, we obtain the Hirota bilinear equations for the two types of (2+1)-dimensional Sawada-Kotera equations in explicit form.
Quantum identities for the action
NASA Astrophysics Data System (ADS)
Gozzi, E.
2018-04-01
In this paper we derive various identities involving the action functional which enters the path-integral formulation of quantum mechanics. They provide some kind of generalisations of the Ehrenfest theorem giving correlations between powers of the action and its functional derivatives.
On the origin of heavy-tail statistics in equations of the Nonlinear Schrödinger type
NASA Astrophysics Data System (ADS)
Onorato, Miguel; Proment, Davide; El, Gennady; Randoux, Stephane; Suret, Pierre
2016-09-01
We study the formation of extreme events in incoherent systems described by the Nonlinear Schrödinger type of equations. We consider an exact identity that relates the evolution of the normalized fourth-order moment of the probability density function of the wave envelope to the rate of change of the width of the Fourier spectrum of the wave field. We show that, given an initial condition characterized by some distribution of the wave envelope, an increase of the spectral bandwidth in the focusing/defocusing regime leads to an increase/decrease of the probability of formation of rogue waves. Extensive numerical simulations in 1D+1 and 2D+1 are also performed to confirm the results.
Well-Ordered In Adatoms at the In 2 O 3 ( 111 ) Surface Created by Fe Deposition
Wagner, Margareta; Lackner, Peter; Seiler, Steffen; ...
2016-11-11
Metal deposition on oxide surfaces usually results in adatoms, clusters, or islands of the deposited material, where defects in the surface often act as nucleation centers. An alternate configuration is reported. Afterwards the vapor deposition of Fe on the In 2O 3(111) surface at room temperature, ordered adatoms are observed with scanning tunneling microscopy (STM). These are identical to the In adatoms that form when the sample is reduced by heating in ultrahigh vacuum. Our density functional theory (DFT) calculations confirm that Fe interchanges with In in the topmost layer, pushing the excess In atoms to the surface where theymore » arrange as a well-ordered adatom array.« less
Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.
Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna
2011-05-20
We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.
Laser spectroscopy of a halocarbocation in the gas phase: CH2I+.
Tao, Chong; Mukarakate, Calvin; Reid, Scott A
2006-07-26
We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 <-- X1A1. This initial detection of the electronic spectrum of a halocarbocation in the gas phase should open new avenues for study of the structure and reactivity of these important ions.
Gaussian-input Gaussian mixture model for representing density maps and atomic models.
Kawabata, Takeshi
2018-07-01
A new Gaussian mixture model (GMM) has been developed for better representations of both atomic models and electron microscopy 3D density maps. The standard GMM algorithm employs an EM algorithm to determine the parameters. It accepted a set of 3D points with weights, corresponding to voxel or atomic centers. Although the standard algorithm worked reasonably well; however, it had three problems. First, it ignored the size (voxel width or atomic radius) of the input, and thus it could lead to a GMM with a smaller spread than the input. Second, the algorithm had a singularity problem, as it sometimes stopped the iterative procedure due to a Gaussian function with almost zero variance. Third, a map with a large number of voxels required a long computation time for conversion to a GMM. To solve these problems, we have introduced a Gaussian-input GMM algorithm, which considers the input atoms or voxels as a set of Gaussian functions. The standard EM algorithm of GMM was extended to optimize the new GMM. The new GMM has identical radius of gyration to the input, and does not suddenly stop due to the singularity problem. For fast computation, we have introduced a down-sampled Gaussian functions (DSG) by merging neighboring voxels into an anisotropic Gaussian function. It provides a GMM with thousands of Gaussian functions in a short computation time. We also have introduced a DSG-input GMM: the Gaussian-input GMM with the DSG as the input. This new algorithm is much faster than the standard algorithm. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
2014-06-01
determine both the composition and function of groups. While group identities are formed by its members, a natural adjunct to the developed identities are...to a child when overdependencies develop and a top-down or one-way information flow develops in the organization, the resulting framework will likely...of the Air Force identity crisis. Organizational identity theory warns that multiple-identity organizations must be wary of developing an overall
Romi, Shlomo; Simcha, Getahun
2009-01-01
Ego identity and perceived family functioning among at-risk Ethiopian-born (EB) adolescents in Israel and their native-born counterparts were examined. Results showed similar ego-identity ratings. Contrary to the Israeli-born (IB), distress and detachment among the Ethiopian-born are unrelated to poor family functioning. The importance of family-as-support among the Ethiopian-born may discourage removing children from home for rehabilitation, and encourage the development of programs to strengthen bonds between at-risk adolescents and their families in this and other immigrant communities.
Singh, Akanksha; Weisser, Wolfgang W; Hanna, Rachid; Houmgny, Raissa; Zytynska, Sharon E
2017-10-01
Intercropping can help reduce insect pest populations. However, the results of intercropping can be pest- and crop-species specific, with varying effects on crop yield, and pest suppression success. In Cameroon, okra vegetable is often grown in intercropped fields and sown with large distances between planting rows (∼ 2 m). Dominant okra pests include cotton aphids, leaf beetles and whiteflies. In a field experiment, we intercropped okra with maize and bean in different combinations (okra monoculture, okra-bean, okra-maize and okra-bean-maize) and altered plant densities (high and low) to test for the effects of diversity, crop identity and planting distances on okra pests, their predators and yield. We found crop identity and plant density, but not crop diversity to influence okra pests, their predators and okra yield. Only leaf beetles decreased okra yield and their abundance reduced at high plant density. Overall, okra grown with bean at high density was the most economically profitable combination. We suggest that when okra is grown at higher densities, legumes (e.g. beans) should be included as an additional crop. Intercropping with a leguminous crop can enhance nitrogen in the soil, benefiting other crops, while also being harvested and sold at market for additional profit. Manipulating planting distances and selecting plants based on their beneficial traits may thus help to eliminate yield gaps in sustainable agriculture. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sundström, Jens; Engström, Peter
2002-07-01
The Norway spruce MADS-box genes DAL11, DAL12 and DAL13 are phylogenetically related to the angiosperm B-function MADS-box genes: genes that act together with A-function genes in specifying petal identity and with C-function genes in specifying stamen identity to floral organs. In this report we present evidence to suggest that the B-gene function in the specification of identity of the pollen-bearing organs has been conserved between conifers and angiosperms. Expression of DAL11 or DAL12 in transgenic Arabidopsis causes phenotypic changes which partly resemble those caused by ectopic expression of the endogenous B-genes. In similar experiments, flowers of Arabidopsis plants expressing DAL13 showed a different homeotic change in that they formed ectopic anthers in whorls one, two or four. We also demonstrate the capacity of the spruce gene products to form homodimers, and that DAL11 and DAL13 may form heterodimers with each other and with the Arabidopsis B-protein AP3, but not with PI, the second B-gene product in Arabidopsis. In situ hybridization experiments show that the conifer B-like genes are expressed specifically in developing pollen cones, but differ in both temporal and spatial distribution patterns. These results suggest that the B-function in conifers is dual and is separated into a meristem identity and an organ identity function, the latter function possibly being independent of an interaction with the C-function. Thus, even though an ancestral B-function may have acted in combination with C to specify micro- and megasporangia, the B-function has evolved differently in conifers and angiosperms.
Identity and the body: Trajectories of body esteem from adolescence to emerging adulthood.
Nelson, Sarah C; Kling, Johanna; Wängqvist, Maria; Frisén, Ann; Syed, Moin
2018-06-01
Although Erikson (1968) originally conceptualized identity development as a process of becoming at home in one's body, little work has been done linking identity development and research on the body. This study examines how trajectories of the development of body esteem over time are related to young people's sense of identity and psychological functioning in a longitudinal sample from age 10 to 24 (N = 967). Using group-based trajectory modeling, three cubic subgroups were determined for each of the three types of body esteem: appearance, weight, and attribution. These groups demonstrated significant variations in the ways in which body esteem changes over time. These trajectory groups importantly differed in relationship to gender, identity coherence, identity confusion, and psychological functioning. Results are discussed in terms of the need to use a sociocultural perspective to explore the body's relation to identity development and the importance of disaggregating mean-level findings using person-centered approaches to determine high-risk groups. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Sensor Management for Fighter Applications
2006-06-01
has consistently shown that by directly estimating the prob- ability density of a target state using a track - before - detect scheme, weak and densely... track - before - detect nonlinear filter was constructed to estimate the joint density of all state variables. A simulation that emulates estimator...targets in clutter and noise from sensed kinematic and identity data. Among the most capable is track - before - detect (TBD), which delivers
Functions of personal and vicarious life stories: identity and empathy.
Lind, Majse; Thomsen, Dorthe Kirkegaard
2018-05-01
The present study investigates functions of personal and vicarious life stories focusing on identity and empathy. Two-hundred-and-forty Danish high school students completed two life story questionnaires: one for their personal life story and one for a close other's life story. In both questionnaires, they identified up to 10 chapters and self-rated the chapters on valence and valence of causal connections. In addition, they completed measures of identity disturbance and empathy. More positive personal life stories were related to lower identity disturbance and higher empathy. Vicarious life stories showed a similar pattern with respect to identity but surprisingly were unrelated to empathy. In addition, we found positive correlations between personal and vicarious life stories for number of chapters, chapter valence, and valence of causal connections. The study indicates that both personal and vicarious life stories may contribute to identity.
NASA Astrophysics Data System (ADS)
Dakhel, A. A.; Ali-Mohamed, A. Y.
2007-02-01
Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.
Psychological evaluation of treated females with virilizing congenital adrenal hyperplasia.
Hurtig, A L; Radhakrishnan, J; Reyes, H M; Rosenthal, I M
1983-12-01
The psychological development of females with congenital adrenal hyperplasia (CAH) has been previously studied by Money, et al, who found that psychological development of sex identity was consistent with sex assignment despite virilizing adrenal hormones and abnormal external genitalia requiring surgical correction. In this study, using a variety of psychological tests, we assessed the sex-dimorphic behavior, body image, cognitive functioning, and sex-role identity of nine patients ranging in age from 13 to 21, all treated with glucocorticoids and surgical correction. Four of the nine showed moderate virilization despite treatment. Psychological measures included the Wechsler Intelligence Scale for Children-Revised (WISC-R), the Bem Sex-Role Inventory, the Draw-A-Person (DAP) and an interview with patient and family. Results indicate that patients fall within the normal expectable range for this developmental period in visual-spatial and verbal cognitive functioning, in sex-role identity, and in social interpersonal early behaviors. In two areas of functioning these patients demonstrated some variance from the norms, specifically in sexual identity and early activity levels. This suggests that sexual identity and physical activity are most prone to hormonal and psychological impact but that cognition and sex-role identity are not affected. Future studies of this sample will look at personality dimensions such as ego functioning, defense and affect to consider the impact of body image concerns and conflicts.
HIT and brain reward function: A case of mistaken identity (theory).
Wright, Cory; Colombo, Matteo; Beard, Alexander
2017-08-01
This paper employs a case study from the history of neuroscience-brain reward function-to scrutinize the inductive argument for the so-called 'Heuristic Identity Theory' (HIT). The case fails to support HIT, illustrating why other case studies previously thought to provide empirical support for HIT also fold under scrutiny. After distinguishing two different ways of understanding the types of identity claims presupposed by HIT and considering other conceptual problems, we conclude that HIT is not an alternative to the traditional identity theory so much as a relabeling of previously discussed strategies for mechanistic discovery. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.
We present the Clenshaw–Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw–Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order tomore » exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N 3) planewave results. In conclusion, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.« less
Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.
2015-12-02
We present the Clenshaw–Curtis Spectral Quadrature (SQ) method for real-space O(N) Density Functional Theory (DFT) calculations. In this approach, all quantities of interest are expressed as bilinear forms or sums over bilinear forms, which are then approximated by spatially localized Clenshaw–Curtis quadrature rules. This technique is identically applicable to both insulating and metallic systems, and in conjunction with local reformulation of the electrostatics, enables the O(N) evaluation of the electronic density, energy, and atomic forces. The SQ approach also permits infinite-cell calculations without recourse to Brillouin zone integration or large supercells. We employ a finite difference representation in order tomore » exploit the locality of electronic interactions in real space, enable systematic convergence, and facilitate large-scale parallel implementation. In particular, we derive expressions for the electronic density, total energy, and atomic forces that can be evaluated in O(N) operations. We demonstrate the systematic convergence of energies and forces with respect to quadrature order as well as truncation radius to the exact diagonalization result. In addition, we show convergence with respect to mesh size to established O(N 3) planewave results. In conclusion, we establish the efficiency of the proposed approach for high temperature calculations and discuss its particular suitability for large-scale parallel computation.« less
Effect of Reactor Design on the Plasma Treatment of NOx
1998-10-01
control parameter is the input energy density. Consequently, different reactor designs should yield basically the same plasma chemistry if the experiments are performed under identical gas composition and temperature conditions.
Spatial separation and entanglement of identical particles
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; di Martino, Sara; Facchi, Paolo; Florio, Giuseppe
2014-04-01
We reconsider the effect of indistinguishability on the reduced density operator of the internal degrees of freedom (tracing out the spatial degrees of freedom) for a quantum system composed of identical particles located in different spatial regions. We explicitly show that if the spin measurements are performed in disjoint spatial regions then there are no constraints on the structure of the reduced state of the system. This implies that the statistics of identical particles has no role from the point of view of separability and entanglement when the measurements are spatially separated. We extend the treatment to the case of n particles and show the connection with some recent criteria for separability based on subalgebras of observables.
On the Statistical Dependency of Identity Theft on Demographics
NASA Astrophysics Data System (ADS)
di Crescenzo, Giovanni
An improved understanding of the identity theft problem is widely agreed to be necessary to succeed in counter-theft efforts in legislative, financial and research institutions. In this paper we report on a statistical study about the existence of relationships between identity theft and area demographics in the US. The identity theft data chosen was the number of citizen complaints to the Federal Trade Commission in a large number of US municipalities. The list of demographics used for any such municipality included: estimated population, median resident age, estimated median household income, percentage of citizens with a high school or higher degree, percentage of unemployed residents, percentage of married residents, percentage of foreign born residents, percentage of residents living in poverty, density of law enforcement employees, crime index, and political orientation according to the 2004 presidential election. Our study findings, based on linear regression techniques, include statistically significant relationships between the number of identity theft complaints and a non-trivial subset of these demographics.
Reconceptualising "Identity Slippage": Additional Language Learning and (L2) Identity Development
ERIC Educational Resources Information Center
Armour, William
2009-01-01
This paper reconsiders the theoretical concept of "identity slippage" by considering a detailed exegesis of three model conversations taught to learners of Japanese as an additional language. To inform my analysis of these conversations and how they contribute to identity slippage, I have used the work of the systemic-functional linguist Jay Lemke…
Using Systems Theory to Understand the Identity of Academic Advising: A Case Study
ERIC Educational Resources Information Center
Bridgen, Sean
2017-01-01
For decades, advising practitioners and scholars have worked toward developing an identity for advising as a unique field of scholarly inquiry and practice. To date, the identity crisis in advising remains. This study presents an examination and description of the function, purpose, and identity of a university advising system through comparisons…
Social Identity Change: Shifts in Social Identity during Adolescence
ERIC Educational Resources Information Center
Tanti, Chris; Stukas, Arthur A.; Halloran, Michael J.; Foddy, Margaret
2011-01-01
This study investigated the proposition that adolescence involves significant shifts in social identity as a function of changes in social context and cognitive style. Using an experimental design, we primed either peer or gender identity with a sample of 380 early- (12-13 years), mid- (15-16 years), and late-adolescents (18-20 years) and then…
NASA Astrophysics Data System (ADS)
Aguilera, Irene; Friedrich, Christoph; Bihlmayer, Gustav; Blügel, Stefan
2013-07-01
We present GW calculations of the topological insulators Bi2Se3, Bi2Te3, and Sb2Te3 within the all-electron full-potential linearized augmented-plane-wave formalism. Quasiparticle effects produce significant qualitative changes in the band structures of these materials when compared to density functional theory (DFT), especially at the Γ point, where band inversion takes place. There, the widely used perturbative one-shot GW approach can produce unphysical band dispersions, as the quasiparticle wave functions are forced to be identical to the noninteracting single-particle states. We show that a treatment beyond the perturbative approach, which incorporates the off-diagonal GW matrix elements and thus enables many-body hybridization to be effective in the quasiparticle wave functions, is crucial in these cases to describe the characteristics of the band inversion around the Γ point in an appropriate way. In addition, this beyond one-shot GW approach allows us to calculate the values of the Z2 topological invariants and compare them with those previously obtained within DFT.
Zhao, Xing; Zhou, Xiao-Hua; Feng, Zijian; Guo, Pengfei; He, Hongyan; Zhang, Tao; Duan, Lei; Li, Xiaosong
2013-01-01
As a useful tool for geographical cluster detection of events, the spatial scan statistic is widely applied in many fields and plays an increasingly important role. The classic version of the spatial scan statistic for the binary outcome is developed by Kulldorff, based on the Bernoulli or the Poisson probability model. In this paper, we apply the Hypergeometric probability model to construct the likelihood function under the null hypothesis. Compared with existing methods, the likelihood function under the null hypothesis is an alternative and indirect method to identify the potential cluster, and the test statistic is the extreme value of the likelihood function. Similar with Kulldorff's methods, we adopt Monte Carlo test for the test of significance. Both methods are applied for detecting spatial clusters of Japanese encephalitis in Sichuan province, China, in 2009, and the detected clusters are identical. Through a simulation to independent benchmark data, it is indicated that the test statistic based on the Hypergeometric model outweighs Kulldorff's statistics for clusters of high population density or large size; otherwise Kulldorff's statistics are superior.
Self and health: factors that encourage self-esteem and functional health.
Reitzes, Donald C; Mutran, Elizabeth J
2006-01-01
We are interested in whether functional health enhances self-esteem, as well as whether self-esteem, worker, parent, and friend identities are related to changes in functional health over a 2-year period of study. Data were collected in 1992 and 1994 from 737 older workers living in a North Carolina metropolitan area. Functional health is derived from questions asking respondents about their difficulties performing seven activities. We use Rosenberg's (1965) 10-item scale to tap self-esteem, and identities are measured with 10 adjective pairs that cover being competent, confident, and sociable as a worker, parent, and friend. Several findings are of interest. Better functional health is associated with greater self-esteem over 2 years, and self-esteem is positively related to changes in functional health. In addition, worker identity and some social background factors are associated with positive changes in self-esteem. The findings suggest that good health may contribute to positive self assessments, but also the less well-studied expectation that self processes are associated with positive changes in health. Individuals may be motivated by their desire to affirm a sense of self-worth and positive identities to maintain and improve their physical health.
On the power spectral density of quadrature modulated signals. [satellite communication
NASA Technical Reports Server (NTRS)
Yan, T. Y.
1981-01-01
The conventional (no-offset) quadriphase modulation technique suffers from the fact that hardlimiting will restore the frequency sidelobes removed by proper filtering. Thus, offset keyed quadriphase modulation techniques are often proposed for satellite communication with bandpass hardlimiting. A unified theory is developed which is capable of describing the power spectral density before and after the hardlimiting process. Using the in-phase and the quadrature phase channel with arbitrary pulse shaping, analytical results are established for generalized quadriphase modulation. In particular MSK, OPSK or the recently introduced overlapped raised cosine keying all fall into this general category. It is shown that for a linear communication channel, the power spectral density of the modulated signal remains unchanged regardless of the offset delay. Furthermore, if the in phase and the quadrature phase channel have identical pulse shapes without offset, the spectrum after bandpass hardlimiting will be identical to that of the conventional QPSK modulation. Numerical examples are given for various modulation techniques. A case of different pulse shapes in the in phase and the quadrature phase channel is also considered.
Thermal Performance of Low Layer Density Multilayer Insu1ation Using Liquid Nitrogen
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.; Fesmire, James E.
2011-01-01
In order to support long duration cryogenic propellant storage, the Cryogenic Fluid Management (CFM) Project of the Exploration Technology Development Program (ETDP) is investigating the long duration storage propertie$ of liquid methane on the lunar surface. The Methane Lunar Surface Thermal Control (MLSTC) testing is using a tank of the approximate dimensions of the Altair ascent tanks inside of a vacuum chamber to simulate the environment in low earth orbit and on the lunar surface. The thermal performance testing of multilayer insulation (MLI) coupons that are fabricated identically to the tank applied insulation is necessary to understand the performance of the blankets and to be able to predict the performance of the insulation prior to testing. This coupon testing was completed in Cryostat-100 at the Cryogenics Test Laboratory. The results showed the properties of the insulation as a function of layer density, number of layers, and warm boundary temperature. These results aid in the understanding of the performance parameters o fMLI and help to complete the body of literature on the topic.
Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Mouton, Laurence; Hunter, Martha S; Zchori-Fein, Einat
2011-01-01
Intracellular symbionts of arthropods have diverse influences on their hosts, and their functions generally appear to be associated with their localization within the host. The effect of localization pattern on the role of a particular symbiont cannot normally be tested since the localization pattern within hosts is generally invariant. However, in Israel, the secondary symbiont Rickettsia is unusual in that it presents two distinct localization patterns throughout development and adulthood in its whitefly host, Bemisia tabaci (B biotype). In the "scattered" pattern, Rickettsia is localized throughout the whitefly hemocoel, excluding the bacteriocytes, where the obligate symbiont Portiera aleyrodidarum and some other secondary symbionts are housed. In the "confined" pattern, Rickettsia is restricted to the bacteriocytes. We examined the effects of these patterns on Rickettsia densities, association with other symbionts (Portiera and Hamiltonella defensa inside the bacteriocytes) and on the potential for horizontal transmission to the parasitoid wasp, Eretmocerus mundus, while the wasp larvae are developing within the whitefly nymph. Sequences of four Rickettsia genes were found to be identical for both localization patterns, suggesting that they are closely related strains. However, real-time PCR analysis showed very different dynamics for the two localization types. On the first day post-adult emergence, Rickettsia densities were 21 times higher in the "confined" pattern vs. "scattered" pattern whiteflies. During adulthood, Rickettsia increased in density in the "scattered" pattern whiteflies until it reached the "confined" pattern Rickettsia density on day 21. No correlation between Rickettsia densities and Hamiltonella or Portiera densities were found for either localization pattern. Using FISH technique, we found Rickettsia in the gut of the parasitoid wasps only when they developed on whiteflies with the "scattered" pattern. The results suggest that the localization pattern of a symbiont may influence its dynamics within the host.
X-Ray Diagnostics of Laser-Produced Aluminum Plasmas
1976-06-01
n.n g (E /kT ) ’ (24) ff r l e ff H e but shoys re spectral dependence on T [29]. Thus in the e visible region, electron density can be extracted...abetract entered In Block 20, It different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS ’Continue on reveree aide it neceaaary and Identity by block...Continue on reveree tide It naceeeary and identity by block number) Electron temperatures have been evaluated using the x-ray emission from plasmas
Wu, Feng; Shi, Xiaowei; Lin, Xuelei; Liu, Yuan; Chong, Kang; Theißen, Günter; Meng, Zheng
2017-01-01
The well-known ABC model describes the combinatorial interaction of homeotic genes in specifying floral organ identities. While the B- and C-functions are highly conserved throughout flowering plants and even in gymnosperms, the A-function, which specifies the identity of perianth organs (sepals and petals in eudicots), remains controversial. One reason for this is that in most plants that have been investigated thus far, with Arabidopsis being a remarkable exception, one does not find recessive mutants in which the identity of both types of perianth organs is affected. Here we report a comprehensive mutational analysis of all four members of the AP1/FUL-like subfamily of MADS-box genes in rice (Oryza sativa). We demonstrate that OsMADS14 and OsMADS15, in addition to their function of specifying meristem identity, are also required to specify palea and lodicule identities. Because these two grass-specific organs are very likely homologous to sepals and petals of eudicots, respectively, we conclude that there is a floral homeotic (A)-function in rice as defined previously. Together with other recent findings, our data suggest that AP1/FUL-like genes were independently recruited to fulfil the (A)-function in grasses and some eudicots, even though other scenarios cannot be excluded and are discussed. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
J. Morgan Grove; Dexter H. Locke; Jarlath P.M. O' Neil-Dunne
2014-01-01
Several social theories have been proposed to explain the uneven distribution of vegetation in urban residential areas: population density, social stratification, luxury effect, and ecology of prestige. We evaluate these theories using a combination of demographic and socio-economic predictors of vegetative cover on all residential lands in New York City. We use...
Superfluidity of identical fermions in an optical lattice: Atoms and polar molecules
NASA Astrophysics Data System (ADS)
Fedorov, A. K.; Yudson, V. I.; Shlyapnikov, G. V.
2018-02-01
In this work we discuss the emergence of p-wave superfluids of identical fermions in 2D lattices. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices, for short-range interacting atoms the scattering amplitude is strongly reduced compared to free space due to a small overlap of wavefunctions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, we show that for a moderate lattice depth there is still a possibility to create atomic p-wave superfluids with sizable transition temperatures. The situation is drastically different for fermionic polar molecules. Being dressed with a microwave field, they acquire a dipole-dipole attractive tail in the interaction potential. Then, due to a long-range character of the dipole-dipole interaction, the effect of the suppression of the scattering amplitude in 2D lattices is absent. This leads to the emergence of a stable topological px + ipy superfluid of identical microwave-dressed polar molecules.
Pollinator-mediated interactions in experimental arrays vary with neighbor identity.
Ha, Melissa K; Ivey, Christopher T
2017-02-01
Local ecological conditions influence the impact of species interactions on evolution and community structure. We investigated whether pollinator-mediated interactions between coflowering plants vary with plant density, coflowering neighbor identity, and flowering season. We conducted a field experiment in which flowering time and floral neighborhood were manipulated in a factorial design. Early- and late-flowering Clarkia unguiculata plants were placed into arrays with C. biloba neighbors, noncongeneric neighbors, additional conspecific plants, or no additional plants as a density control. We compared whole-plant pollen limitation of seed set, pollinator behavior, and pollen deposition among treatments. Interactions mediated by shared pollinators depended on the identity of the neighbor and possibly changed through time, although flowering-season comparisons were compromised by low early-season plant survival. Interactions with conspecific neighbors were likely competitive late in the season. Interactions with C. biloba appeared to involve facilitation or neutral interactions. Interactions with noncongeners were more consistently competitive. The community composition of pollinators varied among treatment combinations. Pollinator-mediated interactions involved competition and likely facilitation, depending on coflowering neighbor. Experimental manipulation helped to reveal context-dependent variation in indirect biotic interactions. © 2017 Botanical Society of America.
Plant Identity Influences Decomposition through More Than One Mechanism
McLaren, Jennie R.; Turkington, Roy
2011-01-01
Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss. PMID:21858210
NASA Astrophysics Data System (ADS)
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
De Meulemeester, Celine; Lowyck, Benedicte; Vermote, Rudi; Verhaest, Yannic; Luyten, Patrick
2017-12-01
Individuals with borderline personality disorder (BPD) are characterized by problems in interpersonal functioning and their long-term social integration often remains problematic. Extant theories have linked identity diffusion to many of the interpersonal problems characteristic of BPD patients. Recent theoretical accounts have suggested that identity diffusion results from problems with mentalizing or reflective functioning, that is, the capacity to understand oneself and others in terms of intentional mental states. In this study we tested these assumptions, i.e., whether identity diffusion plays a mediating role in the relationship between mentalizing difficulties and interpersonal problems, in a sample of 167 BPD patients. Highly significant correlations were found between mentalizing impairments, identity diffusion and interpersonal problems. Mediation analyses showed that identity diffusion fully mediated the relationship between mentalizing difficulties and interpersonal problems. This study provides preliminary evidence that impairments in mentalizing are related to identity diffusion, which in turn is related to interpersonal problems in BPD. Further longitudinal research is needed to further substantiate these conclusions. Copyright © 2017 Elsevier B.V. All rights reserved.
Formation of Supported Graphene Oxide: Evidence for Enolate Species.
Novotny, Zbynek; Nguyen, Manh-Thuong; Netzer, Falko P; Glezakou, Vassiliki-Alexandra; Rousseau, Roger; Dohnálek, Zdenek
2018-04-18
Graphene oxides are promising materials for novel electronic devices or anchoring of the active sites for catalytic applications. Here we focus on understanding the atomic oxygen (AO) binding and mobility on different regions of graphene (Gr) on Ru(0001). Differences in the Gr/Ru lattices result in the superstructure, which offers an array of distinct adsorption sites. We employ scanning tunneling microscopy and density functional theory to map out the chemical identity and stability of prepared AO functionalities in different Gr regions. The AO diffusion is utilized to establish that in the regions that are close to the metal substrate the terminally bonded enolate groups are strongly preferred over bridge-bonded epoxy groups. No oxygen species are observed on the graphene regions that are far from the underlying Ru, indicating their low relative stability. This study provides a clear fundamental basis for understanding the local structural, electronic factors and C-Ru bond strengthening/weakening processes that affect the stability of enolate and epoxy species.
NASA Astrophysics Data System (ADS)
Trivedi, Nitin; Kumar, Manoj; Haldar, Subhasis; Deswal, S. S.; Gupta, Mridula; Gupta, R. S.
2017-09-01
A charge plasma technique based dopingless (DL) accumulation mode (AM) junctionless (JL) cylindrical surrounding gate (CSG) MOSFET has been proposed and extensively investigated. Proposed device has no physical junction at source to channel and channel to drain interface. The complete silicon pillar has been considered as undoped. The high free electron density or induced N+ region is designed by keeping the work function of source/drain metal contacts lower than the work function of undoped silicon. Thus, its fabrication complexity is drastically reduced by curbing the requirement of high temperature doping techniques. The electrical/analog characteristics for the proposed device has been extensively investigated using the numerical simulation and are compared with conventional junctionless cylindrical surrounding gate (JL-CSG) MOSFET with identical dimensions. For the numerical simulation purpose ATLAS-3D device simulator is used. The results show that the proposed device is more short channel immune to conventional JL-CSG MOSFET and suitable for faster switching applications due to higher I ON/ I OFF ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berezhiani, Lasha; Khoury, Justin; Wang, Junpu, E-mail: lashaber@gmail.com, E-mail: jkhoury@sas.upenn.edu, E-mail: jwang217@jhu.edu
Single-field perturbations satisfy an infinite number of consistency relations constraining the squeezed limit of correlation functions at each order in the soft momentum. These can be understood as Ward identities for an infinite set of residual global symmetries, or equivalently as Slavnov-Taylor identities for spatial diffeomorphisms. In this paper, we perform a number of novel, non-trivial checks of the identities in the context of single field inflationary models with arbitrary sound speed. We focus for concreteness on identities involving 3-point functions with a soft external mode, and consider all possible scalar and tensor combinations for the hard-momentum modes. In allmore » these cases, we check the consistency relations up to and including cubic order in the soft momentum. For this purpose, we compute for the first time the 3-point functions involving 2 scalars and 1 tensor, as well as 2 tensors and 1 scalar, for arbitrary sound speed.« less
Herrera, Andrea P
2017-11-27
This analysis integrates poststructuralist and symbolic interactionist approaches to the self by incorporating the insights of science and technology studies regarding categorization processes. While the advent of the Internet has freed many individuals from geographical constraints on community formation, the architectures of online platforms produce a technological imperative to name aspects of the self with words. Using sexual identity hashtags on Instagram (e.g., #lesbian) thus performs paradoxical functions: the hashtag both enables the construction of a sexual identity within an affirming community and also reinforces the power relations that compel individuals to name and account for their sexual selves. By illustrating one way sexual identities function in the online lives of young women, this research complicates other scholars' findings that the salience of sexual identity categories is decreasing.
