Sample records for functional imaging studies

  1. Some Problems for Representations of Brain Organization Based on Activation in Functional Imaging

    ERIC Educational Resources Information Center

    Sidtis, John J.

    2007-01-01

    Functional brain imaging has overshadowed traditional lesion studies in becoming the dominant approach to the study of brain-behavior relationships. The proponents of functional imaging studies frequently argue that this approach provides an advantage over lesion studies by observing normal brain activity in vivo without the disruptive effects of…

  2. Assessment of functional MR imaging in neurosurgical planning.

    PubMed

    Lee, C C; Ward, H A; Sharbrough, F W; Meyer, F B; Marsh, W R; Raffel, C; So, E L; Cascino, G D; Shin, C; Xu, Y; Riederer, S J; Jack, C R

    1999-09-01

    Presurgical sensorimotor mapping with functional MR imaging is gaining acceptance in clinical practice; however, to our knowledge, its therapeutic efficacy has not been assessed in a sizable group of patients. Our goal was to identify how preoperative sensorimotor functional studies were used to guide the treatment of neuro-oncologic and epilepsy surgery patients. We retrospectively reviewed the medical records of 46 patients who had undergone preoperative sensorimotor functional MR imaging to document how often and in what ways the imaging studies had influenced their management. Clinical management decisions were grouped into three categories: for assessing the feasibility of surgical resection, for surgical planning, and for selecting patients for invasive functional mapping procedures. Functional MR imaging studies successfully identified the functional central sulcus ipsilateral to the abnormality in 32 of the 46 patients, and these 32 patients are the focus of this report. In epilepsy surgery candidates, the functional MR imaging results were used to determine in part the feasibility of a proposed surgical resection in 70% of patients, to aid in surgical planning in 43%, and to select patients for invasive surgical functional mapping in 52%. In tumor patients, the functional MR imaging results were used to determine in part the feasibility of surgical resection in 55%, to aid in surgical planning in 22%, and to select patients for invasive surgical functional mapping in 78%. Overall, functional MR imaging studies were used in one or more of the three clinical decision-making categories in 89% of tumor patients and 91% of epilepsy surgery patients. Preoperative functional MR imaging is useful to clinicians at three key stages in the preoperative clinical management paradigm of a substantial percentage of patients who are being considered for resective tumor or epilepsy surgery.

  3. The Relationship Between Body Image and Sexual Function in Middle-Aged Women.

    PubMed

    Afshari, Poorandokht; Houshyar, Zeinab; Javadifar, Nahid; Pourmotahari, Fatemeh; Jorfi, Maryam

    2016-11-01

    An individual's social and marital function, interpersonal relationships, and quality of life may, sometimes be affected by negative body image. This study is aimed at determining the relationship between body image and sexual function in middle-aged women. In this cross-sectional study, 437 middle-aged women, who were referred to various public healthcare centers in Ahvaz, Iran during 2014-2015, were selected. The Female Sexual Function Index (FSFI) and Body Shape Questionnaire (BSQ) were used for data collection. Chi-square, one-way analysis of variance, Spearman's correlation test, and logistic regression analysis were performed for statistical analysis. Approximately 58% of the participants expressed satisfaction with their body image, 35% were mildly dissatisfied, and 7% were moderately dissatisfied with their body image. Body image had a significant negative relationship with sexual satisfaction and sexual function (p=0.005). Furthermore, there was a significant relationship between body image and sexual desire (p=0.022), pain (p=0.001), sexual arousal (p<0.0005), sexual orgasm (p=0.001), and sexual satisfaction (p<0.0005). As the results indicated, body image is an important aspect of sexual health. In this study, women with a positive body image had higher sexual function valuation, compared to women with a negative body image. Also, body shape satisfaction was a predictor of sexual function.

  4. Functional Imaging and Migraine: New Connections?

    PubMed Central

    Schwedt, Todd J.; Chong, Catherine D.

    2015-01-01

    Purpose of Review Over the last several years, a growing number of brain functional imaging studies have provided insights into mechanisms underlying migraine. This manuscript reviews the recent migraine functional neuroimaging literature and provides recommendations for future studies that will help fill knowledge gaps. Recent Findings Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies have identified brain regions that might be responsible for mediating the onset of a migraine attack and those associated with migraine symptoms. Enhanced activation of brain regions that facilitate processing of sensory stimuli suggests a mechanism by which migraineurs are hypersensitive to visual, olfactory, and cutaneous stimuli. Resting state functional connectivity MRI studies have identified numerous brain regions and functional networks with atypical functional connectivity in migraineurs, suggesting that migraine is associated with aberrant brain functional organization. Summary fMRI and PET studies that have identified brain regions and brain networks that are atypical in migraine have helped to describe the neurofunctional basis for migraine symptoms. Future studies should compare functional imaging findings in migraine to other headache and pain disorders and should explore the utility of functional imaging data as biomarkers for diagnostic and treatment purposes. PMID:25887764

  5. Functional Imaging Biomarkers: Potential to Guide an Individualised Approach to Radiotherapy.

    PubMed

    Prestwich, R J D; Vaidyanathan, S; Scarsbrook, A F

    2015-10-01

    The identification of robust prognostic and predictive biomarkers would transform the ability to implement an individualised approach to radiotherapy. In this regard, there has been a surge of interest in the use of functional imaging to assess key underlying biological processes within tumours and their response to therapy. Importantly, functional imaging biomarkers hold the potential to evaluate tumour heterogeneity/biology both spatially and temporally. An ever-increasing range of functional imaging techniques is now available primarily involving positron emission tomography and magnetic resonance imaging. Small-scale studies across multiple tumour types have consistently been able to correlate changes in functional imaging parameters during radiotherapy with disease outcomes. Considerable challenges remain before the implementation of functional imaging biomarkers into routine clinical practice, including the inherent temporal variability of biological processes within tumours, reproducibility of imaging, determination of optimal imaging technique/combinations, timing during treatment and design of appropriate validation studies. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  6. Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.

    2014-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.

  7. Functional Magnetic Resonance Imaging and Spectroscopic Imaging of the Brain: Application of fMRI and fMRS to Reading Disabilities and Education.

    ERIC Educational Resources Information Center

    Richards, Todd L.

    2001-01-01

    This tutorial/review covers functional brain-imaging methods and results used to study language and reading disabilities. Although the emphasis is on magnetic resonance imaging and functional magnetic resonance spectroscopy, other imaging techniques are also discussed including positron emission tomography, electroencephalography,…

  8. Complementary aspects of diffusion imaging and fMRI; I: structure and function.

    PubMed

    Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J

    2006-05-01

    Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.

  9. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.

    PubMed

    Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan

    2017-08-01

    The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.

