Sample records for functional imaging method

  1. Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images

    PubMed Central

    Dai, Weiying; Soman, Salil; Hackney, David B.; Wong, Eric T.; Robson, Philip M.; Alsop, David C.

    2017-01-01

    Functional imaging provides hemodynamic and metabolic information and is increasingly being incorporated into clinical diagnostic and research studies. Typically functional images have reduced signal-to-noise ratio and spatial resolution compared to other non-functional cross sectional images obtained as part of a routine clinical protocol. We hypothesized that enhancing visualization and interpretation of functional images with anatomic information could provide preferable quality and superior diagnostic value. In this work, we implemented five methods (frequency addition, frequency multiplication, wavelet transform, non-subsampled contourlet transform and intensity-hue-saturation) and a newly proposed ShArpening by Local Similarity with Anatomic images (SALSA) method to enhance the visualization of functional images, while preserving the original functional contrast and quantitative signal intensity characteristics over larger spatial scales. Arterial spin labeling blood flow MR images of the brain were visualization enhanced using anatomic images with multiple contrasts. The algorithms were validated on a numerical phantom and their performance on images of brain tumor patients were assessed by quantitative metrics and neuroradiologist subjective ratings. The frequency multiplication method had the lowest residual error for preserving the original functional image contrast at larger spatial scales (55%–98% of the other methods with simulated data and 64%–86% with experimental data). It was also significantly more highly graded by the radiologists (p<0.005 for clear brain anatomy around the tumor). Compared to other methods, the SALSA provided 11%–133% higher similarity with ground truth images in the simulation and showed just slightly lower neuroradiologist grading score. Most of these monochrome methods do not require any prior knowledge about the functional and anatomic image characteristics, except the acquired resolution. Hence, automatic implementation on clinical images should be readily feasible. PMID:27723582

  2. A threshold selection method based on edge preserving

    NASA Astrophysics Data System (ADS)

    Lou, Liantang; Dan, Wei; Chen, Jiaqi

    2015-12-01

    A method of automatic threshold selection for image segmentation is presented. An optimal threshold is selected in order to preserve edge of image perfectly in image segmentation. The shortcoming of Otsu's method based on gray-level histograms is analyzed. The edge energy function of bivariate continuous function is expressed as the line integral while the edge energy function of image is simulated by discretizing the integral. An optimal threshold method by maximizing the edge energy function is given. Several experimental results are also presented to compare with the Otsu's method.

  3. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  4. Reliable clarity automatic-evaluation method for optical remote sensing images

    NASA Astrophysics Data System (ADS)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  5. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  6. Recursive search method for the image elements of functionally defined surfaces

    NASA Astrophysics Data System (ADS)

    Vyatkin, S. I.

    2017-05-01

    This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.

  7. Single image super-resolution based on approximated Heaviside functions and iterative refinement

    PubMed Central

    Wang, Xin-Yu; Huang, Ting-Zhu; Deng, Liang-Jian

    2018-01-01

    One method of solving the single-image super-resolution problem is to use Heaviside functions. This has been done previously by making a binary classification of image components as “smooth” and “non-smooth”, describing these with approximated Heaviside functions (AHFs), and iteration including l1 regularization. We now introduce a new method in which the binary classification of image components is extended to different degrees of smoothness and non-smoothness, these components being represented by various classes of AHFs. Taking into account the sparsity of the non-smooth components, their coefficients are l1 regularized. In addition, to pick up more image details, the new method uses an iterative refinement for the residuals between the original low-resolution input and the downsampled resulting image. Experimental results showed that the new method is superior to the original AHF method and to four other published methods. PMID:29329298

  8. Brain MRI Tumor Detection using Active Contour Model and Local Image Fitting Energy

    NASA Astrophysics Data System (ADS)

    Nabizadeh, Nooshin; John, Nigel

    2014-03-01

    Automatic abnormality detection in Magnetic Resonance Imaging (MRI) is an important issue in many diagnostic and therapeutic applications. Here an automatic brain tumor detection method is introduced that uses T1-weighted images and K. Zhang et. al.'s active contour model driven by local image fitting (LIF) energy. Local image fitting energy obtains the local image information, which enables the algorithm to segment images with intensity inhomogeneities. Advantage of this method is that the LIF energy functional has less computational complexity than the local binary fitting (LBF) energy functional; moreover, it maintains the sub-pixel accuracy and boundary regularization properties. In Zhang's algorithm, a new level set method based on Gaussian filtering is used to implement the variational formulation, which is not only vigorous to prevent the energy functional from being trapped into local minimum, but also effective in keeping the level set function regular. Experiments show that the proposed method achieves high accuracy brain tumor segmentation results.

  9. Towards real-time diffuse optical tomography for imaging brain functions cooperated with Kalman estimator

    NASA Astrophysics Data System (ADS)

    Wang, Bingyuan; Zhang, Yao; Liu, Dongyuan; Ding, Xuemei; Dan, Mai; Pan, Tiantian; Wang, Yihan; Li, Jiao; Zhou, Zhongxing; Zhang, Limin; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method to monitor the cerebral hemodynamic through the optical changes measured at the scalp surface. It has played a more and more important role in psychology and medical imaging communities. Real-time imaging of brain function using NIRS makes it possible to explore some sophisticated human brain functions unexplored before. Kalman estimator has been frequently used in combination with modified Beer-Lamber Law (MBLL) based optical topology (OT), for real-time brain function imaging. However, the spatial resolution of the OT is low, hampering the application of OT in exploring some complicated brain functions. In this paper, we develop a real-time imaging method combining diffuse optical tomography (DOT) and Kalman estimator, much improving the spatial resolution. Instead of only presenting one spatially distributed image indicating the changes of the absorption coefficients at each time point during the recording process, one real-time updated image using the Kalman estimator is provided. Its each voxel represents the amplitude of the hemodynamic response function (HRF) associated with this voxel. We evaluate this method using some simulation experiments, demonstrating that this method can obtain more reliable spatial resolution images. Furthermore, a statistical analysis is also conducted to help to decide whether a voxel in the field of view is activated or not.

  10. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury

    PubMed Central

    Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

    2011-01-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

  11. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review.

    PubMed

    Pascual-Marqui, R D; Esslen, M; Kochi, K; Lehmann, D

    2002-01-01

    This paper reviews several recent publications that have successfully used the functional brain imaging method known as LORETA. Emphasis is placed on the electrophysiological and neuroanatomical basis of the method, on the localization properties of the method, and on the validation of the method in real experimental human data. Papers that criticize LORETA are briefly discussed. LORETA publications in the 1994-1997 period based localization inference on images of raw electric neuronal activity. In 1998, a series of papers appeared that based localization inference on the statistical parametric mapping methodology applied to high-time resolution LORETA images. Starting in 1999, quantitative neuroanatomy was added to the methodology, based on the digitized Talairach atlas provided by the Brain Imaging Centre, Montreal Neurological Institute. The combination of these methodological developments has placed LORETA at a level that compares favorably to the more classical functional imaging methods, such as PET and fMRI.

  12. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    USGS Publications Warehouse

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  13. Systematic approach to cutoff frequency selection in continuous-wave electron paramagnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hirata, Hiroshi; Itoh, Toshiharu; Hosokawa, Kouichi; Deng, Yuanmu; Susaki, Hitoshi

    2005-08-01

    This article describes a systematic method for determining the cutoff frequency of the low-pass window function that is used for deconvolution in two-dimensional continuous-wave electron paramagnetic resonance (EPR) imaging. An evaluation function for the criterion used to select the cutoff frequency is proposed, and is the product of the effective width of the point spread function for a localized point signal and the noise amplitude of a resultant EPR image. The present method was applied to EPR imaging for a phantom, and the result of cutoff frequency selection was compared with that based on a previously reported method for the same projection data set. The evaluation function has a global minimum point that gives the appropriate cutoff frequency. Images with reasonably good resolution and noise suppression can be obtained from projections with an automatically selected cutoff frequency based on the present method.

  14. Adaptive sigmoid function bihistogram equalization for image contrast enhancement

    NASA Astrophysics Data System (ADS)

    Arriaga-Garcia, Edgar F.; Sanchez-Yanez, Raul E.; Ruiz-Pinales, Jose; Garcia-Hernandez, Ma. de Guadalupe

    2015-09-01

    Contrast enhancement plays a key role in a wide range of applications including consumer electronic applications, such as video surveillance, digital cameras, and televisions. The main goal of contrast enhancement is to increase the quality of images. However, most state-of-the-art methods induce different types of distortion such as intensity shift, wash-out, noise, intensity burn-out, and intensity saturation. In addition, in consumer electronics, simple and fast methods are required in order to be implemented in real time. A bihistogram equalization method based on adaptive sigmoid functions is proposed. It consists of splitting the image histogram into two parts that are equalized independently by using adaptive sigmoid functions. In order to preserve the mean brightness of the input image, the parameter of the sigmoid functions is chosen to minimize the absolute mean brightness metric. Experiments on the Berkeley database have shown that the proposed method improves the quality of images and preserves their mean brightness. An application to improve the colorfulness of images is also presented.

  15. Imaging strategies using focusing functions with applications to a North Sea field

    NASA Astrophysics Data System (ADS)

    da Costa Filho, C. A.; Meles, G. A.; Curtis, A.; Ravasi, M.; Kritski, A.

    2018-04-01

    Seismic methods are used in a wide variety of contexts to investigate subsurface Earth structures, and to explore and monitor resources and waste-storage reservoirs in the upper ˜100 km of the Earth's subsurface. Reverse-time migration (RTM) is one widely used seismic method which constructs high-frequency images of subsurface structures. Unfortunately, RTM has certain disadvantages shared with other conventional single-scattering-based methods, such as not being able to correctly migrate multiply scattered arrivals. In principle, the recently developed Marchenko methods can be used to migrate all orders of multiples correctly. In practice however, using Marchenko methods are costlier to compute than RTM—for a single imaging location, the cost of performing the Marchenko method is several times that of standard RTM, and performing RTM itself requires dedicated use of some of the largest computers in the world for individual data sets. A different imaging strategy is therefore required. We propose a new set of imaging methods which use so-called focusing functions to obtain images with few artifacts from multiply scattered waves, while greatly reducing the number of points across the image at which the Marchenko method need be applied. Focusing functions are outputs of the Marchenko scheme: they are solutions of wave equations that focus in time and space at particular surface or subsurface locations. However, they are mathematical rather than physical entities, being defined only in reference media that equal to the true Earth above their focusing depths but are homogeneous below. Here, we use these focusing functions as virtual source/receiver surface seismic surveys, the upgoing focusing function being the virtual received wavefield that is created when the downgoing focusing function acts as a spatially distributed source. These source/receiver wavefields are used in three imaging schemes: one allows specific individual reflectors to be selected and imaged. The other two schemes provide either targeted or complete images with distinct advantages over current RTM methods, such as fewer artifacts and artifacts that occur in different locations. The latter property allows the recently published `combined imaging' method to remove almost all artifacts. We show several examples to demonstrate the methods: acoustic 1-D and 2-D synthetic examples, and a 2-D line from an ocean bottom cable field data set. We discuss an extension to elastic media, which is illustrated by a 1.5-D elastic synthetic example.

  16. Stripe nonuniformity correction for infrared imaging system based on single image optimization

    NASA Astrophysics Data System (ADS)

    Hua, Weiping; Zhao, Jufeng; Cui, Guangmang; Gong, Xiaoli; Ge, Peng; Zhang, Jiang; Xu, Zhihai

    2018-06-01

    Infrared imaging is often disturbed by stripe nonuniformity noise. Scene-based correction method can effectively reduce the impact of stripe noise. In this paper, a stripe nonuniformity correction method based on differential constraint is proposed. Firstly, the gray distribution of stripe nonuniformity is analyzed and the penalty function is constructed by the difference of horizontal gradient and vertical gradient. With the weight function, the penalty function is optimized to obtain the corrected image. Comparing with other single-frame approaches, experiments show that the proposed method performs better in both subjective and objective analysis, and does less damage to edge and detail. Meanwhile, the proposed method runs faster. We have also discussed the differences between the proposed idea and multi-frame methods. Our method is finally well applied in hardware system.

  17. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method.

    PubMed

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-05-16

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.

  18. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method

    PubMed Central

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-01-01

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications. PMID:27181695

  19. A Method for the Alignment of Heterogeneous Macromolecules from Electron Microscopy

    PubMed Central

    Shatsky, Maxim; Hall, Richard J.; Brenner, Steven E.; Glaeser, Robert M.

    2009-01-01

    We propose a feature-based image alignment method for single-particle electron microscopy that is able to accommodate various similarity scoring functions while efficiently sampling the two-dimensional transformational space. We use this image alignment method to evaluate the performance of a scoring function that is based on the Mutual Information (MI) of two images rather than one that is based on the cross-correlation function. We show that alignment using MI for the scoring function has far less model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that MI improves the alignment of some types of heterogeneous data, provided that the signal to noise ratio is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for the alignment of class-averages computed from single particle images. Our method is tested on data from three model structures and one real dataset. PMID:19166941

  20. In vivo imaging of neural activity

    PubMed Central

    Yang, Weijian; Yuste, Rafael

    2017-01-01

    Since the introduction of calcium imaging to monitor neuronal activity with single-cell resolution, optical imaging methods have revolutionized neuroscience by enabling systematic recordings of neuronal circuits in living animals. The plethora of methods for functional neural imaging can be daunting to the nonexpert to navigate. Here we review advanced microscopy techniques for in vivo functional imaging and offer guidelines for which technologies are best suited for particular applications. PMID:28362436

  1. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.

    PubMed

    Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan

    2017-08-01

    The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.

  2. In situ nondestructive imaging of functional pigments in Micro-Tom tomato fruits by multi spectral imaging based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ooe, Shintaro; Todoroki, Shinsuke; Asamizu, Erika

    2013-05-01

    To evaluate the functional pigments in the tomato fruits nondestructively, we propose a method based on the multispectral diffuse reflectance images estimated by the Wiener estimation for a digital RGB image. Each pixel of the multispectral image is converted to the absorbance spectrum and then analyzed by the multiple regression analysis to visualize the contents of chlorophyll a, lycopene and β-carotene. The result confirms the feasibility of the method for in situ imaging of chlorophyll a, β-carotene and lycopene in the tomato fruits.

  3. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  4. Optimized lighting method of applying shaped-function signal for increasing the dynamic range of LED-multispectral imaging system.

    PubMed

    Yang, Xue; Hu, Yajia; Li, Gang; Lin, Ling

    2018-02-01

    This paper proposes an optimized lighting method of applying a shaped-function signal for increasing the dynamic range of light emitting diode (LED)-multispectral imaging system. The optimized lighting method is based on the linear response zone of the analog-to-digital conversion (ADC) and the spectral response of the camera. The auxiliary light at a higher sensitivity-camera area is introduced to increase the A/D quantization levels that are within the linear response zone of ADC and improve the signal-to-noise ratio. The active light is modulated by the shaped-function signal to improve the gray-scale resolution of the image. And the auxiliary light is modulated by the constant intensity signal, which is easy to acquire the images under the active light irradiation. The least square method is employed to precisely extract the desired images. One wavelength in multispectral imaging based on LED illumination was taken as an example. It has been proven by experiments that the gray-scale resolution and the accuracy of information of the images acquired by the proposed method were both significantly improved. The optimum method opens up avenues for the hyperspectral imaging of biological tissue.

  5. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    PubMed

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  6. Functional Magnetic Resonance Imaging and Spectroscopic Imaging of the Brain: Application of fMRI and fMRS to Reading Disabilities and Education.

    ERIC Educational Resources Information Center

    Richards, Todd L.

    2001-01-01

    This tutorial/review covers functional brain-imaging methods and results used to study language and reading disabilities. Although the emphasis is on magnetic resonance imaging and functional magnetic resonance spectroscopy, other imaging techniques are also discussed including positron emission tomography, electroencephalography,…

  7. On an image reconstruction method for ECT

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  8. A MAP-based image interpolation method via Viterbi decoding of Markov chains of interpolation functions.

    PubMed

    Vedadi, Farhang; Shirani, Shahram

    2014-01-01

    A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.

  9. High dynamic range image acquisition based on multiplex cameras

    NASA Astrophysics Data System (ADS)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  10. Phase retrieval using regularization method in intensity correlation imaging

    NASA Astrophysics Data System (ADS)

    Li, Xiyu; Gao, Xin; Tang, Jia; Lu, Changming; Wang, Jianli; Wang, Bin

    2014-11-01

    Intensity correlation imaging(ICI) method can obtain high resolution image with ground-based low precision mirrors, in the imaging process, phase retrieval algorithm should be used to reconstituted the object's image. But the algorithm now used(such as hybrid input-output algorithm) is sensitive to noise and easy to stagnate. However the signal-to-noise ratio of intensity interferometry is low especially in imaging astronomical objects. In this paper, we build the mathematical model of phase retrieval and simplified it into a constrained optimization problem of a multi-dimensional function. New error function was designed by noise distribution and prior information using regularization method. The simulation results show that the regularization method can improve the performance of phase retrieval algorithm and get better image especially in low SNR condition

  11. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  12. Single image super-resolution via an iterative reproducing kernel Hilbert space method.

    PubMed

    Deng, Liang-Jian; Guo, Weihong; Huang, Ting-Zhu

    2016-11-01

    Image super-resolution, a process to enhance image resolution, has important applications in satellite imaging, high definition television, medical imaging, etc. Many existing approaches use multiple low-resolution images to recover one high-resolution image. In this paper, we present an iterative scheme to solve single image super-resolution problems. It recovers a high quality high-resolution image from solely one low-resolution image without using a training data set. We solve the problem from image intensity function estimation perspective and assume the image contains smooth and edge components. We model the smooth components of an image using a thin-plate reproducing kernel Hilbert space (RKHS) and the edges using approximated Heaviside functions. The proposed method is applied to image patches, aiming to reduce computation and storage. Visual and quantitative comparisons with some competitive approaches show the effectiveness of the proposed method.

  13. Bag-of-features based medical image retrieval via multiple assignment and visual words weighting.

    PubMed

    Wang, Jingyan; Li, Yongping; Zhang, Ying; Wang, Chao; Xie, Honglan; Chen, Guoling; Gao, Xin

    2011-11-01

    Bag-of-features based approaches have become prominent for image retrieval and image classification tasks in the past decade. Such methods represent an image as a collection of local features, such as image patches and key points with scale invariant feature transform (SIFT) descriptors. To improve the bag-of-features methods, we first model the assignments of local descriptors as contribution functions, and then propose a novel multiple assignment strategy. Assuming the local features can be reconstructed by their neighboring visual words in a vocabulary, reconstruction weights can be solved by quadratic programming. The weights are then used to build contribution functions, resulting in a novel assignment method, called quadratic programming (QP) assignment. We further propose a novel visual word weighting method. The discriminative power of each visual word is analyzed by the sub-similarity function in the bin that corresponds to the visual word. Each sub-similarity function is then treated as a weak classifier. A strong classifier is learned by boosting methods that combine those weak classifiers. The weighting factors of the visual words are learned accordingly. We evaluate the proposed methods on medical image retrieval tasks. The methods are tested on three well-known data sets, i.e., the ImageCLEFmed data set, the 304 CT Set, and the basal-cell carcinoma image set. Experimental results demonstrate that the proposed QP assignment outperforms the traditional nearest neighbor assignment, the multiple assignment, and the soft assignment, whereas the proposed boosting based weighting strategy outperforms the state-of-the-art weighting methods, such as the term frequency weights and the term frequency-inverse document frequency weights.

  14. Estimation of Image Sensor Fill Factor Using a Single Arbitrary Image

    PubMed Central

    Wen, Wei; Khatibi, Siamak

    2017-01-01

    Achieving a high fill factor is a bottleneck problem for capturing high-quality images. There are hardware and software solutions to overcome this problem. In the solutions, the fill factor is known. However, this is an industrial secrecy by most image sensor manufacturers due to its direct effect on the assessment of the sensor quality. In this paper, we propose a method to estimate the fill factor of a camera sensor from an arbitrary single image. The virtual response function of the imaging process and sensor irradiance are estimated from the generation of virtual images. Then the global intensity values of the virtual images are obtained, which are the result of fusing the virtual images into a single, high dynamic range radiance map. A non-linear function is inferred from the original and global intensity values of the virtual images. The fill factor is estimated by the conditional minimum of the inferred function. The method is verified using images of two datasets. The results show that our method estimates the fill factor correctly with significant stability and accuracy from one single arbitrary image according to the low standard deviation of the estimated fill factors from each of images and for each camera. PMID:28335459

  15. Lunar-edge based on-orbit modulation transfer function (MTF) measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Ying; Yi, Hongwei; Liu, Xinlong

    2017-10-01

    Modulation transfer function (MTF) is an important parameter for image quality evaluation of on-orbit optical image systems. Various methods have been proposed to determine the MTF of an imaging system which are based on images containing point, pulse and edge features. In this paper, the edge of the moon can be used as a high contrast target to measure on-orbit MTF of image systems based on knife-edge methods. The proposed method is an extension of the ISO 12233 Slanted-edge Spatial Frequency Response test, except that the shape of the edge is a circular arc instead of a straight line. In order to get more accurate edge locations and then obtain a more authentic edge spread function (ESF), we choose circular fitting method based on least square to fit lunar edge in sub-pixel edge detection process. At last, simulation results show that the MTF value at Nyquist frequency calculated using our lunar edge method is reliable and accurate with error less than 2% comparing with theoretical MTF value.

  16. Bayesian image reconstruction - The pixon and optimal image modeling

    NASA Technical Reports Server (NTRS)

    Pina, R. K.; Puetter, R. C.

    1993-01-01

    In this paper we describe the optimal image model, maximum residual likelihood method (OptMRL) for image reconstruction. OptMRL is a Bayesian image reconstruction technique for removing point-spread function blurring. OptMRL uses both a goodness-of-fit criterion (GOF) and an 'image prior', i.e., a function which quantifies the a priori probability of the image. Unlike standard maximum entropy methods, which typically reconstruct the image on the data pixel grid, OptMRL varies the image model in order to find the optimal functional basis with which to represent the image. We show how an optimal basis for image representation can be selected and in doing so, develop the concept of the 'pixon' which is a generalized image cell from which this basis is constructed. By allowing both the image and the image representation to be variable, the OptMRL method greatly increases the volume of solution space over which the image is optimized. Hence the likelihood of the final reconstructed image is greatly increased. For the goodness-of-fit criterion, OptMRL uses the maximum residual likelihood probability distribution introduced previously by Pina and Puetter (1992). This GOF probability distribution, which is based on the spatial autocorrelation of the residuals, has the advantage that it ensures spatially uncorrelated image reconstruction residuals.

  17. Characterization of Window Functions for Regularization of Electrical Capacitance Tomography Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Peng, Lihui; Xiao, Deyun

    2007-06-01

    This paper presents a regularization method by using different window functions as regularization for electrical capacitance tomography (ECT) image reconstruction. Image reconstruction for ECT is a typical ill-posed inverse problem. Because of the small singular values of the sensitivity matrix, the solution is sensitive to the measurement noise. The proposed method uses the spectral filtering properties of different window functions to make the solution stable by suppressing the noise in measurements. The window functions, such as the Hanning window, the cosine window and so on, are modified for ECT image reconstruction. Simulations with respect to five typical permittivity distributions are carried out. The reconstructions are better and some of the contours are clearer than the results from the Tikhonov regularization. Numerical results show that the feasibility of the image reconstruction algorithm using different window functions as regularization.

  18. An image mosaic method based on corner

    NASA Astrophysics Data System (ADS)

    Jiang, Zetao; Nie, Heting

    2015-08-01

    In view of the shortcomings of the traditional image mosaic, this paper describes a new algorithm for image mosaic based on the Harris corner. Firstly, Harris operator combining the constructed low-pass smoothing filter based on splines function and circular window search is applied to detect the image corner, which allows us to have better localisation performance and effectively avoid the phenomenon of cluster. Secondly, the correlation feature registration is used to find registration pair, remove the false registration using random sampling consensus. Finally use the method of weighted trigonometric combined with interpolation function for image fusion. The experiments show that this method can effectively remove the splicing ghosting and improve the accuracy of image mosaic.

  19. An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong

    2012-10-01

    In this paper, a novel lesion segmentation within breast ultrasound (BUS) image based on the cellular automata principle is proposed. Its energy transition function is formulated based on global image information difference and local image information difference using different energy transfer strategies. First, an energy decrease strategy is used for modeling the spatial relation information of pixels. For modeling global image information difference, a seed information comparison function is developed using an energy preserve strategy. Then, a texture information comparison function is proposed for considering local image difference in different regions, which is helpful for handling blurry boundaries. Moreover, two neighborhood systems (von Neumann and Moore neighborhood systems) are integrated as the evolution environment, and a similarity-based criterion is used for suppressing noise and reducing computation complexity. The proposed method was applied to 205 clinical BUS images for studying its characteristic and functionality, and several overlapping area error metrics and statistical evaluation methods are utilized for evaluating its performance. The experimental results demonstrate that the proposed method can handle BUS images with blurry boundaries and low contrast well and can segment breast lesions accurately and effectively.

  20. Joint image and motion reconstruction for PET using a B-spline motion model.

    PubMed

    Blume, Moritz; Navab, Nassir; Rafecas, Magdalena

    2012-12-21

    We present a novel joint image and motion reconstruction method for PET. The method is based on gated data and reconstructs an image together with a motion function. The motion function can be used to transform the reconstructed image to any of the input gates. All available events (from all gates) are used in the reconstruction. The presented method uses a B-spline motion model, together with a novel motion regularization procedure that does not need a regularization parameter (which is usually extremely difficult to adjust). Several image and motion grid levels are used in order to reduce the reconstruction time. In a simulation study, the presented method is compared to a recently proposed joint reconstruction method. While the presented method provides comparable reconstruction quality, it is much easier to use since no regularization parameter has to be chosen. Furthermore, since the B-spline discretization of the motion function depends on fewer parameters than a displacement field, the presented method is considerably faster and consumes less memory than its counterpart. The method is also applied to clinical data, for which a novel purely data-driven gating approach is presented.

  1. PIZZARO: Forensic analysis and restoration of image and video data.

    PubMed

    Kamenicky, Jan; Bartos, Michal; Flusser, Jan; Mahdian, Babak; Kotera, Jan; Novozamsky, Adam; Saic, Stanislav; Sroubek, Filip; Sorel, Michal; Zita, Ales; Zitova, Barbara; Sima, Zdenek; Svarc, Petr; Horinek, Jan

    2016-07-01

    This paper introduces a set of methods for image and video forensic analysis. They were designed to help to assess image and video credibility and origin and to restore and increase image quality by diminishing unwanted blur, noise, and other possible artifacts. The motivation came from the best practices used in the criminal investigation utilizing images and/or videos. The determination of the image source, the verification of the image content, and image restoration were identified as the most important issues of which automation can facilitate criminalists work. Novel theoretical results complemented with existing approaches (LCD re-capture detection and denoising) were implemented in the PIZZARO software tool, which consists of the image processing functionality as well as of reporting and archiving functions to ensure the repeatability of image analysis procedures and thus fulfills formal aspects of the image/video analysis work. Comparison of new proposed methods with the state of the art approaches is shown. Real use cases are presented, which illustrate the functionality of the developed methods and demonstrate their applicability in different situations. The use cases as well as the method design were solved in tight cooperation of scientists from the Institute of Criminalistics, National Drug Headquarters of the Criminal Police and Investigation Service of the Police of the Czech Republic, and image processing experts from the Czech Academy of Sciences. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. An imaging method of wavefront coding system based on phase plate rotation

    NASA Astrophysics Data System (ADS)

    Yi, Rigui; Chen, Xi; Dong, Liquan; Liu, Ming; Zhao, Yuejin; Liu, Xiaohua

    2018-01-01

    Wave-front coding has a great prospect in extending the depth of the optical imaging system and reducing optical aberrations, but the image quality and noise performance are inevitably reduced. According to the theoretical analysis of the wave-front coding system and the phase function expression of the cubic phase plate, this paper analyzed and utilized the feature that the phase function expression would be invariant in the new coordinate system when the phase plate rotates at different angles around the z-axis, and we proposed a method based on the rotation of the phase plate and image fusion. First, let the phase plate rotated at a certain angle around the z-axis, the shape and distribution of the PSF obtained on the image surface remain unchanged, the rotation angle and direction are consistent with the rotation angle of the phase plate. Then, the middle blurred image is filtered by the point spread function of the rotation adjustment. Finally, the reconstruction images were fused by the method of the Laplacian pyramid image fusion and the Fourier transform spectrum fusion method, and the results were evaluated subjectively and objectively. In this paper, we used Matlab to simulate the images. By using the Laplacian pyramid image fusion method, the signal-to-noise ratio of the image is increased by 19% 27%, the clarity is increased by 11% 15% , and the average gradient is increased by 4% 9% . By using the Fourier transform spectrum fusion method, the signal-to-noise ratio of the image is increased by 14% 23%, the clarity is increased by 6% 11% , and the average gradient is improved by 2% 6%. The experimental results show that the image processing by the above method can improve the quality of the restored image, improving the image clarity, and can effectively preserve the image information.

  3. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus

    2017-08-01

    We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.

  4. Anatomic and functional imaging of tagged molecules in animals

    DOEpatents

    Weisenberger, Andrew G [Yorktown, VA; Majewski, Stanislaw [Grafton, VA; Paulus, Michael J [Knoxville, TN; Gleason, Shaun S [Knoxville, VA

    2007-04-24

    A novel functional imaging system for use in the imaging of unrestrained and non-anesthetized small animals or other subjects and a method for acquiring such images and further registering them with anatomical X-ray images previously or subsequently acquired. The apparatus comprises a combination of an IR laser profilometry system and gamma, PET and/or SPECT, imaging system, all mounted on a rotating gantry, that permits simultaneous acquisition of positional and orientational information and functional images of an unrestrained subject that are registered, i.e. integrated, using image processing software to produce a functional image of the subject without the use of restraints or anesthesia. The functional image thus obtained can be registered with a previously or subsequently obtained X-ray CT image of the subject. The use of the system described herein permits functional imaging of a subject in an unrestrained/non-anesthetized condition thereby reducing the stress on the subject and eliminating any potential interference with the functional testing that such stress might induce.

  5. [A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].

    PubMed

    Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong

    2011-06-01

    For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.

  6. Level set method for image segmentation based on moment competition

    NASA Astrophysics Data System (ADS)

    Min, Hai; Wang, Xiao-Feng; Huang, De-Shuang; Jin, Jing; Wang, Hong-Zhi; Li, Hai

    2015-05-01

    We propose a level set method for image segmentation which introduces the moment competition and weakly supervised information into the energy functional construction. Different from the region-based level set methods which use force competition, the moment competition is adopted to drive the contour evolution. Here, a so-called three-point labeling scheme is proposed to manually label three independent points (weakly supervised information) on the image. Then the intensity differences between the three points and the unlabeled pixels are used to construct the force arms for each image pixel. The corresponding force is generated from the global statistical information of a region-based method and weighted by the force arm. As a result, the moment can be constructed and incorporated into the energy functional to drive the evolving contour to approach the object boundary. In our method, the force arm can take full advantage of the three-point labeling scheme to constrain the moment competition. Additionally, the global statistical information and weakly supervised information are successfully integrated, which makes the proposed method more robust than traditional methods for initial contour placement and parameter setting. Experimental results with performance analysis also show the superiority of the proposed method on segmenting different types of complicated images, such as noisy images, three-phase images, images with intensity inhomogeneity, and texture images.

  7. Random phase encoding for optical security

    NASA Astrophysics Data System (ADS)

    Wang, RuiKang K.; Watson, Ian A.; Chatwin, Christopher R.

    1996-09-01

    A new optical encoding method for security applications is proposed. The encoded image (encrypted into the security products) is merely a random phase image statistically and randomly generated by a random number generator using a computer, which contains no information from the reference pattern (stored for verification) or the frequency plane filter (a phase-only function for decoding). The phase function in the frequency plane is obtained using a modified phase retrieval algorithm. The proposed method uses two phase-only functions (images) at both the input and frequency planes of the optical processor leading to maximum optical efficiency. Computer simulation shows that the proposed method is robust for optical security applications.

  8. An improved level set method for brain MR images segmentation and bias correction.

    PubMed

    Chen, Yunjie; Zhang, Jianwei; Macione, Jim

    2009-10-01

    Intensity inhomogeneities cause considerable difficulty in the quantitative analysis of magnetic resonance (MR) images. Thus, bias field estimation is a necessary step before quantitative analysis of MR data can be undertaken. This paper presents a variational level set approach to bias correction and segmentation for images with intensity inhomogeneities. Our method is based on an observation that intensities in a relatively small local region are separable, despite of the inseparability of the intensities in the whole image caused by the overall intensity inhomogeneity. We first define a localized K-means-type clustering objective function for image intensities in a neighborhood around each point. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. The objective function is then integrated over the entire domain to define the data term into the level set framework. Our method is able to capture bias of quite general profiles. Moreover, it is robust to initialization, and thereby allows fully automated applications. The proposed method has been used for images of various modalities with promising results.

  9. Vectorial point spread function and optical transfer function in oblique plane imaging.

    PubMed

    Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang

    2014-05-05

    Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

  10. Characterization and simulation of noise in PET images reconstructed with OSEM: Development of a method for the generation of synthetic images.

    PubMed

    Castro, P; Huerga, C; Chamorro, P; Garayoa, J; Roch, M; Pérez, L

    2018-04-17

    The goals of the study are to characterize imaging properties in 2D PET images reconstructed with the iterative algorithm ordered-subset expectation maximization (OSEM) and to propose a new method for the generation of synthetic images. The noise is analyzed in terms of its magnitude, spatial correlation, and spectral distribution through standard deviation, autocorrelation function, and noise power spectrum (NPS), respectively. Their variations with position and activity level are also analyzed. This noise analysis is based on phantom images acquired from 18 F uniform distributions. Experimental recovery coefficients of hot spheres in different backgrounds are employed to study the spatial resolution of the system through point spread function (PSF). The NPS and PSF functions provide the baseline for the proposed simulation method: convolution with PSF as kernel and noise addition from NPS. The noise spectral analysis shows that the main contribution is of random nature. It is also proven that attenuation correction does not alter noise texture but it modifies its magnitude. Finally, synthetic images of 2 phantoms, one of them an anatomical brain, are quantitatively compared with experimental images showing a good agreement in terms of pixel values and pixel correlations. Thus, the contrast to noise ratio for the biggest sphere in the NEMA IEC phantom is 10.7 for the synthetic image and 8.8 for the experimental image. The properties of the analyzed OSEM-PET images can be described by NPS and PSF functions. Synthetic images, even anatomical ones, are successfully generated by the proposed method based on the NPS and PSF. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Modeling a color-rendering operator for high dynamic range images using a cone-response function

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Hyoung; Kim, Gi-Seok; Yun, Byoung-Ju

    2015-09-01

    Tone-mapping operators are the typical algorithms designed to produce visibility and the overall impression of brightness, contrast, and color of high dynamic range (HDR) images on low dynamic range (LDR) display devices. Although several new tone-mapping operators have been proposed in recent years, the results of these operators have not matched those of the psychophysical experiments based on the human visual system. A color-rendering model that is a combination of tone-mapping and cone-response functions using an XYZ tristimulus color space is presented. In the proposed method, the tone-mapping operator produces visibility and the overall impression of brightness, contrast, and color in HDR images when mapped onto relatively LDR devices. The tone-mapping resultant image is obtained using chromatic and achromatic colors to avoid well-known color distortions shown in the conventional methods. The resulting image is then processed with a cone-response function wherein emphasis is placed on human visual perception (HVP). The proposed method covers the mismatch between the actual scene and the rendered image based on HVP. The experimental results show that the proposed method yields an improved color-rendering performance compared to conventional methods.

  12. A level set method for cupping artifact correction in cone-beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shipeng; Li, Haibo; Ge, Qi

    2015-08-15

    Purpose: To reduce cupping artifacts and improve the contrast-to-noise ratio in cone-beam computed tomography (CBCT). Methods: A level set method is proposed to reduce cupping artifacts in the reconstructed image of CBCT. The authors derive a local intensity clustering property of the CBCT image and define a local clustering criterion function of the image intensities in a neighborhood of each point. This criterion function defines an energy in terms of the level set functions, which represent a segmentation result and the cupping artifacts. The cupping artifacts are estimated as a result of minimizing this energy. Results: The cupping artifacts inmore » CBCT are reduced by an average of 90%. The results indicate that the level set-based algorithm is practical and effective for reducing the cupping artifacts and preserving the quality of the reconstructed image. Conclusions: The proposed method focuses on the reconstructed image without requiring any additional physical equipment, is easily implemented, and provides cupping correction through a single-scan acquisition. The experimental results demonstrate that the proposed method successfully reduces the cupping artifacts.« less

  13. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM.

    PubMed

    Razifar, Pasha; Sandström, Mattias; Schnieder, Harald; Långström, Bengt; Maripuu, Enn; Bengtsson, Ewert; Bergström, Mats

    2005-08-25

    Positron Emission Tomography (PET), Computed Tomography (CT), PET/CT and Single Photon Emission Tomography (SPECT) are non-invasive imaging tools used for creating two dimensional (2D) cross section images of three dimensional (3D) objects. PET and SPECT have the potential of providing functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules, whereas CT visualizes X-ray density in tissues in the body. PET/CT provides fused images representing both functional and anatomical information with better precision in localization than PET alone. Images generated by these types of techniques are generally noisy, thereby impairing the imaging potential and affecting the precision in quantitative values derived from the images. It is crucial to explore and understand the properties of noise in these imaging techniques. Here we used autocorrelation function (ACF) specifically to describe noise correlation and its non-isotropic behaviour in experimentally generated images of PET, CT, PET/CT and SPECT. Experiments were performed using phantoms with different shapes. In PET and PET/CT studies, data were acquired in 2D acquisition mode and reconstructed by both analytical filter back projection (FBP) and iterative, ordered subsets expectation maximisation (OSEM) methods. In the PET/CT studies, different magnitudes of X-ray dose in the transmission were employed by using different mA settings for the X-ray tube. In the CT studies, data were acquired using different slice thickness with and without applied dose reduction function and the images were reconstructed by FBP. SPECT studies were performed in 2D, reconstructed using FBP and OSEM, using post 3D filtering. ACF images were generated from the primary images, and profiles across the ACF images were used to describe the noise correlation in different directions. The variance of noise across the images was visualised as images and with profiles across these images. The most important finding was that the pattern of noise correlation is rotation symmetric or isotropic, independent of object shape in PET and PET/CT images reconstructed using the iterative method. This is, however, not the case in FBP images when the shape of phantom is not circular. Also CT images reconstructed using FBP show the same non-isotropic pattern independent of slice thickness and utilization of care dose function. SPECT images show an isotropic correlation of the noise independent of object shape or applied reconstruction algorithm. Noise in PET/CT images was identical independent of the applied X-ray dose in the transmission part (CT), indicating that the noise from transmission with the applied doses does not propagate into the PET images showing that the noise from the emission part is dominant. The results indicate that in human studies it is possible to utilize a low dose in transmission part while maintaining the noise behaviour and the quality of the images. The combined effect of noise correlation for asymmetric objects and a varying noise variance across the image field significantly complicates the interpretation of the images when statistical methods are used, such as with statistical estimates of precision in average values, use of statistical parametric mapping methods and principal component analysis. Hence it is recommended that iterative reconstruction methods are used for such applications. However, it is possible to calculate the noise analytically in images reconstructed by FBP, while it is not possible to do the same calculation in images reconstructed by iterative methods. Therefore for performing statistical methods of analysis which depend on knowing the noise, FBP would be preferred.

  14. Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.

    PubMed

    Zalvidea, D; Sicre, E E

    1998-06-10

    A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.

  15. Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning.

    PubMed

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-11-01

    Resting-state functional MR imaging (rsfMR imaging) measures spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal and can be used to elucidate the brain's functional organization. It is used to simultaneously assess multiple distributed resting-state networks. Unlike task-based functional MR imaging, rsfMR imaging does not require task performance. This article presents a brief introduction of rsfMR imaging processing methods followed by a detailed discussion on the use of rsfMR imaging in presurgical planning. Example cases are provided to highlight the strengths and limitations of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Improved patch-based learning for image deblurring

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Jiang, Zhiguo; Zhang, Haopeng

    2015-05-01

    Most recent image deblurring methods only use valid information found in input image as the clue to fill the deblurring region. These methods usually have the defects of insufficient prior information and relatively poor adaptiveness. Patch-based method not only uses the valid information of the input image itself, but also utilizes the prior information of the sample images to improve the adaptiveness. However the cost function of this method is quite time-consuming and the method may also produce ringing artifacts. In this paper, we propose an improved non-blind deblurring algorithm based on learning patch likelihoods. On one hand, we consider the effect of the Gaussian mixture model with different weights and normalize the weight values, which can optimize the cost function and reduce running time. On the other hand, a post processing method is proposed to solve the ringing artifacts produced by traditional patch-based method. Extensive experiments are performed. Experimental results verify that our method can effectively reduce the execution time, suppress the ringing artifacts effectively, and keep the quality of deblurred image.

  17. A Laplacian based image filtering using switching noise detector.

    PubMed

    Ranjbaran, Ali; Hassan, Anwar Hasni Abu; Jafarpour, Mahboobe; Ranjbaran, Bahar

    2015-01-01

    This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.

  18. Research on adaptive optics image restoration algorithm based on improved joint maximum a posteriori method

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Li, Yang; Wang, Junnan; Liu, Ying

    2018-03-01

    In this paper, we propose a point spread function (PSF) reconstruction method and joint maximum a posteriori (JMAP) estimation method for the adaptive optics image restoration. Using the JMAP method as the basic principle, we establish the joint log likelihood function of multi-frame adaptive optics (AO) images based on the image Gaussian noise models. To begin with, combining the observed conditions and AO system characteristics, a predicted PSF model for the wavefront phase effect is developed; then, we build up iterative solution formulas of the AO image based on our proposed algorithm, addressing the implementation process of multi-frame AO images joint deconvolution method. We conduct a series of experiments on simulated and real degraded AO images to evaluate our proposed algorithm. Compared with the Wiener iterative blind deconvolution (Wiener-IBD) algorithm and Richardson-Lucy IBD algorithm, our algorithm has better restoration effects including higher peak signal-to-noise ratio ( PSNR) and Laplacian sum ( LS) value than the others. The research results have a certain application values for actual AO image restoration.

  19. Normal and abnormal tissue identification system and method for medical images such as digital mammograms

    NASA Technical Reports Server (NTRS)

    Heine, John J. (Inventor); Clarke, Laurence P. (Inventor); Deans, Stanley R. (Inventor); Stauduhar, Richard Paul (Inventor); Cullers, David Kent (Inventor)

    2001-01-01

    A system and method for analyzing a medical image to determine whether an abnormality is present, for example, in digital mammograms, includes the application of a wavelet expansion to a raw image to obtain subspace images of varying resolution. At least one subspace image is selected that has a resolution commensurate with a desired predetermined detection resolution range. A functional form of a probability distribution function is determined for each selected subspace image, and an optimal statistical normal image region test is determined for each selected subspace image. A threshold level for the probability distribution function is established from the optimal statistical normal image region test for each selected subspace image. A region size comprising at least one sector is defined, and an output image is created that includes a combination of all regions for each selected subspace image. Each region has a first value when the region intensity level is above the threshold and a second value when the region intensity level is below the threshold. This permits the localization of a potential abnormality within the image.

  20. A dual-modality optical coherence tomography and selective plane illumination microscopy system for mouse embryonic imaging

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.

    2017-02-01

    Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.

  1. Assessment of body fat based on potential function clustering segmentation of computed tomography images

    NASA Astrophysics Data System (ADS)

    Zhang, Lixin; Lin, Min; Wan, Baikun; Zhou, Yu; Wang, Yizhong

    2005-01-01

    In this paper, a new method of body fat and its distribution testing is proposed based on CT image processing. As it is more sensitive to slight differences in attenuation than standard radiography, CT depicts the soft tissues with better clarity. And body fat has a distinct grayness range compared with its neighboring tissues in a CT image. An effective multi-thresholds image segmentation method based on potential function clustering is used to deal with multiple peaks in the grayness histogram of a CT image. The CT images of abdomens of 14 volunteers with different fatness are processed with the proposed method. Not only can the result of total fat area be got, but also the differentiation of subcutaneous fat from intra-abdominal fat has been identified. The results show the adaptability and stability of the proposed method, which will be a useful tool for diagnosing obesity.

  2. A GIHS-based spectral preservation fusion method for remote sensing images using edge restored spectral modulation

    NASA Astrophysics Data System (ADS)

    Zhou, Xiran; Liu, Jun; Liu, Shuguang; Cao, Lei; Zhou, Qiming; Huang, Huawen

    2014-02-01

    High spatial resolution and spectral fidelity are basic standards for evaluating an image fusion algorithm. Numerous fusion methods for remote sensing images have been developed. Some of these methods are based on the intensity-hue-saturation (IHS) transform and the generalized IHS (GIHS), which may cause serious spectral distortion. Spectral distortion in the GIHS is proven to result from changes in saturation during fusion. Therefore, reducing such changes can achieve high spectral fidelity. A GIHS-based spectral preservation fusion method that can theoretically reduce spectral distortion is proposed in this study. The proposed algorithm consists of two steps. The first step is spectral modulation (SM), which uses the Gaussian function to extract spatial details and conduct SM of multispectral (MS) images. This method yields a desirable visual effect without requiring histogram matching between the panchromatic image and the intensity of the MS image. The second step uses the Gaussian convolution function to restore lost edge details during SM. The proposed method is proven effective and shown to provide better results compared with other GIHS-based methods.

  3. Convex composite wavelet frame and total variation-based image deblurring using nonconvex penalty functions

    NASA Astrophysics Data System (ADS)

    Shen, Zhengwei; Cheng, Lishuang

    2017-09-01

    Total variation (TV)-based image deblurring method can bring on staircase artifacts in the homogenous region of the latent images recovered from the degraded images while a wavelet/frame-based image deblurring method will lead to spurious noise spikes and pseudo-Gibbs artifacts in the vicinity of discontinuities of the latent images. To suppress these artifacts efficiently, we propose a nonconvex composite wavelet/frame and TV-based image deblurring model. In this model, the wavelet/frame and the TV-based methods may complement each other, which are verified by theoretical analysis and experimental results. To further improve the quality of the latent images, nonconvex penalty function is used to be the regularization terms of the model, which may induce a stronger sparse solution and will more accurately estimate the relative large gradient or wavelet/frame coefficients of the latent images. In addition, by choosing a suitable parameter to the nonconvex penalty function, the subproblem that splits by the alternative direction method of multipliers algorithm from the proposed model can be guaranteed to be a convex optimization problem; hence, each subproblem can converge to a global optimum. The mean doubly augmented Lagrangian and the isotropic split Bregman algorithms are used to solve these convex subproblems where the designed proximal operator is used to reduce the computational complexity of the algorithms. Extensive numerical experiments indicate that the proposed model and algorithms are comparable to other state-of-the-art model and methods.

  4. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  5. The heritability of the functional connectome is robust to common nonlinear registration methods

    NASA Astrophysics Data System (ADS)

    Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.

    2016-03-01

    Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.

  6. Projections onto Convex Sets Super-Resolution Reconstruction Based on Point Spread Function Estimation of Low-Resolution Remote Sensing Images

    PubMed Central

    Fan, Chong; Wu, Chaoyun; Li, Grand; Ma, Jun

    2017-01-01

    To solve the problem on inaccuracy when estimating the point spread function (PSF) of the ideal original image in traditional projection onto convex set (POCS) super-resolution (SR) reconstruction, this paper presents an improved POCS SR algorithm based on PSF estimation of low-resolution (LR) remote sensing images. The proposed algorithm can improve the spatial resolution of the image and benefit agricultural crop visual interpolation. The PSF of the high-resolution (HR) image is unknown in reality. Therefore, analysis of the relationship between the PSF of the HR image and the PSF of the LR image is important to estimate the PSF of the HR image by using multiple LR images. In this study, the linear relationship between the PSFs of the HR and LR images can be proven. In addition, the novel slant knife-edge method is employed, which can improve the accuracy of the PSF estimation of LR images. Finally, the proposed method is applied to reconstruct airborne digital sensor 40 (ADS40) three-line array images and the overlapped areas of two adjacent GF-2 images by embedding the estimated PSF of the HR image to the original POCS SR algorithm. Experimental results show that the proposed method yields higher quality of reconstructed images than that produced by the blind SR method and the bicubic interpolation method. PMID:28208837

  7. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    PubMed

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  8. Applications of imaging technology in radiation research.

    PubMed

    Lin, MingDe; Jackson, Edward F

    2012-04-01

    Imaging research and advances in systems engineering have enabled the transition of medical imaging from a means for accomplishing traditional anatomic visualization (i.e., orthopedic planar film X ray) to a means for noninvasively assessing a variety of functional measures. Perfusion imaging is one of the major highlights in functional imaging. In this work, various methods for measuring perfusion using widely-available commercial imaging modalities and contrast agents, specifically X ray and MR (magnetic resonance), will be described. The first section reviews general methods used for perfusion imaging, and the second section provides modality-specific information, focusing on the contrast mechanisms used to calculate perfusion-related parameters. The goal of these descriptions is to illustrate how perfusion imaging can be applied to radiation biology research.