Packing Regularities in Biological Structures Relate to Their Dynamics
Jernigan, Robert L.; Kloczkowski, Andrzej
2007-01-01
The high packing density inside proteins leads to certain geometric regularities and also is one of the most important contributors to the high extent of cooperativity manifested by proteins in their cohesive domain motions. The orientations between neighboring non-bonded residues in proteins substantially follow the similar geometric regularities, regardless of whether the residues are on the surface or buried - a direct result of hydrophobicity forces. These orientations are relatively fixed and correspond closely to small deformations from those of the face-centered cubic lattice, which is the way in which identical spheres pack at the highest density. Packing density also is related to the extent of conservation of residues, and we show this relationship for residue packing densities by averaging over a large sample or residue packings. There are three regimes: 1) over a broad range of packing densities the relationship between sequence entropy and inverse packing density is nearly linear, 2) over a limited range of low packing densities the sequence entropy is nearly constant, and 3) at extremely low packing densities the sequence entropy is highly variable. These packing results provide important justification for the simple elastic network models that have been shown for a large number of proteins to represent protein dynamics so successfully, even when the models are extremely coarse-grained. Elastic network models for polymeric chains are simple and could be combined with these protein elastic networks to represent partially denatured parts of proteins. Finally, we show results of applications of the elastic network model to study the functional motions of the ribosome, based on its known structure. These results indicate expected correlations among its components for the step-wise processing steps in protein synthesis, and suggest ways to use these elastic network models to develop more detailed mechanisms - an important possibility, since most experiments yield only static structures. PMID:16957327
Claros, Geo; Hull, Holly R; Fields, David A
2005-09-09
The purpose of this study was to examine the accuracy of total body density and percent body fat (% fat) using air displacement plethysmography (ADP) and hydrostatic weighing (HW) in children. Sixty-six male and female subjects (40 males: 12.4 +/- 1.3 yrs, 47.4 +/- 14.8 kg, 155.4 +/- 11.9 cm, 19.3 +/- 4.1 kg/m2; 26 females: 12.0 +/- 1.9 yrs, 41.4 +/- 7.7 kg, 152.1 +/- 8.9 cm, 17.7 +/- 1.7 kg/m2) were tested using ADP and HW with ADP always preceding HW. Accuracy, precision, and bias were examined in ADP with HW serving as the criterion method. Lohman's equations that are child specific for age and gender were used to convert body density to % fat. Regression analysis determined the accuracy of ADP and potential bias between ADP and HW using Bland-Altman analysis. For the entire group (Y = 0.835x + 0.171, R2 = 0.84, SEE = 0.007 g/cm3) and for the males (Y = 0.837x + 0.174, R2 = 0.90, SEE = 0.006 g/cm3) the regression between total body density by HW and by ADP significantly deviated from the line of identity. However in females, the regression between total body density by HW and ADP did not significantly deviate from the line of identity (Y = 0.750x + 0.258, R2 = 0.55, SEE = 0.008 g/cm3). The regression between % fat by HW and ADP for the group (Y = 0.84x + 3.81, R2 = 0.83, SEE = 3.35 % fat) and for the males (Y = 0.84x + 3.25, R2 = 0.90, SEE = 3.00 % fat) significantly deviated from the line of identity. However, in females the regression between % fat by HW and ADP did not significantly deviate from the line of identity (Y = 0.81x + 5.17, R2 = 0.56, SEE = 3.80 % fat). Bland-Altman analysis revealed no bias between HW total body density and ADP total body density for the entire group (R = 0.-22; P = 0.08) or for females (R = 0.02; P = 0.92), however bias existed in males (R = -0.37; P < or = 0.05). Bland-Altman analysis revealed no bias between HW and ADP % fat for the entire group (R = 0.21; P = 0.10) or in females (R = 0.10; P = 0.57), however bias was indicated for males by a significant correlation (R = 0.36; P < or = 0.05), with ADP underestimating % fat at lower fat values and overestimating at the higher % fat values. A significant difference in total body density and % fat was observed between ADP and HW in children 10-15 years old with a potential gender difference being detected. Upon further investigation it was revealed that the study was inadequately powered, thus we recommend that larger studies that are appropriately powered be conducted to better understand this potential gender difference.
Claros, Geo; Hull, Holly R; Fields, David A
2005-01-01
Background The purpose of this study was to examine the accuracy of total body density and percent body fat (% fat) using air displacement plethysmography (ADP) and hydrostatic weighing (HW) in children. Methods Sixty-six male and female subjects (40 males: 12.4 ± 1.3 yrs, 47.4 ± 14.8 kg, 155.4 ± 11.9 cm, 19.3 ± 4.1 kg/m2; 26 females: 12.0 ± 1.9 yrs, 41.4 ± 7.7 kg, 152.1 ± 8.9 cm, 17.7 ± 1.7 kg/m2) were tested using ADP and HW with ADP always preceding HW. Accuracy, precision, and bias were examined in ADP with HW serving as the criterion method. Lohman's equations that are child specific for age and gender were used to convert body density to % fat. Regression analysis determined the accuracy of ADP and potential bias between ADP and HW using Bland-Altman analysis. Results For the entire group (Y = 0.835x + 0.171, R2 = 0.84, SEE = 0.007 g/cm3) and for the males (Y = 0.837x + 0.174, R2 = 0.90, SEE = 0.006 g/cm3) the regression between total body density by HW and by ADP significantly deviated from the line of identity. However in females, the regression between total body density by HW and ADP did not significantly deviate from the line of identity (Y = 0.750x + 0.258, R2 = 0.55, SEE = 0.008 g/cm3). The regression between % fat by HW and ADP for the group (Y = 0.84x + 3.81, R2 = 0.83, SEE = 3.35 % fat) and for the males (Y = 0.84x + 3.25, R2 = 0.90, SEE = 3.00 % fat) significantly deviated from the line of identity. However, in females the regression between % fat by HW and ADP did not significantly deviate from the line of identity (Y = 0.81x + 5.17, R2 = 0.56, SEE = 3.80 % fat). Bland-Altman analysis revealed no bias between HW total body density and ADP total body density for the entire group (R = 0.-22; P = 0.08) or for females (R = 0.02; P = 0.92), however bias existed in males (R = -0.37; P ≤ 0.05). Bland-Altman analysis revealed no bias between HW and ADP % fat for the entire group (R = 0.21; P = 0.10) or in females (R = 0.10; P = 0.57), however bias was indicated for males by a significant correlation (R = 0.36; P ≤ 0.05), with ADP underestimating % fat at lower fat values and overestimating at the higher % fat values. Conclusion A significant difference in total body density and % fat was observed between ADP and HW in children 10–15 years old with a potential gender difference being detected. Upon further investigation it was revealed that the study was inadequately powered, thus we recommend that larger studies that are appropriately powered be conducted to better understand this potential gender difference. PMID:16153297
Whitney, T J; Gardner, D G; Mott, M L; Brandon, M
2010-03-09
The unusual life cycle of Dictyostelium discoideum, in which an extra-cellular stressor such as starvation induces the development of a multicellular fruiting body consisting of stalk cells and spores from a culture of identical amoebae, provides an excellent model for investigating the molecular control of differentiation and the transition from single- to multi-cellular life, a key transition in development. We utilized serial analysis of gene expression (SAGE), a molecular method that is unbiased by dependence on previously identified genes, to obtain a transcriptome from a high-density culture of amoebae, in order to examine the transition to multi-cellular development. The SAGE method provides relative expression levels, which allows us to rank order the expressed genes. We found that a large number of ribosomal proteins were expressed at high levels, while various components of the proteosome were expressed at low levels. The only identifiable transmembrane signaling system components expressed in amoebae are related to quorum sensing, and their expression levels were relatively low. The most highly expressed gene in the amoeba transcriptome, dutA untranslated RNA, is a molecule with unknown function that may serve as an inhibitor of translation. These results suggest that high-density amoebae have not initiated development, and they also suggest a mechanism by which the transition into the development program is controlled.
Spatial differences between stars and brown dwarfs: a dynamical origin?
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Andersen, Morten
2014-06-01
We use N-body simulations to compare the evolution of spatial distributions of stars and brown dwarfs in young star-forming regions. We use three different diagnostics: the ratio of stars to brown dwarfs as a function of distance from the region's centre, {R}_SSR, the local surface density of stars compared to brown dwarfs, ΣLDR, and we compare the global spatial distributions using the ΛMSR method. From a suite of 20 initially statistically identical simulations, 6/20 attain {R}_SSR ≪ 1 and ΣLDR ≪ 1 and ΛMSR ≪ 1, indicating that dynamical interactions could be responsible for observed differences in the spatial distributions of stars and brown dwarfs in star-forming regions. However, many simulations also display apparently contradictory results - for example, in some cases the brown dwarfs have much lower local densities than stars (ΣLDR ≪ 1), but their global spatial distributions are indistinguishable (ΛMSR = 1) and the relative proportion of stars and brown dwarfs remains constant across the region ({R}_SSR = 1). Our results suggest that extreme caution should be exercised when interpreting any observed difference in the spatial distribution of stars and brown dwarfs, and that a much larger observational sample of regions/clusters (with complete mass functions) is necessary to investigate whether or not brown dwarfs form through similar mechanisms to stars.
Thermostatistical description of gas mixtures from space partitions
NASA Astrophysics Data System (ADS)
Rohrmann, R. D.; Zorec, J.
2006-10-01
The new mathematical framework based on the free energy of pure classical fluids presented by Rohrmann [Physica A 347, 221 (2005)] is extended to multicomponent systems to determine thermodynamic and structural properties of chemically complex fluids. Presently, the theory focuses on D -dimensional mixtures in the low-density limit (packing factor η<0.01 ). The formalism combines the free-energy minimization technique with space partitions that assign an available volume v to each particle. v is related to the closeness of the nearest neighbor and provides a useful tool to evaluate the perturbations experimented by particles in a fluid. The theory shows a close relationship between statistical geometry and statistical mechanics. New, unconventional thermodynamic variables and mathematical identities are derived as a result of the space division. Thermodynamic potentials μil , conjugate variable of the populations Nil of particles class i with the nearest neighbors of class l are defined and their relationships with the usual chemical potentials μi are established. Systems of hard spheres are treated as illustrative examples and their thermodynamics functions are derived analytically. The low-density expressions obtained agree nicely with those of scaled-particle theory and Percus-Yevick approximation. Several pair distribution functions are introduced and evaluated. Analytical expressions are also presented for hard spheres with attractive forces due to Kac-tails and square-well potentials. Finally, we derive general chemical equilibrium conditions.
Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...
2016-07-14
Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less
Mayhall, Nicholas J; Raghavachari, Krishnan
2007-08-23
The mechanisms of chemical reactions of molybdenum suboxide clusters Mo(2)O(n)- (n = 2-5) with methane are investigated using B3LYP hybrid density functional theory and polarized basis sets. In particular, we focus on the reactions of the most stable structural isomers of Mo(2)O(2,3,4,5)- that lead to single molybdenum species such as HMoO(2)CH(3)-, as seen in the recent experimental study of Jarrold and co-workers. We find that, while all experimentally observed products are unfavorable due to the high amount of energy required to cleave the metal oxide, the formation of HMoO(2)CH(3)- is least endothermic. Even in this case, the thermodynamics of these reactions is very unfavorable when a single methane is reacted with the metal oxide. However, we find that the sequential addition of two methanes produces HMoO(2)CH(3)- (and another neutral molecule whose identity depends on the number of oxygens in the metal oxide) at a much lower thermodynamic cost. Further, the overall reaction barriers are much lower when the second methane adds prior to the Mo(2)O(2,3,4,5)- cleavage. The methane addition at each metal center oxidizes the metals to produce a species that is then stable enough to afford the Mo-Mo cleavage.
Species effects on ecosystem processes are modified by faunal responses to habitat composition.
Bulling, Mark T; Solan, Martin; Dyson, Kirstie E; Hernandez-Milian, Gema; Luque, Patricia; Pierce, Graham J; Raffaelli, Dave; Paterson, David M; White, Piran C L
2008-12-01
Heterogeneity is a well-recognized feature of natural environments, and the spatial distribution and movement of individual species is primarily driven by resource requirements. In laboratory experiments designed to explore how different species drive ecosystem processes, such as nutrient release, habitat heterogeneity is often seen as something which must be rigorously controlled for. Most small experimental systems are therefore spatially homogeneous, and the link between environmental heterogeneity and its effects on the redistribution of individuals and species, and on ecosystem processes, has not been fully explored. In this paper, we used a mesocosm system to investigate the relationship between habitat composition, species movement and sediment nutrient release for each of four functionally contrasting species of marine benthic invertebrate macrofauna. For each species, various habitat configurations were generated by selectively enriching patches of sediment with macroalgae, a natural source of spatial variability in intertidal mudflats. We found that the direction and extent of faunal movement between patches differs with species identity, density and habitat composition. Combinations of these factors lead to concomitant changes in nutrient release, such that habitat composition effects are modified by species identity (in the case of NH4-N) and by species density (in the case of PO4-P). It is clear that failure to accommodate natural patterns of spatial heterogeneity in such studies may result in an incomplete understanding of system behaviour. This will be particularly important for future experiments designed to explore the effects of species richness on ecosystem processes, where the complex interactions reported here for single species may be compounded when species are brought together in multi-species combinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Wen-Rong; Tian, Bo, E-mail: tian_bupt@163.com; Jiang, Yan
2014-04-15
Plasmas are the main constituent of the Universe and the cause of a vast variety of astrophysical, space and terrestrial phenomena. The inhomogeneous nonlinear Schrödinger equation is hereby investigated, which describes the propagation of an electron plasma wave packet with a large wavelength and small amplitude in a medium with a parabolic density and constant interactional damping. By virtue of the double Wronskian identities, the equation is proved to possess the double-Wronskian soliton solutions. Analytic one- and two-soliton solutions are discussed. Amplitude and velocity of the soliton are related to the damping coefficient. Asymptotic analysis is applied for us tomore » investigate the interaction between the two solitons. Overtaking interaction, head-on interaction and bound state of the two solitons are given. From the non-zero potential Lax pair, the first- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation, and influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed. -- Highlights: •Double-Wronskian soliton solutions are obtained and proof is finished by virtue of some double Wronskian identities. •Asymptotic analysis is applied for us to investigate the interaction between the two solitons. •First- and second-order rogue-wave solutions are constructed via a generalized Darboux transformation. •Influence of the linear and parabolic density profiles on the background density and amplitude of the rogue wave is discussed.« less
Retter, Talia L; Rossion, Bruno
2016-07-01
Discrimination of facial identities is a fundamental function of the human brain that is challenging to examine with macroscopic measurements of neural activity, such as those obtained with functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). Although visual adaptation or repetition suppression (RS) stimulation paradigms have been successfully implemented to this end with such recording techniques, objective evidence of an identity-specific discrimination response due to adaptation at the level of the visual representation is lacking. Here, we addressed this issue with fast periodic visual stimulation (FPVS) and EEG recording combined with a symmetry/asymmetry adaptation paradigm. Adaptation to one facial identity is induced through repeated presentation of that identity at a rate of 6 images per second (6 Hz) over 10 sec. Subsequently, this identity is presented in alternation with another facial identity (i.e., its anti-face, both faces being equidistant from an average face), producing an identity repetition rate of 3 Hz over a 20 sec testing sequence. A clear EEG response at 3 Hz is observed over the right occipito-temporal (ROT) cortex, indexing discrimination between the two facial identities in the absence of an explicit behavioral discrimination measure. This face identity discrimination occurs immediately after adaptation and disappears rapidly within 20 sec. Importantly, this 3 Hz response is not observed in a control condition without the single-identity 10 sec adaptation period. These results indicate that visual adaptation to a given facial identity produces an objective (i.e., at a pre-defined stimulation frequency) electrophysiological index of visual discrimination between that identity and another, and provides a unique behavior-free quantification of the effect of visual adaptation. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Foda, O.; Welsh, T. A.
2016-04-01
We study the Andrews-Gordon-Bressoud (AGB) generalisations of the Rogers-Ramanujan q-series identities in the context of cylindric partitions. We recall the definition of r-cylindric partitions, and provide a simple proof of Borodin’s product expression for their generating functions, that can be regarded as a limiting case of an unpublished proof by Krattenthaler. We also recall the relationships between the r-cylindric partition generating functions, the principal characters of {\\hat{{sl}}}r algebras, the {{\\boldsymbol{ M }}}r r,r+d minimal model characters of {{\\boldsymbol{ W }}}r algebras, and the r-string abaci generating functions, providing simple proofs for each. We then set r = 2, and use two-cylindric partitions to re-derive the AGB identities as follows. Firstly, we use Borodin’s product expression for the generating functions of the two-cylindric partitions with infinitely long parts, to obtain the product sides of the AGB identities, times a factor {(q;q)}∞ -1, which is the generating function of ordinary partitions. Next, we obtain a bijection from the two-cylindric partitions, via two-string abaci, into decorated versions of Bressoud’s restricted lattice paths. Extending Bressoud’s method of transforming between restricted paths that obey different restrictions, we obtain sum expressions with manifestly non-negative coefficients for the generating functions of the two-cylindric partitions which contains a factor {(q;q)}∞ -1. Equating the product and sum expressions of the same two-cylindric partitions, and canceling a factor of {(q;q)}∞ -1 on each side, we obtain the AGB identities.
Smith, Frank W; Jockusch, Elizabeth L
2014-11-01
The establishment of segment identity is a key developmental process that allows for divergence along the anteroposterior body axis in arthropods. In Drosophila, the identity of a segment is determined by the complement of Hox genes it expresses. In many contexts, Hox transcription factors require the protein products of extradenticle (exd) and homothorax (hth) as cofactors to perform their identity specification functions. In holometabolous insects, segment identity may be specified twice, during embryogenesis and metamorphosis. To glean insight into the relationship between embryonic and metamorphic segmental identity specification, we have compared these processes in the flour beetle Tribolium castaneum, which develops ventral appendages during embryogenesis that later metamorphose into adult appendages with distinct morphologies. At metamorphosis, comparisons of RNAi phenotypes indicate that Hox genes function jointly with Tc-hth and Tc-exd to specify several region-specific aspects of the adult body wall. On the other hand, Hox genes specify appendage identities along the anteroposterior axis independently of Tc-hth/Tc-exd and Tc-hth/Tc-exd specify proximal vs. distal identity within appendages independently of Hox genes during this stage. During embryogenesis, Tc-hth and Tc-exd play a broad role in the segmentation process and are required for specification of body wall identities in the thorax; however, contrasting with results from other species, we did not obtain homeotic transformations of embryonic appendages in response to Tc-hth or Tc-exd RNAi. In general, the homeotic effects of interference with the function of Hox genes and Tc-hth/Tc-exd during metamorphosis did not match predictions based on embryonic roles of these genes. Comparing metamorphic patterning in T. castaneum to embryonic and post-embryonic development in hemimetabolous insects suggests that holometabolous metamorphosis combines patterning processes of both late embryogenesis and metamorphosis of the hemimetabolous life cycle. Copyright © 2014 Elsevier Inc. All rights reserved.
Extending the Belgian eID Technology with Mobile Security Functionality
NASA Astrophysics Data System (ADS)
Lapon, Jorn; Verdegem, Bram; Verhaeghe, Pieter; Naessens, Vincent; de Decker, Bart
The Belgian Electronic Identity Card was introduced in 2002. The card enables Belgian citizens to prove their identity digitally and to sign electronic documents. Today, only a limited number of citizens really use the card in electronic applications. A major reason is the lack of killer functionality and killer applications.
Special Education at the Crossroad: An Identity Crisis and the Need for a Scientific Reconstruction
ERIC Educational Resources Information Center
Kauffman, James M.; Anastasiou, Dimitris; Maag, John W.
2017-01-01
Special education is losing its identity--its visibility, distinctiveness, budget, and basic functions are all at risk. Special education functions include (a) sorting, categorizing, and labeling students who need it; (b) making the right comparisons; (c) honoring diversity but changing "particular" differences; (d) managing stigma; (e)…
Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.
Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján
2013-08-01
The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density. Copyright © 2013 Elsevier Ltd. All rights reserved.
Umaña-Taylor, Adriana J; O'Donnell, Megan; Knight, George P; Roosa, Mark W; Berkel, Cady; Nair, Rajni
2014-02-01
The current study examined how parental ethnic socialization informed adolescents' ethnic identity development and, in turn, youths' psychosocial functioning (i.e., mental health, social competence, academic efficacy, externalizing behaviors) among 749 Mexican-origin families. In addition, school ethnic composition was examined as a moderator of these associations. Findings indicated that mothers' and fathers' ethnic socialization were significant longitudinal predictors of adolescents' ethnic identity, although fathers' ethnic socialization interacted significantly with youths' school ethnic composition in 5 th grade to influence ethnic identity in 7 th grade. Furthermore, adolescents' ethnic identity was significantly associated with increased academic self-efficacy and social competence, and decreased depressive symptoms and externalizing behaviors. Findings support theoretical predictions regarding the central role parents play in Mexican-origin adolescents' normative developmental processes and adjustment and, importantly, underscore the need to consider variability that is introduced into these processes by features of the social context such as school ethnic composition.
Umaña-Taylor, Adriana J.; O’Donnell, Megan; Knight, George P.; Roosa, Mark W.; Berkel, Cady; Nair, Rajni
2013-01-01
The current study examined how parental ethnic socialization informed adolescents’ ethnic identity development and, in turn, youths’ psychosocial functioning (i.e., mental health, social competence, academic efficacy, externalizing behaviors) among 749 Mexican-origin families. In addition, school ethnic composition was examined as a moderator of these associations. Findings indicated that mothers’ and fathers’ ethnic socialization were significant longitudinal predictors of adolescents’ ethnic identity, although fathers’ ethnic socialization interacted significantly with youths’ school ethnic composition in 5th grade to influence ethnic identity in 7th grade. Furthermore, adolescents’ ethnic identity was significantly associated with increased academic self-efficacy and social competence, and decreased depressive symptoms and externalizing behaviors. Findings support theoretical predictions regarding the central role parents play in Mexican-origin adolescents’ normative developmental processes and adjustment and, importantly, underscore the need to consider variability that is introduced into these processes by features of the social context such as school ethnic composition. PMID:24465033
Setyan, Ari; Sauvain, Jean-Jacques; Guillemin, Michel; Riediker, Michael; Demirdjian, Benjamin; Rossi, Michel J
2010-12-17
The complex chemical and physical nature of combustion and secondary organic aerosols (SOAs) in general precludes the complete characterization of both bulk and interfacial components. The bulk composition reveals the history of the growth process and therefore the source region, whereas the interface controls--to a large extent--the interaction with gases, biological membranes, and solid supports. We summarize the development of a soft interrogation technique, using heterogeneous chemistry, for the interfacial functional groups of selected probe gases [N(CH(3))(3), NH(2)OH, CF(3)COOH, HCl, O(3), NO(2)] of different reactivity. The technique reveals the identity and density of surface functional groups. Examples include acidic and basic sites, olefinic and polycyclic aromatic hydrocarbon (PAH) sites, and partially and completely oxidized surface sites. We report on the surface composition and oxidation states of laboratory-generated aerosols and of aerosols sampled in several bus depots. In the latter case, the biomarker 8-hydroxy-2'-deoxyguanosine, signaling oxidative stress caused by aerosol exposure, was isolated. The increase in biomarker levels over a working day is correlated with the surface density N(i)(O3) of olefinic and/or PAH sites obtained from O(3) uptakes as well as with the initial uptake coefficient, γ(0), of five probe gases used in the field. This correlation with γ(0) suggests the idea of competing pathways occurring at the interface of the aerosol particles between the generation of reactive oxygen species (ROS) responsible for oxidative stress and cellular antioxidants.
Korean Adoptee Identity: Adoptive and Ethnic Identity Profiles of Adopted Korean Americans.
Beaupre, Adam J; Reichwald, Reed; Zhou, Xiang; Raleigh, Elizabeth; Lee, Richard M
2015-12-01
Adopted Korean adolescents face the task of grappling with their identity as Koreans and coming to terms with their adoptive status. In order to explore these dual identities, the authors conducted a person-centered study of the identity profiles of 189 adopted Korean American adolescents. Using cluster analytic procedures, the study examined patterns of commitment to ethnic and adoptive identities, revealing six conceptually unique identity clusters. Analyzing the association between these identity profiles and psychological adjustment, the study found that the identity profiles were undifferentiated with respect to behavioral development and risk behaviors. However, group differences were found on life satisfaction, school adjustment, and family functioning. Results confirm the importance of considering the collective impact of multiple social identities on a variety of outcomes. The social implications of the results are discussed. © 2015 Wiley Periodicals, Inc.
Racial Identity and Academic Achievement in the Neighborhood Context: A Multilevel Analysis
ERIC Educational Resources Information Center
Byrd, Christy M.; Chavous, Tabbye M.
2009-01-01
Increasingly, researchers have found relationships between a strong, positive sense of racial identity and academic achievement among African American youth. Less attention, however, has been given to the roles and functions of racial identity among youth experiencing different social and economic contexts. Using hierarchical linear modeling, the…
The Dutch Identity: A New Tool for the Study of Item Response Models.
ERIC Educational Resources Information Center
Holland, Paul W.
1990-01-01
The Dutch Identity is presented as a useful tool for expressing the basic equations of item response models that relate the manifest probabilities to the item response functions and the latent trait distribution. Ways in which the identity may be exploited are suggested and illustrated. (SLD)
Theoretical characterisation of highly efficient dye-sensitised solar cells
NASA Astrophysics Data System (ADS)
Shalabi, A. S.; El Mahdy, A. M.; Assem, M. M.; Taha, H. O.; Abdel Halim, W. S.
2014-01-01
Molecular electronic structure calculations, employing density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methodologies, have been carried out to improve the performance of the synthesised dye YD2-o-C8 which is characterised by 11.9%-12.7% efficiencies. We aimed to narrow the band gap of YD2-o-C8 to extend the light-harvesting region to near-infrared (NIR). This was done by incorporating Cd instead of Zn onto the porphyrin ring and elongating the length of π-conjugation by adding ethynylene link and anthracene unit, so that the performances of the suggested cells could be expected to exceed the 11.9%-12.7% efficiencies with TiO2, ZnO2, and WO3 oxide electrodes. The effects of modifying the central metal and elongating the length of π-conjugation on cell performance are confirmed in terms of frontier molecular orbital (FMO) energy gaps, density of states (DOS), molecular electrostatic potentials (MEPs), non-linear optical (NLO) properties, ultraviolet-visible (UV-vis) electronic absorption, and 1H nuclear magnetic resonance chemical shifts. Increasing the length of π-conjugation of the D-π-A dyes leads to increasing the DOS near Fermi levels, more active NLO performance, strong response to the external electric field, delocalisation of the negative charges near the anchoring groups, deep electron injection, suppressing macrocycle aggregation, active dye regeneration, and inhibited dye recombination. The calculated band gap/eV of the present DMP-Zn is correlated with the experimental (E1/2(oxidation)-E1/2(reduction)/V) potentials of the identical YD2-o-C8. A co-sensitiser is suggested for NIR sensitisation (550-950 nm) to increase the power-to-conversion efficiency beyond 14%.
Masoudi, Neda; Tavazoie, Saeed; Glenwinkel, Lori; Ryu, Leesun; Kim, Kyuhyung
2018-01-01
Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor–encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an “ur-” bHLH gene. PMID:29672507
Johansen, Merete Selsbakk; Normann-Eide, Eivind; Normann-Eide, Tone; Klungs Yr, Ole; Kvarstein, Elfrida; Wilberg, Theresa
2016-10-01
Emotional dysfunction is by definition central to personality disorders (PDs). In the alternative model in DSM-5, self and relational dysfunctioning constitutes the core of PD, but little is known about the relation between emotional functioning and such core aspects of personality functioning. This study investigated concurrent and prospective associations between emotional and personality functioning as assessed by affect consciousness (AC) and the Severity Indices of Personality Problems (SIPP-118), respectively. The SIPP-118 comprises five domains of personality functioning, including Identity Integration and Relation Capacities, and was applied repeatedly during 3-year follow-up of 63 PD patients who participated in a treatment study. Statistical analyses were based on linear mixed models. Lower AC levels were significantly associated with (a) lower levels of Identity Integration and Relational Capacities at baseline, and (b) poorer long-term improvement of Identity Integration. The study supports the notion that affect consciousness is related to core aspects of personality functioning.
The hunt for LaFeSbO: Synthesis of La{sub 2}SbO{sub 2} and a case of mistaken identity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, Sean, E-mail: muirs@onid.orst.edu; Vielma, Jason, E-mail: vielmaj@onid.orst.edu; Schneider, Guenter, E-mail: guenter.schneider@oregonstate.edu
The phase La{sub 2}SbO{sub 2} has been identified and characterized in the course of our efforts to realize LaFeSbO, a composition of great interest to the superconductor community. The compound La{sub 2}SbO{sub 2} is a tetragonal layered oxypnictide containing La{sub 2}O{sub 2} layers similar to LaMPnO compositions (where M=transition metal, Pn=pnictide) separated by pnictide anion layers. In order to better understand why LaFeSbO has remained elusive, density functional theory calculations have been used to determine the ground state heats of formation for LaFeSbO, La{sub 2}SbO{sub 2}, and other competing phases within the La-Fe-Sb-O system, as well as the phonon spectrummore » for LaFeSbO. These efforts suggest that LaFeSbO is a potentially metastable composition. - Graphical abstract: The layered oxypnictide compounds La{sub 2}SbO{sub 2} and La{sub 1.9}Sr{sub 0.1}SbO{sub 2} have been synthesized and investigated. Both crystallize in a ThCr{sub 2}Si{sub 2} type configuration and are semiconducting. Stability of the unreported compound LaFeSbO has been investigated using density functional theory. A case of mistaken identity in the literature regarding the composition LaNiBiO is addressed. Highlights: Black-Right-Pointing-Pointer The composition La{sub 2}SbO{sub 2} has been identified. Black-Right-Pointing-Pointer La{sub 2}SbO{sub 2} belongs to an unusual group of materials containing Pn{sup 2-} anions. Black-Right-Pointing-Pointer La{sub 2}SbO{sub 2} and La{sub 1.9}Sr{sub 0.1}SbO{sub 2} are both found to be semiconducting. Black-Right-Pointing-Pointer DFT has been used to calculate heats of formation within the La-Fe-Sb-O system. Black-Right-Pointing-Pointer The phonon spectrum for LaFeSbO reveals no unstable lattice mode.« less
MacWilliams Identity for M-Spotty Weight Enumerator
NASA Astrophysics Data System (ADS)
Suzuki, Kazuyoshi; Fujiwara, Eiji
M-spotty byte error control codes are very effective for correcting/detecting errors in semiconductor memory systems that employ recent high-density RAM chips with wide I/O data (e.g., 8, 16, or 32bits). In this case, the width of the I/O data is one byte. A spotty byte error is defined as random t-bit errors within a byte of length b bits, where 1 le t ≤ b. Then, an error is called an m-spotty byte error if at least one spotty byte error is present in a byte. M-spotty byte error control codes are characterized by the m-spotty distance, which includes the Hamming distance as a special case for t =1 or t = b. The MacWilliams identity provides the relationship between the weight distribution of a code and that of its dual code. The present paper presents the MacWilliams identity for the m-spotty weight enumerator of m-spotty byte error control codes. In addition, the present paper clarifies that the indicated identity includes the MacWilliams identity for the Hamming weight enumerator as a special case.
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
NASA Astrophysics Data System (ADS)
Gonis, A.; Däne, M.
2018-05-01
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. We show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T > 0. Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T = 0, we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T > 0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T = 0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T = 0 . The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. It is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.