  10. Functional Magnetic Resonance Imaging in Alzheimer' Disease Drug Development.

    PubMed

    Holiga, Stefan; Abdulkadir, Ahmed; Klöppel, Stefan; Dukart, Juergen

    2018-01-01

    While now commonly applied for studying human brain function the value of functional magnetic resonance imaging in drug development has only recently been recognized. Here we describe the different functional magnetic resonance imaging techniques applied in Alzheimer's disease drug development with their applications, implementation guidelines, and potential pitfalls.

  11. The application of functional imaging techniques to personalise chemoradiotherapy in upper gastrointestinal malignancies.

    PubMed

    Wilson, J M; Partridge, M; Hawkins, M

    2014-09-01

    Functional imaging gives information about physiological heterogeneity in tumours. The utility of functional imaging tests in providing predictive and prognostic information after chemoradiotherapy for both oesophageal cancer and pancreatic cancer will be reviewed. The benefit of incorporating functional imaging into radiotherapy planning is also evaluated. In cancers of the upper gastrointestinal tract, the vast majority of functional imaging studies have used (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET). Few studies in locally advanced pancreatic cancer have investigated the utility of functional imaging in risk-stratifying patients or aiding target volume definition. Certain themes from the oesophageal data emerge, including the need for a multiparametric assessment of functional images and the added value of response assessment rather than relying on single time point measures. The sensitivity and specificity of FDG-PET to predict treatment response and survival are not currently high enough to inform treatment decisions. This suggests that a multimodal, multiparametric approach may be required. FDG-PET improves target volume definition in oesophageal cancer by improving the accuracy of tumour length definition and by improving the nodal staging of patients. The ideal functional imaging test would accurately identify patients who are unlikely to achieve a pathological complete response after chemoradiotherapy and would aid the delineation of a biological target volume that could be used for treatment intensification. The current limitations of published studies prevent integrating imaging-derived parameters into decision making on an individual patient basis. These limitations should inform future trial design in oesophageal and pancreatic cancers. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  12. A pilot study investigating whether focusing on body functionality can protect women from the potential negative effects of viewing thin-ideal media images.

    PubMed

    Alleva, Jessica M; Veldhuis, Jolanda; Martijn, Carolien

    2016-06-01

    This pilot study explored whether focusing on body functionality (i.e., everything the body can do) can protect women from potential harmful effects of exposure to thin-ideal images. Seventy women (Mage=20.61) completed an assignment wherein they either described the functionality of their body or the routes that they often travel (control). Afterward, participants were exposed to a series of thin-ideal images. Appearance and functionality satisfaction were measured before the assignment; appearance and functionality satisfaction, self-objectification, and body appreciation were measured after exposure. Results showed that participants who focused on body functionality experienced greater functionality satisfaction and body appreciation compared to control participants. Therefore, focusing on body functionality could be a beneficial individual-level technique that women can use to protect and promote a positive body image in the face of thin-ideal images. Research including a condition wherein participants are exposed to (product-only) control images is necessary to draw firmer conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  14. Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.

    2014-03-01

    Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.

  15. Enhanced spectral domain optical coherence tomography for pathological and functional studies

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijia

    Optical coherence tomography (OCT) is a novel technique that enables noninvasive or minimally invasive, cross-sectional imaging of biological tissue at sub-10mum spatial resolution and up to 2-3mm imaging depth. Numerous technological advances have emerged in recent years that have shown great potential to develop OCT into a powerful imaging and diagnostic tools. In particular, the implementation of Fourier-domain OCT (FDOCT) is a major step forward that leads to greatly improved imaging rate and image fidelity of OCT. This dissertation summarizes the work that focuses on enhancing the performances and functionalities of spectral radar based FDOCT (SDOCT) for pathological and functional applications. More specifically, chapters 1-4 emphasize on the development of SDOCT and its utility in pathological studies, including cancer diagnosis. The principle of SDOCT is first briefly outlined, followed by the design of our bench-top SDOCT systems with emphasis on spectral linear interpolation, calibration and system dispersion compensation. For ultrahigh-resolution SDOCT, time-lapse image registration and frame averaging is introduced to effectively reduce speckle noise and uncover subcellular details, showing great promise for enhancing the diagnosis of carcinoma in situ. To overcome the image depth limitation of OCT, a dual-modal imaging method combing SDOCT with high-frequency ultrasound is proposed and examined in animal cancer models to enhance the sensitivity and staging capabilities for bladder cancer diagnosis. Chapters 5-7 summarize the work on developing Doppler SDOCT for functional studies. Digital-frequency-ramping OCT (DFR-OCT) is developed in the study, which has demonstrated the ability to significantly improve the signal-to-noise ratio and thus sensitivity for retrieving subsurface blood flow imaging. New DFR algorithms and imaging processing methods are discussed to further enhance cortical CBF imaging. Applications of DFR-OCT for brain functional studies are presented and laser speckle imaging is combined to enable quantitative cerebral blood flow (CBF) imaging at high spatiotemporal resolutions. An angiography-enhanced Doppler optical coherence tomography (aDFR-OCT) was also demonstrated to enable quantitative imaging of capillary changes for brain functional studies. Lastly, future work on technological development and potential biomedical applications is briefly outlined.

  16. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    ERIC Educational Resources Information Center

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  17. Sexual Anatomy and Function in Women With and Without Genital Mutilation: A Cross-Sectional Study.

    PubMed

    Abdulcadir, Jasmine; Botsikas, Diomidis; Bolmont, Mylène; Bilancioni, Aline; Djema, Dahila Amal; Bianchi Demicheli, Francesco; Yaron, Michal; Petignat, Patrick

    2016-02-01

    Female genital mutilation (FGM), the partial or total removal of the external genitalia for non-medical reasons, can affect female sexuality. However, only few studies are available, and these have significant methodologic limitations. To understand the impact of FGM on the anatomy of the clitoris and bulbs using magnetic resonance imaging and on sexuality using psychometric instruments and to study whether differences in anatomy after FGM correlate with differences in sexual function, desire, and body image. A cross-sectional study on sexual function and sexual anatomy was performed in women with and without FGM. Fifteen women with FGM involving cutting of the clitoris and 15 uncut women as a control group matched by age and parity were prospectively recruited. Participants underwent pelvic magnetic resonance imaging with vaginal opacification by ultrasound gel and completed validated questionnaires on desire (Sexual Desire Inventory), body image (Questionnaire d'Image Corporelle [Body Image Satisfaction Scale]), and sexual function (Female Sexual Function Index). Primary outcomes were clitoral and bulbar measurements on magnetic resonance images. Secondary outcomes were sexual function, desire, and body image scores. Women with FGM did not have significantly decreased clitoral glans width and body length but did have significantly smaller volume of the clitoris plus bulbs. They scored significantly lower on sexual function and desire than women without FGM. They did not score lower on Female Sexual Function Index sub-scores for orgasm, desire, and satisfaction and on the Questionnaire d'Image Corporelle but did report significantly more dyspareunia. A larger total volume of clitoris and bulbs did not correlate with higher Female Sexual Function Index and Sexual Desire Inventory scores in women with FGM compared with uncut women who had larger total volume that correlated with higher scores. Women with FGM have sexual erectile tissues for sexual arousal, orgasm, and pleasure. Women with sexual dysfunction should be appropriately counseled and treated. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  18. Insights into Brown Adipose Tissue Physiology as Revealed by Imaging Studies