  9. Machine Learning Applications to Resting-State Functional MR Imaging Analysis.

    PubMed

    Billings, John M; Eder, Maxwell; Flood, William C; Dhami, Devendra Singh; Natarajan, Sriraam; Whitlow, Christopher T

    2017-11-01

    Machine learning is one of the most exciting and rapidly expanding fields within computer science. Academic and commercial research entities are investing in machine learning methods, especially in personalized medicine via patient-level classification. There is great promise that machine learning methods combined with resting state functional MR imaging will aid in diagnosis of disease and guide potential treatment for conditions thought to be impossible to identify based on imaging alone, such as psychiatric disorders. We discuss machine learning methods and explore recent advances. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Microseismic imaging using a source function independent full waveform inversion method

    NASA Astrophysics Data System (ADS)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-07-01

    At the heart of microseismic event measurements is the task to estimate the location of the source microseismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional microseismic source locating methods require, in many cases, manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, FWI of microseismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent FWI of microseismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modelled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers are calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  11. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury.

    PubMed

    Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun

    2017-04-01

    A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.

  12. 3D receiver function Kirchhoff depth migration image of Cascadia subduction slab weak zone

    NASA Astrophysics Data System (ADS)

    Cheng, C.; Allen, R. M.; Bodin, T.; Tauzin, B.

    2016-12-01

    We have developed a highly computational efficient algorithm of applying 3D Kirchhoff depth migration to telesismic receiver function data. Combine primary PS arrival with later multiple arrivals we are able to reveal a better knowledge about the earth discontinuity structure (transmission and reflection). This method is highly useful compare with traditional CCP method when dipping structure is met during the imaging process, such as subduction slab. We apply our method to the reginal Cascadia subduction zone receiver function data and get a high resolution 3D migration image, for both primary and multiples. The image showed us a clear slab weak zone (slab hole) in the upper plate boundary under Northern California and the whole Oregon. Compare with previous 2D receiver function image from 2D array(CAFE and CASC93), the position of the weak zone shows interesting conherency. This weak zone is also conherent with local seismicity missing and heat rising, which lead us to think about and compare with the ocean plate stucture and the hydralic fluid process during the formation and migration of the subduction slab.

  13. Application of abstract harmonic analysis to the high-speed recognition of images

    NASA Technical Reports Server (NTRS)

    Usikov, D. A.

    1979-01-01

    Methods are constructed for rapidly computing correlation functions using the theory of abstract harmonic analysis. The theory developed includes as a particular case the familiar Fourier transform method for a correlation function which makes it possible to find images which are independent of their translation in the plane. Two examples of the application of the general theory described are the search for images, independent of their rotation and scale, and the search for images which are independent of their translations and rotations in the plane.

  14. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    PubMed

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  15. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  16. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  17. Tensor voting for image correction by global and local intensity alignment.

    PubMed

    Jia, Jiaya; Tang, Chi-Keung

    2005-01-01

    This paper presents a voting method to perform image correction by global and local intensity alignment. The key to our modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed. Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes, where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting framework, when only two defective input images are given.

  18. Fuzzy difference-of-Gaussian-based iris recognition method for noisy iris images

    NASA Astrophysics Data System (ADS)

    Kang, Byung Jun; Park, Kang Ryoung; Yoo, Jang-Hee; Moon, Kiyoung

    2010-06-01

    Iris recognition is used for information security with a high confidence level because it shows outstanding recognition accuracy by using human iris patterns with high degrees of freedom. However, iris recognition accuracy can be reduced by noisy iris images with optical and motion blurring. We propose a new iris recognition method based on the fuzzy difference-of-Gaussian (DOG) for noisy iris images. This study is novel in three ways compared to previous works: (1) The proposed method extracts iris feature values using the DOG method, which is robust to local variations of illumination and shows fine texture information, including various frequency components. (2) When determining iris binary codes, image noises that cause the quantization error of the feature values are reduced with the fuzzy membership function. (3) The optimal parameters of the DOG filter and the fuzzy membership function are determined in terms of iris recognition accuracy. Experimental results showed that the performance of the proposed method was better than that of previous methods for noisy iris images.

  19. Simultaneous multi-headed imager geometry calibration method

    DOEpatents

    Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA

    2008-02-19

    A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.

  20. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.

    PubMed

    Fessler, J A; Booth, S D

    1999-01-01

    Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.

  1. A Model-Based Approach for Microvasculature Structure Distortion Correction in Two-Photon Fluorescence Microscopy Images

    PubMed Central

    Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh

    2015-01-01

    SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257

  2. AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA.

    PubMed

    Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard

    2011-01-01

    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method frequently correspond to subregions of visible spots that may represent post-translational modifications or co-migrating proteins that cannot be visually resolved from adjacent, more abundant proteins on the gel image. Thus, it is possible that this image-based approach may actually improve the realized resolution of the gel, revealing differentially expressed proteins that would not have even been detected as spots by modern spot-based analyses.

  3. A novel method for fast imaging of brain function, non-invasively, with light

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Anday, Endla; Nioka, Shoko; Zhou, Shuoming; Hong, Long; Worden, Katherine; Li, C.; Murray, T.; Ovetsky, Y.; Pidikiti, D.; Thomas, R.

    1998-05-01

    Imaging of the human body by any non-invasive technique has been an appropriate goal of physics and medicine, and great success has been obtained with both Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) in brain imaging. Non-imaging responses to functional activation using near infrared spectroscopy of brain (fNIR) obtained in 1993 (Chance, et al. [1]) and in 1994 (Tamura, et al. [2]) are now complemented with images of pre-frontal and parietal stimulation in adults and pre-term neonates in this communication (see also [3]). Prior studies used continuous [4], pulsed [3] or modulated [5] light. The amplitude and phase cancellation of optical patterns as demonstrated for single source detector pairs affords remarkable sensitivity of small object detection in model systems [6]. The methods have now been elaborated with multiple source detector combinations (nine sources, four detectors). Using simple back projection algorithms it is now possible to image sensorimotor and cognitive activation of adult and pre- and full-term neonate human brain function in times < 30 sec and with two dimensional resolutions of < 1 cm in two dimensional displays. The method can be used in evaluation of adult and neonatal cerebral dysfunction in a simple, portable and affordable method that does not require immobilization, as contrasted to MRI and PET.

  4. Blind identification of image manipulation type using mixed statistical moments

    NASA Astrophysics Data System (ADS)

    Jeong, Bo Gyu; Moon, Yong Ho; Eom, Il Kyu

    2015-01-01

    We present a blind identification of image manipulation types such as blurring, scaling, sharpening, and histogram equalization. Motivated by the fact that image manipulations can change the frequency characteristics of an image, we introduce three types of feature vectors composed of statistical moments. The proposed statistical moments are generated from separated wavelet histograms, the characteristic functions of the wavelet variance, and the characteristic functions of the spatial image. Our method can solve the n-class classification problem. Through experimental simulations, we demonstrate that our proposed method can achieve high performance in manipulation type detection. The average rate of the correctly identified manipulation types is as high as 99.22%, using 10,800 test images and six manipulation types including the authentic image.

  5. Functional Imaging of the Lungs with Gas Agents

    PubMed Central

    Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.

    2015-01-01

    This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920

  6. A blind deconvolution method based on L1/L2 regularization prior in the gradient space

    NASA Astrophysics Data System (ADS)

    Cai, Ying; Shi, Yu; Hua, Xia

    2018-02-01

    In the process of image restoration, the result of image restoration is very different from the real image because of the existence of noise, in order to solve the ill posed problem in image restoration, a blind deconvolution method based on L1/L2 regularization prior to gradient domain is proposed. The method presented in this paper first adds a function to the prior knowledge, which is the ratio of the L1 norm to the L2 norm, and takes the function as the penalty term in the high frequency domain of the image. Then, the function is iteratively updated, and the iterative shrinkage threshold algorithm is applied to solve the high frequency image. In this paper, it is considered that the information in the gradient domain is better for the estimation of blur kernel, so the blur kernel is estimated in the gradient domain. This problem can be quickly implemented in the frequency domain by fast Fast Fourier Transform. In addition, in order to improve the effectiveness of the algorithm, we have added a multi-scale iterative optimization method. This paper proposes the blind deconvolution method based on L1/L2 regularization priors in the gradient space can obtain the unique and stable solution in the process of image restoration, which not only keeps the edges and details of the image, but also ensures the accuracy of the results.

  7. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    PubMed

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. An image morphing technique based on optimal mass preserving mapping.

    PubMed

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2007-06-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L(2) mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods.

  9. An Image Morphing Technique Based on Optimal Mass Preserving Mapping

    PubMed Central

    Zhu, Lei; Yang, Yan; Haker, Steven; Tannenbaum, Allen

    2013-01-01

    Image morphing, or image interpolation in the time domain, deals with the metamorphosis of one image into another. In this paper, a new class of image morphing algorithms is proposed based on the theory of optimal mass transport. The L2 mass moving energy functional is modified by adding an intensity penalizing term, in order to reduce the undesired double exposure effect. It is an intensity-based approach and, thus, is parameter free. The optimal warping function is computed using an iterative gradient descent approach. This proposed morphing method is also extended to doubly connected domains using a harmonic parameterization technique, along with finite-element methods. PMID:17547128

  10. Evaluation of the image quality of telescopes using the star test

    NASA Astrophysics Data System (ADS)

    Vazquez y Monteil, Sergio; Salazar Romero, Marcos A.; Gale, David M.

    2004-10-01

    The Point Spread Function (PSF) or star test is one of the main criteria to be considered in the quality of the image formed by a telescope. In a real system the distribution of irradiance in the image of a point source is given by the PSF, a function which is highly sensitive to aberrations. The PSF of a telescope may be determined by measuring the intensity distribution in the image of a star. Alternatively, if we already know the aberrations present in the optical system, then we may use diffraction theory to calculate the function. In this paper we propose a method for determining the wavefront aberrations from the PSF, using Genetic Algorithms to perform an optimization process starting from the PSF instead of the more traditional method of adjusting an aberration polynomial. We show that this method of phase recuperation is immune to noise-induced errors arising during image aquisition and registration. Some practical results are shown.

  11. Reconstruction of fluorescence molecular tomography with a cosinoidal level set method.

    PubMed

    Zhang, Xuanxuan; Cao, Xu; Zhu, Shouping

    2017-06-27

    Implicit shape-based reconstruction method in fluorescence molecular tomography (FMT) is capable of achieving higher image clarity than image-based reconstruction method. However, the implicit shape method suffers from a low convergence speed and performs unstably due to the utilization of gradient-based optimization methods. Moreover, the implicit shape method requires priori information about the number of targets. A shape-based reconstruction scheme of FMT with a cosinoidal level set method is proposed in this paper. The Heaviside function in the classical implicit shape method is replaced with a cosine function, and then the reconstruction can be accomplished with the Levenberg-Marquardt method rather than gradient-based methods. As a result, the priori information about the number of targets is not required anymore and the choice of step length is avoided. Numerical simulations and phantom experiments were carried out to validate the proposed method. Results of the proposed method show higher contrast to noise ratios and Pearson correlations than the implicit shape method and image-based reconstruction method. Moreover, the number of iterations required in the proposed method is much less than the implicit shape method. The proposed method performs more stably, provides a faster convergence speed than the implicit shape method, and achieves higher image clarity than the image-based reconstruction method.

  12. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  13. Optimal color coding for compression of true color images

    NASA Astrophysics Data System (ADS)

    Musatenko, Yurij S.; Kurashov, Vitalij N.

    1998-11-01

    In the paper we present the method that improves lossy compression of the true color or other multispectral images. The essence of the method is to project initial color planes into Karhunen-Loeve (KL) basis that gives completely decorrelated representation for the image and to compress basis functions instead of the planes. To do that the new fast algorithm of true KL basis construction with low memory consumption is suggested and our recently proposed scheme for finding optimal losses of Kl functions while compression is used. Compare to standard JPEG compression of the CMYK images the method provides the PSNR gain from 0.2 to 2 dB for the convenient compression ratios. Experimental results are obtained for high resolution CMYK images. It is demonstrated that presented scheme could work on common hardware.

  14. Imaging light responses of foveal ganglion cells in the living macaque eye.

    PubMed

    Yin, Lu; Masella, Benjamin; Dalkara, Deniz; Zhang, Jie; Flannery, John G; Schaffer, David V; Williams, David R; Merigan, William H

    2014-05-07

    The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.

  15. Haemodynamic imaging of thoracic stent-grafts by computational fluid dynamics (CFD): presentation of a patient-specific method combining magnetic resonance imaging and numerical simulations.

    PubMed

    Midulla, Marco; Moreno, Ramiro; Baali, Adil; Chau, Ming; Negre-Salvayre, Anne; Nicoud, Franck; Pruvo, Jean-Pierre; Haulon, Stephan; Rousseau, Hervé

    2012-10-01

    In the last decade, there was been increasing interest in finding imaging techniques able to provide a functional vascular imaging of the thoracic aorta. The purpose of this paper is to present an imaging method combining magnetic resonance imaging (MRI) and computational fluid dynamics (CFD) to obtain a patient-specific haemodynamic analysis of patients treated by thoracic endovascular aortic repair (TEVAR). MRI was used to obtain boundary conditions. MR angiography (MRA) was followed by cardiac-gated cine sequences which covered the whole thoracic aorta. Phase contrast imaging provided the inlet and outlet profiles. A CFD mesh generator was used to model the arterial morphology, and wall movements were imposed according to the cine imaging. CFD runs were processed using the finite volume (FV) method assuming blood as a homogeneous Newtonian fluid. Twenty patients (14 men; mean age 62.2 years) with different aortic lesions were evaluated. Four-dimensional mapping of velocity and wall shear stress were obtained, depicting different patterns of flow (laminar, turbulent, stenosis-like) and local alterations of parietal stress in-stent and along the native aorta. A computational method using a combined approach with MRI appears feasible and seems promising to provide detailed functional analysis of thoracic aorta after stent-graft implantation. • Functional vascular imaging of the thoracic aorta offers new diagnostic opportunities • CFD can model vascular haemodynamics for clinical aortic problems • Combining CFD with MRI offers patient specific method of aortic analysis • Haemodynamic analysis of stent-grafts could improve clinical management and follow-up.

  16. Functional Imaging of Retinal Photoreceptors and Inner Neurons Using Stimulus-Evoked Intrinsic Optical Signals

    PubMed Central

    Yao, Xin-Cheng; Li, Yi-Chao

    2013-01-01

    Retinal development is a dynamic process both anatomically and functionally. High-resolution imaging and dynamic monitoring of photoreceptors and inner neurons can provide important information regarding the structure and function of the developing retina. In this chapter, we describe intrinsic optical signal (IOS) imaging as a high spatiotemporal resolution method for functional study of living retinal tissues. IOS imaging is based on near infrared (NIR) light detection of stimulus-evoked transient change of inherent optical characteristics of the cells. With no requirement for exogenous biomarkers, IOS imaging is totally noninvasive for functional mapping of stimulus-evoked spatiotemporal dynamics of the photoreceptors and inner retinal neurons. PMID:22688714

  17. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function.

    PubMed

    Bao, Yijun; Gaylord, Thomas K

    2016-11-01

    Multifilter phase imaging with partially coherent light (MFPI-PC) is a promising new quantitative phase imaging method. However, the existing MFPI-PC method is based on the paraxial approximation. In the present work, an analytical nonparaxial partially coherent phase optical transfer function is derived. This enables the MFPI-PC to be extended to the realistic nonparaxial case. Simulations over a wide range of test phase objects as well as experimental measurements on a microlens array verify higher levels of imaging accuracy compared to the paraxial method. Unlike the paraxial version, the nonparaxial MFPI-PC with obliquity factor correction exhibits no systematic error. In addition, due to its analytical expression, the increase in computation time compared to the paraxial version is negligible.

  18. Are Imaging and Lesioning Convergent Methods for Assessing Functional Specialisation? Investigations Using an Artificial Neural Network

    ERIC Educational Resources Information Center

    Thomas, Michael S. C.; Purser, Harry R. M.; Tomlinson, Simon; Mareschal, Denis

    2012-01-01

    This article presents an investigation of the relationship between lesioning and neuroimaging methods of assessing functional specialisation, using synthetic brain imaging (SBI) and lesioning of a connectionist network of past-tense formation. The model comprised two processing "routes": one was a direct route between layers of input and output…

  19. Accurate image-charge method by the use of the residue theorem for core-shell dielectric sphere

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Xu, Zhenli

    2018-02-01

    An accurate image-charge method (ICM) is developed for ionic interactions outside a core-shell structured dielectric sphere. Core-shell particles have wide applications for which the theoretical investigation requires efficient methods for the Green's function used to calculate pairwise interactions of ions. The ICM is based on an inverse Mellin transform from the coefficients of spherical harmonic series of the Green's function such that the polarization charge due to dielectric boundaries is represented by a series of image point charges and an image line charge. The residue theorem is used to accurately calculate the density of the line charge. Numerical results show that the ICM is promising in fast evaluation of the Green's function, and thus it is useful for theoretical investigations of core-shell particles. This routine can also be applicable for solving other problems with spherical dielectric interfaces such as multilayered media and Debye-Hückel equations.

  20. Potency backprojection

    NASA Astrophysics Data System (ADS)

    Okuwaki, R.; Kasahara, A.; Yagi, Y.

    2017-12-01

    The backprojection (BP) method has been one of the powerful tools of tracking seismic-wave sources of the large/mega earthquakes. The BP method projects waveforms onto a possible source point by stacking them with the theoretical-travel-time shifts between the source point and the stations. Following the BP method, the hybrid backprojection (HBP) method was developed to enhance depth-resolution of projected images and mitigate the dummy imaging of the depth phases, which are shortcomings of the BP method, by stacking cross-correlation functions of the observed waveforms and theoretically calculated Green's functions (GFs). The signal-intensity of the BP/HBP image at a source point is related to how much of observed waveforms was radiated from that point. Since the amplitude of the GF associated with the slip-rate increases with depth as the rigidity increases with depth, the intensity of the BP/HBP image inherently has depth dependence. To make a direct comparison of the BP/HBP image with the corresponding slip distribution inferred from a waveform inversion, and discuss the rupture properties along the fault drawn from the waveforms in high- and low-frequencies with the BP/HBP methods and the waveform inversion, respectively, it is desirable to have the variants of BP/HBP methods that directly image the potency-rate-density distribution. Here we propose new formulations of the BP/HBP methods, which image the distribution of the potency-rate density by introducing alternative normalizing factors in the conventional formulations. For the BP method, the observed waveform is normalized with the maximum amplitude of P-phase of the corresponding GF. For the HBP method, we normalize the cross-correlation function with the squared-sum of the GF. The normalized waveforms or the cross-correlation functions are then stacked for all the stations to enhance the signal to noise ratio. We will present performance-tests of the new formulations by using synthetic waveforms and the real data of the Mw 8.3 2015 Illapel Chile earthquake, and further discuss the limitations of the new BP/HBP methods proposed in this study when they are used for exploring the rupture properties of the earthquakes.

  1. Spot auto-focusing and spot auto-stigmation methods with high-definition auto-correlation function in high-resolution TEM.

    PubMed

    Isakozawa, Shigeto; Fuse, Taishi; Amano, Junpei; Baba, Norio

    2018-04-01

    As alternatives to the diffractogram-based method in high-resolution transmission electron microscopy, a spot auto-focusing (AF) method and a spot auto-stigmation (AS) method are presented with a unique high-definition auto-correlation function (HD-ACF). The HD-ACF clearly resolves the ACF central peak region in small amorphous-thin-film images, reflecting the phase contrast transfer function. At a 300-k magnification for a 120-kV transmission electron microscope, the smallest areas used are 64 × 64 pixels (~3 nm2) for the AF and 256 × 256 pixels for the AS. A useful advantage of these methods is that the AF function has an allowable accuracy even for a low s/n (~1.0) image. A reference database on the defocus dependency of the HD-ACF by the pre-acquisition of through-focus amorphous-thin-film images must be prepared to use these methods. This can be very beneficial because the specimens are not limited to approximations of weak phase objects but can be extended to objects outside such approximations.

  2. Joint image registration and fusion method with a gradient strength regularization

    NASA Astrophysics Data System (ADS)

    Lidong, Huang; Wei, Zhao; Jun, Wang

    2015-05-01

    Image registration is an essential process for image fusion, and fusion performance can be used to evaluate registration accuracy. We propose a maximum likelihood (ML) approach to joint image registration and fusion instead of treating them as two independent processes in the conventional way. To improve the visual quality of a fused image, a gradient strength (GS) regularization is introduced in the cost function of ML. The GS of the fused image is controllable by setting the target GS value in the regularization term. This is useful because a larger target GS brings a clearer fused image and a smaller target GS makes the fused image smoother and thus restrains noise. Hence, the subjective quality of the fused image can be improved whether the source images are polluted by noise or not. We can obtain the fused image and registration parameters successively by minimizing the cost function using an iterative optimization method. Experimental results show that our method is effective with transformation, rotation, and scale parameters in the range of [-2.0, 2.0] pixel, [-1.1 deg, 1.1 deg], and [0.95, 1.05], respectively, and variances of noise smaller than 300. It also demonstrated that our method yields a more visual pleasing fused image and higher registration accuracy compared with a state-of-the-art algorithm.

  3. Micro-seismic imaging using a source function independent full waveform inversion method

    NASA Astrophysics Data System (ADS)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  4. Neural networks for data compression and invariant image recognition

    NASA Technical Reports Server (NTRS)

    Gardner, Sheldon

    1989-01-01

    An approach to invariant image recognition (I2R), based upon a model of biological vision in the mammalian visual system (MVS), is described. The complete I2R model incorporates several biologically inspired features: exponential mapping of retinal images, Gabor spatial filtering, and a neural network associative memory. In the I2R model, exponentially mapped retinal images are filtered by a hierarchical set of Gabor spatial filters (GSF) which provide compression of the information contained within a pixel-based image. A neural network associative memory (AM) is used to process the GSF coded images. We describe a 1-D shape function method for coding of scale and rotationally invariant shape information. This method reduces image shape information to a periodic waveform suitable for coding as an input vector to a neural network AM. The shape function method is suitable for near term applications on conventional computing architectures equipped with VLSI FFT chips to provide a rapid image search capability.

  5. Comparative study on the performance of textural image features for active contour segmentation.

    PubMed

    Moraru, Luminita; Moldovanu, Simona

    2012-07-01

    We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard deviation textural feature and a 5×5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the contrast-to-gradient method. The experiments showed promising segmentation results.

  6. Multimodal Image Registration through Simultaneous Segmentation.

    PubMed

    Aganj, Iman; Fischl, Bruce

    2017-11-01

    Multimodal image registration facilitates the combination of complementary information from images acquired with different modalities. Most existing methods require computation of the joint histogram of the images, while some perform joint segmentation and registration in alternate iterations. In this work, we introduce a new non-information-theoretical method for pairwise multimodal image registration, in which the error of segmentation - using both images - is considered as the registration cost function. We empirically evaluate our method via rigid registration of multi-contrast brain magnetic resonance images, and demonstrate an often higher registration accuracy in the results produced by the proposed technique, compared to those by several existing methods.

  7. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    PubMed Central

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  8. A Novel Feature-Tracking Echocardiographic Method for the Quantitation of Regional Myocardial Function

    PubMed Central

    Pirat, Bahar; Khoury, Dirar S.; Hartley, Craig J.; Tiller, Les; Rao, Liyun; Schulz, Daryl G.; Nagueh, Sherif F.; Zoghbi, William A.

    2012-01-01

    Objectives The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. Background A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking—incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Methods Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Results Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Conclusions Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function. PMID:18261685

  9. Characterization of adaptive statistical iterative reconstruction (ASIR) in low contrast helical abdominal imaging via a transfer function based method

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Li, Xinhua; Liu, Bob

    2012-03-01

    Since the introduction of ASiR, its potential in noise reduction has been reported in various clinical applications. However, the influence of different scan and reconstruction parameters on the trade off between ASiR's blurring effect and noise reduction in low contrast imaging has not been fully studied. Simple measurements on low contrast images, such as CNR or phantom scores could not explore the nuance nature of this problem. We tackled this topic using a method which compares the performance of ASiR in low contrast helical imaging based on an assumed filter layer on top of the FBP reconstruction. Transfer functions of this filter layer were obtained from the noise power spectra (NPS) of corresponding FBP and ASiR images that share the same scan and reconstruction parameters. 2D transfer functions were calculated as sqrt[NPSASiR(u, v)/NPSFBP(u, v)]. Synthesized ACR phantom images were generated by filtering the FBP images with the transfer functions of specific (FBP, ASiR) pairs, and were compared with the ASiR images. It is shown that the transfer functions could predict the deterministic blurring effect of ASiR on low contrast objects, as well as the degree of noise reductions. Using this method, the influence of dose, scan field of view (SFOV), display field of view (DFOV), ASiR level, and Recon Mode on the behavior of ASiR in low contrast imaging was studied. It was found that ASiR level, dose level, and DFOV play more important roles in determining the behavior of ASiR than the other two parameters.

  10. Modification of measurement methods for evaluation of tissue-engineered cartilage function and biochemical properties using nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Sato, Masato; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto

    2008-02-01

    There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and components of engineered tissue. To meet this demand, we developed a method for extracellular matrix characterization using time-resolved autofluorescence spectroscopy, which enabled simultaneous measurements with mechanical properties using relaxation of laser-induced stress wave. In this study, in addition to time-resolved fluorescent spectroscopy, hyperspectral sensor, which enables to capture both spectral and spatial information, was used for evaluation of biochemical characterization of tissue-engineered cartilage. Hyperspectral imaging system provides spectral resolution of 1.2 nm and image rate of 100 images/sec. The imaging system consisted of the hyperspectral sensor, a scanner for x-y plane imaging, magnifying optics and Xenon lamp for transmmissive lighting. Cellular imaging using the hyperspectral image system has been achieved by improvement in spatial resolution up to 9 micrometer. The spectroscopic cellular imaging could be observed using cultured chondrocytes as sample. At early stage of culture, the hyperspectral imaging offered information about cellular function associated with endogeneous fluorescent biomolecules.

  11. Calculation of Cardiac Kinetic Energy Index from PET images.

    PubMed

    Sims, John; Oliveira, Marco Antônio; Meneghetti, José Claudio; Gutierrez, Marco Antônio

    2015-01-01

    Cardiac function can be assessed from displacement measurements in imaging modalities from nuclear medicine Using positron emission tomography (PET) image sequences with Rubidium-82, we propose and estimate the total Kinetic Energy Index (KEf) obtained from the velocity field, which was calculated using 3D optical flow(OF) methods applied over the temporal image sequence. However, it was found that the brightness of the image varied unexpectedly between frames, violating the constant brightness assumption of the OF method and causing large errors in estimating the velocity field. Therefore total brightness was equalized across image frames and the adjusted configuration tested with rest perfusion images acquired from individuals with normal (n=30) and low (n=33) cardiac function. For these images KEf was calculated as 0.5731±0.0899 and 0.3812±0.1146 for individuals with normal and low cardiac function respectively. The ability of KEf to properly classify patients into the two groups was tested with a ROC analysis, with area under the curve estimated as 0.906. To our knowledge this is the first time that KEf has been applied to PET images.

  12. Photoacoustic-Based Multimodal Nanoprobes: from Constructing to Biological Applications.

    PubMed

    Gao, Duyang; Yuan, Zhen

    2017-01-01

    Multimodal nanoprobes have attracted intensive attentions since they can integrate various imaging modalities to obtain complementary merits of single modality. Meanwhile, recent interest in laser-induced photoacoustic imaging is rapidly growing due to its unique advantages in visualizing tissue structure and function with high spatial resolution and satisfactory imaging depth. In this review, we summarize multimodal nanoprobes involving photoacoustic imaging. In particular, we focus on the method to construct multimodal nanoprobes. We have divided the synthetic methods into two types. First, we call it "one for all" concept, which involves intrinsic properties of the element in a single particle. Second, "all in one" concept, which means integrating different functional blocks in one particle. Then, we simply introduce the applications of the multifunctional nanoprobes for in vivo imaging and imaging-guided tumor therapy. At last, we discuss the advantages and disadvantages of the present methods to construct the multimodal nanoprobes and share our viewpoints in this area.

  13. Estimating the Effective Permittivity for Reconstructing Accurate Microwave-Radar Images.

    PubMed

    Lavoie, Benjamin R; Okoniewski, Michal; Fear, Elise C

    2016-01-01

    We present preliminary results from a method for estimating the optimal effective permittivity for reconstructing microwave-radar images. Using knowledge of how microwave-radar images are formed, we identify characteristics that are typical of good images, and define a fitness function to measure the relative image quality. We build a polynomial interpolant of the fitness function in order to identify the most likely permittivity values of the tissue. To make the estimation process more efficient, the polynomial interpolant is constructed using a locally and dimensionally adaptive sampling method that is a novel combination of stochastic collocation and polynomial chaos. Examples, using a series of simulated, experimental and patient data collected using the Tissue Sensing Adaptive Radar system, which is under development at the University of Calgary, are presented. These examples show how, using our method, accurate images can be reconstructed starting with only a broad estimate of the permittivity range.

  14. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    PubMed

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  15. Contrast improvement of continuous wave diffuse optical tomography reconstruction by hybrid approach using least square and genetic algorithm

    NASA Astrophysics Data System (ADS)

    Patra, Rusha; Dutta, Pranab K.

    2015-07-01

    Reconstruction of the absorption coefficient of tissue with good contrast is of key importance in functional diffuse optical imaging. A hybrid approach using model-based iterative image reconstruction and a genetic algorithm is proposed to enhance the contrast of the reconstructed image. The proposed method yields an observed contrast of 98.4%, mean square error of 0.638×10-3, and object centroid error of (0.001 to 0.22) mm. Experimental validation of the proposed method has also been provided with tissue-like phantoms which shows a significant improvement in image quality and thus establishes the potential of the method for functional diffuse optical tomography reconstruction with continuous wave setup. A case study of finger joint imaging is illustrated as well to show the prospect of the proposed method in clinical diagnosis. The method can also be applied to the concentration measurement of a region of interest in a turbid medium.

  16. Blurred image restoration using knife-edge function and optimal window Wiener filtering.

    PubMed

    Wang, Min; Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects.

  17. Blurred image restoration using knife-edge function and optimal window Wiener filtering

    PubMed Central

    Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects. PMID:29377950

  18. Dynamic deformation image de-blurring and image processing for digital imaging correlation measurement

    NASA Astrophysics Data System (ADS)

    Guo, X.; Li, Y.; Suo, T.; Liu, H.; Zhang, C.

    2017-11-01

    This paper proposes a method for de-blurring of images captured in the dynamic deformation of materials. De-blurring is achieved based on the dynamic-based approach, which is used to estimate the Point Spread Function (PSF) during the camera exposure window. The deconvolution process involving iterative matrix calculations of pixels, is then performed on the GPU to decrease the time cost. Compared to the Gauss method and the Lucy-Richardson method, it has the best result of the image restoration. The proposed method has been evaluated by using the Hopkinson bar loading system. In comparison to the blurry image, the proposed method has successfully restored the image. It is also demonstrated from image processing applications that the de-blurring method can improve the accuracy and the stability of the digital imaging correlation measurement.

  19. An improved image alignment procedure for high-resolution transmission electron microscopy.

    PubMed

    Lin, Fang; Liu, Yan; Zhong, Xiaoyan; Chen, Jianghua

    2010-06-01

    Image alignment is essential for image processing methods such as through-focus exit-wavefunction reconstruction and image averaging in high-resolution transmission electron microscopy. Relative image displacements exist in any experimentally recorded image series due to the specimen drifts and image shifts, hence image alignment for correcting the image displacements has to be done prior to any further image processing. The image displacement between two successive images is determined by the correlation function of the two relatively shifted images. Here it is shown that more accurate image alignment can be achieved by using an appropriate aperture to filter the high-frequency components of the images being aligned, especially for a crystalline specimen with little non-periodic information. For the image series of crystalline specimens with little amorphous, the radius of the filter aperture should be as small as possible, so long as it covers the innermost lattice reflections. Testing with an experimental through-focus series of Si[110] images, the accuracies of image alignment with different correlation functions are compared with respect to the error functions in through-focus exit-wavefunction reconstruction based on the maximum-likelihood method. Testing with image averaging over noisy experimental images from graphene and carbon-nanotube samples, clear and sharp crystal lattice fringes are recovered after applying optimal image alignment. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project

    PubMed Central

    Uğurbil, Kamil; Xu, Junqian; Auerbach, Edward J.; Moeller, Steen; Vu, An; Duarte-Carvajalino, Julio M.; Lenglet, Christophe; Wu, Xiaoping; Schmitter, Sebastian; Van de Moortele, Pierre Francois; Strupp, John; Sapiro, Guillermo; De Martino, Federico; Wang, Dingxin; Harel, Noam; Garwood, Michael; Chen, Liyong; Feinberg, David A.; Smith, Stephen M.; Miller, Karla L.; Sotiropoulos, Stamatios N; Jbabdi, Saad; Andersson, Jesper L; Behrens, Timothy EJ; Glasser, Matthew F.; Van Essen, David; Yacoub, Essa

    2013-01-01

    The human connectome project (HCP) relies primarily on three complementary magnetic resonance (MR) methods. These are: 1) resting state functional MR imaging (rfMRI) which uses correlations in the temporal fluctuations in an fMRI time series to deduce ‘functional connectivity’; 2) diffusion imaging (dMRI), which provides the input for tractography algorithms used for the reconstruction of the complex axonal fiber architecture; and 3) task based fMRI (tfMRI), which is employed to identify functional parcellation in the human brain in order to assist analyses of data obtained with the first two methods. We describe technical improvements and optimization of these methods as well as instrumental choices that impact speed of acquisition of fMRI and dMRI images at 3 Tesla, leading to whole brain coverage with 2 mm isotropic resolution in 0.7 second for fMRI, and 1.25 mm isotropic resolution dMRI data for tractography analysis with three-fold reduction in total data acquisition time. Ongoing technical developments and optimization for acquisition of similar data at 7 Tesla magnetic field are also presented, targeting higher resolution, specificity of functional imaging signals, mitigation of the inhomogeneous radio frequency (RF) fields and power deposition. Results demonstrate that overall, these approaches represent a significant advance in MR imaging of the human brain to investigate brain function and structure. PMID:23702417

  1. An iterative shrinkage approach to total-variation image restoration.

    PubMed

    Michailovich, Oleg V

    2011-05-01

    The problem of restoration of digital images from their degraded measurements plays a central role in a multitude of practically important applications. A particularly challenging instance of this problem occurs in the case when the degradation phenomenon is modeled by an ill-conditioned operator. In such a situation, the presence of noise makes it impossible to recover a valuable approximation of the image of interest without using some a priori information about its properties. Such a priori information--commonly referred to as simply priors--is essential for image restoration, rendering it stable and robust to noise. Moreover, using the priors makes the recovered images exhibit some plausible features of their original counterpart. Particularly, if the original image is known to be a piecewise smooth function, one of the standard priors used in this case is defined by the Rudin-Osher-Fatemi model, which results in total variation (TV) based image restoration. The current arsenal of algorithms for TV-based image restoration is vast. In this present paper, a different approach to the solution of the problem is proposed based upon the method of iterative shrinkage (aka iterated thresholding). In the proposed method, the TV-based image restoration is performed through a recursive application of two simple procedures, viz. linear filtering and soft thresholding. Therefore, the method can be identified as belonging to the group of first-order algorithms which are efficient in dealing with images of relatively large sizes. Another valuable feature of the proposed method consists in its working directly with the TV functional, rather then with its smoothed versions. Moreover, the method provides a single solution for both isotropic and anisotropic definitions of the TV functional, thereby establishing a useful connection between the two formulae. Finally, a number of standard examples of image deblurring are demonstrated, in which the proposed method can provide restoration results of superior quality as compared to the case of sparse-wavelet deconvolution.

  2. An Optical Method for the In-Vivo Characterization of the Biomechanical Response of the Right Ventricle.

    PubMed

    Soltani, A; Lahti, J; Järvelä, K; Curtze, S; Laurikka, J; Hokka, M; Kuokkala, V-T

    2018-05-01

    The intraoperative in-vivo mechanical function of the left ventricle has been studied thoroughly using echocardiography in the past. However, due to technical and anatomical issues, the ultrasound technology cannot easily be focused on the right side of the heart during open-heart surgery, and the function of the right ventricle during the intervention remains largely unexplored. We used optical imaging and digital image correlation for the characterization of the right ventricle motion and deformation during open-heart surgery. This work is a pilot study focusing on one patient only with the aim of establishing the framework for long term research. These experiments show that optical imaging and the analysis of the images can be used to obtain similar parameters, and partly at higher accuracy, for describing the mechanical functioning of the heart as the ultrasound technology. This work describes the optical imaging based method to characterize the mechanical response of the heart in-vivo, and offers new insight into the mechanical function of the right ventricle.

  3. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    DOE PAGES

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni; ...

    2015-05-13

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leadsmore » to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.« less

  4. Big Data and Deep data in scanning and electron microscopies: functionality from multidimensional data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belianinov, Alex; Vasudevan, Rama K; Strelcov, Evgheni

    The development of electron, and scanning probe microscopies in the second half of the twentieth century have produced spectacular images of internal structure and composition of matter with, at nanometer, molecular, and atomic resolution. Largely, this progress was enabled by computer-assisted methods of microscope operation, data acquisition and analysis. The progress in imaging technologies in the beginning of the twenty first century has opened the proverbial floodgates of high-veracity information on structure and functionality. High resolution imaging now allows information on atomic positions with picometer precision, allowing for quantitative measurements of individual bond length and angles. Functional imaging often leadsmore » to multidimensional data sets containing partial or full information on properties of interest, acquired as a function of multiple parameters (time, temperature, or other external stimuli). Here, we review several recent applications of the big and deep data analysis methods to visualize, compress, and translate this data into physically and chemically relevant information from imaging data.« less

  5. Steerable Principal Components for Space-Frequency Localized Images*

    PubMed Central

    Landa, Boris; Shkolnisky, Yoel

    2017-01-01

    As modern scientific image datasets typically consist of a large number of images of high resolution, devising methods for their accurate and efficient processing is a central research task. In this paper, we consider the problem of obtaining the steerable principal components of a dataset, a procedure termed “steerable PCA” (steerable principal component analysis). The output of the procedure is the set of orthonormal basis functions which best approximate the images in the dataset and all of their planar rotations. To derive such basis functions, we first expand the images in an appropriate basis, for which the steerable PCA reduces to the eigen-decomposition of a block-diagonal matrix. If we assume that the images are well localized in space and frequency, then such an appropriate basis is the prolate spheroidal wave functions (PSWFs). We derive a fast method for computing the PSWFs expansion coefficients from the images' equally spaced samples, via a specialized quadrature integration scheme, and show that the number of required quadrature nodes is similar to the number of pixels in each image. We then establish that our PSWF-based steerable PCA is both faster and more accurate then existing methods, and more importantly, provides us with rigorous error bounds on the entire procedure. PMID:29081879

  6. Fruit fly optimization based least square support vector regression for blind image restoration

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao; Wang, Rui; Li, Junshan; Yang, Yawei

    2014-11-01

    The goal of image restoration is to reconstruct the original scene from a degraded observation. It is a critical and challenging task in image processing. Classical restorations require explicit knowledge of the point spread function and a description of the noise as priors. However, it is not practical for many real image processing. The recovery processing needs to be a blind image restoration scenario. Since blind deconvolution is an ill-posed problem, many blind restoration methods need to make additional assumptions to construct restrictions. Due to the differences of PSF and noise energy, blurring images can be quite different. It is difficult to achieve a good balance between proper assumption and high restoration quality in blind deconvolution. Recently, machine learning techniques have been applied to blind image restoration. The least square support vector regression (LSSVR) has been proven to offer strong potential in estimating and forecasting issues. Therefore, this paper proposes a LSSVR-based image restoration method. However, selecting the optimal parameters for support vector machine is essential to the training result. As a novel meta-heuristic algorithm, the fruit fly optimization algorithm (FOA) can be used to handle optimization problems, and has the advantages of fast convergence to the global optimal solution. In the proposed method, the training samples are created from a neighborhood in the degraded image to the central pixel in the original image. The mapping between the degraded image and the original image is learned by training LSSVR. The two parameters of LSSVR are optimized though FOA. The fitness function of FOA is calculated by the restoration error function. With the acquired mapping, the degraded image can be recovered. Experimental results show the proposed method can obtain satisfactory restoration effect. Compared with BP neural network regression, SVR method and Lucy-Richardson algorithm, it speeds up the restoration rate and performs better. Both objective and subjective restoration performances are studied in the comparison experiments.

  7. P- and S-wave Receiver Function Imaging with Scattering Kernels

    NASA Astrophysics Data System (ADS)

    Hansen, S. M.; Schmandt, B.

    2017-12-01

    Full waveform inversion provides a flexible approach to the seismic parameter estimation problem and can account for the full physics of wave propagation using numeric simulations. However, this approach requires significant computational resources due to the demanding nature of solving the forward and adjoint problems. This issue is particularly acute for temporary passive-source seismic experiments (e.g. PASSCAL) that have traditionally relied on teleseismic earthquakes as sources resulting in a global scale forward problem. Various approximation strategies have been proposed to reduce the computational burden such as hybrid methods that embed a heterogeneous regional scale model in a 1D global model. In this study, we focus specifically on the problem of scattered wave imaging (migration) using both P- and S-wave receiver function data. The proposed method relies on body-wave scattering kernels that are derived from the adjoint data sensitivity kernels which are typically used for full waveform inversion. The forward problem is approximated using ray theory yielding a computationally efficient imaging algorithm that can resolve dipping and discontinuous velocity interfaces in 3D. From the imaging perspective, this approach is closely related to elastic reverse time migration. An energy stable finite-difference method is used to simulate elastic wave propagation in a 2D hypothetical subduction zone model. The resulting synthetic P- and S-wave receiver function datasets are used to validate the imaging method. The kernel images are compared with those generated by the Generalized Radon Transform (GRT) and Common Conversion Point stacking (CCP) methods. These results demonstrate the potential of the kernel imaging approach to constrain lithospheric structure in complex geologic environments with sufficiently dense recordings of teleseismic data. This is demonstrated using a receiver function dataset from the Central California Seismic Experiment which shows several dipping interfaces related to the tectonic assembly of this region. Figure 1. Scattering kernel examples for three receiver function phases. A) direct P-to-s (Ps), B) direct S-to-p and C) free-surface PP-to-s (PPs).

  8. Generalized Newton Method for Energy Formulation in Image Processing

    DTIC Science & Technology

    2008-04-01

    A. Brook, N. Sochen, and N. Kiryati. Deblurring of color images corrupted by impulsive noise . IEEE Transactions on Image Processing, 16(4):1101–1111...tive functionals: variational image deblurring and geodesic active contours for image segmentation. We show that in addition to the fast convergence...inner product, active contours, deblurring . AMS subject classifications. 35A15, 65K10, 90C53 1. Introduction. Optimization of a cost functional is a

  9. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.

  10. The design of real time infrared image generation software based on Creator and Vega

    NASA Astrophysics Data System (ADS)

    Wang, Rui-feng; Wu, Wei-dong; Huo, Jun-xiu

    2013-09-01

    Considering the requirement of high reality and real-time quality dynamic infrared image of an infrared image simulation, a method to design real-time infrared image simulation application on the platform of VC++ is proposed. This is based on visual simulation software Creator and Vega. The functions of Creator are introduced simply, and the main features of Vega developing environment are analyzed. The methods of infrared modeling and background are offered, the designing flow chart of the developing process of IR image real-time generation software and the functions of TMM Tool and MAT Tool and sensor module are explained, at the same time, the real-time of software is designed.

  11. A novel data processing technique for image reconstruction of penumbral imaging

    NASA Astrophysics Data System (ADS)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  12. [A computer tomography assisted method for the automatic detection of region of interest in dynamic kidney images].

    PubMed

    Jing, Xueping; Zheng, Xiujuan; Song, Shaoli; Liu, Kai

    2017-12-01

    Glomerular filtration rate (GFR), which can be estimated by Gates method with dynamic kidney single photon emission computed tomography (SPECT) imaging, is a key indicator of renal function. In this paper, an automatic computer tomography (CT)-assisted detection method of kidney region of interest (ROI) is proposed to achieve the objective and accurate GFR calculation. In this method, the CT coronal projection image and the enhanced SPECT synthetic image are firstly generated and registered together. Then, the kidney ROIs are delineated using a modified level set algorithm. Meanwhile, the background ROIs are also obtained based on the kidney ROIs. Finally, the value of GFR is calculated via Gates method. Comparing with the clinical data, the GFR values estimated by the proposed method were consistent with the clinical reports. This automatic method can improve the accuracy and stability of kidney ROI detection for GFR calculation, especially when the kidney function has been severely damaged.

  13. Influence of environmental tobacco smoke on morphology and functions of cardiovascular system assessed using diagnostic imaging.

    PubMed

    Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał

    Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.

  14. Evaluation of Interpolation Effects on Upsampling and Accuracy of Cost Functions-Based Optimized Automatic Image Registration

    PubMed Central

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H.

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method. PMID:24000283

  15. Evaluation of interpolation effects on upsampling and accuracy of cost functions-based optimized automatic image registration.

    PubMed

    Mahmoudzadeh, Amir Pasha; Kashou, Nasser H

    2013-01-01

    Interpolation has become a default operation in image processing and medical imaging and is one of the important factors in the success of an intensity-based registration method. Interpolation is needed if the fractional unit of motion is not matched and located on the high resolution (HR) grid. The purpose of this work is to present a systematic evaluation of eight standard interpolation techniques (trilinear, nearest neighbor, cubic Lagrangian, quintic Lagrangian, hepatic Lagrangian, windowed Sinc, B-spline 3rd order, and B-spline 4th order) and to compare the effect of cost functions (least squares (LS), normalized mutual information (NMI), normalized cross correlation (NCC), and correlation ratio (CR)) for optimized automatic image registration (OAIR) on 3D spoiled gradient recalled (SPGR) magnetic resonance images (MRI) of the brain acquired using a 3T GE MR scanner. Subsampling was performed in the axial, sagittal, and coronal directions to emulate three low resolution datasets. Afterwards, the low resolution datasets were upsampled using different interpolation methods, and they were then compared to the high resolution data. The mean squared error, peak signal to noise, joint entropy, and cost functions were computed for quantitative assessment of the method. Magnetic resonance image scans and joint histogram were used for qualitative assessment of the method.

  16. A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia-reperfusion.

    PubMed

    Pirat, Bahar; Khoury, Dirar S; Hartley, Craig J; Tiller, Les; Rao, Liyun; Schulz, Daryl G; Nagueh, Sherif F; Zoghbi, William A

    2008-02-12

    The aim of this study was to validate a novel, angle-independent, feature-tracking method for the echocardiographic quantitation of regional function. A new echocardiographic method, Velocity Vector Imaging (VVI) (syngo Velocity Vector Imaging technology, Siemens Medical Solutions, Ultrasound Division, Mountain View, California), has been introduced, based on feature tracking-incorporating speckle and endocardial border tracking, that allows the quantitation of endocardial strain, strain rate (SR), and velocity. Seven dogs were studied during baseline, and various interventions causing alterations in regional function: dobutamine, 5-min coronary occlusion with reperfusion up to 1 h, followed by dobutamine and esmolol infusions. Echocardiographic images were acquired from short- and long-axis views of the left ventricle. Segment-length sonomicrometry crystals were used as the reference method. Changes in systolic strain in ischemic segments were tracked well with VVI during the different states of regional function. There was a good correlation between circumferential and longitudinal systolic strain by VVI and sonomicrometry (r = 0.88 and r = 0.83, respectively, p < 0.001). Strain measurements in the nonischemic basal segments also demonstrated a significant correlation between the 2 methods (r = 0.65, p < 0.001). Similarly, a significant relation was observed for circumferential and longitudinal SR between the 2 methods (r = 0.94, p < 0.001 and r = 0.90, p < 0.001, respectively). The endocardial velocity relation to changes in strain by sonomicrometry was weaker owing to significant cardiac translation. Velocity Vector Imaging, a new feature-tracking method, can accurately assess regional myocardial function at the endocardial level and is a promising clinical tool for the simultaneous quantification of regional and global myocardial function.

  17. MTF evaluation of in-line phase contrast imaging system

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoran; Gao, Feng; Zhao, Huijuan; Zhang, Limin; Li, Jiao; Zhou, Zhongxing

    2017-02-01

    X-ray phase contrast imaging (XPCI) is a novel method that exploits the phase shift for the incident X-ray to form an image. Various XPCI methods have been proposed, among which, in-line phase contrast imaging (IL-PCI) is regarded as one of the most promising clinical methods. The contrast of the interface is enhanced due to the introduction of the boundary fringes in XPCI, thus it is generally used to evaluate the image quality of XPCI. But the contrast is a comprehensive index and it does not reflect the information of image quality in the frequency range. The modulation transfer function (MTF), which is the Fourier transform of the system point spread function, is recognized as the metric to characterize the spatial response of conventional X-ray imaging system. In this work, MTF is introduced into the image quality evaluation of the IL-PCI system. Numerous simulations based on Fresnel - Kirchhoff diffraction theory are performed with varying system settings and the corresponding MTFs were calculated for comparison. The results show that MTF can provide more comprehensive information of image quality comparing to contrast in IL-PCI.

  18. A Computational Observer For Performing Contrast-Detail Analysis Of Ultrasound Images

    NASA Astrophysics Data System (ADS)

    Lopez, H.; Loew, M. H.