Tunable rotating-mode density measurement using magnetic levitation
NASA Astrophysics Data System (ADS)
Gao, Qiu-Hua; Zhang, Wen-Ming; Zou, Hong-Xiang; Liu, Feng-Rui; Li, Wen-Bo; Peng, Zhi-Ke; Meng, Guang
2018-04-01
In this letter, a density measurement method by magnetic levitation using the rotation mechanism is presented. By rotating the entire magnetic levitation device that consists of four identical magnets, the horizontal centrifugal force and gravity can be balanced by the magnetic forces in the x-direction and the z-direction, respectively. The controllable magnified centripetal acceleration is investigated as a means to improve the measurement sensitivity without destabilization. Theoretical and experimental results show that the density measurement method can be flexible in characterizing small differences in density by tuning the eccentric distance or rotating speed. The rotating-mode density measurement method using magnetic levitation has prospects of providing an operationally simple way in separations and quality control of objects with arbitrary shapes in materials science and industrial fields.
Smokowski, Paul R; Evans, Caroline B R; Cotter, Katie L; Webber, Kristina C
2014-03-01
Mental health functioning in American Indian youth is an understudied topic. Given the increased rates of depression and anxiety in this population, further research is needed. Using multiple group structural equation modeling, the current study illuminates the effect of ethnic identity on anxiety symptoms, depressive symptoms, and externalizing behavior in a group of Lumbee adolescents and a group of Caucasian, African American, and Latino/Hispanic adolescents. This study examined two possible pathways (i.e., future optimism and self-esteem) through which ethnic identity is associated with adolescent mental health. The sample (N = 4,714) is 28.53% American Indian (Lumbee) and 51.38% female. The study findings indicate that self-esteem significantly mediated the relationships between ethnic identity and anxiety symptoms, depressive symptoms, and externalizing behavior for all racial/ethnic groups (i.e., the total sample). Future optimism significantly mediated the relationship between ethnic identity and externalizing behavior for all racial/ethnic groups and was a significant mediator between ethnic identity and depressive symptoms for American Indian youth only. Fostering ethnic identity in all youth serves to enhance mental health functioning, but is especially important for American Indian youth due to the collective nature of their culture.
The psychology of globalization.
Arnett, Jeffrey Jensen
2002-10-01
The influence of globalization on psychological functioning is examined. First, descriptions of how globalization is occurring in various world regions are presented. Then the psychological consequences of globalization are described, with a focus on identity issues. Specifically, it is argued that most people worldwide now develop a bicultural identity that combines their local identity with an identity linked to the global culture; that identity confusion may be increasing among young people in non-Western cultures as a result of globalization; that some people join self-selected cultures to maintain an identity that is separate from the global culture; and that a period of emerging adulthood increasingly extends identity explorations beyond adolescence, through the mid- to late twenties.
Petrenko, Taras; Kossmann, Simone; Neese, Frank
2011-02-07
In this paper, we present the implementation of efficient approximations to time-dependent density functional theory (TDDFT) within the Tamm-Dancoff approximation (TDA) for hybrid density functionals. For the calculation of the TDDFT/TDA excitation energies and analytical gradients, we combine the resolution of identity (RI-J) algorithm for the computation of the Coulomb terms and the recently introduced "chain of spheres exchange" (COSX) algorithm for the calculation of the exchange terms. It is shown that for extended basis sets, the RIJCOSX approximation leads to speedups of up to 2 orders of magnitude compared to traditional methods, as demonstrated for hydrocarbon chains. The accuracy of the adiabatic transition energies, excited state structures, and vibrational frequencies is assessed on a set of 27 excited states for 25 molecules with the configuration interaction singles and hybrid TDDFT/TDA methods using various basis sets. Compared to the canonical values, the typical error in transition energies is of the order of 0.01 eV. Similar to the ground-state results, excited state equilibrium geometries differ by less than 0.3 pm in the bond distances and 0.5° in the bond angles from the canonical values. The typical error in the calculated excited state normal coordinate displacements is of the order of 0.01, and relative error in the calculated excited state vibrational frequencies is less than 1%. The errors introduced by the RIJCOSX approximation are, thus, insignificant compared to the errors related to the approximate nature of the TDDFT methods and basis set truncation. For TDDFT/TDA energy and gradient calculations on Ag-TB2-helicate (156 atoms, 2732 basis functions), it is demonstrated that the COSX algorithm parallelizes almost perfectly (speedup ~26-29 for 30 processors). The exchange-correlation terms also parallelize well (speedup ~27-29 for 30 processors). The solution of the Z-vector equations shows a speedup of ~24 on 30 processors. The parallelization efficiency for the Coulomb terms can be somewhat smaller (speedup ~15-25 for 30 processors), but their contribution to the total calculation time is small. Thus, the parallel program completes a Becke3-Lee-Yang-Parr energy and gradient calculation on the Ag-TB2-helicate in less than 4 h on 30 processors. We also present the necessary extension of the Lagrangian formalism, which enables the calculation of the TDDFT excited state properties in the frozen-core approximation. The algorithms described in this work are implemented into the ORCA electronic structure system.
ERIC Educational Resources Information Center
Kopper, Beverly A.
1993-01-01
Investigated relationship of gender, sex role identity, Type A behavior to multiple dimensions of anger expression and mental health functioning among 407 female and 222 male college students. Found significant multivariate effects for sex role and behavior pattern type for anger expression. Significant gender differences were not observed.…
A symmetric integral identity for Bessel functions with applications to integral geometry
NASA Astrophysics Data System (ADS)
Salman, Yehonatan
2017-12-01
In the article of Kunyansky (Inverse Probl 23(1):373-383, 2007) a symmetric integral identity for Bessel functions of the first and second kind was proved in order to obtain an explicit inversion formula for the spherical mean transform where our data is given on the unit sphere in Rn . The aim of this paper is to prove an analogous symmetric integral identity in case where our data for the spherical mean transform is given on an ellipse E in R2 . For this, we will use the recent results obtained by Cohl and Volkmer (J Phys A Math Theor 45:355204, 2012) for the expansions into eigenfunctions of Bessel functions of the first and second kind in elliptical coordinates.
Cross-sex pattern of bone mineral density in early onset gender identity disorder.
Haraldsen, I R; Haug, E; Falch, J; Egeland, T; Opjordsmoen, S
2007-09-01
Hormonally controlled differences in bone mineral density (BMD) between males and females are well studied. The effects of cross-sex hormones on bone metabolism in patients with early onset gender identity disorder (EO-GID), however, are unclear. We examined BMD, total body fat (TBF) and total lean body mass (TLBM) in patients prior to initiation of sex hormone treatment and during treatment at months 3 and 12. The study included 33 EO-GID patients who were approved for sex reassignment and a control group of 122 healthy Norwegians (males, n=77; females, n=45). Male patients (n=12) received an oral dose of 50 mug ethinylestradiol daily for the first 3 months and 100 mug daily thereafter. Female patients (n=21) received 250 mg testosterone enantate intramuscularly every third week. BMD, TBF and TLBM were estimated using dual energy X-ray absorptiometry (DXA). In male patients, the DXA measurements except TBF were significantly lower compared to their same-sex control group at baseline and did not change during treatment. In female patients, the DXA measurements were slightly higher than in same-sex controls at baseline and also remained unchanged during treatment. In conclusion, this study reports that body composition and bone density of EO-GID patients show less pronounced sex differences compared to controls and that bone density was unaffected by cross-sex hormone treatment.
The role of siblings in identity development in adolescence and emerging adulthood.
Wong, Thessa M L; Branje, Susan J T; VanderValk, Inge E; Hawk, Skyler T; Meeus, Wim H J
2010-10-01
This study examined the role of siblings on identity formation in adolescence and emerging adulthood, using a three-wave longitudinal design. Measures of identity formation were filled out by 498 sibling dyads. Sibling effects differed as a function of age and gender configuration within the dyads. Controlled for age, earlier-born siblings reported the most advanced levels of identity formation, and later-born siblings the lowest. Positive relations between siblings' identity and changes in identity of respondents provided support for modeling processes between siblings. The identity of earlier-born same-sex siblings, in particular, tends to be important in influencing identity formation. Contrary to the expectations, differentiation processes between siblings did not appear to influence identity formation. It is apparent from this study that both the gender and birth order of siblings affect whether their own identity formation processes influence those of adolescents and emerging adults.
Quality Assessment of Physical and Organoleptic Instant Corn Rice on Scale-Up Process
NASA Astrophysics Data System (ADS)
Kumalasari, R.; Ekafitri, R.; Indrianti, N.
2017-12-01
Development of instant corn rice product has been successfully conducted on a laboratory scale. Corn has high carbohydrate content but low in fiber. The addition of fiber in instant corn rice, intended to improve the functioning of the product, and replace fiber loss during the process. Scale up process of Instant corn rice required to increase the production capacity. Scale up was the process to get identic output on a larger scale based on predetermined production scale. This study aimed to assess the changes and differences in the quality of instant corn rice during scale up. Instant corn rice scale up was done on production capacity 3 kg, 4 kg and 5 kg. Results showed that scale up of instant corn rice producing products with rehydration ratio ranges between 514% - 570%, the absorption rate ranged between 414% - 470%, swelling rate ranging between 119% - 134%, bulk density ranged from 0.3661 to 0.4745 (g/ml) and porosity ranging between 30-37%. The physical quality of instant corn rice on scale up were stable from the ones at laboratory scale on swelling rate, rehydration ratio, and absorption rate but not stable on bulk density and porosity. Organoleptic qualities were stable at increased scale compared on a laboratory scale. Bulk density was higher than those at laboratory scale, and the porosity was lower than those at laboratory scale.
Thomson scattering from a three-component plasma.
Johnson, W R; Nilsen, J
2014-02-01
A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
Suspension of Drops of a Liquid in a Column of Water.
ERIC Educational Resources Information Center
Ahmad, Jamil
1995-01-01
Describes a demonstration which creates the illusion of violating Archimedes Principle. The procedure involves two liquids with identical densities and produces drops of one liquid suspended in the middle of a column of the second liquid. (DDR)
The Identities Hidden in the Matching Laws, and Their Uses
ERIC Educational Resources Information Center
Thorne, David R.
2010-01-01
Various theoretical equations have been proposed to predict response rate as a function of the rate of reinforcement. If both the rate and probability of reinforcement are considered, a simple identity, defining equation, or "law" holds. This identity places algebraic constraints on the allowable forms of our mathematical models and can help…
An application of probability to combinatorics: a proof of Vandermonde identity
NASA Astrophysics Data System (ADS)
Paolillo, Bonaventura; Rizzo, Piermichele; Vincenzi, Giovanni
2017-08-01
In this paper, we give possible suggestions for a classroom lesson about an application of probability using basic mathematical notions. We will approach to some combinatoric results without using 'induction', 'polynomial identities' nor 'generating functions', and will give a proof of the 'Vandermonde Identity' using elementary notions of probability.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Alvarez-Buylla, Elena R; García-Ponce, Berenice; Garay-Arroyo, Adriana
2006-01-01
APETALA1 (AP1) and CAULIFLOWER (CAL) are closely related MADS box genes that are partially redundant during Arabidopsis thaliana floral meristem determination. AP1 is able to fully substitute for CAL functions, but not vice versa, and AP1 has unique sepal and petal identity specification functions. In this study, the unique and redundant functions of these two genes has been mapped to the four protein domains that characterize type-II MADS-domain proteins by expressing all 15 chimeric combinations of AP1 and CAL cDNA regions under control of the AP1 promoter in ap1-1 loss-of-function plants. The "in vivo" function of these chimeric genes was analysed in Arabidopsis plants by expressing the chimeras. Rescue of flower meristem and sepal/petal identities was scored in single and multiple insert homozygous transgenic lines. Using these chimeric lines, it was found that distinct residues of the AP1 K domain not shared by the same CAL domain are necessary and sufficient for complete recovery of floral meristem identity, in the context of the CAL protein sequence, while both AP1 COOH and K domains are indispensable for complete rescue of sepal identity. By contrast, either one of these two AP1 domains is necessary and sufficient for complete petal identity recovery. It was also found that there were positive and negative synergies among protein domains and their combinations, and that multiple-insert lines showed relatively better rescue than equivalent single-insert lines. Finally, several lines had flowers with extra sepals and petals suggesting that chimeric proteins yield abnormal transcriptional complexes that may alter the expression or regulation of genes that control floral organ number under normal conditions.
Functional Richness and Identity Do Not Strongly Affect Invasibility of Constructed Dune Communities
Mason, Tanya J.; French, Kristine; Jolley, Dianne F.
2017-01-01
Biotic effects are often used to explain community structure and invasion resistance. We evaluated the contribution of functional richness and identity to invasion resistance and abiotic resource availability using a mesocosm experiment. We predicted that higher functional richness would confer greater invasion resistance through greater resource sequestration. We also predicted that niche pre-emption and invasion resistance would be higher in communities which included functional groups similar to the invader than communities where all functional groups were distinct from the invader. We constructed communities of different functional richness and identity but maintained constant species richness and numbers of individuals in the resident community. The constructed communities represented potential fore dune conditions following invader control activities along the Australian east coast. We then simulated an invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata DC. Norl.), a South African shrub invader. We used the same bitou propagule pressure across all treatments and monitored invasion success and resource availability for 13 months. Contrary to our predictions, we found that functional richness did not mediate the number of bitou individuals or bitou cover and functional identity had little effect on invasion success: there was a trend for the grass single functional group treatment to supress bitou individuals, but this trend was obscured when grasses were in multi functional group treatments. We found that all constructed communities facilitated bitou establishment and suppressed bitou cover relative to unplanted mesocosms. Abiotic resource use was either similar among planted communities, or differences did not relate to invasion success (with the exception of light availability). We attribute invasion resistance to bulk plant biomass across planted treatments rather than their functional group arrangement. PMID:28072854
Ethnic identity in adolescents and adults: review of research.
Phinney, J S
1990-11-01
Ethnic identity is central to the psychological functioning of members of ethnic and racial minority groups, but research on the topic is fragmentary and inconclusive. This article is a review of 70 studies of ethnic identity published in refereed journals since 1972. The author discusses the ways in which ethnic identity has been defined and conceptualized, the components that have been measured, and empirical findings. The task of understanding ethnic identity is complicated because the uniqueness that distinguishes each group makes it difficult to draw general conclusions. A focus on the common elements that apply across groups could lead to a better understanding of ethnic identity.
Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome
Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin
2012-01-01
Metagenomics is a powerful tool that allows for the culture-independent analysis of complex microbial communities. One of the most complex and dense microbial ecosystems known is that of the human distal colon, with cell densities reaching up to 1012 per gram of faeces. With the majority of species as yet uncultured, there are an enormous number of novel genes awaiting discovery. In the current study, we conducted a functional screen of a metagenomic library of the human gut microbiota for potential salt-tolerant clones. Using transposon mutagenesis, three genes were identified from a single clone exhibiting high levels of identity to a species from the genus Collinsella (closest relative being Collinsella aerofaciens) (COLAER_01955, COLAER_01957 and COLAER_01981), a high G+C, Gram-positive member of the Actinobacteria commonly found in the human gut. The encoded proteins exhibit a strong similarity to GalE, MurB and MazG. Furthermore, pyrosequencing and bioinformatic analysis of two additional fosmid clones revealed the presence of an additional galE and mazG gene, with the highest level of genetic identity to Akkermansia muciniphila and Eggerthella sp. YY7918, respectively. Cloning and heterologous expression of the genes in the osmosensitive strain, Escherichia coli MKH13, resulted in increased salt tolerance of the transformed cells. It is hoped that the identification of atypical salt tolerance genes will help to further elucidate novel salt tolerance mechanisms, and will assist our increased understanding how resident bacteria cope with the osmolarity of the gastrointestinal tract. PMID:22534607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M 2(dobdc) and M 3(btc) 2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements.more » A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-11-18
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest.
Purahong, Witoon; Durka, Walter; Fischer, Markus; Dommert, Sven; Schöps, Ricardo; Buscot, François; Wubet, Tesfaye
2016-01-01
Tree species identity and tree genotypes contribute to the shaping of soil microbial communities. However, knowledge about how these two factors influence soil ecosystem functions is still lacking. Furthermore, in forest ecosystems tree genotypes co-occur and interact with each other, thus the effects of tree genotypic diversity on soil ecosystem functions merit attention. Here we investigated the effects of tree species, tree genotypes and genotypic diversity levels, alongside soil physicochemical properties, on the overall and specific soil enzyme activity patterns. Our results indicate that tree species identity, tree genotypes and genotypic diversity level have significant influences on overall and specific soil enzyme activity patterns. These three factors influence soil enzyme patterns partly through effects on soil physicochemical properties and substrate quality. Variance partitioning showed that tree species identity, genotypic diversity level, pH and water content all together explained ~30% variations in the overall patterns of soil enzymes. However, we also found that the responses of soil ecosystem functions to tree genotypes and genotypic diversity are complex, being dependent on tree species identity and controlled by multiple factors. Our study highlights the important of inter- and intra-specific variations in tree species in shaping soil ecosystem functions in a subtropical forest. PMID:27857198
Functional dissociation of the left and right fusiform gyrus in self-face recognition.
Ma, Yina; Han, Shihui
2012-10-01
It is well known that the fusiform gyrus is engaged in face perception, such as the processes of face familiarity and identity. However, the functional role of the fusiform gyrus in face processing related to high-level social cognition remains unclear. The current study assessed the functional role of individually defined fusiform face area (FFA) in the processing of self-face physical properties and self-face identity. We used functional magnetic resonance imaging to monitor neural responses to rapidly presented face stimuli drawn from morph continua between self-face (Morph 100%) and a gender-matched friend's face (Morph 0%) in a face recognition task. Contrasting Morph 100% versus Morph 60% that differed in self-face physical properties but were both recognized as the self uncovered neural activity sensitive to self-face physical properties in the left FFA. Contrasting Morphs 50% that were recognized as the self versus a friend on different trials revealed neural modulations associated with self-face identity in the right FFA. Moreover, the right FFA activity correlated with the frequency of recognizing Morphs 50% as the self. Our results provide evidence for functional dissociations of the left and right FFAs in the representations of self-face physical properties and self-face identity. Copyright © 2011 Wiley Periodicals, Inc.
Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M.; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G.; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo
2015-01-01
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. PMID:25567651
Function Transformation without Reinforcement
Tonneau, François; Arreola, Fara; Martínez, Alma Gabriela
2006-01-01
In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects. PMID:16776058
Function transformation without reinforcement.
Tonneau, Franćois; Arreola, Fara; Martínez, Alma Gabriela
2006-05-01
In studies of function transformation, participants initially are taught to match stimuli in the presence of a contextual cue, X; the stimuli to be matched bear some formal relation to each other, for example, a relation of opposition or difference. In a second phase, the participants are taught to match arbitrary stimuli (say, A and B) in the presence of X. In a final test, A often displays behavioral functions that differ from those of B, and can be predicted from the nature of the relation associated with X in the initial training phase. Here we report function-transformation effects in the absence of selection responses and of their reinforcers. In three experiments with college students, exposure to relations of difference or identity modified the responses given to later stimuli. In Experiment 1, responses to a test stimulus A varied depending on preexposure to pairs of colors that were distinct from A but exemplified relations of difference or identity. In Experiment 2, a stimulus A acquired distinct functions, depending on its previous pairing with a contextual cue X that had itself been paired with identity or difference among colors. Experiment 3 confirmed the results of Experiment 2 with a modified design. Our data are consistent with the notion that relations of identity or difference can serve as stimuli for Pavlovian processes, and, in compound with other cues, produce apparent function-transformation effects.
Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.
Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali
2017-10-05
Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.
Work distributions for random sudden quantum quenches
NASA Astrophysics Data System (ADS)
Łobejko, Marcin; Łuczka, Jerzy; Talkner, Peter
2017-05-01
The statistics of work performed on a system by a sudden random quench is investigated. Considering systems with finite dimensional Hilbert spaces we model a sudden random quench by randomly choosing elements from a Gaussian unitary ensemble (GUE) consisting of Hermitian matrices with identically, Gaussian distributed matrix elements. A probability density function (pdf) of work in terms of initial and final energy distributions is derived and evaluated for a two-level system. Explicit results are obtained for quenches with a sharply given initial Hamiltonian, while the work pdfs for quenches between Hamiltonians from two independent GUEs can only be determined in explicit form in the limits of zero and infinite temperature. The same work distribution as for a sudden random quench is obtained for an adiabatic, i.e., infinitely slow, protocol connecting the same initial and final Hamiltonians.
Quantitative Homogenization in Nonlinear Elasticity for Small Loads
NASA Astrophysics Data System (ADS)
Neukamm, Stefan; Schäffner, Mathias
2018-04-01
We study quantitative periodic homogenization of integral functionals in the context of nonlinear elasticity. Under suitable assumptions on the energy densities (in particular frame indifference; minimality, non-degeneracy and smoothness at the identity; {p ≥q d} -growth from below; and regularity of the microstructure), we show that in a neighborhood of the set of rotations, the multi-cell homogenization formula of non-convex homogenization reduces to a single-cell formula. The latter can be expressed with the help of correctors. We prove that the homogenized integrand admits a quadratic Taylor expansion in an open neighborhood of the rotations - a result that can be interpreted as the fact that homogenization and linearization commute close to the rotations. Moreover, for small applied loads, we provide an estimate on the homogenization error in terms of a quantitative two-scale expansion.
Formation and structural phase transition in Co atomic chains on a Cu(775) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syromyatnikov, A. G.; Kabanov, N. S.; Saletsky, A. M.
The formation of Co atomic chains on a Cu(775) surface is investigated by the kinetic Monte Carlo method. It is found that the length of Co atomic chains formed as a result of self-organization during epitaxial growth is a random quantity and its mean value depends on the parameters of the experiment. The existence of two structural phases in atomic chains is detected using the density functional theory. In the first phase, the separations between an atom and its two nearest neighbors in a chain are 0.230 and 0.280 nm. In the second phase, an atomic chain has identical atomicmore » spacings of 0.255 nm. It is shown that the temperature of the structural phase transition depends on the length of the atomic chain.« less
TASLIMAGE System #2 Technical Equivalence Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Topper, J. D.; Stone, D. K.
In early 2017, a second TASLIMAGE system (TASL 2) was procured from Track Analysis Systems, Ltd. The new device is intended to complement the first system (TASL 1) and to provide redundancy to the original system which was acquired in 2009. The new system functions primarily the same as the earlier system, though with different X-Y stage hardware and a USB link from the camera to the host computer, both of which contribute to a reduction in CR-39 foil imaging time. The camera and image analysis software are identical between the two systems. Neutron dose calculations are performed externally andmore » independent of the imaging system used to collect track data, relying only on the measured recoil proton track density per cm 2 for a set of known-dose CR-39 foils processed in each etch.« less
Minati, Ludovico; Zacà, Domenico; D'Incerti, Ludovico; Jovicich, Jorge
2014-09-01
An outstanding issue in graph-based analysis of resting-state functional MRI is choice of network nodes. Individual consideration of entire brain voxels may represent a less biased approach than parcellating the cortex according to pre-determined atlases, but entails establishing connectedness for 1(9)-1(11) links, with often prohibitive computational cost. Using a representative Human Connectome Project dataset, we show that, following appropriate time-series normalization, it may be possible to accelerate connectivity determination replacing Pearson correlation with l1-norm. Even though the adjacency matrices derived from correlation coefficients and l1-norms are not identical, their similarity is high. Further, we describe and provide in full an example vector hardware implementation of l1-norm on an array of 4096 zero instruction-set processors. Calculation times <1000 s are attainable, removing the major deterrent to voxel-based resting-sate network mapping and revealing fine-grained node degree heterogeneity. L1-norm should be given consideration as a substitute for correlation in very high-density resting-state functional connectivity analyses. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Juang, Linda P.; Nguyen, Huong H.; Lin, Yunghui
2006-01-01
Drawing from two samples of Asian American emerging adults, one in an ethnically concentrated context (n = 108) and the other in an ethnically-dispersed, mainly White context (n = 153), we examined (a) how ethnic identity and other-group attitudes were related to psychosocial functioning (i.e., depression, self-esteem, and connectedness to…
ERIC Educational Resources Information Center
Levesque, Luc
2012-01-01
A method is proposed to simplify analytical computations of the transfer function for electrical circuit filters, which are made from repetitive identical stages. A method based on the construction of Pascal's triangle is introduced and then a general solution from two initial conditions is provided for the repetitive identical stage. The present…
Dicer maintains the identity and function of proprioceptive sensory neurons
O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.
2017-01-01
Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. PMID:28003412
Dicer maintains the identity and function of proprioceptive sensory neurons.
O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B
2017-03-01
Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. Copyright © 2017 the American Physiological Society.
Boer, Diana; Fischer, Ronald; Tekman, Hasan Gürkan; Abubakar, Amina; Njenga, Jane; Zenger, Markus
2012-01-01
How can we understand the uses of music in daily life? Music is a universal phenomenon but with significant interindividual and cultural variability. Listeners' gender and cultural background may influence how and why music is used in daily life. This paper reports the first investigation of a holistic framework and a new measure of music functions (RESPECT-music) across genders and six diverse cultural samples (students from Germany, Kenya, Mexico, New Zealand, Philippines, and Turkey). Two dimensions underlie the mental representation of music functions. First, music can be used for contemplation or affective functions. Second, music can serve intrapersonal, social, and sociocultural functions. Results reveal that gender differences occur for affective functions, indicating that female listeners use music more for affective functions, i.e., emotional expression, dancing, and cultural identity. Country differences are moderate for social functions (values, social bonding, dancing) and strongest for sociocultural function (cultural identity, family bonding, political attitudes). Cultural values, such as individualism-collectivism and secularism-traditionalism, can help explain cross-cultural differences in the uses of music. Listeners from more collectivistic cultures use music more frequently for expressing values and cultural identity. Listeners from more secular and individualistic cultures like to dance more. Listeners from more traditional cultures use music more for expressing values and cultural identity, and they bond more frequently with their families over music. The two dimensions of musical functions seem systematically underpinned by listeners' gender and cultural background. We discuss the uses of music as behavioral expressions of affective and contemplative as well as personal, social, and sociocultural aspects in terms of affect proneness and cultural values.
Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I
2018-04-16
Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.
Followership, clinical leadership and social identity.
Mannion, Hester; McKimm, Judy; O'Sullivan, Helen
2015-05-01
This article explores how the concepts of followership, social identity and social influence help clinical leaders and followers better understand how leadership processes function within and between individuals, teams and complex organizations.
Voices of Identity in a Chicana Teacher's Occupational Narratives of the Self
ERIC Educational Resources Information Center
Galindo, Rene
2007-01-01
The research area of teacher narrative inquiry has identified links between the personal and professional identities of teachers. Although teacher narrative inquiry takes narrative texts as its data, insufficient attention has been given to the functions of narratives as forms of discourse that are utilized in the construction of identity. In the…
Processes and Content of Narrative Identity Development in Adolescence: Gender and Well-Being
ERIC Educational Resources Information Center
McLean, Kate C.; Breen, Andrea V.
2009-01-01
The present study examined narrative identity in adolescence (14-18 years) in terms of narrative content and processes of identity development. Age- and gender-related differences in narrative patterns in turning point memories and gender differences in the content and functions for sharing those memories were examined, as was the relationship…
I'm No Jezebel; I Am Young, Gifted, and Black: Identity, Sexuality, and Black Girls
ERIC Educational Resources Information Center
Townsend, Tiffany G.; Thomas, Anita Jones; Neilands, Torsten B.; Jackson, Tiffany R.
2010-01-01
Scholars have highlighted the detrimental influence of racially charged stereotypes and images on self-perception and well being. Others have suggested that identity components (e.g., ethnic identity and self-concept) serve a protective function. The purposes of this study were (a) to explore the relationship among stereotypic images, beauty…
Suzuki, Tatsuo; Zhang, Jingping; Miyazawa, Shoko; Liu, Qian; Farzan, Michael R.; Yao, Wei-Dong
2011-01-01
Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not due to the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance. PMID:21797867
Bouzid, Assil; Le Roux, Sébastien; Ori, Guido; Boero, Mauro; Massobrio, Carlo
2015-07-21
First-principles molecular dynamics simulations based on density functional theory are employed for a comparative study of structural and bonding properties of two stoichiometrically identical chalcogenide glasses, GeSe4 and GeS4. Two periodic cells of 120 and 480 atoms are adopted. Both glasses feature a coexistence of Ge-centered tetrahedra and Se(S) homopolar connections. Results obtained for N = 480 indicate substantial differences at the level of the Se(S) environment, since Ge-Se-Se connections are more frequent than the corresponding Ge-S-S ones. The presence of a more prominent first sharp diffraction peak in the total neutron structure factor of glassy GeS4 is rationalized in terms of a higher number of large size rings, accounting for extended Ge-Se correlations. Both the electronic density of states and appropriate electronic localization tools provide evidence of a higher ionic character of Ge-S bonds when compared to Ge-Se bonds. An interesting byproduct of these investigations is the occurrence of discernible size effects that affect structural motifs involving next nearest neighbor distances, when 120 or 480 atoms are used.
Lidow, M S; Goldman-Rakic, P S; Rakic, P; Innis, R B
1989-01-01
An apparent involvement of dopamine in the regulation of cognitive functions and the recognition of a widespread dopaminergic innervation of the cortex have focused attention on the identity of cortical dopamine receptors. However, only the presence and distribution of dopamine D1 receptors in the cortex have been well documented. Comparable information on cortical D2 sites is lacking. We report here the results of binding studies in the cortex and neostriatum of rat and monkey using the D2 selective antagonist [3H]raclopride. In both structures [3H]raclopride bound in a sodium-dependent and saturable manner to a single population of sites with pharmacological profiles of dopamine D2 receptors. D2 sites were present in all regions of the cortex, although their density was much lower than in the neostriatum. The density of these sites in both monkey and, to a lesser extent, rat cortex displayed a rostral-caudal gradient with highest concentrations in the prefrontal and lowest concentrations in the occipital cortex, corresponding to dopamine levels in these areas. Thus, the present study establishes the presence and widespread distribution of dopamine D2 receptors in the cortex. PMID:2548214
Stability of a non-orthogonal stagnation flow to three dimensional disturbances
NASA Technical Reports Server (NTRS)
Lasseigne, D. G.; Jackson, T. L.
1991-01-01
A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.
Quantum dynamics of a two-atom-qubit system
NASA Astrophysics Data System (ADS)
Van Hieu, Nguyen; Bich Ha, Nguyen; Linh, Le Thi Ha
2009-09-01
A physical model of the quantum information exchange between two qubits is studied theoretically. The qubits are two identical two-level atoms, the physical mechanism of the quantum information exchange is the mutual dependence of the reduced density matrices of two qubits generated by their couplings with a multimode radiation field. The Lehmberg-Agarwal master equation is exactly solved. The explicit form of the mutual dependence of two reduced density matrices is established. The application to study the entanglement of two qubits is discussed.
Cubic scaling algorithms for RPA correlation using interpolative separable density fitting
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Thicke, Kyle
2017-12-01
We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.
2017-03-01
fire the weapon is 31 m3. Ultimately, the ideal capacitors would match the energy density of the best batteries . At this time, Lithium Ion batteries ...Discharge) .....119 Figure 115. Ragone Plot of Supercapacitors vs. Batteries with NH4Cl 30 wt% and KOH 30 wt%. Adapted from [18...charge/discharge frequency. Batteries , capacitors, and fly-wheels are all under consideration at this time; each device has its advantages and
Social identity change: shifts in social identity during adolescence.