    PubMed Central

    Izzi-Engbeaya, Chioma; Salem, Victoria; Atkar, Rajveer S; Dhillo, Waljit S

    2014-01-01

    There has been resurgence in interest in brown adipose tissue (BAT) following radiological and histological identification of metabolically active BAT in adult humans. Imaging enables BAT to be studied non-invasively and therefore imaging studies have contributed a significant amount to what is known about BAT function in humans. In this review the current knowledge (derived from imaging studies) about the prevalence, function, activity and regulation of BAT in humans (as well as relevant rodent studies), will be summarized. PMID:26167397

  19. Functional Magnetic Resonance Imaging and Pediatric Anxiety

    ERIC Educational Resources Information Center

    Pine, Daniel S.; Guyer, Amanda E.; Leibenluft, Ellen; Peterson, Bradley S.; Gerber, Andrew

    2008-01-01

    The use of functional magnetic resonance imaging in investigating pediatric anxiety disorders is studied. Functional magnetic resonance imaging can be utilized in demonstrating parallels between the neural architecture of difference in anxiety of humans and the neural architecture of attention-orienting behavior in nonhuman primates or rodents.…

  20. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    USGS Publications Warehouse

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  1. A pilot study examining correlates of body image among women living with SCI.

    PubMed

    Bassett, R L; Martin Ginis, K A; Buchholz, A C

    2009-06-01

    Cross-sectional pilot study. To explore correlates of body image among women with spinal cord injury (SCI), within the framework of Cash's cognitive behavioral model of body image. Hamilton, Ontario, Canada. Women with SCI (N=11, 64% with tetraplegia) reported their functional and appearance body image (Adult Body Satisfaction Questionnaire). A 3-day recall of leisure time physical activity (LTPA), three measures of body composition (that is, weight, waist circumference, body fat) and several demographic variables were assessed as potential correlates. Appearance satisfaction was negatively correlated with all three measures of body composition and positively correlated with years postinjury. Functional satisfaction was positively correlated with years postinjury, and negatively correlated with various LTPA variables. Functional and appearance body image may improve with time following SCI. Body composition may impact satisfaction with physical appearance for some women. The negative relationship between LTPA and functional satisfaction merits further examination, as functional dissatisfaction may motivate individuals to engage in certain types and intensities of LTPA. Correlates of body image differ between appearance and functional satisfaction. Future research should examine appearance and functional satisfaction separately among women with SCI.

  2. [Brain imaging in autism spectrum disorders. A review].

    PubMed

    Dziobek, I; Köhne, S

    2011-05-01

    In the past two decades, an increasing number of functional and structural brain imaging studies has provided insights into the neurobiological basis of autism spectrum disorders (ASD). This article summarizes pertinent functional brain imaging studies addressing the neuronal underpinnings of ASD symptomatology (impairments in social interaction and communication, repetitive and restrictive behavior) and associated neuropsychological deficits (theory of mind, executive functions, central coherence), complemented by relevant structural imaging findings. The results of these studies show that although cognitive functions in ASD are generally mediated by the same brain regions as in typically developed individuals, the degree and especially the patterns of brain activation often differ. Therefore, a hypothesis of aberrant network connectivity has increasingly been favored over one of focal brain dysfunction.

  3. Imaging learning and memory: classical conditioning.

    PubMed

    Schreurs, B G; Alkon, D L

    2001-12-15

    The search for the biological basis of learning and memory has, until recently, been constrained by the limits of technology to classic anatomic and electrophysiologic studies. With the advent of functional imaging, we have begun to delve into what, for many, was a "black box." We review several different types of imaging experiments, including steady state animal experiments that image the functional labeling of fixed tissues, and dynamic human studies based on functional imaging of the intact brain during learning. The data suggest that learning and memory involve a surprising conservation of mechanisms and the integrated networking of a number of structures and processes. Copyright 2001 Wiley-Liss, Inc.

  4. The administration of psilocybin to healthy, hallucinogen-experienced volunteers in a mock-functional magnetic resonance imaging environment: a preliminary investigation of tolerability.

    PubMed

    Carhart-Harris, Robin L; Williams, Tim M; Sessa, Ben; Tyacke, Robin J; Rich, Ann S; Feilding, Amanda; Nutt, David J

    2011-11-01

    This study sought to assess the tolerability of intravenously administered psilocybin in healthy, hallucinogen-experienced volunteers in a mock-magnetic resonance imaging environment as a preliminary stage to a controlled investigation using functional magnetic resonance imaging to explore the effects of psilocybin on cerebral blood flow and activity. The present pilot study demonstrated that up to 2 mg of psilocybin delivered as a slow intravenous injection produces short-lived but typical drug effects that are psychologically and physiologically well tolerated. With appropriate care, this study supports the viability of functional magnetic resonance imaging work with psilocybin.

  5. Vectorial point spread function and optical transfer function in oblique plane imaging.

    PubMed

    Kim, Jeongmin; Li, Tongcang; Wang, Yuan; Zhang, Xiang

    2014-05-05

    Oblique plane imaging, using remote focusing with a tilted mirror, enables direct two-dimensional (2D) imaging of any inclined plane of interest in three-dimensional (3D) specimens. It can image real-time dynamics of a living sample that changes rapidly or evolves its structure along arbitrary orientations. It also allows direct observations of any tilted target plane in an object of which orientational information is inaccessible during sample preparation. In this work, we study the optical resolution of this innovative wide-field imaging method. Using the vectorial diffraction theory, we formulate the vectorial point spread function (PSF) of direct oblique plane imaging. The anisotropic lateral resolving power caused by light clipping from the tilted mirror is theoretically analyzed for all oblique angles. We show that the 2D PSF in oblique plane imaging is conceptually different from the inclined 2D slice of the 3D PSF in conventional lateral imaging. Vectorial optical transfer function (OTF) of oblique plane imaging is also calculated by the fast Fourier transform (FFT) method to study effects of oblique angles on frequency responses.

  6. Expand Your Horizon: A programme that improves body image and reduces self-objectification by training women to focus on body functionality.