    1988-06-01

    Contrast-Detail (C/D) analysis allows the quantitative determination of an imaging system's ability to display a range of varying-size targets as a function of contrast. Using this technique, a contrast-detail plot is obtained which can, in theory, be used to compare image quality from one imaging system to another. The C/D plot, however, is usually obtained by using data from human observer readings. We have shown earlier(7) that the performance of human observers in the task of threshold detection of simulated lesions embedded in random ultrasound noise is highly inaccurate and non-reproducible for untrained observers. We present an objective, computational method for the determination of the C/D curve for ultrasound images. This method utilizes digital images of the C/D phantom developed at CDRH, and lesion-detection algorithms that simulate the Bayesian approach using the likelihood function for an ideal observer. We present the results of this method, and discuss the relationship to the human observer and to the comparability of image quality between systems.

  19. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    PubMed Central

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  20. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  1. Estimating contrast transfer function and associated parameters by constrained non-linear optimization.

    PubMed

    Yang, C; Jiang, W; Chen, D-H; Adiga, U; Ng, E G; Chiu, W

    2009-03-01

    The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.

  2. Image registration method for medical image sequences

    DOEpatents

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  3. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  4. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  5. Proceedings of the Third Annual Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1985-01-01

    Topics addressed include: multivariate spline method; normal mixture analysis applied to remote sensing; image data analysis; classifications in spatially correlated environments; probability density functions; graphical nonparametric methods; subpixel registration analysis; hypothesis integration in image understanding systems; rectification of satellite scanner imagery; spatial variation in remotely sensed images; smooth multidimensional interpolation; and optimal frequency domain textural edge detection filters.

  6. Concurrent application of TMS and near-infrared optical imaging: methodological considerations and potential artifacts

    PubMed Central

    Parks, Nathan A.

    2013-01-01

    The simultaneous application of transcranial magnetic stimulation (TMS) with non-invasive neuroimaging provides a powerful method for investigating functional connectivity in the human brain and the causal relationships between areas in distributed brain networks. TMS has been combined with numerous neuroimaging techniques including, electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and positron emission tomography (PET). Recent work has also demonstrated the feasibility and utility of combining TMS with non-invasive near-infrared optical imaging techniques, functional near-infrared spectroscopy (fNIRS) and the event-related optical signal (EROS). Simultaneous TMS and optical imaging affords a number of advantages over other neuroimaging methods but also involves a unique set of methodological challenges and considerations. This paper describes the methodology of concurrently performing optical imaging during the administration of TMS, focusing on experimental design, potential artifacts, and approaches to controlling for these artifacts. PMID:24065911

  7. Fourier analysis: from cloaking to imaging

    NASA Astrophysics Data System (ADS)

    Wu, Kedi; Cheng, Qiluan; Wang, Guo Ping

    2016-04-01

    Regarding invisibility cloaks as an optical imaging system, we present a Fourier approach to analytically unify both Pendry cloaks and complementary media-based invisibility cloaks into one kind of cloak. By synthesizing different transfer functions, we can construct different devices to realize a series of interesting functions such as hiding objects (events), creating illusions, and performing perfect imaging. In this article, we give a brief review on recent works of applying Fourier approach to analysis invisibility cloaks and optical imaging through scattering layers. We show that, to construct devices to conceal an object, no constructive materials with extreme properties are required, making most, if not all, of the above functions realizable by using naturally occurring materials. As instances, we experimentally verify a method of directionally hiding distant objects and create illusions by using all-dielectric materials, and further demonstrate a non-invasive method of imaging objects completely hidden by scattering layers.

  8. Characterizing populations and searching for diagnostics via elastic registration of MRI images

    NASA Astrophysics Data System (ADS)

    Pettey, David; Gee, James C.

    2001-07-01

    Given image data from two distinct populations and a family of functions, we find the scalar discriminant function which best discriminates between the populations. The goals are two-fold: first, to construct a discriminant function which can accurately and reliably classify subjects via the image data. Second, the best discriminant allows us to see which features in the images distinguish between the populations; these features can guide us to finding characteristic differences between the two groups even if these differences are not sufficient to perform classification. We apply our method to mid-sagittal MRI sections of the corpus callosum from 34 males and 52 females. While we are not certain of the ability of the derived discriminant function to perform sex classification, we find that regions in the anterior of the corpus callosum do appear to be more important for the discriminant function than other regions. This indicates there may be significant differences in the relative size of the splenium in males and females, as has been reported elsewhere. More notably, we applied previous methods which support this view on our larger data set, but found that these methods no longer show statistically significant differences between the male and female splenium.

  9. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrw B. (Inventor)

    2010-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image. or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image . Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer. SSO. Some embodiments include masking functions. window functions. special treatment for images lying on or near border and pre-processing of test images.

  10. Spatial Standard Observer

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2012-01-01

    The present invention relates to devices and methods for the measurement and/or for the specification of the perceptual intensity of a visual image, or the perceptual distance between a pair of images. Grayscale test and reference images are processed to produce test and reference luminance images. A luminance filter function is convolved with the reference luminance image to produce a local mean luminance reference image. Test and reference contrast images are produced from the local mean luminance reference image and the test and reference luminance images respectively, followed by application of a contrast sensitivity filter. The resulting images are combined according to mathematical prescriptions to produce a Just Noticeable Difference, JND value, indicative of a Spatial Standard Observer, SSO. Some embodiments include masking functions, window functions, special treatment for images lying on or near borders and pre-processing of test images.

  11. Restoration of motion blurred image with Lucy-Richardson algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Zhao Hui; Zhou, Liang

    2015-10-01

    Images will be blurred by relative motion between the camera and the object of interest. In this paper, we analyzed the process of motion-blurred image, and demonstrated a restoration method based on Lucy-Richardson algorithm. The blur extent and angle can be estimated by Radon transform algorithm and auto-correlation function, respectively, and then the point spread function (PSF) of the motion-blurred image can be obtained. Thus with the help of the obtained PSF, the Lucy-Richardson restoration algorithm is used for experimental analysis on the motion-blurred images that have different blur extents, spatial resolutions and signal-to-noise ratios (SNR's). Further, its effectiveness is also evaluated by structural similarity (SSIM). Further studies show that, at first, for the image with a spatial frequency of 0.2 per pixel, the modulation transfer function (MTF) of the restored images can maintains above 0.7 when the blur extent is no bigger than 13 pixels. That means the method compensates low frequency information of the image, while attenuates high frequency information. At second, we fund that the method is more effective on condition that the product of the blur extent and spatial frequency is smaller than 3.75. Finally, the Lucy-Richardson algorithm is found insensitive to the Gaussian noise (of which the variance is not bigger than 0.1) by calculating the MTF of the restored image.

  12. An interior-point method for total variation regularized positron emission tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  13. Compressive Sensing via Nonlocal Smoothed Rank Function

    PubMed Central

    Fan, Ya-Ru; Liu, Jun; Zhao, Xi-Le

    2016-01-01

    Compressive sensing (CS) theory asserts that we can reconstruct signals and images with only a small number of samples or measurements. Recent works exploiting the nonlocal similarity have led to better results in various CS studies. To better exploit the nonlocal similarity, in this paper, we propose a non-convex smoothed rank function based model for CS image reconstruction. We also propose an efficient alternating minimization method to solve the proposed model, which reduces a difficult and coupled problem to two tractable subproblems. Experimental results have shown that the proposed method performs better than several existing state-of-the-art CS methods for image reconstruction. PMID:27583683

  14. Lung function imaging methods in Cystic Fibrosis pulmonary disease.

    PubMed

    Kołodziej, Magdalena; de Veer, Michael J; Cholewa, Marian; Egan, Gary F; Thompson, Bruce R

    2017-05-17

    Monitoring of pulmonary physiology is fundamental to the clinical management of patients with Cystic Fibrosis. The current standard clinical practise uses spirometry to assess lung function which delivers a clinically relevant functional readout of total lung function, however does not supply any visible or localised information. High Resolution Computed Tomography (HRCT) is a well-established current 'gold standard' method for monitoring lung anatomical changes in Cystic Fibrosis patients. HRCT provides excellent morphological information, however, the X-ray radiation dose can become significant if multiple scans are required to monitor chronic diseases such as cystic fibrosis. X-ray phase-contrast imaging is another emerging X-ray based methodology for Cystic Fibrosis lung assessment which provides dynamic morphological and functional information, albeit with even higher X-ray doses than HRCT. Magnetic Resonance Imaging (MRI) is a non-ionising radiation imaging method that is garnering growing interest among researchers and clinicians working with Cystic Fibrosis patients. Recent advances in MRI have opened up the possibilities to observe lung function in real time to potentially allow sensitive and accurate assessment of disease progression. The use of hyperpolarized gas or non-contrast enhanced MRI can be tailored to clinical needs. While MRI offers significant promise it still suffers from poor spatial resolution and the development of an objective scoring system especially for ventilation assessment.

  15. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    NASA Astrophysics Data System (ADS)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  16. Structure function monitor

    DOEpatents

    McGraw, John T [Placitas, NM; Zimmer, Peter C [Albuquerque, NM; Ackermann, Mark R [Albuquerque, NM

    2012-01-24

    Methods and apparatus for a structure function monitor provide for generation of parameters characterizing a refractive medium. In an embodiment, a structure function monitor acquires images of a pupil plane and an image plane and, from these images, retrieves the phase over an aperture, unwraps the retrieved phase, and analyzes the unwrapped retrieved phase. In an embodiment, analysis yields atmospheric parameters measured at spatial scales from zero to the diameter of a telescope used to collect light from a source.

  17. Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

    NASA Astrophysics Data System (ADS)

    Stephenson, Todd A.; Chen, Tsuhan

    2006-12-01

    Image enhancement of low-resolution images can be done through methods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resolution). For example, hallucination and Markov random field (MRF) methods use examples drawn from the same domain as the image being enhanced to determine what the missing high-frequency information is likely to be. We propose to use even stronger prior information by extending MRF-based super-resolution to use adaptive observation and transition functions, that is, to make these functions region-dependent. We show with face images how we can adapt the modeling for each image patch so as to improve the resolution.

  18. Radiometric analysis of photographic data by the effective exposure method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantine, B J

    1972-04-01

    The effective exposure method provides for radiometric analysis of photographic data. A three-dimensional model, where density is a function of energy and wavelength, is postulated to represent the film response function. Calibration exposures serve to eliminate the other factors which affect image density. The effective exposure causing an image can be determined by comparing the image density with that of a calibration exposure. If the relative spectral distribution of the source is known, irradiance and/or radiance can be unfolded from the effective exposure expression.

  19. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  20. [Plaque segmentation of intracoronary optical coherence tomography images based on K-means and improved random walk algorithm].

    PubMed

    Wang, Guanglei; Wang, Pengyu; Han, Yechen; Liu, Xiuling; Li, Yan; Lu, Qian

    2017-06-01

    In recent years, optical coherence tomography (OCT) has developed into a popular coronary imaging technology at home and abroad. The segmentation of plaque regions in coronary OCT images has great significance for vulnerable plaque recognition and research. In this paper, a new algorithm based on K -means clustering and improved random walk is proposed and Semi-automated segmentation of calcified plaque, fibrotic plaque and lipid pool was achieved. And the weight function of random walk is improved. The distance between the edges of pixels in the image and the seed points is added to the definition of the weight function. It increases the weak edge weights and prevent over-segmentation. Based on the above methods, the OCT images of 9 coronary atherosclerotic patients were selected for plaque segmentation. By contrasting the doctor's manual segmentation results with this method, it was proved that this method had good robustness and accuracy. It is hoped that this method can be helpful for the clinical diagnosis of coronary heart disease.

  1. Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics

    PubMed Central

    2012-01-01

    Background Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. Methods The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. Results The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. Conclusion The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923. PMID:23035717

  2. Quantification of right ventricular volumes and function by real time three-dimensional echocardiographic longitudinal axial plane method: validation in the clinical setting.

    PubMed

    Endo, Yuka; Maddukuri, Prasad V; Vieira, Marcelo L C; Pandian, Natesa G; Patel, Ayan R

    2006-11-01

    Measurement of right ventricular (RV) volumes and right ventricular ejection fraction (RVEF) by three-dimensional echocardiographic (3DE) short-axis disc summation method has been validated in multiple studies. However, in some patients, short-axis images are of insufficient quality for accurate tracing of the RV endocardial border. This study examined the accuracy of long-axis analysis in multiple planes (longitudinal axial plane method) for assessment of RV volumes and RVEF. 3DE images were analyzed in 40 subjects with a broad range of RV function. RV end-diastolic (RVEDV) and end-systolic volumes (RVESV) and RVEF were calculated by both short-axis disc summation method and longitudinal axial plane method. Excellent correlation was obtained between the two methods for RVEDV, RVESV, and RVEF (r = 0.99, 0.99, 0.94, respectively; P < 0.0001 for all comparisons). 3DE longitudinal-axis analysis is a promising technique for the evaluation of RV function, and may provide an alternative method of assessment in patients with suboptimal short-axis images.

  3. Image Analysis of DNA Fiber and Nucleus in Plants.

    PubMed

    Ohmido, Nobuko; Wako, Toshiyuki; Kato, Seiji; Fukui, Kiichi

    2016-01-01

    Advances in cytology have led to the application of a wide range of visualization methods in plant genome studies. Image analysis methods are indispensable tools where morphology, density, and color play important roles in the biological systems. Visualization and image analysis methods are useful techniques in the analyses of the detailed structure and function of extended DNA fibers (EDFs) and interphase nuclei. The EDF is the highest in the spatial resolving power to reveal genome structure and it can be used for physical mapping, especially for closely located genes and tandemly repeated sequences. One the other hand, analyzing nuclear DNA and proteins would reveal nuclear structure and functions. In this chapter, we describe the image analysis protocol for quantitatively analyzing different types of plant genome, EDFs and interphase nuclei.

  4. A fast rigid-registration method of inferior limb X-ray image and 3D CT images for TKA surgery

    NASA Astrophysics Data System (ADS)

    Ito, Fumihito; O. D. A, Prima; Uwano, Ikuko; Ito, Kenzo

    2010-03-01

    In this paper, we propose a fast rigid-registration method of inferior limb X-ray films (two-dimensional Computed Radiography (CR) images) and three-dimensional Computed Tomography (CT) images for Total Knee Arthroplasty (TKA) surgery planning. The position of the each bone, such as femur and tibia (shin bone), in X-ray film and 3D CT images is slightly different, and we must pay attention how to use the two different images, since X-ray film image is captured in the standing position, and 3D CT is captured in decubitus (face up) position, respectively. Though the conventional registration mainly uses cross-correlation function between two images,and utilizes optimization techniques, it takes enormous calculation time and it is difficult to use it in interactive operations. In order to solve these problems, we calculate the center line (bone axis) of femur and tibia (shin bone) automatically, and we use them as initial positions for the registration. We evaluate our registration method by using three patient's image data, and we compare our proposed method and a conventional registration, which uses down-hill simplex algorithm. The down-hill simplex method is an optimization algorithm that requires only function evaluations, and doesn't need the calculation of derivatives. Our registration method is more effective than the downhill simplex method in computational time and the stable convergence. We have developed the implant simulation system on a personal computer, in order to support the surgeon in a preoperative planning of TKA. Our registration method is implemented in the simulation system, and user can manipulate 2D/3D translucent templates of implant components on X-ray film and 3D CT images.

  5. Assessment of functional liver reserve: old and new in 99mTc-sulfur colloid scintigraphy.

    PubMed

    Matesan, Manuela M; Bowen, Stephen R; Chapman, Tobias R; Miyaoka, Robert S; Velez, James W; Wanner, Michele F; Nyflot, Matthew J; Apisarnthanarax, Smith; Vesselle, Hubert J

    2017-07-01

    A semiquantitative assessment of hepatic reticuloendothelial system function using colloidal particles scintigraphy has been proposed previously as a surrogate for liver function evaluation. In this article, we present an updated method for the overall assessment of technetium-99m (Tc)-sulfur colloid (SC) biodistribution that combines information from planar and attenuation-corrected Tc-SC single-photon emission computed tomography (SPECT) images. The imaging protocol described here was developed as an easy-to-implement method to assess overall and regional liver function changes associated with chronic liver disease. Thirty patients with chronic liver disease and primary liver cancers underwent Tc-SC whole-body planar imaging and upper-abdomen SPECT/computed tomography (CT) imaging before external beam radiation therapy. Liver plus spleen and bone marrow counts as a fraction of whole-body total counts were calculated from SC planar imaging. Attenuation correction Tc-SC images were rigidly coregistered with treatment planning CT images that contained liver and spleen regions-of-interest. Ratios of total liver counts to total spleen counts were obtained from the aligned Tc-SC SPECT and CT images, and were subsequently used to separate liver plus spleen counts obtained on the planar images. This hybrid SPECT/CT and planar scintigraphy approach yielded an updated estimation of whole-body SC distribution. These biodistribution estimates were compared with historical data for reference. Statistical associations of Tc-SC biodistribution to liver function parameters and liver disease scoring systems (Child-Pugh) were evaluated by Spearman rank correlation. Percentages of Tc-SC uptake ranged from 19.3 to 77.3% for the liver; 3.4 to 40.7% for the spleen; and 19.0 to 56.7% for the bone marrow. Spearman's correlation coefficient showed a significant statistical association between Child-Pugh score and bone marrow uptake at 0.55 (P≤0.05), liver uptake at 0.71 (P≤0.001), spleen uptake at 0.56 (P≤0.05), and spleen plus bone marrow uptake at 0.71 (P≤0.001). There was also a good correlation of SC uptake percentages with individual quantitative liver function components such as albumin and total bilirubin, and qualitative liver function components (varices, portal hypertension, ascites). For albumin: r=0.64 (P<0.001) compared with liver uptake percentage from the whole-body counts, r=0.49 (P<0.001) compared with splenic uptake percentage, and r=0.45 (P≤0.05) compared with bone marrow uptake percentage. We describe a novel liver function quantitative assessment method that combines whole-body planar images and SPECT/CT attenuation-corrected images of Tc-SC distribution. Attenuation-corrected SC images provide valuable regional liver function information, which is a unique feature compared with other imaging methods available. The results of our study indicate that the Tc-SC uptake by the liver, spleen, and bone marrow correlates with liver function parameters in patients with diffuse liver disease and the correlation with liver disease severity is slightly better for liver uptake percentages than for individual values of bone marrow and spleen uptake percentages.

  6. A simple method for correcting spatially resolved solar intensity oscillation observations for variations in scattered light

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Duvall, T. L., Jr.

    1991-01-01

    A measurement of the intensity distribution in an image of the solar disk will be corrupted by a spatial redistribution of the light that is caused by the earth's atmosphere and the observing instrument. A simple correction method is introduced here that is applicable for solar p-mode intensity observations obtained over a period of time in which there is a significant change in the scattering component of the point spread function. The method circumvents the problems incurred with an accurate determination of the spatial point spread function and its subsequent deconvolution from the observations. The method only corrects the spherical harmonic coefficients that represent the spatial frequencies present in the image and does not correct the image itself.

  7. Heart imaging method

    DOEpatents

    Collins, H. Dale; Gribble, R. Parks; Busse, Lawrence J.

    1991-01-01

    A method for providing an image of the human heart's electrical system derives time-of-flight data from an array of EKG electrodes and this data is transformed into phase information. The phase information, treated as a hologram, is reconstructed to provide an image in one or two dimensions of the electrical system of the functioning heart.

  8. Enhanced Imaging of Specific Cell-Surface Glycosylation Based on Multi-FRET.

    PubMed

    Yuan, Baoyin; Chen, Yuanyuan; Sun, Yuqiong; Guo, Qiuping; Huang, Jin; Liu, Jianbo; Meng, Xiangxian; Yang, Xiaohai; Wen, Xiaohong; Li, Zenghui; Li, Lie; Wang, Kemin

    2018-05-15

    Cell-surface glycosylation contains abundant biological information that reflects cell physiological state, and it is of great value to image cell-surface glycosylation to elucidate its functions. Here we present a hybridization chain reaction (HCR)-based multifluorescence resonance energy transfer (multi-FRET) method for specific imaging of cell-surface glycosylation. By installing donors through metabolic glycan labeling and acceptors through aptamer-tethered nanoassemblies on the same glycoconjugate, intramolecular multi-FRET occurs due to near donor-acceptor distance. Benefiting from amplified effect and spatial flexibility of the HCR nanoassemblies, enhanced multi-FRET imaging of specific cell-surface glycosylation can be obtained. With this HCR-based multi-FRET method, we achieved obvious contrast in imaging of protein-specific GalNAcylation on 7211 cell surfaces. In addition, we demonstrated the general applicability of this method by visualizing the protein-specific sialylation on CEM cell surfaces. Furthermore, the expression changes of CEM cell-surface protein-specific sialylation under drug treatment was accurately monitored. This developed imaging method may provide a powerful tool in researching glycosylation functions, discovering biomarkers, and screening drugs.

  9. The practical application of signal detection theory to image quality assessment in x-ray image intensifier-TV fluoroscopy.

    PubMed

    Marshall, N W

    2001-06-01

    This paper applies a published version of signal detection theory to x-ray image intensifier fluoroscopy data and compares the results with more conventional subjective image quality measures. An eight-bit digital framestore was used to acquire temporally contiguous frames of fluoroscopy data from which the modulation transfer function (MTF(u)) and noise power spectrum were established. These parameters were then combined to give detective quantum efficiency (DQE(u)) and used in conjunction with signal detection theory to calculate contrast-detail performance. DQE(u) was found to lie between 0.1 and 0.5 for a range of fluoroscopy systems. Two separate image quality experiments were then performed in order to assess the correspondence between the objective and subjective methods. First, image quality for a given fluoroscopy system was studied as a function of doserate using objective parameters and a standard subjective contrast-detail method. Following this, the two approaches were used to assess three different fluoroscopy units. Agreement between objective and subjective methods was good; doserate changes were modelled correctly while both methods ranked the three systems consistently.

  10. Intelligent estimation of noise and blur variances using ANN for the restoration of ultrasound images.

    PubMed

    Uddin, Muhammad Shahin; Halder, Kalyan Kumar; Tahtali, Murat; Lambert, Andrew J; Pickering, Mark R; Marchese, Margaret; Stuart, Iain

    2016-11-01

    Ultrasound (US) imaging is a widely used clinical diagnostic tool in medical imaging techniques. It is a comparatively safe, economical, painless, portable, and noninvasive real-time tool compared to the other imaging modalities. However, the image quality of US imaging is severely affected by the presence of speckle noise and blur during the acquisition process. In order to ensure a high-quality clinical diagnosis, US images must be restored by reducing their speckle noise and blur. In general, speckle noise is modeled as a multiplicative noise following a Rayleigh distribution and blur as a Gaussian function. Hereto, we propose an intelligent estimator based on artificial neural networks (ANNs) to estimate the variances of noise and blur, which, in turn, are used to obtain an image without discernible distortions. A set of statistical features computed from the image and its complex wavelet sub-bands are used as input to the ANN. In the proposed method, we solve the inverse Rayleigh function numerically for speckle reduction and use the Richardson-Lucy algorithm for de-blurring. The performance of this method is compared with that of the traditional methods by applying them to a synthetic, physical phantom and clinical data, which confirms better restoration results by the proposed method.

  11. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, M; Chen, T

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less

  12. MR image denoising method for brain surface 3D modeling

    NASA Astrophysics Data System (ADS)

    Zhao, De-xin; Liu, Peng-jie; Zhang, De-gan

    2014-11-01

    Three-dimensional (3D) modeling of medical images is a critical part of surgical simulation. In this paper, we focus on the magnetic resonance (MR) images denoising for brain modeling reconstruction, and exploit a practical solution. We attempt to remove the noise existing in the MR imaging signal and preserve the image characteristics. A wavelet-based adaptive curve shrinkage function is presented in spherical coordinates system. The comparative experiments show that the denoising method can preserve better image details and enhance the coefficients of contours. Using these denoised images, the brain 3D visualization is given through surface triangle mesh model, which demonstrates the effectiveness of the proposed method.

  13. A fuzzy feature fusion method for auto-segmentation of gliomas with multi-modality diffusion and perfusion magnetic resonance images in radiotherapy.

    PubMed

    Guo, Lu; Wang, Ping; Sun, Ranran; Yang, Chengwen; Zhang, Ning; Guo, Yu; Feng, Yuanming

    2018-02-19

    The diffusion and perfusion magnetic resonance (MR) images can provide functional information about tumour and enable more sensitive detection of the tumour extent. We aimed to develop a fuzzy feature fusion method for auto-segmentation of gliomas in radiotherapy planning using multi-parametric functional MR images including apparent diffusion coefficient (ADC), fractional anisotropy (FA) and relative cerebral blood volume (rCBV). For each functional modality, one histogram-based fuzzy model was created to transform image volume into a fuzzy feature space. Based on the fuzzy fusion result of the three fuzzy feature spaces, regions with high possibility belonging to tumour were generated automatically. The auto-segmentations of tumour in structural MR images were added in final auto-segmented gross tumour volume (GTV). For evaluation, one radiation oncologist delineated GTVs for nine patients with all modalities. Comparisons between manually delineated and auto-segmented GTVs showed that, the mean volume difference was 8.69% (±5.62%); the mean Dice's similarity coefficient (DSC) was 0.88 (±0.02); the mean sensitivity and specificity of auto-segmentation was 0.87 (±0.04) and 0.98 (±0.01) respectively. High accuracy and efficiency can be achieved with the new method, which shows potential of utilizing functional multi-parametric MR images for target definition in precision radiation treatment planning for patients with gliomas.

  14. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics.

    PubMed

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-04-06

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods.

  15. Robust Multi-Frame Adaptive Optics Image Restoration Algorithm Using Maximum Likelihood Estimation with Poisson Statistics

    PubMed Central

    Li, Dongming; Sun, Changming; Yang, Jinhua; Liu, Huan; Peng, Jiaqi; Zhang, Lijuan

    2017-01-01

    An adaptive optics (AO) system provides real-time compensation for atmospheric turbulence. However, an AO image is usually of poor contrast because of the nature of the imaging process, meaning that the image contains information coming from both out-of-focus and in-focus planes of the object, which also brings about a loss in quality. In this paper, we present a robust multi-frame adaptive optics image restoration algorithm via maximum likelihood estimation. Our proposed algorithm uses a maximum likelihood method with image regularization as the basic principle, and constructs the joint log likelihood function for multi-frame AO images based on a Poisson distribution model. To begin with, a frame selection method based on image variance is applied to the observed multi-frame AO images to select images with better quality to improve the convergence of a blind deconvolution algorithm. Then, by combining the imaging conditions and the AO system properties, a point spread function estimation model is built. Finally, we develop our iterative solutions for AO image restoration addressing the joint deconvolution issue. We conduct a number of experiments to evaluate the performances of our proposed algorithm. Experimental results show that our algorithm produces accurate AO image restoration results and outperforms the current state-of-the-art blind deconvolution methods. PMID:28383503

  16. Image dehazing based on non-local saturation

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Zhang, Qian; Yang, Deyun; Hou, Yingkun; He, Xiaoting

    2018-04-01

    In this paper, a method based on non-local saturation algorithm is proposed to avoid block and halo effect for single image dehazing with dark channel prior. First we convert original image from RGB color space into HSV color space with the idea of non-local method. Image saturation is weighted equally by the size of fixed window according to image resolution. Second we utilize the saturation to estimate the atmospheric light value and transmission rate. Then through the function of saturation and transmission, the haze-free image is obtained based on the atmospheric scattering model. Comparing the results of existing methods, our method can restore image color and enhance contrast. We guarantee the proposed method with quantitative and qualitative evaluation respectively. Experiments show the better visual effect with high efficiency.

  17. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.

  18. Synthesis of atmospheric turbulence point spread functions by sparse and redundant representations

    NASA Astrophysics Data System (ADS)

    Hunt, Bobby R.; Iler, Amber L.; Bailey, Christopher A.; Rucci, Michael A.

    2018-02-01

    Atmospheric turbulence is a fundamental problem in imaging through long slant ranges, horizontal-range paths, or uplooking astronomical cases through the atmosphere. An essential characterization of atmospheric turbulence is the point spread function (PSF). Turbulence images can be simulated to study basic questions, such as image quality and image restoration, by synthesizing PSFs of desired properties. In this paper, we report on a method to synthesize PSFs of atmospheric turbulence. The method uses recent developments in sparse and redundant representations. From a training set of measured atmospheric PSFs, we construct a dictionary of "basis functions" that characterize the atmospheric turbulence PSFs. A PSF can be synthesized from this dictionary by a properly weighted combination of dictionary elements. We disclose an algorithm to synthesize PSFs from the dictionary. The algorithm can synthesize PSFs in three orders of magnitude less computing time than conventional wave optics propagation methods. The resulting PSFs are also shown to be statistically representative of the turbulence conditions that were used to construct the dictionary.

  19. A wavelet-based adaptive fusion algorithm of infrared polarization imaging

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Gu, Guohua; Chen, Qian; Zeng, Haifang

    2011-08-01

    The purpose of infrared polarization image is to highlight man-made target from a complex natural background. For the infrared polarization images can significantly distinguish target from background with different features, this paper presents a wavelet-based infrared polarization image fusion algorithm. The method is mainly for image processing of high-frequency signal portion, as for the low frequency signal, the original weighted average method has been applied. High-frequency part is processed as follows: first, the source image of the high frequency information has been extracted by way of wavelet transform, then signal strength of 3*3 window area has been calculated, making the regional signal intensity ration of source image as a matching measurement. Extraction method and decision mode of the details are determined by the decision making module. Image fusion effect is closely related to the setting threshold of decision making module. Compared to the commonly used experiment way, quadratic interpolation optimization algorithm is proposed in this paper to obtain threshold. Set the endpoints and midpoint of the threshold searching interval as initial interpolation nodes, and compute the minimum quadratic interpolation function. The best threshold can be obtained by comparing the minimum quadratic interpolation function. A series of image quality evaluation results show this method has got improvement in fusion effect; moreover, it is not only effective for some individual image, but also for a large number of images.

  20. Method of lungs regional ventilation function assessment on the basis of continuous lung monitoring results using multi-angle electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Grayr; Shcherbakov, Ivan; Kucher, Artem; Sulyz, Andrew

    2018-04-01

    With continuous monitoring of the lungs using multi-angle electric impedance tomography method, a large array of images of impedance changes in the patient's chest cavity is accumulated. This article proposes a method for evaluating the regional ventilation function of lungs based on the results of continuous monitoring using the multi-angle electric impedance tomography method, which allows one image of the thoracic cavity to be formed on the basis of a large array of images of the impedance change in the patient's chest cavity. In the presence of pathologies in the lungs (neoplasms, fluid, pneumothorax, etc.) in these areas, air filling will be disrupted, which will be displayed on the generated image. When conducting continuous monitoring in several sections, a three-dimensional pattern of air filling of the thoracic cavity is possible.

  1. Nonlinear PET parametric image reconstruction with MRI information using kernel method

    NASA Astrophysics Data System (ADS)

    Gong, Kuang; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2017-03-01

    Positron Emission Tomography (PET) is a functional imaging modality widely used in oncology, cardiology, and neurology. It is highly sensitive, but suffers from relatively poor spatial resolution, as compared with anatomical imaging modalities, such as magnetic resonance imaging (MRI). With the recent development of combined PET/MR systems, we can improve the PET image quality by incorporating MR information. Previously we have used kernel learning to embed MR information in static PET reconstruction and direct Patlak reconstruction. Here we extend this method to direct reconstruction of nonlinear parameters in a compartment model by using the alternating direction of multiplier method (ADMM) algorithm. Simulation studies show that the proposed method can produce superior parametric images compared with existing methods.

  2. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  3. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  4. Adaptive wiener image restoration kernel

    DOEpatents

    Yuan, Ding [Henderson, NV

    2007-06-05

    A method and device for restoration of electro-optical image data using an adaptive Wiener filter begins with constructing imaging system Optical Transfer Function, and the Fourier Transformations of the noise and the image. A spatial representation of the imaged object is restored by spatial convolution of the image using a Wiener restoration kernel.

  5. SU-G-IeP3-08: Image Reconstruction for Scanning Imaging System Based On Shape-Modulated Point Spreading Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruixing; Yang, LV; Xu, Kele

    Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape -more » to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.« less

  6. Using normalization 3D model for automatic clinical brain quantative analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Yao, Wei-Jen; Hwang, Wen-Ju; Chung, Being-Tau; Lin, Kang-Ping

    2003-05-01

    Functional medical imaging, such as PET or SPECT, is capable of revealing physiological functions of the brain, and has been broadly used in diagnosing brain disorders by clinically quantitative analysis for many years. In routine procedures, physicians manually select desired ROIs from structural MR images and then obtain physiological information from correspondent functional PET or SPECT images. The accuracy of quantitative analysis thus relies on that of the subjectively selected ROIs. Therefore, standardizing the analysis procedure is fundamental and important in improving the analysis outcome. In this paper, we propose and evaluate a normalization procedure with a standard 3D-brain model to achieve precise quantitative analysis. In the normalization process, the mutual information registration technique was applied for realigning functional medical images to standard structural medical images. Then, the standard 3D-brain model that shows well-defined brain regions was used, replacing the manual ROIs in the objective clinical analysis. To validate the performance, twenty cases of I-123 IBZM SPECT images were used in practical clinical evaluation. The results show that the quantitative analysis outcomes obtained from this automated method are in agreement with the clinical diagnosis evaluation score with less than 3% error in average. To sum up, the method takes advantage of obtaining precise VOIs, information automatically by well-defined standard 3-D brain model, sparing manually drawn ROIs slice by slice from structural medical images in traditional procedure. That is, the method not only can provide precise analysis results, but also improve the process rate for mass medical images in clinical.

  7. Photoacoustic tomography based on the Green's function retrieval with ultrasound interferometry for sample partially behind an acoustically scattering layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Jie; Department of Automation, Nanjing Polytechnic Institute, 210048 Nanjing; Tao, Chao, E-mail: taochao@nju.edu.cn

    2015-06-08

    Acoustically inhomogeneous mediums with multiple scattering are often the nightmare of photoacoustic tomography. In order to break this limitation, a photoacoustic tomography scheme combining ultrasound interferometry and time reversal is proposed to achieve images in acoustically scattering medium. An ultrasound interferometry is developed to determine the unknown Green's function of strong scattering tissue. Using the determined Greens' function, a time-reversal process is carried out to restore images behind an acoustically inhomogeneous layer from the scattering photoacoustic signals. This method effectively decreases the false contrast, noise, and position deviation of images induced by the multiple scattering. Phantom experiment is carried outmore » to validate the method. Therefore, the proposed method could have potential value in extending the biomedical applications of photoacoustic tomography in acoustically inhomogeneous tissue.« less

  8. Imaging quality analysis of multi-channel scanning radiometer

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Xu, Wujun; Wang, Chengliang

    2008-03-01

    Multi-channel scanning radiometer, on boarding FY-2 geostationary meteorological satellite, plays a key role in remote sensing because of its wide field of view and continuous multi-spectral images acquirements. It is significant to evaluate image quality after performance parameters of the imaging system are validated. Several methods of evaluating imaging quality are discussed. Of these methods, the most fundamental is the MTF. The MTF of photoelectric scanning remote instrument, in the scanning direction, is the multiplication of optics transfer function (OTF), detector transfer function (DTF) and electronics transfer function (ETF). For image motion compensation, moving speed of scanning mirror should be considered. The optical MTF measurement is performed in both the EAST/WEST and NORTH/SOUTH direction, whose values are used for alignment purposes and are used to determine the general health of the instrument during integration and testing. Imaging systems cannot perfectly reproduce what they see and end up "blurring" the image. Many parts of the imaging system can cause blurring. Among these are the optical elements, the sampling of the detector itself, post-processing, or the earth's atmosphere for systems that image through it. Through theory calculation and actual measurement, it is proved that DTF and ETF are the main factors of system MTF and the imaging quality can satisfy the requirement of instrument design.

  9. Illumination normalization of face image based on illuminant direction estimation and improved Retinex.

    PubMed

    Yi, Jizheng; Mao, Xia; Chen, Lijiang; Xue, Yuli; Rovetta, Alberto; Caleanu, Catalin-Daniel

    2015-01-01

    Illumination normalization of face image for face recognition and facial expression recognition is one of the most frequent and difficult problems in image processing. In order to obtain a face image with normal illumination, our method firstly divides the input face image into sixteen local regions and calculates the edge level percentage in each of them. Secondly, three local regions, which meet the requirements of lower complexity and larger average gray value, are selected to calculate the final illuminant direction according to the error function between the measured intensity and the calculated intensity, and the constraint function for an infinite light source model. After knowing the final illuminant direction of the input face image, the Retinex algorithm is improved from two aspects: (1) we optimize the surround function; (2) we intercept the values in both ends of histogram of face image, determine the range of gray levels, and stretch the range of gray levels into the dynamic range of display device. Finally, we achieve illumination normalization and get the final face image. Unlike previous illumination normalization approaches, the method proposed in this paper does not require any training step or any knowledge of 3D face and reflective surface model. The experimental results using extended Yale face database B and CMU-PIE show that our method achieves better normalization effect comparing with the existing techniques.

  10. Methodology for Image-Based Reconstruction of Ventricular Geometry for Patient-Specific Modeling of Cardiac Electrophysiology

    PubMed Central

    Prakosa, A.; Malamas, P.; Zhang, S.; Pashakhanloo, F.; Arevalo, H.; Herzka, D. A.; Lardo, A.; Halperin, H.; McVeigh, E.; Trayanova, N.; Vadakkumpadan, F.

    2014-01-01

    Patient-specific modeling of ventricular electrophysiology requires an interpolated reconstruction of the 3-dimensional (3D) geometry of the patient ventricles from the low-resolution (Lo-res) clinical images. The goal of this study was to implement a processing pipeline for obtaining the interpolated reconstruction, and thoroughly evaluate the efficacy of this pipeline in comparison with alternative methods. The pipeline implemented here involves contouring the epi- and endocardial boundaries in Lo-res images, interpolating the contours using the variational implicit functions method, and merging the interpolation results to obtain the ventricular reconstruction. Five alternative interpolation methods, namely linear, cubic spline, spherical harmonics, cylindrical harmonics, and shape-based interpolation were implemented for comparison. In the thorough evaluation of the processing pipeline, Hi-res magnetic resonance (MR), computed tomography (CT), and diffusion tensor (DT) MR images from numerous hearts were used. Reconstructions obtained from the Hi-res images were compared with the reconstructions computed by each of the interpolation methods from a sparse sample of the Hi-res contours, which mimicked Lo-res clinical images. Qualitative and quantitative comparison of these ventricular geometry reconstructions showed that the variational implicit functions approach performed better than others. Additionally, the outcomes of electrophysiological simulations (sinus rhythm activation maps and pseudo-ECGs) conducted using models based on the various reconstructions were compared. These electrophysiological simulations demonstrated that our implementation of the variational implicit functions-based method had the best accuracy. PMID:25148771

  11. Functional brain imaging and bioacoustics in the Bottlenose dolphins, Tursiops truncatus

    NASA Astrophysics Data System (ADS)

    Ridgway, Sam; Finneran, James; Carder, Donald; van Bonn, William; Smith, Cynthia; Houser, Dorian; Mattrey, Robert; Hoh, Carl

    2003-10-01

    The dolphin brain is the central processing computer for a complex and effective underwater echolocation and communication system. Until now, it has not been possible to study or diagnose disorders of the dolphin brain employing modern functional imaging methods like those used in human medicine. Our most recent studies employ established methods such as behavioral tasks, physiological observations, and computed tomography (CT) and, for the first time, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Trained dolphins slide out of their enclosure on to a mat and are transported by trainers and veterinarians to the laboratory for injection of a ligand. Following ligand injection, brief experiments include trained vocal responses to acoustic, visual, or tactile stimuli. We have used the ligand technetium (Tc-99m) biscisate (Neurolite) to image circulatory flow by SPECT. Fluro-deoxy-d-glucose (18-F-FDG) has been employed to image brain metabolism with PET. Veterinarians carefully monitored dolphins during and after the procedure. Through these methods, we have demonstrated that functional imaging can be employed safely and productively with dolphins to obtain valuable information on brain structure and function for medical and research purposes. Hemispheric differences and variations in flow and metabolism in different brain areas will be shown.

  12. Murine fetal echocardiography.

    PubMed

    Kim, Gene H

    2013-02-15

    Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.

  13. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  14. RADC Multi-Dimensional Signal-Processing Research Program.

    DTIC Science & Technology

    1980-09-30

    Formulation 7 3.2.2 Methods of Accelerating Convergence 8 3.2.3 Application to Image Deblurring 8 3.2.4 Extensions 11 3.3 Convergence of Iterative Signal... noise -driven linear filters, permit development of the joint probability density function oz " kelihood function for the image. With an expression...spatial linear filter driven by white noise (see Fig. i). If the probability density function for the white noise is known, Fig. t. Model for image

  15. Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia

    PubMed Central

    Williams, David A; Gracely, Richard H

    2006-01-01

    Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318

  16. A study on quantifying COPD severity by combining pulmonary function tests and CT image analysis

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2011-03-01

    This paper describes a novel method that can evaluate chronic obstructive pulmonary disease (COPD) severity by combining measurements of pulmonary function tests and measurements obtained from CT image analysis. There is no cure for COPD. However, with regular medical care and consistent patient compliance with treatments and lifestyle changes, the symptoms of COPD can be minimized and progression of the disease can be slowed. Therefore, many diagnosis methods based on CT image analysis have been proposed for quantifying COPD. Most of diagnosis methods for COPD extract the lesions as low-attenuation areas (LAA) by thresholding and evaluate the COPD severity by calculating the LAA in the lung (LAA%). However, COPD is usually the result of a combination of two conditions, emphysema and chronic obstructive bronchitis. Therefore, the previous methods based on only LAA% do not work well. The proposed method utilizes both of information including the measurements of pulmonary function tests and the results of the chest CT image analysis to evaluate the COPD severity. In this paper, we utilize a multi-class AdaBoost to combine both of information and classify the COPD severity into five stages automatically. The experimental results revealed that the accuracy rate of the proposed method was 88.9% (resubstitution scheme) and 64.4% (leave-one-out scheme).

  17. Adaptive multiple super fast simulated annealing for stochastic microstructure reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Seun; Lin, Guang; Sun, Xin

    2013-01-01

    Fast image reconstruction from statistical information is critical in image fusion from multimodality chemical imaging instrumentation to create high resolution image with large domain. Stochastic methods have been used widely in image reconstruction from two point correlation function. The main challenge is to increase the efficiency of reconstruction. A novel simulated annealing method is proposed for fast solution of image reconstruction. Combining the advantage of very fast cooling schedules, dynamic adaption and parallelization, the new simulation annealing algorithm increases the efficiencies by several orders of magnitude, making the large domain image fusion feasible.

  18. Research on image complexity evaluation method based on color information

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Duan, Jin; Han, Xue-hui; Xiao, Bo

    2017-11-01

    In order to evaluate the complexity of a color image more effectively and find the connection between image complexity and image information, this paper presents a method to compute the complexity of image based on color information.Under the complexity ,the theoretical analysis first divides the complexity from the subjective level, divides into three levels: low complexity, medium complexity and high complexity, and then carries on the image feature extraction, finally establishes the function between the complexity value and the color characteristic model. The experimental results show that this kind of evaluation method can objectively reconstruct the complexity of the image from the image feature research. The experimental results obtained by the method of this paper are in good agreement with the results of human visual perception complexity,Color image complexity has a certain reference value.

  19. Fast Image Restoration for Spatially Varying Defocus Blur of Imaging Sensor

    PubMed Central

    Cheong, Hejin; Chae, Eunjung; Lee, Eunsung; Jo, Gwanghyun; Paik, Joonki

    2015-01-01

    This paper presents a fast adaptive image restoration method for removing spatially varying out-of-focus blur of a general imaging sensor. After estimating the parameters of space-variant point-spread-function (PSF) using the derivative in each uniformly blurred region, the proposed method performs spatially adaptive image restoration by selecting the optimal restoration filter according to the estimated blur parameters. Each restoration filter is implemented in the form of a combination of multiple FIR filters, which guarantees the fast image restoration without the need of iterative or recursive processing. Experimental results show that the proposed method outperforms existing space-invariant restoration methods in the sense of both objective and subjective performance measures. The proposed algorithm can be employed to a wide area of image restoration applications, such as mobile imaging devices, robot vision, and satellite image processing. PMID:25569760

  20. A Novel Image Recuperation Approach for Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image

    PubMed Central

    2015-01-01

    Retinal fundus images are widely used in diagnosing and providing treatment for several eye diseases. Prior works using retinal fundus images detected the presence of exudation with the aid of publicly available dataset using extensive segmentation process. Though it was proved to be computationally efficient, it failed to create a diabetic retinopathy feature selection system for transparently diagnosing the disease state. Also the diagnosis of diseases did not employ machine learning methods to categorize candidate fundus images into true positive and true negative ratio. Several candidate fundus images did not include more detailed feature selection technique for diabetic retinopathy. To apply machine learning methods and classify the candidate fundus images on the basis of sliding window a method called, Diabetic Fundus Image Recuperation (DFIR) is designed in this paper. The initial phase of DFIR method select the feature of optic cup in digital retinal fundus images based on Sliding Window Approach. With this, the disease state for diabetic retinopathy is assessed. The feature selection in DFIR method uses collection of sliding windows to obtain the features based on the histogram value. The histogram based feature selection with the aid of Group Sparsity Non-overlapping function provides more detailed information of features. Using Support Vector Model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy diseases. The ranking of disease level for each candidate set provides a much promising result for developing practically automated diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, specificity rate, ranking efficiency and feature selection time. PMID:25974230

  1. A TV-constrained decomposition method for spectral CT

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoyue; Zhang, Li; Xing, Yuxiang

    2017-03-01

    Spectral CT is attracting more and more attention in medicine, industrial nondestructive testing and security inspection field. Material decomposition is an important issue to a spectral CT to discriminate materials. Because of the spectrum overlap of energy channels, as well as the correlation of basis functions, it is well acknowledged that decomposition step in spectral CT imaging causes noise amplification and artifacts in component coefficient images. In this work, we propose materials decomposition via an optimization method to improve the quality of decomposed coefficient images. On the basis of general optimization problem, total variance minimization is constrained on coefficient images in our overall objective function with adjustable weights. We solve this constrained optimization problem under the framework of ADMM. Validation on both a numerical dental phantom in simulation and a real phantom of pig leg on a practical CT system using dual-energy imaging is executed. Both numerical and physical experiments give visually obvious better reconstructions than a general direct inverse method. SNR and SSIM are adopted to quantitatively evaluate the image quality of decomposed component coefficients. All results demonstrate that the TV-constrained decomposition method performs well in reducing noise without losing spatial resolution so that improving the image quality. The method can be easily incorporated into different types of spectral imaging modalities, as well as for cases with energy channels more than two.

  2. Arterial input function derived from pairwise correlations between PET-image voxels.

    PubMed

    Schain, Martin; Benjaminsson, Simon; Varnäs, Katarina; Forsberg, Anton; Halldin, Christer; Lansner, Anders; Farde, Lars; Varrone, Andrea

    2013-07-01

    A metabolite corrected arterial input function is a prerequisite for quantification of positron emission tomography (PET) data by compartmental analysis. This quantitative approach is also necessary for radioligands without suitable reference regions in brain. The measurement is laborious and requires cannulation of a peripheral artery, a procedure that can be associated with patient discomfort and potential adverse events. A non invasive procedure for obtaining the arterial input function is thus preferable. In this study, we present a novel method to obtain image-derived input functions (IDIFs). The method is based on calculation of the Pearson correlation coefficient between the time-activity curves of voxel pairs in the PET image to localize voxels displaying blood-like behavior. The method was evaluated using data obtained in human studies with the radioligands [(11)C]flumazenil and [(11)C]AZ10419369, and its performance was compared with three previously published methods. The distribution volumes (VT) obtained using IDIFs were compared with those obtained using traditional arterial measurements. Overall, the agreement in VT was good (∼3% difference) for input functions obtained using the pairwise correlation approach. This approach performed similarly or even better than the other methods, and could be considered in applied clinical studies. Applications to other radioligands are needed for further verification.

  3. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    PubMed Central

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  4. Cardiac magnetic resonance analysis of right ventricular function: comparison of quantification in the short-axis and 4-chamber planes.

    PubMed

    Souto Bayarri, M; Masip Capdevila, L; Remuiñan Pereira, C; Suárez-Cuenca, J J; Martínez Monzonís, A; Couto Pérez, M I; Carreira Villamor, J M

    2015-01-01

    To compare the methods of right ventricle segmentation in the short-axis and 4-chamber planes in cardiac magnetic resonance imaging and to correlate the findings with those of the tricuspid annular plane systolic excursion (TAPSE) method in echocardiography. We used a 1.5T MRI scanner to study 26 patients with diverse cardiovascular diseases. In all MRI studies, we obtained cine-mode images from the base to the apex in both the short-axis and 4-chamber planes using steady-state free precession sequences and 6mm thick slices. In all patients, we quantified the end-diastolic volume, end-systolic volume, and the ejection fraction of the right ventricle. On the same day as the cardiac magnetic resonance imaging study, 14 patients also underwent echocardiography with TAPSE calculation of right ventricular function. No statistically significant differences were found in the volumes and function of the right ventricle calculated using the 2 segmentation methods. The correlation between the volume estimations by the two segmentation methods was excellent (r=0,95); the correlation for the ejection fraction was slightly lower (r=0,8). The correlation between the cardiac magnetic resonance imaging estimate of right ventricular ejection fraction and TAPSE was very low (r=0,2, P<.01). Both ventricular segmentation methods quantify right ventricular function adequately. The correlation with the echocardiographic method is low. Copyright © 2012 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  5. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  6. Wavelet-based adaptive thresholding method for image segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Zikuan; Tao, Yang; Chen, Xin; Griffis, Carl

    2001-05-01

    A nonuniform background distribution may cause a global thresholding method to fail to segment objects. One solution is using a local thresholding method that adapts to local surroundings. In this paper, we propose a novel local thresholding method for image segmentation, using multiscale threshold functions obtained by wavelet synthesis with weighted detail coefficients. In particular, the coarse-to- fine synthesis with attenuated detail coefficients produces a threshold function corresponding to a high-frequency- reduced signal. This wavelet-based local thresholding method adapts to both local size and local surroundings, and its implementation can take advantage of the fast wavelet algorithm. We applied this technique to physical contaminant detection for poultry meat inspection using x-ray imaging. Experiments showed that inclusion objects in deboned poultry could be extracted at multiple resolutions despite their irregular sizes and uneven backgrounds.