Tanti, Chris; Stukas, Arthur A; Halloran, Michael J; Foddy, Margaret
2011-06-01
This study investigated the proposition that adolescence involves significant shifts in social identity as a function of changes in social context and cognitive style. Using an experimental design, we primed either peer or gender identity with a sample of 380 early- (12-13 years), mid- (15-16 years), and late-adolescents (18-20 years) and then measured the effect of the prime on self-stereotyping and ingroup favouritism. The findings showed significant differences in social identity across adolescent groups, in that social identity effects were relatively strong in early- and late-adolescents, particularly when peer group identity rather than gender identity was salient. While these effects were consistent with the experience of change in educational social context, differences in cognitive style were only weakly related to ingroup favouritism. The implications of the findings for theory and future research on social identity during adolescence are discussed. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Awazu, Akinori; Tanabe, Takahiro; Kamitani, Mari; Tezuka, Ayumi; Nagano, Atsushi J
2018-05-29
Gene expression levels exhibit stochastic variations among genetically identical organisms under the same environmental conditions. In many recent transcriptome analyses based on RNA sequencing (RNA-seq), variations in gene expression levels among replicates were assumed to follow a negative binomial distribution, although the physiological basis of this assumption remains unclear. In this study, RNA-seq data were obtained from Arabidopsis thaliana under eight conditions (21-27 replicates), and the characteristics of gene-dependent empirical probability density function (ePDF) profiles of gene expression levels were analyzed. For A. thaliana and Saccharomyces cerevisiae, various types of ePDF of gene expression levels were obtained that were classified as Gaussian, power law-like containing a long tail, or intermediate. These ePDF profiles were well fitted with a Gauss-power mixing distribution function derived from a simple model of a stochastic transcriptional network containing a feedback loop. The fitting function suggested that gene expression levels with long-tailed ePDFs would be strongly influenced by feedback regulation. Furthermore, the features of gene expression levels are correlated with their functions, with the levels of essential genes tending to follow a Gaussian-like ePDF while those of genes encoding nucleic acid-binding proteins and transcription factors exhibit long-tailed ePDF.
Topics in global convergence of density estimates
NASA Technical Reports Server (NTRS)
Devroye, L.
1982-01-01
The problem of estimating a density f on R sup d from a sample Xz(1),...,X(n) of independent identically distributed random vectors is critically examined, and some recent results in the field are reviewed. The following statements are qualified: (1) For any sequence of density estimates f(n), any arbitrary slow rate of convergence to 0 is possible for E(integral/f(n)-fl); (2) In theoretical comparisons of density estimates, integral/f(n)-f/ should be used and not integral/f(n)-f/sup p, p 1; and (3) For most reasonable nonparametric density estimates, either there is convergence of integral/f(n)-f/ (and then the convergence is in the strongest possible sense for all f), or there is no convergence (even in the weakest possible sense for a single f). There is no intermediate situation.
Báez, Selene; Homeier, Jürgen
2018-01-01
Trait-response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long-term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait-based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long-term experimental evidence that trait-based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest. © 2017 John Wiley & Sons Ltd.
Multiconfiguration Pair-Density Functional Theory.
Li Manni, Giovanni; Carlson, Rebecca K; Luo, Sijie; Ma, Dongxia; Olsen, Jeppe; Truhlar, Donald G; Gagliardi, Laura
2014-09-09
We present a new theoretical framework, called Multiconfiguration Pair-Density Functional Theory (MC-PDFT), which combines multiconfigurational wave functions with a generalization of density functional theory (DFT). A multiconfigurational self-consistent-field (MCSCF) wave function with correct spin and space symmetry is used to compute the total electronic density, its gradient, the on-top pair density, and the kinetic and Coulomb contributions to the total electronic energy. We then use a functional of the total density, its gradient, and the on-top pair density to calculate the remaining part of the energy, which we call the on-top-density-functional energy in contrast to the exchange-correlation energy of Kohn-Sham DFT. Because the on-top pair density is an element of the two-particle density matrix, this goes beyond the Hohenberg-Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain first approximations to the required new type of density functionals by translating conventional density functionals of the spin densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N(+), O, O(+), Sc(+), Mn, Co, Mo, Ru, N2, HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to much more expensive multireference perturbation theory methods.
Numerical simulation of a sphere moving down an incline with identical spheres placed equally apart
Ling, Chi-Hai; Jan, Chyan-Deng; Chen, Cheng-lung; Shen, Hsieh Wen
1992-01-01
This paper describes a numerical study of an elastic sphere moving down an incline with a string of identical spheres placed equally apart. Two momentum equations and a moment equation formulated for the moving sphere are solved numerically for the instantaneous velocity of the moving sphere on an incline with different angles of inclination. Input parameters for numerical simulation include the properties of the sphere (the radius, density, Poison's ratio, and Young's Modulus of elasticity), the coefficient of friction between the spheres, and a damping coefficient of the spheres during collision.
Kim, Seonah; Ståhlberg, Jerry; Sandgren, Mats; Paton, Robert S.; Beckham, Gregg T.
2014-01-01
Lytic polysaccharide monooxygenases (LPMOs) exhibit a mononuclear copper-containing active site and use dioxygen and a reducing agent to oxidatively cleave glycosidic linkages in polysaccharides. LPMOs represent a unique paradigm in carbohydrate turnover and exhibit synergy with hydrolytic enzymes in biomass depolymerization. To date, several features of copper binding to LPMOs have been elucidated, but the identity of the reactive oxygen species and the key steps in the oxidative mechanism have not been elucidated. Here, density functional theory calculations are used with an enzyme active site model to identify the reactive oxygen species and compare two hypothesized reaction pathways in LPMOs for hydrogen abstraction and polysaccharide hydroxylation; namely, a mechanism that employs a η1-superoxo intermediate, which abstracts a substrate hydrogen and a hydroperoxo species is responsible for substrate hydroxylation, and a mechanism wherein a copper-oxyl radical abstracts a hydrogen and subsequently hydroxylates the substrate via an oxygen-rebound mechanism. The results predict that oxygen binds end-on (η1) to copper, and that a copper-oxyl–mediated, oxygen-rebound mechanism is energetically preferred. The N-terminal histidine methylation is also examined, which is thought to modify the structure and reactivity of the enzyme. Density functional theory calculations suggest that this posttranslational modification has only a minor effect on the LPMO active site structure or reactivity for the examined steps. Overall, this study suggests the steps in the LPMO mechanism for oxidative cleavage of glycosidic bonds. PMID:24344312
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, Jonathon; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720; Neaton, Jeffrey B., E-mail: jbneaton@lbl.gov
Adsorption of gas molecules in metal-organic frameworks is governed by many factors, the most dominant of which are the interaction of the gas with open metal sites, and the interaction of the gas with the ligands. Herein, we examine the latter class of interaction in the context of CO{sub 2} binding to benzene. We begin by clarifying the geometry of the CO{sub 2}–benzene complex. We then generate a benchmark binding curve using a coupled-cluster approach with single, double, and perturbative triple excitations [CCSD(T)] at the complete basis set (CBS) limit. Against this ΔCCSD(T)/CBS standard, we evaluate a plethora of electronicmore » structure approximations: Hartree-Fock, second-order Møller-Plesset perturbation theory (MP2) with the resolution-of-the-identity approximation, attenuated MP2, and a number of density functionals with and without different empirical and nonempirical van der Waals corrections. We find that finite-basis MP2 significantly overbinds the complex. On the other hand, even the simplest empirical correction to standard density functionals is sufficient to bring the binding energies to well within 1 kJ/mol of the benchmark, corresponding to an error of less than 10%; PBE-D in particular performs well. Methods that explicitly include nonlocal correlation kernels, such as VV10, vdW-DF2, and ωB97X-V, perform with similar accuracy for this system, as do ωB97X and M06-L.« less
Borowiak, Kamila; von Kriegstein, Katharina
2016-01-01
The ability to recognise the identity of others is a key requirement for successful communication. Brain regions that respond selectively to voices exist in humans from early infancy on. Currently, it is unclear whether dysfunction of these voice-sensitive regions can explain voice identity recognition impairments. Here, we used two independent functional magnetic resonance imaging studies to investigate voice processing in a population that has been reported to have no voice-sensitive regions: autism spectrum disorder (ASD). Our results refute the earlier report that individuals with ASD have no responses in voice-sensitive regions: Passive listening to vocal, compared to non-vocal, sounds elicited typical responses in voice-sensitive regions in the high-functioning ASD group and controls. In contrast, the ASD group had a dysfunction in voice-sensitive regions during voice identity but not speech recognition in the right posterior superior temporal sulcus/gyrus (STS/STG)—a region implicated in processing complex spectrotemporal voice features and unfamiliar voices. The right anterior STS/STG correlated with voice identity recognition performance in controls but not in the ASD group. The findings suggest that right STS/STG dysfunction is critical for explaining voice recognition impairments in high-functioning ASD and show that ASD is not characterised by a general lack of voice-sensitive responses. PMID:27369067
Globus Nexus: A Platform-as-a-Service Provider of Research Identity, Profile, and Group Management.
Chard, Kyle; Lidman, Mattias; McCollam, Brendan; Bryan, Josh; Ananthakrishnan, Rachana; Tuecke, Steven; Foster, Ian
2016-03-01
Globus Nexus is a professionally hosted Platform-as-a-Service that provides identity, profile and group management functionality for the research community. Many collaborative e-Science applications need to manage large numbers of user identities, profiles, and groups. However, developing and maintaining such capabilities is often challenging given the complexity of modern security protocols and requirements for scalable, robust, and highly available implementations. By outsourcing this functionality to Globus Nexus, developers can leverage best-practice implementations without incurring development and operations overhead. Users benefit from enhanced capabilities such as identity federation, flexible profile management, and user-oriented group management. In this paper we present Globus Nexus, describe its capabilities and architecture, summarize how several e-Science applications leverage these capabilities, and present results that characterize its scalability, reliability, and availability.
Globus Nexus: A Platform-as-a-Service provider of research identity, profile, and group management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chard, Kyle; Lidman, Mattias; McCollam, Brendan
Globus Nexus is a professionally hosted Platform-as-a-Service that provides identity, profile and group management functionality for the research community. Many collaborative e-Science applications need to manage large numbers of user identities, profiles, and groups. However, developing and maintaining such capabilities is often challenging given the complexity of modern security protocols and requirements for scalable, robust, and highly available implementations. By outsourcing this functionality to Globus Nexus, developers can leverage best-practice implementations without incurring development and operations overhead. Users benefit from enhanced capabilities such as identity federation, flexible profile management, and user-oriented group management. In this paper we present Globus Nexus,more » describe its capabilities and architecture, summarize how several e-Science applications leverage these capabilities, and present results that characterize its scalability, reliability, and availability.« less
Globus Nexus: A Platform-as-a-Service Provider of Research Identity, Profile, and Group Management
Lidman, Mattias; McCollam, Brendan; Bryan, Josh; Ananthakrishnan, Rachana; Tuecke, Steven; Foster, Ian
2015-01-01
Globus Nexus is a professionally hosted Platform-as-a-Service that provides identity, profile and group management functionality for the research community. Many collaborative e-Science applications need to manage large numbers of user identities, profiles, and groups. However, developing and maintaining such capabilities is often challenging given the complexity of modern security protocols and requirements for scalable, robust, and highly available implementations. By outsourcing this functionality to Globus Nexus, developers can leverage best-practice implementations without incurring development and operations overhead. Users benefit from enhanced capabilities such as identity federation, flexible profile management, and user-oriented group management. In this paper we present Globus Nexus, describe its capabilities and architecture, summarize how several e-Science applications leverage these capabilities, and present results that characterize its scalability, reliability, and availability. PMID:26688598
Gonis, A.; Zhang, X. G.; Stocks, G. M.; ...
2015-10-23
Density functional theory for the case of general, N-representable densities is reformulated in terms of density functional derivatives of expectation values of operators evaluated with wave functions leading to a density, making no reference to the concept of potential. The developments provide a complete solution of the v-representability problem by establishing a mathematical procedure that determines whether a density is v-representable and in the case of an affirmative answer determines the potential (within an additive constant) as a derivative with respect to the density of a constrained search functional. It also establishes the existence of an energy functional of themore » density that, for v-representable densities, assumes its minimum value at the density describing the ground state of an interacting many-particle system. The theorems of Hohenberg and Kohn emerge as special cases of the formalism.« less
NMR imaging of density distributions in tablets.
Djemai, A; Sinka, I C
2006-08-17
This paper describes the use of (1)H nuclear magnetic resonance (NMR) for 3D mapping of the relative density distribution in pharmaceutical tablets manufactured under controlled conditions. The tablets are impregnated with a compatible liquid. The technique involves imaging of the presence of liquid which occupies the open pore space. The method does not require special calibration as the signal is directly proportional to the porosity for the imaging conditions used. The NMR imaging method is validated using uniform density flat faced tablets and also by direct comparison with X-ray computed tomography. The results illustrate (1) the effect of die wall friction on density distribution by compressing round, curved faced tablets using clean and pre-lubricated tooling, (2) the evolution of density distribution during compaction for both clean and pre-lubricated die wall conditions, by imaging tablets compressed to different compaction forces, and (3) the effect of tablet image on density distribution by compressing two complex shape tablets in identical dies to the same average density using punches with different geometries.
Freyhult, Eva; Moulton, Vincent; Ardell, David H.
2006-01-01
Sequence logos are stacked bar graphs that generalize the notion of consensus sequence. They employ entropy statistics very effectively to display variation in a structural alignment of sequences of a common function, while emphasizing its over-represented features. Yet sequence logos cannot display features that distinguish functional subclasses within a structurally related superfamily nor do they display under-represented features. We introduce two extensions to address these needs: function logos and inverse logos. Function logos display subfunctions that are over-represented among sequences carrying a specific feature. Inverse logos generalize both sequence logos and function logos by displaying under-represented, rather than over-represented, features or functions in structural alignments. To make inverse logos, a compositional inverse is applied to the feature or function frequency distributions before logo construction, where a compositional inverse is a mathematical transform that makes common features or functions rare and vice versa. We applied these methods to a database of structurally aligned bacterial tDNAs to create highly condensed, birds-eye views of potentially all so-called identity determinants and antideterminants that confer specific amino acid charging or initiator function on tRNAs in bacteria. We recovered both known and a few potentially novel identity elements. Function logos and inverse logos are useful tools for exploratory bioinformatic analysis of structure–function relationships in sequence families and superfamilies. PMID:16473848
Coping with "absence-presence": noncustodial fathers' parenting behaviors.
Baum, Nehami
2004-07-01
This article is based on the view that the nature of the divorced father's involvement with his children is affected by psychological processes that enable him to separate his parental from his spousal role and identity. It argues that the ability to cope with the simultaneous absence of the spousal role and identity and presence of the paternal role and identity is a key factor in shaping the divorced father's behavior toward his children. The article illustrates the claim in 3 case studies showing (a) parental functioning marred by ongoing conflict with the children's mother, (b) disengagement, and (c) stable and consistent parental functioning within the inevitable limitations of noncustodial fatherhood.
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
2017-11-20
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
NASA Astrophysics Data System (ADS)
Tao, Jianmin; Ye, Lin-Hui; Duan, Yuhua
2017-12-01
The primary goal of Kohn-Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao-Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE), Tao-Perdew-Staroverov-Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree-Fock density yields the exchange and correlation energies in good agreement with the Optimized Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Finally, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Jianmin; Ye, Lin -Hui; Duan, Yuhua
The primary goal of Kohn–Sham density functional theory is to evaluate the exchange-correlation contribution to electronic properties. However, the accuracy of a density functional can be affected by the electron density. Here we apply the nonempirical Tao–Mo (TM) semilocal functional to study the influence of the electron density on the exchange and correlation energies of atoms and ions, and compare the results with the commonly used nonempirical semilocal functionals local spin-density approximation (LSDA), Perdew–Burke–Ernzerhof (PBE), Tao–Perdew–Staroverov–Scuseria (TPSS), and hybrid functional PBE0. We find that the spin-restricted Hartree–Fock density yields the exchange and correlation energies in good agreement with the Optimizedmore » Effective Potential method, particularly for spherical atoms and ions. However, the errors of these semilocal and hybrid functionals become larger for self-consistent densities. We further find that the quality of the electron density have greater effect on the exchange-correlation energies of kinetic energy density-dependent meta-GGA functionals TPSS and TM than on those of the LSDA and GGA, and therefore, should have greater influence on the performance of meta-GGA functionals. Lastly, we show that the influence of the density quality on PBE0 is slightly reduced, compared to that of PBE, due to the exact mixing.« less
Revocable identity-based proxy re-signature against signing key exposure.
Yang, Xiaodong; Chen, Chunlin; Ma, Tingchun; Wang, Jinli; Wang, Caifen
2018-01-01
Identity-based proxy re-signature (IDPRS) is a novel cryptographic primitive that allows a semi-trusted proxy to convert a signature under one identity into another signature under another identity on the same message by using a re-signature key. Due to this transformation function, IDPRS is very useful in constructing privacy-preserving schemes for various information systems. Key revocation functionality is important in practical IDPRS for managing users dynamically; however, the existing IDPRS schemes do not provide revocation mechanisms that allow the removal of misbehaving or compromised users from the system. In this paper, we first introduce a notion called revocable identity-based proxy re-signature (RIDPRS) to achieve the revocation functionality. We provide a formal definition of RIDPRS as well as its security model. Then, we present a concrete RIDPRS scheme that can resist signing key exposure and prove that the proposed scheme is existentially unforgeable against adaptive chosen identity and message attacks in the standard model. To further improve the performance of signature verification in RIDPRS, we introduce a notion called server-aided revocable identity-based proxy re-signature (SA-RIDPRS). Moreover, we extend the proposed RIDPRS scheme to the SA-RIDPRS scheme and prove that this extended scheme is secure against adaptive chosen message and collusion attacks. The analysis results show that our two schemes remain efficient in terms of computational complexity when implementing user revocation procedures. In particular, in the SA-RIDPRS scheme, the verifier needs to perform only a bilinear pairing and four exponentiation operations to verify the validity of the signature. Compared with other IDPRS schemes in the standard model, our SA-RIDPRS scheme greatly reduces the computation overhead of verification.
Revocable identity-based proxy re-signature against signing key exposure
Ma, Tingchun; Wang, Jinli; Wang, Caifen
2018-01-01
Identity-based proxy re-signature (IDPRS) is a novel cryptographic primitive that allows a semi-trusted proxy to convert a signature under one identity into another signature under another identity on the same message by using a re-signature key. Due to this transformation function, IDPRS is very useful in constructing privacy-preserving schemes for various information systems. Key revocation functionality is important in practical IDPRS for managing users dynamically; however, the existing IDPRS schemes do not provide revocation mechanisms that allow the removal of misbehaving or compromised users from the system. In this paper, we first introduce a notion called revocable identity-based proxy re-signature (RIDPRS) to achieve the revocation functionality. We provide a formal definition of RIDPRS as well as its security model. Then, we present a concrete RIDPRS scheme that can resist signing key exposure and prove that the proposed scheme is existentially unforgeable against adaptive chosen identity and message attacks in the standard model. To further improve the performance of signature verification in RIDPRS, we introduce a notion called server-aided revocable identity-based proxy re-signature (SA-RIDPRS). Moreover, we extend the proposed RIDPRS scheme to the SA-RIDPRS scheme and prove that this extended scheme is secure against adaptive chosen message and collusion attacks. The analysis results show that our two schemes remain efficient in terms of computational complexity when implementing user revocation procedures. In particular, in the SA-RIDPRS scheme, the verifier needs to perform only a bilinear pairing and four exponentiation operations to verify the validity of the signature. Compared with other IDPRS schemes in the standard model, our SA-RIDPRS scheme greatly reduces the computation overhead of verification. PMID:29579125
ERIC Educational Resources Information Center
Collet, Bruce A.
2007-01-01
Public schools have historically been key sites where children learn of and adopt a common national identity. In states where multiculturalism plays a central role in the articulation of a national identity, schools actively recognize and support the diverse cultures of their students in fulfilling this function. Canada is a state where, via…
Caspi-Fluger, Ayelet; Inbar, Moshe; Mozes-Daube, Netta; Mouton, Laurence; Hunter, Martha S.; Zchori-Fein, Einat
2011-01-01
Intracellular symbionts of arthropods have diverse influences on their hosts, and their functions generally appear to be associated with their localization within the host. The effect of localization pattern on the role of a particular symbiont cannot normally be tested since the localization pattern within hosts is generally invariant. However, in Israel, the secondary symbiont Rickettsia is unusual in that it presents two distinct localization patterns throughout development and adulthood in its whitefly host, Bemisia tabaci (B biotype). In the “scattered” pattern, Rickettsia is localized throughout the whitefly hemocoel, excluding the bacteriocytes, where the obligate symbiont Portiera aleyrodidarum and some other secondary symbionts are housed. In the “confined” pattern, Rickettsia is restricted to the bacteriocytes. We examined the effects of these patterns on Rickettsia densities, association with other symbionts (Portiera and Hamiltonella defensa inside the bacteriocytes) and on the potential for horizontal transmission to the parasitoid wasp, Eretmocerus mundus, while the wasp larvae are developing within the whitefly nymph. Sequences of four Rickettsia genes were found to be identical for both localization patterns, suggesting that they are closely related strains. However, real-time PCR analysis showed very different dynamics for the two localization types. On the first day post-adult emergence, Rickettsia densities were 21 times higher in the “confined” pattern vs. “scattered” pattern whiteflies. During adulthood, Rickettsia increased in density in the “scattered” pattern whiteflies until it reached the “confined” pattern Rickettsia density on day 21. No correlation between Rickettsia densities and Hamiltonella or Portiera densities were found for either localization pattern. Using FISH technique, we found Rickettsia in the gut of the parasitoid wasps only when they developed on whiteflies with the “scattered” pattern. The results suggest that the localization pattern of a symbiont may influence its dynamics within the host. PMID:21712994
Two-dimensional symmetry breaking of fluid density distribution in closed nanoslits.
Berim, Gersh O; Ruckenstein, Eli
2008-01-14
Stable and metastable fluid density distributions (FDDs) in a closed nanoslit between two identical parallel solid walls have been identified on the basis of a nonlocal canonical ensemble density functional theory. Similar to Monte Carlo simulations, periodicity of the FDD in one of the lateral (parallel to the walls surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered uniform. It was found that depending on the average fluid density in the slit, both uniform as well as nonuniform FDDs in the x direction can occur. The uniform FDDs are either symmetric or asymmetric about the middle plane between walls; the latter FDD being the consequence of a symmetry breaking across the slit. The nonuniform FDDs in the x direction occur either in the form of a bump on a thin liquid film covering the walls or as a liquid bridge between those walls and provide symmetry breaking in the x direction. For small and large average densities, the stable state is uniform in the x direction and is symmetric about the middle plane between walls. In the intermediate range of the average density and depending on the length L(x) of the FDD period, the stable state can be represented either by a FDD, which is uniform in the x direction and asymmetric about the middle of the slit (small values of L(x)), or by a bump- and bridgelike FDD for intermediate and large values of L(x), respectively. These results are in agreement with the Monte Carlo simulations performed earlier by other authors. Because the free energy of the stable state decreases monotonically with increasing L(x), one can conclude that the real period is very large (infinite) and that for the values of the parameters employed, a single bridge of finite length over the entire slit is generated.
Löble, Matthias W; Keith, Jason M; Altman, Alison B; Stieber, S Chantal E; Batista, Enrique R; Boland, Kevin S; Conradson, Steven D; Clark, David L; Lezama Pacheco, Juan; Kozimor, Stosh A; Martin, Richard L; Minasian, Stefan G; Olson, Angela C; Scott, Brian L; Shuh, David K; Tyliszczak, Tolek; Wilkerson, Marianne P; Zehnder, Ralph A
2015-02-25
Covalency in Ln-Cl bonds of Oh-LnCl6(x-) (x = 3 for Ln = Ce(III), Nd(III), Sm(III), Eu(III), Gd(III); x = 2 for Ln = Ce(IV)) anions has been investigated, primarily using Cl K-edge X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TDDFT); however, Ce L3,2-edge and M5,4-edge XAS were also used to characterize CeCl6(x-) (x = 2, 3). The M5,4-edge XAS spectra were modeled using configuration interaction calculations. The results were evaluated as a function of (1) the lanthanide (Ln) metal identity, which was varied across the series from Ce to Gd, and (2) the Ln oxidation state (when practical, i.e., formally Ce(III) and Ce(IV)). Pronounced mixing between the Cl 3p- and Ln 5d-orbitals (t2g* and eg*) was observed. Experimental results indicated that Ln 5d-orbital mixing decreased when moving across the lanthanide series. In contrast, oxidizing Ce(III) to Ce(IV) had little effect on Cl 3p and Ce 5d-orbital mixing. For LnCl6(3-) (formally Ln(III)), the 4f-orbitals participated only marginally in covalent bonding, which was consistent with historical descriptions. Surprisingly, there was a marked increase in Cl 3p- and Ce(IV) 4f-orbital mixing (t1u* + t2u*) in CeCl6(2-). This unexpected 4f- and 5d-orbital participation in covalent bonding is presented in the context of recent studies on both tetravalent transition metal and actinide hexahalides, MCl6(2-) (M = Ti, Zr, Hf, U).
Self-Interaction Error in Density Functional Theory: An Appraisal.
Bao, Junwei Lucas; Gagliardi, Laura; Truhlar, Donald G
2018-05-03
Self-interaction error (SIE) is considered to be one of the major sources of error in most approximate exchange-correlation functionals for Kohn-Sham density-functional theory (KS-DFT), and it is large with all local exchange-correlation functionals and with some hybrid functionals. In this work, we consider systems conventionally considered to be dominated by SIE. For these systems, we demonstrate that by using multiconfiguration pair-density functional theory (MC-PDFT), the error of a translated local density-functional approximation is significantly reduced (by a factor of 3) when using an MCSCF density and on-top density, as compared to using KS-DFT with the parent functional; the error in MC-PDFT with local on-top functionals is even lower than the error in some popular KS-DFT hybrid functionals. Density-functional theory, either in MC-PDFT form with local on-top functionals or in KS-DFT form with some functionals having 50% or more nonlocal exchange, has smaller errors for SIE-prone systems than does CASSCF, which has no SIE.
NASA Astrophysics Data System (ADS)
Popławski, Nikodem
2014-01-01
We propose a theory of gravitation, in which the affine connection is the only dynamical variable describing the gravitational field. We construct a simple dynamical Lagrangian density that is entirely composed from the connection, via its curvature and torsion, and is a polynomial function of its derivatives. It is given by the contraction of the Ricci tensor with a tensor which is inverse to the symmetric, contracted square of the torsion tensor, . We vary the total action for the gravitational field and matter with respect to the affine connection, assuming that the matter fields couple to the connection only through . We derive the resulting field equations and show that they are identical with the Einstein equations of general relativity with a nonzero cosmological constant if the tensor is regarded as proportional to the metric tensor. The cosmological constant is simply a constant of proportionality between the two tensors, which together with and provides a natural system of units in gravitational physics. This theory therefore provides a physical construction of the metric as a polynomial function of the connection, and explains dark energy as an intrinsic property of spacetime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Akansha; Sen, Prasenjit, E-mail: prasen@hri.res.in; Majumder, Chiranjib
Adsorption of pre-formed Ag{sub n} clusters for n = 1 − 8 on a graphite substrate is studied within the density functional theory employing the vdW-DF2 functional to treat dispersion interactions. Top sites above surface layer carbon atoms turn out to be most favorable for a Ag adatom, in agreement with experimental observations. The same feature is observed for clusters of almost all sizes which have the lowest energies when the Ag atoms are positioned over top sites. Most gas phase isomers retain their structures over the substrate, though a couple of them undergo significant distortions. Energetics of the adsorptionmore » can be understood in terms of a competition between energy cost of disturbing Ag–Ag bonds in the cluster and energy gain from Ag–C interactions at the surface. Ag{sub 3} turns out to be an exceptional candidate in this regard that undergoes significant structural distortion and has only two of the Ag atoms close to surface C atoms in its lowest energy structure.« less
NASA Technical Reports Server (NTRS)
Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C. S.
1985-01-01
The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales.
Mirzaei, Javad; Urbanski, Martin; Kitzerow, Heinz-S; Hegmann, Torsten
2014-05-19
Chemically and thermally robust liquid crystal silane-functionalized gold nanoparticles (i.e. AuNP1-AuNP3) were synthesized through silane conjugation. Colloidal dispersions of these particles with mesogenic ligands that are structurally identical (as in AuNP1, AuNP2) or compatible (as in AuNP3) with molecules of the nematic liquid crystal (N-LC) host showed superior colloidal stability and dispersibility. The thermal, optical, and electro-optic behaviors of the N-LC composites at different concentrations of each gold nanoparticle were investigated. All dispersions showed lower values for the rotational viscosity and elastic constant, but only AuNP3 with a dissimilar structure between the nanoparticle ligand and the host displayed the most drastic thermal effects and overall strongest impact on the electro-optic properties of the host. The observed results were explained considering both the structure and the density of the surface ligands of each gold nanoparticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alternative Proofs for Inequalities of Some Trigonometric Functions
ERIC Educational Resources Information Center
Guo, Bai-Ni; Qi, Feng
2008-01-01
By using an identity relating to Bernoulli's numbers and power series expansions of cotangent function and logarithms of functions involving sine function, cosine function and tangent function, four inequalities involving cotangent function, sine function, secant function and tangent function are established.
Gagic, Vesna; Bartomeus, Ignasi; Jonsson, Tomas; Taylor, Astrid; Winqvist, Camilla; Fischer, Christina; Slade, Eleanor M; Steffan-Dewenter, Ingolf; Emmerson, Mark; Potts, Simon G; Tscharntke, Teja; Weisser, Wolfgang; Bommarco, Riccardo
2015-02-22
Drastic biodiversity declines have raised concerns about the deterioration of ecosystem functions and have motivated much recent research on the relationship between species diversity and ecosystem functioning. A functional trait framework has been proposed to improve the mechanistic understanding of this relationship, but this has rarely been tested for organisms other than plants. We analysed eight datasets, including five animal groups, to examine how well a trait-based approach, compared with a more traditional taxonomic approach, predicts seven ecosystem functions below- and above-ground. Trait-based indices consistently provided greater explanatory power than species richness or abundance. The frequency distributions of single or multiple traits in the community were the best predictors of ecosystem functioning. This implies that the ecosystem functions we investigated were underpinned by the combination of trait identities (i.e. single-trait indices) and trait complementarity (i.e. multi-trait indices) in the communities. Our study provides new insights into the general mechanisms that link biodiversity to ecosystem functioning in natural animal communities and suggests that the observed responses were due to the identity and dominance patterns of the trait composition rather than the number or abundance of species per se. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Neurodegeneration and Identity.
Strohminger, Nina; Nichols, Shaun
2015-09-01
There is a widespread notion, both within the sciences and among the general public, that mental deterioration can rob individuals of their identity. Yet there have been no systematic investigations of what types of cognitive damage lead people to appear to no longer be themselves. We measured perceived identity change in patients with three kinds of neurodegenerative disease: frontotemporal dementia, Alzheimer's disease, and amyotrophic lateral sclerosis. Structural equation models revealed that injury to the moral faculty plays the primary role in identity discontinuity. Other cognitive deficits, including amnesia, have no measurable impact on identity persistence. Accordingly, frontotemporal dementia has the greatest effect on perceived identity, and amyotrophic lateral sclerosis has the least. We further demonstrated that perceived identity change fully mediates the impact of neurodegenerative disease on relationship deterioration between patient and caregiver. Our results mark a departure from theories that ground personal identity in memory, distinctiveness, dispositional emotion, or global mental function. © The Author(s) 2015.
Recognizing Moral Identity as a Cultural Construct.