    PubMed

    Alleva, Jessica M; Martijn, Carolien; Van Breukelen, Gerard J P; Jansen, Anita; Karos, Kai

    2015-09-01

    This study tested Expand Your Horizon, a programme designed to improve body image by training women to focus on the functionality of their body using structured writing assignments. Eighty-one women (Mage=22.77) with a negative body image were randomised to the Expand Your Horizon programme or to an active control programme. Appearance satisfaction, functionality satisfaction, body appreciation, and self-objectification were measured at pretest, posttest, and one-week follow-up. Following the intervention, participants in the Expand Your Horizon programme experienced greater appearance satisfaction, functionality satisfaction, and body appreciation, and lower levels of self-objectification, compared to participants in the control programme. Partial eta-squared effect sizes were of small to medium magnitude. This study is the first to show that focusing on body functionality can improve body image and reduce self-objectification in women with a negative body image. These findings provide support for addressing body functionality in programmes designed to improve body image. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis.

    PubMed

    Dym, R Joshua; Burns, Judah; Freeman, Katherine; Lipton, Michael L

    2011-11-01

    To perform a systematic review and meta-analysis to quantitatively assess functional magnetic resonance (MR) imaging lateralization of language function in comparison with the Wada test. This study was determined to be exempt from review by the institutional review board. A systematic review and meta-analysis were performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A structured Medline search was conducted to identify all studies that compared functional MR imaging with the Wada test for determining hemispheric language dominance prior to brain surgery. Studies meeting predetermined inclusion criteria were selected independently by two radiologists who also assessed their quality using the Quality Assessment of Diagnostic Accuracy Studies tool. Language dominance was classified as typical (left hemispheric language dominance) or atypical (right hemispheric language dominance or bilateral language representation) for each patient. A meta-analysis was then performed by using a bivariate random-effects model to derive estimates of sensitivity and specificity, with Wada as the standard of reference. Subgroup analyses were also performed to compare the different functional MR imaging techniques utilized by the studies. Twenty-three studies, comprising 442 patients, met inclusion criteria. The sensitivity and specificity of functional MR imaging for atypical language dominance (compared with the Wada test) were 83.5% (95% confidence interval: 80.2%, 86.7%) and 88.1% (95% confidence interval: 87.0%, 89.2%), respectively. Functional MR imaging provides an excellent, noninvasive alternative for language lateralization and should be considered for the initial preoperative assessment of hemispheric language dominance. Further research may help determine which functional MR methods are most accurate for specific patient populations. RSNA, 2011

  8. Image correlation and sampling study

    NASA Technical Reports Server (NTRS)

    Popp, D. J.; Mccormack, D. S.; Sedwick, J. L.

    1972-01-01

    The development of analytical approaches for solving image correlation and image sampling of multispectral data is discussed. Relevant multispectral image statistics which are applicable to image correlation and sampling are identified. The general image statistics include intensity mean, variance, amplitude histogram, power spectral density function, and autocorrelation function. The translation problem associated with digital image registration and the analytical means for comparing commonly used correlation techniques are considered. General expressions for determining the reconstruction error for specific image sampling strategies are developed.

  9. Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia

    PubMed Central

    Williams, David A; Gracely, Richard H

    2006-01-01

    Techniques in neuroimaging such as functional magnetic resonance imaging (fMRI) have helped to provide insights into the role of supraspinal mechanisms in pain perception. This review focuses on studies that have applied fMRI in an attempt to gain a better understanding of the mechanisms involved in the processing of pain associated with fibromyalgia. This article provides an overview of the nociceptive system as it functions normally, reviews functional brain imaging methods, and integrates the existing literature utilizing fMRI to study central pain mechanisms in fibromyalgia. PMID:17254318

  10. Accuracy of Presurgical Functional MR Imaging for Language Mapping of Brain Tumors: A Systematic Review and Meta-Analysis.

    PubMed

    Weng, Hsu-Huei; Noll, Kyle R; Johnson, Jason M; Prabhu, Sujit S; Tsai, Yuan-Hsiung; Chang, Sheng-Wei; Huang, Yen-Chu; Lee, Jiann-Der; Yang, Jen-Tsung; Yang, Cheng-Ta; Tsai, Ying-Huang; Yang, Chun-Yuh; Hazle, John D; Schomer, Donald F; Liu, Ho-Ling

    2018-02-01

    Purpose To compare functional magnetic resonance (MR) imaging for language mapping (hereafter, language functional MR imaging) with direct cortical stimulation (DCS) in patients with brain tumors and to assess factors associated with its accuracy. Materials and Methods PubMed/MEDLINE and related databases were searched for research articles published between January 2000 and September 2016. Findings were pooled by using bivariate random-effects and hierarchic summary receiver operating characteristic curve models. Meta-regression and subgroup analyses were performed to evaluate whether publication year, functional MR imaging paradigm, magnetic field strength, statistical threshold, and analysis software affected classification accuracy. Results Ten articles with a total of 214 patients were included in the analysis. On a per-patient basis, the pooled sensitivity and specificity of functional MR imaging was 44% (95% confidence interval [CI]: 14%, 78%) and 80% (95% CI: 54%, 93%), respectively. On a per-tag basis (ie, each DCS stimulation site or "tag" was considered a separate data point across all patients), the pooled sensitivity and specificity were 67% (95% CI: 51%, 80%) and 55% (95% CI: 25%, 82%), respectively. The per-tag analysis showed significantly higher sensitivity for studies with shorter functional MR imaging session times (P = .03) and relaxed statistical threshold (P = .05). Significantly higher specificity was found when expressive language task (P = .02), longer functional MR imaging session times (P < .01), visual presentation of stimuli (P = .04), and stringent statistical threshold (P = .01) were used. Conclusion Results of this study showed moderate accuracy of language functional MR imaging when compared with intraoperative DCS, and the included studies displayed significant methodologic heterogeneity. © RSNA, 2017 Online supplemental material is available for this article.