  7. Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT.

    PubMed

    Wei, Xiang; Camino, Acner; Pi, Shaohua; Cepurna, William; Huang, David; Morrison, John C; Jia, Yali

    2018-05-01

    Phase-based optical coherence tomography (OCT), such as OCT angiography (OCTA) and Doppler OCT, is sensitive to the confounding phase shift introduced by subject bulk motion. Traditional bulk motion compensation methods are limited by their accuracy and computing cost-effectiveness. In this Letter, to the best of our knowledge, we present a novel bulk motion compensation method for phase-based functional OCT. Bulk motion associated phase shift can be directly derived by solving its equation using a standard deviation of phase-based OCTA and Doppler OCT flow signals. This method was evaluated on rodent retinal images acquired by a prototype visible light OCT and human retinal images acquired by a commercial system. The image quality and computational speed were significantly improved, compared to two conventional phase compensation methods.

  8. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    PubMed Central

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  9. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    PubMed

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  10. Performance measurement of commercial electronic still picture cameras

    NASA Astrophysics Data System (ADS)

    Hsu, Wei-Feng; Tseng, Shinn-Yih; Chiang, Hwang-Cheng; Cheng, Jui-His; Liu, Yuan-Te

    1998-06-01

    Commercial electronic still picture cameras need a low-cost, systematic method for evaluating the performance. In this paper, we present a measurement method to evaluating the dynamic range and sensitivity by constructing the opto- electronic conversion function (OECF), the fixed pattern noise by the peak S/N ratio (PSNR) and the image shading function (ISF), and the spatial resolution by the modulation transfer function (MTF). The evaluation results of individual color components and the luminance signal from a PC camera using SONY interlaced CCD array as the image sensor are then presented.

  11. Instrument performance enhancement and modification through an extended instrument paradigm

    NASA Astrophysics Data System (ADS)

    Mahan, Stephen Lee

    An extended instrument paradigm is proposed, developed and shown in various applications. The CBM (Chin, Blass, Mahan) method is an extension to the linear systems model of observing systems. In the most obvious and practical application of image enhancement of an instrument characterized by a time-invariant instrumental response function, CBM can be used to enhance images or spectra through a simple convolution application of the CBM filter for a resolution improvement of as much as a factor of two. The CBM method can be used in many applications. We discuss several within this work including imaging through turbulent atmospheres, or what we've called Adaptive Imaging. Adaptive Imaging provides an alternative approach for the investigator desiring results similar to those obtainable with adaptive optics, however on a minimal budget. The CBM method is also used in a backprojected filtered image reconstruction method for Positron Emission Tomography. In addition, we can use information theoretic methods to aid in the determination of model instrumental response function parameters for images having an unknown origin. Another application presented herein involves the use of the CBM method for the determination of the continuum level of a Fourier transform spectrometer observation of ethylene, which provides a means for obtaining reliable intensity measurements in an automated manner. We also present the application of CBM to hyperspectral image data of the comet Shoemaker-Levy 9 impact with Jupiter taken with an acousto-optical tunable filter equipped CCD camera to an adaptive optics telescope.

  12. VQone MATLAB toolbox: A graphical experiment builder for image and video quality evaluations: VQone MATLAB toolbox.

    PubMed

    Nuutinen, Mikko; Virtanen, Toni; Rummukainen, Olli; Häkkinen, Jukka

    2016-03-01

    This article presents VQone, a graphical experiment builder, written as a MATLAB toolbox, developed for image and video quality ratings. VQone contains the main elements needed for the subjective image and video quality rating process. This includes building and conducting experiments and data analysis. All functions can be controlled through graphical user interfaces. The experiment builder includes many standardized image and video quality rating methods. Moreover, it enables the creation of new methods or modified versions from standard methods. VQone is distributed free of charge under the terms of the GNU general public license and allows code modifications to be made so that the program's functions can be adjusted according to a user's requirements. VQone is available for download from the project page (http://www.helsinki.fi/psychology/groups/visualcognition/).

  13. Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting

    PubMed Central

    Veatch, Sarah L.; Machta, Benjamin B.; Shelby, Sarah A.; Chiang, Ethan N.; Holowka, David A.; Baird, Barbara A.

    2012-01-01

    We present an analytical method using correlation functions to quantify clustering in super-resolution fluorescence localization images and electron microscopy images of static surfaces in two dimensions. We use this method to quantify how over-counting of labeled molecules contributes to apparent self-clustering and to calculate the effective lateral resolution of an image. This treatment applies to distributions of proteins and lipids in cell membranes, where there is significant interest in using electron microscopy and super-resolution fluorescence localization techniques to probe membrane heterogeneity. When images are quantified using pair auto-correlation functions, the magnitude of apparent clustering arising from over-counting varies inversely with the surface density of labeled molecules and does not depend on the number of times an average molecule is counted. In contrast, we demonstrate that over-counting does not give rise to apparent co-clustering in double label experiments when pair cross-correlation functions are measured. We apply our analytical method to quantify the distribution of the IgE receptor (FcεRI) on the plasma membranes of chemically fixed RBL-2H3 mast cells from images acquired using stochastic optical reconstruction microscopy (STORM/dSTORM) and scanning electron microscopy (SEM). We find that apparent clustering of FcεRI-bound IgE is dominated by over-counting labels on individual complexes when IgE is directly conjugated to organic fluorophores. We verify this observation by measuring pair cross-correlation functions between two distinguishably labeled pools of IgE-FcεRI on the cell surface using both imaging methods. After correcting for over-counting, we observe weak but significant self-clustering of IgE-FcεRI in fluorescence localization measurements, and no residual self-clustering as detected with SEM. We also apply this method to quantify IgE-FcεRI redistribution after deliberate clustering by crosslinking with two distinct trivalent ligands of defined architectures, and we evaluate contributions from both over-counting of labels and redistribution of proteins. PMID:22384026

  14. Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation

    PubMed Central

    Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2011-01-01

    We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli. PMID:21841977

  15. Multimodal Image Alignment via Linear Mapping between Feature Modalities.

    PubMed

    Jiang, Yanyun; Zheng, Yuanjie; Hou, Sujuan; Chang, Yuchou; Gee, James

    2017-01-01

    We propose a novel landmark matching based method for aligning multimodal images, which is accomplished uniquely by resolving a linear mapping between different feature modalities. This linear mapping results in a new measurement on similarity of images captured from different modalities. In addition, our method simultaneously solves this linear mapping and the landmark correspondences by minimizing a convex quadratic function. Our method can estimate complex image relationship between different modalities and nonlinear nonrigid spatial transformations even in the presence of heavy noise, as shown in our experiments carried out by using a variety of image modalities.

  16. Global high-frequency source imaging accounting for complexity in Green's functions

    NASA Astrophysics Data System (ADS)

    Lambert, V.; Zhan, Z.

    2017-12-01

    The general characterization of earthquake source processes at long periods has seen great success via seismic finite fault inversion/modeling. Complementary techniques, such as seismic back-projection, extend the capabilities of source imaging to higher frequencies and reveal finer details of the rupture process. However, such high frequency methods are limited by the implicit assumption of simple Green's functions, which restricts the use of global arrays and introduces artifacts (e.g., sweeping effects, depth/water phases) that require careful attention. This motivates the implementation of an imaging technique that considers the potential complexity of Green's functions at high frequencies. We propose an alternative inversion approach based on the modest assumption that the path effects contributing to signals within high-coherency subarrays share a similar form. Under this assumption, we develop a method that can combine multiple high-coherency subarrays to invert for a sparse set of subevents. By accounting for potential variability in the Green's functions among subarrays, our method allows for the utilization of heterogeneous global networks for robust high resolution imaging of the complex rupture process. The approach also provides a consistent framework for examining frequency-dependent radiation across a broad frequency spectrum.

  17. Theory of lidar method for measurement of the modulation transfer function of water layers.

    PubMed

    Dolin, Lev S

    2013-01-10

    We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America

  18. Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics.

    PubMed

    Sharma, Harshita; Alekseychuk, Alexander; Leskovsky, Peter; Hellwich, Olaf; Anand, R S; Zerbe, Norman; Hufnagl, Peter

    2012-10-04

    Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.

  19. Evaluation of methods to produce an image library for automatic patient model localization for dose mapping during fluoroscopically guided procedures

    NASA Astrophysics Data System (ADS)

    Kilian-Meneghin, Josh; Xiong, Z.; Rudin, S.; Oines, A.; Bednarek, D. R.

    2017-03-01

    The purpose of this work is to evaluate methods for producing a library of 2D-radiographic images to be correlated to clinical images obtained during a fluoroscopically-guided procedure for automated patient-model localization. The localization algorithm will be used to improve the accuracy of the skin-dose map superimposed on the 3D patient- model of the real-time Dose-Tracking-System (DTS). For the library, 2D images were generated from CT datasets of the SK-150 anthropomorphic phantom using two methods: Schmid's 3D-visualization tool and Plastimatch's digitally-reconstructed-radiograph (DRR) code. Those images, as well as a standard 2D-radiographic image, were correlated to a 2D-fluoroscopic image of a phantom, which represented the clinical-fluoroscopic image, using the Corr2 function in Matlab. The Corr2 function takes two images and outputs the relative correlation between them, which is fed into the localization algorithm. Higher correlation means better alignment of the 3D patient-model with the patient image. In this instance, it was determined that the localization algorithm will succeed when Corr2 returns a correlation of at least 50%. The 3D-visualization tool images returned 55-80% correlation relative to the fluoroscopic-image, which was comparable to the correlation for the radiograph. The DRR images returned 61-90% correlation, again comparable to the radiograph. Both methods prove to be sufficient for the localization algorithm and can be produced quickly; however, the DRR method produces more accurate grey-levels. Using the DRR code, a library at varying angles can be produced for the localization algorithm.

  20. Low-dose cerebral perfusion computed tomography image restoration via low-rank and total variation regularizations

    PubMed Central

    Niu, Shanzhou; Zhang, Shanli; Huang, Jing; Bian, Zhaoying; Chen, Wufan; Yu, Gaohang; Liang, Zhengrong; Ma, Jianhua

    2016-01-01

    Cerebral perfusion x-ray computed tomography (PCT) is an important functional imaging modality for evaluating cerebrovascular diseases and has been widely used in clinics over the past decades. However, due to the protocol of PCT imaging with repeated dynamic sequential scans, the associative radiation dose unavoidably increases as compared with that used in conventional CT examinations. Minimizing the radiation exposure in PCT examination is a major task in the CT field. In this paper, considering the rich similarity redundancy information among enhanced sequential PCT images, we propose a low-dose PCT image restoration model by incorporating the low-rank and sparse matrix characteristic of sequential PCT images. Specifically, the sequential PCT images were first stacked into a matrix (i.e., low-rank matrix), and then a non-convex spectral norm/regularization and a spatio-temporal total variation norm/regularization were then built on the low-rank matrix to describe the low rank and sparsity of the sequential PCT images, respectively. Subsequently, an improved split Bregman method was adopted to minimize the associative objective function with a reasonable convergence rate. Both qualitative and quantitative studies were conducted using a digital phantom and clinical cerebral PCT datasets to evaluate the present method. Experimental results show that the presented method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and universal quality index. More importantly, the present method can produce more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps. PMID:27440948

  1. Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm

    NASA Astrophysics Data System (ADS)

    Karaca, Yeliz; Cattani, Carlo

    Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.

  2. Online geometric calibration of cone-beam computed tomography for arbitrary imaging objects.

    PubMed

    Meng, Yuanzheng; Gong, Hui; Yang, Xiaoquan

    2013-02-01

    A novel online method based on the symmetry property of the sum of projections (SOP) is proposed to obtain the geometric parameters in cone-beam computed tomography (CBCT). This method requires no calibration phantom and can be used in circular trajectory CBCT with arbitrary cone angles. An objective function is deduced to illustrate the dependence of the symmetry of SOP on geometric parameters, which will converge to its minimum when the geometric parameters achieve their true values. Thus, by minimizing the objective function, we can obtain the geometric parameters for image reconstruction. To validate this method, numerical phantom studies with different noise levels are simulated. The results show that our method is insensitive to the noise and can determine the skew (in-plane rotation angle of the detector), the roll (rotation angle around the projection of the rotation axis on the detector), and the rotation axis with high accuracy, while the mid-plane and source-to-detector distance will be obtained with slightly lower accuracy. However, our simulation studies validate that the errors of the latter two parameters brought by our method will hardly degrade the quality of reconstructed images. The small animal studies show that our method is able to deal with arbitrary imaging objects. In addition, the results of the reconstructed images in different slices demonstrate that we have achieved comparable image quality in the reconstructions as some offline methods.

  3. Deblurring of Class-Averaged Images in Single-Particle Electron Microscopy.

    PubMed

    Park, Wooram; Madden, Dean R; Rockmore, Daniel N; Chirikjian, Gregory S

    2010-03-01

    This paper proposes a method for deblurring of class-averaged images in single-particle electron microscopy (EM). Since EM images of biological samples are very noisy, the images which are nominally identical projection images are often grouped, aligned and averaged in order to cancel or reduce the background noise. However, the noise in the individual EM images generates errors in the alignment process, which creates an inherent limit on the accuracy of the resulting class averages. This inaccurate class average due to the alignment errors can be viewed as the result of a convolution of an underlying clear image with a blurring function. In this work, we develop a deconvolution method that gives an estimate for the underlying clear image from a blurred class-averaged image using precomputed statistics of misalignment. Since this convolution is over the group of rigid body motions of the plane, SE(2), we use the Fourier transform for SE(2) in order to convert the convolution into a matrix multiplication in the corresponding Fourier space. For practical implementation we use a Hermite-function-based image modeling technique, because Hermite expansions enable lossless Cartesian-polar coordinate conversion using the Laguerre-Fourier expansions, and Hermite expansion and Laguerre-Fourier expansion retain their structures under the Fourier transform. Based on these mathematical properties, we can obtain the deconvolution of the blurred class average using simple matrix multiplication. Tests of the proposed deconvolution method using synthetic and experimental EM images confirm the performance of our method.

  4. Hardware, software, and scanning issues encountered during small animal imaging of photodynamic therapy in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Sharma, Rahul; Varghai, Davood; Spring-Robinson, Chandra; Oleinick, Nancy L.; Muzic, Raymond F., Jr.; Dean, David

    2007-02-01

    Small animal imaging devices are now commonly used to study gene activation and model the effects of potential therapies. We are attempting to develop a protocol that non-invasively tracks the affect of Pc 4-mediated photodynamic therapy (PDT) in a human glioma model using structural image data from micro-CT and/or micro-MR scanning and functional data from 18F-fluorodeoxy-glucose (18F-FDG) micro-PET imaging. Methods: Athymic nude rat U87-derived glioma was imaged by micro-PET and either micro-CT or micro-MR prior to Pc 4-PDT. Difficulty insuring animal anesthesia and anatomic position during the micro-PET, micro-CT, and micro-MR scans required adaptation of the scanning bed hardware. Following Pc 4-PDT the animals were again 18F-FDG micro-PET scanned, euthanized one day later, and their brains were explanted and prepared for H&E histology. Histology provided the gold standard for tumor location and necrosis. The tumor and surrounding brain functional and structural image data were then isolated and coregistered. Results: Surprisingly, both the non-PDT and PDT groups showed an increase in tumor functional activity when we expected this signal to disappear in the group receiving PDT. Co-registration of the functional and structural image data was done manually. Discussion: As expected, micro-MR imaging provided better structural discrimination of the brain tumor than micro-CT. Contrary to expectations, in our preliminary analysis 18F-FDG micro-PET imaging does not readily discriminate the U87 tumors that received Pc 4-PDT. We continue to investigate the utility of micro-PET and other methods of functional imaging to remotely detect the specificity and sensitivity of Pc 4-PDT in deeply placed tumors.

  5. Imaging regional renal function parameters using radionuclide tracers

    NASA Astrophysics Data System (ADS)

    Qiao, Yi

    A compartmental model is given for evaluating kidney function accurately and noninvasively. This model is cast into a parallel multi-compartment structure and each pixel region (picture element) of kidneys is considered as a single kidney compartment. The loss of radionuclide tracers from the blood to the kidney and from the kidney to the bladder are modelled in great detail. Both the uptake function and the excretion function of the kidneys can be evaluated pixel by pixel, and regional diagnostic information on renal function is obtained. Gamma Camera image data are required by this model and a screening test based renal function measurement is provided. The regional blood background is subtracted from the kidney region of interest (ROI) and the kidney regional rate constants are estimated analytically using the Kuhn-Pucker multiplier method in convex programming by considering the input/output behavior of the kidney compartments. The detailed physiological model of the peripheral compartments of the system, which is not available for most radionuclide tracers, is not required in the determination of the kidney regional rate constants and the regional blood background factors within the kidney ROI. Moreover, the statistical significance of measurements is considered to assure the improved statistical properties of the estimated kidney rate constants. The relations between various renal function parameters and the kidney rate constants are established. Multiple renal function measurements can be found from the renal compartmental model. The blood radioactivity curve and the regional (or total) radiorenogram determining the regional (or total) summed behavior of the kidneys are obtained analytically with the consideration of the statistical significance of measurements using convex programming methods for a single peripheral compartment system. In addition, a new technique for the determination of 'initial conditions' in both the blood compartment and the kidney compartment is presented. The blood curve and the radiorenogram are analyzed in great detail and a physiological analysis from the radiorenogram is given. Applications of Kuhn-Tucker multiplier methods are illustrated for the renal compartmental model in the field of nuclear medicine. Conventional kinetic data analysis methods, the maximum likehood method, and the weighted integration method are investigated and used for comparisons. Moreover, the effect of the blood background subtraction is shown by using the gamma camera images in man. Several functional images are calculated and the functional imaging technique is applied for evaluating renal function in man quantitatively and visually and compared with comments from a physician.

  6. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    PubMed

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  7. Coil compression in simultaneous multislice functional MRI with concentric ring slice-GRAPPA and SENSE.

    PubMed

    Chu, Alan; Noll, Douglas C

    2016-10-01

    Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)

    2002-01-01

    A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang- Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.

  9. Binarization of Gray-Scaled Digital Images Via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Klinko, Steve; Voska, Ned (Technical Monitor)

    2002-01-01

    A new fast-computational technique based on fuzzy entropy measure has been developed to find an optimal binary image threshold. In this method, the image pixel membership functions are dependent on the threshold value and reflect the distribution of pixel values in two classes; thus, this technique minimizes the classification error. This new method is compared with two of the best-known threshold selection techniques, Otsu and Huang-Wang. The performance of the proposed method supersedes the performance of Huang-Wang and Otsu methods when the image consists of textured background and poor printing quality. The three methods perform well but yield different binarization approaches if the background and foreground of the image have well-separated gray-level ranges.

  10. Research of generalized wavelet transformations of Haar correctness in remote sensing of the Earth

    NASA Astrophysics Data System (ADS)

    Kazaryan, Maretta; Shakhramanyan, Mihail; Nedkov, Roumen; Richter, Andrey; Borisova, Denitsa; Stankova, Nataliya; Ivanova, Iva; Zaharinova, Mariana

    2017-10-01

    In this paper, Haar's generalized wavelet functions are applied to the problem of ecological monitoring by the method of remote sensing of the Earth. We study generalized Haar wavelet series and suggest the use of Tikhonov's regularization method for investigating them for correctness. In the solution of this problem, an important role is played by classes of functions that were introduced and described in detail by I.M. Sobol for studying multidimensional quadrature formulas and it contains functions with rapidly convergent series of wavelet Haar. A theorem on the stability and uniform convergence of the regularized summation function of the generalized wavelet-Haar series of a function from this class with approximate coefficients is proved. The article also examines the problem of using orthogonal transformations in Earth remote sensing technologies for environmental monitoring. Remote sensing of the Earth allows to receive from spacecrafts information of medium, high spatial resolution and to conduct hyperspectral measurements. Spacecrafts have tens or hundreds of spectral channels. To process the images, the device of discrete orthogonal transforms, and namely, wavelet transforms, was used. The aim of the work is to apply the regularization method in one of the problems associated with remote sensing of the Earth and subsequently to process the satellite images through discrete orthogonal transformations, in particular, generalized Haar wavelet transforms. General methods of research. In this paper, Tikhonov's regularization method, the elements of mathematical analysis, the theory of discrete orthogonal transformations, and methods for decoding of satellite images are used. Scientific novelty. The task of processing of archival satellite snapshots (images), in particular, signal filtering, was investigated from the point of view of an incorrectly posed problem. The regularization parameters for discrete orthogonal transformations were determined.

  11. Tomographic imaging using poissonian detector data

    DOEpatents

    Aspelmeier, Timo; Ebel, Gernot; Hoeschen, Christoph

    2013-10-15

    An image reconstruction method for reconstructing a tomographic image (f.sub.j) of a region of investigation within an object (1), comprises the steps of providing detector data (y.sub.i) comprising Poisson random values measured at an i-th of a plurality of different positions, e.g. i=(k,l) with pixel index k on a detector device and angular index l referring to both the angular position (.alpha..sub.l) and the rotation radius (r.sub.l) of the detector device (10) relative to the object (1), providing a predetermined system matrix A.sub.ij assigning a j-th voxel of the object (1) to the i-th detector data (y.sub.i), and reconstructing the tomographic image (f.sub.j) based on the detector data (y.sub.i), said reconstructing step including a procedure of minimizing a functional F(f) depending on the detector data (y.sub.i) and the system matrix A.sub.ij and additionally including a sparse or compressive representation of the object (1) in an orthobasis T, wherein the tomographic image (f.sub.j) represents the global minimum of the functional F(f). Furthermore, an imaging method and an imaging device using the image reconstruction method are described.

  12. An iterative algorithm for L1-TV constrained regularization in image restoration

    NASA Astrophysics Data System (ADS)

    Chen, K.; Loli Piccolomini, E.; Zama, F.

    2015-11-01

    We consider the problem of restoring blurred images affected by impulsive noise. The adopted method restores the images by solving a sequence of constrained minimization problems where the data fidelity function is the ℓ1 norm of the residual and the constraint, chosen as the image Total Variation, is automatically adapted to improve the quality of the restored images. Although this approach is general, we report here the case of vectorial images where the blurring model involves contributions from the different image channels (cross channel blur). A computationally convenient extension of the Total Variation function to vectorial images is used and the results reported show that this approach is efficient for recovering nearly optimal images.

  13. Robust low-dose dynamic cerebral perfusion CT image restoration via coupled dictionary learning scheme.

    PubMed

    Tian, Xiumei; Zeng, Dong; Zhang, Shanli; Huang, Jing; Zhang, Hua; He, Ji; Lu, Lijun; Xi, Weiwen; Ma, Jianhua; Bian, Zhaoying

    2016-11-22

    Dynamic cerebral perfusion x-ray computed tomography (PCT) imaging has been advocated to quantitatively and qualitatively assess hemodynamic parameters in the diagnosis of acute stroke or chronic cerebrovascular diseases. However, the associated radiation dose is a significant concern to patients due to its dynamic scan protocol. To address this issue, in this paper we propose an image restoration method by utilizing coupled dictionary learning (CDL) scheme to yield clinically acceptable PCT images with low-dose data acquisition. Specifically, in the present CDL scheme, the 2D background information from the average of the baseline time frames of low-dose unenhanced CT images and the 3D enhancement information from normal-dose sequential cerebral PCT images are exploited to train the dictionary atoms respectively. After getting the two trained dictionaries, we couple them to represent the desired PCT images as spatio-temporal prior in objective function construction. Finally, the low-dose dynamic cerebral PCT images are restored by using a general DL image processing. To get a robust solution, the objective function is solved by using a modified dictionary learning based image restoration algorithm. The experimental results on clinical data show that the present method can yield more accurate kinetic enhanced details and diagnostic hemodynamic parameter maps than the state-of-the-art methods.

  14. Image Augmentation for Object Image Classification Based On Combination of Pre-Trained CNN and SVM

    NASA Astrophysics Data System (ADS)

    Shima, Yoshihiro

    2018-04-01

    Neural networks are a powerful means of classifying object images. The proposed image category classification method for object images combines convolutional neural networks (CNNs) and support vector machines (SVMs). A pre-trained CNN, called Alex-Net, is used as a pattern-feature extractor. Alex-Net is pre-trained for the large-scale object-image dataset ImageNet. Instead of training, Alex-Net, pre-trained for ImageNet is used. An SVM is used as trainable classifier. The feature vectors are passed to the SVM from Alex-Net. The STL-10 dataset are used as object images. The number of classes is ten. Training and test samples are clearly split. STL-10 object images are trained by the SVM with data augmentation. We use the pattern transformation method with the cosine function. We also apply some augmentation method such as rotation, skewing and elastic distortion. By using the cosine function, the original patterns were left-justified, right-justified, top-justified, or bottom-justified. Patterns were also center-justified and enlarged. Test error rate is decreased by 0.435 percentage points from 16.055% by augmentation with cosine transformation. Error rates are increased by other augmentation method such as rotation, skewing and elastic distortion, compared without augmentation. Number of augmented data is 30 times that of the original STL-10 5K training samples. Experimental test error rate for the test 8k STL-10 object images was 15.620%, which shows that image augmentation is effective for image category classification.

  15. Diagnosing and ranking retinopathy disease level using diabetic fundus image recuperation approach.

    PubMed

    Somasundaram, K; Rajendran, P Alli

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time.

  16. Diagnosing and Ranking Retinopathy Disease Level Using Diabetic Fundus Image Recuperation Approach

    PubMed Central

    Somasundaram, K.; Alli Rajendran, P.

    2015-01-01

    Retinal fundus images are widely used in diagnosing different types of eye diseases. The existing methods such as Feature Based Macular Edema Detection (FMED) and Optimally Adjusted Morphological Operator (OAMO) effectively detected the presence of exudation in fundus images and identified the true positive ratio of exudates detection, respectively. These mechanically detected exudates did not include more detailed feature selection technique to the system for detection of diabetic retinopathy. To categorize the exudates, Diabetic Fundus Image Recuperation (DFIR) method based on sliding window approach is developed in this work to select the features of optic cup in digital retinal fundus images. The DFIR feature selection uses collection of sliding windows with varying range to obtain the features based on the histogram value using Group Sparsity Nonoverlapping Function. Using support vector model in the second phase, the DFIR method based on Spiral Basis Function effectively ranks the diabetic retinopathy disease level. The ranking of disease level on each candidate set provides a much promising result for developing practically automated and assisted diabetic retinopathy diagnosis system. Experimental work on digital fundus images using the DFIR method performs research on the factors such as sensitivity, ranking efficiency, and feature selection time. PMID:25945362

  17. Subpixel edge estimation with lens aberrations compensation based on the iterative image approximation for high-precision thermal expansion measurements of solids

    NASA Astrophysics Data System (ADS)

    Inochkin, F. M.; Kruglov, S. K.; Bronshtein, I. G.; Kompan, T. A.; Kondratjev, S. V.; Korenev, A. S.; Pukhov, N. F.

    2017-06-01

    A new method for precise subpixel edge estimation is presented. The principle of the method is the iterative image approximation in 2D with subpixel accuracy until the appropriate simulated is found, matching the simulated and acquired images. A numerical image model is presented consisting of three parts: an edge model, object and background brightness distribution model, lens aberrations model including diffraction. The optimal values of model parameters are determined by means of conjugate-gradient numerical optimization of a merit function corresponding to the L2 distance between acquired and simulated images. Computationally-effective procedure for the merit function calculation along with sufficient gradient approximation is described. Subpixel-accuracy image simulation is performed in a Fourier domain with theoretically unlimited precision of edge points location. The method is capable of compensating lens aberrations and obtaining the edge information with increased resolution. Experimental method verification with digital micromirror device applied to physically simulate an object with known edge geometry is shown. Experimental results for various high-temperature materials within the temperature range of 1000°C..2400°C are presented.

  18. Study on Vignetting Correction of Uav Images and Its Application to 2010 Ms7.0 Lushan Earthquake, China

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, X.; Dou, A.; Ding, X.

    2014-12-01

    As the UAV is widely used in earthquake disaster prevention and mitigation, the efficiency of UAV image processing determines the effectiveness of its application to pre-earthquake disaster prevention, post-earthquake emergency rescue, and disaster assessment. Because of bad weather conditions after destructive earthquake, the wide field cameras captured images with serious vignetting phenomenon, which can significantly affects the speed and efficiency of image mosaic, especially the extraction of pre-earthquake building and geological structure information and also the accuracy of post-earthquake quantitative damage extraction. In this paper, an improved radial gradient correction method (IRGCM) was developed to reduce the influence from random distribution of land surface objects on the images based on radial gradient correction method (RGCM, Y. Zheng, 2008; 2013). First, a mean-value image was obtained by the average of serial UAV images. It was used as calibration instead of single images to obtain the comprehensive vignetting function by using RGCM. Then each UAV image would be corrected by the comprehensive vignetting function. A case study was done to correct the UAV images sequence, which were obtained in Lushan County after Ms7.0 Lushan, Sichuan, China earthquake occurred on April 20, 2013. The results show that the comprehensive vignetting function generated by IRGCM is more robust and accurate to express the specific optical response of camera in a particular setting. Thus it is particularly useful for correction of a mass UAV images with non-uniform illuminations. Also, the correction process was simplified and it is faster than conventional methods. After correction, the images have better radial homogeneity and clearer details, to a certain extent, which reduces the difficulties of image mosaic, and provides a better result for further analysis and damage information extraction. Further test shows also that better results were obtained by taking advantage of comprehensive vignetting function to the other UAV image sequences from different regions. The research was supported by these projects, NO.2012BAK15B02 and 2013IES010106.

  19. Confocal multispot microscope for fast and deep imaging in semicleared tissues

    NASA Astrophysics Data System (ADS)

    Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    2018-02-01

    Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.

  20. Imaging and Modeling of Myocardial Metabolism

    PubMed Central

    Jamshidi, Neema; Karimi, Afshin; Birgersdotter-Green, Ulrika; Hoh, Carl

    2010-01-01

    Current imaging methods have focused on evaluation of myocardial anatomy and function. However, since myocardial metabolism and function are interrelated, metabolic myocardial imaging techniques, such as positron emission tomography, single photon emission tomography, and magnetic resonance spectroscopy present novel opportunities for probing myocardial pathology and developing new therapeutic approaches. Potential clinical applications of metabolic imaging include hypertensive and ischemic heart disease, heart failure, cardiac transplantation, as well as cardiomyopathies. Furthermore, response to therapeutic intervention can be monitored using metabolic imaging. Analysis of metabolic data in the past has been limited, focusing primarily on isolated metabolites. Models of myocardial metabolism, however, such as the oxygen transport and cellular energetics model and constraint-based metabolic network modeling, offer opportunities for evaluation interactions between greater numbers of metabolites in the heart. In this review, the roles of metabolic myocardial imaging and analysis of metabolic data using modeling methods for expanding our understanding of cardiac pathology are discussed. PMID:20559785

  1. Ortho Image and DTM Generation with Intelligent Methods

    NASA Astrophysics Data System (ADS)

    Bagheri, H.; Sadeghian, S.

    2013-10-01

    Nowadays the artificial intelligent algorithms has considered in GIS and remote sensing. Genetic algorithm and artificial neural network are two intelligent methods that are used for optimizing of image processing programs such as edge extraction and etc. these algorithms are very useful for solving of complex program. In this paper, the ability and application of genetic algorithm and artificial neural network in geospatial production process like geometric modelling of satellite images for ortho photo generation and height interpolation in raster Digital Terrain Model production process is discussed. In first, the geometric potential of Ikonos-2 and Worldview-2 with rational functions, 2D & 3D polynomials were tested. Also comprehensive experiments have been carried out to evaluate the viability of the genetic algorithm for optimization of rational function, 2D & 3D polynomials. Considering the quality of Ground Control Points, the accuracy (RMSE) with genetic algorithm and 3D polynomials method for Ikonos-2 Geo image was 0.508 pixel sizes and the accuracy (RMSE) with GA algorithm and rational function method for Worldview-2 image was 0.930 pixel sizes. For more another optimization artificial intelligent methods, neural networks were used. With the use of perceptron network in Worldview-2 image, a result of 0.84 pixel sizes with 4 neurons in middle layer was gained. The final conclusion was that with artificial intelligent algorithms it is possible to optimize the existing models and have better results than usual ones. Finally the artificial intelligence methods, like genetic algorithms as well as neural networks, were examined on sample data for optimizing interpolation and for generating Digital Terrain Models. The results then were compared with existing conventional methods and it appeared that these methods have a high capacity in heights interpolation and that using these networks for interpolating and optimizing the weighting methods based on inverse distance leads to a high accurate estimation of heights.

  2. Whole-brain high in-plane resolution fMRI using accelerated EPIK for enhanced characterisation of functional areas at 3T

    PubMed Central

    Yun, Seong Dae

    2017-01-01

    The relatively high imaging speed of EPI has led to its widespread use in dynamic MRI studies such as functional MRI. An approach to improve the performance of EPI, EPI with Keyhole (EPIK), has been previously presented and its use in fMRI was verified at 1.5T as well as 3T. The method has been proven to achieve a higher temporal resolution and smaller image distortions when compared to single-shot EPI. Furthermore, the performance of EPIK in the detection of functional signals was shown to be comparable to that of EPI. For these reasons, we were motivated to employ EPIK here for high-resolution imaging. The method was optimised to offer the highest possible in-plane resolution and slice coverage under the given imaging constraints: fixed TR/TE, FOV and acceleration factors for parallel imaging and partial Fourier techniques. The performance of EPIK was evaluated in direct comparison to the optimised protocol obtained from EPI. The two imaging methods were applied to visual fMRI experiments involving sixteen subjects. The results showed that enhanced spatial resolution with a whole-brain coverage was achieved by EPIK (1.00 mm × 1.00 mm; 32 slices) when compared to EPI (1.25 mm × 1.25 mm; 28 slices). As a consequence, enhanced characterisation of functional areas has been demonstrated in EPIK particularly for relatively small brain regions such as the lateral geniculate nucleus (LGN) and superior colliculus (SC); overall, a significantly increased t-value and activation area were observed from EPIK data. Lastly, the use of EPIK for fMRI was validated with the simulation of different types of data reconstruction methods. PMID:28945780

  3. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies are presented and laser speckle imaging is combined to enable quantitative cerebral blood flow (CBF) imaging at high spatiotemporal resolutions. An angiography-enhanced Doppler optical coherence tomography (aDFR-OCT) was also demonstrated to enable quantitative imaging of capillary changes for brain functional studies. Lastly, future work on technological development and potential biomedical applications is briefly outlined.

  4. A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm

    NASA Astrophysics Data System (ADS)

    Zhao, Jianing; Gao, Wanlin; Liu, Zili; Mou, Guifen; Lu, Lin; Yu, Lina

    The accuracy of RS classification based on SVM which is developed from statistical learning theory is high under small number of train samples, which results in satisfaction of classification on RS using SVM methods. The traditional RS classification method combines visual interpretation with computer classification. The accuracy of the RS classification, however, is improved a lot based on SVM method, because it saves much labor and time which is used to interpret images and collect training samples. Kernel functions play an important part in the SVM algorithm. It uses improved compound kernel function and therefore has a higher accuracy of classification on RS images. Moreover, compound kernel improves the generalization and learning ability of the kernel.

  5. Accelerated High-Dimensional MR Imaging with Sparse Sampling Using Low-Rank Tensors

    PubMed Central

    He, Jingfei; Liu, Qiegen; Christodoulou, Anthony G.; Ma, Chao; Lam, Fan

    2017-01-01

    High-dimensional MR imaging often requires long data acquisition time, thereby limiting its practical applications. This paper presents a low-rank tensor based method for accelerated high-dimensional MR imaging using sparse sampling. This method represents high-dimensional images as low-rank tensors (or partially separable functions) and uses this mathematical structure for sparse sampling of the data space and for image reconstruction from highly undersampled data. More specifically, the proposed method acquires two datasets with complementary sampling patterns, one for subspace estimation and the other for image reconstruction; image reconstruction from highly undersampled data is accomplished by fitting the measured data with a sparsity constraint on the core tensor and a group sparsity constraint on the spatial coefficients jointly using the alternating direction method of multipliers. The usefulness of the proposed method is demonstrated in MRI applications; it may also have applications beyond MRI. PMID:27093543

  6. Graph-cut based discrete-valued image reconstruction.

    PubMed

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  7. Multiresolution MAP despeckling of SAR images based on locally adaptive generalized Gaussian pdf modeling.

    PubMed

    Argenti, Fabrizio; Bianchi, Tiziano; Alparone, Luciano

    2006-11-01

    In this paper, a new despeckling method based on undecimated wavelet decomposition and maximum a posteriori MIAP) estimation is proposed. Such a method relies on the assumption that the probability density function (pdf) of each wavelet coefficient is generalized Gaussian (GG). The major novelty of the proposed approach is that the parameters of the GG pdf are taken to be space-varying within each wavelet frame. Thus, they may be adjusted to spatial image context, not only to scale and orientation. Since the MAP equation to be solved is a function of the parameters of the assumed pdf model, the variance and shape factor of the GG function are derived from the theoretical moments, which depend on the moments and joint moments of the observed noisy signal and on the statistics of speckle. The solution of the MAP equation yields the MAP estimate of the wavelet coefficients of the noise-free image. The restored SAR image is synthesized from such coefficients. Experimental results, carried out on both synthetic speckled images and true SAR images, demonstrate that MAP filtering can be successfully applied to SAR images represented in the shift-invariant wavelet domain, without resorting to a logarithmic transformation.

  8. Planar particle/droplet size measurement technique using digital particle image velocimetry image data

    NASA Technical Reports Server (NTRS)

    Kadambi, Jaikrishnan R. (Inventor); Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor)

    2005-01-01

    A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.

  9. High-resolution dynamic 31 P-MRSI using a low-rank tensor model.

    PubMed

    Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei

    2017-08-01

    To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. Image correlation based method for the analysis of collagen fibers patterns

    NASA Astrophysics Data System (ADS)

    Rosa, Ramon G. T.; Pratavieira, Sebastião.; Kurachi, Cristina

    2015-06-01

    The collagen fibers are one of the most important structural proteins in skin, being responsible for its strength and flexibility. It is known that their properties, like fibers density, ordination and mean diameter can be affected by several skin conditions, what makes these properties a good parameter to be used on the diagnosis and evaluation of skin aging, cancer, healing, among other conditions. There is, however, a need for methods capable of analyzing quantitatively the organization patterns of these fibers. To address this need, we developed a method based on the autocorrelation function of the images that allows the construction of vector field plots of the fibers directions and does not require any kind of curve fitting or optimization. The analyzed images were obtained through Second Harmonic Generation Imaging Microscopy. This paper presents a concise review on the autocorrelation function and some of its applications to image processing, details the developed method and the results obtained through the analysis of hystopathological slides of landrace porcine skin. The method has high accuracy on the determination of the fibers direction and presents high performance. We look forward to perform further studies keeping track of different skin conditions over time.

  11. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes.

    PubMed

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M

    2018-04-12

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods.

  12. Optimized Multi-Spectral Filter Array Based Imaging of Natural Scenes

    PubMed Central

    Li, Yuqi; Majumder, Aditi; Zhang, Hao; Gopi, M.

    2018-01-01

    Multi-spectral imaging using a camera with more than three channels is an efficient method to acquire and reconstruct spectral data and is used extensively in tasks like object recognition, relighted rendering, and color constancy. Recently developed methods are used to only guide content-dependent filter selection where the set of spectral reflectances to be recovered are known a priori. We present the first content-independent spectral imaging pipeline that allows optimal selection of multiple channels. We also present algorithms for optimal placement of the channels in the color filter array yielding an efficient demosaicing order resulting in accurate spectral recovery of natural reflectance functions. These reflectance functions have the property that their power spectrum statistically exhibits a power-law behavior. Using this property, we propose power-law based error descriptors that are minimized to optimize the imaging pipeline. We extensively verify our models and optimizations using large sets of commercially available wide-band filters to demonstrate the greater accuracy and efficiency of our multi-spectral imaging pipeline over existing methods. PMID:29649114

  13. Improving Functional MRI Registration Using Whole-Brain Functional Correlation Tensors.

    PubMed

    Zhou, Yujia; Yap, Pew-Thian; Zhang, Han; Zhang, Lichi; Feng, Qianjin; Shen, Dinggang

    2017-09-01

    Population studies of brain function with resting-state functional magnetic resonance imaging (rs-fMRI) largely rely on the accurate inter-subject registration of functional areas. This is typically achieved through registration of the corresponding T1-weighted MR images with more structural details. However, accumulating evidence has suggested that such strategy cannot well-align functional regions which are not necessarily confined by the anatomical boundaries defined by the T1-weighted MR images. To mitigate this problem, various registration algorithms based directly on rs-fMRI data have been developed, most of which have utilized functional connectivity (FC) as features for registration. However, most of the FC-based registration methods usually extract the functional features only from the thin and highly curved cortical grey matter (GM), posing a great challenge in accurately estimating the whole-brain deformation field. In this paper, we demonstrate that the additional useful functional features can be extracted from brain regions beyond the GM, particularly, white-matter (WM) based on rs-fMRI, for improving the overall functional registration. Specifically, we quantify the local anisotropic correlation patterns of the blood oxygenation level-dependent (BOLD) signals, modeled by functional correlation tensors (FCTs), in both GM and WM. Functional registration is then performed based on multiple components of the whole-brain FCTs using a multichannel Large Deformation Diffeomorphic Metric Mapping (mLDDMM) algorithm. Experimental results show that our proposed method achieves superior functional registration performance, compared with other conventional registration methods.

  14. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method.

    PubMed

    Pirat, Bahar; McCulloch, Marti L; Zoghbi, William A

    2006-09-01

    This study sought to demonstrate that a novel speckle-tracking method can be used to assess right ventricular (RV) global and regional systolic function. Fifty-eight patients with pulmonary arterial hypertension (11 men; mean age 53 +/- 14 years) and 19 age-matched controls were studied. Echocardiographic images in apical planes were analyzed by conventional manual tracing for volumes and ejection fractions and by novel software (Axius Velocity Vector Imaging). Myocardial velocity, strain rate, and strain were determined at the basal, mid, and apical segments of the RV free wall and ventricular septum by Velocity Vector Imaging. RV volumes and ejection fractions obtained with manual tracing correlated strongly with the same indexes obtained by the Velocity Vector Imaging method in all subjects (r = 0.95 to 0.98, p < 0.001 for all). Peak systolic myocardial velocities, strain rate, and strain were significantly impaired in patients with pulmonary arterial hypertension compared with controls and were most altered in patients with the most severe pulmonary arterial hypertension (p < 0.05 for all). Pulmonary artery systolic pressure and a Doppler index of pulmonary vascular resistance were independent predictors of RV strain (r = -0.61 and r = -0.65, respectively, p < 0.05 for both). In conclusion, the new automated Velocity Vector Imaging method provides simultaneous quantitation of global and regional RV function that is angle independent and can be applied retrospectively to already stored digital images.

  15. Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.

    PubMed

    Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas

    2016-04-01

    Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.

  16. Diagnostic possibilities with multidimensional images in head and neck area using efficient registration and visualization methods

    NASA Astrophysics Data System (ADS)

    Zeilhofer, Hans-Florian U.; Krol, Zdzislaw; Sader, Robert; Hoffmann, Karl-Heinz; Gerhardt, Paul; Schweiger, Markus; Horch, Hans-Henning

    1997-05-01

    For several diseases in the head and neck area different imaging modalities are applied to the same patient.Each of these image data sets has its specific advantages and disadvantages. The combination of different methods allows to make the best use of the advantageous properties of each method while minimizing the impact of its negative aspects. Soft tissue alterations can be judged better in an MRI image while it may be unrecognizable in the relating CT. Bone tissue, on the other hand, is optimally imaged in CT. Inflammatory nuclei of the bone can be detected best by their increased signal in SPECT. Only the combination of all modalities let the physical come to an exact statement on pathological processes that involve multiple tissue structures. Several surfaces and voxel based matching functions we have tested allowed a precise merging by means of numerical optimization methods like e.g. simulated annealing without the complicated assertion of fiducial markers or the localization landmarks in 2D cross sectional slice images. The quality of the registration depends on the choice of the optimization procedure according to the complexity of the matching function landscape. Precise correlation of the multimodal head and neck area images together with its 2D and 3D presentation techniques provides a valuable tool for physicians.

  17. 3D deformable image matching: a hierarchical approach over nested subspaces

    NASA Astrophysics Data System (ADS)

    Musse, Olivier; Heitz, Fabrice; Armspach, Jean-Paul

    2000-06-01

    This paper presents a fast hierarchical method to perform dense deformable inter-subject matching of 3D MR Images of the brain. To recover the complex morphological variations in neuroanatomy, a hierarchy of 3D deformations fields is estimated, by minimizing a global energy function over a sequence of nested subspaces. The nested subspaces, generated from a single scaling function, consist of deformation fields constrained at different scales. The highly non linear energy function, describing the interactions between the target and the source images, is minimized using a coarse-to-fine continuation strategy over this hierarchy. The resulting deformable matching method shows low sensitivity to local minima and is able to track large non-linear deformations, with moderate computational load. The performances of the approach are assessed both on simulated 3D transformations and on a real data base of 3D brain MR Images from different individuals. The method has shown efficient in putting into correspondence the principle anatomical structures of the brain. An application to atlas-based MRI segmentation, by transporting a labeled segmentation map on patient data, is also presented.

  18. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review.

    PubMed

    Ohkubo, Hirotsugu; Nakagawa, Hiroaki; Niimi, Akio

    2018-01-01

    Idiopathic pulmonary fibrosis (IPF) is the most common type of progressive idiopathic interstitial pneumonia in adults. Many computer-based image analysis methods of chest computed tomography (CT) used in patients with IPF include the mean CT value of the whole lungs, density histogram analysis, density mask technique, and texture classification methods. Most of these methods offer good assessment of pulmonary functions, disease progression, and mortality. Each method has merits that can be used in clinical practice. One of the texture classification methods is reported to be superior to visual CT scoring by radiologist for correlation with pulmonary function and prediction of mortality. In this mini review, we summarize the current literature on computer-based CT image analysis of IPF and discuss its limitations and several future directions. Copyright © 2017 The Japanese Respiratory Society. Published by Elsevier B.V. All rights reserved.

  19. Tutte polynomial in functional magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    García-Castillón, Marlly V.

    2015-09-01

    Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.

  20. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution.

    PubMed

    Perez, Victor; Chang, Bo-Jui; Stelzer, Ernst Hans Karl

    2016-11-16

    Structured illumination microscopy relies on reconstruction algorithms to yield super-resolution images. Artifacts can arise in the reconstruction and affect the image quality. Current reconstruction methods involve a parametrized apodization function and a Wiener filter. Empirically tuning the parameters in these functions can minimize artifacts, but such an approach is subjective and produces volatile results. We present a robust and objective method that yields optimal results by two straightforward filtering steps with Richardson-Lucy-based deconvolutions. We provide a resource to identify artifacts in 2D-SIM images by analyzing two main reasons for artifacts, out-of-focus background and a fluctuating reconstruction spectrum. We show how the filtering steps improve images of test specimens, microtubules, yeast and mammalian cells.

  1. Optimal 2D-SIM reconstruction by two filtering steps with Richardson-Lucy deconvolution

    NASA Astrophysics Data System (ADS)

    Perez, Victor; Chang, Bo-Jui; Stelzer, Ernst Hans Karl

    2016-11-01

    Structured illumination microscopy relies on reconstruction algorithms to yield super-resolution images. Artifacts can arise in the reconstruction and affect the image quality. Current reconstruction methods involve a parametrized apodization function and a Wiener filter. Empirically tuning the parameters in these functions can minimize artifacts, but such an approach is subjective and produces volatile results. We present a robust and objective method that yields optimal results by two straightforward filtering steps with Richardson-Lucy-based deconvolutions. We provide a resource to identify artifacts in 2D-SIM images by analyzing two main reasons for artifacts, out-of-focus background and a fluctuating reconstruction spectrum. We show how the filtering steps improve images of test specimens, microtubules, yeast and mammalian cells.

  2. An adaptive block-based fusion method with LUE-SSIM for multi-focus images

    NASA Astrophysics Data System (ADS)

    Zheng, Jianing; Guo, Yongcai; Huang, Yukun

    2016-09-01

    Because of the lenses' limited depth of field, digital cameras are incapable of acquiring an all-in-focus image of objects at varying distances in a scene. Multi-focus image fusion technique can effectively solve this problem. Aiming at the block-based multi-focus image fusion methods, the problem that blocking-artifacts often occurs. An Adaptive block-based fusion method based on lifting undistorted-edge structural similarity (LUE-SSIM) is put forward. In this method, image quality metrics LUE-SSIM is firstly proposed, which utilizes the characteristics of human visual system (HVS) and structural similarity (SSIM) to make the metrics consistent with the human visual perception. Particle swarm optimization(PSO) algorithm which selects LUE-SSIM as the object function is used for optimizing the block size to construct the fused image. Experimental results on LIVE image database shows that LUE-SSIM outperform SSIM on Gaussian defocus blur images quality assessment. Besides, multi-focus image fusion experiment is carried out to verify our proposed image fusion method in terms of visual and quantitative evaluation. The results show that the proposed method performs better than some other block-based methods, especially in reducing the blocking-artifact of the fused image. And our method can effectively preserve the undistorted-edge details in focus region of the source images.