Jia, Fanli; Krettenauer, Tobias
2017-01-01
Current research on moral identity shows that moral identity predicts moral action in Western cultures but not in non-Western cultures. The present paper argues that this may be due to the fact that the concept of moral identity is culturally biased. In order to remedy this situation, we argue that researchers should broaden their scopes of inquiry by adding a cultural lens to their studies of moral identity. This change is important because although some concept of moral identity likely exists in all cultures, it may function in different ways and at different levels in each place. We propose that moral identity is a context-dependent construct tied to varying social and cultural obligations. We argue that Western moral identity stresses an individually oriented morality, whereas, people from Eastern cultures consider a highly moral person to be societally oriented. We conclude by discussing the implications of this view for future research.
Memory transfer for emotionally valenced words between identities in dissociative identity disorder.
Huntjens, Rafaële J C; Peters, Madelon L; Woertman, Liesbeth; van der Hart, Onno; Postma, Albert
2007-04-01
The present study aimed to determine interidentity retrieval of emotionally valenced words in dissociative identity disorder (DID). Twenty-two DID patients participated together with 25 normal controls and 25 controls instructed to simulate DID. Two wordlists A and B were constructed including neutral, positive and negative material. List A was shown to one identity, while list B was shown to another identity claiming total amnesia for the words learned by the first identity. The identity claiming amnesia was tested for intrusions from list A words into the recall of words from list B and recognition of the words learned by both identities. Test results indicated no evidence of total interidentity amnesia for emotionally valenced material in DID. It is argued that dissociative amnesia in DID may more adequately be described as a disturbance in meta-memory functioning instead of an actual retrieval inability.
Identity Processes and Statuses in Patients with and without Eating Disorders.
Verschueren, Margaux; Luyckx, Koen; Kaufman, Erin A; Vansteenkiste, Maarten; Moons, Philip; Sleuwaegen, Ellen; Berens, Ann; Schoevaerts, Katrien; Claes, Laurence
2017-01-01
Problems with identity formation are associated with a range of psychiatric disorders. Yet, the mechanisms underlying such problems and how they are refined into specific diagnostic presentations require further investigation. The present study investigated identity processes among 123 women with eating disorders (ED) and age-matched community controls via a newly developed identity model. Several clinical outcome variables were assessed. Patients with ED scored lower on committing to and identifying with identity-related choices and scored higher on maladaptive or ruminative exploration, identity diffusion and identity disorder. They also experienced less identity achievement as compared with controls. The identity disorder status was associated with the highest scores on anxiety, depression, borderline personality disorder symptoms, and non-suicidal self-injury and the lowest scores on need satisfaction. Results indicate that patients with ED experience more identity problems than community controls and those captured by an identity disorder status experience the most problematic psychosocial functioning. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.
Very massive neutron stars in Ni's theory of gravity
NASA Technical Reports Server (NTRS)
Mikkelsen, D. R.
1977-01-01
It is shown that in Ni's theory of gravity, which is identical to general relativity in the post-Newtonian limit, neutron stars of arbitrarily large mass are possible. This result is independent, within reasonable bounds, of the equation of state of matter at supernuclear densities.
Sverdlov, Serge; Thompson, Elizabeth A.
2013-01-01
In classical quantitative genetics, the correlation between the phenotypes of individuals with unknown genotypes and a known pedigree relationship is expressed in terms of probabilities of IBD states. In existing approaches to the inverse problem where genotypes are observed but pedigree relationships are not, dependence between phenotypes is either modeled as Bayesian uncertainty or mapped to an IBD model via inferred relatedness parameters. Neither approach yields a relationship between genotypic similarity and phenotypic similarity with a probabilistic interpretation corresponding to a generative model. We introduce a generative model for diploid allele effect based on the classic infinite allele mutation process. This approach motivates the concept of IBF (Identity by Function). The phenotypic covariance between two individuals given their diploid genotypes is expressed in terms of functional identity states. The IBF parameters define a genetic architecture for a trait without reference to specific alleles or population. Given full genome sequences, we treat a gene-scale functional region, rather than a SNP, as a QTL, modeling patterns of dominance for multiple alleles. Applications demonstrated by simulation include phenotype and effect prediction and association, and estimation of heritability and classical variance components. A simulation case study of the Missing Heritability problem illustrates a decomposition of heritability under the IBF framework into Explained and Unexplained components. PMID:23851163
ERIC Educational Resources Information Center
Brutsaert, Herman
2006-01-01
Drawing on survey data, this paper explores the association between early adolescents' gender-role identity and sense of peer group acceptance, and how this association may vary as a function of the gender context of the school. Two indicators of gender-role identity were included in the analysis: in one measure the items reflect features of…
RELIGIOUS EXCLUSIVITY AND PSYCHOSOCIAL FUNCTIONING.
Gegelashvili, M; Meca, A; Schwartz, S J
2015-01-01
In the present study we sought to clarify links between religious exclusivity, as form of intergroup favoritism, and indices of psychosocial functioning. The study of in group favoritism has generally been invoked within Social Identity Theory and related perspectives. However, there is a lack of literature regarding religious exclusivity from the standpoint of social identity. In particular, the ways in which religious exclusivity is linked with other dimensions of religious belief and practice, and with psychosocial functioning, among individuals from different religious backgrounds are not well understood. A sample of 8545 emerging-adult students from 30 U.S. universities completed special measures. Measure of religious exclusivity was developed and validated for this group. The results suggest that exclusivity appears as predictor for impaired psychosocial functioning, low self-esteem and low psychosocial well-being for individuals from organized faiths, as well as for those identifying as agnostic, atheist, or spiritual/nonreligious. These findings are discussed in terms of Social Identity Theory and Terror Management Theory (TMT).
A Practical Approach to Identity on Digital Ecosystems Using Claim Verification and Trust
NASA Astrophysics Data System (ADS)
McLaughlin, Mark; Malone, Paul
Central to the ethos of digital ecosystems (DEs) is that DEs should be distributed and have no central points of failure or control. This essentially mandates a decentralised system, which poses significant challenges for identity. Identity in decentralised environments must be treated very differently to identity in traditional environments, where centralised naming, authentication and authorisation can be assumed, and where identifiers can be considered global and absolute. In the absence of such guarantees we have expanded on the OPAALS identity model to produce a general implementation for the OPAALS DE that uses a combination of identity claim verification protocols and trust to give assurances in place of centralised servers. We outline how the components of this implementation function and give an illustrated workflow of how identity issues are solved on the OPAALS DE in practice.
Zhang, Haihua; Wu, Yishi; Liao, Qing; Zhang, Zhaoyi; Liu, Yanping; Gao, Qinggang; Liu, Peng; Li, Meili; Yao, Jiannian; Fu, Hongbing
2018-06-25
Miniaturized nanowire nanolasers of 3D perovskites feature a high gain coefficient; however, room-temperature optical gain and nanowire lasers from 2D layered perovskites have not been reported to date. A biomimetic approach is presented to construct an artificial ligh-harvesting system in mixed multiple quantum wells (QWs) of 2D-RPPs of (BA) 2 (FA) n-1 Pb n Br 3n+1 , achieving room-temperature ASE and nanowire (NW) lasing. Owing to the improvement of flexible and deformable characteristics provided by organic BA cation layers, high-density large-area NW laser arrays were fabricated with high photostability. Well-controlled dimensions and uniform geometries enabled 2D-RPPs NWs functioning as high-quality Fabry-Perot (FP) lasers with almost identical optical modes, high quality (Q) factor (ca. 1800), and similarly low lasing thresholds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cystic Fibrosis Gene Encodes a cAMP-Dependent Chloride Channel in Heart
NASA Astrophysics Data System (ADS)
Hart, Padraig; Warth, John D.; Levesque, Paul C.; Collier, Mei Lin; Geary, Yvonne; Horowitz, Burton; Hume, Joseph R.
1996-06-01
cAMP-dependent chloride channels in heart contribute to autonomic regulation of action potential duration and membrane potential and have been inferred to be due to cardiac expression of the epithelial cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In this report, a cDNA from rabbit ventricle was isolated and sequenced, which encodes an exon 5 splice variant (exon 5-) of CFTR, with >90% identity to human CFTR cDNA present in epithelial cells. Expression of this cDNA in Xenopus oocytes gave rise to robust cAMP-activated chloride currents that were absent in control water-injected oocytes. Antisense oligodeoxynucleotides directed against CFTR significnatly reduced the density of cAMP-dependent chloride currents in acutely cultured myocytes, thereby establishing a direct functional link between cardiac expression of CFTR protein and an endogenous chloride channel in native cardiac myocytes.
Use of Fluka to Create Dose Calculations
NASA Technical Reports Server (NTRS)
Lee, Kerry T.; Barzilla, Janet; Townsend, Lawrence; Brittingham, John
2012-01-01
Monte Carlo codes provide an effective means of modeling three dimensional radiation transport; however, their use is both time- and resource-intensive. The creation of a lookup table or parameterization from Monte Carlo simulation allows users to perform calculations with Monte Carlo results without replicating lengthy calculations. FLUKA Monte Carlo transport code was used to develop lookup tables and parameterizations for data resulting from the penetration of layers of aluminum, polyethylene, and water with areal densities ranging from 0 to 100 g/cm^2. Heavy charged ion radiation including ions from Z=1 to Z=26 and from 0.1 to 10 GeV/nucleon were simulated. Dose, dose equivalent, and fluence as a function of particle identity, energy, and scattering angle were examined at various depths. Calculations were compared against well-known results and against the results of other deterministic and Monte Carlo codes. Results will be presented.
Wang, Tongyu; Reuter, Karsten
2015-11-24
We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO 2. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO 2(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. As a result, these findings challenge the traditional definitionmore » of structure sensitivity based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.« less
Henwood, Adam F; Evariste, Sloane; Slawin, Alexandra M Z; Zysman-Colman, Eli
2014-01-01
Herein we report the synthesis and optoelectronic characterisation of three deep blue-emitting cationic iridium complexes, of the form [Ir(dFppy)(2)(N^N)]PF(6), bearing biimidazole-type N^N ancillary ligands (dFppyH = 2-(2,4-difluorophenyl)pyridine). Complex 1 contains the parent biimidazole, biim, while 2 contains a dimethylated analog, dMebiim, and 3 contains an ortho-xylyl-tethered biimidzole, o-xylbiim. We explore a strategy of tethering the biimidazole in order to rigidify the complex and increase the photoluminescent quantum yield, culminating in deep blue (λ(max): 457 nm in MeOH at 298 K) ligand-centered emission with a very high photoluminescent quantum yield of 68% and microsecond emission lifetime. Density functional theory calculations elucidate the origin of such disparate excited state kinetics across this series, especially in light of virtually identical optoelectronic properties observed for these compounds.
NASA Astrophysics Data System (ADS)
Stoykova, Boyka; Chochkova, Maya; Ivanova, Galya; Markova, Nadezhda; Enchev, Venelin; Tsvetkova, Iva; Najdenski, Hristo; Štícha, Martin; Milkova, Tsenka
2017-05-01
N-phenylpropenoyl amino acid amides have been brominated using two alternative sonochemically activated green chemistry procedures. The first synthetic procedure has involved an ultrasound assisted bromination in an aqueous medium using ionic liquid as a catalyst of the reaction, whereas in the second one an in situ formation of Br2 via oxidation of HBr by H2O2 has been used. For comparison, the conventional bromination procedure was also used. The newly brominated compounds were characterized by appropriate analytical techniques. A detailed NMR spectroscopic analysis and quantum chemical calculations using Density Functional Theory (DFT) methods have been used to define the stereochemistry of the products. The results confirmed the physicochemical identity and similar yields of the products obtained by the three synthetic procedures employed, and reveal the co-existence of two diastereoisomeric forms of the newly synthesized products. The antibacterial and antifungal activities of the dibrominated amides were evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tongyu; Reuter, Karsten, E-mail: karsten.reuter@ch.tum.de; SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory and Stanford University, 443 Via Ortega, Stanford, California 94035-4300
2015-11-28
We present a density-functional theory based kinetic Monte Carlo study of CO oxidation at the (111) facet of RuO{sub 2}. We compare the detailed insight into elementary processes, steady-state surface coverages, and catalytic activity to equivalent published simulation data for the frequently studied RuO{sub 2}(110) facet. Qualitative differences are identified in virtually every aspect ranging from binding energetics over lateral interactions to the interplay of elementary processes at the different active sites. Nevertheless, particularly at technologically relevant elevated temperatures, near-ambient pressures and near-stoichiometric feeds both facets exhibit almost identical catalytic activity. These findings challenge the traditional definition of structure sensitivitymore » based on macroscopically observable turnover frequencies and prompt scrutiny of the applicability of structure sensitivity classifications developed for metals to oxide catalysis.« less
NASA Astrophysics Data System (ADS)
Niedermeier, Dennis; Ervens, Barbara; Clauss, Tina; Voigtländer, Jens; Wex, Heike; Hartmann, Susan; Stratmann, Frank
2014-01-01
In a recent study, the Soccer ball model (SBM) was introduced for modeling and/or parameterizing heterogeneous ice nucleation processes. The model applies classical nucleation theory. It allows for a consistent description of both apparently singular and stochastic ice nucleation behavior, by distributing contact angles over the nucleation sites of a particle population assuming a Gaussian probability density function. The original SBM utilizes the Monte Carlo technique, which hampers its usage in atmospheric models, as fairly time-consuming calculations must be performed to obtain statistically significant results. Thus, we have developed a simplified and computationally more efficient version of the SBM. We successfully used the new SBM to parameterize experimental nucleation data of, e.g., bacterial ice nucleation. Both SBMs give identical results; however, the new model is computationally less expensive as confirmed by cloud parcel simulations. Therefore, it is a suitable tool for describing heterogeneous ice nucleation processes in atmospheric models.
High-order noise analysis for low dose iterative image reconstruction methods: ASIR, IRIS, and MBAI
NASA Astrophysics Data System (ADS)
Do, Synho; Singh, Sarabjeet; Kalra, Mannudeep K.; Karl, W. Clem; Brady, Thomas J.; Pien, Homer
2011-03-01
Iterative reconstruction techniques (IRTs) has been shown to suppress noise significantly in low dose CT imaging. However, medical doctors hesitate to accept this new technology because visual impression of IRT images are different from full-dose filtered back-projection (FBP) images. Most common noise measurements such as the mean and standard deviation of homogeneous region in the image that do not provide sufficient characterization of noise statistics when probability density function becomes non-Gaussian. In this study, we measure L-moments of intensity values of images acquired at 10% of normal dose and reconstructed by IRT methods of two state-of-art clinical scanners (i.e., GE HDCT and Siemens DSCT flash) by keeping dosage level identical to each other. The high- and low-dose scans (i.e., 10% of high dose) were acquired from each scanner and L-moments of noise patches were calculated for the comparison.
Transferable Force Field for Metal–Organic Frameworks from First-Principles: BTW-FF
2014-01-01
We present an ab-initio derived force field to describe the structural and mechanical properties of metal–organic frameworks (or coordination polymers). The aim is a transferable interatomic potential that can be applied to MOFs regardless of metal or ligand identity. The initial parametrization set includes MOF-5, IRMOF-10, IRMOF-14, UiO-66, UiO-67, and HKUST-1. The force field describes the periodic crystal and considers effective atomic charges based on topological analysis of the Bloch states of the extended materials. Transferable potentials were developed for the four organic ligands comprising the test set and for the associated Cu, Zn, and Zr metal nodes. The predicted materials properties, including bulk moduli and vibrational frequencies, are in agreement with explicit density functional theory calculations. The modal heat capacity and lattice thermal expansion are also predicted. PMID:25574157
OBJECT REPRESENTATION, IDENTITY, AND THE PARADOX OF EARLY PERMANENCE: Steps Toward a New Framework.
Meltzoff, Andrew N; Moore, M Keith
1998-01-01
The sensorimotor theory of infancy has been overthrown, but there is little consensus on a replacement. We hypothesize that a capacity for representation is the starting point for infant development, not its culmination. Logical distinctions are drawn between object representation, identity, and permanence. Modern experiments on early object permanence and deferred imitation suggest: (a) even for young infants, representations persist over breaks in sensory contact, (b) numerical identity of objects ( O s) is initially specified by spatiotemporal criteria (place and trajectory), (c) featural and functional identity criteria develop, (d) events are analyzed by comparing representations to current perception, and (e) representation operates both prospectively, anticipating future contacts with an O , and retrospectively, reidentifying an O as the "same one again." A model of the architecture and functioning of the early representational system is proposed. It accounts for young infants' behavior toward absent people and things in terms of their efforts to determine the identity of objects. Our proposal is developmental without denying innate structure and elevates the power of perception and representation while being cautious about attributing complex concepts to young infants.
OBJECT REPRESENTATION, IDENTITY, AND THE PARADOX OF EARLY PERMANENCE: Steps Toward a New Framework
Meltzoff, Andrew N.; Moore, M. Keith
2013-01-01
The sensorimotor theory of infancy has been overthrown, but there is little consensus on a replacement. We hypothesize that a capacity for representation is the starting point for infant development, not its culmination. Logical distinctions are drawn between object representation, identity, and permanence. Modern experiments on early object permanence and deferred imitation suggest: (a) even for young infants, representations persist over breaks in sensory contact, (b) numerical identity of objects (Os) is initially specified by spatiotemporal criteria (place and trajectory), (c) featural and functional identity criteria develop, (d) events are analyzed by comparing representations to current perception, and (e) representation operates both prospectively, anticipating future contacts with an O, and retrospectively, reidentifying an O as the “same one again.” A model of the architecture and functioning of the early representational system is proposed. It accounts for young infants’ behavior toward absent people and things in terms of their efforts to determine the identity of objects. Our proposal is developmental without denying innate structure and elevates the power of perception and representation while being cautious about attributing complex concepts to young infants. PMID:25147418
Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu
2014-01-01
During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623
Identity recognition in response to different levels of genetic relatedness in commercial soya bean
Van Acker, Rene; Rajcan, Istvan; Swanton, Clarence J.
2017-01-01
Identity recognition systems allow plants to tailor competitive phenotypes in response to the genetic relatedness of neighbours. There is limited evidence for the existence of recognition systems in crop species and whether they operate at a level that would allow for identification of different degrees of relatedness. Here, we test the responses of commercial soya bean cultivars to neighbours of varying genetic relatedness consisting of other commercial cultivars (intraspecific), its wild progenitor Glycine soja, and another leguminous species Phaseolus vulgaris (interspecific). We found, for the first time to our knowledge, that a commercial soya bean cultivar, OAC Wallace, showed identity recognition responses to neighbours at different levels of genetic relatedness. OAC Wallace showed no response when grown with other commercial soya bean cultivars (intra-specific neighbours), showed increased allocation to leaves compared with stems with wild soya beans (highly related wild progenitor species), and increased allocation to leaves compared with stems and roots with white beans (interspecific neighbours). Wild soya bean also responded to identity recognition but these responses involved changes in biomass allocation towards stems instead of leaves suggesting that identity recognition responses are species-specific and consistent with the ecology of the species. In conclusion, elucidating identity recognition in crops may provide further knowledge into mechanisms of crop competition and the relationship between crop density and yield. PMID:28280587
Density-functional theory for internal magnetic fields
NASA Astrophysics Data System (ADS)
Tellgren, Erik I.
2018-01-01
A density-functional theory is developed based on the Maxwell-Schrödinger equation with an internal magnetic field in addition to the external electromagnetic potentials. The basic variables of this theory are the electron density and the total magnetic field, which can equivalently be represented as a physical current density. Hence, the theory can be regarded as a physical current density-functional theory and an alternative to the paramagnetic current density-functional theory due to Vignale and Rasolt. The energy functional has strong enough convexity properties to allow a formulation that generalizes Lieb's convex analysis formulation of standard density-functional theory. Several variational principles as well as a Hohenberg-Kohn-like mapping between potentials and ground-state densities follow from the underlying convex structure. Moreover, the energy functional can be regarded as the result of a standard approximation technique (Moreau-Yosida regularization) applied to the conventional Schrödinger ground-state energy, which imposes limits on the maximum curvature of the energy (with respect to the magnetic field) and enables construction of a (Fréchet) differentiable universal density functional.
A comparison of solar wind and ionospheric ion acoustic waves
NASA Technical Reports Server (NTRS)
Kintner, P. M.; Kelley, M. C.
1980-01-01
Ion acoustic waves produced during the Trigger experiment are compared to ion acoustic waves observed in the solar wind. After normalizing to the Debye length the spectra are nearly identical, although the ionospheric wave relative energy density is 100 times larger than the solar wind case.
High-Flow Asymmetric Reverse-Osmosis Membranes
NASA Technical Reports Server (NTRS)
Katz, M. C.; Wydeven, T. J.
1984-01-01
Water-soluble polymer membrane insolubilized by transition-metal salt. Thin layer of lower permeability material joined with thicker layer of highpermeability material. Two layers chemically identical or chemically distinct. They differ in density, compactness or other respects. Used to purify or desalinate seawater, brackish water, or industrial or domestic wastewater.
Bose-Einstein correlations: A study of an invariance group
NASA Astrophysics Data System (ADS)
Bialas, A.; Zalewski, K.
2005-08-01
A group of transformations changing the phases of the elements of the single-particle density matrix, but leaving unchanged the predictions for identical particles concerning the momentum distributions, momentum correlations etc., is identified. Its implications for the determinations of the interaction regions from studies of Bose-Einstein correlations are discussed.
Goth, Kirstin; Foelsch, Pamela; Schlüter-Müller, Susanne; Birkhölzer, Marc; Jung, Emanuel; Pick, Oliver; Schmeck, Klaus
2012-07-19
In the continuing revision of Diagnostic and Statistical Manual (DSM-V) "identity" is integrated as a central diagnostic criterion for personality disorders (self-related personality functioning). According to Kernberg, identity diffusion is one of the core elements of borderline personality organization. As there is no elaborated self-rating inventory to assess identity development in healthy and disturbed adolescents, we developed the AIDA (Assessment of Identity Development in Adolescence) questionnaire to assess this complex dimension, varying from "Identity Integration" to "Identity Diffusion", in a broad and substructured way and evaluated its psychometric properties in a mixed school and clinical sample. Test construction was deductive, referring to psychodynamic as well as social-cognitive theories, and led to a special item pool, with consideration for clarity and ease of comprehension. Participants were 305 students aged 12-18 attending a public school and 52 adolescent psychiatric inpatients and outpatients with diagnoses of personality disorders (N = 20) or other mental disorders (N = 32). Convergent validity was evaluated by covariations with personality development (JTCI 12-18 R scales), criterion validity by differences in identity development (AIDA scales) between patients and controls. AIDA showed excellent total score (Diffusion: α = .94), scale (Discontinuity: α = .86; Incoherence: α = .92) and subscale (α = .73-.86) reliabilities. High levels of Discontinuity and Incoherence were associated with low levels in Self Directedness, an indicator of maladaptive personality functioning. Both AIDA scales were significantly different between PD-patients and controls with remarkable effect sizes (d) of 2.17 and 1.94 standard deviations. AIDA is a reliable and valid instrument to assess normal and disturbed identity in adolescents. Studies for further validation and for obtaining population norms are in progress and may provide insight in the relevant aspects of identity development in differentiating specific psychopathology and therapeutic focus and outcome.
Cao, C.; Argonne National Lab.; Ford, D.; ...
2013-06-26
Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH 2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons.more » Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000°C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. Finally, the origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, C.; Argonne National Lab.; Ford, D.
Raman microscopy/spectroscopy measurements are presented on high purity niobium (Nb) samples, including pieces from hot spot regions of a tested superconducting rf cavity that exhibit a high density of etch pits. Measured spectra are compared with density functional theory calculations of Raman-active, vibrational modes of possible surface Nb-O and Nb-H complexes. The Raman spectra inside particularly rough pits in all Nb samples show clear differences from surrounding areas, exhibiting enhanced intensity and sharp peaks. While some of the sharp peaks are consistent with calculated NbH and NbH 2 modes, there is better overall agreement with C-H modes in chain-type hydrocarbons.more » Other spectra reveal two broader peaks attributed to amorphous carbon. Niobium foils annealed to >2000°C in high vacuum develop identical Raman peaks when subjected to cold working. Regions with enhanced C and O have also been found by SEM/EDX spectroscopy in the hot spot samples and cold-worked foils, corroborating the Raman results. Such regions with high concentrations of impurities are expected to suppress the local superconductivity and this may explain the correlation between hot spots in superconducting rf (SRF) cavities and the observation of a high density of surface pits. Finally, the origin of localized high carbon and hydrocarbon regions is unclear at present but it is suggested that particular processing steps in SRF cavity fabrication may be responsible.« less
Origin of the SN2 benzylic effect.
Galabov, Boris; Nikolova, Valia; Wilke, Jeremiah J; Schaefer, Henry F; Allen, Wesley D
2008-07-30
The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.
Resonant pairing between fermions with unequal masses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Shin-Tza; Pao, C.-H.; Yip, S.-K.
We study via mean-field theory the pairing between fermions of different masses, especially at the unitary limit. At equal populations, the thermodynamic properties are identical with the equal mass case provided an appropriate rescaling is made. At unequal populations, for sufficiently light majority species, the system does not phase separate. For sufficiently heavy majority species, the phase separated normal phase have a density larger than that of the superfluid. For atoms in harmonic traps, the density profiles for unequal mass fermions can be drastically different from their equal-mass counterparts.
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
Gonis, A.; Dane, M.
2017-12-20
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. Lastly, it is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.« less
Extension of the Kohn-Sham formulation of density functional theory to finite temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonis, A.; Dane, M.
Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the minimum of the free energy within the KS formalism follows immediately in the form of Mermin's functional, but with the exact excited states in that functional represented by Slater determinants obtained through self-consistency conditions at the zero of temperature. Lastly, it is emphasized that, in departure from all existing formulations, no self-consistency conditions are implemented at finite T; as we show, in fact, such formulations are rigorously blocked.« less
Savoy, R L; Frederick, B B; Keuroghlian, A S; Wolk, P C
2012-01-01
Patients who suffer from dissociative identity disorder present unique scientific and clinical challenges for psychology and psychiatry. We have been fortunate in working with a patient who-while undergoing functional MRI-can switch rapidly and voluntarily between her main personality (a middle-aged, high-functioning woman) and an alternate personality (a 4-6-year-old girl). A unique task was designed to isolate the processes occurring during the switches between these personalities. Data are from two imaging sessions, conducted months apart, each showing the same activated areas during switches between these personalities. The activated areas include the following: the primary sensory and motor cortex, likely associated with characteristic facial movements made during switching; the nucleus accumbens bilaterally, possibly associated with aspects of reward connected with switching; and prefrontal sites, presumably associated with the executive control involved in the switching of personalities.
Super-enhancers: Asset management in immune cell genomes.
Witte, Steven; O'Shea, John J; Vahedi, Golnaz
2015-09-01
Super-enhancers (SEs) are regions of the genome consisting of clusters of regulatory elements bound with very high amounts of transcription factors, and this architecture appears to be the hallmark of genes and noncoding RNAs linked with cell identity. Recent studies have identified SEs in CD4(+) T cells and have further linked these regions to single nucleotide polymorphisms (SNPs) associated with immune-mediated disorders, pointing to an important role for these structures in the T cell differentiation and function. Here we review the features that define SEs, and discuss their function within the broader understanding of the mechanisms that define immune cell identity and function. We propose that SEs present crucial regulatory hubs, coordinating intrinsic and extrinsic differentiation signals, and argue that delineating these regions will provide important insight into the factors and mechanisms that define immune cell identity. Copyright © 2015 Elsevier Ltd. All rights reserved.
The neuron identity problem: form meets function.
Fishell, Gord; Heintz, Nathaniel
2013-10-30
A complete understanding of nervous system function cannot be achieved without the identification of its component cell types. In this Perspective, we explore a series of related issues surrounding cell identity and how revolutionary methods for labeling and probing specific neuronal types have clarified this question. Specifically, we ask the following questions: what is the purpose of such diversity, how is it generated, how is it maintained, and, ultimately, how can one unambiguously identity one cell type from another? We suggest that each cell type can be defined by a unique and conserved molecular ground state that determines its capabilities. We believe that gaining an understanding of these molecular barcodes will advance our ability to explore brain function, enhance our understanding of the biochemical basis of CNS disorders, and aid in the development of novel therapeutic strategies. Copyright © 2013 Elsevier Inc. All rights reserved.
Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D
2017-10-01
Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life-history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR.
Symmetry breaking in binary mixtures in closed nanoslits.
Berim, Gersh O; Ruckenstein, Eli
2008-04-07
The symmetry breaking (SB) of the fluid density distribution (FDD) in closed nanoslits between two identical parallel solid walls described by Berim and Ruckenstein [J. Chem. Phys. 128, 024704 (2008)] for a single component fluid is examined for binary mixtures on the basis of a nonlocal canonical ensemble density functional theory. As in Monte Carlo simulations, the periodicity of the FDD in one of the lateral (parallel to the wall surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered to be uniform. The molecules of the two components have different diameters and their Lennard-Jones interaction potentials have different energy parameters. It was found that depending on the average fluid density in the slit and mixture composition, SB can occur for both or none of the components but never for only one of them. In the direction perpendicular to the walls (h direction), the FDDs of both components can be asymmetrical about the middle plane between walls. In the x direction, the SB occurs as bumps and bridges enriched in one of the components, whereas the composition of the mixture between them is enriched in the other component. The dependence of the SB states on the length Lx of the FDD period at fixed average densities of the two components was examined for Lx in the range from 10 to 120 molecular diameters of the smaller size component. It was shown that for large Lx, the stable state of the system corresponds to a bridge. Because the free energy of that state decreases monotonically with increasing Lx, one can conclude that the real period is very large (infinite) and that a single bridge exists in the slit.
Symmetry breaking in binary mixtures in closed nanoslits
NASA Astrophysics Data System (ADS)
Berim, Gersh O.; Ruckenstein, Eli
2008-04-01
The symmetry breaking (SB) of the fluid density distribution (FDD) in closed nanoslits between two identical parallel solid walls described by Berim and Ruckenstein [J. Chem. Phys. 128, 024704 (2008)] for a single component fluid is examined for binary mixtures on the basis of a nonlocal canonical ensemble density functional theory. As in Monte Carlo simulations, the periodicity of the FDD in one of the lateral (parallel to the wall surfaces) directions, denoted as the x direction, was assumed. In the other lateral direction, y direction, the FDD was considered to be uniform. The molecules of the two components have different diameters and their Lennard-Jones interaction potentials have different energy parameters. It was found that depending on the average fluid density in the slit and mixture composition, SB can occur for both or none of the components but never for only one of them. In the direction perpendicular to the walls (h direction), the FDDs of both components can be asymmetrical about the middle plane between walls. In the x direction, the SB occurs as bumps and bridges enriched in one of the components, whereas the composition of the mixture between them is enriched in the other component. The dependence of the SB states on the length Lx of the FDD period at fixed average densities of the two components was examined for Lx in the range from 10 to 120 molecular diameters of the smaller size component. It was shown that for large Lx, the stable state of the system corresponds to a bridge. Because the free energy of that state decreases monotonically with increasing Lx, one can conclude that the real period is very large (infinite) and that a single bridge exists in the slit.