  11. Functional Imaging of Retinal Photoreceptors and Inner Neurons Using Stimulus-Evoked Intrinsic Optical Signals

    PubMed Central

    Yao, Xin-Cheng; Li, Yi-Chao

    2013-01-01

    Retinal development is a dynamic process both anatomically and functionally. High-resolution imaging and dynamic monitoring of photoreceptors and inner neurons can provide important information regarding the structure and function of the developing retina. In this chapter, we describe intrinsic optical signal (IOS) imaging as a high spatiotemporal resolution method for functional study of living retinal tissues. IOS imaging is based on near infrared (NIR) light detection of stimulus-evoked transient change of inherent optical characteristics of the cells. With no requirement for exogenous biomarkers, IOS imaging is totally noninvasive for functional mapping of stimulus-evoked spatiotemporal dynamics of the photoreceptors and inner retinal neurons. PMID:22688714

  12. Cardiac function and perfusion dynamics measured on a beat-by-beat basis in the live mouse using ultra-fast 4D optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Ford, Steven J.; Deán-Ben, Xosé L.; Razansky, Daniel

    2015-03-01

    The fast heart rate (~7 Hz) of the mouse makes cardiac imaging and functional analysis difficult when studying mouse models of cardiovascular disease, and cannot be done truly in real-time and 3D using established imaging modalities. Optoacoustic imaging, on the other hand, provides ultra-fast imaging at up to 50 volumetric frames per second, allowing for acquisition of several frames per mouse cardiac cycle. In this study, we combined a recently-developed 3D optoacoustic imaging array with novel analytical techniques to assess cardiac function and perfusion dynamics of the mouse heart at high, 4D spatiotemporal resolution. In brief, the heart of an anesthetized mouse was imaged over a series of multiple volumetric frames. In another experiment, an intravenous bolus of indocyanine green (ICG) was injected and its distribution was subsequently imaged in the heart. Unique temporal features of the cardiac cycle and ICG distribution profiles were used to segment the heart from background and to assess cardiac function. The 3D nature of the experimental data allowed for determination of cardiac volumes at ~7-8 frames per mouse cardiac cycle, providing important cardiac function parameters (e.g., stroke volume, ejection fraction) on a beat-by-beat basis, which has been previously unachieved by any other cardiac imaging modality. Furthermore, ICG distribution dynamics allowed for the determination of pulmonary transit time and thus additional quantitative measures of cardiovascular function. This work demonstrates the potential for optoacoustic cardiac imaging and is expected to have a major contribution toward future preclinical studies of animal models of cardiovascular health and disease.

  13. Murine fetal echocardiography.

    PubMed

    Kim, Gene H

    2013-02-15

    Transgenic mice displaying abnormalities in cardiac development and function represent a powerful tool for the understanding the molecular mechanisms underlying both normal cardiovascular function and the pathophysiological basis of human cardiovascular disease. Fetal and perinatal death is a common feature when studying genetic alterations affecting cardiac development. In order to study the role of genetic or pharmacologic alterations in the early development of cardiac function, ultrasound imaging of the live fetus has become an important tool for early recognition of abnormalities and longitudinal follow-up. Noninvasive ultrasound imaging is an ideal method for detecting and studying congenital malformations and the impact on cardiac function prior to death. It allows early recognition of abnormalities in the living fetus and the progression of disease can be followed in utero with longitudinal studies. Until recently, imaging of fetal mouse hearts frequently involved invasive methods. The fetus had to be sacrificed to perform magnetic resonance microscopy and electron microscopy or surgically delivered for transillumination microscopy. An application of high-frequency probes with conventional 2-D and pulsed-wave Doppler imaging has been shown to provide measurements of cardiac contraction and heart rates during embryonic development with databases of normal developmental changes now available. M-mode imaging further provides important functional data, although, the proper imaging planes are often difficult to obtain. High-frequency ultrasound imaging of the fetus has improved 2-D resolution and can provide excellent information on the early development of cardiac structures.

  14. Body image and sexual function in women after treatment for anal and rectal cancer.

    PubMed

    Benedict, Catherine; Philip, Errol J; Baser, Raymond E; Carter, Jeanne; Schuler, Tammy A; Jandorf, Lina; DuHamel, Katherine; Nelson, Christian

    2016-03-01

    Treatment for anal and rectal cancer (ARCa) often results in side effects that directly impact sexual functioning; however, ARCa survivors are an understudied group, and factors contributing to the sexual sequelae are not well understood. Body image problems are distressing and may further exacerbate sexual difficulties, particularly for women. This preliminary study sought to (1) describe body image problems, including sociodemographic and disease/treatment correlates, and (2) examine relations between body image and sexual function. For the baseline assessment of a larger study, 70 women completed the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire and Colorectal Cancer-specific Module, including the Body Image subscale, and Female Sexual Function Index. Pearson's correlation and multiple regression evaluated correlates of body image. Among sexually active women (n = 41), hierarchical regression examined relations between body image and sexual function domains. Women were on average 55 years old (standard deviation = 11.6), non-Hispanic White (79%), married (57%), and employed (47%). The majority (86%) reported at least one body image problem. Younger age, lower global health status, and greater severity of symptoms related to poorer body image (p's < 0.05). Poor body image was inversely related to all aspects of sexual function (β range 0.50-0.70, p's < 0.05), except pain. The strongest association was with Female Sexual Function Index Sexual/Relationship Satisfaction. These preliminary findings suggest the importance of assessing body image as a potentially modifiable target to address sexual difficulties in this understudied group. Further longitudinal research is needed to inform the development and implementation of effective interventions to improve the sexual health and well-being of female ARCa survivors. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Neural correlates of monocular and binocular depth cues based on natural images: a LORETA analysis.

    PubMed

    Fischmeister, Florian Ph S; Bauer, Herbert

    2006-10-01

    Functional imaging studies investigating perception of depth rely solely on one type of depth cue based on non-natural stimulus material. To overcome these limitations and to provide a more realistic and complete set of depth cues natural stereoscopic images were used in this study. Using slow cortical potentials and source localization we aimed to identify the neural correlates of monocular and binocular depth cues. This study confirms and extends functional imaging studies, showing that natural images provide a good, reliable, and more realistic alternative to artificial stimuli, and demonstrates the possibility to separate the processing of different depth cues.

  16. Towards ultrahigh resting-state functional connectivity in the mouse brain using photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza

    2016-03-01

    The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.

  17. Structured Illumination Diffuse Optical Tomography for Mouse Brain Imaging

    NASA Astrophysics Data System (ADS)

    Reisman, Matthew David

    As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but previous DOT systems for rodent neuroimaging have been limited by either sparse spatial sampling or by slow speed. My research has been to develop diffuse optical tomography for whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial sampling using multiple camera views for detection and high speed using structured illumination sources. I have shown the feasibility of this method to perform non-invasive functional neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, the system has been built with a custom, flexible framework to accommodate the expansion to imaging multiple dynamic contrasts in the brain and populations that were previously difficult or impossible to image, such as infant mice and awake mice. I have contributed to preliminary feasibility studies of these more advanced techniques using OIS, which can now be carried out using the structured illumination diffuse optical tomography technique to perform longitudinal, non-invasive studies of the whole volume of the mouse brain.