  3. Regularization Reconstruction Method for Imaging Problems in Electrical Capacitance Tomography

    NASA Astrophysics Data System (ADS)

    Chu, Pan; Lei, Jing

    2017-11-01

    The electrical capacitance tomography (ECT) is deemed to be a powerful visualization measurement technique for the parametric measurement in a multiphase flow system. The inversion task in the ECT technology is an ill-posed inverse problem, and seeking for an efficient numerical method to improve the precision of the reconstruction images is important for practical measurements. By the introduction of the Tikhonov regularization (TR) methodology, in this paper a loss function that emphasizes the robustness of the estimation and the low rank property of the imaging targets is put forward to convert the solution of the inverse problem in the ECT reconstruction task into a minimization problem. Inspired by the split Bregman (SB) algorithm, an iteration scheme is developed for solving the proposed loss function. Numerical experiment results validate that the proposed inversion method not only reconstructs the fine structures of the imaging targets, but also improves the robustness.

  4. White constancy method for mobile displays

    NASA Astrophysics Data System (ADS)

    Yum, Ji Young; Park, Hyun Hee; Jang, Seul Ki; Lee, Jae Hyang; Kim, Jong Ho; Yi, Ji Young; Lee, Min Woo

    2014-03-01

    In these days, consumer's needs for image quality of mobile devices are increasing as smartphone is widely used. For example, colors may be perceived differently when displayed contents under different illuminants. Displayed white in incandescent lamp is perceived as bluish, while same content in LED light is perceived as yellowish. When changed in perceived white under illuminant environment, image quality would be degraded. Objective of the proposed white constancy method is restricted to maintain consistent output colors regardless of the illuminants utilized. Human visual experiments are performed to analyze viewers'perceptual constancy. Participants are asked to choose the displayed white in a variety of illuminants. Relationship between the illuminants and the selected colors with white are modeled by mapping function based on the results of human visual experiments. White constancy values for image control are determined on the predesigned functions. Experimental results indicate that propsed method yields better image quality by keeping the display white.

  5. Fourier decomposition pulmonary MRI using a variable flip angle balanced steady-state free precession technique.

    PubMed

    Corteville, D M R; Kjïrstad, Å; Henzler, T; Zöllner, F G; Schad, L R

    2015-05-01

    Fourier decomposition (FD) is a noninvasive method for assessing ventilation and perfusion-related information in the lungs. However, the technique has a low signal-to-noise ratio (SNR) in the lung parenchyma. We present an approach to increase the SNR in both morphological and functional images. The data used to create functional FD images are usually acquired using a standard balanced steady-state free precession (bSSFP) sequence. In the standard sequence, the possible range of the flip angle is restricted due to specific absorption rate (SAR) limitations. Thus, using a variable flip angle approach as an optimization is possible. This was validated using measurements from a phantom and six healthy volunteers. The SNR in both the morphological and functional FD images was increased by 32%, while the SAR restrictions were kept unchanged. Furthermore, due to the higher SNR, the effective resolution of the functional images was increased visibly. The variable flip angle approach did not introduce any new transient artifacts, and blurring artifacts were minimized. Both a gain in SNR and an effective resolution gain in functional lung images can be obtained using the FD method in conjunction with a variable flip angle optimized bSSFP sequence. © 2014 Wiley Periodicals, Inc.

  6. Adaptive recovery of motion blur point spread function from differently exposed images

    NASA Astrophysics Data System (ADS)

    Albu, Felix; Florea, Corneliu; Drîmbarean, Alexandru; Zamfir, Adrian

    2010-01-01

    Motion due to digital camera movement during the image capture process is a major factor that degrades the quality of images and many methods for camera motion removal have been developed. Central to all techniques is the correct recovery of what is known as the Point Spread Function (PSF). A very popular technique to estimate the PSF relies on using a pair of gyroscopic sensors to measure the hand motion. However, the errors caused either by the loss of the translational component of the movement or due to the lack of precision in gyro-sensors measurements impede the achievement of a good quality restored image. In order to compensate for this, we propose a method that begins with an estimation of the PSF obtained from 2 gyro sensors and uses a pair of under-exposed image together with the blurred image to adaptively improve it. The luminance of the under-exposed image is equalized with that of the blurred image. An initial estimation of the PSF is generated from the output signal of 2 gyro sensors. The PSF coefficients are updated using 2D-Least Mean Square (LMS) algorithms with a coarse-to-fine approach on a grid of points selected from both images. This refined PSF is used to process the blurred image using known deblurring methods. Our results show that the proposed method leads to superior PSF support and coefficient estimation. Also the quality of the restored image is improved compared to 2 gyro only approach or to blind image de-convolution results.

  7. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  8. Initial evaluation of discrete orthogonal basis reconstruction of ECT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E.B.; Donohue, K.D.

    1996-12-31

    Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less

  9. WE-FG-207B-05: Iterative Reconstruction Via Prior Image Constrained Total Generalized Variation for Spectral CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, S; Zhang, Y; Ma, J

    Purpose: To investigate iterative reconstruction via prior image constrained total generalized variation (PICTGV) for spectral computed tomography (CT) using fewer projections while achieving greater image quality. Methods: The proposed PICTGV method is formulated as an optimization problem, which balances the data fidelity and prior image constrained total generalized variation of reconstructed images in one framework. The PICTGV method is based on structure correlations among images in the energy domain and high-quality images to guide the reconstruction of energy-specific images. In PICTGV method, the high-quality image is reconstructed from all detector-collected X-ray signals and is referred as the broad-spectrum image. Distinctmore » from the existing reconstruction methods applied on the images with first order derivative, the higher order derivative of the images is incorporated into the PICTGV method. An alternating optimization algorithm is used to minimize the PICTGV objective function. We evaluate the performance of PICTGV on noise and artifacts suppressing using phantom studies and compare the method with the conventional filtered back-projection method as well as TGV based method without prior image. Results: On the digital phantom, the proposed method outperforms the existing TGV method in terms of the noise reduction, artifacts suppression, and edge detail preservation. Compared to that obtained by the TGV based method without prior image, the relative root mean square error in the images reconstructed by the proposed method is reduced by over 20%. Conclusion: The authors propose an iterative reconstruction via prior image constrained total generalize variation for spectral CT. Also, we have developed an alternating optimization algorithm and numerically demonstrated the merits of our approach. Results show that the proposed PICTGV method outperforms the TGV method for spectral CT.« less

  10. Nanoparticles for Biomedical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increasedmore » spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.« less

  11. [Correction of respiratory movement using ultrasound for cardiac nuclear medicine examinations: fundamental study using an X-ray TV machine].

    PubMed

    Yoda, Kazushige; Umeda, Tokuo; Hasegawa, Tomoyuki

    2003-11-01

    Organ movements that occur naturally as a result of vital functions such as respiration and heartbeat cause deterioration of image quality in nuclear medicine imaging. Among these movements, respiration has a large effect, but there has been no practical method of correcting for this. In the present study, we examined a method of correction that uses ultrasound images to correct baseline shifts caused by respiration in cardiac nuclear medicine examinations. To evaluate the validity of this method, simulation studies were conducted with an X-ray TV machine instead of a nuclear medicine scanner. The X-ray TV images and ultrasound images were recorded as digital movies and processed with public domain software (Scion Image). Organ movements were detected in the ultrasound images of the subcostal four-chamber view mode using slit regions of interest and were measured on a two-dimensional image coordinate. Then translational shifts were applied to the X-ray TV images to correct these movements by using macro-functions of the software. As a result, respiratory movements of about 20.1 mm were successfully reduced to less than 2.6 mm. We conclude that this correction technique is potentially useful in nuclear medicine cardiology.

  12. Hadamard multimode optical imaging transceiver

    DOEpatents

    Cooke, Bradly J; Guenther, David C; Tiee, Joe J; Kellum, Mervyn J; Olivas, Nicholas L; Weisse-Bernstein, Nina R; Judd, Stephen L; Braun, Thomas R

    2012-10-30

    Disclosed is a method and system for simultaneously acquiring and producing results for multiple image modes using a common sensor without optical filtering, scanning, or other moving parts. The system and method utilize the Walsh-Hadamard correlation detection process (e.g., functions/matrix) to provide an all-binary structure that permits seamless bridging between analog and digital domains. An embodiment may capture an incoming optical signal at an optical aperture, convert the optical signal to an electrical signal, pass the electrical signal through a Low-Noise Amplifier (LNA) to create an LNA signal, pass the LNA signal through one or more correlators where each correlator has a corresponding Walsh-Hadamard (WH) binary basis function, calculate a correlation output coefficient for each correlator as a function of the corresponding WH binary basis function in accordance with Walsh-Hadamard mathematical principles, digitize each of the correlation output coefficient by passing each correlation output coefficient through an Analog-to-Digital Converter (ADC), and performing image mode processing on the digitized correlation output coefficients as desired to produce one or more image modes. Some, but not all, potential image modes include: multi-channel access, temporal, range, three-dimensional, and synthetic aperture.

  13. Quantitative measurement of lymphatic function in mice by noninvasive near-infrared imaging of a peripheral vein

    PubMed Central

    Ma, Qiaoli; Andina, Diana; Leroux, Jean-Christophe; Detmar, Michael

    2017-01-01

    Optical imaging methods have been developed to measure lymphatic function in skin; however, the lymphatic system of many organs is not accessible to this technology. Since lymphatic transport of macromolecules from any organ proceeds to the blood circulation, we aimed to develop a method that can measure lymphatic function by monitoring the fluorescence in a superficial vein of an interstitially injected tracer. We selected a 40-kDa PEGylated near-infrared dye conjugate, as it showed lymphatic system–specific uptake and extended circulation in blood. Lymphatic transport to blood from subcutaneous tissue required a transit time before signal enhancement was seen in blood followed by a steady rise in signal over time. Increased lymphatic transport was apparent in awake mice compared with those under continuous anesthesia. The methods were validated in K14-VEGFR-3-Fc and K14-VEGF-C transgenic mice with loss and gain of lymphatic function, respectively. Reduced lymphatic transport to blood was also found in aged mice. The technique was also able to measure lymphatic transport from the peritoneal cavity, a location not suitable for optical imaging. The method is a promising, simple approach for assessment of lymphatic function and for monitoring of therapeutic regimens in mouse models of disease and may have potential for clinical translation. PMID:28097238

  14. Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner.

    PubMed Central

    van Gelderen, P; Ramsey, N F; Liu, G; Duyn, J H; Frank, J A; Weinberger, D R; Moonen, C T

    1995-01-01

    Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested. Images Fig. 2 Fig. 3 PMID:7624341

  15. Multi-modality image fusion based on enhanced fuzzy radial basis function neural networks.

    PubMed

    Chao, Zhen; Kim, Dohyeon; Kim, Hee-Joung

    2018-04-01

    In clinical applications, single modality images do not provide sufficient diagnostic information. Therefore, it is necessary to combine the advantages or complementarities of different modalities of images. Recently, neural network technique was applied to medical image fusion by many researchers, but there are still many deficiencies. In this study, we propose a novel fusion method to combine multi-modality medical images based on the enhanced fuzzy radial basis function neural network (Fuzzy-RBFNN), which includes five layers: input, fuzzy partition, front combination, inference, and output. Moreover, we propose a hybrid of the gravitational search algorithm (GSA) and error back propagation algorithm (EBPA) to train the network to update the parameters of the network. Two different patterns of images are used as inputs of the neural network, and the output is the fused image. A comparison with the conventional fusion methods and another neural network method through subjective observation and objective evaluation indexes reveals that the proposed method effectively synthesized the information of input images and achieved better results. Meanwhile, we also trained the network by using the EBPA and GSA, individually. The results reveal that the EBPGSA not only outperformed both EBPA and GSA, but also trained the neural network more accurately by analyzing the same evaluation indexes. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. A brain MRI bias field correction method created in the Gaussian multi-scale space

    NASA Astrophysics Data System (ADS)

    Chen, Mingsheng; Qin, Mingxin

    2017-07-01

    A pre-processing step is needed to correct for the bias field signal before submitting corrupted MR images to such image-processing algorithms. This study presents a new bias field correction method. The method creates a Gaussian multi-scale space by the convolution of the inhomogeneous MR image with a two-dimensional Gaussian function. In the multi-Gaussian space, the method retrieves the image details from the differentiation of the original image and convolution image. Then, it obtains an image whose inhomogeneity is eliminated by the weighted sum of image details in each layer in the space. Next, the bias field-corrected MR image is retrieved after the Υ correction, which enhances the contrast and brightness of the inhomogeneity-eliminated MR image. We have tested the approach on T1 MRI and T2 MRI with varying bias field levels and have achieved satisfactory results. Comparison experiments with popular software have demonstrated superior performance of the proposed method in terms of quantitative indices, especially an improvement in subsequent image segmentation.

  17. [Functional magnetic resonance imaging in psychiatry and psychotherapy].

    PubMed

    Derntl, B; Habel, U; Schneider, F

    2010-01-01

    technical improvements, functional magnetic resonance imaging (fMRI) has become the most popular and versatile imaging method in psychiatric research. The scope of this manuscript is to briefly introduce the basics of MR physics, the blood oxygenation level-dependent (BOLD) contrast as well as the principles of MR study design and functional data analysis. The presentation of exemplary studies on emotion recognition and empathy in schizophrenia patients will highlight the importance of MR methods in psychiatry. Finally, we will demonstrate insights into new developments that will further boost MR techniques in clinical research and will help to gain more insight into dysfunctional neural networks underlying cognitive and emotional deficits in psychiatric patients. Moreover, some techniques such as neurofeedback seem promising for evaluation of therapy effects on a behavioral and neural level.

  18. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  19. Altered Whole-Brain and Network-Based Functional Connectivity in Parkinson's Disease.

    PubMed

    de Schipper, Laura J; Hafkemeijer, Anne; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2018-01-01

    Background: Functional imaging methods, such as resting-state functional magnetic resonance imaging, reflect changes in neural connectivity and may help to assess the widespread consequences of disease-specific network changes in Parkinson's disease. In this study we used a relatively new graph analysis approach in functional imaging: eigenvector centrality mapping. This model-free method, applied to all voxels in the brain, identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. In other neurological disorders, eigenvector centrality mapping has been linked to changes in functional connectivity in certain nodes of brain networks. Objectives: Examining changes in functional brain connectivity architecture on a whole brain and network level in patients with Parkinson's disease. Methods: Whole brain resting-state functional architecture was studied with a recently introduced graph analysis approach (eigenvector centrality mapping). Functional connectivity was further investigated in relation to eight known resting-state networks. Cross-sectional analyses included group comparison of functional connectivity measures of Parkinson's disease patients ( n = 107) with control subjects ( n = 58) and correlations with clinical data, including motor and cognitive impairment and a composite measure of predominantly non-dopaminergic symptoms. Results: Eigenvector centrality mapping revealed that frontoparietal regions were more prominent in the whole-brain network function in patients compared to control subjects, while frontal and occipital brain areas were less prominent in patients. Using standard resting-state networks, we found predominantly increased functional connectivity, namely within sensorimotor system and visual networks in patients. Regional group differences in functional connectivity of both techniques between patients and control subjects partly overlapped for highly connected posterior brain regions, in particular in the posterior cingulate cortex and precuneus. Clinico-functional imaging relations were not found. Conclusions: Changes on the level of functional brain connectivity architecture might provide a different perspective of pathological consequences of Parkinson's disease. The involvement of specific, highly connected (hub) brain regions may influence whole brain functional network architecture in Parkinson's disease.

  20. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping.

    PubMed

    Gao, Xiaoqing; Gentile, Francesco; Rossion, Bruno

    2018-06-01

    Defining the neural basis of perceptual categorization in a rapidly changing natural environment with low-temporal resolution methods such as functional magnetic resonance imaging (fMRI) is challenging. Here, we present a novel fast periodic stimulation (FPS)-fMRI approach to define face-selective brain regions with natural images. Human observers are presented with a dynamic stream of widely variable natural object images alternating at a fast rate (6 images/s). Every 9 s, a short burst of variable face images contrasting with object images in pairs induces an objective face-selective neural response at 0.111 Hz. A model-free Fourier analysis achieves a twofold increase in signal-to-noise ratio compared to a conventional block-design approach with identical stimuli and scanning duration, allowing to derive a comprehensive map of face-selective areas in the ventral occipito-temporal cortex, including the anterior temporal lobe (ATL), in all individual brains. Critically, periodicity of the desired category contrast and random variability among widely diverse images effectively eliminates the contribution of low-level visual cues, and lead to the highest values (80-90%) of test-retest reliability in the spatial activation map yet reported in imaging higher level visual functions. FPS-fMRI opens a new avenue for understanding brain function with low-temporal resolution methods.

  1. New magnetic resonance imaging methods in nephrology

    PubMed Central

    Zhang, Jeff L.; Morrell, Glen; Rusinek, Henry; Sigmund, Eric; Chandarana, Hersh; Lerman, Lilach O.; Prasad, Pottumarthi Vara; Niles, David; Artz, Nathan; Fain, Sean; Vivier, Pierre H.; Cheung, Alfred K.; Lee, Vivian S.

    2013-01-01

    Established as a method to study anatomic changes, such as renal tumors or atherosclerotic vascular disease, magnetic resonance imaging (MRI) to interrogate renal function has only recently begun to come of age. In this review, we briefly introduce some of the most important MRI techniques for renal functional imaging, and then review current findings on their use for diagnosis and monitoring of major kidney diseases. Specific applications include renovascular disease, diabetic nephropathy, renal transplants, renal masses, acute kidney injury and pediatric anomalies. With this review, we hope to encourage more collaboration between nephrologists and radiologists to accelerate the development and application of modern MRI tools in nephrology clinics. PMID:24067433

  2. Effect of Non-speckle Echo Signals on Tissue Characteristics for Liver Fibrosis using Probability Density Function of Ultrasonic B-mode image

    NASA Astrophysics Data System (ADS)

    Mori, Shohei; Hirata, Shinnosuke; Yamaguchi, Tadashi; Hachiya, Hiroyuki

    To develop a quantitative diagnostic method for liver fibrosis using an ultrasound B-mode image, a probability imaging method of tissue characteristics based on a multi-Rayleigh model, which expresses a probability density function of echo signals from liver fibrosis, has been proposed. In this paper, an effect of non-speckle echo signals on tissue characteristics estimated from the multi-Rayleigh model was evaluated. Non-speckle signals were determined and removed using the modeling error of the multi-Rayleigh model. The correct tissue characteristics of fibrotic tissue could be estimated with the removal of non-speckle signals.

  3. Southeast Asian palm leaf manuscript images: a review of handwritten text line segmentation methods and new challenges

    NASA Astrophysics Data System (ADS)

    Kesiman, Made Windu Antara; Valy, Dona; Burie, Jean-Christophe; Paulus, Erick; Sunarya, I. Made Gede; Hadi, Setiawan; Sok, Kim Heng; Ogier, Jean-Marc

    2017-01-01

    Due to their specific characteristics, palm leaf manuscripts provide new challenges for text line segmentation tasks in document analysis. We investigated the performance of six text line segmentation methods by conducting comparative experimental studies for the collection of palm leaf manuscript images. The image corpus used in this study comes from the sample images of palm leaf manuscripts of three different Southeast Asian scripts: Balinese script from Bali and Sundanese script from West Java, both from Indonesia, and Khmer script from Cambodia. For the experiments, four text line segmentation methods that work on binary images are tested: the adaptive partial projection line segmentation approach, the A* path planning approach, the shredding method, and our proposed energy function for shredding method. Two other methods that can be directly applied on grayscale images are also investigated: the adaptive local connectivity map method and the seam carving-based method. The evaluation criteria and tool provided by ICDAR2013 Handwriting Segmentation Contest were used in this experiment.

  4. Methods for Dichoptic Stimulus Presentation in Functional Magnetic Resonance Imaging - A Review

    PubMed Central

    Choubey, Bhaskar; Jurcoane, Alina; Muckli, Lars; Sireteanu, Ruxandra

    2009-01-01

    Dichoptic stimuli (different stimuli displayed to each eye) are increasingly being used in functional brain imaging experiments using visual stimulation. These studies include investigation into binocular rivalry, interocular information transfer, three-dimensional depth perception as well as impairments of the visual system like amblyopia and stereodeficiency. In this paper, we review various approaches of displaying dichoptic stimulus used in functional magnetic resonance imaging experiments. These include traditional approaches of using filters (red-green, red-blue, polarizing) with optical assemblies as well as newer approaches of using bi-screen goggles. PMID:19526076

  5. Method and apparatus for the simultaneous display and correlation of independently generated images

    DOEpatents

    Vaitekunas, Jeffrey J.; Roberts, Ronald A.

    1991-01-01

    An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.

  6. Brain CT image similarity retrieval method based on uncertain location graph.

    PubMed

    Pan, Haiwei; Li, Pengyuan; Li, Qing; Han, Qilong; Feng, Xiaoning; Gao, Linlin

    2014-03-01

    A number of brain computed tomography (CT) images stored in hospitals that contain valuable information should be shared to support computer-aided diagnosis systems. Finding the similar brain CT images from the brain CT image database can effectively help doctors diagnose based on the earlier cases. However, the similarity retrieval for brain CT images requires much higher accuracy than the general images. In this paper, a new model of uncertain location graph (ULG) is presented for brain CT image modeling and similarity retrieval. According to the characteristics of brain CT image, we propose a novel method to model brain CT image to ULG based on brain CT image texture. Then, a scheme for ULG similarity retrieval is introduced. Furthermore, an effective index structure is applied to reduce the searching time. Experimental results reveal that our method functions well on brain CT images similarity retrieval with higher accuracy and efficiency.

  7. A Review on Segmentation of Positron Emission Tomography Images

    PubMed Central

    Foster, Brent; Bagci, Ulas; Mansoor, Awais; Xu, Ziyue; Mollura, Daniel J.

    2014-01-01

    Positron Emission Tomography (PET), a non-invasive functional imaging method at the molecular level, images the distribution of biologically targeted radiotracers with high sensitivity. PET imaging provides detailed quantitative information about many diseases and is often used to evaluate inflammation, infection, and cancer by detecting emitted photons from a radiotracer localized to abnormal cells. In order to differentiate abnormal tissue from surrounding areas in PET images, image segmentation methods play a vital role; therefore, accurate image segmentation is often necessary for proper disease detection, diagnosis, treatment planning, and follow-ups. In this review paper, we present state-of-the-art PET image segmentation methods, as well as the recent advances in image segmentation techniques. In order to make this manuscript self-contained, we also briefly explain the fundamentals of PET imaging, the challenges of diagnostic PET image analysis, and the effects of these challenges on the segmentation results. PMID:24845019

  8. Automated method and system for the alignment and correlation of images from two different modalities

    DOEpatents

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  9. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  10. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.

  11. Image classification at low light levels

    NASA Astrophysics Data System (ADS)

    Wernick, Miles N.; Morris, G. Michael

    1986-12-01

    An imaging photon-counting detector is used to achieve automatic sorting of two image classes. The classification decision is formed on the basis of the cross correlation between a photon-limited input image and a reference function stored in computer memory. Expressions for the statistical parameters of the low-light-level correlation signal are given and are verified experimentally. To obtain a correlation-based system for two-class sorting, it is necessary to construct a reference function that produces useful information for class discrimination. An expression for such a reference function is derived using maximum-likelihood decision theory. Theoretically predicted results are used to compare on the basis of performance the maximum-likelihood reference function with Fukunaga-Koontz basis vectors and average filters. For each method, good class discrimination is found to result in milliseconds from a sparse sampling of the input image.

  12. Image fusion method based on regional feature and improved bidimensional empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Qin, Xinqiang; Hu, Gang; Hu, Kai

    2018-01-01

    The decomposition of multiple source images using bidimensional empirical mode decomposition (BEMD) often produces mismatched bidimensional intrinsic mode functions, either by their number or their frequency, making image fusion difficult. A solution to this problem is proposed using a fixed number of iterations and a union operation in the sifting process. By combining the local regional features of the images, an image fusion method has been developed. First, the source images are decomposed using the proposed BEMD to produce the first intrinsic mode function (IMF) and residue component. Second, for the IMF component, a selection and weighted average strategy based on local area energy is used to obtain a high-frequency fusion component. Third, for the residue component, a selection and weighted average strategy based on local average gray difference is used to obtain a low-frequency fusion component. Finally, the fused image is obtained by applying the inverse BEMD transform. Experimental results show that the proposed algorithm provides superior performance over methods based on wavelet transform, line and column-based EMD, and complex empirical mode decomposition, both in terms of visual quality and objective evaluation criteria.

  13. Non-invasive assessment of the liver using imaging

    NASA Astrophysics Data System (ADS)

    Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.

    2016-12-01

    Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.

  14. Fast single image dehazing based on image fusion

    NASA Astrophysics Data System (ADS)

    Liu, Haibo; Yang, Jie; Wu, Zhengping; Zhang, Qingnian

    2015-01-01

    Images captured in foggy weather conditions often fade the colors and reduce the contrast of the observed objects. An efficient image fusion method is proposed to remove haze from a single input image. First, the initial medium transmission is estimated based on the dark channel prior. Second, the method adopts an assumption that the degradation level affected by haze of each region is the same, which is similar to the Retinex theory, and uses a simple Gaussian filter to get the coarse medium transmission. Then, pixel-level fusion is achieved between the initial medium transmission and coarse medium transmission. The proposed method can recover a high-quality haze-free image based on the physical model, and the complexity of the proposed method is only a linear function of the number of input image pixels. Experimental results demonstrate that the proposed method can allow a very fast implementation and achieve better restoration for visibility and color fidelity compared to some state-of-the-art methods.

  15. Retrieving Coherent Receiver Function Images with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Zhan, Z.

    2016-12-01

    Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.

  16. Implementation of digital image encryption algorithm using logistic function and DNA encoding

    NASA Astrophysics Data System (ADS)

    Suryadi, MT; Satria, Yudi; Fauzi, Muhammad

    2018-03-01

    Cryptography is a method to secure information that might be in form of digital image. Based on past research, in order to increase security level of chaos based encryption algorithm and DNA based encryption algorithm, encryption algorithm using logistic function and DNA encoding was proposed. Digital image encryption algorithm using logistic function and DNA encoding use DNA encoding to scramble the pixel values into DNA base and scramble it in DNA addition, DNA complement, and XOR operation. The logistic function in this algorithm used as random number generator needed in DNA complement and XOR operation. The result of the test show that the PSNR values of cipher images are 7.98-7.99 bits, the entropy values are close to 8, the histogram of cipher images are uniformly distributed and the correlation coefficient of cipher images are near 0. Thus, the cipher image can be decrypted perfectly and the encryption algorithm has good resistance to entropy attack and statistical attack.

  17. Functionalization of titanium surface with chitosan via silanation: 3D CLSM imaging of cell biocompatibility behaviour.

    PubMed

    Attik, G N; D'Almeida, M; Toury, B; Grosgogeat, B

    2013-09-16

    Biocompatibility ranks as one of the most important properties of dental materials. One of the criteria for biocompatibility is the absence of material toxicity to cells, according to the ISO 7405 and 10993 recommendations. Among numerous available methods for toxicity assessment; 3-dimensional Confocal Laser Scanning Microscopy (3D CLSM) imaging was chosen because it provides an accurate and sensitive index of living cell behavior in contact with chitosan coated tested implants. The purpose of this study was to investigate the in vitro biocompatibility of functionalized titanium with chitosan via a silanation using sensitive and innovative 3D CLSM imaging as an investigation method for cytotoxicity assessment. The biocompatibility of four samples (controls cells, TA6V, TA6V-TESBA and TA6V-TESBAChitosan) was compared in vitro after 24h of exposure. Confocal imaging was performed on cultured human gingival fibroblast (HGF1) like cells using Live/Dead® staining. Image series were obtained with a FV10i confocal biological inverted system and analyzed with FV10-ASW 3.1 Software (Olympus France). Image analysis showed no cytotoxicity in the presence of the three tested substrates after 24 h of contact. A slight decrease of cell viability was found in contact with TA6V-TESBA with and without chitosan compared to negative control cells. Our findings highlighted the use of 3D CLSM confocal imaging as a sensitive method to evaluate qualitatively and quantitatively the biocompatibility behavior of functionalized titanium with chitosan via a silanation. The biocompatibility of the new functionalized coating to HGF1 cells is as good as the reference in biomedical device implantation TA6V.

  18. Search for Patterns of Functional Specificity in the Brain: A Nonparametric Hierarchical Bayesian Model for Group fMRI Data

    PubMed Central

    Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2012-01-01

    Functional MRI studies have uncovered a number of brain areas that demonstrate highly specific functional patterns. In the case of visual object recognition, small, focal regions have been characterized with selectivity for visual categories such as human faces. In this paper, we develop an algorithm that automatically learns patterns of functional specificity from fMRI data in a group of subjects. The method does not require spatial alignment of functional images from different subjects. The algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to learn the patterns of functional specificity shared across the group, which we call functional systems, and estimate the number of these systems. Inference based on our model enables automatic discovery and characterization of dominant and consistent functional systems. We apply the method to data from a visual fMRI study comprised of 69 distinct stimulus images. The discovered system activation profiles correspond to selectivity for a number of image categories such as faces, bodies, and scenes. Among systems found by our method, we identify new areas that are deactivated by face stimuli. In empirical comparisons with perviously proposed exploratory methods, our results appear superior in capturing the structure in the space of visual categories of stimuli. PMID:21884803

  19. Container Surface Evaluation by Function Estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, James G.

    Container images are analyzed for specific surface features, such as, pits, cracks, and corrosion. The detection of these features is confounded with complicating features. These complication features include: shape/curvature, welds, edges, scratches, foreign objects among others. A method is provided to discriminate between the various features. The method consists of estimating the image background, determining a residual image and post processing to determine the features present. The methodology is not finalized but demonstrates the feasibility of a method to determine the kind and size of the features present.

  20. A phase space approach to imaging from limited data

    NASA Astrophysics Data System (ADS)

    Testorf, Markus E.

    2015-09-01

    The optical instrument function is used as the basis to develop optical system theory for imaging applications. The detection of optical signals is conveniently described as the overlap integral of the Wigner distribution functions of instrument and optical signal. Based on this framework various optical imaging systems, including plenoptic cameras, phase-retrieval algorithms, and Shack-Hartman sensors are shown to acquire information about a domain in phase-space, with finite extension and finite resolution. It is demonstrated how phase space optics can be used both to analyze imaging systems, as well as for designing methods for image reconstruction.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altunbas, Cem, E-mail: caltunbas@gmail.com; Lai, Chao-Jen; Zhong, Yuncheng

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrancemore » exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear pixel gain variations as a function of change in x-ray spectrum and intensity. Hence, it can better suppress image artifacts due to beam hardening as well as artifacts that arise from detector entrance exposure variation.« less

  2. Malware analysis using visualized image matrices.

    PubMed

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  3. Poster - Thur Eve - 16: Four-dimensional x-ray computed tomography and hyperpolarized 3 He magnetic resonance imaging of gas distribution in lung cancer.

    PubMed

    Mathew, L; Castillo, R; Castillo, E; Yaremko, B; Rodrigues, G; Etemad-Rezai, R; Guerrero, T; Parraga, G

    2012-07-01

    Dynamic imaging methods such as four-dimensional computed tomography (4DCT) and static imaging methods such as noble gas magnetic resonance imaging (MRI) deliver direct and regional measurements of lung function even in lung cancer patients in whom global lung function measurements are dominated by tumour burden. The purpose of this study was to directly compare quantitative measurements of gas distribution from static hyperpolarized 3 He MRI and dynamic 4DCT in a small group of lung cancer patients. MRI and 4DCT were performed in 11 subjects prior to radiation therapy. MRI was performed at 3.0T in breath-hold after inhalation 1L of hyperpolarized 3 He gas. Gas distribution in 3 He MRI was quantified using a semi-automated segmentation algorithm to generate percent-ventilated volume (PVV), reflecting the volume of gas in the lung normalized to the thoracic cavity volume. 4DCT pulmonary function maps were generated using deformable image registration of six expiratory phase images. The correspondence between identical tissue elements at inspiratory and expiratory phases was used to estimate regional gas distribution and PVV was quantified from these images. After accounting for differences in lung volumes between 3 He MRI (1.9±0.5L ipsilateral, 2.3±0.7 contralateral) and 4DCT (1.2±0.3L ipsilateral, 1.3±0.4L contralateral) during image acquisition, there was no statistically significant difference in PVV between 3 He MRI (72±11% ipsilateral, 79±12% contralateral) and 4DCT (74±3% ipsilateral, 75±4% contralateral). Our results indicate quantitative agreement in the regional distribution of inhaled gas in both static and dynamic imaging methods. PVV may be considered as a regional surrogate measurement of lung function or ventilation. © 2012 American Association of Physicists in Medicine.

  4. Functional and morphological ultrasonic biomicroscopy for tissue engineers

    NASA Astrophysics Data System (ADS)

    Mallidi, S.; Aglyamov, S. R.; Karpiouk, A. B.; Park, S.; Emelianov, S. Y.

    2006-03-01

    Tissue engineering is an interdisciplinary field that combines various aspects of engineering and life sciences and aims to develop biological substitutes to restore, repair or maintain tissue function. Currently, the ability to have quantitative functional assays of engineered tissues is limited to existing invasive methods like biopsy. Hence, an imaging tool for non-invasive and simultaneous evaluation of the anatomical and functional properties of the engineered tissue is needed. In this paper we present an advanced in-vivo imaging technology - ultrasound biomicroscopy combined with complementary photoacoustic and elasticity imaging techniques, capable of accurate visualization of both structural and functional changes in engineered tissues, sequential monitoring of tissue adaptation and/or regeneration, and possible assistance of drug delivery and treatment planning. The combined imaging at microscopic resolution was evaluated on tissue mimicking phantoms imaged with 25 MHz single element focused transducer. The results of our study demonstrate that the ultrasonic, photoacoustic and elasticity images synergistically complement each other in detecting features otherwise imperceptible using the individual techniques. Finally, we illustrate the feasibility of the combined ultrasound, photoacoustic and elasticity imaging techniques in accurately assessing the morphological and functional changes occurring in engineered tissue.

  5. Study on Mosaic and Uniform Color Method of Satellite Image Fusion in Large Srea

    NASA Astrophysics Data System (ADS)

    Liu, S.; Li, H.; Wang, X.; Guo, L.; Wang, R.

    2018-04-01

    Due to the improvement of satellite radiometric resolution and the color difference for multi-temporal satellite remote sensing images and the large amount of satellite image data, how to complete the mosaic and uniform color process of satellite images is always an important problem in image processing. First of all using the bundle uniform color method and least squares mosaic method of GXL and the dodging function, the uniform transition of color and brightness can be realized in large area and multi-temporal satellite images. Secondly, using Color Mapping software to color mosaic images of 16bit to mosaic images of 8bit based on uniform color method with low resolution reference images. At last, qualitative and quantitative analytical methods are used respectively to analyse and evaluate satellite image after mosaic and uniformity coloring. The test reflects the correlation of mosaic images before and after coloring is higher than 95 % and image information entropy increases, texture features are enhanced which have been proved by calculation of quantitative indexes such as correlation coefficient and information entropy. Satellite image mosaic and color processing in large area has been well implemented.

  6. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    PubMed

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  7. Reducing the Effects of Background Noise during Auditory Functional Magnetic Resonance Imaging of Speech Processing: Qualitative and Quantitative Comparisons between Two Image Acquisition Schemes and Noise Cancellation

    ERIC Educational Resources Information Center

    Blackman, Graham A.; Hall, Deborah A.

    2011-01-01

    Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…

  8. Self-calibrated correlation imaging with k-space variant correlation functions.

    PubMed

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. The Zernike expansion--an example of a merit function for 2D/3D registration based on orthogonal functions.

    PubMed

    Dong, Shuo; Kettenbach, Joachim; Hinterleitner, Isabella; Bergmann, Helmar; Birkfellner, Wolfgang

    2008-01-01

    Current merit functions for 2D/3D registration usually rely on comparing pixels or small regions of images using some sort of statistical measure. Problems connected to this paradigm the sometimes problematic behaviour of the method if noise or artefacts (for instance a guide wire) are present on the projective image. We present a merit function for 2D/3D registration which utilizes the decomposition of the X-ray and the DRR under comparison into orthogonal Zernike moments; the quality of the match is assessed by an iterative comparison of expansion coefficients. Results in a imaging study on a physical phantom show that--compared to standard cross--correlation the Zernike moment based merit function shows better robustness if histogram content in images under comparison is different, and that time expenses are comparable if the merit function is constructed out of a few significant moments only.

  10. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  11. Fast Depiction Invariant Visual Similarity for Content Based Image Retrieval Based on Data-driven Visual Similarity using Linear Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Wihardi, Y.; Setiawan, W.; Nugraha, E.

    2018-01-01

    On this research we try to build CBIRS based on Learning Distance/Similarity Function using Linear Discriminant Analysis (LDA) and Histogram of Oriented Gradient (HoG) feature. Our method is invariant to depiction of image, such as similarity of image to image, sketch to image, and painting to image. LDA can decrease execution time compared to state of the art method, but it still needs an improvement in term of accuracy. Inaccuracy in our experiment happen because we did not perform sliding windows search and because of low number of negative samples as natural-world images.

  12. Image-derived and arterial blood sampled input functions for quantitative PET imaging of the angiotensin II subtype 1 receptor in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Tao; Tsui, Benjamin M. W.; Li, Xin

    Purpose: The radioligand {sup 11}C-KR31173 has been introduced for positron emission tomography (PET) imaging of the angiotensin II subtype 1 receptor in the kidney in vivo. To study the biokinetics of {sup 11}C-KR31173 with a compartmental model, the input function is needed. Collection and analysis of arterial blood samples are the established approach to obtain the input function but they are not feasible in patients with renal diseases. The goal of this study was to develop a quantitative technique that can provide an accurate image-derived input function (ID-IF) to replace the conventional invasive arterial sampling and test the method inmore » pigs with the goal of translation into human studies. Methods: The experimental animals were injected with [{sup 11}C]KR31173 and scanned up to 90 min with dynamic PET. Arterial blood samples were collected for the artery derived input function (AD-IF) and used as a gold standard for ID-IF. Before PET, magnetic resonance angiography of the kidneys was obtained to provide the anatomical information required for derivation of the recovery coefficients in the abdominal aorta, a requirement for partial volume correction of the ID-IF. Different image reconstruction methods, filtered back projection (FBP) and ordered subset expectation maximization (OS-EM), were investigated for the best trade-off between bias and variance of the ID-IF. The effects of kidney uptakes on the quantitative accuracy of ID-IF were also studied. Biological variables such as red blood cell binding and radioligand metabolism were also taken into consideration. A single blood sample was used for calibration in the later phase of the input function. Results: In the first 2 min after injection, the OS-EM based ID-IF was found to be biased, and the bias was found to be induced by the kidney uptake. No such bias was found with the FBP based image reconstruction method. However, the OS-EM based image reconstruction was found to reduce variance in the subsequent phase of the ID-IF. The combined use of FBP and OS-EM resulted in reduced bias and noise. After performing all the necessary corrections, the areas under the curves (AUCs) of the AD-IF were close to that of the AD-IF (average AUC ratio =1 ± 0.08) during the early phase. When applied in a two-tissue-compartmental kinetic model, the average difference between the estimated model parameters from ID-IF and AD-IF was 10% which was within the error of the estimation method. Conclusions: The bias of radioligand concentration in the aorta from the OS-EM image reconstruction is significantly affected by radioligand uptake in the adjacent kidney and cannot be neglected for quantitative evaluation. With careful calibrations and corrections, the ID-IF derived from quantitative dynamic PET images can be used as the input function of the compartmental model to quantify the renal kinetics of {sup 11}C-KR31173 in experimental animals and the authors intend to evaluate this method in future human studies.« less

  13. Edge-augmented Fourier partial sums with applications to Magnetic Resonance Imaging (MRI)

    NASA Astrophysics Data System (ADS)

    Larriva-Latt, Jade; Morrison, Angela; Radgowski, Alison; Tobin, Joseph; Iwen, Mark; Viswanathan, Aditya

    2017-08-01

    Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation methods suffer from the Gibbs phenomenon - with associated oscillatory artifacts in the vicinity of edges and an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth function to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation. We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based methods.

  14. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy.

    PubMed

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R; Tulchin-Francis, Kirsten; Shierk, Angela; Roberts, Heather; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2014-10-01

    Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images.

  15. Motion tracking and electromyography-assisted identification of mirror hand contributions to functional near-infrared spectroscopy images acquired during a finger-tapping task performed by children with cerebral palsy

    PubMed Central

    Hervey, Nathan; Khan, Bilal; Shagman, Laura; Tian, Fenghua; Delgado, Mauricio R.; Tulchin-Francis, Kirsten; Shierk, Angela; Roberts, Heather; Smith, Linsley; Reid, Dahlia; Clegg, Nancy J.; Liu, Hanli; MacFarlane, Duncan; Alexandrakis, George

    2014-01-01

    Abstract. Recent studies have demonstrated functional near-infrared spectroscopy (fNIRS) to be a viable and sensitive method for imaging sensorimotor cortex activity in children with cerebral palsy (CP). However, during unilateral finger tapping, children with CP often exhibit unintended motions in the nontapping hand, known as mirror motions, which confuse the interpretation of resulting fNIRS images. This work presents a method for separating some of the mirror motion contributions to fNIRS images and demonstrates its application to fNIRS data from four children with CP performing a finger-tapping task with mirror motions. Finger motion and arm muscle activity were measured simultaneously with fNIRS signals using motion tracking and electromyography (EMG), respectively. Subsequently, subject-specific regressors were created from the motion capture or EMG data and independent component analysis was combined with a general linear model to create an fNIRS image representing activation due to the tapping hand and one image representing activation due to the mirror hand. The proposed method can provide information on how mirror motions contribute to fNIRS images, and in some cases, it helps remove mirror motion contamination from the tapping hand activation images. PMID:26157980

  16. Analyser-based phase contrast image reconstruction using geometrical optics.

    PubMed

    Kitchen, M J; Pavlov, K M; Siu, K K W; Menk, R H; Tromba, G; Lewis, R A

    2007-07-21

    Analyser-based phase contrast imaging can provide radiographs of exceptional contrast at high resolution (<100 microm), whilst quantitative phase and attenuation information can be extracted using just two images when the approximations of geometrical optics are satisfied. Analytical phase retrieval can be performed by fitting the analyser rocking curve with a symmetric Pearson type VII function. The Pearson VII function provided at least a 10% better fit to experimentally measured rocking curves than linear or Gaussian functions. A test phantom, a hollow nylon cylinder, was imaged at 20 keV using a Si(1 1 1) analyser at the ELETTRA synchrotron radiation facility. Our phase retrieval method yielded a more accurate object reconstruction than methods based on a linear fit to the rocking curve. Where reconstructions failed to map expected values, calculations of the Takagi number permitted distinction between the violation of the geometrical optics conditions and the failure of curve fitting procedures. The need for synchronized object/detector translation stages was removed by using a large, divergent beam and imaging the object in segments. Our image acquisition and reconstruction procedure enables quantitative phase retrieval for systems with a divergent source and accounts for imperfections in the analyser.

  17. A large, switchable optical clearing skull window for cerebrovascular imaging

    PubMed Central

    Zhang, Chao; Feng, Wei; Zhao, Yanjie; Yu, Tingting; Li, Pengcheng; Xu, Tonghui; Luo, Qingming; Zhu, Dan

    2018-01-01

    Rationale: Intravital optical imaging is a significant method for investigating cerebrovascular structure and function. However, its imaging contrast and depth are limited by the turbid skull. Tissue optical clearing has a great potential for solving this problem. Our goal was to develop a transparent skull window, without performing a craniotomy, for use in assessing cerebrovascular structure and function. Methods: Skull optical clearing agents were topically applied to the skulls of mice to create a transparent window within 15 min. The clearing efficacy, repeatability, and safety of the skull window were then investigated. Results: Imaging through the optical clearing skull window enhanced both the contrast and the depth of intravital imaging. The skull window could be used on 2-8-month-old mice and could be expanded from regional to bi-hemispheric. In addition, the window could be repeatedly established without inducing observable inflammation and metabolic toxicity. Conclusion: We successfully developed an easy-to-handle, large, switchable, and safe optical clearing skull window. Combined with various optical imaging techniques, cerebrovascular structure and function can be observed through this optical clearing skull window. Thus, it has the potential for use in basic research on the physiopathologic processes of cortical vessels. PMID:29774069

  18. [Cardiac Synchronization Function Estimation Based on ASM Level Set Segmentation Method].

    PubMed

    Zhang, Yaonan; Gao, Yuan; Tang, Liang; He, Ying; Zhang, Huie

    At present, there is no accurate and quantitative methods for the determination of cardiac mechanical synchronism, and quantitative determination of the synchronization function of the four cardiac cavities with medical images has a great clinical value. This paper uses the whole heart ultrasound image sequence, and segments the left & right atriums and left & right ventricles of each frame. After the segmentation, the number of pixels in each cavity and in each frame is recorded, and the areas of the four cavities of the image sequence are therefore obtained. The area change curves of the four cavities are further extracted, and the synchronous information of the four cavities is obtained. Because of the low SNR of Ultrasound images, the boundary lines of cardiac cavities are vague, so the extraction of cardiac contours is still a challenging problem. Therefore, the ASM model information is added to the traditional level set method to force the curve evolution process. According to the experimental results, the improved method improves the accuracy of the segmentation. Furthermore, based on the ventricular segmentation, the right and left ventricular systolic functions are evaluated, mainly according to the area changes. The synchronization of the four cavities of the heart is estimated based on the area changes and the volume changes.

  19. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  20. Brain MR image segmentation based on an improved active contour model

    PubMed Central

    Meng, Xiangrui; Gu, Wenya; Zhang, Jianwei

    2017-01-01

    It is often a difficult task to accurately segment brain magnetic resonance (MR) images with intensity in-homogeneity and noise. This paper introduces a novel level set method for simultaneous brain MR image segmentation and intensity inhomogeneity correction. To reduce the effect of noise, novel anisotropic spatial information, which can preserve more details of edges and corners, is proposed by incorporating the inner relationships among the neighbor pixels. Then the proposed energy function uses the multivariate Student's t-distribution to fit the distribution of the intensities of each tissue. Furthermore, the proposed model utilizes Hidden Markov random fields to model the spatial correlation between neigh-boring pixels/voxels. The means of the multivariate Student's t-distribution can be adaptively estimated by multiplying a bias field to reduce the effect of intensity inhomogeneity. In the end, we reconstructed the energy function to be convex and calculated it by using the Split Bregman method, which allows our framework for random initialization, thereby allowing fully automated applications. Our method can obtain the final result in less than 1 second for 2D image with size 256 × 256 and less than 300 seconds for 3D image with size 256 × 256 × 171. The proposed method was compared to other state-of-the-art segmentation methods using both synthetic and clinical brain MR images and increased the accuracies of the results more than 3%. PMID:28854235

  1. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    PubMed

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  2. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method

    PubMed Central

    Liu, Fei; Luo, Jianwen; Xie, Yaoqin; Bai, Jing

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods. PMID:27576245

  3. Visual Search with Image Modification in Age-Related Macular Degeneration

    PubMed Central

    Wiecek, Emily; Jackson, Mary Lou; Dakin, Steven C.; Bex, Peter

    2012-01-01

    Purpose. AMD results in loss of central vision and a dependence on low-resolution peripheral vision. While many image enhancement techniques have been proposed, there is a lack of quantitative comparison of the effectiveness of enhancement. We developed a natural visual search task that uses patients' eye movements as a quantitative and functional measure of the efficacy of image modification. Methods. Eye movements of 17 patients (mean age = 77 years) with AMD were recorded while they searched for target objects in natural images. Eight different image modification methods were implemented and included manipulations of local image or edge contrast, color, and crowding. In a subsequent task, patients ranked their preference of the image modifications. Results. Within individual participants, there was no significant difference in search duration or accuracy across eight different image manipulations. When data were collapsed across all image modifications, a multivariate model identified six significant predictors for normalized search duration including scotoma size and acuity, as well as interactions among scotoma size, age, acuity, and contrast (P < 0.05). Additionally, an analysis of image statistics showed no correlation with search performance across all image modifications. Rank ordering of enhancement methods based on participants' preference revealed a trend that participants preferred the least modified images (P < 0.05). Conclusions. There was no quantitative effect of image modification on search performance. A better understanding of low- and high-level components of visual search in natural scenes is necessary to improve future attempts at image enhancement for low vision patients. Different search tasks may require alternative image modifications to improve patient functioning and performance. PMID:22930725

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brewer, Brendon J.; Foreman-Mackey, Daniel; Hogg, David W., E-mail: bj.brewer@auckland.ac.nz

    We present and implement a probabilistic (Bayesian) method for producing catalogs from images of stellar fields. The method is capable of inferring the number of sources N in the image and can also handle the challenges introduced by noise, overlapping sources, and an unknown point-spread function. The luminosity function of the stars can also be inferred, even when the precise luminosity of each star is uncertain, via the use of a hierarchical Bayesian model. The computational feasibility of the method is demonstrated on two simulated images with different numbers of stars. We find that our method successfully recovers the inputmore » parameter values along with principled uncertainties even when the field is crowded. We also compare our results with those obtained from the SExtractor software. While the two approaches largely agree about the fluxes of the bright stars, the Bayesian approach provides more accurate inferences about the faint stars and the number of stars, particularly in the crowded case.« less

  5. Expanded image database of pistachio x-ray images and classification by conventional methods

    NASA Astrophysics Data System (ADS)

    Keagy, Pamela M.; Schatzki, Thomas F.; Le, Lan Chau; Casasent, David P.; Weber, David

    1996-12-01

    In order to develop sorting methods for insect damaged pistachio nuts, a large data set of pistachio x-ray images (6,759 nuts) was created. Both film and linescan sensor images were acquired, nuts dissected and internal conditions coded using the U.S. Grade standards and definitions for pistachios. A subset of 1199 good and 686 insect damaged nuts was used to calculate and test discriminant functions. Statistical parameters of image histograms were evaluated for inclusion by forward stepwise discrimination. Using three variables in the discriminant function, 89% of test set nuts were correctly identified. Comparable data for 6 human subjects ranged from 67 to 92%. If the loss of good nuts is held to 1% by requiring a high probability to discard a nut as insect damaged, approximately half of the insect damage present in clean pistachio nuts may be detected and removed by x-ray inspection.