Wohlert, Dennis; Kröger, Jürgen; Witt, Martin; Schmitt, Oliver; Wree, Andreas; Czech-Damal, Nicole; Siebert, Ursula; Folkow, Lars; Hanke, Frederike D
2016-03-01
While our knowledge about the senses of pinnipeds has increased over the last decades almost nothing is known about the organization of the neuroanatomical pathways. In a first approach to this field of research, we assessed the total number of myelinated axons of three cranial nerves (CNs) in the harbor (Phoca vitulina, Pv) and hooded seal (Cystophora cristata, Cc). Axons were counted in semithin sections of the nerves embedded in Epon and stained with toluidine blue. In both species, the highest axon number was found within the optic nerve (Pv 187,000 ± 8,000 axons, Cc 481,600 ± 1,300 axons). Generally, considering absolute axon numbers, far more axons were counted within the optic and trigmenial nerve (Pv 136,700 ± 2,500 axons, Cc 179,300 ± 6,900 axons) in hooded in comparison to harbor seals. The axon counts of the vestibulocochlear nerve are nearly identical for both species (Pv 87,100 ± 8,100 axons, Cc 86,600 ± 2,700 axons). However, when comparing cell density, the cell density is almost equal for all nerves for both species except for the optic nerve in which cell density was particularly higher than in the other nerves and higher in hooded in comparison to harbor seals. We here present the first comparative analysis of three CNs in two phocid seals. While the CNs of these closely related species share some general characteristics, pronounced differences in axon numbers/densities are apparent. These differences seem to reflect differences in e.g. size, habitat, and/or functional significance of the innervated sensory systems. © 2015 Wiley Periodicals, Inc.
Kim, Byunghyuk; Lee, Se-Eun; Song, Mi-Young; Choi, Jung-Hye; Ahn, Soon-Mo; Lee, Kun-Seop; Cho, Eungchun; Chon, Tae-Soo; Koh, Sung-Cheol
2008-02-01
This study was performed to gain an understanding of the structural and functional relationships between inter-taxa communities (macroinvertebrates as consumers, and microbes as decomposers or preys for the invertebrates) in a polluted stream using artificial neural networks techniques. Sediment samples, carrying microorganisms (eubacteria) and macroinvertebrates, were seasonally collected from similar habitats in streams with different levels of pollution. Microbial community taxa and densities were determined using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA sequence analysis techniques. The identity and density of macroinvertebrates were concurrently determined. In general, differences were observed on grouping by self-organizing map (SOM) in polluted, clean and recovering sites based on the microbial densities, while the community patterns were partly dependent on the sampling period. A Spearman rank order correlation analysis revealed correlations of several eubacterial species with those of macroinvertebrates: a negative correlation was observed between Acidovorax sp. (from polluted sites) and Gammaridae (mostly from the clean site), while Herbaspirillum sp. and Janthinobacterium sp. appeared to have positive correlations with some macroinvertebrate species. The population dynamics of the tolerant texa, Tubificidae and Chironomidae, appeared to be related with changes in the densities of Acidovorax sp. This study revealed community relationships between macroinvertebrates and microorganisms, reflecting the connectivity between the two communities via the food chain. A further physio-ecological and symbiological study on the invertebrate-microorganism relationships will be required to understand the degradation and utilization of detritus in aquatic ecosystems as well as to elucidate the roles of the inter-taxa in the recovery of polluted aquatic environments.
Degravitation, inflation and the cosmological constant as an afterglow
NASA Astrophysics Data System (ADS)
Patil, Subodh P.
2009-01-01
In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation — where Netwon's constant is promoted to a scale dependent filter function — as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant `afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (L) in Planck units Λ ~ l2pl/L2. We discuss circumstances through which this scenario reasonably yields the presently observed value for Λ ~ O(10-120). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale. We argue that different functional forms for the filter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large in addition to why it is not zero, it does not satisfactorily address the co-incidence problem without additional tuning.
A note on the accuracy of KS-DFT densities
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Perera, Ajith; Bartlett, Rodney J.
2017-11-01
The accuracy of the density of wave function methods and Kohn-Sham (KS) density functionals is studied using moments of the density, ⟨rn ⟩ =∫ ρ (r )rnd τ =∫0∞4 π r2ρ (r ) rnd r ,where n =-1 ,-2,0,1,2 ,and 3 provides information about the short- and long-range behavior of the density. Coupled cluster (CC) singles, doubles, and perturbative triples (CCSD(T)) is considered as the reference density. Three test sets are considered: boron through neon neutral atoms, two and four electron cations, and 3d transition metals. The total density and valence only density are distinguished by dropping appropriate core orbitals. Among density functionals tested, CAMQTP00 and ωB97x show the least deviation for boron through neon neutral atoms. They also show accurate eigenvalues for the HOMO indicating that they should have a more correct long-range behavior for the density. For transition metals, some density functional approximations outperform some wave function methods, suggesting that the KS determinant could be a better starting point for some kinds of correlated calculations. By using generalized many-body perturbation theory (MBPT), the convergence of second-, third-, and fourth-order KS-MBPT for the density is addressed as it converges to the infinite-order coupled cluster result. For the transition metal test set, the deviations in the KS density functional theory methods depend on the amount of exact exchange the functional uses. Functionals with exact exchange close to 25% show smaller deviations from the CCSD(T) density.
Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles.
Parsons, S M; Koenigsberger, R
1980-01-01
The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to[14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3- about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicle were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group. PMID:6934549
Report #18-P-0030, October 30, 2017. Weaknesses in the Identity and Access Management and Incident Response metric domains leave the CSB vulnerable to attacks occurring and not being detected in a timely manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nizami, Lance
2010-03-01
Norwich's Entropy Theory of Perception (1975-present) is a general theory of perception, based on Shannon's Information Theory. Among many bold claims, the Entropy Theory presents a truly astounding result: that Stevens' Law with an Index of 1, an empirical power relation of direct proportionality between perceived taste intensity and stimulus concentration, arises from theory alone. Norwich's theorizing starts with several extraordinary hypotheses. First, 'multiple, parallel receptor-neuron units' without collaterals 'carry essentially the same message to the brain', i.e. the rate-level curves are identical. Second, sensation is proportional to firing rate. Third, firing rate is proportional to the taste receptor's 'resolvablemore » uncertainty'. Fourth, the 'resolvable uncertainty' is obtained from Shannon's Information Theory. Finally, 'resolvable uncertainty' also depends upon the microscopic thermodynamic density fluctuation of the tasted solute. Norwich proves that density fluctuation is density variance, which is proportional to solute concentration, all based on the theory of fluctuations in fluid composition from Tolman's classic physics text, 'The Principles of Statistical Mechanics'. Altogether, according to Norwich, perceived taste intensity is theoretically proportional to solute concentration. Such a universal rule for taste, one that is independent of solute identity, personal physiological differences, and psychophysical task, is truly remarkable and is well-deserving of scrutiny. Norwich's crucial step was the derivation of density variance. That step was meticulously reconstructed here. It transpires that the appropriate fluctuation is Tolman's mean-square fractional density fluctuation, not density variance as used by Norwich. Tolman's algebra yields a 'Stevens Index' of -1 rather than 1. As 'Stevens Index' empirically always exceeds zero, the Index of -1 suggests that it is risky to infer psychophysical laws of sensory response from information theory and stimulus physics while ignoring empirical biological transformations, such as sensory transduction. Indeed, it raises doubts as to whether the Entropy Theory actually describes psychophysical laws at all.« less
1981-01-01
This fact being established, leptokurtic and platykurtic density functions are defined in terms of deviations from the normal density function. Thus...the usual definitions (Ref. 6) are: Leptokurtic - A density function that is peaked, K > 0, [18] and Platykurtic - A density function that is flat, K...has long Deen accepted that a symmetrical platykurtic density function, with K<O, is characterized by a flatter top and more abrupt terminals than the
Left inferior-parietal lobe activity in perspective tasks: identity statements
Arora, Aditi; Weiss, Benjamin; Schurz, Matthias; Aichhorn, Markus; Wieshofer, Rebecca C.; Perner, Josef
2015-01-01
We investigate the theory that the left inferior parietal lobe (IPL) is closely associated with tracking potential differences of perspective. Developmental studies find that perspective tasks are mastered at around 4 years of age. Our first study, meta-analyses of brain imaging studies shows that perspective tasks specifically activate a region in the left IPL and precuneus. These tasks include processing of false belief, visual perspective, and episodic memory. We test the location specificity theory in our second study with an unusual and novel kind of perspective task: identity statements. According to Frege's classical logical analysis, identity statements require appreciation of modes of presentation (perspectives). We show that identity statements, e.g., “the tour guide is also the driver” activate the left IPL in contrast to a control statements, “the tour guide has an apprentice.” This activation overlaps with the activations found in the meta-analysis. This finding is confirmed in a third study with different types of statements and different comparisons. All studies support the theory that the left IPL has as one of its overarching functions the tracking of perspective differences. We discuss how this function relates to the bottom-up attention function proposed for the bilateral IPL. PMID:26175677
Electron transport in high aspect ratio semiconductor nanowires and metal-semiconductor interfaces
NASA Astrophysics Data System (ADS)
Sun, Zhuting
We are facing variability problems for modern semiconductor transistors due to the fact that the performances of nominally identical devices in the scale of 10 100 nm could be dramatically different attributed to the small manufacturing variations. Different doping strategies give statistical variations in the number of dopant atom density ND in the channel. The material size gives variations in wire diameter dW. And the immediate environment of the material leads to an additional level of variability. E.g. vacuum-semiconductor interface causes variations in surface state density Ds, metal-semiconductor interface causes variations in Schottky barrier and dielectric semiconductor interface induces dielectric confinement at small scales. To approach these variability problems, I choose Si-doped GaAs nanowires as an example. I investigate transport in Si-doped GaAs nanowire (NW) samples contacted by lithographically patterned Gold-Titanium films as function of temperature T. I find a drastically different temperature dependence between the wire resistance RW, which is relatively weak, and the zero bias resistance RC, which is strong. I show that the data are consistent with a model based on a sharp donor energy level slightly above the bottom of the semiconductor conduction band and develop a simple method for using transport measurements for estimates of the doping density after nanowire growth. I discuss the predictions of effective free carrier density n eff as function of the surface state density Ds and wire size dW. I also describe a correction to the widely used model of Schottky contacts that improves thermodynamic consistency of the Schottky tunnel barrier profile and show that the original theory may underestimate the barrier conductance under certain conditions. I also provide analytical calculations for shallow silicon dopant energy in GaAs crystals, and find the presence of dielectrics (dielectric screening) and free carriers (Coulomb screening) cause a reduction of ionization energy and shift the donor energy level ED upward, accompanying conduction band EC shift downward due to band gap narrowing for doped semiconductor material. The theoretical results are in a reasonable agreement with previous experimental data. I also find that when the material reduces to nanoscale, dielectric confinement and surface depletion compete with both Coulomb screening and dielectric screening that shift the donor level ED down towards the band gap. The calculation should be appropriate for all types of semiconductors and dopant species.
NASA Astrophysics Data System (ADS)
Poyatos, Rafael; Sus, Oliver; Vilà-Cabrera, Albert; Vayreda, Jordi; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi
2016-04-01
Plant functional traits are increasingly being used in ecosystem ecology thanks to the growing availability of large ecological databases. However, these databases usually contain a large fraction of missing data because measuring plant functional traits systematically is labour-intensive and because most databases are compilations of datasets with different sampling designs. As a result, within a given database, there is an inevitable variability in the number of traits available for each data entry and/or the species coverage in a given geographical area. The presence of missing data may severely bias trait-based analyses, such as the quantification of trait covariation or trait-environment relationships and may hamper efforts towards trait-based modelling of ecosystem biogeochemical cycles. Several data imputation (i.e. gap-filling) methods have been recently tested on compiled functional trait databases, but the performance of imputation methods applied to a functional trait database with a regular spatial sampling has not been thoroughly studied. Here, we assess the effects of data imputation on five tree functional traits (leaf biomass to sapwood area ratio, foliar nitrogen, maximum height, specific leaf area and wood density) in the Ecological and Forest Inventory of Catalonia, an extensive spatial database (covering 31900 km2). We tested the performance of species mean imputation, single imputation by the k-nearest neighbors algorithm (kNN) and a multiple imputation method, Multivariate Imputation with Chained Equations (MICE) at different levels of missing data (10%, 30%, 50%, and 80%). We also assessed the changes in imputation performance when additional predictors (species identity, climate, forest structure, spatial structure) were added in kNN and MICE imputations. We evaluated the imputed datasets using a battery of indexes describing departure from the complete dataset in trait distribution, in the mean prediction error, in the correlation matrix and in selected bivariate trait relationships. MICE yielded imputations which better preserved the variability and covariance structure of the data and provided an estimate of between-imputation uncertainty. We found that adding species identity as a predictor in MICE and kNN improved imputation for all traits, but adding climate did not lead to any appreciable improvement. However, forest structure and spatial structure did reduce imputation errors in maximum height and in leaf biomass to sapwood area ratios, respectively. Although species mean imputations showed the lowest error for 3 out the 5 studied traits, dataset-averaged errors were lowest for MICE imputations with all additional predictors, when missing data levels were 50% or lower. Species mean imputations always resulted in larger errors in the correlation matrix and appreciably altered the studied bivariate trait relationships. In conclusion, MICE imputations using species identity, climate, forest structure and spatial structure as predictors emerged as the most suitable method of the ones tested here, but it was also evident that imputation performance deteriorates at high levels of missing data (80%).
Dynamic Structure Factor: An Introduction
NASA Astrophysics Data System (ADS)
Sturm, K.
1993-02-01
The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.
Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J
2011-09-21
The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.
Turner-Zwinkels, Felicity M; van Zomeren, Martijn; Postmes, Tom
2017-06-01
It is well known that politicized identities are especially good predictors of collective action, but very little is known about what these identities are. We propose that moral identity content plays a central role in politicized identities. We examined this among (un)politicized Americans in the 2012 US Presidential Elections. In a longitudinal community sample of US citizens (N = 760), we tracked personal (i.e., unique) and politicized (i.e., party activist) identity content: before, during, and after the election. We compared identity content of individuals who self-labelled as politicized (i.e., active party promoters) or unpoliticized (i.e., passive party supporters): (1) Democrats (n = 69) longitudinally and (2) Republicans (n = 69) cross-sectionally to examine three hypotheses: Moral identity content (e.g., trustworthy) would be more prominent in politicized (vs. unpoliticized) identities (H1); moral identity content overlapping politicized and personal identities predict seeing the self as politicized (H2) and engaging in party activism (H3). Results largely supported H1 and H2, but only weakly supported H3. We conclude that politicized identities are moralized identities that have a self-evaluative, but not strongly action-motivation, function. We discuss the implications of our findings and method for politicization research. © 2016 The British Psychological Society.
Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; He, Xing; Li, Hongfei
2018-01-01
This paper investigates the finite-time synchronization of complex networks (CNs) with non-identical nodes and impulsive disturbances. By utilizing stability theories, new 1-norm-based analytical techniques and suitable comparison, systems, several sufficient conditions are obtained to realize the synchronization goal in finite time. State feedback controllers with and without the sign function are designed. Results show that the controllers with sign function can reduce the conservativeness of control gains and the controllers without sign function can overcome the chattering phenomenon. Numerical simulations are offered to verify the effectiveness of the theoretical analysis.
Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura
2015-01-13
Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.
NASA Astrophysics Data System (ADS)
Cushman, K.; Muller-Landau, H. C.; Kellner, J. R.; Wright, S. J.; Condit, R.; Detto, M.; Tribble, C. M.
2015-12-01
Tropical forest carbon budgets play a major role in global carbon dynamics, but the responses of tropical forests to current and future inter-annual climatic variation remains highly uncertain. Better predictions of future tropical forest carbon fluxes require an improved understanding of how different species of tropical trees respond to changes in climate at seasonal and inter-annual temporal scales. We installed dendrometer bands on a size-stratified sample of 2000 trees in old growth forest on Barro Colorado Island, Panama, a moist lowland forest that experiences an annual dry season of approximately four months. Tree diameters were measured at the beginning and end of the rainy season since 2008. Additionally, we recorded the canopy illumination level, canopy intactness, and liana coverage of all trees during each census. We used linear mixed-effects models to evaluate how tree growth was related to seasonal and interannual variation in local climate, tree condition, and species identity, and how species identity effects related to tree functional traits. Climatic variables considered included precipitation, solar radiation, soil moisture, and climatological water deficit, and were all calculated from high-quality on-site measurements. Functional traits considered included wood density, maximum adult stature, deciduousness, and drought tolerance. We found that annual wood production was positively related to water availability, with higher growth in wetter years. Species varied in their response to seasonal water availability, with some species showing more pronounced reduction of growth during the dry season when water availability is limited. Interspecific variation in seasonal and interannual growth patterns was related to life-history strategies and species functional traits. The finding of higher growth in wetter years is consistent with previous tree ring studies conducted on a small subset of species with reliable annual rings. Together with previous findings that seed production at this site is higher in sunnier (and drier) years, this suggests strong climate-related shifts in allocation. This study highlights the importance of considering forest species composition and potential allocational shifts when predicting carbon fluxes in response to local climate variation.
Language Display: Authenticating Claims to Social Identity.
ERIC Educational Resources Information Center
Eastman, Carol M.; Stein, Roberta F.
1993-01-01
Discusses "language display," a language use strategy whereby members of one group lay claims to attributes associated with another, conveying messages of social, professional, ethnic identity. Examples from academia, politics, business, and advertising reveal language display functions as artifact of crossing linguistic boundaries…
Undergraduates improve upon published crystal structure in class assignment.
Horowitz, Scott; Koldewey, Philipp; Bardwell, James C
2014-01-01
Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the protein sequence. With minimal direction from the instructor on how the students should complete the assignment, the students fared remarkably well in this task, with over half the class able to reconstruct the original sequence with over 77% sequence identity, and with structures whose median ranked in the 91(st) percentile of all structures of comparable resolution in terms of structure quality. Fourteen percent of the students' structures produced Molprobity steric clash validation scores even better than that of the original structure, suggesting that multiple students achieved an improvement in the overall structure quality compared to the published structure. Students were able to delineate limiting case chemical environments, such as charged interactions or complete solvent exposure, but were less able to distinguish finer details of hydrogen bonding or hydrophobicity. Our results prompt several questions: why were students able to perform so well in their structural validation scores? How were some students able to outperform the 88% sequence identity mark that would constitute a perfect score, given the level of degenerate density or surface residues with poor density? And how can the methodology used by the best students inform the practices of professional X-ray crystallographers? Copyright © 2014 Wiley Periodicals, Inc.
Fisher, Katie; Towler, John; Eimer, Martin
2016-01-08
It is frequently assumed that facial identity and facial expression are analysed in functionally and anatomically distinct streams within the core visual face processing system. To investigate whether expression and identity interact during the visual processing of faces, we employed a sequential matching procedure where participants compared either the identity or the expression of two successively presented faces, and ignored the other irrelevant dimension. Repetitions versus changes of facial identity and expression were varied independently across trials, and event-related potentials (ERPs) were recorded during task performance. Irrelevant facial identity and irrelevant expression both interfered with performance in the expression and identity matching tasks. These symmetrical interference effects show that neither identity nor expression can be selectively ignored during face matching, and suggest that they are not processed independently. N250r components to identity repetitions that reflect identity matching mechanisms in face-selective visual cortex were delayed and attenuated when there was an expression change, demonstrating that facial expression interferes with visual identity matching. These findings provide new evidence for interactions between facial identity and expression within the core visual processing system, and question the hypothesis that these two attributes are processed independently. Copyright © 2015 Elsevier Ltd. All rights reserved.
2012-01-01
Background In the continuing revision of Diagnostic and Statistical Manual (DSM-V) “identity” is integrated as a central diagnostic criterion for personality disorders (self-related personality functioning). According to Kernberg, identity diffusion is one of the core elements of borderline personality organization. As there is no elaborated self-rating inventory to assess identity development in healthy and disturbed adolescents, we developed the AIDA (Assessment of Identity Development in Adolescence) questionnaire to assess this complex dimension, varying from “Identity Integration” to “Identity Diffusion”, in a broad and substructured way and evaluated its psychometric properties in a mixed school and clinical sample. Methods Test construction was deductive, referring to psychodynamic as well as social-cognitive theories, and led to a special item pool, with consideration for clarity and ease of comprehension. Participants were 305 students aged 12–18 attending a public school and 52 adolescent psychiatric inpatients and outpatients with diagnoses of personality disorders (N = 20) or other mental disorders (N = 32). Convergent validity was evaluated by covariations with personality development (JTCI 12–18 R scales), criterion validity by differences in identity development (AIDA scales) between patients and controls. Results AIDA showed excellent total score (Diffusion: α = .94), scale (Discontinuity: α = .86; Incoherence: α = .92) and subscale (α = .73-.86) reliabilities. High levels of Discontinuity and Incoherence were associated with low levels in Self Directedness, an indicator of maladaptive personality functioning. Both AIDA scales were significantly different between PD-patients and controls with remarkable effect sizes (d) of 2.17 and 1.94 standard deviations. Conclusion AIDA is a reliable and valid instrument to assess normal and disturbed identity in adolescents. Studies for further validation and for obtaining population norms are in progress and may provide insight in the relevant aspects of identity development in differentiating specific psychopathology and therapeutic focus and outcome. PMID:22812911
Shades of American Identity: Implicit Relations between Ethnic and National Identities
Devos, Thierry; Mohamed, Hafsa
2015-01-01
The issue of ethnic diversity and national identity in an immigrant nation such as the USA is a recurrent topic of debate. We review and integrate research examining the extent to which the American identity is implicitly granted or denied to members of different ethnic groups. Consistently, European Americans are implicitly conceived of as being more American than African, Asian, Latino, and even Native Americans. This implicit American = White effect emerges when explicit knowledge or perceptions point in the opposite direction. The propensity to deny the American identity to members of ethnic minorities is particularly pronounced when targets (individuals or groups) are construed through the lenses of ethnic identities. Implicit ethnic–national associations fluctuate as a function of perceivers’ ethnic identity and political orientation, but also contextual or situational factors. The tendency to equate being American with being White accounts for the strength of national identification (among European Americans) and behavioral responses including hiring recommendations and voting intentions. The robust propensity to deny the American identity to ethnic minority groups reflects an exclusionary national identity. PMID:27011765
NASA Technical Reports Server (NTRS)
Cen, Renyue; Ostriker, Jeremiah P.
1994-01-01
A new, three-dimensional, shock-capturing, hydrodynamic code is utilized to determine the distribution of hot gas in a cold dark matter (CDM) + lambda model universe. Periodic boundary conditions are assumed: a box with size 85/h Mpc, having cell size 0.31/h Mpc, is followed in a simulation with 270(exp 3) = 10(exp 7.3) cells. We adopt omega = 0.45, lambda = 0.55, h identically equal to H/100 km/s/Mpc = 0.6, and then, from the cosmic background explorer (COBE) and light element nucleosynthesis, sigma(sub 8) = 0.77, omega(sub b) = 0.043. We identify the X-ray emitting clusters in the simulation box, compute the luminosity function at several wavelength bands, the temperature function and estimated sizes, as well as the evolution of these quantities with redshift. This open model succeeds in matching local observations of clusters in contrast to the standard omega = 1, CDM model, which fails. It predicts an order of magnitude decline in the number density of bright (h nu = 2-10 keV) clusters from z = 0 to z = 2 in contrast to a slight increase in the number density for standard omega = 1, CDM model. This COBE-normalized CDM + lambda model produces approximately the same number of X-ray clusters having L(sub x) greater than 10(exp 43) erg/s as observed. The background radiation field at 1 keV due to clusters is approximately the observed background which, after correction for numerical effects, again indicates that the model is consistent with observations.
Kim, Hyoungkyu; Hudetz, Anthony G.; Lee, Joseph; Mashour, George A.; Lee, UnCheol; Avidan, Michael S.
2018-01-01
The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain. PMID:29503611
Kim, Hyoungkyu; Hudetz, Anthony G; Lee, Joseph; Mashour, George A; Lee, UnCheol
2018-01-01
The integrated information theory (IIT) proposes a quantitative measure, denoted as Φ, of the amount of integrated information in a physical system, which is postulated to have an identity relationship with consciousness. IIT predicts that the value of Φ estimated from brain activities represents the level of consciousness across phylogeny and functional states. Practical limitations, such as the explosive computational demands required to estimate Φ for real systems, have hindered its application to the brain and raised questions about the utility of IIT in general. To achieve practical relevance for studying the human brain, it will be beneficial to establish the reliable estimation of Φ from multichannel electroencephalogram (EEG) and define the relationship of Φ to EEG properties conventionally used to define states of consciousness. In this study, we introduce a practical method to estimate Φ from high-density (128-channel) EEG and determine the contribution of each channel to Φ. We examine the correlation of power, frequency, functional connectivity, and modularity of EEG with regional Φ in various states of consciousness as modulated by diverse anesthetics. We find that our approximation of Φ alone is insufficient to discriminate certain states of anesthesia. However, a multi-dimensional parameter space extended by four parameters related to Φ and EEG connectivity is able to differentiate all states of consciousness. The association of Φ with EEG connectivity during clinically defined anesthetic states represents a new practical approach to the application of IIT, which may be used to characterize various physiological (sleep), pharmacological (anesthesia), and pathological (coma) states of consciousness in the human brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bétrémieux, Yan; Kaltenegger, Lisa, E-mail: betremieux@mpia.de
2014-08-10
Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth,more » and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 μm model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.« less
Hill, J Grant
2013-09-30
Auxiliary basis sets (ABS) specifically matched to the cc-pwCVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (OBS) have been developed and optimized for the 4d elements Y-Pd at the second-order Møller-Plesset perturbation theory level. Calculation of the core-valence electron correlation energies for small to medium sized transition metal complexes demonstrates that the error due to the use of these new sets in density fitting is three to four orders of magnitude smaller than that due to the OBS incompleteness, and hence is considered negligible. Utilizing the ABSs in the resolution-of-the-identity component of explicitly correlated calculations is also investigated, where it is shown that i-type functions are important to produce well-controlled errors in both integrals and correlation energy. Benchmarking at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations level indicates impressive convergence with respect to basis set size for the spectroscopic constants of 4d monofluorides; explicitly correlated double-ζ calculations produce results close to conventional quadruple-ζ, and triple-ζ is within chemical accuracy of the complete basis set limit. Copyright © 2013 Wiley Periodicals, Inc.
Percolation of the site random-cluster model by Monte Carlo method
NASA Astrophysics Data System (ADS)
Wang, Songsong; Zhang, Wanzhou; Ding, Chengxiang
2015-08-01
We propose a site random-cluster model by introducing an additional cluster weight in the partition function of the traditional site percolation. To simulate the model on a square lattice, we combine the color-assignation and the Swendsen-Wang methods to design a highly efficient cluster algorithm with a small critical slowing-down phenomenon. To verify whether or not it is consistent with the bond random-cluster model, we measure several quantities, such as the wrapping probability Re, the percolating cluster density P∞, and the magnetic susceptibility per site χp, as well as two exponents, such as the thermal exponent yt and the fractal dimension yh of the percolating cluster. We find that for different exponents of cluster weight q =1.5 , 2, 2.5 , 3, 3.5 , and 4, the numerical estimation of the exponents yt and yh are consistent with the theoretical values. The universalities of the site random-cluster model and the bond random-cluster model are completely identical. For larger values of q , we find obvious signatures of the first-order percolation transition by the histograms and the hysteresis loops of percolating cluster density and the energy per site. Our results are helpful for the understanding of the percolation of traditional statistical models.
NASA Astrophysics Data System (ADS)
Weiss, J. R. M.; Lamprecht, T.; Meier, N.; Dangel, R.; Horst, F.; Jubin, D.; Beyeler, R.; Offrein, B. J.
2010-02-01
We report on the co-packaging of electrical CMOS transceiver and VCSEL chip arrays on a flexible electrical substrate with optical polymer waveguides. The electro-optical components are attached to the substrate edge and butt-coupled to the waveguides. Electrically conductive silver-ink connects them to the substrate at an angle of 90°. The final assembly contacts the surface of a package laminate with an integrated compressible connector. The module can be folded to save space, requires only a small footprint on the package laminate and provides short electrical high-speed signal paths. With our approach, the electro-optical package becomes a compact electro-optical module with integrated polymer waveguides terminated with either optical connectors (e.g., at the card edge) or with an identical assembly for a second processor on the board. Consequently, no costly subassemblies and connectors are needed, and a very high integration density and scalability to virtually arbitrary channel counts and towards very high data rates (20+ Gbps) become possible. Future cost targets of much less than US$1 per Gbps will be reached by employing standard PCB materials and technologies that are well established in the industry. Moreover, our technology platform has both electrical and optical connectivity and functionality.
Nine formulations of quantum mechanics
NASA Astrophysics Data System (ADS)
Styer, Daniel F.; Balkin, Miranda S.; Becker, Kathryn M.; Burns, Matthew R.; Dudley, Christopher E.; Forth, Scott T.; Gaumer, Jeremy S.; Kramer, Mark A.; Oertel, David C.; Park, Leonard H.; Rinkoski, Marie T.; Smith, Clait T.; Wotherspoon, Timothy D.
2002-03-01
Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and Hamilton-Jacobi formulations. Also mentioned are the many-worlds and transactional interpretations. The various formulations differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results.
Temporal Dynamics of Awareness for Facial Identity Revealed with ERP
ERIC Educational Resources Information Center
Genetti, Melanie; Khateb, Asaid; Heinzer, Severine; Michel, Christoph M.; Pegna, Alan J.
2009-01-01
In this study, we investigated the scalp recorded event-related potential (ERP) responses related to visual awareness. A backward masking procedure was performed while high-density EEG recordings were carried out. Subjects were asked to detect a familiar face, presented at durations that varied parametrically between 16 and 266 ms. ERPs were…
Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya
The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding sitemore » has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.« less
Kembel, Steven W.; O’Connor, Timothy K.; Arnold, Holly K.; Hubbell, Stephen P.; Wright, S. Joseph; Green, Jessica L.
2014-01-01
The phyllosphere—the aerial surfaces of plants, including leaves—is a ubiquitous global habitat that harbors diverse bacterial communities. Phyllosphere bacterial communities have the potential to influence plant biogeography and ecosystem function through their influence on the fitness and function of their hosts, but the host attributes that drive community assembly in the phyllosphere are poorly understood. In this study we used high-throughput sequencing to quantify bacterial community structure on the leaves of 57 tree species in a neotropical forest in Panama. We tested for relationships between bacterial communities on tree leaves and the functional traits, taxonomy, and phylogeny of their plant hosts. Bacterial communities on tropical tree leaves were diverse; leaves from individual trees were host to more than 400 bacterial taxa. Bacterial communities in the phyllosphere were dominated by a core microbiome of taxa including Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria, and Sphingobacteria. Host attributes including plant taxonomic identity, phylogeny, growth and mortality rates, wood density, leaf mass per area, and leaf nitrogen and phosphorous concentrations were correlated with bacterial community structure on leaves. The relative abundances of several bacterial taxa were correlated with suites of host plant traits related to major axes of plant trait variation, including the leaf economics spectrum and the wood density–growth/mortality tradeoff. These correlations between phyllosphere bacterial diversity and host growth, mortality, and function suggest that incorporating information on plant–microbe associations will improve our ability to understand plant functional biogeography and the drivers of variation in plant and ecosystem function. PMID:25225376
Impaired holistic coding of facial expression and facial identity in congenital prosopagnosia.