  18. The impact of functional imaging on radiation medicine.

    PubMed

    Sharma, Nidhi; Neumann, Donald; Macklis, Roger

    2008-09-15

    Radiation medicine has previously utilized planning methods based primarily on anatomic and volumetric imaging technologies such as CT (Computerized Tomography), ultrasound, and MRI (Magnetic Resonance Imaging). In recent years, it has become apparent that a new dimension of non-invasive imaging studies may hold great promise for expanding the utility and effectiveness of the treatment planning process. Functional imaging such as PET (Positron Emission Tomography) studies and other nuclear medicine based assays are beginning to occupy a larger place in the oncology imaging world. Unlike the previously mentioned anatomic imaging methodologies, functional imaging allows differentiation between metabolically dead and dying cells and those which are actively metabolizing. The ability of functional imaging to reproducibly select viable and active cell populations in a non-invasive manner is now undergoing validation for many types of tumor cells. Many histologic subtypes appear amenable to this approach, with impressive sensitivity and selectivity reported. For clinical radiation medicine, the ability to differentiate between different levels and types of metabolic activity allows the possibility of risk based focal treatments in which the radiation doses and fields are more tightly connected to the perceived risk of recurrence or progression at each location. This review will summarize many of the basic principles involved in the field of functional PET imaging for radiation oncology planning and describe some of the major relevant published data behind this expanding trend.

  19. Sex Differences in Working Memory after Mild Traumatic Brain Injury: A Functional MR Imaging Study.

    PubMed

    Hsu, Hui-Ling; Chen, David Yen-Ting; Tseng, Ying-Chi; Kuo, Ying-Sheng; Huang, Yen-Lin; Chiu, Wen-Ta; Yan, Feng-Xian; Wang, Wei-Shuan; Chen, Chi-Jen

    2015-09-01

    To evaluate sex differences in mild traumatic brain injury (MTBI) with working memory functional magnetic resonance (MR) imaging. Research ethics committee approval and patient written informed consent were obtained. Working memory brain activation patterns were assessed with functional MR imaging in 30 patients (15 consecutive men and 15 consecutive women) with MTBI and 30 control subjects (15 consecutive men and 15 consecutive women). Two imaging studies were performed in patients: the initial study, which was performed within 1 month after the injury, and a follow-up study, which was performed 6 weeks after the first study. For each participant, digit span and continuous performance testing were performed before functional MR imaging. Clinical data were analyzed by using Kruskal-Wallis, Mann-Whitney U, Wilcoxon signed rank, and Fisher exact tests. Within- and between-group differences of functional MR imaging data were analyzed with one- and two-sample t tests, respectively. Among female participants, the total digit span score was lower in the MTBI group than in the control group (P = .044). In initial working memory functional MR imaging studies, hyperactivation was found in the male MTBI group and hypoactivation was found in the female MTBI group compared with control male and female groups, respectively. At the 6-week follow-up study, the female MTBI group showed persistent hypoactivation, whereas the male MTBI group showed a regression of hyperactivation at visual comparison of activation maps. The male MTBI group was also found to have a higher initial ß value than the male control group (P = .040), and there was no significant difference between the male MTBI group and the male control group (P = .221) at follow-up evaluation, which was comparable to findings on activation maps. In the female MTBI group, average ß values at both initial and follow-up studies were lower compared with those in the female control group but were not statistically significant (P = .663 and P = .191, respectively). Female patients with MTBI had lower digit span scores than did female control subjects, and functional MR imaging depicted sex differences in working memory functional activation; hypoactivation with nonrecovery of activation change at follow-up studies may suggest a worse working memory outcome in female patients with MTBI.

  20. Intrinsic Resting-State Functional Connectivity in the Human Spinal Cord at 3.0 T.

    PubMed

    San Emeterio Nateras, Oscar; Yu, Fang; Muir, Eric R; Bazan, Carlos; Franklin, Crystal G; Li, Wei; Li, Jinqi; Lancaster, Jack L; Duong, Timothy Q

    2016-04-01

    To apply resting-state functional magnetic resonance (MR) imaging to map functional connectivity of the human spinal cord. Studies were performed in nine self-declared healthy volunteers with informed consent and institutional review board approval. Resting-state functional MR imaging was performed to map functional connectivity of the human cervical spinal cord from C1 to C4 at 1 × 1 × 3-mm resolution with a 3.0-T clinical MR imaging unit. Independent component analysis (ICA) was performed to derive resting-state functional MR imaging z-score maps rendered on two-dimensional and three-dimensional images. Seed-based analysis was performed for cross validation with ICA networks by using Pearson correlation. Reproducibility analysis of resting-state functional MR imaging maps from four repeated trials in a single participant yielded a mean z score of 6 ± 1 (P < .0001). The centroid coordinates across the four trials deviated by 2 in-plane voxels ± 2 mm (standard deviation) and up to one adjacent image section ± 3 mm. ICA of group resting-state functional MR imaging data revealed prominent functional connectivity patterns within the spinal cord gray matter. There were statistically significant (z score > 3, P < .001) bilateral, unilateral, and intersegmental correlations in the ventral horns, dorsal horns, and central spinal cord gray matter. Three-dimensional surface rendering provided visualization of these components along the length of the spinal cord. Seed-based analysis showed that many ICA components exhibited strong and significant (P < .05) correlations, corroborating the ICA results. Resting-state functional MR imaging connectivity networks are qualitatively consistent with known neuroanatomic and functional structures in the spinal cord. Resting-state functional MR imaging of the human cervical spinal cord with a 3.0-T clinical MR imaging unit and standard MR imaging protocols and hardware reveals prominent functional connectivity patterns within the spinal cord gray matter, consistent with known functional and anatomic layouts of the spinal cord.

  1. Functional imaging of the semantic system: retrieval of sensory-experienced and verbally learned knowledge.

    PubMed

    Noppeney, Uta; Price, Cathy J

    2003-01-01

    This paper considers how functional neuro-imaging can be used to investigate the organization of the semantic system and the limitations associated with this technique. The majority of the functional imaging studies of the semantic system have looked for divisions by varying stimulus category. These studies have led to divergent results and no clear anatomical hypotheses have emerged to account for the dissociations seen in behavioral studies. Only a few functional imaging studies have used task as a variable to differentiate the neural correlates of semantic features more directly. We extend these findings by presenting a new study that contrasts tasks that differentially weight sensory (color and taste) and verbally learned (origin) semantic features. Irrespective of the type of semantic feature retrieved, a common semantic system was activated as demonstrated in many previous studies. In addition, the retrieval of verbally learned, but not sensory-experienced, features enhanced activation in medial and lateral posterior parietal areas. We attribute these "verbally learned" effects to differences in retrieval strategy and conclude that evidence for segregation of semantic features at an anatomical level remains weak. We believe that functional imaging has the potential to increase our understanding of the neuronal infrastructure that sustains semantic processing but progress may require multiple experiments until a consistent explanatory framework emerges.