  6. Two-dimensional angular transmission characterization of CPV modules.

    PubMed

    Herrero, R; Domínguez, C; Askins, S; Antón, I; Sala, G

    2010-11-08

    This paper proposes a fast method to characterize the two-dimensional angular transmission function of a concentrator photovoltaic (CPV) system. The so-called inverse method, which has been used in the past for the characterization of small optical components, has been adapted to large-area CPV modules. In the inverse method, the receiver cell is forward biased to produce a Lambertian light emission, which reveals the reverse optical path of the optics. Using a large-area collimator mirror, the light beam exiting the optics is projected on a Lambertian screen to create a spatially resolved image of the angular transmission function. An image is then obtained using a CCD camera. To validate this method, the angular transmission functions of a real CPV module have been measured by both direct illumination (flash CPV simulator and sunlight) and the inverse method, and the comparison shows good agreement.

  7. Optical image encryption using triplet of functions

    NASA Astrophysics Data System (ADS)

    Yatish; Fatima, Areeba; Nishchal, Naveen Kumar

    2018-03-01

    We propose an image encryption scheme that brings into play a technique using a triplet of functions to manipulate complex-valued functions. Optical cryptosystems using this method are an easier approach toward the ciphertext generation that avoids the use of holographic setup to record phase. The features of this method were shown in the context of double random phase encoding and phase-truncated Fourier transform-based cryptosystems using gyrator transform. In the first step, the complex function is split into two matrices. These matrices are separated, so they contain the real and imaginary parts. In the next step, these two matrices and a random distribution function are acted upon by one of the functions in the triplet. During decryption, the other two functions in the triplet help us retrieve the complex-valued function. The simulation results demonstrate the effectiveness of the proposed idea. To check the robustness of the proposed scheme, attack analyses were carried out.

  8. Resolution Enhancement Algorithm for Spaceborn SAR Based on Hanning Function Weighted Sidelobe Suppression

    NASA Astrophysics Data System (ADS)

    Li, C.; Zhou, X.; Tang, D.; Zhu, Z.

    2018-04-01

    Resolution and sidelobe are mutual restrict for SAR image. Usually sidelobe suppression is based on resolution reduction. This paper provide a method for resolution enchancement using sidelobe opposition speciality of hanning window and SAR image. The method can keep high resolution on the condition of sidelobe suppression. Compare to traditional method, this method can enchance 50 % resolution when sidelobe is -30dB.

  9. Quantification of oxygen changes in the placenta from BOLD MR image sequences

    NASA Astrophysics Data System (ADS)

    Porras, Antonio R.; Piella, Gemma; You, Wonsang; Limperopoulos, Catherine; Linguraru, Marius George

    2017-03-01

    Functional analysis of the placenta is important to analyze and understand its role in fetal growth and development. BOLD MR is a non-invasive technique that has been extensively used for functional analysis of the brain. During the last years, several studies have shown that this dynamic image modality is also useful to extract functional information of the placenta. We propose in this paper a method to track the placenta from a sequence of BOLD MR images acquired under normoxia and hyperoxia conditions with the goal of quantifying how the placenta adapts to oxygenation changes. The method is based on a spatiotemporal transformation model that ensures temporal coherence of the tracked structures. The method was initially applied to four patients with healthy pregnancies. An average MR signal increase of 16.96+/-8.39% during hyperoxia was observed. These automated results are in line with state-of-the-art reports using time-consuming manual segmentations subject to inter-observer errors.

  10. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  11. Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images

    PubMed Central

    Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.

    2010-01-01

    High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043

  12. Research on the generation of the background with sea and sky in infrared scene

    NASA Astrophysics Data System (ADS)

    Dong, Yan-zhi; Han, Yan-li; Lou, Shu-li

    2008-03-01

    It is important for scene generation to keep the texture of infrared images in simulation of anti-ship infrared imaging guidance. We studied the fractal method and applied it to the infrared scene generation. We adopted the method of horizontal-vertical (HV) partition to encode the original image. Basing on the properties of infrared image with sea-sky background, we took advantage of Local Iteration Function System (LIFS) to decrease the complexity of computation and enhance the processing rate. Some results were listed. The results show that the fractal method can keep the texture of infrared image better and can be used in the infrared scene generation widely in future.

  13. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.

    PubMed

    Lu, Xiaoqiang; Chen, Yaxiong; Li, Xuelong

    Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.Hashing has been an important and effective technology in image retrieval due to its computational efficiency and fast search speed. The traditional hashing methods usually learn hash functions to obtain binary codes by exploiting hand-crafted features, which cannot optimally represent the information of the sample. Recently, deep learning methods can achieve better performance, since deep learning architectures can learn more effective image representation features. However, these methods only use semantic features to generate hash codes by shallow projection but ignore texture details. In this paper, we proposed a novel hashing method, namely hierarchical recurrent neural hashing (HRNH), to exploit hierarchical recurrent neural network to generate effective hash codes. There are three contributions of this paper. First, a deep hashing method is proposed to extensively exploit both spatial details and semantic information, in which, we leverage hierarchical convolutional features to construct image pyramid representation. Second, our proposed deep network can exploit directly convolutional feature maps as input to preserve the spatial structure of convolutional feature maps. Finally, we propose a new loss function that considers the quantization error of binarizing the continuous embeddings into the discrete binary codes, and simultaneously maintains the semantic similarity and balanceable property of hash codes. Experimental results on four widely used data sets demonstrate that the proposed HRNH can achieve superior performance over other state-of-the-art hashing methods.

  14. A self-reference PRF-shift MR thermometry method utilizing the phase gradient

    NASA Astrophysics Data System (ADS)

    Langley, Jason; Potter, William; Phipps, Corey; Huang, Feng; Zhao, Qun

    2011-12-01

    In magnetic resonance (MR) imaging, the most widely used and accurate method for measuring temperature is based on the shift in proton resonance frequency (PRF). However, inter-scan motion and bulk magnetic field shifts can lead to inaccurate temperature measurements in the PRF-shift MR thermometry method. The self-reference PRF-shift MR thermometry method was introduced to overcome such problems by deriving a reference image from the heated or treated image, and approximates the reference phase map with low-order polynomial functions. In this note, a new approach is presented to calculate the baseline phase map in self-reference PRF-shift MR thermometry. The proposed method utilizes the phase gradient to remove the phase unwrapping step inherent to other self-reference PRF-shift MR thermometry methods. The performance of the proposed method was evaluated using numerical simulations with temperature distributions following a two-dimensional Gaussian function as well as phantom and in vivo experimental data sets. The results from both the numerical simulations and experimental data show that the proposed method is a promising technique for measuring temperature.

  15. Statistical image-domain multimaterial decomposition for dual-energy CT.

    PubMed

    Xue, Yi; Ruan, Ruoshui; Hu, Xiuhua; Kuang, Yu; Wang, Jing; Long, Yong; Niu, Tianye

    2017-03-01

    Dual-energy CT (DECT) enhances tissue characterization because of its basis material decomposition capability. In addition to conventional two-material decomposition from DECT measurements, multimaterial decomposition (MMD) is required in many clinical applications. To solve the ill-posed problem of reconstructing multi-material images from dual-energy measurements, additional constraints are incorporated into the formulation, including volume and mass conservation and the assumptions that there are at most three materials in each pixel and various material types among pixels. The recently proposed flexible image-domain MMD method decomposes pixels sequentially into multiple basis materials using a direct inversion scheme which leads to magnified noise in the material images. In this paper, we propose a statistical image-domain MMD method for DECT to suppress the noise. The proposed method applies penalized weighted least-square (PWLS) reconstruction with a negative log-likelihood term and edge-preserving regularization for each material. The statistical weight is determined by a data-based method accounting for the noise variance of high- and low-energy CT images. We apply the optimization transfer principles to design a serial of pixel-wise separable quadratic surrogates (PWSQS) functions which monotonically decrease the cost function. The separability in each pixel enables the simultaneous update of all pixels. The proposed method is evaluated on a digital phantom, Catphan©600 phantom and three patients (pelvis, head, and thigh). We also implement the direct inversion and low-pass filtration methods for a comparison purpose. Compared with the direct inversion method, the proposed method reduces noise standard deviation (STD) in soft tissue by 95.35% in the digital phantom study, by 88.01% in the Catphan©600 phantom study, by 92.45% in the pelvis patient study, by 60.21% in the head patient study, and by 81.22% in the thigh patient study, respectively. The overall volume fraction accuracy is improved by around 6.85%. Compared with the low-pass filtration method, the root-mean-square percentage error (RMSE(%)) of electron densities in the Catphan©600 phantom is decreased by 20.89%. As modulation transfer function (MTF) magnitude decreased to 50%, the proposed method increases the spatial resolution by an overall factor of 1.64 on the digital phantom, and 2.16 on the Catphan©600 phantom. The overall volume fraction accuracy is increased by 6.15%. We proposed a statistical image-domain MMD method using DECT measurements. The method successfully suppresses the magnified noise while faithfully retaining the quantification accuracy and anatomical structure in the decomposed material images. The proposed method is practical and promising for advanced clinical applications using DECT imaging. © 2017 American Association of Physicists in Medicine.

  16. MTF measurement of LCDs by a linear CCD imager: I. Monochrome case

    NASA Astrophysics Data System (ADS)

    Kim, Tae-hee; Choe, O. S.; Lee, Yun Woo; Cho, Hyun-Mo; Lee, In Won

    1997-11-01

    We construct the modulation transfer function (MTF) measurement system of a LCD using a linear charge-coupled device (CCD) imager. The MTF used in optical system can not describe in the effect of both resolution and contrast on the image quality of display. Thus we present the new measurement method based on the transmission property of a LCD. While controlling contrast and brightness levels, the MTF is measured. From the result, we show that the method is useful for describing of the image quality. A ne measurement method and its condition are described. To demonstrate validity, the method is applied for comparison of the performance of two different LCDs.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khosla, D.; Singh, M.

    The estimation of three-dimensional dipole current sources on the cortical surface from the measured magnetoencephalogram (MEG) is a highly under determined inverse problem as there are many {open_quotes}feasible{close_quotes} images which are consistent with the MEG data. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they often produce overly smoothed solutions and exhibit severe sensitivity to noise. In this paper we explore the maximum entropy approach to obtain better solutions to the problem. This estimation technique selects that image from the possible set of feasible imagesmore » which has the maximum entropy permitted by the information available to us. In order to account for the presence of noise in the data, we have also incorporated a noise rejection or likelihood term into our maximum entropy method. This makes our approach mirror a Bayesian maximum a posteriori (MAP) formulation. Additional information from other functional techniques like functional magnetic resonance imaging (fMRI) can be incorporated in the proposed method in the form of a prior bias function to improve solutions. We demonstrate the method with experimental phantom data from a clinical 122 channel MEG system.« less

  18. Optical aberration correction for simple lenses via sparse representation

    NASA Astrophysics Data System (ADS)

    Cui, Jinlin; Huang, Wei

    2018-04-01

    Simple lenses with spherical surfaces are lightweight, inexpensive, highly flexible, and can be easily processed. However, they suffer from optical aberrations that lead to limitations in high-quality photography. In this study, we propose a set of computational photography techniques based on sparse signal representation to remove optical aberrations, thereby allowing the recovery of images captured through a single-lens camera. The primary advantage of the proposed method is that many prior point spread functions calibrated at different depths are successfully used for restoring visual images in a short time, which can be generally applied to nonblind deconvolution methods for solving the problem of the excessive processing time caused by the number of point spread functions. The optical software CODE V is applied for examining the reliability of the proposed method by simulation. The simulation results reveal that the suggested method outperforms the traditional methods. Moreover, the performance of a single-lens camera is significantly enhanced both qualitatively and perceptually. Particularly, the prior information obtained by CODE V can be used for processing the real images of a single-lens camera, which provides an alternative approach to conveniently and accurately obtain point spread functions of single-lens cameras.

  19. Quantitative Image Restoration in Bright Field Optical Microscopy.

    PubMed

    Gutiérrez-Medina, Braulio; Sánchez Miranda, Manuel de Jesús

    2017-11-07

    Bright field (BF) optical microscopy is regarded as a poor method to observe unstained biological samples due to intrinsic low image contrast. We introduce quantitative image restoration in bright field (QRBF), a digital image processing method that restores out-of-focus BF images of unstained cells. Our procedure is based on deconvolution, using a point spread function modeled from theory. By comparing with reference images of bacteria observed in fluorescence, we show that QRBF faithfully recovers shape and enables quantify size of individual cells, even from a single input image. We applied QRBF in a high-throughput image cytometer to assess shape changes in Escherichia coli during hyperosmotic shock, finding size heterogeneity. We demonstrate that QRBF is also applicable to eukaryotic cells (yeast). Altogether, digital restoration emerges as a straightforward alternative to methods designed to generate contrast in BF imaging for quantitative analysis. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Color image enhancement based on particle swarm optimization with Gaussian mixture

    NASA Astrophysics Data System (ADS)

    Kattakkalil Subhashdas, Shibudas; Choi, Bong-Seok; Yoo, Ji-Hoon; Ha, Yeong-Ho

    2015-01-01

    This paper proposes a Gaussian mixture based image enhancement method which uses particle swarm optimization (PSO) to have an edge over other contemporary methods. The proposed method uses the guassian mixture model to model the lightness histogram of the input image in CIEL*a*b* space. The intersection points of the guassian components in the model are used to partition the lightness histogram. . The enhanced lightness image is generated by transforming the lightness value in each interval to appropriate output interval according to the transformation function that depends on PSO optimized parameters, weight and standard deviation of Gaussian component and cumulative distribution of the input histogram interval. In addition, chroma compensation is applied to the resulting image to reduce washout appearance. Experimental results show that the proposed method produces a better enhanced image compared to the traditional methods. Moreover, the enhanced image is free from several side effects such as washout appearance, information loss and gradation artifacts.

  1. The CT image standardization based on the verified PSF

    NASA Astrophysics Data System (ADS)

    Wada, Shinichi; Ohkubo, Masaki; Kunii, Masayuki; Matsumoto, Toru; Murao, Kohei; Awai, Kazuo; Ikeda, Mitsuru

    2007-03-01

    This study discusses a method of CT image quality standardization that uses a point-spread function (PSF) in MDCT. CT image I(x,y,z) is represented by the following formula: I(x,y,z) = O(x,y,z)***PSF(x,y,z). Standardization was performed by measuring the three-dimensional (3-D) PSFs of two CT images with different image qualities. The image conversion method was constructed and tested using the 3-D PSFs and CT images of the CT scanners of three different manufacturers. The CT scanners used were Lightspeed QX/i, Somatom Volume Zoom, and Brilliance-40. To obtain the PSF(x,y) of these CT scanners, the line spread functions of the respective reconstruction kernels were measured using a phantom described by J.M. Boone. The kernels for each scanner were: soft, standard, lung, bone, and bone plus (GE); B20f, B40f, B41f, B50f, and B60f (Siemens); and B, C, D, E, and L (Philips). Slice sensitivity profile (SSP) were measured using a micro-disk phantom (50 μm* φ1 mm) with 5 mm slice thickness and beam pitch of 1.5 (GE, Siemens) and 0.626 (Philips). 3-D PSF was verified using an MDCT QA phantom. Real chest CT images were converted to images with contrasting standard image quality. Comparison between the converted CT image and the original standard image showed good agreement. The usefulness of the image conversion method is discussed using clinical CT images acquired by CT scanners produced by different manufacturers.

  2. Quantification of left ventricular functional parameter values using 3D spiral bSSFP and through-time non-Cartesian GRAPPA.

    PubMed

    Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole

    2014-09-11

    The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.

  3. Penalized weighted least-squares approach for low-dose x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    The noise of low-dose computed tomography (CT) sinogram follows approximately a Gaussian distribution with nonlinear dependence between the sample mean and variance. The noise is statistically uncorrelated among detector bins at any view angle. However the correlation coefficient matrix of data signal indicates a strong signal correlation among neighboring views. Based on above observations, Karhunen-Loeve (KL) transform can be used to de-correlate the signal among the neighboring views. In each KL component, a penalized weighted least-squares (PWLS) objective function can be constructed and optimal sinogram can be estimated by minimizing the objective function, followed by filtered backprojection (FBP) for CT image reconstruction. In this work, we compared the KL-PWLS method with an iterative image reconstruction algorithm, which uses the Gauss-Seidel iterative calculation to minimize the PWLS objective function in image domain. We also compared the KL-PWLS with an iterative sinogram smoothing algorithm, which uses the iterated conditional mode calculation to minimize the PWLS objective function in sinogram space, followed by FBP for image reconstruction. Phantom experiments show a comparable performance of these three PWLS methods in suppressing the noise-induced artifacts and preserving resolution in reconstructed images. Computer simulation concurs with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS noise reduction may have the advantage in computation for low-dose CT imaging, especially for dynamic high-resolution studies.

  4. Aphasia

    MedlinePlus

    ... of speech-generating applications on mobile devices like tablets can also provide an alternative way to communicate ... on using advanced imaging methods, such as functional magnetic resonance imaging (fMRI), to explore how language is processed in ...

  5. On-orbit point spread function estimation for THEOS imaging system

    NASA Astrophysics Data System (ADS)

    Khetkeeree, Suphongsa; Liangrocapart, Sompong

    2018-03-01

    In this paper, we present two approaches for net Point Spread Function (net-PSF) estimation of Thailand Earth Observation System (THEOS) imaging system. In the first approach, we estimate the net- PSF by employing the specification information of the satellite. The analytic model of the net- PSF based on the simple model of push-broom imaging system. This model consists of a scanner, optical system, detector and electronics system. The mathematical PSF model of each component is demonstrated in spatial domain. In the second approach, the specific target images from THEOS imaging system are analyzed to determine the net-PSF. For panchromatic imaging system, the images of the checkerboard target at Salon de Provence airport are used to analysis the net-PSF by slant-edge method. For multispectral imaging system, the new man-made targets are proposed. It is a pier bridge in Lamchabang, Chonburi, Thailand. This place has had a lot of bridges which have several width sizes and orientation. The pulse method is used to analysis the images of this bridge for estimating the net-PSF. Finally, the Full Width at Half Maximums (FWHMs) of the net-PSF of both approaches is compared. The results show that both approaches coincide and all Modulation Transfer Functions (MTFs) at Nyquist of both approaches are better than the requirement. However, the FWHM of multispectral system more deviate than panchromatic system, because the targets are not specially constructed for estimating the characteristics of the satellite imaging system.

  6. Robust w-Estimators for Cryo-EM Class Means

    PubMed Central

    Huang, Chenxi; Tagare, Hemant D.

    2016-01-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the “class mean”, improves the signal-to-noise ratio in single particle reconstruction (SPR). The averaging step is often compromised because of outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods is done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a “w-estimator” of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions (CTFs) is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers. PMID:26841397

  7. Robust w-Estimators for Cryo-EM Class Means.

    PubMed

    Huang, Chenxi; Tagare, Hemant D

    2016-02-01

    A critical step in cryogenic electron microscopy (cryo-EM) image analysis is to calculate the average of all images aligned to a projection direction. This average, called the class mean, improves the signal-to-noise ratio in single-particle reconstruction. The averaging step is often compromised because of the outlier images of ice, contaminants, and particle fragments. Outlier detection and rejection in the majority of current cryo-EM methods are done using cross-correlation with a manually determined threshold. Empirical assessment shows that the performance of these methods is very sensitive to the threshold. This paper proposes an alternative: a w-estimator of the average image, which is robust to outliers and which does not use a threshold. Various properties of the estimator, such as consistency and influence function are investigated. An extension of the estimator to images with different contrast transfer functions is also provided. Experiments with simulated and real cryo-EM images show that the proposed estimator performs quite well in the presence of outliers.

  8. A secure image encryption method based on dynamic harmony search (DHS) combined with chaotic map

    NASA Astrophysics Data System (ADS)

    Mirzaei Talarposhti, Khadijeh; Khaki Jamei, Mehrzad

    2016-06-01

    In recent years, there has been increasing interest in the security of digital images. This study focuses on the gray scale image encryption using dynamic harmony search (DHS). In this research, first, a chaotic map is used to create cipher images, and then the maximum entropy and minimum correlation coefficient is obtained by applying a harmony search algorithm on them. This process is divided into two steps. In the first step, the diffusion of a plain image using DHS to maximize the entropy as a fitness function will be performed. However, in the second step, a horizontal and vertical permutation will be applied on the best cipher image, which is obtained in the previous step. Additionally, DHS has been used to minimize the correlation coefficient as a fitness function in the second step. The simulation results have shown that by using the proposed method, the maximum entropy and the minimum correlation coefficient, which are approximately 7.9998 and 0.0001, respectively, have been obtained.

  9. The Function Biomedical Informatics Research Network Data Repository

    PubMed Central

    Keator, David B.; van Erp, Theo G.M.; Turner, Jessica A.; Glover, Gary H.; Mueller, Bryon A.; Liu, Thomas T.; Voyvodic, James T.; Rasmussen, Jerod; Calhoun, Vince D.; Lee, Hyo Jong; Toga, Arthur W.; McEwen, Sarah; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Bockholt, H. Jeremy; Gadde, Syam; Preda, Adrian; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.

    2015-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  10. Quantitative Methods Based on Twisted Nematic Liquid Crystals for Mapping Surfaces Patterned with Bio/Chemical Functionality Relevant to Bioanalytical Assays

    PubMed Central

    Lowe, Aaron M.; Bertics, Paul J.; Abbott, Nicholas L.

    2009-01-01

    We report methods for the acquisition and analysis of optical images formed by thin films of twisted nematic liquid crystals (LCs) placed into contact with surfaces patterned with bio/chemical functionality relevant to surface-based assays. The methods are simple to implement and are shown to provide easily interpreted maps of chemical transformations on surfaces that are widely exploited in the preparation of analytic devices. The methods involve acquisition of multiple images of the LC as a function of the orientation of a polarizer; data analysis condenses the information present in the stack of images into a spatial map of the twist angle of the LC on the analytic surface. The potential utility of the methods is illustrated by mapping (i) the displacement of a monolayer formed from one alkanethiol on a gold film by a second thiol in solution, (ii) coadsorption of mixtures of amine-terminated and ethyleneglycol-terminated alkanethiols on gold films, which leads to a type of mixed monolayer that is widely exploited for immobilization of proteins on analytic surfaces, and (iii) patterns of antibodies printed onto surfaces. These results show that maps of the twist angle of the LC constructed from families of optical images can be used to reveal surface features that are not apparent in a single image of the LC film. Furthermore, the twist angles of the LC can be used to quantify the energy of interaction of the LC with the surface with a spatial resolution of <10 µm. When combined, the results described in this paper suggest non-destructive methods to monitor and validate chemical transformations on surfaces of the type that are routinely employed in the preparation of surface-based analytic technologies. PMID:18355089

  11. Characterization and modelling of the spatially- and spectrally-varying point-spread function in hyperspectral imaging systems for computational correction of axial optical aberrations

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Spatial resolution of hyperspectral imaging systems can vary significantly due to axial optical aberrations that originate from wavelength-induced index-of-refraction variations of the imaging optics. For systems that have a broad spectral range, the spatial resolution will vary significantly both with respect to the acquisition wavelength and with respect to the spatial position within each spectral image. Variations of the spatial resolution can be effectively characterized as part of the calibration procedure by a local image-based estimation of the pointspread function (PSF) of the hyperspectral imaging system. The estimated PSF can then be used in the image deconvolution methods to improve the spatial resolution of the spectral images. We estimated the PSFs from the spectral images of a line grid geometric caliber. From individual line segments of the line grid, the PSF was obtained by a non-parametric estimation procedure that used an orthogonal series representation of the PSF. By using the non-parametric estimation procedure, the PSFs were estimated at different spatial positions and at different wavelengths. The variations of the spatial resolution were characterized by the radius and the fullwidth half-maximum of each PSF and by the modulation transfer function, computed from images of USAF1951 resolution target. The estimation and characterization of the PSFs and the image deconvolution based spatial resolution enhancement were tested on images obtained by a hyperspectral imaging system with an acousto-optic tunable filter in the visible spectral range. The results demonstrate that the spatial resolution of the acquired spectral images can be significantly improved using the estimated PSFs and image deconvolution methods.

  12. The Assessment of Neurological Systems with Functional Imaging

    ERIC Educational Resources Information Center

    Eidelberg, David

    2007-01-01

    In recent years a number of multivariate approaches have been introduced to map neural systems in health and disease. In this review, we focus on spatial covariance methods applied to functional imaging data to identify patterns of regional activity associated with behavior. In the rest state, this form of network analysis can be used to detect…

  13. Image quality enhancement method for on-orbit remote sensing cameras using invariable modulation transfer function.

    PubMed

    Li, Jin; Liu, Zilong

    2017-07-24

    Remote sensing cameras in the visible/near infrared range are essential tools in Earth-observation, deep-space exploration, and celestial navigation. Their imaging performance, i.e. image quality here, directly determines the target-observation performance of a spacecraft, and even the successful completion of a space mission. Unfortunately, the camera itself, such as a optical system, a image sensor, and a electronic system, limits the on-orbit imaging performance. Here, we demonstrate an on-orbit high-resolution imaging method based on the invariable modulation transfer function (IMTF) of cameras. The IMTF, which is stable and invariable to the changing of ground targets, atmosphere, and environment on orbit or on the ground, depending on the camera itself, is extracted using a pixel optical focal-plane (PFP). The PFP produces multiple spatial frequency targets, which are used to calculate the IMTF at different frequencies. The resulting IMTF in combination with a constrained least-squares filter compensates for the IMTF, which represents the removal of the imaging effects limited by the camera itself. This method is experimentally confirmed. Experiments on an on-orbit panchromatic camera indicate that the proposed method increases 6.5 times of the average gradient, 3.3 times of the edge intensity, and 1.56 times of the MTF value compared to the case when IMTF is not used. This opens a door to push the limitation of a camera itself, enabling high-resolution on-orbit optical imaging.

  14. Thermal Imaging Applied to Cryocrystallography: Cryocooling and Beam Heating (Part I)

    NASA Technical Reports Server (NTRS)

    Snell, Edward; Bellamy, Henry; Rosenbaum, Gerd; vanderWoerd, Mark; Kazmierczak, Michael

    2006-01-01

    Thermal imaging provides a non-invasive method to study both the cryocooling process and the heating due to the X-ray beam interaction with a sample. The method has been used successfully to image cryocooling in a number of experimental situations, i.e. cooling as a function of sample volume and as a function of cryostream orientation. Although there are experimental limitations to the method, it has proved a powerful technique to aid cryocrystallography development. Due to the rapid spatial temperature information provided about the sample it is also a powerful tool in the testing of mathematical models. Recently thermal imaging has been used to measure the temperature distribution on both a model and typical crystal samples illuminated with an X-ray beam produced by an undulator. A brief overview of thermal imaging and previous results will be presented. In addition, a detailed description of the calibration and experimental aspects of the beam heating measurements will be described. This will complement the following talk on the mathematical modeling and analysis of the results.

  15. Effective method for detecting regions of given colors and the features of the region surfaces

    NASA Astrophysics Data System (ADS)

    Gong, Yihong; Zhang, HongJiang

    1994-03-01

    Color can be used as a very important cue for image recognition. In industrial and commercial areas, color is widely used as a trademark or identifying feature in objects, such as packaged goods, advertising signs, etc. In image database systems, one may retrieve an image of interest by specifying prominent colors and their locations in the image (image retrieval by contents). These facts enable us to detect or identify a target object using colors. However, this task depends mainly on how effectively we can identify a color and detect regions of the given color under possibly non-uniform illumination conditions such as shade, highlight, and strong contrast. In this paper, we present an effective method to detect regions matching given colors, along with the features of the region surfaces. We adopt the HVC color coordinates in the method because of its ability of completely separating the luminant and chromatic components of colors. Three basis functions functionally serving as the low-pass, high-pass, and band-pass filters, respectively, are introduced.

  16. Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome.

    PubMed

    O'Connor, James P B; Rose, Chris J; Waterton, John C; Carano, Richard A D; Parker, Geoff J M; Jackson, Alan

    2015-01-15

    Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. ©2014 American Association for Cancer Research.

  17. Blurred image recognition by legendre moment invariants

    PubMed Central

    Zhang, Hui; Shu, Huazhong; Han, Guo-Niu; Coatrieux, Gouenou; Luo, Limin; Coatrieux, Jean-Louis

    2010-01-01

    Processing blurred images is a key problem in many image applications. Existing methods to obtain blur invariants which are invariant with respect to centrally symmetric blur are based on geometric moments or complex moments. In this paper, we propose a new method to construct a set of blur invariants using the orthogonal Legendre moments. Some important properties of Legendre moments for the blurred image are presented and proved. The performance of the proposed descriptors is evaluated with various point-spread functions and different image noises. The comparison of the present approach with previous methods in terms of pattern recognition accuracy is also provided. The experimental results show that the proposed descriptors are more robust to noise and have better discriminative power than the methods based on geometric or complex moments. PMID:19933003

  18. Methods for scalar-on-function regression.

    PubMed

    Reiss, Philip T; Goldsmith, Jeff; Shang, Han Lin; Ogden, R Todd

    2017-08-01

    Recent years have seen an explosion of activity in the field of functional data analysis (FDA), in which curves, spectra, images, etc. are considered as basic functional data units. A central problem in FDA is how to fit regression models with scalar responses and functional data points as predictors. We review some of the main approaches to this problem, categorizing the basic model types as linear, nonlinear and nonparametric. We discuss publicly available software packages, and illustrate some of the procedures by application to a functional magnetic resonance imaging dataset.

  19. CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition

    PubMed Central

    Gou, Shuiping; Wang, Yueyue; Wang, Zhilong; Peng, Yong; Zhang, Xiaopeng; Jiao, Licheng; Wu, Jianshe

    2013-01-01

    Blurry organ boundaries and soft tissue structures present a major challenge in biomedical image restoration. In this paper, we propose a low-rank decomposition-based method for computed tomography (CT) image sequence restoration, where the CT image sequence is decomposed into a sparse component and a low-rank component. A new point spread function of Weiner filter is employed to efficiently remove blur in the sparse component; a wiener filtering with the Gaussian PSF is used to recover the average image of the low-rank component. And then we get the recovered CT image sequence by combining the recovery low-rank image with all recovery sparse image sequence. Our method achieves restoration results with higher contrast, sharper organ boundaries and richer soft tissue structure information, compared with existing CT image restoration methods. The robustness of our method was assessed with numerical experiments using three different low-rank models: Robust Principle Component Analysis (RPCA), Linearized Alternating Direction Method with Adaptive Penalty (LADMAP) and Go Decomposition (GoDec). Experimental results demonstrated that the RPCA model was the most suitable for the small noise CT images whereas the GoDec model was the best for the large noisy CT images. PMID:24023764

  20. A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data.

    PubMed

    Luo, Jianhua; Mou, Zhiying; Qin, Binjie; Li, Wanqing; Ogunbona, Philip; Robini, Marc C; Zhu, Yuemin

    2018-07-01

    Reconstructing magnetic resonance images from undersampled k-space data is a challenging problem. This paper introduces a novel method of image reconstruction from undersampled k-space data based on the concept of singularizing operators and a novel singular k-space model. Exploring the sparsity of an image in the k-space, the singular k-space model (SKM) is proposed in terms of the k-space functions of a singularizing operator. The singularizing operator is constructed by combining basic difference operators. An algorithm is developed to reliably estimate the model parameters from undersampled k-space data. The estimated parameters are then used to recover the missing k-space data through the model, subsequently achieving high-quality reconstruction of the image using inverse Fourier transform. Experiments on physical phantom and real brain MR images have shown that the proposed SKM method constantly outperforms the popular total variation (TV) and the classical zero-filling (ZF) methods regardless of the undersampling rates, the noise levels, and the image structures. For the same objective quality of the reconstructed images, the proposed method requires much less k-space data than the TV method. The SKM method is an effective method for fast MRI reconstruction from the undersampled k-space data. Graphical abstract Two Real Images and their sparsified images by singularizing operator.

  1. Novel application of windowed beamforming function imaging for FLGPR

    NASA Astrophysics Data System (ADS)

    Xique, Ismael J.; Burns, Joseph W.; Thelen, Brian J.; LaRose, Ryan M.

    2018-04-01

    Backprojection of cross-correlated array data, using algorithms such as coherent interferometric imaging (Borcea, et al., 2006), has been advanced as a method to improve the statistical stability of images of targets in an inhomogeneous medium. Recently, the Windowed Beamforming Energy (WBE) function algorithm has been introduced as a functionally equivalent approach, which is significantly less computationally burdensome (Borcea, et al., 2011). WBE produces similar results through the use of a quadratic function summing signals after beamforming in transmission and reception, and windowing in the time domain. We investigate the application of WBE to improve the detection of buried targets with forward looking ground penetrating MIMO radar (FLGPR) data. The formulation of WBE as well the software implementation of WBE for the FLGPR data collection will be discussed. WBE imaging results are compared to standard backprojection and Coherence Factor imaging. Additionally, the effectiveness of WBE on field-collected data is demonstrated qualitatively through images and quantitatively through the use of a CFAR statistic on buried targets of a variety of contrast levels.

  2. Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening.

    PubMed

    Chen, C; Li, H; Zhou, X; Wong, S T C

    2008-05-01

    Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.

  3. [4D-MRI using the synchronized sampling method (SSM)].

    PubMed

    Shimada, Yasuhiro; Fujimoto, Ichirou; Takemoto, Hironori; Takano, Sayoko; Masaki, Shinobu; Honda, Kiyoshi; Takeo, Kazuhiro

    2002-12-01

    A synchronized sampling method (SSM) was developed for the study of voluntary movements by combining the electrocardiographic (ECG) gating method with an external triggering device, and four-dimensional magnetic resonance imaging (4D-MRI) at a rate of 30 frames per second was accomplished by volumetric imaging with the SSM. This method was first applied to the motion imaging of articulatory organs during repetitions of a Japanese five-vowel sequence, and the dynamic change in vocal tract area function was demonstrated with sufficient temporal resolution. This paper describes the methodology, applicability, and limitations of 4D-MRI with the SSM.

  4. Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.

    PubMed

    Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C

    2005-11-01

    Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.

  5. [Seeking the aetiology of autistic spectrum disorder. Part 2: Functional neuroimaging].

    PubMed

    Bryńska, Anita

    2012-01-01

    Multiple functional imaging techniques help to a better understanding of the neurobiological basis of autism-spectrum disorders (ASD). The early functional imaging studies on ASD focused on task-specific methods related to core symptom domains and explored patterns of activation in response to face processing, theory of mind tasks, language processing and executive function tasks. On the other hand, fMRI research in ASD focused on the development of functional connectivity methods and has provided evidence of alterations in cortical connectivity in ASD and establish autism as a disorder of under-connectivity among the brain regions participating in cortical networks. This atypical functional connectivity in ASD results in inefficiency and poor integration of processing in network connections to achieve task performance. The goal of this review is to summarise the actual neuroimaging functional data and examine their implication for understanding of the neurobiology of ASD.

  6. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    PubMed Central

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN). In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging. PMID:23227108

  7. Extended finite element method with simplified spherical harmonics approximation for the forward model of optical molecular imaging.

    PubMed

    Li, Wei; Yi, Huangjian; Zhang, Qitan; Chen, Duofang; Liang, Jimin

    2012-01-01

    An extended finite element method (XFEM) for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SP(N)). In XFEM scheme of SP(N) equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC) method, the validation results show the merits and potential of the XFEM for optical imaging.

  8. The mass remote sensing image data management based on Oracle InterMedia

    NASA Astrophysics Data System (ADS)

    Zhao, Xi'an; Shi, Shaowei

    2013-07-01

    With the development of remote sensing technology, getting the image data more and more, how to apply and manage the mass image data safely and efficiently has become an urgent problem to be solved. According to the methods and characteristics of the mass remote sensing image data management and application, this paper puts forward to a new method that takes Oracle Call Interface and Oracle InterMedia to store the image data, and then takes this component to realize the system function modules. Finally, it successfully takes the VC and Oracle InterMedia component to realize the image data storage and management.

  9. [Registration and 3D rendering of serial tissue section images].

    PubMed

    Liu, Zhexing; Jiang, Guiping; Dong, Wu; Zhang, Yu; Xie, Xiaomian; Hao, Liwei; Wang, Zhiyuan; Li, Shuxiang

    2002-12-01

    It is an important morphological research method to reconstruct the 3D imaging from serial section tissue images. Registration of serial images is a key step to 3D reconstruction. Firstly, an introduction to the segmentation-counting registration algorithm is presented, which is based on the joint histogram. After thresholding of the two images to be registered, the criterion function is defined as counting in a specific region of the joint histogram, which greatly speeds up the alignment process. Then, the method is used to conduct the serial tissue image matching task, and lies a solid foundation for 3D rendering. Finally, preliminary surface rendering results are presented.

  10. Parameter dimension of turbulence-induced phase errors and its effects on estimation in phase diversity

    NASA Technical Reports Server (NTRS)

    Thelen, Brian J.; Paxman, Richard G.

    1994-01-01

    The method of phase diversity has been used in the context of incoherent imaging to estimate jointly an object that is being imaged and phase aberrations induced by atmospheric turbulence. The method requires a parametric model for the phase-aberration function. Typically, the parameters are coefficients to a finite set of basis functions. Care must be taken in selecting a parameterization that properly balances accuracy in the representation of the phase-aberration function with stability in the estimates. It is well known that over parameterization can result in unstable estimates. Thus a certain amount of model mismatch is often desirable. We derive expressions that quantify the bias and variance in object and aberration estimates as a function of parameter dimension.

  11. Intra-retinal segmentation of optical coherence tomography images using active contours with a dynamic programming initialization and an adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Gholami, Peyman; Roy, Priyanka; Kuppuswamy Parthasarathy, Mohana; Ommani, Abbas; Zelek, John; Lakshminarayanan, Vasudevan

    2018-02-01

    Retinal layer shape and thickness are one of the main indicators in the diagnosis of ocular diseases. We present an active contour approach to localize intra-retinal boundaries of eight retinal layers from OCT images. The initial locations of the active contour curves are determined using a Viterbi dynamic programming method. The main energy function is a Chan-Vese active contour model without edges. A boundary term is added to the energy function using an adaptive weighting method to help curves converge to the retinal layer edges more precisely, after evolving of curves towards boundaries, in final iterations. A wavelet-based denoising method is used to remove speckle from OCT images while preserving important details and edges. The performance of the proposed method was tested on a set of healthy and diseased eye SD-OCT images. The experimental results, compared between the proposed method and the manual segmentation, which was determined by an optometrist, indicate that our method has obtained an average of 95.29%, 92.78%, 95.86%, 87.93%, 82.67%, and 90.25% respectively, for accuracy, sensitivity, specificity, precision, Jaccard Index, and Dice Similarity Coefficient over all segmented layers. These results justify the robustness of the proposed method in determining the location of different retinal layers.

  12. Neonatal brain resting-state functional connectivity imaging modalities.

    PubMed

    Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza

    2018-06-01

    Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.

  13. A new optimal seam method for seamless image stitching

    NASA Astrophysics Data System (ADS)

    Xue, Jiale; Chen, Shengyong; Cheng, Xu; Han, Ying; Zhao, Meng

    2017-07-01

    A novel optimal seam method which aims to stitch those images with overlapping area more seamlessly has been propos ed. Considering the traditional gradient domain optimal seam method and fusion algorithm result in bad color difference measurement and taking a long time respectively, the input images would be converted to HSV space and a new energy function is designed to seek optimal stitching path. To smooth the optimal stitching path, a simplified pixel correction and weighted average method are utilized individually. The proposed methods exhibit performance in eliminating the stitching seam compared with the traditional gradient optimal seam and high efficiency with multi-band blending algorithm.

  14. Blind image deconvolution using the Fields of Experts prior

    NASA Astrophysics Data System (ADS)

    Dong, Wende; Feng, Huajun; Xu, Zhihai; Li, Qi

    2012-11-01

    In this paper, we present a method for single image blind deconvolution. To improve its ill-posedness, we formulate the problem under Bayesian probabilistic framework and use a prior named Fields of Experts (FoE) which is learnt from natural images to regularize the latent image. Furthermore, due to the sparse distribution of the point spread function (PSF), we adopt a Student-t prior to regularize it. An improved alternating minimization (AM) approach is proposed to solve the resulted optimization problem. Experiments on both synthetic and real world blurred images show that the proposed method can achieve results of high quality.

  15. Automated macromolecular crystal detection system and method

    DOEpatents

    Christian, Allen T [Tracy, CA; Segelke, Brent [San Ramon, CA; Rupp, Bernard [Livermore, CA; Toppani, Dominique [Fontainebleau, FR

    2007-06-05

    An automated macromolecular method and system for detecting crystals in two-dimensional images, such as light microscopy images obtained from an array of crystallization screens. Edges are detected from the images by identifying local maxima of a phase congruency-based function associated with each image. The detected edges are segmented into discrete line segments, which are subsequently geometrically evaluated with respect to each other to identify any crystal-like qualities such as, for example, parallel lines, facing each other, similarity in length, and relative proximity. And from the evaluation a determination is made as to whether crystals are present in each image.

  16. Computer-aided diagnostic method for classification of Alzheimer's disease with atrophic image features on MR images

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Tanaka, Kazuhiro; Koga, Hiroshi; Mihara, Futoshi; Honda, Hiroshi; Sakai, Shuji; Toyofuku, Fukai; Higashida, Yoshiharu

    2008-03-01

    Our goal for this study was to attempt to develop a computer-aided diagnostic (CAD) method for classification of Alzheimer's disease (AD) with atrophic image features derived from specific anatomical regions in three-dimensional (3-D) T1-weighted magnetic resonance (MR) images. Specific regions related to the cerebral atrophy of AD were white matter and gray matter regions, and CSF regions in this study. Cerebral cortical gray matter regions were determined by extracting a brain and white matter regions based on a level set based method, whose speed function depended on gradient vectors in an original image and pixel values in grown regions. The CSF regions in cerebral sulci and lateral ventricles were extracted by wrapping the brain tightly with a zero level set determined from a level set function. Volumes of the specific regions and the cortical thickness were determined as atrophic image features. Average cortical thickness was calculated in 32 subregions, which were obtained by dividing each brain region. Finally, AD patients were classified by using a support vector machine, which was trained by the image features of AD and non-AD cases. We applied our CAD method to MR images of whole brains obtained from 29 clinically diagnosed AD cases and 25 non-AD cases. As a result, the area under a receiver operating characteristic (ROC) curve obtained by our computerized method was 0.901 based on a leave-one-out test in identification of AD cases among 54 cases including 8 AD patients at early stages. The accuracy for discrimination between 29 AD patients and 25 non-AD subjects was 0.840, which was determined at the point where the sensitivity was the same as the specificity on the ROC curve. This result showed that our CAD method based on atrophic image features may be promising for detecting AD patients by using 3-D MR images.

  17. Latest advances in molecular imaging instrumentation.

    PubMed

    Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S

    2008-06-01

    This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.

  18. Electromagnetic Vortex-Based Radar Imaging Using a Single Receiving Antenna: Theory and Experimental Results

    PubMed Central

    Yuan, Tiezhu; Wang, Hongqiang; Cheng, Yongqiang; Qin, Yuliang

    2017-01-01

    Radar imaging based on electromagnetic vortex can achieve azimuth resolution without relative motion. The present paper investigates this imaging technique with the use of a single receiving antenna through theoretical analysis and experimental results. Compared with the use of multiple receiving antennas, the echoes from a single receiver cannot be used directly for image reconstruction using Fourier method. The reason is revealed by using the point spread function. An additional phase is compensated for each mode before imaging process based on the array parameters and the elevation of the targets. A proof-of-concept imaging system based on a circular phased array is created, and imaging experiments of corner-reflector targets are performed in an anechoic chamber. The azimuthal image is reconstructed by the use of Fourier transform and spectral estimation methods. The azimuth resolution of the two methods is analyzed and compared through experimental data. The experimental results verify the principle of azimuth resolution and the proposed phase compensation method. PMID:28335487

  19. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  20. Comparative assessment of fluorescent transgene methods for quantitative imaging in human cells.

    PubMed

    Mahen, Robert; Koch, Birgit; Wachsmuth, Malte; Politi, Antonio Z; Perez-Gonzalez, Alexis; Mergenthaler, Julia; Cai, Yin; Ellenberg, Jan

    2014-11-05

    Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells. © 2014 Mahen et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome

    PubMed Central

    O’Connor, James P.B.; Rose, Chris J.; Waterton, John C.; Carano, Richard A.D.; Parker, Geoff J.M.; Jackson, Alan

    2014-01-01

    Tumors exhibit genomic and phenotypic heterogeneity which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks. These methods can establish whether one tumor is more or less heterogeneous than another and can identify sub-regions with differing biology. In this article we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, rather than be developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. PMID:25421725

  2. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    DOE PAGES

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...

    2016-08-12

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less

  3. Imaging-Genetics Applications in Child Psychiatry

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Ernst, Monique; Leibenluft, Ellen

    2010-01-01

    Objective: To place imaging-genetics research in the context of child psychiatry. Method: A conceptual overview is provided, followed by discussion of specific research examples. Results: Imaging-genetics research is described linking brain function to two specific genes, for the serotonin-reuptake-transporter protein and a monoamine oxidase…

  4. Blind Deconvolution of Astronomical Images with a Constraint on Bandwidth Determined by the Parameters of the Optical System

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Fan, Min; Shen, Mang-zuo

    2008-01-01

    Atmospheric turbulence severely restricts the spatial resolution of astronomical images obtained by a large ground-based telescope. In order to reduce effectively this effect, we propose a method of blind deconvolution, with a bandwidth constraint determined by the parameters of the telescope's optical system based on the principle of maximum likelihood estimation, in which the convolution error function is minimized by using the conjugate gradient algorithm. A relation between the parameters of the telescope optical system and the image's frequency-domain bandwidth is established, and the speed of convergence of the algorithm is improved by using the positivity constraint on the variables and the limited-bandwidth constraint on the point spread function. To avoid the effective Fourier frequencies exceed the cut-off frequency, it is required that each single image element (e.g., the pixel in the CCD imaging) in the sampling focal plane should be smaller than one fourth of the diameter of the diffraction spot. In the algorithm, no object-centered constraint was used, so the proposed method is suitable for the image restoration of a whole field of objects. By the computer simulation and by the restoration of an actually-observed image of α Piscium, the effectiveness of the proposed method is demonstrated.

  5. Incorporating spatial context into statistical classification of multidimensional image data

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Tilton, J. C.; Swain, P. H.

    1981-01-01

    Compound decision theory is employed to develop a general statistical model for classifying image data using spatial context. The classification algorithm developed from this model exploits the tendency of certain ground-cover classes to occur more frequently in some spatial contexts than in others. A key input to this contextural classifier is a quantitative characterization of this tendency: the context function. Several methods for estimating the context function are explored, and two complementary methods are recommended. The contextural classifier is shown to produce substantial improvements in classification accuracy compared to the accuracy produced by a non-contextural uniform-priors maximum likelihood classifier when these methods of estimating the context function are used. An approximate algorithm, which cuts computational requirements by over one-half, is presented. The search for an optimal implementation is furthered by an exploration of the relative merits of using spectral classes or information classes for classification and/or context function estimation.

  6. An Improved Image Matching Method Based on Surf Algorithm

    NASA Astrophysics Data System (ADS)

    Chen, S. J.; Zheng, S. Z.; Xu, Z. G.; Guo, C. C.; Ma, X. L.

    2018-04-01

    Many state-of-the-art image matching methods, based on the feature matching, have been widely studied in the remote sensing field. These methods of feature matching which get highly operating efficiency, have a disadvantage of low accuracy and robustness. This paper proposes an improved image matching method which based on the SURF algorithm. The proposed method introduces color invariant transformation, information entropy theory and a series of constraint conditions to increase feature points detection and matching accuracy. First, the model of color invariant transformation is introduced for two matching images aiming at obtaining more color information during the matching process and information entropy theory is used to obtain the most information of two matching images. Then SURF algorithm is applied to detect and describe points from the images. Finally, constraint conditions which including Delaunay triangulation construction, similarity function and projective invariant are employed to eliminate the mismatches so as to improve matching precision. The proposed method has been validated on the remote sensing images and the result benefits from its high precision and robustness.