Palermo, Romina; Willis, Megan L; Rivolta, Davide; McKone, Elinor; Wilson, C Ellie; Calder, Andrew J
2011-04-01
We test 12 individuals with congenital prosopagnosia (CP), who replicate a common pattern of showing severe difficulty in recognising facial identity in conjunction with normal recognition of facial expressions (both basic and 'social'). Strength of holistic processing was examined using standard expression composite and identity composite tasks. Compared to age- and sex-matched controls, group analyses demonstrated that CPs showed weaker holistic processing, for both expression and identity information. Implications are (a) normal expression recognition in CP can derive from compensatory strategies (e.g., over-reliance on non-holistic cues to expression); (b) the split between processing of expression and identity information may take place after a common stage of holistic processing; and (c) contrary to a recent claim, holistic processing of identity is functionally involved in face identification ability. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, James H; Hilton, Denis J
2005-12-01
Socially shared representations of history have been important in creating, maintaining and changing a people's identity. Their management and negotiation are central to interethnic and international relations. We present a narrative framework to represent how collectively significant events become (selectively) incorporated in social representations that enable positioning of ethnic, national and supranational identities. This perspective creates diachronic (temporal) links between the functional (e.g. realistic conflict theory), social identity, and cognitive perspectives on intergroup relations. The charters embedded in these representations condition nations with similar interests to adopt different political stances in dealing with current events, and can influence the perceived stability and legitimacy of social orders. They are also instrumental in determining social identity strategies for reacting to negative social comparisons, and can influence the relationships between national and ethnic identities.
Impaired holistic coding of facial expression and facial identity in congenital prosopagnosia
Palermo, Romina; Willis, Megan L.; Rivolta, Davide; McKone, Elinor; Wilson, C. Ellie; Calder, Andrew J.
2011-01-01
We test 12 individuals with congenital prosopagnosia (CP), who replicate a common pattern of showing severe difficulty in recognising facial identity in conjunction with normal recognition of facial expressions (both basic and ‘social’). Strength of holistic processing was examined using standard expression composite and identity composite tasks. Compared to age- and sex-matched controls, group analyses demonstrated that CPs showed weaker holistic processing, for both expression and identity information. Implications are (a) normal expression recognition in CP can derive from compensatory strategies (e.g., over-reliance on non-holistic cues to expression); (b) the split between processing of expression and identity information may take place after a common stage of holistic processing; and (c) contrary to a recent claim, holistic processing of identity is functionally involved in face identification ability. PMID:21333662
Social-Identity Functions of Attraction to Organizations
ERIC Educational Resources Information Center
Highhouse, Scott; Thornbury, Erin E.; Little, Ian S.
2007-01-01
This article examines the self-presentation goals that underlie attraction to organizations. Expanding on Lievens and Highhouse's (2003) instrumental vs. symbolic classification of corporate attributes, a theory of symbolic attraction is presented that posits social-identity consciousness as a moderator of the relation between symbolic inferences…
Quantum entanglement of identical particles by standard information-theoretic notions
Lo Franco, Rosario; Compagno, Giuseppe
2016-01-01
Quantum entanglement of identical particles is essential in quantum information theory. Yet, its correct determination remains an open issue hindering the general understanding and exploitation of many-particle systems. Operator-based methods have been developed that attempt to overcome the issue. Here we introduce a state-based method which, as second quantization, does not label identical particles and presents conceptual and technical advances compared to the previous ones. It establishes the quantitative role played by arbitrary wave function overlaps, local measurements and particle nature (bosons or fermions) in assessing entanglement by notions commonly used in quantum information theory for distinguishable particles, like partial trace. Our approach furthermore shows that bringing identical particles into the same spatial location functions as an entangling gate, providing fundamental theoretical support to recent experimental observations with ultracold atoms. These results pave the way to set and interpret experiments for utilizing quantum correlations in realistic scenarios where overlap of particles can count, as in Bose-Einstein condensates, quantum dots and biological molecular aggregates. PMID:26857475
Tynes, Brendesha M; Umaña-Taylor, Adriana J; Rose, Chad A; Lin, Johnny; Anderson, Carolyn J
2012-03-01
A growing body of literature has shown that being victimized online is associated with poor mental health. Little is known about the factors that protect youth from the negative outcomes that may result from these victimization experiences, particularly those related to race. Using a risk and resilience framework, this study examined the protective function of ethnic identity and self-esteem among African Americans who experience online racial discrimination. For the sample of 125 adolescents, hierarchical regression results revealed that higher levels of ethnic identity and self-esteem significantly moderated the negative impact of online racial discrimination on anxiety levels. These findings show that ethnic identity and self-esteem can buffer the negative mental health outcomes associated with online racial discrimination, at least with respect to adolescents' anxiety. Findings from the current study have significant implications for adolescent adjustment given the increased time youth spend doing online activities. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Processes and content of narrative identity development in adolescence: gender and well-being.
McLean, Kate C; Breen, Andrea V
2009-05-01
The present study examined narrative identity in adolescence (14-18 years) in terms of narrative content and processes of identity development. Age- and gender-related differences in narrative patterns in turning point memories and gender differences in the content and functions for sharing those memories were examined, as was the relationship between narrative patterns and self-esteem. The narrative patterns focused on were meaning-making (learning from past events) and emotionality of the narratives, specified as overall positive emotional tone and redemptive sequencing. Results showed an age-related increase in meaning-making but no gender differences in the degree of meaning-making. Results further showed that gender predicted self-esteem and that boys evidenced higher self-esteem. Emotionality also predicted self-esteem; this was especially true for redemption and for boys. In terms of telling functions, girls endorsed more relational reasons for telling memories than did boys. Results are discussed in terms of potential gendered and nongendered pathways for identity development in adolescence. Copyright 2009 APA, all rights reserved
The SU(r)2 string functions as q-diagrams
NASA Astrophysics Data System (ADS)
Genish, Arel; Gepner, Doron
2016-06-01
A generalized Roger Ramanujan (GRR) type expression for the characters of A-type parafermions has been a long standing puzzle dating back to conjectures made regarding some of the characters in the 90s. Not long ago we have put forward such GRR type identities describing any of the level two ADE-type generalized parafermions characters at any rank. These characters are the string functions of simply laced Lie algebras at level two, as such, they are also of mathematical interest. In our last joint paper we presented the complete derivation for the D-type generalized parafermions characters identities. Here we generalize our previous discussion and prove the GRR type expressions for the characters of A-type generalized parafermions. To prove the A-type GRR conjecture we study further the q-diagrams, introduced in our last joint paper, and examine the diagrammatic interpretations of known identities among them Slater identities for the characters of the first minimal model, which is the Ising model, and the Bailey lemma.
Biological origins of sexual orientation and gender identity: Impact on health.
O'Hanlan, Katherine A; Gordon, Jennifer C; Sullivan, Mackenzie W
2018-04-01
Gynecologic Oncologists are sometimes consulted to care for patients who present with diverse gender identities or sexual orientations. Clinicians can create more helpful relationships with their patients if they understand the etiologies of these diverse expressions of sexual humanity. Multidisciplinary evidence reveals that a sexually dimorphic spectrum of somatic and neurologic anatomy, traits and abilities, including sexual orientation and gender identity, are conferred together during the first half of pregnancy due to genetics, epigenetics and the diversity of timing and function of sex chromosomes, sex-determining protein secretion, gonadal hormone secretion, receptor levels, adrenal function, maternally ingested dietary hormones, fetal health, and many other factors. Multiple layers of evidence confirm that sexual orientation and gender identity are as biological, innate and immutable as the other traits conferred during that critical time in gestation. Negative social responses to diverse orientations or gender identities have caused marginalization of these individuals with resultant alienation from medical care, reduced self-care and reduced access to medical care. The increased risks for many diseases, including gynecologic cancers are reviewed. Gynecologic Oncologists can potentially create more effective healthcare relationships with their patients if they have this information. Copyright © 2017 Elsevier Inc. All rights reserved.
Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks
Ringbauer, Harald; Coop, Graham
2017-01-01
Recently it has become feasible to detect long blocks of nearly identical sequence shared between pairs of genomes. These identity-by-descent (IBD) blocks are direct traces of recent coalescence events and, as such, contain ample signal to infer recent demography. Here, we examine sharing of such blocks in two-dimensional populations with local migration. Using a diffusion approximation to trace genetic ancestry, we derive analytical formulas for patterns of isolation by distance of IBD blocks, which can also incorporate recent population density changes. We introduce an inference scheme that uses a composite-likelihood approach to fit these formulas. We then extensively evaluate our theory and inference method on a range of scenarios using simulated data. We first validate the diffusion approximation by showing that the theoretical results closely match the simulated block-sharing patterns. We then demonstrate that our inference scheme can accurately and robustly infer dispersal rate and effective density, as well as bounds on recent dynamics of population density. To demonstrate an application, we use our estimation scheme to explore the fit of a diffusion model to Eastern European samples in the Population Reference Sample data set. We show that ancestry diffusing with a rate of σ≈50−−100 km/gen during the last centuries, combined with accelerating population growth, can explain the observed exponential decay of block sharing with increasing pairwise sample distance. PMID:28108588
Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.
Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve
2017-09-12
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
Pinch technique and the Batalin-Vilkovisky formalism
NASA Astrophysics Data System (ADS)
Binosi, Daniele; Papavassiliou, Joannis
2002-07-01
In this paper we take the first step towards a nondiagrammatic formulation of the pinch technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the pinch technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful nonlinear identities, which express the background field method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic antifield; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.
Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura
2016-02-04
A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications.
Entanglement entropy flow and the Ward identity.
Rosenhaus, Vladimir; Smolkin, Michael
2014-12-31
We derive differential equations for the flow of entanglement entropy as a function of the metric and the couplings of the theory. The variation of the universal part of entanglement entropy under a local Weyl transformation is related to the variation under a local change in the couplings. We show that this relation is, in fact, equivalent to the trace Ward identity. As a concrete application of our formalism, we express the entanglement entropy for massive free fields as a two-point function of the energy-momentum tensor.
NASA Technical Reports Server (NTRS)
Garber, Donald P.
1993-01-01
A probability density function for the variability of ensemble averaged spectral estimates from helicopter acoustic signals in Gaussian background noise was evaluated. Numerical methods for calculating the density function and for determining confidence limits were explored. Density functions were predicted for both synthesized and experimental data and compared with observed spectral estimate variability.
The missing link: leadership, identity, and the social brain.
van Vugt, Mark
2012-05-01
How the cohesion of a social network is being maintained in spite of having different layers of social interaction is an important question. I argue that the evolution of both (political) hierarchy and social identity play a crucial role in scaling up and bonding social networks. Together they are missing links in the social brain hypothesis, and further research is needed to understand the functions of leadership and social identity. ©2011 The British Psychological Society.
Röder, Christian H; Mohr, Harald; Linden, David E J
2011-02-01
Faces are multidimensional stimuli that convey information for complex social and emotional functions. Separate neural systems have been implicated in the recognition of facial identity (mainly extrastriate visual cortex) and emotional expression (limbic areas and the superior temporal sulcus). Working-memory (WM) studies with faces have shown different but partly overlapping activation patterns in comparison to spatial WM in parietal and prefrontal areas. However, little is known about the neural representations of the different facial dimensions during WM. In the present study 22 subjects performed a face-identity or face-emotion WM task at different load levels during functional magnetic resonance imaging. We found a fronto-parietal-visual WM-network for both tasks during maintenance, including fusiform gyrus. Limbic areas in the amygdala and parahippocampal gyrus demonstrated a stronger activation for the identity than the emotion condition. One explanation for this finding is that the repetitive presentation of faces with different identities but the same emotional expression during the identity-task is responsible for the stronger increase in BOLD signal in the amygdala. These results raise the question how different emotional expressions are coded in WM. Our findings suggest that emotional expressions are re-coded in an abstract representation that is supported at the neural level by the canonical fronto-parietal WM network. Copyright © 2010 Elsevier Ltd. All rights reserved.
Unger, Jennifer B.; Meca, Alan; Lorenzo-Blanco, Elma I.; Baezconde-Garbanati, Lourdes; Cano, Miguel Ángel; Piña-Watson, Brandy; Szapocznik, José; Zamboanga, Byron L.; Córdova, David; Romero, Andrea J.; Lee, Tae Kyoung; Soto, Daniel W.; Villamar, Juan A.; Lizzi, Karina M.; Des Rosiers, Sabrina E.; Pattarroyo, Monica
2016-01-01
The present study was designed to examine trajectories of personal identity coherence and confusion among Hispanic recent-immigrant adolescents, as well as the effects of these trajectories on psychosocial and risk-taking outcomes. Personal identity is extremely important in anchoring young immigrants during a time of acute cultural change. A sample of 302 recently immigrated (5 years or less in the United States at baseline) Hispanic adolescents (Mage = 14.51 years at baseline; SD = 0.88 years, range 14–17) from Miami and Los Angeles (47 % girls) completed measures of personal identity coherence and confusion at the first five waves of a six-wave longitudinal study; and reported on positive psychosocial functioning, depressive symptoms, and externalizing problems at baseline and at Time 6. Results indicated that identity coherence increased linearly across time, but that there were no significant changes in confusion over time and no individual differences in confusion trajectories. Higher baseline levels of, and improvements in, coherence predicted higher levels of self-esteem, optimism, and prosocial behavior at the final study timepoint. Higher baseline levels of confusion predicted lower self-esteem, greater depressive symptoms, more aggressive behavior, and more rule breaking at the final study timepoint. These results are discussed in terms of the importance of personal identity for Hispanic immigrant adolescents, and in terms of implications for intervention. PMID:27882458
Schwartz, Seth J; Unger, Jennifer B; Meca, Alan; Lorenzo-Blanco, Elma I; Baezconde-Garbanati, Lourdes; Cano, Miguel Ángel; Piña-Watson, Brandy; Szapocznik, José; Zamboanga, Byron L; Córdova, David; Romero, Andrea J; Lee, Tae Kyoung; Soto, Daniel W; Villamar, Juan A; Lizzi, Karina M; Des Rosiers, Sabrina E; Pattarroyo, Monica
2017-04-01
The present study was designed to examine trajectories of personal identity coherence and confusion among Hispanic recent-immigrant adolescents, as well as the effects of these trajectories on psychosocial and risk-taking outcomes. Personal identity is extremely important in anchoring young immigrants during a time of acute cultural change. A sample of 302 recently immigrated (5 years or less in the United States at baseline) Hispanic adolescents (M age = 14.51 years at baseline; SD = 0.88 years, range 14-17) from Miami and Los Angeles (47 % girls) completed measures of personal identity coherence and confusion at the first five waves of a six-wave longitudinal study; and reported on positive psychosocial functioning, depressive symptoms, and externalizing problems at baseline and at Time 6. Results indicated that identity coherence increased linearly across time, but that there were no significant changes in confusion over time and no individual differences in confusion trajectories. Higher baseline levels of, and improvements in, coherence predicted higher levels of self-esteem, optimism, and prosocial behavior at the final study timepoint. Higher baseline levels of confusion predicted lower self-esteem, greater depressive symptoms, more aggressive behavior, and more rule breaking at the final study timepoint. These results are discussed in terms of the importance of personal identity for Hispanic immigrant adolescents, and in terms of implications for intervention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Randy R.; Bass, Robert B.; Kouzes, Richard T.
2003-01-20
This paper provides a brief overview of the implementation of the Advanced Encryption Standard (AES) as a hash function for confirming the identity of software resident on a computer system. The PNNL Software Authentication team chose to use a hash function to confirm software identity on a system for situations where: (1) there is limited time to perform the confirmation and (2) access to the system is restricted to keyboard or thumbwheel input and output can only be displayed on a monitor. PNNL reviewed three popular algorithms: the Secure Hash Algorithm - 1 (SHA-1), the Message Digest - 5 (MD-5),more » and the Advanced Encryption Standard (AES) and selected the AES to incorporate in software confirmation tool we developed. This paper gives a brief overview of the SHA-1, MD-5, and the AES and sites references for further detail. It then explains the overall processing steps of the AES to reduce a large amount of generic data-the plain text, such is present in memory and other data storage media in a computer system, to a small amount of data-the hash digest, which is a mathematically unique representation or signature of the former that could be displayed on a computer's monitor. This paper starts with a simple definition and example to illustrate the use of a hash function. It concludes with a description of how the software confirmation tool uses the hash function to confirm the identity of software on a computer system.« less
Stretched hydrogen molecule from a constrained-search density-functional perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valone, Steven M; Levy, Mel
2009-01-01
Constrained-search density functional theory gives valuable insights into the fundamentals of density functional theory. It provides exact results and bounds on the ground- and excited-state density functionals. An important advantage of the theory is that it gives guidance in the construction of functionals. Here they engage constrained search theory to explore issues associated with the functional behavior of 'stretched bonds' in molecular hydrogen. A constrained search is performed with familiar valence bond wavefunctions ordinarily used to describe molecular hydrogen. The effective, one-electron hamiltonian is computed and compared to the corresponding uncorrelated, Hartree-Fock effective hamiltonian. Analysis of the functional suggests themore » need to construct different functionals for the same density and to allow a competition among these functions. As a result the correlation energy functional is composed explicitly of energy gaps from the different functionals.« less
Long-Term Semantic Priming of Word Meaning
ERIC Educational Resources Information Center
Woltz, Dan J.
2010-01-01
Three experiments investigated facilitation in synonym decisions as a function of prior synonym decision trials that were either identical or semantically related. Experiment 1 demonstrated that semantically related prime trials produced less facilitation than identical prime trials, but facilitation from both persisted over 14 intervening trials.…
An Application of Probability to Combinatorics: A Proof of Vandermonde Identity
ERIC Educational Resources Information Center
Paolillo, Bonaventura; Rizzo, Piermichele; Vincenzi, Giovanni
2017-01-01
In this paper, we give possible suggestions for a classroom lesson about an application of probability using basic mathematical notions. We will approach to some combinatoric results without using "induction", "polynomial identities" nor "generating functions", and will give a proof of the "Vandermonde…
Instrument Construction and Initial Validation: Professional Identity Scale in Counseling (PISC)
ERIC Educational Resources Information Center
Woo, Hong Ryun
2013-01-01
The advantages of having a strong professional identity include ethical performances, promoted wellness, and increased awareness of roles and functions among individual counselors (Brott & Myers, 1999; Grimmit & Paisley, 2008; Ponton & Duba, 2009). Scholars in the counseling field have underscored the importance of unified professional…
Active Free Surface Density Maps
NASA Astrophysics Data System (ADS)
Çelen, S.
2016-10-01
Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.
Dynamics of A + B --> C reaction fronts in the presence of buoyancy-driven convection.
Rongy, L; Trevelyan, P M J; De Wit, A
2008-08-22
The dynamics of A+B-->C fronts in horizontal solution layers can be influenced by buoyancy-driven convection as soon as the densities of A, B, and C are not all identical. Such convective motions can lead to front propagation even in the case of equal diffusion coefficients and initial concentration of reactants for which reaction-diffusion (RD) scalings predict a nonmoving front. We show theoretically that the dynamics in the presence of convection can in that case be predicted solely on the basis of the knowledge of the one-dimensional RD density profile across the front.
Biometric recognition via fixation density maps
NASA Astrophysics Data System (ADS)
Rigas, Ioannis; Komogortsev, Oleg V.
2014-05-01
This work introduces and evaluates a novel eye movement-driven biometric approach that employs eye fixation density maps for person identification. The proposed feature offers a dynamic representation of the biometric identity, storing rich information regarding the behavioral and physical eye movement characteristics of the individuals. The innate ability of fixation density maps to capture the spatial layout of the eye movements in conjunction with their probabilistic nature makes them a particularly suitable option as an eye movement biometrical trait in cases when free-viewing stimuli is presented. In order to demonstrate the effectiveness of the proposed approach, the method is evaluated on three different datasets containing a wide gamut of stimuli types, such as static images, video and text segments. The obtained results indicate a minimum EER (Equal Error Rate) of 18.3 %, revealing the perspectives on the utilization of fixation density maps as an enhancing biometrical cue during identification scenarios in dynamic visual environments.
KUSAGAYA, Taro; TANAKA, Hiroyuki K. M.
2015-01-01
In conventional muography observations using two detectors for muon tracking, the accidental coincidence of vertical electromagnetic showers generates identical trajectories to the muon tracks. Although muography has favorable properties, which allow direct density measurements inside a volcano, the measured density is lower than the actual value due to these fortuitous trajectories. We performed muography of Usu volcano, and confirmed that, in comparison with a use of two detectors, background noise levels were reduced by more than one order of magnitude using seven detectors for selecting linear trajectories. The resultant muographic image showed a high-density region underneath the central region of Usu volcano. This picture is consistent with the magma intrusion model proposed in previous studies. To clarify the three-dimensional location and actual size of the detected high-density body, multidirectional muographic measurements are necessary. PMID:26560837
Kusagaya, Taro; Tanaka, Hiroyuki K M
2015-01-01
In conventional muography observations using two detectors for muon tracking, the accidental coincidence of vertical electromagnetic showers generates identical trajectories to the muon tracks. Although muography has favorable properties, which allow direct density measurements inside a volcano, the measured density is lower than the actual value due to these fortuitous trajectories. We performed muography of Usu volcano, and confirmed that, in comparison with a use of two detectors, background noise levels were reduced by more than one order of magnitude using seven detectors for selecting linear trajectories. The resultant muographic image showed a high-density region underneath the central region of Usu volcano. This picture is consistent with the magma intrusion model proposed in previous studies. To clarify the three-dimensional location and actual size of the detected high-density body, multidirectional muographic measurements are necessary.
Active Space Dependence in Multiconfiguration Pair-Density Functional Theory.
Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura
2018-02-13
In multiconfiguration pair-density functional theory (MC-PDFT), multiconfiguration self-consistent-field calculations and on-top density functionals are combined to describe both static and dynamic correlation. Here, we investigate how the MC-PDFT total energy and its components depend on the active space choice in the case of the H 2 and N 2 molecules. The active space dependence of the on-top pair density, the total density, the ratio of on-top pair density to half the square of the electron density, and the satisfaction of the virial theorem are also explored. We find that the density and on-top pair density do not change significantly with changes in the active space. However, the on-top ratio does change significantly with respect to active space change, and this affects the on-top energy. This study provides a foundation for designing on-top density functionals and automatizing the active space choice in MC-PDFT.
Multicomponent density functional theory embedding formulation.
Culpitt, Tanner; Brorsen, Kurt R; Pak, Michael V; Hammes-Schiffer, Sharon
2016-07-28
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density is separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF(-) molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.
Multicomponent density functional theory embedding formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culpitt, Tanner; Brorsen, Kurt R.; Pak, Michael V.
Multicomponent density functional theory (DFT) methods have been developed to treat two types of particles, such as electrons and nuclei, quantum mechanically at the same level. In the nuclear-electronic orbital (NEO) approach, all electrons and select nuclei, typically key protons, are treated quantum mechanically. For multicomponent DFT methods developed within the NEO framework, electron-proton correlation functionals based on explicitly correlated wavefunctions have been designed and used in conjunction with well-established electronic exchange-correlation functionals. Herein a general theory for multicomponent embedded DFT is developed to enable the accurate treatment of larger systems. In the general theory, the total electronic density ismore » separated into two subsystem densities, denoted as regular and special, and different electron-proton correlation functionals are used for these two electronic densities. In the specific implementation, the special electron density is defined in terms of spatially localized Kohn-Sham electronic orbitals, and electron-proton correlation is included only for the special electron density. The electron-proton correlation functional depends on only the special electron density and the proton density, whereas the electronic exchange-correlation functional depends on the total electronic density. This scheme includes the essential electron-proton correlation, which is a relatively local effect, as well as the electronic exchange-correlation for the entire system. This multicomponent DFT-in-DFT embedding theory is applied to the HCN and FHF{sup −} molecules in conjunction with two different electron-proton correlation functionals and three different electronic exchange-correlation functionals. The results illustrate that this approach provides qualitatively accurate nuclear densities in a computationally tractable manner. The general theory is also easily extended to other types of partitioning schemes for multicomponent systems.« less
Leaf bacterial diversity mediates plant diversity and ecosystem function relationships.
Laforest-Lapointe, Isabelle; Paquette, Alain; Messier, Christian; Kembel, Steven W
2017-06-01
Research on biodiversity and ecosystem functioning has demonstrated links between plant diversity and ecosystem functions such as productivity. At other trophic levels, the plant microbiome has been shown to influence host plant fitness and function, and host-associated microbes have been proposed to influence ecosystem function through their role in defining the extended phenotype of host organisms However, the importance of the plant microbiome for ecosystem function has not been quantified in the context of the known importance of plant diversity and traits. Here, using a tree biodiversity-ecosystem functioning experiment, we provide strong support for the hypothesis that leaf bacterial diversity is positively linked to ecosystem productivity, even after accounting for the role of plant diversity. Our results also show that host species identity, functional identity and functional diversity are the main determinants of leaf bacterial community structure and diversity. Our study provides evidence of a positive correlation between plant-associated microbial diversity and terrestrial ecosystem productivity, and a new mechanism by which models of biodiversity-ecosystem functioning relationships can be improved.
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Polivanov, M. C.
1992-11-01
The resolvent operator of the linear problem is determined as the full Green function continued in the complex domain in two variables. An analog of the known Hilbert identity is derived. We demonstrate the role of this identity in the study of two-dimensional scattering. Considering the nonstationary Schrödinger equation as an example, we show that all types of solutions of the linear problems, as well as spectral data known in the literature, are given as specific values of this unique function — the resolvent function. A new form of the inverse problem is formulated.
Kananenka, Alexei A; Zgid, Dominika
2017-11-14
We present a rigorous framework which combines single-particle Green's function theory with density functional theory based on a separation of electron-electron interactions into short- and long-range components. Short-range contribution to the total energy and exchange-correlation potential is provided by a density functional approximation, while the long-range contribution is calculated using an explicit many-body Green's function method. Such a hybrid results in a nonlocal, dynamic, and orbital-dependent exchange-correlation functional of a single-particle Green's function. In particular, we present a range-separated hybrid functional called srSVWN5-lrGF2 which combines the local-density approximation and the second-order Green's function theory. We illustrate that similarly to density functional approximations, the new functional is weakly basis-set dependent. Furthermore, it offers an improved description of the short-range dynamic correlation. The many-body contribution to the functional mitigates the many-electron self-interaction error present in many density functional approximations and provides a better description of molecular properties. Additionally, we illustrate that the new functional can be used to scale down the self-energy and, therefore, introduce an additional sparsity to the self-energy matrix that in the future can be exploited in calculations for large molecules or periodic systems.
Toward a Model of Work-Related Self: A Narrative Review.
Knez, Igor
2016-01-01
Occupational work as personal and social identification can be conceptualized as one of the life goals that we strive for and find meaning in. A basic categorization of the phenomenon of work-related identity is suggested, based on psychological theories of identity, memory and relational schema. It distinguishes between organizational, workgroup and professional identity. The two former relate to the concepts of social identity and collective self and the latter to the concepts of personal identity and individual self. These are assumed to form functionally independent cognitive structures, leading to separate motivations and influences on work-related satisfaction. Given this, empirical research on the impact of work-related identity on employee satisfaction, in general terms, is reviewed. The article concludes with some prospective directions for future research by sketching a general model of work-related self. It is hypothesized to evolve by a causal progression from employment across time via emotional and cognitive components.
Toward a Model of Work-Related Self: A Narrative Review
Knez, Igor
2016-01-01
Occupational work as personal and social identification can be conceptualized as one of the life goals that we strive for and find meaning in. A basic categorization of the phenomenon of work-related identity is suggested, based on psychological theories of identity, memory and relational schema. It distinguishes between organizational, workgroup and professional identity. The two former relate to the concepts of social identity and collective self and the latter to the concepts of personal identity and individual self. These are assumed to form functionally independent cognitive structures, leading to separate motivations and influences on work-related satisfaction. Given this, empirical research on the impact of work-related identity on employee satisfaction, in general terms, is reviewed. The article concludes with some prospective directions for future research by sketching a general model of work-related self. It is hypothesized to evolve by a causal progression from employment across time via emotional and cognitive components. PMID:27014140
Racial identity and academic achievement in the neighborhood context: a multilevel analysis.
Byrd, Christy M; Chavous, Tabbye M
2009-04-01
Increasingly, researchers have found relationships between a strong, positive sense of racial identity and academic achievement among African American youth. Less attention, however, has been given to the roles and functions of racial identity among youth experiencing different social and economic contexts. Using hierarchical linear modeling, the authors examined the relationship of racial identity to academic outcomes, taking into account neighborhood-level factors. The sample consisted of 564 African American eighth-graders (56% male). The authors found that neighborhood characteristics and racial identity related positively to academic outcomes, but that some relationships were different across neighborhood types. For instance, in neighborhoods low in economic opportunity, high pride was associated with a higher GPA, but in more advantaged neighborhoods, high pride was associated with a lower GPA. The authors discuss the need to take youth's contexts into account in order to understand how racial identity is active in the lives of African American youth.
Lange, Clare; Byrd, Mark
2002-01-01
Two hundred sixty-eight first-year university students were surveyed about the state of their identity development and their perceptions regarding chances for academic success in an introductory psychology course. In general, it was found that students who had an adult identity had a more accurate assessment of their chances for success in the course and also used more efficient study strategies. Students who had not completely formed an adult identity, however, were more inaccurate in estimates of their final grades and also seemed to use less productive study strategies. It was concluded that those who have formulated an adult identity might have also developed a more complete understanding of both themselves and their situation. Implications of the findings for further research regarding the effects of identity development on university life, as well as the implications for academic intervention programs, are discussed.
Quantum-chemical study of the effect of ligands on the structure and properties of gold clusters
NASA Astrophysics Data System (ADS)
Golosnaya, M. N.; Pichugina, D. A.; Oleinichenko, A. V.; Kuz'menko, N. E.
2017-02-01
The structures of [Au4(dpmp)2X2]2+clusters, where X =-C≡CH,-CH3,-SCH3,-F,-Cl,-Br,-I, dpmp is bis((diphenylphosphino)methyl)(phenyl)phosphine, are calculated at the level of density functional theory with the PBE functional and a modified Dirac-Coulomb-Breit Hamiltonian in an all-electron basis set (Λ). Using the example of [Au4(dpmp)2(C≡CC6H5)2]2+, the interatomic distances and bond angles calculated by means of PBE0/LANL2DZ, TPSS/LANL2DZ, TPSSh/LANL2DZ, and PBE/Λ are compared to X-ray crystallography data. It is shown that PBE/Λ yields the most accurate calculation of the geometrical parameters of this cluster. The ligand effect on the electronic stability of a cluster and the stability in reactions of decomposition into different fragments is studied, along with the capability of ligand exchange. Stability is predicted for [Au4(dpmp)2F2]2+ and [Au4(dpmp)2(SCH3)2]2+, while [Au4(dpmp)2I2]2+ cluster is unstable and its decomposes into two identical fragments is supposed.
Multiple Scattering in Random Mechanical Systems and Diffusion Approximation
NASA Astrophysics Data System (ADS)
Feres, Renato; Ng, Jasmine; Zhang, Hong-Kun
2013-10-01
This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that ( P h - I)/ h converges for small h to a second order elliptic differential operator on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator . Both P h and are self-adjoint (densely) defined on the space of square-integrable functions over the (lower) half-space in , where η is a stationary measure. This measure's density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.
Canonical fluid thermodynamics. [variational principles of stability for compressible adiabatic flow
NASA Technical Reports Server (NTRS)
Schmid, L. A.
1974-01-01
The space-time integral of the thermodynamic pressure plays in a certain sense the role of the thermodynamic potential for compressible adiabatic flow. The stability criterion can be converted into a variational minimum principle by requiring the molar free-enthalpy and temperature to be generalized velocities. In the fluid context, the definition of proper-time differentiation involves the fluid velocity expressed in terms of three particle identity parameters. The pressure function is then converted into a functional which is the Lagrangian density of the variational principle. Being also a minimum principle, the variational principle provides a means for comparing the relative stability of different flows. For boundary conditions with a high degree of symmetry, as in the case of a uniformly expanding spherical gas box, the most stable flow is a rectilinear flow for which the world-trajectory of each particle is a straight line. Since the behavior of the interior of a freely expanding cosmic cloud may be expected to be similar to that of the fluid in the spherical box of gas, this suggests that the cosmic principle is a consequence of the laws of thermodynamics, rather than just an ad hoc postulate.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Cooper, Robert; Pawson, Steven; Sun, Zhibin
2009-01-01
We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.