  2. Attentional and physiological processing of food images in functional dyspepsia patients: A pilot study.

    PubMed

    Lee, In-Seon; Preissl, Hubert; Giel, Katrin; Schag, Kathrin; Enck, Paul

    2018-01-23

    The food-related behavior of functional dyspepsia has been attracting more interest of late. This pilot study aims to provide evidence of the physiological, emotional, and attentional aspects of food processing in functional dyspepsia patients. The study was performed in 15 functional dyspepsia patients and 17 healthy controls after a standard breakfast. We measured autonomic nervous system activity using skin conductance response and heart rate variability, emotional response using facial electromyography, and visual attention using eyetracking during the visual stimuli of food/non-food images. In comparison to healthy controls, functional dyspepsia patients showed a greater craving for food, a decreased intake of food, more dyspeptic symptoms, lower pleasantness rating of food images (particularly of high fat), decreased low frequency/high frequency ratio of heart rate variability, and suppressed total processing time of food images. There were no significant differences of skin conductance response and facial electromyography data between groups. The results suggest that high level cognitive functions rather than autonomic and emotional mechanisms are more liable to function differently in functional dyspepsia patients. Abnormal dietary behavior, reduced subjective rating of pleasantness and visual attention to food should be considered as important pathophysiological characteristics in functional dyspepsia.

  3. In vivo multiphoton kinetic imaging of the toxic effect of carbon tetrachloride on hepatobiliary metabolism.

    PubMed

    Lin, Chih-Ju; Lee, Sheng-Lin; Lee, Hsuan-Shu; Dong, Chen-Yuan

    2018-06-01

    We used intravital multiphoton microscopy to study the recovery of hepatobiliary metabolism following carbon tetrachloride (CCl4) induced hepatotoxicity in mice. The acquired images were processed by a first order kinetic model to generate rate constant resolved images of the mouse liver. We found that with progression of hepatotoxicity, the spatial gradient of hepatic function disappeared. A CCl4-induced damage mechanism involves the compromise of membrane functions, resulting in accumulation of processed 6-carboxyfluorescein molecules. At day 14 following induction, a restoration of the mouse hepatobiliary function was found. Our approach allows the study of the response of hepatic functions to chemical agents in real time and is useful for studying pharmacokinetics of drug molecules through optical microscopic imaging. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  4. Noninvasively measuring oxygen saturation of human finger-joint vessels by multi-transducer functional photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Deng, Zijian; Li, Changhui

    2016-06-01

    Imaging small blood vessels and measuring their functional information in finger joint are still challenges for clinical imaging modalities. In this study, we developed a multi-transducer functional photoacoustic tomography (PAT) system and successfully imaged human finger-joint vessels from ˜1 mm to <0.2 mm in diameter. In addition, the oxygen saturation (SO2) values of these vessels were also measured. Our results demonstrate that PAT can provide both anatomical and functional information of individual finger-joint vessels with different sizes, which might help the study of finger-joint diseases, such as rheumatoid arthritis.

  5. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    PubMed

    Mahajan, A; Goh, V; Basu, S; Vaish, R; Weeks, A J; Thakur, M H; Cook, G J

    2015-10-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure-function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [(18)F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed "theranostics". Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  6. Tc-NGA imaging in liver transplantation: preliminary clinical experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodle, E.S.; Ward, R.E.; Stadalnik, R.C.

    1989-03-01

    Technetium-99m galactosyl-neoglycoalbumin (Tc-NGA) is a new liver imaging agent that binds to hepatic-binding protein, a hepatocyte-specific membrane receptor. The purpose of this study was to determine the potential of Tc-NGA imaging in clinical liver transplantation. A total of 25 studies were performed in nine patients. Imaging studies performed in the early posttransplant period in patients with good hepatic allograft function revealed diffuse patchiness in tracer distribution, a manifestation of preservation damage. Left lobar infarction was demonstrated within a few hours of ischemic injury. Right posterior segmental infarction was seen in another patient. Comparison of kinetic, clinical, and biochemical data revealedmore » good correlation between hepatic allograft function and Tc-NGA kinetics. Major kinetic alterations were noted during periods of preservation injury, hepatic infarction, and acute rejection. These studies indicate: (1) major alterations in Tc-NGA kinetics occur during preservation injury, hepatic infarction, and acute rejection, and (2) Tc-NGA kinetic data appear to provide an accurate reflection of hepatic allograft function. Tc-NGA imaging has the advantages of being noninvasive and of utilizing standard nuclear medicine instrumentation, including portable imaging devices. In conclusion, Tc-NGA imaging provides a promising noninvasive approach for evaluation of liver function in patients undergoing hepatic transplantation.« less

  7. Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli.

    PubMed

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-03-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention, memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that (1) biologically emotional images hold attention more strongly than do socially emotional images, (2) memory for biologically emotional images was enhanced even with limited cognitive resources, but (3) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images' subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in the visual cortex and greater functional connectivity between the amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in the medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between the amygdala and MPFC than did biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity.

  8. Intravital imaging of dendritic spine plasticity

    PubMed Central

    Sau Wan Lai, Cora

    2014-01-01

    Abstract Dendritic spines are the postsynaptic part of most excitatory synapses in the mammalian brain. Recent works have suggested that the structural and functional plasticity of dendritic spines have been associated with information coding and memories. Advances in imaging and labeling techniques enable the study of dendritic spine dynamics in vivo. This perspective focuses on intravital imaging studies of dendritic spine plasticity in the neocortex. I will introduce imaging tools for studying spine dynamics and will further review current findings on spine structure and function under various physiological and pathological conditions. PMID:28243511

  9. Network analysis of mesoscale optical recordings to assess regional, functional connectivity.

    PubMed

    Lim, Diana H; LeDue, Jeffrey M; Murphy, Timothy H

    2015-10-01

    With modern optical imaging methods, it is possible to map structural and functional connectivity. Optical imaging studies that aim to describe large-scale neural connectivity often need to handle large and complex datasets. In order to interpret these datasets, new methods for analyzing structural and functional connectivity are being developed. Recently, network analysis, based on graph theory, has been used to describe and quantify brain connectivity in both experimental and clinical studies. We outline how to apply regional, functional network analysis to mesoscale optical imaging using voltage-sensitive-dye imaging and channelrhodopsin-2 stimulation in a mouse model. We include links to sample datasets and an analysis script. The analyses we employ can be applied to other types of fluorescence wide-field imaging, including genetically encoded calcium indicators, to assess network properties. We discuss the benefits and limitations of using network analysis for interpreting optical imaging data and define network properties that may be used to compare across preparations or other manipulations such as animal models of disease.