  7. An Improved Filtering Method for Quantum Color Image in Frequency Domain

    NASA Astrophysics Data System (ADS)

    Li, Panchi; Xiao, Hong

    2018-01-01

    In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

  8. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; Thomas, J. D.

    2000-01-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  9. Determination of left ventricular volume, ejection fraction, and myocardial mass by real-time three-dimensional echocardiography.

    PubMed

    Qin, J X; Shiota, T; Thomas, J D

    2000-11-01

    Reconstructed three-dimensional (3-D) echocardiography is an accurate and reproducible method of assessing left ventricular (LV) functions. However, it has limitations for clinical study due to the requirement of complex computer and echocardiographic analysis systems, electrocardiographic/respiratory gating, and prolonged imaging times. Real-time 3-D echocardiography has a major advantage of conveniently visualizing the entire cardiac anatomy in three dimensions and of potentially accurately quantifying LV volumes, ejection fractions, and myocardial mass in patients even in the presence of an LV aneurysm. Although the image quality of the current real-time 3-D echocardiographic methods is not optimal, its widespread clinical application is possible because of the convenient and fast image acquisition. We review real-time 3-D echocardiographic image acquisition and quantitative analysis for the evaluation of LV function and LV mass.

  10. Comparative Study With New Accuracy Metrics for Target Volume Contouring in PET Image Guided Radiation Therapy

    PubMed Central

    Shepherd, T; Teras, M; Beichel, RR; Boellaard, R; Bruynooghe, M; Dicken, V; Gooding, MJ; Julyan, PJ; Lee, JA; Lefèvre, S; Mix, M; Naranjo, V; Wu, X; Zaidi, H; Zeng, Z; Minn, H

    2017-01-01

    The impact of positron emission tomography (PET) on radiation therapy is held back by poor methods of defining functional volumes of interest. Many new software tools are being proposed for contouring target volumes but the different approaches are not adequately compared and their accuracy is poorly evaluated due to the ill-definition of ground truth. This paper compares the largest cohort to date of established, emerging and proposed PET contouring methods, in terms of accuracy and variability. We emphasize spatial accuracy and present a new metric that addresses the lack of unique ground truth. Thirty methods are used at 13 different institutions to contour functional volumes of interest in clinical PET/CT and a custom-built PET phantom representing typical problems in image guided radiotherapy. Contouring methods are grouped according to algorithmic type, level of interactivity and how they exploit structural information in hybrid images. Experiments reveal benefits of high levels of user interaction, as well as simultaneous visualization of CT images and PET gradients to guide interactive procedures. Method-wise evaluation identifies the danger of over-automation and the value of prior knowledge built into an algorithm. PMID:22692898

  11. Advanced two-layer level set with a soft distance constraint for dual surfaces segmentation in medical images

    NASA Astrophysics Data System (ADS)

    Ji, Yuanbo; van der Geest, Rob J.; Nazarian, Saman; Lelieveldt, Boudewijn P. F.; Tao, Qian

    2018-03-01

    Anatomical objects in medical images very often have dual contours or surfaces that are highly correlated. Manually segmenting both of them by following local image details is tedious and subjective. In this study, we proposed a two-layer region-based level set method with a soft distance constraint, which not only regularizes the level set evolution at two levels, but also imposes prior information on wall thickness in an effective manner. By updating the level set function and distance constraint functions alternatingly, the method simultaneously optimizes both contours while regularizing their distance. The method was applied to segment the inner and outer wall of both left atrium (LA) and left ventricle (LV) from MR images, using a rough initialization from inside the blood pool. Compared to manual annotation from experience observers, the proposed method achieved an average perpendicular distance (APD) of less than 1mm for the LA segmentation, and less than 1.5mm for the LV segmentation, at both inner and outer contours. The method can be used as a practical tool for fast and accurate dual wall annotations given proper initialization.

  12. Representation of deformable motion for compression of dynamic cardiac image data

    NASA Astrophysics Data System (ADS)

    Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André

    2012-02-01

    We present a new approach for efficient estimation and storage of tissue deformation in dynamic medical image data like 3-D+t computed tomography reconstructions of human heart acquisitions. Tissue deformation between two points in time can be described by means of a displacement vector field indicating for each voxel of a slice, from which position in the previous slice at a fixed position in the third dimension it has moved to this position. Our deformation model represents the motion in a compact manner using a down-sampled potential function of the displacement vector field. This function is obtained by a Gauss-Newton minimization of the estimation error image, i. e., the difference between the current and the deformed previous slice. For lossless or lossy compression of volume slices, the potential function and the error image can afterwards be coded separately. By assuming deformations instead of translational motion, a subsequent coding algorithm using this method will achieve better compression ratios for medical volume data than with conventional block-based motion compensation known from video coding. Due to the smooth prediction without block artifacts, particularly whole-image transforms like wavelet decomposition as well as intra-slice prediction methods can benefit from this approach. We show that with discrete cosine as well as with Karhunen-Lo`eve transform the method can achieve a better energy compaction of the error image than block-based motion compensation while reaching approximately the same prediction error energy.

  13. Adaptive tight frame based medical image reconstruction: a proof-of-concept study for computed tomography

    NASA Astrophysics Data System (ADS)

    Zhou, Weifeng; Cai, Jian-Feng; Gao, Hao

    2013-12-01

    A popular approach for medical image reconstruction has been through the sparsity regularization, assuming the targeted image can be well approximated by sparse coefficients under some properly designed system. The wavelet tight frame is such a widely used system due to its capability for sparsely approximating piecewise-smooth functions, such as medical images. However, using a fixed system may not always be optimal for reconstructing a variety of diversified images. Recently, the method based on the adaptive over-complete dictionary that is specific to structures of the targeted images has demonstrated its superiority for image processing. This work is to develop the adaptive wavelet tight frame method image reconstruction. The proposed scheme first constructs the adaptive wavelet tight frame that is task specific, and then reconstructs the image of interest by solving an l1-regularized minimization problem using the constructed adaptive tight frame system. The proof-of-concept study is performed for computed tomography (CT), and the simulation results suggest that the adaptive tight frame method improves the reconstructed CT image quality from the traditional tight frame method.

  14. Efficient solution methodology for calibrating the hemodynamic model using functional Magnetic Resonance Imaging (fMRI) measurements.

    PubMed

    Zambri, Brian; Djellouli, Rabia; Laleg-Kirati, Taous-Meriem

    2015-08-01

    Our aim is to propose a numerical strategy for retrieving accurately and efficiently the biophysiological parameters as well as the external stimulus characteristics corresponding to the hemodynamic mathematical model that describes changes in blood flow and blood oxygenation during brain activation. The proposed method employs the TNM-CKF method developed in [1], but in a prediction/correction framework. We present numerical results using both real and synthetic functional Magnetic Resonance Imaging (fMRI) measurements to highlight the performance characteristics of this computational methodology.

  15. Malware Analysis Using Visualized Image Matrices

    PubMed Central

    Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively. PMID:25133202

  16. An iterative method for near-field Fresnel region polychromatic phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.

    2017-07-01

    We present an iterative method for polychromatic phase contrast imaging that is suitable for broadband illumination and which allows for the quantitative determination of the thickness of an object given the refractive index of the sample material. Experimental and simulation results suggest the iterative method provides comparable image quality and quantitative object thickness determination when compared to the analytical polychromatic transport of intensity and contrast transfer function methods. The ability of the iterative method to work over a wider range of experimental conditions means the iterative method is a suitable candidate for use with polychromatic illumination and may deliver more utility for laboratory-based x-ray sources, which typically have a broad spectrum.

  17. Jitter Correction

    NASA Technical Reports Server (NTRS)

    Waegell, Mordecai J.; Palacios, David M.

    2011-01-01

    Jitter_Correct.m is a MATLAB function that automatically measures and corrects inter-frame jitter in an image sequence to a user-specified precision. In addition, the algorithm dynamically adjusts the image sample size to increase the accuracy of the measurement. The Jitter_Correct.m function takes an image sequence with unknown frame-to-frame jitter and computes the translations of each frame (column and row, in pixels) relative to a chosen reference frame with sub-pixel accuracy. The translations are measured using a Cross Correlation Fourier transformation method in which the relative phase of the two transformed images is fit to a plane. The measured translations are then used to correct the inter-frame jitter of the image sequence. The function also dynamically expands the image sample size over which the cross-correlation is measured to increase the accuracy of the measurement. This increases the robustness of the measurement to variable magnitudes of inter-frame jitter

  18. Functional imaging to monitor vascular and metabolic response in canine head and neck tumors during fractionated radiotherapy.

    PubMed

    Rødal, Jan; Rusten, Espen; Søvik, Åste; Skogmo, Hege Kippenes; Malinen, Eirik

    2013-10-01

    Radiotherapy causes alterations in tumor biology, and non-invasive early assessment of such alterations may become useful for identifying treatment resistant disease. The purpose of the current work is to assess changes in vascular and metabolic features derived from functional imaging of canine head and neck tumors during fractionated radiotherapy. Material and methods. Three dogs with spontaneous head and neck tumors received intensity-modulated radiotherapy (IMRT). Contrast-enhanced cone beam computed tomography (CE-CBCT) at the treatment unit was performed at five treatment fractions. Dynamic (18)FDG-PET (D-PET) was performed prior to the start of radiotherapy, at mid-treatment and at 3-12 weeks after the completion of treatment. Tumor contrast enhancement in the CE-CBCT images was used as a surrogate for tumor vasculature. Vascular and metabolic tumor parameters were further obtained from the D-PET images. Changes in these tumor parameters were assessed, with emphasis on intra-tumoral distributions. Results. For all three patients, metabolic imaging parameters obtained from D-PET decreased from the pre- to the inter-therapy session. Correspondingly, for two of three patients, vascular imaging parameters obtained from both CE-CBCT and D-PET increased. Only one of the tumors showed a clear metabolic response after therapy. No systematic changes in the intra-tumor heterogeneity in the imaging parameters were found. Conclusion. Changes in vascular and metabolic parameters could be detected by the current functional imaging methods. Vascular tumor features from CE-CBCT and D-PET corresponded well. CE-CBCT is a potential method for easy response assessment when the patient is at the treatment unit.

  19. The impact of functional imaging on radiation medicine.

    PubMed

    Sharma, Nidhi; Neumann, Donald; Macklis, Roger

    2008-09-15

    Radiation medicine has previously utilized planning methods based primarily on anatomic and volumetric imaging technologies such as CT (Computerized Tomography), ultrasound, and MRI (Magnetic Resonance Imaging). In recent years, it has become apparent that a new dimension of non-invasive imaging studies may hold great promise for expanding the utility and effectiveness of the treatment planning process. Functional imaging such as PET (Positron Emission Tomography) studies and other nuclear medicine based assays are beginning to occupy a larger place in the oncology imaging world. Unlike the previously mentioned anatomic imaging methodologies, functional imaging allows differentiation between metabolically dead and dying cells and those which are actively metabolizing. The ability of functional imaging to reproducibly select viable and active cell populations in a non-invasive manner is now undergoing validation for many types of tumor cells. Many histologic subtypes appear amenable to this approach, with impressive sensitivity and selectivity reported. For clinical radiation medicine, the ability to differentiate between different levels and types of metabolic activity allows the possibility of risk based focal treatments in which the radiation doses and fields are more tightly connected to the perceived risk of recurrence or progression at each location. This review will summarize many of the basic principles involved in the field of functional PET imaging for radiation oncology planning and describe some of the major relevant published data behind this expanding trend.

  20. Feature-Motivated Simplified Adaptive PCNN-Based Medical Image Fusion Algorithm in NSST Domain.

    PubMed

    Ganasala, Padma; Kumar, Vinod

    2016-02-01

    Multimodality medical image fusion plays a vital role in diagnosis, treatment planning, and follow-up studies of various diseases. It provides a composite image containing critical information of source images required for better localization and definition of different organs and lesions. In the state-of-the-art image fusion methods based on nonsubsampled shearlet transform (NSST) and pulse-coupled neural network (PCNN), authors have used normalized coefficient value to motivate the PCNN-processing both low-frequency (LF) and high-frequency (HF) sub-bands. This makes the fused image blurred and decreases its contrast. The main objective of this work is to design an image fusion method that gives the fused image with better contrast, more detail information, and suitable for clinical use. We propose a novel image fusion method utilizing feature-motivated adaptive PCNN in NSST domain for fusion of anatomical images. The basic PCNN model is simplified, and adaptive-linking strength is used. Different features are used to motivate the PCNN-processing LF and HF sub-bands. The proposed method is extended for fusion of functional image with an anatomical image in improved nonlinear intensity hue and saturation (INIHS) color model. Extensive fusion experiments have been performed on CT-MRI and SPECT-MRI datasets. Visual and quantitative analysis of experimental results proved that the proposed method provides satisfactory fusion outcome compared to other image fusion methods.

  1. Carotid Stenosis And Ulcer Detectability As A Function Of Pixel Size

    NASA Astrophysics Data System (ADS)

    Mintz, Leslie J.; Enzmann, Dieter R.; Keyes, Gary S.; Mainiero, Louis M.; Brody, William R.

    1981-11-01

    Digital radiography, in conjunction with digital subtraction methods can provide high quality images of the vascular system,1-4 Spatial resolution is one important limiting factor of this imaging technique. Since spatial resolution of a digital image is a function of pixel size, it is important to determine the pixel size threshold necessary to provide information comparable to that of conventional angiograms. This study was designed to establish the pixel size necessary to identify accurately stenotic and ulcerative lesions of the carotid artery.

  2. Comparative study of 2D ultrasound imaging methods in the f-k domain and evaluation of their performances in a realistic NDT configuration

    NASA Astrophysics Data System (ADS)

    Merabet, Lucas; Robert, Sébastien; Prada, Claire

    2018-04-01

    In this paper, we present two frequency-domain algorithms for 2D imaging with plane wave emissions, namely Stolt's migration and Lu's method. The theoretical background is first presented, followed by an analysis of the algorithm complexities. The frequency-domain methods are then compared to the time-domain plane wave imaging in a realistic inspection configuration where the array elements are not in contact with the specimen. Imaging defects located far away from the array aperture is assessed and computation times for the three methods are presented as a function of the number of pixels of the reconstructed image. We show that Lu's method provides a time gain of up to 33 compared to the time-domain algorithm, and demonstrate the limitations of Stolt's migration for defects far away from the aperture.

  3. Resting-State Functional MR Imaging for Determining Language Laterality in Intractable Epilepsy.

    PubMed

    DeSalvo, Matthew N; Tanaka, Naoaki; Douw, Linda; Leveroni, Catherine L; Buchbinder, Bradley R; Greve, Douglas N; Stufflebeam, Steven M

    2016-10-01

    Purpose To measure the accuracy of resting-state functional magnetic resonance (MR) imaging in determining hemispheric language dominance in patients with medically intractable focal epilepsies against the results of an intracarotid amobarbital procedure (IAP). Materials and Methods This study was approved by the institutional review board, and all subjects gave signed informed consent. Data in 23 patients with medically intractable focal epilepsy were retrospectively analyzed. All 23 patients were candidates for epilepsy surgery and underwent both IAP and resting-state functional MR imaging as part of presurgical evaluation. Language dominance was determined from functional MR imaging data by calculating a laterality index (LI) after using independent component analysis. The accuracy of this method was assessed against that of IAP by using a variety of thresholds. Sensitivity and specificity were calculated by using leave-one-out cross validation. Spatial maps of language components were qualitatively compared among each hemispheric language dominance group. Results Measurement of hemispheric language dominance with resting-state functional MR imaging was highly concordant with IAP results, with up to 96% (22 of 23) accuracy, 96% (22 of 23) sensitivity, and 96% (22 of 23) specificity. Composite language component maps in patients with typical language laterality consistently included classic language areas such as the inferior frontal gyrus, the posterior superior temporal gyrus, and the inferior parietal lobule, while those of patients with atypical language laterality also included non-classical language areas such as the superior and middle frontal gyri, the insula, and the occipital cortex. Conclusion Resting-state functional MR imaging can be used to measure language laterality in patients with medically intractable focal epilepsy. (©) RSNA, 2016 Online supplemental material is available for this article.

  4. Resting-State Functional MR Imaging for Determining Language Laterality in Intractable Epilepsy

    PubMed Central

    Tanaka, Naoaki; Douw, Linda; Leveroni, Catherine L.; Buchbinder, Bradley R.; Greve, Douglas N.; Stufflebeam, Steven M.

    2016-01-01

    Purpose To measure the accuracy of resting-state functional magnetic resonance (MR) imaging in determining hemispheric language dominance in patients with medically intractable focal epilepsies against the results of an intracarotid amobarbital procedure (IAP). Materials and Methods This study was approved by the institutional review board, and all subjects gave signed informed consent. Data in 23 patients with medically intractable focal epilepsy were retrospectively analyzed. All 23 patients were candidates for epilepsy surgery and underwent both IAP and resting-state functional MR imaging as part of presurgical evaluation. Language dominance was determined from functional MR imaging data by calculating a laterality index (LI) after using independent component analysis. The accuracy of this method was assessed against that of IAP by using a variety of thresholds. Sensitivity and specificity were calculated by using leave-one-out cross validation. Spatial maps of language components were qualitatively compared among each hemispheric language dominance group. Results Measurement of hemispheric language dominance with resting-state functional MR imaging was highly concordant with IAP results, with up to 96% (22 of 23) accuracy, 96% (22 of 23) sensitivity, and 96% (22 of 23) specificity. Composite language component maps in patients with typical language laterality consistently included classic language areas such as the inferior frontal gyrus, the posterior superior temporal gyrus, and the inferior parietal lobule, while those of patients with atypical language laterality also included non-classical language areas such as the superior and middle frontal gyri, the insula, and the occipital cortex. Conclusion Resting-state functional MR imaging can be used to measure language laterality in patients with medically intractable focal epilepsy. © RSNA, 2016 Online supplemental material is available for this article. PMID:27467465

  5. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less

  6. In vivo Three-Dimensional Superresolution Fluorescence Tracking using a Double-Helix Point Spread Function

    PubMed Central

    Lew, Matthew D.; Thompson, Michael A.; Badieirostami, Majid; Moerner, W. E.

    2010-01-01

    The point spread function (PSF) of a widefield fluorescence microscope is not suitable for three-dimensional super-resolution imaging. We characterize the localization precision of a unique method for 3D superresolution imaging featuring a double-helix point spread function (DH-PSF). The DH-PSF is designed to have two lobes that rotate about their midpoint in any transverse plane as a function of the axial position of the emitter. In effect, the PSF appears as a double helix in three dimensions. By comparing the Cramer-Rao bound of the DH-PSF with the standard PSF as a function of the axial position, we show that the DH-PSF has a higher and more uniform localization precision than the standard PSF throughout a 2 μm depth of field. Comparisons between the DH-PSF and other methods for 3D super-resolution are briefly discussed. We also illustrate the applicability of the DH-PSF for imaging weak emitters in biological systems by tracking the movement of quantum dots in glycerol and in live cells. PMID:20563317

  7. Error of the slanted edge method for measuring the modulation transfer function of imaging systems.

    PubMed

    Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu

    2018-03-01

    The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.

  8. Technical Note: Image filtering to make computer-aided detection robust to image reconstruction kernel choice in lung cancer CT screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkubo, Masaki, E-mail: mook@clg.niigata-u.ac.jp

    Purpose: In lung cancer computed tomography (CT) screening, the performance of a computer-aided detection (CAD) system depends on the selection of the image reconstruction kernel. To reduce this dependence on reconstruction kernels, the authors propose a novel application of an image filtering method previously proposed by their group. Methods: The proposed filtering process uses the ratio of modulation transfer functions (MTFs) of two reconstruction kernels as a filtering function in the spatial-frequency domain. This method is referred to as MTF{sub ratio} filtering. Test image data were obtained from CT screening scans of 67 subjects who each had one nodule. Imagesmore » were reconstructed using two kernels: f{sub STD} (for standard lung imaging) and f{sub SHARP} (for sharp edge-enhancement lung imaging). The MTF{sub ratio} filtering was implemented using the MTFs measured for those kernels and was applied to the reconstructed f{sub SHARP} images to obtain images that were similar to the f{sub STD} images. A mean filter and a median filter were applied (separately) for comparison. All reconstructed and filtered images were processed using their prototype CAD system. Results: The MTF{sub ratio} filtered images showed excellent agreement with the f{sub STD} images. The standard deviation for the difference between these images was very small, ∼6.0 Hounsfield units (HU). However, the mean and median filtered images showed larger differences of ∼48.1 and ∼57.9 HU from the f{sub STD} images, respectively. The free-response receiver operating characteristic (FROC) curve for the f{sub SHARP} images indicated poorer performance compared with the FROC curve for the f{sub STD} images. The FROC curve for the MTF{sub ratio} filtered images was equivalent to the curve for the f{sub STD} images. However, this similarity was not achieved by using the mean filter or median filter. Conclusions: The accuracy of MTF{sub ratio} image filtering was verified and the method was demonstrated to be effective for reducing the kernel dependence of CAD performance.« less

  9. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning.

    PubMed

    Scholkmann, Felix; Holper, Lisa; Wolf, Ursula; Wolf, Martin

    2013-11-27

    Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal inter-personal brain mechanisms underlying interaction-mediated brain-to-brain coupling. These mechanisms are engaged during real social interactions, and cannot be captured using single-subject recordings. In particular, functional near-infrared imaging (fNIRI) hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.

  10. Reconstruction of input functions from a dynamic PET image with sequential administration of 15O2 and [Formula: see text] for noninvasive and ultra-rapid measurement of CBF, OEF, and CMRO2.

    PubMed

    Kudomi, Nobuyuki; Maeda, Yukito; Yamamoto, Hiroyuki; Yamamoto, Yuka; Hatakeyama, Tetsuhiro; Nishiyama, Yoshihiro

    2018-05-01

    CBF, OEF, and CMRO 2 images can be quantitatively assessed using PET. Their image calculation requires arterial input functions, which require invasive procedure. The aim of the present study was to develop a non-invasive approach with image-derived input functions (IDIFs) using an image from an ultra-rapid O 2 and C 15 O 2 protocol. Our technique consists of using a formula to express the input using tissue curve with rate constants. For multiple tissue curves, the rate constants were estimated so as to minimize the differences of the inputs using the multiple tissue curves. The estimated rates were used to express the inputs and the mean of the estimated inputs was used as an IDIF. The method was tested in human subjects ( n = 24). The estimated IDIFs were well-reproduced against the measured ones. The difference in the calculated CBF, OEF, and CMRO 2 values by the two methods was small (<10%) against the invasive method, and the values showed tight correlations ( r = 0.97). The simulation showed errors associated with the assumed parameters were less than ∼10%. Our results demonstrate that IDIFs can be reconstructed from tissue curves, suggesting the possibility of using a non-invasive technique to assess CBF, OEF, and CMRO 2 .

  11. Multi-Site Diagnostic Classification of Schizophrenia Using Discriminant Deep Learning with Functional Connectivity MRI.

    PubMed

    Zeng, Ling-Li; Wang, Huaning; Hu, Panpan; Yang, Bo; Pu, Weidan; Shen, Hui; Chen, Xingui; Liu, Zhening; Yin, Hong; Tan, Qingrong; Wang, Kai; Hu, Dewen

    2018-04-01

    A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Advanced deep learning methods may be capable of learning subtle hidden patterns from high dimensional imaging data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep learning-based cross-site transfer classification, despite less imaging site-specificity and more generalizability of diagnostic models, has not been investigated in schizophrenia. A large multi-site functional MRI sample (n = 734, including 357 schizophrenic patients from seven imaging resources) was collected, and a deep discriminant autoencoder network, aimed at learning imaging site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from healthy controls. Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysregulation of the cortical-striatal-cerebellar circuit in schizophrenia, and the most discriminating functional connections were primarily located within and across the default, salience, and control networks. The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across the default, salience, and control networks may play an important role in the "disconnectivity" model underlying the pathophysiology of schizophrenia. The proposed discriminant deep learning method may be capable of learning reliable connectome patterns and help in understanding the pathophysiology and achieving accurate prediction of schizophrenia across multiple independent imaging sites. Copyright © 2018 German Center for Neurodegenerative Diseases (DZNE). Published by Elsevier B.V. All rights reserved.

  12. A new diagnostic approach to popliteal artery entrapment syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Charles; Kennedy, Dominic; Bastian-Jordan, Matthew

    A new method of diagnosing and defining functional popliteal artery entrapment syndrome is described. By combining ultrasonography and magnetic resonance imaging techniques with dynamic plantarflexion of the ankle against resistance, functional entrapment can be demonstrated and the location of the arterial occlusion identified. This combination of imaging modalities will also define muscular anatomy for guiding intervention such as surgery or Botox injection.

  13. Fluorescence imaging of tryptophan and collagen cross-links to evaluate wound closure ex vivo

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Ortega-Martinez, Antonio; Farinelli, Bill; Anderson, R. R.; Franco, Walfre

    2016-02-01

    Wound size is a key parameter in monitoring healing. Current methods to measure wound size are often subjective, time-consuming and marginally invasive. Recently, we developed a non-invasive, non-contact, fast and simple but robust fluorescence imaging (u-FEI) method to monitor the healing of skin wounds. This method exploits the fluorescence of native molecules to tissue as functional and structural markers. The objective of the present study is to demonstrate the feasibility of using variations in the fluorescence intensity of tryptophan and cross-links of collagen to evaluate proliferation of keratinocyte cells and quantitate size of wound during healing, respectively. Circular dermal wounds were created in ex vivo human skin and cultured in different media. Two serial fluorescence images of tryptophan and collagen cross-links were acquired every two days. Histology and immunohistology were used to validate correlation between fluorescence and epithelialization. Images of collagen cross-links show fluorescence of the exposed dermis and, hence, are a measure of wound area. Images of tryptophan show higher fluorescence intensity of proliferating keratinocytes forming new epithelium, as compared to surrounding keratinocytes not involved in epithelialization. These images are complementary since collagen cross-links report on structure while tryptophan reports on function. HE and immunohistology show that tryptophan fluorescence correlates with newly formed epidermis. We have established a fluorescence imaging method for studying epithelialization processes during wound healing in a skin organ culture model, our approach has the potential to provide a non-invasive, non-contact, quick, objective and direct method for quantitative measurements in wound healing in vivo.

  14. An interactive method based on the live wire for segmentation of the breast in mammography images.

    PubMed

    Zewei, Zhang; Tianyue, Wang; Li, Guo; Tingting, Wang; Lu, Xu

    2014-01-01

    In order to improve accuracy of computer-aided diagnosis of breast lumps, the authors introduce an improved interactive segmentation method based on Live Wire. This paper presents the Gabor filters and FCM clustering algorithm is introduced to the Live Wire cost function definition. According to the image FCM analysis for image edge enhancement, we eliminate the interference of weak edge and access external features clear segmentation results of breast lumps through improving Live Wire on two cases of breast segmentation data. Compared with the traditional method of image segmentation, experimental results show that the method achieves more accurate segmentation of breast lumps and provides more accurate objective basis on quantitative and qualitative analysis of breast lumps.

  15. Image Quality Assessment of High-Resolution Satellite Images with Mtf-Based Fuzzy Comprehensive Evaluation Method

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Luo, Z.; Zhang, Y.; Guo, F.; He, L.

    2018-04-01

    A Modulation Transfer Function (MTF)-based fuzzy comprehensive evaluation method was proposed in this paper for the purpose of evaluating high-resolution satellite image quality. To establish the factor set, two MTF features and seven radiant features were extracted from the knife-edge region of image patch, which included Nyquist, MTF0.5, entropy, peak signal to noise ratio (PSNR), average difference, edge intensity, average gradient, contrast and ground spatial distance (GSD). After analyzing the statistical distribution of above features, a fuzzy evaluation threshold table and fuzzy evaluation membership functions was established. The experiments for comprehensive quality assessment of different natural and artificial objects was done with GF2 image patches. The results showed that the calibration field image has the highest quality scores. The water image has closest image quality to the calibration field, quality of building image is a little poor than water image, but much higher than farmland image. In order to test the influence of different features on quality evaluation, the experiment with different weights were tested on GF2 and SPOT7 images. The results showed that different weights correspond different evaluating effectiveness. In the case of setting up the weights of edge features and GSD, the image quality of GF2 is better than SPOT7. However, when setting MTF and PSNR as main factor, the image quality of SPOT7 is better than GF2.

  16. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  17. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  18. Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)

    PubMed Central

    Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.

    2017-01-01

    Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111

  19. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    PubMed

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p < 0.0001) after the authors' distortion correction. Additionally, the authors' method was significantly better than a distortion correction method based on a description of spherical harmonics in improving the distortion of root-mean-square errors (p < 0.001 and 0.0337, respectively). Moreover, the authors' method reduced the RMS error arising from gradient nonlinearity more than gradwarp methods. In human studies, the coefficient of variation of voxel-based morphometry analysis of the whole brain improved significantly from 3.46% to 2.70% after distortion correction of the whole gray matter using the authors' method (Wilcoxon signed-rank test, p < 0.05). The authors proposed a phantom-based distortion correction method to improve reproducibility in longitudinal structural brain analysis using multivendor MRI. The authors evaluated the authors' method for phantom images in terms of two geometrical values and for human images in terms of test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors' method.

  20. Semi-supervised manifold learning with affinity regularization for Alzheimer's disease identification using positron emission tomography imaging.

    PubMed

    Lu, Shen; Xia, Yong; Cai, Tom Weidong; Feng, David Dagan

    2015-01-01

    Dementia, Alzheimer's disease (AD) in particular is a global problem and big threat to the aging population. An image based computer-aided dementia diagnosis method is needed to providing doctors help during medical image examination. Many machine learning based dementia classification methods using medical imaging have been proposed and most of them achieve accurate results. However, most of these methods make use of supervised learning requiring fully labeled image dataset, which usually is not practical in real clinical environment. Using large amount of unlabeled images can improve the dementia classification performance. In this study we propose a new semi-supervised dementia classification method based on random manifold learning with affinity regularization. Three groups of spatial features are extracted from positron emission tomography (PET) images to construct an unsupervised random forest which is then used to regularize the manifold learning objective function. The proposed method, stat-of-the-art Laplacian support vector machine (LapSVM) and supervised SVM are applied to classify AD and normal controls (NC). The experiment results show that learning with unlabeled images indeed improves the classification performance. And our method outperforms LapSVM on the same dataset.

  1. [Target volume segmentation of PET images by an iterative method based on threshold value].

    PubMed

    Castro, P; Huerga, C; Glaría, L A; Plaza, R; Rodado, S; Marín, M D; Mañas, A; Serrada, A; Núñez, L

    2014-01-01

    An automatic segmentation method is presented for PET images based on an iterative approximation by threshold value that includes the influence of both lesion size and background present during the acquisition. Optimal threshold values that represent a correct segmentation of volumes were determined based on a PET phantom study that contained different sizes spheres and different known radiation environments. These optimal values were normalized to background and adjusted by regression techniques to a two-variable function: lesion volume and signal-to-background ratio (SBR). This adjustment function was used to build an iterative segmentation method and then, based in this mention, a procedure of automatic delineation was proposed. This procedure was validated on phantom images and its viability was confirmed by retrospectively applying it on two oncology patients. The resulting adjustment function obtained had a linear dependence with the SBR and was inversely proportional and negative with the volume. During the validation of the proposed method, it was found that the volume deviations respect to its real value and CT volume were below 10% and 9%, respectively, except for lesions with a volume below 0.6 ml. The automatic segmentation method proposed can be applied in clinical practice to tumor radiotherapy treatment planning in a simple and reliable way with a precision close to the resolution of PET images. Copyright © 2013 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  2. Alzheimer's disease detection via automatic 3D caudate nucleus segmentation using coupled dictionary learning with level set formulation.

    PubMed

    Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo

    2016-12-01

    This paper presents a novel method for Alzheimer's disease classification via an automatic 3D caudate nucleus segmentation. The proposed method consists of segmentation and classification steps. In the segmentation step, we propose a novel level set cost function. The proposed cost function is constrained by a sparse representation of local image features using a dictionary learning method. We present coupled dictionaries: a feature dictionary of a grayscale brain image and a label dictionary of a caudate nucleus label image. Using online dictionary learning, the coupled dictionaries are learned from the training data. The learned coupled dictionaries are embedded into a level set function. In the classification step, a region-based feature dictionary is built. The region-based feature dictionary is learned from shape features of the caudate nucleus in the training data. The classification is based on the measure of the similarity between the sparse representation of region-based shape features of the segmented caudate in the test image and the region-based feature dictionary. The experimental results demonstrate the superiority of our method over the state-of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy. In this paper, we find that the study of the caudate nucleus atrophy gives an advantage over the study of whole brain structure atrophy to detect Alzheimer's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  4. [A Comparison Study on Early Damage Detection of Left Ventricular Function Based on Doppler Imaging Method for Children with Tumor].

    PubMed

    Liu, Ying; Zhang, Haowei; Zhang, Hang

    2015-12-01

    The early damage detection and evaluation are of great significance in treatment and prognosis to the left ventricular function for children with tumor. In this paper, it is reported that the early damage of the left ventricular function was observed by pulsed wave Doppler (PWD) and tissue Doppler imaging (TDI) in our laboratory. Eighty children half a year to fourteen years old were included in this study. The cardiac function indices in chemotherapy group and control group were measured and compared. The results showed that there was significant difference in mitral and tricuspid annulus flow spectrum between the two groups. Compared with PWD,TDI is more prompt, objective and accurate in detecting early damage of left ventricular function in children with tumor. And TDI is a good method for early identification of ventricular function damage in children with tumor.

  5. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    PubMed Central

    Yang, Qiyao; Wang, Zhiguo; Zhang, Guoxu

    2017-01-01

    The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS) method and a dynamic threshold denoising (DTD) method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair) of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933) on feature images and less Euclidean distance error (ED = 2.826) on landmark points, outperforming the source data (NC = −0.496, ED = 25.847) and the compared method (NC = −0.614, ED = 16.085). Moreover, our method is about ten times faster than the compared one. PMID:28316979

  6. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology.

    PubMed

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.

  7. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  8. In-vivo detectability index: development and validation of an automated methodology

    NASA Astrophysics Data System (ADS)

    Smith, Taylor Brunton; Solomon, Justin; Samei, Ehsan

    2017-03-01

    The purpose of this study was to develop and validate a method to estimate patient-specific detectability indices directly from patients' CT images (i.e., "in vivo"). The method works by automatically extracting noise (NPS) and resolution (MTF) properties from each patient's CT series based on previously validated techniques. Patient images are thresholded into skin-air interfaces to form edge-spread functions, which are further binned, differentiated, and Fourier transformed to form the MTF. The NPS is likewise estimated from uniform areas of the image. These are combined with assumed task functions (reference function: 10 mm disk lesion with contrast of -15 HU) to compute detectability indices for a non-prewhitening matched filter model observer predicting observer performance. The results were compared to those from a previous human detection study on 105 subtle, hypo-attenuating liver lesions, using a two-alternative-forcedchoice (2AFC) method, over 6 dose levels using 16 readers. The in vivo detectability indices estimated for all patient images were compared to binary 2AFC outcomes with a generalized linear mixed-effects statistical model (Probit link function, linear terms only, no interactions, random term for readers). The model showed that the in vivo detectability indices were strongly predictive of 2AFC outcomes (P < 0.05). A linear comparison between the human detection accuracy and model-predicted detection accuracy (for like conditions) resulted in Pearson and Spearman correlations coefficients of 0.86 and 0.87, respectively. These data provide evidence that the in vivo detectability index could potentially be used to automatically estimate and track image quality in a clinical operation.

  9. Characterization of Interfacial Chemistry of Adhesive/Dentin Bond Using FTIR Chemical Imaging With Univariate and Multivariate Data Processing

    PubMed Central

    Wang, Yong; Yao, Xiaomei; Parthasarathy, Ranganathan

    2008-01-01

    Fourier transform infrared (FTIR) chemical imaging can be used to investigate molecular chemical features of the adhesive/dentin interfaces. However, the information is not straightforward, and is not easily extracted. The objective of this study was to use multivariate analysis methods, principal component analysis and fuzzy c-means clustering, to analyze spectral data in comparison with univariate analysis. The spectral imaging data collected from both the adhesive/healthy dentin and adhesive/caries-affected dentin specimens were used and compared. The univariate statistical methods such as mapping of intensities of specific functional group do not always accurately identify functional group locations and concentrations due to more or less band overlapping in adhesive and dentin. Apart from the ease with which information can be extracted, multivariate methods highlight subtle and often important changes in the spectra that are difficult to observe using univariate methods. The results showed that the multivariate methods gave more satisfactory, interpretable results than univariate methods and were conclusive in showing that they can discriminate and classify differences between healthy dentin and caries-affected dentin within the interfacial regions. It is demonstrated that the multivariate FTIR imaging approaches can be used in the rapid characterization of heterogeneous, complex structure. PMID:18980198

  10. Analytic solutions to modelling exponential and harmonic functions using Chebyshev polynomials: fitting frequency-domain lifetime images with photobleaching.

    PubMed

    Malachowski, George C; Clegg, Robert M; Redford, Glen I

    2007-12-01

    A novel approach is introduced for modelling linear dynamic systems composed of exponentials and harmonics. The method improves the speed of current numerical techniques up to 1000-fold for problems that have solutions of multiple exponentials plus harmonics and decaying components. Such signals are common in fluorescence microscopy experiments. Selective constraints of the parameters being fitted are allowed. This method, using discrete Chebyshev transforms, will correctly fit large volumes of data using a noniterative, single-pass routine that is fast enough to analyse images in real time. The method is applied to fluorescence lifetime imaging data in the frequency domain with varying degrees of photobleaching over the time of total data acquisition. The accuracy of the Chebyshev method is compared to a simple rapid discrete Fourier transform (equivalent to least-squares fitting) that does not take the photobleaching into account. The method can be extended to other linear systems composed of different functions. Simulations are performed and applications are described showing the utility of the method, in particular in the area of fluorescence microscopy.

  11. Blind estimation of blur in hyperspectral images

    NASA Astrophysics Data System (ADS)

    Zhang, Mo; Vozel, Benoit; Chehdi, Kacem; Uss, Mykhail; Abramov, Sergey; Lukin, Vladimir

    2017-10-01

    Hyperspectral images acquired by remote sensing systems are generally degraded by noise and can be sometimes more severely degraded by blur. When no knowledge is available about the degradations present on the original image, blind restoration methods can only be considered. By blind, we mean absolutely no knowledge neither of the blur point spread function (PSF) nor the original latent channel and the noise level. In this study, we address the blind restoration of the degraded channels component-wise, according to a sequential scheme. For each degraded channel, the sequential scheme estimates the blur point spread function (PSF) in a first stage and deconvolves the degraded channel in a second and final stage by means of using the PSF previously estimated. We propose a new component-wise blind method for estimating effectively and accurately the blur point spread function. This method follows recent approaches suggesting the detection, selection and use of sufficiently salient edges in the current processed channel for supporting the regularized blur PSF estimation. Several modifications are beneficially introduced in our work. A new selection of salient edges through thresholding adequately the cumulative distribution of their corresponding gradient magnitudes is introduced. Besides, quasi-automatic and spatially adaptive tuning of the involved regularization parameters is considered. To prove applicability and higher efficiency of the proposed method, we compare it against the method it originates from and four representative edge-sparsifying regularized methods of the literature already assessed in a previous work. Our attention is mainly paid to the objective analysis (via ݈l1-norm) of the blur PSF error estimation accuracy. The tests are performed on a synthetic hyperspectral image. This synthetic hyperspectral image has been built from various samples from classified areas of a real-life hyperspectral image, in order to benefit from realistic spatial distribution of reference spectral signatures to recover after synthetic degradation. The synthetic hyperspectral image has been successively degraded with eight real blurs taken from the literature, each of a different support size. Conclusions, practical recommendations and perspectives are drawn from the results experimentally obtained.

  12. Level set method with automatic selective local statistics for brain tumor segmentation in MR images.

    PubMed

    Thapaliya, Kiran; Pyun, Jae-Young; Park, Chun-Su; Kwon, Goo-Rak

    2013-01-01

    The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  13. Reduced field-of-view imaging for single-shot MRI with an amplitude-modulated chirp pulse excitation and Fourier transform reconstruction.

    PubMed

    Li, Jing; Zhang, Miao; Chen, Lin; Cai, Congbo; Sun, Huijun; Cai, Shuhui

    2015-06-01

    We employ an amplitude-modulated chirp pulse to selectively excite spins in one or more regions of interest (ROIs) to realize reduced field-of-view (rFOV) imaging based on single-shot spatiotemporally encoded (SPEN) sequence and Fourier transform reconstruction. The proposed rFOV imaging method was theoretically analyzed and illustrated with numerical simulation and tested with phantom experiments and in vivo rat experiments. In addition, point spread function was applied to demonstrate the feasibility of the proposed method. To evaluate the proposed method, the rFOV results were compared with those obtained using the EPI method with orthogonal RF excitation. The simulation and experimental results show that the proposed method can image one or two separated ROIs along the SPEN dimension in a single shot with higher spatial resolution, less sensitive to field inhomogeneity, and practically no aliasing artifacts. In addition, the proposed method may produce rFOV images with comparable signal-to-noise ratio to the rFOV EPI images. The proposed method is promising for the applications under severe susceptibility heterogeneities and for imaging separate ROIs simultaneously. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Single-exposure quantitative phase imaging in color-coded LED microscopy.

    PubMed

    Lee, Wonchan; Jung, Daeseong; Ryu, Suho; Joo, Chulmin

    2017-04-03

    We demonstrate single-shot quantitative phase imaging (QPI) in a platform of color-coded LED microscopy (cLEDscope). The light source in a conventional microscope is replaced by a circular LED pattern that is trisected into subregions with equal area, assigned to red, green, and blue colors. Image acquisition with a color image sensor and subsequent computation based on weak object transfer functions allow for the QPI of a transparent specimen. We also provide a correction method for color-leakage, which may be encountered in implementing our method with consumer-grade LEDs and image sensors. Most commercially available LEDs and image sensors do not provide spectrally isolated emissions and pixel responses, generating significant error in phase estimation in our method. We describe the correction scheme for this color-leakage issue, and demonstrate improved phase measurement accuracy. The computational model and single-exposure QPI capability of our method are presented by showing images of calibrated phase samples and cellular specimens.

  15. Image resolution enhancement via image restoration using neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangteng; Lu, Yihong

    2011-04-01

    Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.

  16. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future directions that can further facilitate development and validation of imaging biomarkers using 3D Slicer. PMID:22770690

  17. Interleaved multishot imaging by spatiotemporal encoding: A fast, self-referenced method for high-definition diffusion and functional MRI.

    PubMed

    Schmidt, Rita; Seginer, Amir; Frydman, Lucio

    2016-05-01

    Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to its use of a referenceless correction algorithm. A characteristic element of SPEN encoding is the absence of aliasing when its signals are undersampled along the low-bandwidth dimension. This feature was exploited in this study to segment a SPEN experiment into a number of interleaved shots whose inaccuracies were automatically compared and corrected as part of a navigator-free image reconstruction analysis. This could account for normal phase noises, as well as for object motions during the signal collection. The ensuing interleaved SPEN method was applied to phantoms and human volunteers and delivered high-quality images even in inhomogeneous or mobile environments. Submillimeter functional MRI activation maps confined to gray matter regions as well as submillimeter diffusion coefficient maps of human brains were obtained. We have developed an interleaved SPEN approach for the acquisition of high-definition images that promises a wider range of functional and diffusion MRI applications even in challenging environments. © 2015 Wiley Periodicals, Inc.

  18. WE-AB-202-01: Evaluating the Toxicity Reduction with CT-Ventilation Functional Avoidance Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Y; Miyasaka, Y; Kadoya, N

    Purpose: CT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Studies have proposed to use 4DCT-ventilation imaging for functional avoidance radiotherapy which implies designing treatment plans to spare functional portions of the lung. Although retrospective studies have been performed to evaluate the dosimetric gains to functional lung; no work has been done to translate the dosimetric gains to an improvement in pulmonary toxicity. The purpose of our work was to evaluate the potential reduction in toxicity for 4DCT-ventilation based functional avoidance. Methods: 70 lung cancer patients with 4DCT imaging were used for the study. CT-ventilationmore » maps were calculated using the patient’s 4DCT, deformable image registrations, and a density-change-based algorithm. Radiation pneumonitis was graded using imaging and clinical information. Log-likelihood methods were used to fit a normal-tissue-complication-probability (NTCP) model predicting grade 2+ radiation pneumonitis as a function of doses (mean and V20) to functional lung (>15% ventilation). For 20 patients a functional plan was generated that reduced dose to functional lung while meeting RTOG 0617-based constraints. The NTCP model was applied to the functional plan to determine the reduction in toxicity with functional planning Results: The mean dose to functional lung was 16.8 and 17.7 Gy with the functional and clinical plans respectively. The corresponding grade 2+ pneumonitis probability was 26.9% with the clinically-used plan and 24.6% with the functional plan (8.5% reduction). The V20-based grade 2+ pneumonitis probability was 23.7% with the clinically-used plan and reduced to 19.6% with the functional plan (20.9% reduction). Conclusion: Our results revealed a reduction of 9–20% in complication probability with functional planning. To our knowledge this is the first study to apply complication probability to convert dosimetric results to toxicity improvement. The results presented in the current work provide seminal data for prospective clinical trials in functional avoidance. YV discloses funding from State of Colorado. TY discloses National Lung Cancer Partnership; Young Investigator Research grant.« less

  19. A novel iris patterns matching algorithm of weighted polar frequency correlation

    NASA Astrophysics Data System (ADS)

    Zhao, Weijie; Jiang, Linhua

    2014-11-01

    Iris recognition is recognized as one of the most accurate techniques for biometric authentication. In this paper, we present a novel correlation method - Weighted Polar Frequency Correlation(WPFC) - to match and evaluate two iris images, actually it can also be used for evaluating the similarity of any two images. The WPFC method is a novel matching and evaluating method for iris image matching, which is complete different from the conventional methods. For instance, the classical John Daugman's method of iris recognition uses 2D Gabor wavelets to extract features of iris image into a compact bit stream, and then matching two bit streams with hamming distance. Our new method is based on the correlation in the polar coordinate system in frequency domain with regulated weights. The new method is motivated by the observation that the pattern of iris that contains far more information for recognition is fine structure at high frequency other than the gross shapes of iris images. Therefore, we transform iris images into frequency domain and set different weights to frequencies. Then calculate the correlation of two iris images in frequency domain. We evaluate the iris images by summing the discrete correlation values with regulated weights, comparing the value with preset threshold to tell whether these two iris images are captured from the same person or not. Experiments are carried out on both CASIA database and self-obtained images. The results show that our method is functional and reliable. Our method provides a new prospect for iris recognition system.

  20. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    NASA Astrophysics Data System (ADS)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  1. Iterative Structural and Functional Synergistic Resolution Recovery (iSFS-RR) Applied to PET-MR Images in Epilepsy

    NASA Astrophysics Data System (ADS)

    Silva-Rodríguez, J.; Cortés, J.; Rodríguez-Osorio, X.; López-Urdaneta, J.; Pardo-Montero, J.; Aguiar, P.; Tsoumpas, C.

    2016-10-01

    Structural Functional Synergistic Resolution Recovery (SFS-RR) is a technique that uses supplementary structural information from MR or CT to improve the spatial resolution of PET or SPECT images. This wavelet-based method may have a potential impact on the clinical decision-making of brain focal disorders such as refractory epilepsy, since it can produce images with better quantitative accuracy and enhanced detectability. In this work, a method for the iterative application of SFS-RR (iSFS-RR) was firstly developed and optimized in terms of convergence and input voxel size, and the corrected images were used for the diagnosis of 18 patients with refractory epilepsy. To this end, PET/MR images were clinically evaluated through visual inspection, atlas-based asymmetry indices (AIs) and SPM (Statistical Parametric Mapping) analysis, using uncorrected images and images corrected with SFS-RR and iSFS-RR. Our results showed that the sensitivity can be increased from 78% for uncorrected images, to 84% for SFS-RR and 94% for the proposed iSFS-RR. Thus, the proposed methodology has demonstrated the potential to improve the management of refractory epilepsy patients in the clinical routine.

  2. Development of fluorescent probes based on protection-deprotection of the key functional groups for biological imaging.

    PubMed

    Tang, Yonghe; Lee, Dayoung; Wang, Jiaoliang; Li, Guanhan; Yu, Jinghua; Lin, Weiying; Yoon, Juyoung

    2015-08-07

    Recently, the strategy of protection-deprotection of functional groups has been widely employed to design fluorescent probes, as the protection-deprotection of functional groups often induces a marked change in electronic properties. Significant advances have been made in the development of analyte-responsive fluorescent probes based on the protection-deprotection strategy. In this tutorial review, we highlight the representative examples of small-molecule based fluorescent probes for bioimaging, which are operated via the protection-deprotection of key functional groups such as aldehyde, hydroxyl, and amino functional groups reported from 2010 to 2014. The discussion includes the general protection-deprotection methods for aldehyde, hydroxyl, or amino groups, as well as the design strategies, sensing mechanisms, and deprotection modes of the representative fluorescent imaging probes applied to bio-imaging.

  3. Application of kernel method in fluorescence molecular tomography

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Baikejiang, Reheman; Li, Changqing

    2017-02-01

    Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.

  4. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.

    PubMed

    Tang, Jian; Jiang, Xiaoliang

    2017-01-01

    Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.