Exact conditions on the temperature dependence of density functionals
Burke, K.; Smith, J. C.; Grabowski, P. E.; ...
2016-05-15
Universal exact conditions guided the construction of most ground-state density functional approximations in use today. Here, we derive the relation between the entropy and Mermin free energy density functionals for thermal density functional theory. Both the entropy and sum of kinetic and electron-electron repulsion functionals are shown to be monotonically increasing with temperature, while the Mermin functional is concave downwards. Analogous relations are found for both exchange and correlation. The importance of these conditions is illustrated in two extremes: the Hubbard dimer and the uniform gas.
Mapping Me: Mapping Identity among Academically High-Performing Black Males
ERIC Educational Resources Information Center
Flennaugh, Terry K.
2016-01-01
Background: Scholars have argued that far too little research has examined the complex processes that many Black males undertake in constructing identities that function in schools (Howard & Flennaugh, 2011; Howard, Flennaugh, & Terry, 2012; Terry, Flennaugh, Blackmon, & Howard, 2014). Some have highlighted the perpetuation of a false…
Sex Role Identity, Androgyny, and Sex Role Transcendence: A Sex Role Strain Analysis.
ERIC Educational Resources Information Center
Garnets, Linda; Pleck, Joseph H.
1979-01-01
This paper first reviews three different theoretical constructs concerning the psychological significance of sex-role-related characteristics in personality functioning: sex role identity, androgyny, and sex role transcendence. A new conceptual analysis concerning sex-typing, sex role strain analysis, is presented. Implications of this analysis…
ERIC Educational Resources Information Center
Woolums, Viola
2011-01-01
Gendered appearance in "World of Warcraft" is of particular interest because it seems to infiltrate interactions between individuals without serving a functional purpose within the game itself. It provides an opportunity to look at avatar choice in environments that have a primary purpose aside from existing as an arena for creating identity, and…
Family Influences on Racial Identity among African American Youth
ERIC Educational Resources Information Center
Townsend, Tiffany; Lanphier, Erin
2007-01-01
The purpose of this study was to examine the influence of parental efficacy, family coping, and adaptive family functioning on the development of racial identity among African American youth. Fifty-two African American parent-child dyads were participants. Results of a hierarchical regression revealed family adaptability and family cognitive…
Psychosocial Intimacy and Identity: From Early Adolescence to Emerging Adulthood
ERIC Educational Resources Information Center
Montgomery, Marilyn J.
2005-01-01
Age and gender differences in patterns of behavior and experience, cognitive beliefs, affective involvement, and psychosocial functioning in romantic relationships were observed in 473 adolescents and emerging adults (ages 12-24). Older adolescents indicated more dating experiences, times in love, passion, identity, and intimacy. They also…
NASA Astrophysics Data System (ADS)
Julie, Hongki; Pasaribu, Udjianna S.; Pancoro, Adi
2015-12-01
This paper will allow Markov Chain's application in genome shared identical by descent by two individual at full sibs model. The full sibs model was a continuous time Markov Chain with three state. In the full sibs model, we look for the cumulative distribution function of the number of sub segment which have 2 IBD haplotypes from a segment of the chromosome which the length is t Morgan and the cumulative distribution function of the number of sub segment which have at least 1 IBD haplotypes from a segment of the chromosome which the length is t Morgan. This cumulative distribution function will be developed by the moment generating function.
Identity processes as a predictor of memory beliefs in older adults.
Hilgeman, Michelle M; Allen, Rebecca S; Carden, Keisha D
2017-07-01
The impact of identity processes (identity assimilation, identity accommodation, and identity balance) on memory beliefs was explored. Individually administered questionnaires (e.g. depressive symptoms, subjective health, identity processes, memory beliefs) and a brief neuropsychological assessment of cognitive abilities were completed during a one-time interview with 82 participants aged 58-92 years-old (M = 74.68, SD = 10.95). Forty (49.4%) identified their race as White/Caucasian, 38 (46.9%) identified their race as Black/African American, and 3 (3.7%) indicated no primary racial/ethnic group. Hierarchical regression analyses revealed that identity processes account for differences in memory beliefs beyond established predictors. Specifically, identity accommodation and identity balance predicted memory self-efficacy beyond depression and subjective health. These findings are congruent with identity process theory; however, the impact of identity assimilation in this population was unremarkable. Exploratory analyses also indicated that the identity processes have a stronger relationship to some domains of memory self-efficacy (i.e. anxiety, capacity) than others (i.e. perceived change, locus of control). Beliefs about memory and their integration into an adaptable, yet consistent self-concept are an important element of identity for aging individuals. Additional research is needed to determine the unique role of identity accommodation and identity balance in understanding cognitive functioning and ultimately the impact on potential clinical applications, such as related health-seeking behavior among older adults. Tailored interventions could be developed to facilitate optimal utilization of health care services at a time when early diagnosis of memory-related disorders is critical for future planning and care decisions.
A map of terminal regulators of neuronal identity in Caenorhabditis elegans
2016-01-01
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279
Parental Identity and Its Relation to Parenting and Psychological Functioning in Middle Age
Fadjukoff, Päivi; Pulkkinen, Lea; Lyyra, Anna-Liisa; Kokko, Katja
2016-01-01
SYNOPSIS Objective. This article focuses on identity as a parent in relation to parenting and psychological functioning in middle age. Design. Drawn from the Jyväskylä Longitudinal Study of Personality and Social Development, 162 participants (53% females) with children (age 36), represented the Finnish age-cohort born in 1959. Parental identity was assessed at ages 36, 42, and 50. Results. In both women and men, parental identity achievement increased from age 36 to 42 and remained stable to 50. The level of parental identity achievement was higher in women than in men. Achievement was typical for women and foreclosure for men. Participants’ education, occupational status, and number of offspring were not related to parental identity status. As expected, parental identity achievement was associated with authoritative (indicated by higher nurturance and parental knowledge about the child’s activities) parenting style. No significant associations emerged between parental identity foreclosure and restrictiveness as an indicator of authoritarian parenting style. The diffused men outscored others in parental stress. Achieved parental identity was related to generativity in both genders and to higher psychological and social well-being in men. Conclusions. At present, many parenting programs are targeted to young parents. This study highlighted the importance of a later parenting phase at around age 40, when for many, the children are approaching puberty. Therefore, parenting programs and support should also be designed for middle-aged parents. Specifically men may need additional support for their active consideration and engagement in the fathering role. © Päivi Fadjukoff, Lea Pulkkinen, Anna-Liisa Lyyra, and Katja Kokko This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. PMID:27019651
Patra, Bikash; Jana, Subrata; Samal, Prasanjit
2018-03-28
The exchange hole, which is one of the principal constituents of the density functional formalism, can be used to design accurate range-separated hybrid functionals in association with appropriate correlation. In this regard, the exchange hole derived from the density matrix expansion has gained attention due to its fulfillment of some of the desired exact constraints. Thus, the new long-range corrected density functional proposed here combines the meta generalized gradient approximation level exchange functional designed from the density matrix expansion based exchange hole coupled with the ab initio Hartree-Fock exchange through the range separation of the Coulomb interaction operator using the standard error function technique. Then, in association with the Lee-Yang-Parr correlation functional, the assessment and benchmarking of the above newly constructed range-separated functional with various well-known test sets shows its reasonable performance for a broad range of molecular properties, such as thermochemistry, non-covalent interaction and barrier heights of the chemical reactions.
Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.
Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng
2016-12-15
A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.
Phase-space quantum mechanics study of two identical particles in an external oscillatory potential
NASA Technical Reports Server (NTRS)
Nieto, Luis M.; Gadella, Manuel
1993-01-01
This simple example is used to show how the formalism of Moyal works when it is applied to systems of identical particles. The symmetric and antisymmetric Moyal propagators are evaluated for this case; from them, the correct energy levels of energy are obtained, as well as the Wigner functions for the symmetric and antisymmetric states of the two identical particle system. Finally, the solution of the Bloch equation is straightforwardly obtained from the expressions of the Moyal propagators.
Rich, Shanit; Levinger, Miriam; Werner, Shirli; Adelman, Cahtia
2013-08-01
The cochlear implant has revolutionized functioning with severe-to-profound sensori-neural loss. A deaf child implanted at an early age with good habilitation may have good language abilities and function well in daily life. As the implanted child grows up, managing in the world of hearing people may become more complex. During adolescence, the teenager copes with many issues, including identity, socialization with the peer group, and managing in the school setting. These issues may be even more challenging for the adolescents using a cochlear implant. This study was designed to shed light on how adolescents with cochlear implants experience coping with the issues mentioned. Twelve teenagers (14-18 years old), fairly similar to the entire adolescent implanted population at the center at which the study was conducted, participated in the study. They had been unilaterally or bilaterally implanted at differing ages. The participants filled out a questionnaire dealing with their functioning in the educational setting, their social preferences and functioning, and their identity as hearing or deaf. The results were analyzed using the principles of thematic analysis. At school, some reported better achievements than others but they all expressed some difficulty functioning in class mainly in situations involving several speakers. From a social point of view, some reported a preference for association with normal hearing peers, whereas others favored hard-of-hearing friends, and one had no preference. Of those who touched on the topic of self-identity, one referred to herself as deaf, eight defined themselves as hard-of-hearing, and two consider themselves hearing. From the responses of these teenagers, it is clear that adolescents with cochlear implants are a heterogeneous group. Parents and teachers should be aware that adolescents with implants, even when successful academically, may experience difficulties in the classroom setting. Most of the participants in this study learning in a mainstream setting, preferred social relationships with hearing peers (to hard of hearing/deaf). The responses of these adolescents with cochlear implants support the conjecture that they have both a hearing identity and a deaf identity, which may be expressed at varying intensities depending on the situation at the time. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
On extending Kohn-Sham density functionals to systems with fractional number of electrons.
Li, Chen; Lu, Jianfeng; Yang, Weitao
2017-06-07
We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.
Anero, Jesús G; Español, Pep; Tarazona, Pedro
2013-07-21
We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.
van Alphen, Elise C J
2017-01-01
Scholars of bisexuality commonly agree that bisexuality as a distinct sexual identity remained invisible for epistemic reasons until the 1970s. This article examines this dominant explanation for the late invention of bisexual identity by discussing how bisexuality functioned in the homosexual movement in the Netherlands from 1946 to the early 1970s. This historical case study shows that in the Netherlands bisexuality as an identity existed in the movement in the first postwar decades and was erased in the late 1960s, not only for epistemic reasons but also for tactical ones. The article aims to contribute to a better insight into the history of bisexuality and the politics in the Dutch postwar homosexual movement.
TEMPEST in a gallimaufry: applying multilevel systems theory to person-in-context research.
Peck, Stephen C
2007-12-01
Terminological ambiguity and inattention to personal and contextual multilevel systems undermine personality, self, and identity theories. Hierarchical and heterarchical systems theories are used to describe contents and processes existing within and across three interrelated multilevel systems: levels of organization, representation, and integration. Materially nested levels of organization are used to distinguish persons from contexts and personal from social identity. Functionally nested levels of representation are used to distinguish personal identity from the sense of identity and symbolic (belief) from iconic (schema) systems. Levels of integration are hypothesized to unfold separately but interdependently across levels of representation. Multilevel system configurations clarify alternative conceptualizations of traits and contextualized identity. Methodological implications for measurement and analysis (e.g., integrating variable- and pattern-centered methods) are briefly described.
NASA Astrophysics Data System (ADS)
Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter
2009-07-01
The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.
Double-hybrid density-functional theory with meta-generalized-gradient approximations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr
2014-02-28
We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.
Topology of large-scale structure in seeded hot dark matter models
NASA Technical Reports Server (NTRS)
Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.
1992-01-01
The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.
Congruence as a measurement of extended haplotype structure across the genome
2012-01-01
Background Historically, extended haplotypes have been defined using only a few data points, such as alleles for several HLA genes in the MHC. High-density SNP data, and the increasing affordability of whole genome SNP typing, creates the opportunity to define higher resolution extended haplotypes. This drives the need for new tools that support quantification and visualization of extended haplotypes as defined by as many as 2000 SNPs. Confronted with high-density SNP data across the major histocompatibility complex (MHC) for 2,300 complete families, compiled by the Type 1 Diabetes Genetics Consortium (T1DGC), we developed software for studying extended haplotypes. Methods The software, called ExHap (Extended Haplotype), uses a similarity measurement we term congruence to identify and quantify long-range allele identity. Using ExHap, we analyzed congruence in both the T1DGC data and family-phased data from the International HapMap Project. Results Congruent chromosomes from the T1DGC data have between 96.5% and 99.9% allele identity over 1,818 SNPs spanning 2.64 megabases of the MHC (HLA-DRB1 to HLA-A). Thirty-three of 132 DQ-DR-B-A defined haplotype groups have > 50% congruent chromosomes in this region. For example, 92% of chromosomes within the DR3-B8-A1 haplotype are congruent from HLA-DRB1 to HLA-A (99.8% allele identity). We also applied ExHap to all 22 autosomes for both CEU and YRI cohorts from the International HapMap Project, identifying multiple candidate extended haplotypes. Conclusions Long-range congruence is not unique to the MHC region. Patterns of allele identity on phased chromosomes provide a simple, straightforward approach to visually and quantitatively inspect complex long-range structural patterns in the genome. Such patterns aid the biologist in appreciating genetic similarities and differences across cohorts, and can lead to hypothesis generation for subsequent studies. PMID:22369243
Modular forms, Schwarzian conditions, and symmetries of differential equations in physics
NASA Astrophysics Data System (ADS)
Abdelaziz, Y.; Maillard, J.-M.
2017-05-01
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same {}_2F1 hypergeometric function with different rational pullbacks. These rational transformations are solutions of a differentially algebraic equation that already emerged in a paper by Casale on the Galoisian envelopes. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus {}_2F1 hypergeometric function example. We then focus on identities relating the same {}_2F1 hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that also emerged in Casale’s paper. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to {}_3F2 , hypergeometric functions, and show that one just reduces to the previous {}_2F1 cases through a Clausen identity. The question of the reduction of these Schwarzian conditions to modular correspondences remains an open question. In a _2F1 hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or {}_2F1 hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
Core transport properties in JT-60U and JET identity plasmas
NASA Astrophysics Data System (ADS)
Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombé, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.; ITPA Transport Group; JT-60 Team; EFDA contributors, JET
2011-07-01
The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma shape, toroidal magnetic field ripple and dimensionless profiles as close as possible during the ITB triggering phase in terms of safety factor, normalized Larmor radius, normalized collision frequency, thermal beta, ratio of ion to electron temperatures. Similarities in the ITB triggering mechanisms and sustainment were observed when a good match was achieved of the most relevant normalized profiles except the toroidal Mach number. Similar thermal ion transport levels in the two devices have been measured in either monotonic or non-monotonic q-profiles. In contrast, differences between JET and JT-60U were observed on the electron thermal and particle confinement in reversed magnetic shear configurations. It was found that the larger shear reversal in the very centre (inside normalized radius of 0.2) of JT-60U plasmas allowed the sustainment of stronger electron density ITBs compared with JET. As a consequence of peaked density profile, the core bootstrap current density is more than five times higher in JT-60U compared with JET. Thanks to the bootstrap effect and the slightly broader neutral beam deposition, reversed magnetic shear configurations are self-sustained in JT-60U scenarios. Analyses of similarities and differences between the two devices address key questions on the validity of the usual assumptions made in ITER steady scenario modelling, e.g. a flat density profile in the core with thermal transport barrier? Such assumptions have consequences on the prediction of fusion performance, bootstrap current and on the sustainment of the scenario.
The force distribution probability function for simple fluids by density functional theory.
Rickayzen, G; Heyes, D M
2013-02-28
Classical density functional theory (DFT) is used to derive a formula for the probability density distribution function, P(F), and probability distribution function, W(F), for simple fluids, where F is the net force on a particle. The final formula for P(F) ∝ exp(-AF(2)), where A depends on the fluid density, the temperature, and the Fourier transform of the pair potential. The form of the DFT theory used is only applicable to bounded potential fluids. When combined with the hypernetted chain closure of the Ornstein-Zernike equation, the DFT theory for W(F) agrees with molecular dynamics computer simulations for the Gaussian and bounded soft sphere at high density. The Gaussian form for P(F) is still accurate at lower densities (but not too low density) for the two potentials, but with a smaller value for the constant, A, than that predicted by the DFT theory.
Single-particle energies and density of states in density functional theory
NASA Astrophysics Data System (ADS)
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
NASA Astrophysics Data System (ADS)
Lippman, Thomas; Brockie, Richard; Coker, Jon; Contreras, John; Galbraith, Rick; Garzon, Samir; Hanson, Weldon; Leong, Tom; Marley, Arley; Wood, Roger; Zakai, Rehan; Zolla, Howard; Duquette, Paul; Petrizzi, Joe
2015-05-01
Exponential growth of the areal density has driven the magnetic recording industry for almost sixty years. But now areal density growth is slowing down, suggesting that current technologies are reaching their fundamental limit. The next generation of recording technologies, namely, energy-assisted writing and bit-patterned media, remains just over the horizon. Two-Dimensional Magnetic Recording (TDMR) is a promising new approach, enabling continued areal density growth with only modest changes to the heads and recording electronics. We demonstrate a first generation implementation of TDMR by using a dual-element read sensor to improve the recovery of data encoded by a conventional low-density parity-check (LDPC) channel. The signals are combined with a 2D equalizer into a single modified waveform that is decoded by a standard LDPC channel. Our detection hardware can perform simultaneous measurement of the pre- and post-combined error rate information, allowing one set of measurements to assess the absolute areal density capability of the TDMR system as well as the gain over a conventional shingled magnetic recording system with identical components. We discuss areal density measurements using this hardware and demonstrate gains exceeding five percent based on experimental dual reader components.
Identification of the trypanocidal factor in normal human serum: high density lipoprotein.
Rifkin, M R
1978-01-01
The differentiation of Trypanosoma brucei from T. rhodesiense, the causative agent of human sleeping sickness, depends on their relative sensitivities to the cytotoxic effects of normal human serum. The molecule responsible for the specific lysis of T. brucei has now been isolated. Serum lipoproteins were fractionated and purified by ultracentrifugal flotation and chromatography on Bio-Gel A-5m. Trypanocidal activity was recovered in the high density lipoprotein fraction (density, 1.063-1.216 g/ml). Contamination by other serum proteins was checked by crossed immunoelectrophoresis and sodium dodecyl sulfate/acrylamide gel electrophoresis. Only a trace of beta-lipoprotein was found. The trypanocidal activity of pure human high density lipoprotein was identical to that of unfractionated serum when the following were tested: (i) time course of in vitro lysis of T. bruceli; (ii) in vivo destruction of T. brucei; (iii) relative resistance of T. rhodesiense to lysis. Rat or rabbit high density lipoprotein had no trypanocidal activity. Identification of the trypanocidal factor as high density lipoprotein was confirmed by the finding that serum from patients with Tangier disease, an autosomal recessive disorder characterized by a severe deficiency of high density lipoprotein, had no trypanocidal activity. Images PMID:210461
Trivial constraints on orbital-free kinetic energy density functionals
NASA Astrophysics Data System (ADS)
Luo, Kai; Trickey, S. B.
2018-03-01
Approximate kinetic energy density functionals (KEDFs) are central to orbital-free density functional theory. Limitations on the spatial derivative dependencies of KEDFs have been claimed from differential virial theorems. We identify a central defect in the argument: the relationships are not true for an arbitrary density but hold only for the minimizing density and corresponding chemical potential. Contrary to the claims therefore, the relationships are not constraints and provide no independent information about the spatial derivative dependencies of approximate KEDFs. A simple argument also shows that validity for arbitrary v-representable densities is not restored by appeal to the density-potential bijection.
Altered self-identity and autobiographical memory in epilepsy.
Allebone, James; Rayner, Genevieve; Siveges, Benjamin; Wilson, Sarah J
2015-12-01
Research suggests that individuals with chronic epilepsy display differences in their self-identity. The mechanisms by which self-identity is altered, however, are not well understood. Neural networks supporting autobiographical memory retrieval in the mesial temporal (MT) lobe are thought to be fundamental to self-identity processes. Thus, we examined differences in self-identity and autobiographical memory in patients with either MT or non-mesial temporal (NMT) foci with early or late age of habitual seizure onset. Participants included 102 adults: 51 healthy individuals and 51 patients with drug-resistant focal seizures (19 MT, 32 NMT). We used the Ego Identity Process Questionnaire to profile the identity development of participants, and examined how this related to memory function assessed using the Autobiographical Memory Test. Patients and controls had strikingly different self-identity profiles, with early onset MT patients showing the least identity development compared to controls and other patient groups. In contrast, late-onset NMT patients showed the highest level of identity development of the patient groups and closely resembled healthy controls (p < 0.05 for all comparisons). For all MT patients, poor autobiographical memory retrieval was correlated with altered self-identity (p < 0.001). No associations between autobiographical memory and self-identity were evident in the NMT group. Self-identity in epilepsy may be modulated by the extent to which seizure foci impinge on the autobiographical memory network and the timing of seizure onset. Early disruption to MT regions of the autobiographical memory network may constitute a neurocognitive mechanism by which self-identity is altered in chronic focal epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Ensemble density variational methods with self- and ghost-interaction-corrected functionals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pastorczak, Ewa; Pernal, Katarzyna, E-mail: pernalk@gmail.com
2014-05-14
Ensemble density functional theory (DFT) offers a way of predicting excited-states energies of atomic and molecular systems without referring to a density response function. Despite a significant theoretical work, practical applications of the proposed approximations have been scarce and they do not allow for a fair judgement of the potential usefulness of ensemble DFT with available functionals. In the paper, we investigate two forms of ensemble density functionals formulated within ensemble DFT framework: the Gross, Oliveira, and Kohn (GOK) functional proposed by Gross et al. [Phys. Rev. A 37, 2809 (1988)] alongside the orbital-dependent eDFT form of the functional introducedmore » by Nagy [J. Phys. B 34, 2363 (2001)] (the acronym eDFT proposed in analogy to eHF – ensemble Hartree-Fock method). Local and semi-local ground-state density functionals are employed in both approaches. Approximate ensemble density functionals contain not only spurious self-interaction but also the so-called ghost-interaction which has no counterpart in the ground-state DFT. We propose how to correct the GOK functional for both kinds of interactions in approximations that go beyond the exact-exchange functional. Numerical applications lead to a conclusion that functionals free of the ghost-interaction by construction, i.e., eDFT, yield much more reliable results than approximate self- and ghost-interaction-corrected GOK functional. Additionally, local density functional corrected for self-interaction employed in the eDFT framework yields excitations energies of the accuracy comparable to that of the uncorrected semi-local eDFT functional.« less
Yang, Weitao; Mori-Sánchez, Paula; Cohen, Aron J
2013-09-14
The exact conditions for density functionals and density matrix functionals in terms of fractional charges and fractional spins are known, and their violation in commonly used functionals has been shown to be the root of many major failures in practical applications. However, approximate functionals are designed for physical systems with integer charges and spins, not in terms of the fractional variables. Here we develop a general framework for extending approximate density functionals and many-electron theory to fractional-charge and fractional-spin systems. Our development allows for the fractional extension of any approximate theory that is a functional of G(0), the one-electron Green's function of the non-interacting reference system. The extension to fractional charge and fractional spin systems is based on the ensemble average of the basic variable, G(0). We demonstrate the fractional extension for the following theories: (1) any explicit functional of the one-electron density, such as the local density approximation and generalized gradient approximations; (2) any explicit functional of the one-electron density matrix of the non-interacting reference system, such as the exact exchange functional (or Hartree-Fock theory) and hybrid functionals; (3) many-body perturbation theory; and (4) random-phase approximations. A general rule for such an extension has also been derived through scaling the orbitals and should be useful for functionals where the link to the Green's function is not obvious. The development thus enables the examination of approximate theories against known exact conditions on the fractional variables and the analysis of their failures in chemical and physical applications in terms of violations of exact conditions of the energy functionals. The present work should facilitate the calculation of chemical potentials and fundamental bandgaps with approximate functionals and many-electron theories through the energy derivatives with respect to the fractional charge. It should play an important role in developing accurate approximate density functionals and many-body theory.
PAX6 maintains β cell identity by repressing genes of alternative islet cell types.
Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H; Glaser, Benjamin; Ashery-Padan, Ruth; Dor, Yuval
2017-01-03
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes.
PAX6 maintains β cell identity by repressing genes of alternative islet cell types
Swisa, Avital; Avrahami, Dana; Eden, Noa; Zhang, Jia; Feleke, Eseye; Dahan, Tehila; Cohen-Tayar, Yamit; Stolovich-Rain, Miri; Kaestner, Klaus H.; Glaser, Benjamin; Ashery-Padan, Ruth
2016-01-01
Type 2 diabetes is thought to involve a compromised β cell differentiation state, but the mechanisms underlying this dysfunction remain unclear. Here, we report a key role for the TF PAX6 in the maintenance of adult β cell identity and function. PAX6 was downregulated in β cells of diabetic db/db mice and in WT mice treated with an insulin receptor antagonist, revealing metabolic control of expression. Deletion of Pax6 in β cells of adult mice led to lethal hyperglycemia and ketosis that were attributed to loss of β cell function and expansion of α cells. Lineage-tracing, transcriptome, and chromatin analyses showed that PAX6 is a direct activator of β cell genes, thus maintaining mature β cell function and identity. In parallel, we found that PAX6 binds promoters and enhancers to repress alternative islet cell genes including ghrelin, glucagon, and somatostatin. Chromatin analysis and shRNA-mediated gene suppression experiments indicated a similar function of PAX6 in human β cells. We conclude that reduced expression of PAX6 in metabolically stressed β cells may contribute to β cell failure and α cell dysfunction in diabetes. PMID:27941241
Yu, Yang-Xin; Wu, Jianzhong; Gao, Guang-Hua
2004-04-15
A density-functional theory is proposed to describe the density profiles of small ions around an isolated colloidal particle in the framework of the restricted primitive model where the small ions have uniform size and the solvent is represented by a dielectric continuum. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-sphere repulsion and a quadratic functional Taylor expansion for the electrostatic interactions. The theoretical predictions are in good agreement with the results from Monte Carlo simulations and from previous investigations using integral-equation theory for the ionic density profiles and the zeta potentials of spherical particles at a variety of solution conditions. Like the integral-equation approaches, the density-functional theory is able to capture the oscillatory density profiles of small ions and the charge inversion (overcharging) phenomena for particles with elevated charge density. In particular, our density-functional theory predicts the formation of a second counterion layer near the surface of highly charged spherical particle. Conversely, the nonlinear Poisson-Boltzmann theory and its variations are unable to represent the oscillatory behavior of small ion distributions and charge inversion. Finally, our density-functional theory predicts charge inversion even in a 1:1 electrolyte solution as long as the salt concentration is sufficiently high. (c) 2004 American Institute of Physics.
Information-Theoretical Complexity Analysis of Selected Elementary Chemical Reactions
NASA Astrophysics Data System (ADS)
Molina-Espíritu, M.; Esquivel, R. O.; Dehesa, J. S.
We investigate the complexity of selected elementary chemical reactions (namely, the hydrogenic-abstraction reaction and the identity SN2 exchange reaction) by means of the following single and composite information-theoretic measures: disequilibrium (D), exponential entropy(L), Fisher information (I), power entropy (J), I-D, D-L and I-J planes and Fisher-Shannon (FS) and Lopez-Mancini-Calbet (LMC) shape complexities. These quantities, which are functionals of the one-particle density, are computed in both position (r) and momentum (p) spaces. The analysis revealed that the chemically significant regions of these reactions can be identified through most of the single information-theoretic measures and the two-component planes, not only the ones which are commonly revealed by the energy, such as the reactant/product (R/P) and the transition state (TS), but also those that are not present in the energy profile such as the bond cleavage energy region (BCER), the bond breaking/forming regions (B-B/F) and the charge transfer process (CT). The analysis of the complexities shows that the energy profile of the abstraction reaction bears the same information-theoretical features of the LMC and FS measures, however for the identity SN2 exchange reaction does not hold a simple behavior with respect to the LMC and FS measures. Most of the chemical features of interest (BCER, B-B/F and CT) are only revealed when particular information-theoretic aspects of localizability (L or J), uniformity (D) and disorder (I) are considered.
Charles, Grace K; Porensky, Lauren M; Riginos, Corinna; Veblen, Kari E; Young, Truman P
2017-01-01
Wild herbivores and livestock share the majority of rangelands worldwide, yet few controlled experiments have addressed their individual, additive, and interactive impacts on ecosystem function. While ungulate herbivores generally reduce standing biomass, their effects on aboveground net primary production (ANPP) can vary by spatial and temporal context, intensity of herbivory, and herbivore identity and species richness. Some evidence indicates that moderate levels of herbivory can stimulate aboveground productivity, but few studies have explicitly tested the relationships among herbivore identity, grazing intensity, and ANPP. We used a long-term exclosure experiment to examine the effects of three groups of wild and domestic ungulate herbivores (megaherbivores, mesoherbivore wildlife, and cattle) on herbaceous productivity in an African savanna. Using both field measurements (productivity cages) and satellite imagery, we measured the effects of different herbivore guilds, separately and in different combinations, on herbaceous productivity across both space and time. Results from both productivity cage measurements and satellite normalized difference vegetation index (NDVI) demonstrated a positive relationship between mean productivity and total ungulate herbivore pressure, driven in particular by the presence of cattle. In contrast, we found that variation in herbaceous productivity across space and time was driven by the presence of wild herbivores (primarily mesoherbivore wildlife), which significantly reduced heterogeneity in ANPP and NDVI across both space and time. Our results indicate that replacing wildlife with cattle (at moderate densities) could lead to similarly productive but more heterogeneous herbaceous plant communities in rangelands. © 2016 by the Ecological Society of America.
Racial Identity and the MMPI in African American Male College Students.
ERIC Educational Resources Information Center
Whatley, P. Richard; Allen, James; Dana, Richard H.
2003-01-01
Examines the relation of the Minnesota Multiphasic Personality Inventory (MMPI) to the Racial Identity Attitude Scale-Black, Short Form (RIAS-B) was examined among 50 African American male college students Results indicated RIAS-B scale scores functioned as predictors of MMPI scale scores. Implications of these findings for MMPI-2 research with…
ERIC Educational Resources Information Center
Martin, Nelly
2017-01-01
This study explores the relationship between language selection and identity construction in contemporary Indonesia through an examination of the function of English, a language that still receives stigma from many Indonesians and the government, particularly in Indonesian popular texts published after 1998. Utilizing hybrid critical approaches…
USDA-ARS?s Scientific Manuscript database
Although single species of herbivores are known to affect soil microbial communities, the effects of herbivore species identity and functional composition on soil microbes is unknown. We tested the effects of single species of orthopterans and multiple species combinations on soil enzymatic activity...
Change in Ethnic Identity across the College Transition
ERIC Educational Resources Information Center
Tsai, Kim M.; Fuligni, Andrew J.
2012-01-01
This article examined changes in ethnic identity as a function of college type and residential status and whether differences due to college type could be explained by involvement in extracurricular activities and college ethnic composition. Although no changes in ethnic labeling or belonging were found, there was a normative decrease in ethnic…
Integrating Cultural Values into the Curriculum for Kenyan Schools.
ERIC Educational Resources Information Center
Maina, Faith
A strong cultural identity enables individuals to become independent and self-reliant people who function in their own environment. People who have little sense of their cultural identity or have been alienated from their culture can become dependent and lack skills for meaningful survival in their own environment. This predicament is particularly…