  5. A framework for optimal kernel-based manifold embedding of medical image data.

    PubMed

    Zimmer, Veronika A; Lekadir, Karim; Hoogendoorn, Corné; Frangi, Alejandro F; Piella, Gemma

    2015-04-01

    Kernel-based dimensionality reduction is a widely used technique in medical image analysis. To fully unravel the underlying nonlinear manifold the selection of an adequate kernel function and of its free parameters is critical. In practice, however, the kernel function is generally chosen as Gaussian or polynomial and such standard kernels might not always be optimal for a given image dataset or application. In this paper, we present a study on the effect of the kernel functions in nonlinear manifold embedding of medical image data. To this end, we first carry out a literature review on existing advanced kernels developed in the statistics, machine learning, and signal processing communities. In addition, we implement kernel-based formulations of well-known nonlinear dimensional reduction techniques such as Isomap and Locally Linear Embedding, thus obtaining a unified framework for manifold embedding using kernels. Subsequently, we present a method to automatically choose a kernel function and its associated parameters from a pool of kernel candidates, with the aim to generate the most optimal manifold embeddings. Furthermore, we show how the calculated selection measures can be extended to take into account the spatial relationships in images, or used to combine several kernels to further improve the embedding results. Experiments are then carried out on various synthetic and phantom datasets for numerical assessment of the methods. Furthermore, the workflow is applied to real data that include brain manifolds and multispectral images to demonstrate the importance of the kernel selection in the analysis of high-dimensional medical images. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    PubMed

    Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J

    2015-10-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Point spread function modeling and image restoration for cone-beam CT

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Huang, Kui-Dong; Shi, Yi-Kai; Xu, Zhe

    2015-03-01

    X-ray cone-beam computed tomography (CT) has such notable features as high efficiency and precision, and is widely used in the fields of medical imaging and industrial non-destructive testing, but the inherent imaging degradation reduces the quality of CT images. Aimed at the problems of projection image degradation and restoration in cone-beam CT, a point spread function (PSF) modeling method is proposed first. The general PSF model of cone-beam CT is established, and based on it, the PSF under arbitrary scanning conditions can be calculated directly for projection image restoration without the additional measurement, which greatly improved the application convenience of cone-beam CT. Secondly, a projection image restoration algorithm based on pre-filtering and pre-segmentation is proposed, which can make the edge contours in projection images and slice images clearer after restoration, and control the noise in the equivalent level to the original images. Finally, the experiments verified the feasibility and effectiveness of the proposed methods. Supported by National Science and Technology Major Project of the Ministry of Industry and Information Technology of China (2012ZX04007021), Young Scientists Fund of National Natural Science Foundation of China (51105315), Natural Science Basic Research Program of Shaanxi Province of China (2013JM7003) and Northwestern Polytechnical University Foundation for Fundamental Research (JC20120226, 3102014KYJD022)

  8. Monte Carlo simulation of PET/MR scanner and assessment of motion correction strategies

    NASA Astrophysics Data System (ADS)

    Işın, A.; Uzun Ozsahin, D.; Dutta, J.; Haddani, S.; El-Fakhri, G.

    2017-03-01

    Positron Emission Tomography is widely used in three dimensional imaging of metabolic body function and in tumor detection. Important research efforts are made to improve this imaging modality and powerful simulators such as GATE are used to test and develop methods for this purpose. PET requires acquisition time in the order of few minutes. Therefore, because of the natural patient movements such as respiration, the image quality can be adversely affected which drives scientists to develop motion compensation methods to improve the image quality. The goal of this study is to evaluate various image reconstructions methods with GATE simulation of a PET acquisition of the torso area. Obtained results show the need to compensate natural respiratory movements in order to obtain an image with similar quality as the reference image. Improvements are still possible in the applied motion field's extraction algorithms. Finally a statistical analysis should confirm the obtained results.

  9. Reconstruction of Missing Pixels in Satellite Images Using the Data Interpolating Empirical Orthogonal Function (DINEOF)

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, M.

    2016-02-01

    For coastal and inland waters, complete (in spatial) and frequent satellite measurements are important in order to monitor and understand coastal biological and ecological processes and phenomena, such as diurnal variations. High-frequency images of the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)) derived from the Korean Geostationary Ocean Color Imager (GOCI) provide a unique opportunity to study diurnal variation of the water turbidity in coastal regions of the Bohai Sea, Yellow Sea, and East China Sea. However, there are lots of missing pixels in the original GOCI-derived Kd(490) images due to clouds and various other reasons. Data Interpolating Empirical Orthogonal Function (DINEOF) is a method to reconstruct missing data in geophysical datasets based on Empirical Orthogonal Function (EOF). In this study, the DINEOF is applied to GOCI-derived Kd(490) data in the Yangtze River mouth and the Yellow River mouth regions, the DINEOF reconstructed Kd(490) data are used to fill in the missing pixels, and the spatial patterns and temporal functions of the first three EOF modes are also used to investigate the sub-diurnal variation due to the tidal forcing. In addition, DINEOF method is also applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite to reconstruct missing pixels in the daily Kd(490) and chlorophyll-a concentration images, and some application examples in the Chesapeake Bay and the Gulf of Mexico will be presented.

  10. Analyzing Protein Clusters on the Plasma Membrane: Application of Spatial Statistical Analysis Methods on Super-Resolution Microscopy Images.

    PubMed

    Paparelli, Laura; Corthout, Nikky; Pavie, Benjamin; Annaert, Wim; Munck, Sebastian

    2016-01-01

    The spatial distribution of proteins within the cell affects their capability to interact with other molecules and directly influences cellular processes and signaling. At the plasma membrane, multiple factors drive protein compartmentalization into specialized functional domains, leading to the formation of clusters in which intermolecule interactions are facilitated. Therefore, quantifying protein distributions is a necessity for understanding their regulation and function. The recent advent of super-resolution microscopy has opened up the possibility of imaging protein distributions at the nanometer scale. In parallel, new spatial analysis methods have been developed to quantify distribution patterns in super-resolution images. In this chapter, we provide an overview of super-resolution microscopy and summarize the factors influencing protein arrangements on the plasma membrane. Finally, we highlight methods for analyzing clusterization of plasma membrane proteins, including examples of their applications.

  11. Edge analyzing properties of center/surround response functions in cybernetic vision

    NASA Technical Reports Server (NTRS)

    Jobson, D. J.

    1984-01-01

    The ability of center/surround response functions to make explicit high resolution spatial information in optical images was investigated by performing convolutions of two dimensional response functions and image intensity functions (mainly edges). The center/surround function was found to have the unique property of separating edge contrast from shape variations and of providing a direct basis for determining contrast and subsequently shape of edges in images. Computationally simple measures of contrast and shape were constructed for potential use in cybernetic vision systems. For one class of response functions these measures were found to be reasonably resilient for a range of scan direction and displacements of the response functions relative to shaped edges. A pathological range of scan directions was also defined and methods for detecting and handling these cases were developed. The relationship of these results to biological vision is discussed speculatively.

  12. James Webb Space Telescope segment phasing using differential optical transfer functions

    PubMed Central

    Codona, Johanan L.; Doble, Nathan

    2015-01-01

    Differential optical transfer function (dOTF) is an image-based, noniterative wavefront sensing method that uses two star images with a single small change in the pupil. We describe two possible methods for introducing the required pupil modification to the James Webb Space Telescope, one using a small (<λ/4) displacement of a single segment's actuator and another that uses small misalignments of the NIRCam's filter wheel. While both methods should work with NIRCam, the actuator method will allow both MIRI and NIRISS to be used for segment phasing, which is a new functionality. Since the actuator method requires only small displacements, it should provide a fast and safe phasing alternative that reduces the mission risk and can be performed frequently for alignment monitoring and maintenance. Since a single actuator modification can be seen by all three cameras, it should be possible to calibrate the non-common-path aberrations between them. Large segment discontinuities can be measured using dOTFs in two filter bands. Using two images of a star field, aberrations along multiple lines of sight through the telescope can be measured simultaneously. Also, since dOTF gives the pupil field amplitude as well as the phase, it could provide a first approximation or constraint to the planned iterative phase retrieval algorithms. PMID:27042684

  13. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  14. Listening to light scattering in turbid media: quantitative optical scattering imaging using photoacoustic measurements with one-wavelength illumination

    NASA Astrophysics Data System (ADS)

    Yuan, Zhen; Li, Xiaoqi; Xi, Lei

    2014-06-01

    Biomedical photoacoustic tomography (PAT), as a potential imaging modality, can visualize tissue structure and function with high spatial resolution and excellent optical contrast. It is widely recognized that the ability of quantitatively imaging optical absorption and scattering coefficients from photoacoustic measurements is essential before PAT can become a powerful imaging modality. Existing quantitative PAT (qPAT), while successful, has been focused on recovering absorption coefficient only by assuming scattering coefficient a constant. An effective method for photoacoustically recovering optical scattering coefficient is presently not available. Here we propose and experimentally validate such a method for quantitative scattering coefficient imaging using photoacoustic data from one-wavelength illumination. The reconstruction method developed combines conventional PAT with the photon diffusion equation in a novel way to realize the recovery of scattering coefficient. We demonstrate the method using various objects having scattering contrast only or both absorption and scattering contrasts embedded in turbid media. The listening-to-light-scattering method described will be able to provide high resolution scattering imaging for various biomedical applications ranging from breast to brain imaging.

  15. Model-based restoration using light vein for range-gated imaging systems.

    PubMed

    Wang, Canjin; Sun, Tao; Wang, Tingfeng; Wang, Rui; Guo, Jin; Tian, Yuzhen

    2016-09-10

    The images captured by an airborne range-gated imaging system are degraded by many factors, such as light scattering, noise, defocus of the optical system, atmospheric disturbances, platform vibrations, and so on. The characteristics of low illumination, few details, and high noise make the state-of-the-art restoration method fail. In this paper, we present a restoration method especially for range-gated imaging systems. The degradation process is divided into two parts: the static part and the dynamic part. For the static part, we establish the physical model of the imaging system according to the laser transmission theory, and estimate the static point spread function (PSF). For the dynamic part, a so-called light vein feature extraction method is presented to estimate the fuzzy parameter of the atmospheric disturbance and platform movement, which make contributions to the dynamic PSF. Finally, combined with the static and dynamic PSF, an iterative updating framework is used to restore the image. Compared with the state-of-the-art methods, the proposed method can effectively suppress ringing artifacts and achieve better performance in a range-gated imaging system.

  16. [Research on fast implementation method of image Gaussian RBF interpolation based on CUDA].

    PubMed

    Chen, Hao; Yu, Haizhong

    2014-04-01

    Image interpolation is often required during medical image processing and analysis. Although interpolation method based on Gaussian radial basis function (GRBF) has high precision, the long calculation time still limits its application in field of image interpolation. To overcome this problem, a method of two-dimensional and three-dimensional medical image GRBF interpolation based on computing unified device architecture (CUDA) is proposed in this paper. According to single instruction multiple threads (SIMT) executive model of CUDA, various optimizing measures such as coalesced access and shared memory are adopted in this study. To eliminate the edge distortion of image interpolation, natural suture algorithm is utilized in overlapping regions while adopting data space strategy of separating 2D images into blocks or dividing 3D images into sub-volumes. Keeping a high interpolation precision, the 2D and 3D medical image GRBF interpolation achieved great acceleration in each basic computing step. The experiments showed that the operative efficiency of image GRBF interpolation based on CUDA platform was obviously improved compared with CPU calculation. The present method is of a considerable reference value in the application field of image interpolation.

  17. Invariant domain watermarking using heaviside function of order alpha and fractional Gaussian field.

    PubMed

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness.

  18. Invariant Domain Watermarking Using Heaviside Function of Order Alpha and Fractional Gaussian Field

    PubMed Central

    Abbasi, Almas; Woo, Chaw Seng; Ibrahim, Rabha Waell; Islam, Saeed

    2015-01-01

    Digital image watermarking is an important technique for the authentication of multimedia content and copyright protection. Conventional digital image watermarking techniques are often vulnerable to geometric distortions such as Rotation, Scaling, and Translation (RST). These distortions desynchronize the watermark information embedded in an image and thus disable watermark detection. To solve this problem, we propose an RST invariant domain watermarking technique based on fractional calculus. We have constructed a domain using Heaviside function of order alpha (HFOA). The HFOA models the signal as a polynomial for watermark embedding. The watermark is embedded in all the coefficients of the image. We have also constructed a fractional variance formula using fractional Gaussian field. A cross correlation method based on the fractional Gaussian field is used for watermark detection. Furthermore the proposed method enables blind watermark detection where the original image is not required during the watermark detection thereby making it more practical than non-blind watermarking techniques. Experimental results confirmed that the proposed technique has a high level of robustness. PMID:25884854

  19. Improving the convergence rate in affine registration of PET and SPECT brain images using histogram equalization.

    PubMed

    Salas-Gonzalez, D; Górriz, J M; Ramírez, J; Padilla, P; Illán, I A

    2013-01-01

    A procedure to improve the convergence rate for affine registration methods of medical brain images when the images differ greatly from the template is presented. The methodology is based on a histogram matching of the source images with respect to the reference brain template before proceeding with the affine registration. The preprocessed source brain images are spatially normalized to a template using a general affine model with 12 parameters. A sum of squared differences between the source images and the template is considered as objective function, and a Gauss-Newton optimization algorithm is used to find the minimum of the cost function. Using histogram equalization as a preprocessing step improves the convergence rate in the affine registration algorithm of brain images as we show in this work using SPECT and PET brain images.

  20. Enhanced Imaging of Building Interior for Portable MIMO Through-the-wall Radar

    NASA Astrophysics Data System (ADS)

    Song, Yongping; Zhu, Jiahua; Hu, Jun; Jin, Tian; Zhou, Zhimin

    2018-01-01

    Portable multi-input multi-output (MIMO) radar system is able to imaging the building interior through aperture synthesis. However, significant grating lobes are invoked in the directly imaging results, which may deteriorate the imaging quality of other targets and influence the detail information extraction of imaging scene. In this paper, a two-stage coherence factor (CF) weighting method is proposed to enhance the imaging quality. After obtaining the sub-imaging results of each spatial sampling position using conventional CF approach, a window function is employed to calculate the proposed “enhanced CF” adaptive to the spatial variety effect behind the wall for the combination of these sub-images. The real data experiment illustrates the better performance of proposed method on grating lobes suppression and imaging quality enhancement compare to the traditional radar imaging approach.

  1. Bayesian Scalar-on-Image Regression with Application to Association Between Intracranial DTI and Cognitive Outcomes

    PubMed Central

    Huang, Lei; Goldsmith, Jeff; Reiss, Philip T.; Reich, Daniel S.; Crainiceanu, Ciprian M.

    2013-01-01

    Diffusion tensor imaging (DTI) measures water diffusion within white matter, allowing for in vivo quantification of brain pathways. These pathways often subserve specific functions, and impairment of those functions is often associated with imaging abnormalities. As a method for predicting clinical disability from DTI images, we propose a hierarchical Bayesian “scalar-on-image” regression procedure. Our procedure introduces a latent binary map that estimates the locations of predictive voxels and penalizes the magnitude of effect sizes in these voxels, thereby resolving the ill-posed nature of the problem. By inducing a spatial prior structure, the procedure yields a sparse association map that also maintains spatial continuity of predictive regions. The method is demonstrated on a simulation study and on a study of association between fractional anisotropy and cognitive disability in a cross-sectional sample of 135 multiple sclerosis patients. PMID:23792220

  2. Transformations based on continuous piecewise-affine velocity fields

    DOE PAGES

    Freifeld, Oren; Hauberg, Soren; Batmanghelich, Kayhan; ...

    2017-01-11

    Here, we propose novel finite-dimensional spaces of well-behaved Rn → Rn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization overmore » monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available.« less

  3. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    PubMed Central

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan; Fisher, Jonn W.

    2018-01-01

    We propose novel finite-dimensional spaces of well-behaved ℝn → ℝn transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volume preservation and/or boundary conditions), and supports convenient modeling choices such as smoothing priors and coarse-to-fine analysis. Importantly, the proposed approach, partly due to its rapid likelihood evaluations and partly due to its other properties, facilitates tractable inference over rich transformation spaces, including using Markov-Chain Monte-Carlo methods. Its applications include, but are not limited to: monotonic regression (more generally, optimization over monotonic functions); modeling cumulative distribution functions or histograms; time-warping; image warping; image registration; real-time diffeomorphic image editing; data augmentation for image classifiers. Our GPU-based code is publicly available. PMID:28092517

  4. Test images for the maximum entropy image restoration method

    NASA Technical Reports Server (NTRS)

    Mackey, James E.

    1990-01-01

    One of the major activities of any experimentalist is data analysis and reduction. In solar physics, remote observations are made of the sun in a variety of wavelengths and circumstances. In no case is the data collected free from the influence of the design and operation of the data gathering instrument as well as the ever present problem of noise. The presence of significant noise invalidates the simple inversion procedure regardless of the range of known correlation functions. The Maximum Entropy Method (MEM) attempts to perform this inversion by making minimal assumptions about the data. To provide a means of testing the MEM and characterizing its sensitivity to noise, choice of point spread function, type of data, etc., one would like to have test images of known characteristics that can represent the type of data being analyzed. A means of reconstructing these images is presented.

  5. Regularization destriping of remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Basnayake, Ranil; Bollt, Erik; Tufillaro, Nicholas; Sun, Jie; Gierach, Michelle

    2017-07-01

    We illustrate the utility of variational destriping for ocean color images from both multispectral and hyperspectral sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory's (JPL) hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The target functional penalizes the neighborhood of stripes (strictly, directionally uniform features) while promoting data fidelity, and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite-difference scheme. We show the accuracy of our method from a benchmark data set which represents the sea surface temperature off the coast of Oregon, USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

  6. Hessian-based norm regularization for image restoration with biomedical applications.

    PubMed

    Lefkimmiatis, Stamatios; Bourquard, Aurélien; Unser, Michael

    2012-03-01

    We present nonquadratic Hessian-based regularization methods that can be effectively used for image restoration problems in a variational framework. Motivated by the great success of the total-variation (TV) functional, we extend it to also include second-order differential operators. Specifically, we derive second-order regularizers that involve matrix norms of the Hessian operator. The definition of these functionals is based on an alternative interpretation of TV that relies on mixed norms of directional derivatives. We show that the resulting regularizers retain some of the most favorable properties of TV, i.e., convexity, homogeneity, rotation, and translation invariance, while dealing effectively with the staircase effect. We further develop an efficient minimization scheme for the corresponding objective functions. The proposed algorithm is of the iteratively reweighted least-square type and results from a majorization-minimization approach. It relies on a problem-specific preconditioned conjugate gradient method, which makes the overall minimization scheme very attractive since it can be applied effectively to large images in a reasonable computational time. We validate the overall proposed regularization framework through deblurring experiments under additive Gaussian noise on standard and biomedical images.

  7. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation. PMID:27330239

  8. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration accuracy suitable to application in image-guided spine surgery across a broad range of anatomical sites and modes of deformation.

  9. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    PubMed Central

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  10. A Multi Directional Perfect Reconstruction Filter Bank Designed with 2-D Eigenfilter Approach: Application to Ultrasound Speckle Reduction.

    PubMed

    Nagare, Mukund B; Patil, Bhushan D; Holambe, Raghunath S

    2017-02-01

    B-Mode ultrasound images are degraded by inherent noise called Speckle, which creates a considerable impact on image quality. This noise reduces the accuracy of image analysis and interpretation. Therefore, reduction of speckle noise is an essential task which improves the accuracy of the clinical diagnostics. In this paper, a Multi-directional perfect-reconstruction (PR) filter bank is proposed based on 2-D eigenfilter approach. The proposed method used for the design of two-dimensional (2-D) two-channel linear-phase FIR perfect-reconstruction filter bank. In this method, the fan shaped, diamond shaped and checkerboard shaped filters are designed. The quadratic measure of the error function between the passband and stopband of the filter has been used an objective function. First, the low-pass analysis filter is designed and then the PR condition has been expressed as a set of linear constraints on the corresponding synthesis low-pass filter. Subsequently, the corresponding synthesis filter is designed using the eigenfilter design method with linear constraints. The newly designed 2-D filters are used in translation invariant pyramidal directional filter bank (TIPDFB) for reduction of speckle noise in ultrasound images. The proposed 2-D filters give better symmetry, regularity and frequency selectivity of the filters in comparison to existing design methods. The proposed method is validated on synthetic and real ultrasound data which ensures improvement in the quality of ultrasound images and efficiently suppresses the speckle noise compared to existing methods.

  11. Multi-modal Registration for Correlative Microscopy using Image Analogies

    PubMed Central

    Cao, Tian; Zach, Christopher; Modla, Shannon; Powell, Debbie; Czymmek, Kirk; Niethammer, Marc

    2014-01-01

    Correlative microscopy is a methodology combining the functionality of light microscopy with the high resolution of electron microscopy and other microscopy technologies for the same biological specimen. In this paper, we propose an image registration method for correlative microscopy, which is challenging due to the distinct appearance of biological structures when imaged with different modalities. Our method is based on image analogies and allows to transform images of a given modality into the appearance-space of another modality. Hence, the registration between two different types of microscopy images can be transformed to a mono-modality image registration. We use a sparse representation model to obtain image analogies. The method makes use of corresponding image training patches of two different imaging modalities to learn a dictionary capturing appearance relations. We test our approach on backscattered electron (BSE) scanning electron microscopy (SEM)/confocal and transmission electron microscopy (TEM)/confocal images. We perform rigid, affine, and deformable registration via B-splines and show improvements over direct registration using both mutual information and sum of squared differences similarity measures to account for differences in image appearance. PMID:24387943

  12. The Function Biomedical Informatics Research Network Data Repository.

    PubMed

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Topology-guided deformable registration with local importance preservation for biomedical images

    NASA Astrophysics Data System (ADS)

    Zheng, Chaojie; Wang, Xiuying; Zeng, Shan; Zhou, Jianlong; Yin, Yong; Feng, Dagan; Fulham, Michael

    2018-01-01

    The demons registration (DR) model is well recognized for its deformation capability. However, it might lead to misregistration due to erroneous diffusion direction when there are no overlaps between corresponding regions. We propose a novel registration energy function, introducing topology energy, and incorporating a local energy function into the DR in a progressive registration scheme, to address these shortcomings. The topology energy that is derived from the topological information of the images serves as a direction inference to guide diffusion transformation to retain the merits of DR. The local energy constrains the deformation disparity of neighbouring pixels to maintain important local texture and density features. The energy function is minimized in a progressive scheme steered by a topology tree graph and we refer to it as topology-guided deformable registration (TDR). We validated our TDR on 20 pairs of synthetic images with Gaussian noise, 20 phantom PET images with artificial deformations and 12 pairs of clinical PET-CT studies. We compared it to three methods: (1) free-form deformation registration method, (2) energy-based DR and (3) multi-resolution DR. The experimental results show that our TDR outperformed the other three methods in regard to structural correspondence and preservation of the local important information including texture and density, while retaining global correspondence.

  14. Illumination invariant feature point matching for high-resolution planetary remote sensing images

    NASA Astrophysics Data System (ADS)

    Wu, Bo; Zeng, Hai; Hu, Han

    2018-03-01

    Despite its success with regular close-range and remote-sensing images, the scale-invariant feature transform (SIFT) algorithm is essentially not invariant to illumination differences due to the use of gradients for feature description. In planetary remote sensing imagery, which normally lacks sufficient textural information, salient regions are generally triggered by the shadow effects of keypoints, reducing the matching performance of classical SIFT. Based on the observation of dual peaks in a histogram of the dominant orientations of SIFT keypoints, this paper proposes an illumination-invariant SIFT matching method for high-resolution planetary remote sensing images. First, as the peaks in the orientation histogram are generally aligned closely with the sub-solar azimuth angle at the time of image collection, an adaptive suppression Gaussian function is tuned to level the histogram and thereby alleviate the differences in illumination caused by a changing solar angle. Next, the suppression function is incorporated into the original SIFT procedure for obtaining feature descriptors, which are used for initial image matching. Finally, as the distribution of feature descriptors changes after anisotropic suppression, and the ratio check used for matching and outlier removal in classical SIFT may produce inferior results, this paper proposes an improved matching procedure based on cross-checking and template image matching. The experimental results for several high-resolution remote sensing images from both the Moon and Mars, with illumination differences of 20°-180°, reveal that the proposed method retrieves about 40%-60% more matches than the classical SIFT method. The proposed method is of significance for matching or co-registration of planetary remote sensing images for their synergistic use in various applications. It also has the potential to be useful for flyby and rover images by integrating with the affine invariant feature detectors.

  15. Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, Bernhard, E-mail: bernhard.brendel@philips.com; Teuffenbach, Maximilian von; Noël, Peter B.

    2016-01-15

    Purpose: The purpose of this work is to propose a cost function with regularization to iteratively reconstruct attenuation, phase, and scatter images simultaneously from differential phase contrast (DPC) acquisitions, without the need of phase retrieval, and examine its properties. Furthermore this reconstruction method is applied to an acquisition pattern that is suitable for a DPC tomographic system with continuously rotating gantry (sliding window acquisition), overcoming the severe smearing in noniterative reconstruction. Methods: We derive a penalized maximum likelihood reconstruction algorithm to directly reconstruct attenuation, phase, and scatter image from the measured detector values of a DPC acquisition. The proposed penaltymore » comprises, for each of the three images, an independent smoothing prior. Image quality of the proposed reconstruction is compared to images generated with FBP and iterative reconstruction after phase retrieval. Furthermore, the influence between the priors is analyzed. Finally, the proposed reconstruction algorithm is applied to experimental sliding window data acquired at a synchrotron and results are compared to reconstructions based on phase retrieval. Results: The results show that the proposed algorithm significantly increases image quality in comparison to reconstructions based on phase retrieval. No significant mutual influence between the proposed independent priors could be observed. Further it could be illustrated that the iterative reconstruction of a sliding window acquisition results in images with substantially reduced smearing artifacts. Conclusions: Although the proposed cost function is inherently nonconvex, it can be used to reconstruct images with less aliasing artifacts and less streak artifacts than reconstruction methods based on phase retrieval. Furthermore, the proposed method can be used to reconstruct images of sliding window acquisitions with negligible smearing artifacts.« less

  16. Segmentation of mouse dynamic PET images using a multiphase level set method

    NASA Astrophysics Data System (ADS)

    Cheng-Liao, Jinxiu; Qi, Jinyi

    2010-11-01

    Image segmentation plays an important role in medical diagnosis. Here we propose an image segmentation method for four-dimensional mouse dynamic PET images. We consider that voxels inside each organ have similar time activity curves. The use of tracer dynamic information allows us to separate regions that have similar integrated activities in a static image but with different temporal responses. We develop a multiphase level set method that utilizes both the spatial and temporal information in a dynamic PET data set. Different weighting factors are assigned to each image frame based on the noise level and activity difference among organs of interest. We used a weighted absolute difference function in the data matching term to increase the robustness of the estimate and to avoid over-partition of regions with high contrast. We validated the proposed method using computer simulated dynamic PET data, as well as real mouse data from a microPET scanner, and compared the results with those of a dynamic clustering method. The results show that the proposed method results in smoother segments with the less number of misclassified voxels.

  17. Functional Near-Infrared Spectroscopy Brain Imaging Investigation of Phonological Awareness and Passage Comprehension Abilities in Adult Recipients of Cochlear Implants

    ERIC Educational Resources Information Center

    Bisconti, Silvia; Shulkin, Masha; Hu, Xiaosu; Basura, Gregory J.; Kileny, Paul R.; Kovelman, Ioulia

    2016-01-01

    Purpose: The aim of this study was to examine how the brains of individuals with cochlear implants (CIs) respond to spoken language tasks that underlie successful language acquisition and processing. Method: During functional near-infrared spectroscopy imaging, CI recipients with hearing impairment (n = 10, mean age: 52.7 ± 17.3 years) and…

  18. Image characterization metrics for muon tomography

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  19. Real-time distortion correction of spiral and echo planar images using the gradient system impulse response function

    PubMed Central

    Campbell-Washburn, Adrienne E; Xue, Hui; Lederman, Robert J; Faranesh, Anthony Z; Hansen, Michael S

    2015-01-01

    Purpose MRI-guided interventions demand high frame-rate imaging, making fast imaging techniques such as spiral imaging and echo planar imaging (EPI) appealing. In this study, we implemented a real-time distortion correction framework to enable the use of these fast acquisitions for interventional MRI. Methods Distortions caused by gradient waveform inaccuracies were corrected using the gradient impulse response function (GIRF), which was measured by standard equipment and saved as a calibration file on the host computer. This file was used at runtime to calculate the predicted k-space trajectories for image reconstruction. Additionally, the off-resonance reconstruction frequency was modified in real-time to interactively de-blur spiral images. Results Real-time distortion correction for arbitrary image orientations was achieved in phantoms and healthy human volunteers. The GIRF predicted k-space trajectories matched measured k-space trajectories closely for spiral imaging. Spiral and EPI image distortion was visibly improved using the GIRF predicted trajectories. The GIRF calibration file showed no systematic drift in 4 months and was demonstrated to correct distortions after 30 minutes of continuous scanning despite gradient heating. Interactive off-resonance reconstruction was used to sharpen anatomical boundaries during continuous imaging. Conclusions This real-time distortion correction framework will enable the use of these high frame-rate imaging methods for MRI-guided interventions. PMID:26114951

  20. A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe.

    PubMed

    Mah, Yee-Haur; Jager, Rolf; Kennard, Christopher; Husain, Masud; Nachev, Parashkev

    2014-07-01

    Making robust inferences about the functional neuroanatomy of the brain is critically dependent on experimental techniques that examine the consequences of focal loss of brain function. Unfortunately, the use of the most comprehensive such technique-lesion-function mapping-is complicated by the need for time-consuming and subjective manual delineation of the lesions, greatly limiting the practicability of the approach. Here we exploit a recently-described general measure of statistical anomaly, zeta, to devise a fully-automated, high-dimensional algorithm for identifying the parameters of lesions within a brain image given a reference set of normal brain images. We proceed to evaluate such an algorithm in the context of diffusion-weighted imaging of the commonest type of lesion used in neuroanatomical research: ischaemic damage. Summary performance metrics exceed those previously published for diffusion-weighted imaging and approach the current gold standard-manual segmentation-sufficiently closely for fully-automated lesion-mapping studies to become a possibility. We apply the new method to 435 unselected images of patients with ischaemic stroke to derive a probabilistic map of the pattern of damage in lesions involving the occipital lobe, demonstrating the variation of anatomical resolvability of occipital areas so as to guide future lesion-function studies of the region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations

    NASA Astrophysics Data System (ADS)

    Cideciyan, Artur V.; Swider, Malgorzata; Aleman, Tomas S.; Roman, Marisa I.; Sumaroka, Alexander; Schwartz, Sharon B.; Stone, Edwin M.; Jacobson, Samuel G.

    2007-05-01

    The health of the retinal pigment epithelium (RPE) can be estimated with autofluorescence (AF) imaging of lipofuscin, which accumulates as a byproduct of retinal exposure to light. Lipofuscin may be toxic to the RPE, and its toxicity may be enhanced by short-wavelength (SW) illumination. The high-intensity and SW excitation light used in conventional AF imaging could, at least in principle, increase the rate of lipofuscin accumulation and/or increase its toxicity. We considered two reduced-illuminance AF imaging (RAFI) methods as alternatives to conventional AF imaging. RAFI methods use either near-infrared (NIR) light or reduced-radiance SW illumination for excitation of fluorophores. We quantified the distribution of RAFI signals in relation to retinal structure and function in patients with the prototypical lipofuscin accumulation disease caused by mutations in ABCA4. There was evidence for two subclinical stages of macular ABCA4 disease involving hyperautofluorescence of both SW- and NIR-RAFI with and without associated loss of visual function. Use of RAFI methods and microperimetry in future clinical trials involving lipofuscinopathies should allow quantification of subclinical disease expression and progression without subjecting the diseased retina/RPE to undue light exposure.

  2. Maximum-likelihood techniques for joint segmentation-classification of multispectral chromosome images.

    PubMed

    Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L

    2005-12-01

    Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.

  3. Intact skull chronic windows for mesoscopic wide-field imaging in awake mice

    PubMed Central

    Silasi, Gergely; Xiao, Dongsheng; Vanni, Matthieu P.; Chen, Andrew C. N.; Murphy, Timothy H.

    2016-01-01

    Background Craniotomy-based window implants are commonly used for microscopic imaging, in head-fixed rodents, however their field of view is typically small and incompatible with mesoscopic functional mapping of cortex. New Method We describe a reproducible and simple procedure for chronic through-bone wide-field imaging in awake head-fixed mice providing stable optical access for chronic imaging over large areas of the cortex for months. Results The preparation is produced by applying clear-drying dental cement to the intact mouse skull, followed by a glass coverslip to create a partially transparent imaging surface. Surgery time takes about 30 minutes. A single set-screw provides a stable means of attachment for mesoscale assessment without obscuring the cortical field of view. Comparison with Existing Methods We demonstrate the utility of this method by showing seed-pixel functional connectivity maps generated from spontaneous cortical activity of GCAMP6 signals in both awake and anesthetized mice. Conclusions We propose that the intact skull preparation described here may be used for most longitudinal studies that do not require micron scale resolution and where cortical neural or vascular signals are recorded with intrinsic sensors. PMID:27102043

  4. Robust active contour via additive local and global intensity information based on local entropy

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Monkam, Patrice; Zhang, Feng; Luan, Fangjun; Koomson, Ben Alfred

    2018-01-01

    Active contour-based image segmentation can be a very challenging task due to many factors such as high intensity inhomogeneity, presence of noise, complex shape, weak boundaries objects, and dependence on the position of the initial contour. We propose a level set-based active contour method to segment complex shape objects from images corrupted by noise and high intensity inhomogeneity. The energy function of the proposed method results from combining the global intensity information and local intensity information with some regularization factors. First, the global intensity term is proposed based on a scheme formulation that considers two intensity values for each region instead of one, which outperforms the well-known Chan-Vese model in delineating the image information. Second, the local intensity term is formulated based on local entropy computed considering the distribution of the image brightness and using the generalized Gaussian distribution as the kernel function. Therefore, it can accurately handle high intensity inhomogeneity and noise. Moreover, our model is not dependent on the position occupied by the initial curve. Finally, extensive experiments using various images have been carried out to illustrate the performance of the proposed method.

  5. Characterizing tissue microstructure using an ultrasound system-independent spatial autocorrelation function

    NASA Astrophysics Data System (ADS)

    Dong, Fang

    1999-09-01

    The research described in this dissertation is related to characterization of tissue microstructure using a system- independent spatial autocorrelation function (SAF). The function was determined using a reference phantom method, which employed a well-defined ``point- scatterer'' reference phantom to account for instrumental factors. The SAF's were estimated for several tissue-mimicking (TM) phantoms and fresh dog livers. Both phantom tests and in vitro dog liver measurements showed that the reference phantom method is relatively simple and fairly accurate, providing the bandwidth of the measurement system is sufficient for the size of the scatterer being involved in the scattering process. Implementation of this method in clinical scanner requires that distortions from patient's body wall be properly accounted for. The SAF's were estimated for two phantoms with body-wall-like distortions. The experimental results demonstrated that body wall distortions have little effect if echo data are acquired from a large scattering volume. One interesting application of the SAF is to form a ``scatterer size image''. The scatterer size image may help providing diagnostic tools for those diseases in which the tissue microstructure is different from the normal. Another method, the BSC method, utilizes information contained in the frequency dependence of the backscatter coefficient to estimate the scatterer size. The SAF technique produced accurate scatterer size images of homogeneous TM phantoms and the BSC method was capable of generating accurate size images for heterogeneous phantoms. In the scatterer size image of dog kidneys, the contrast-to-noise-ratio (CNR) between renal cortex and medulla was improved dramatically compared to the gray- scale image. The effect of nonlinear propagation was investigated by using a custom-designed phantom with overlaying TM fat layer. The results showed that the correlation length decreased when the transmitting power increased. The measurement results support the assumption that nonlinear propagation generates harmonic energies and causes underestimation of scatterer diameters. Nonlinear propagation can be further enhanced by those materials with high B/A value-a parameter which characterizes the degree of nonlinearity. Nine versions of TM fat and non-fat materials were measured for their B/A values using a new measurement technique, the ``simplified finite amplitude insertion substitution'' (SFAIS) method.

  6. Scientific Accomplishments for ARL Brain Structure-Function Couplings Research on Large-Scale Brain Networks from FY11-FY13 (DSI Final Report)

    DTIC Science & Technology

    2014-03-01

    streamlines) from two types of diffusion weighted imaging scans, diffusion tensor imaging ( DTI ) and diffusion spectrum imaging (DSI). We examined...individuals. Importantly, the results also showed that this effect was greater for the DTI method than the DSI method. This suggested that DTI can better...compared to level surface walking. This project combines experimental EEG data and electromyography (EMG) data recorded from seven muscles of the leg

  7. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  8. Method of improving a digital image

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J. (Inventor); Woodell, Glenn A. (Inventor); Rahman, Zia-ur (Inventor)

    1999-01-01

    A method of improving a digital image is provided. The image is initially represented by digital data indexed to represent positions on a display. The digital data is indicative of an intensity value I.sub.i (x,y) for each position (x,y) in each i-th spectral band. The intensity value for each position in each i-th spectral band is adjusted to generate an adjusted intensity value for each position in each i-th spectral band in accordance with ##EQU1## where S is the number of unique spectral bands included in said digital data, W.sub.n is a weighting factor and * denotes the convolution operator. Each surround function F.sub.n (x,y) is uniquely scaled to improve an aspect of the digital image, e.g., dynamic range compression, color constancy, and lightness rendition. The adjusted intensity value for each position in each i-th spectral band is filtered with a common function and then presented to a display device. For color images, a novel color restoration step is added to give the image true-to-life color that closely matches human observation.

  9. Estimation of signal-dependent noise level function in transform domain via a sparse recovery model.

    PubMed

    Yang, Jingyu; Gan, Ziqiao; Wu, Zhaoyang; Hou, Chunping

    2015-05-01

    This paper proposes a novel algorithm to estimate the noise level function (NLF) of signal-dependent noise (SDN) from a single image based on the sparse representation of NLFs. Noise level samples are estimated from the high-frequency discrete cosine transform (DCT) coefficients of nonlocal-grouped low-variation image patches. Then, an NLF recovery model based on the sparse representation of NLFs under a trained basis is constructed to recover NLF from the incomplete noise level samples. Confidence levels of the NLF samples are incorporated into the proposed model to promote reliable samples and weaken unreliable ones. We investigate the behavior of the estimation performance with respect to the block size, sampling rate, and confidence weighting. Simulation results on synthetic noisy images show that our method outperforms existing state-of-the-art schemes. The proposed method is evaluated on real noisy images captured by three types of commodity imaging devices, and shows consistently excellent SDN estimation performance. The estimated NLFs are incorporated into two well-known denoising schemes, nonlocal means and BM3D, and show significant improvements in denoising SDN-polluted images.

  10. Refocusing-range and image-quality enhanced optical reconstruction of 3-D objects from integral images using a principal periodic δ-function array

    NASA Astrophysics Data System (ADS)

    Ai, Lingyu; Kim, Eun-Soo

    2018-03-01

    We propose a method for refocusing-range and image-quality enhanced optical reconstruction of three-dimensional (3-D) objects from integral images only by using a 3 × 3 periodic δ-function array (PDFA), which is called a principal PDFA (P-PDFA). By directly convolving the elemental image array (EIA) captured from 3-D objects with the P-PDFAs whose spatial periods correspond to each object's depth, a set of spatially-filtered EIAs (SF-EIAs) are extracted, and from which 3-D objects can be reconstructed to be refocused on their real depth. convolutional operations are performed directly on each of the minimum 3 × 3 EIs of the picked-up EIA, the capturing and refocused-depth ranges of 3-D objects can be greatly enhanced, as well as 3-D objects much improved in image quality can be reconstructed without any preprocessing operations. Through ray-optical analysis and optical experiments with actual 3-D objects, the feasibility of the proposed method has been confirmed.

  11. Review of optical breast imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Grosenick, Dirk; Rinneberg, Herbert; Cubeddu, Rinaldo; Taroni, Paola

    2016-09-01

    Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.

  12. Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging.

    PubMed

    Zuendorf, Gerhard; Kerrouche, Nacer; Herholz, Karl; Baron, Jean-Claude

    2003-01-01

    Principal component analysis (PCA) is a well-known technique for reduction of dimensionality of functional imaging data. PCA can be looked at as the projection of the original images onto a new orthogonal coordinate system with lower dimensions. The new axes explain the variance in the images in decreasing order of importance, showing correlations between brain regions. We used an efficient, stable and analytical method to work out the PCA of Positron Emission Tomography (PET) images of 74 normal subjects using [(18)F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. Principal components (PCs) and their relation to age effects were investigated. Correlations between the projections of the images on the new axes and the age of the subjects were carried out. The first two PCs could be identified as being the only PCs significantly correlated to age. The first principal component, which explained 10% of the data set variance, was reduced only in subjects of age 55 or older and was related to loss of signal in and adjacent to ventricles and basal cisterns, reflecting expected age-related brain atrophy with enlarging CSF spaces. The second principal component, which accounted for 8% of the total variance, had high loadings from prefrontal, posterior parietal and posterior cingulate cortices and showed the strongest correlation with age (r = -0.56), entirely consistent with previously documented age-related declines in brain glucose utilization. Thus, our method showed that the effect of aging on brain metabolism has at least two independent dimensions. This method should have widespread applications in multivariate analysis of brain functional images. Copyright 2002 Wiley-Liss, Inc.

  13. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    PubMed

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    PubMed

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a function of iteration. Convergence of direct reconstruction was slow with uniform initialization; lower bias was achieved in fewer iterations by initializing with the filtered indirect iteration 1 images. For most parameters and regions evaluated, the direct method achieved the same or lower absolute bias at matched iteration as the indirect method, with 23%-65% lower noise. Additionally, the direct method gave better contrast between the perfusion defect and surrounding normal tissue than the indirect method. Gated parametric images from the human dataset had comparable relative performance of indirect and direct, in terms of mean parameter values per iteration. Changes in myocardial wall thickness and blood pool size across gates were readily visible in the gated parametric images, with higher contrast between myocardium and left ventricle blood pool in parametric images than gated SUV images. Direct reconstruction can produce parametric images with less noise than the indirect method, opening the potential utility of gated parametric imaging for perfusion PET. © 2017 American Association of Physicists in Medicine.

  15. Scaled Heavy-Ball Acceleration of the Richardson-Lucy Algorithm for 3D Microscopy Image Restoration.

    PubMed

    Wang, Hongbin; Miller, Paul C

    2014-02-01

    The Richardson-Lucy algorithm is one of the most important in image deconvolution. However, a drawback is its slow convergence. A significant acceleration was obtained using the technique proposed by Biggs and Andrews (BA), which is implemented in the deconvlucy function of the image processing MATLAB toolbox. The BA method was developed heuristically with no proof of convergence. In this paper, we introduce the heavy-ball (H-B) method for Poisson data optimization and extend it to a scaled H-B method, which includes the BA method as a special case. The method has a proof of the convergence rate of O(K(-2)), where k is the number of iterations. We demonstrate the superior convergence performance, by a speedup factor of five, of the scaled H-B method on both synthetic and real 3D images.

  16. SU-E-T-217: Intrinsic Respiratory Gating in Small Animal CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Y; Smith, M; Mistry, N

    Purpose: Preclinical animal models of lung cancer can provide a controlled test-bed for testing dose escalation or function-based-treatment-planning studies. However, to extract lung function, i.e. ventilation, one needs to be able to image the lung at different phases of ventilation (in-hale / ex-hale). Most respiratory-gated imaging using micro-CT involves using an external ventilator and surgical intervention limiting the utility in longitudinal studies. A new intrinsic respiratory retrospective gating method was developed and tested in mice. Methods: A fixed region of interest (ROI) that covers the diaphragm was selected on all projection images to estimate the mean intensity (M). The meanmore » intensity depends on the projection angle and diaphragm position. A 3-point moving average (A) of consecutive M values: Mpre, Mcurrent and Mpost, was calculated to be subtracted from Mcurrent. A fixed threshold was used to enable amplitude based sorting into 4 different phases of respiration. Images at full-inhale and end-exhale phases of respiration were reconstructed using the open source OSCaR. Lung volumes estimated at the 2 phases of respiration were validated against literature values. Results: Intrinsic retrospective gating was accomplished without the use of any external breathing waveform. While projection images were acquired at 360 different angles. Only 138 and 104 projections were used to reconstruct images at full-inhale and end-exhale. This often results in non-uniform under-sampled angular projections leading to some minor streaking artifacts. The calculated expiratory, inspiratory and tidal lung volumes correlated well with the values known from the literature. Conclusion: Our initial result demonstrates an intrinsic gating method that is suitable for flat panel cone beam small animal CT systems. Reduction in streaking artifacts can be accomplished by oversampling the data or using iterative reconstruction methods. This initial experience will enable freebreathing small animal micro-CT imaging to fuel longitudinal studies of lung function.« less

  17. Simultaneous dual-color fluorescence microscope: a characterization study.

    PubMed

    Li, Zheng; Chen, Xiaodong; Ren, Liqiang; Song, Jie; Li, Yuhua; Zheng, Bin; Liu, Hong

    2013-01-01

    High spatial resolution and geometric accuracy is crucial for chromosomal analysis of clinical cytogenetic applications. High resolution and rapid simultaneous acquisition of multiple fluorescent wavelengths can be achieved by utilizing concurrent imaging with multiple detectors. However, such class of microscopic systems functions differently from traditional fluorescence microscopes. To develop a practical characterization framework to assess and optimize the performance of a high resolution and dual-color fluorescence microscope designed for clinical chromosomal analysis. A dual-band microscopic imaging system utilizes a dichroic mirror, two sets of specially selected optical filters, and two detectors to simultaneously acquire two fluorescent wavelengths. The system's geometric distortion, linearity, the modulation transfer function, and the dual detectors' alignment were characterized. Experiment results show that the geometric distortion at lens periphery is less than 1%. Both fluorescent channels show linear signal responses, but there exists discrepancy between the two due to the detectors' non-uniform response ratio to different wavelengths. In terms of the spatial resolution, the two contrast transfer function curves trend agreeably with the spatial frequency. The alignment measurement allows quantitatively assessing the cameras' alignment. A result image of adjusted alignment is demonstrated to show the reduced discrepancy by using the alignment measurement method. In this paper, we present a system characterization study and its methods for a specially designed imaging system for clinical cytogenetic applications. The presented characterization methods are not only unique to this dual-color imaging system but also applicable to evaluation and optimization of other similar multi-color microscopic image systems for improving their clinical utilities for future cytogenetic applications.

  18. Images as tools. On visual epistemic practices in the biological sciences.

    PubMed

    Samuel, Nina

    2013-06-01

    Contemporary visual epistemic practices in the biological sciences raise new questions of how to transform an iconic data measurements into images, and how the process of an imaging technique may change the material it is 'depicting'. This case-oriented study investigates microscopic imagery, which is used by system and synthetic biologists alike. The core argument is developed around the analysis of two recent methods, developed between 2003 and 2006: localization microscopy and photo-induced cell death. Far from functioning merely as illustrations of work done by other means, images can be determined as tools for discovery in their own right and as objects of investigation. Both methods deploy different constellations of intended and unintended interactions between visual appearance and underlying biological materiality. To characterize these new ways of interaction, the article introduces the notions of 'operational images' and 'operational agency'. Despite all their novelty, operational images are still subject to conventions of seeing and depicting: Phenomena emerging with the new method of localization microscopy have to be designed according to image traditions of older, conventional fluorescence microscopy to function properly as devices for communication between physicists and biologists. The article emerged from a laboratory study based on interviews conducted with researchers from the Kirchhoff-Institute for Physics and German Cancer Research Center (DKFZ) at Bioquant, Heidelberg, in 2011. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Quantitative image analysis for evaluating the coating thickness and pore distribution in coated small particles.

    PubMed

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    2009-04-01

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined along the particle perimeter, from which a statistical analysis could be performed to obtain relevant thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The characterization of the pore structure involved a proper segmentation of pores from the coating and a granulometry operation. The presented method facilitates the quantification of porosity, thickness and pore size distribution of a coating. These parameters are considered the important coating properties, which are critical to coating functionality. Additionally, the effect of the coating process variations on coating quality can straight-forwardly be assessed. Enabling a good characterization of the coating qualities, the presented method can be used as a fast and effective tool to predict coating functionality. This approach also enables the influence of different process conditions on coating properties to be effectively monitored, which latterly leads to process tailoring.

  20. Retina Image Vessel Segmentation Using a Hybrid CGLI Level Set Method

    PubMed Central

    Chen, Meizhu; Li, Jichun; Zhang, Encai

    2017-01-01

    As a nonintrusive method, the retina imaging provides us with a better way for the diagnosis of ophthalmologic diseases. Extracting the vessel profile automatically from the retina image is an important step in analyzing retina images. A novel hybrid active contour model is proposed to segment the fundus image automatically in this paper. It combines the signed pressure force function introduced by the Selective Binary and Gaussian Filtering Regularized Level Set (SBGFRLS) model with the local intensity property introduced by the Local Binary fitting (LBF) model to overcome the difficulty of the low contrast in segmentation process. It is more robust to the initial condition than the traditional methods and is easily implemented compared to the supervised vessel extraction methods. Proposed segmentation method was evaluated on two public datasets, DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (Structured Analysis of the Retina) (the average accuracy of 0.9390 with 0.7358 sensitivity and 0.9680 specificity on DRIVE datasets and average accuracy of 0.9409 with 0.7449 sensitivity and 0.9690 specificity on STARE datasets). The experimental results show that our method is effective and our method is also robust to some kinds of pathology images compared with the traditional level set methods. PMID:28840122

Top