  10. Green's function and image system for the Laplace operator in the prolate spheroidal geometry

    NASA Astrophysics Data System (ADS)

    Xue, Changfeng; Deng, Shaozhong

    2017-01-01

    In the present paper, electrostatic image theory is studied for Green's function for the Laplace operator in the case where the fundamental domain is either the exterior or the interior of a prolate spheroid. In either case, an image system is developed to consist of a point image inside the complement of the fundamental domain and an additional symmetric continuous surface image over a confocal prolate spheroid outside the fundamental domain, although the process of calculating such an image system is easier for the exterior than for the interior Green's function. The total charge of the surface image is zero and its centroid is at the origin of the prolate spheroid. In addition, if the source is on the focal axis outside the prolate spheroid, then the image system of the exterior Green's function consists of a point image on the focal axis and a line image on the line segment between the two focal points.

  11. Autism spectrum disorder: does neuroimaging support the DSM-5 proposal for a symptom dyad? A systematic review of functional magnetic resonance imaging and diffusion tensor imaging studies.

    PubMed

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sánchez, Francisco J; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-07-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with 'autism spectrum disorder' (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported abnormal function and structure of fronto-temporal and limbic networks with social and pragmatic language deficits, of temporo-parieto-occipital networks with syntactic-semantic language deficits, and of fronto-striato-cerebellar networks with repetitive behaviors and restricted interests in ASD patients. Therefore, this review partially supports the DSM-5 proposal for the ASD dyad.

  12. Using Anatomic Magnetic Resonance Image Information to Enhance Visualization and Interpretation of Functional Images: A Comparison of Methods Applied to Clinical Arterial Spin Labeling Images

    PubMed Central

    Dai, Weiying; Soman, Salil; Hackney, David B.; Wong, Eric T.; Robson, Philip M.; Alsop, David C.

    2017-01-01

    Functional imaging provides hemodynamic and metabolic information and is increasingly being incorporated into clinical diagnostic and research studies. Typically functional images have reduced signal-to-noise ratio and spatial resolution compared to other non-functional cross sectional images obtained as part of a routine clinical protocol. We hypothesized that enhancing visualization and interpretation of functional images with anatomic information could provide preferable quality and superior diagnostic value. In this work, we implemented five methods (frequency addition, frequency multiplication, wavelet transform, non-subsampled contourlet transform and intensity-hue-saturation) and a newly proposed ShArpening by Local Similarity with Anatomic images (SALSA) method to enhance the visualization of functional images, while preserving the original functional contrast and quantitative signal intensity characteristics over larger spatial scales. Arterial spin labeling blood flow MR images of the brain were visualization enhanced using anatomic images with multiple contrasts. The algorithms were validated on a numerical phantom and their performance on images of brain tumor patients were assessed by quantitative metrics and neuroradiologist subjective ratings. The frequency multiplication method had the lowest residual error for preserving the original functional image contrast at larger spatial scales (55%–98% of the other methods with simulated data and 64%–86% with experimental data). It was also significantly more highly graded by the radiologists (p<0.005 for clear brain anatomy around the tumor). Compared to other methods, the SALSA provided 11%–133% higher similarity with ground truth images in the simulation and showed just slightly lower neuroradiologist grading score. Most of these monochrome methods do not require any prior knowledge about the functional and anatomic image characteristics, except the acquired resolution. Hence, automatic implementation on clinical images should be readily feasible. PMID:27723582

  13. The association between sexual satisfaction and body image in women.

    PubMed

    Pujols, Yasisca; Seal, Brooke N; Meston, Cindy M

    2010-02-01

    Although sexual functioning has been linked to sexual satisfaction, it only partially explains the degree to which women report being sexually satisfied. Other factors include quality of life, relational variables, and individual factors such as body image. Of the few studies that have investigated the link between body image and sexual satisfaction, most have considered body image to be a single construct and have shown mixed results. The present study assessed multiple body image variables in order to better understand which aspects of body image influence multiple domains of sexual satisfaction, including sexual communication, compatibility, contentment, personal concern, and relational concern in a community sample of women. Women between the ages of 18 and 49 years in sexual relationships (N = 154) participated in an Internet survey that assessed sexual functioning, five domains of sexual satisfaction, and several body image variables. Body image variables included the sexual attractiveness, weight concern, and physical condition subscales of the Body Esteem Scale, the appearance-based subscale of the Cognitive Distractions During Sexual Activity Scale, and body mass index. Total score of the Sexual Satisfaction Scale for Women was the main outcome measure. Sexual functioning was measured by a modified Female Sexual Function Index. Consistent with expectations, correlations indicated significant positive relationships between sexual functioning, sexual satisfaction, and all body image variables. A multiple regression analysis revealed that sexual satisfaction was predicted by high body esteem and low frequency of appearance-based distracting thoughts during sexual activity, even after controlling for sexual functioning status. Several aspects of body image, including weight concern, physical condition, sexual attractiveness, and thoughts about the body during sexual activity predict sexual satisfaction in women. The findings suggest that women who experience low sexual satisfaction may benefit from treatments that target these specific aspects of body image.

  14. Body Image and Sexual Function in Women after Treatment for Anal and Rectal Cancer

    PubMed Central

    Benedict, Catherine; Philip, Errol J.; Baser, Raymond E.; Carter, Jeanne; Schuler, Tammy A.; Jandorf, Lina; DuHamel, Katherine; Nelson, Christian

    2016-01-01

    Objective Treatment for anal and rectal cancer (ARCa) often results in side effects that directly impact sexual functioning; however, ARCa survivors are an understudied group and factors contributing to the sexual sequelae are not well understood. Body image problems are distressing and may further exacerbate sexual difficulties, particularly for women. This preliminary study sought to (1) describe body image problems, including sociodemographic and disease/treatment correlates; and (2) examine relations between body image and sexual function. Methods For the baseline assessment of a larger study, 70 women completed the EORTC QLQ-C30 and CR38, including the Body Image subscale, and Female Sexual Function Index (FSFI). Pearson’s correlation and multiple regression evaluated correlates of body image. Among sexually active women (n=41), hierarchical regression examined relations between body image and sexual function domains. Results Women were an average 55 years old (SD=11.6), Non-Hispanic White (79%), married (57%), and employed (47%). The majority (86%) reported at least one body image problem. Younger age, lower global health status, and greater severity of symptoms related to poorer body image (p’s<.05). Poor body image was inversely related to all aspects of sexual function (β range .50 to .70, p’s<.05), except pain. The strongest association was with FSFI Sexual/Relationship Satisfaction. Conclusion These preliminary findings suggest the importance of assessing body image as a potentially modifiable target to address sexual difficulties in this understudied group. Further longitudinal research is needed to inform the development and implementation of effective interventions to improve the sexual health and well-being of female ARCa survivors. PMID:25974874

  15. Functional cardiac magnetic resonance microscopy

    NASA Astrophysics Data System (ADS)

    Brau, Anja Christina Sophie

    2003-07-01

    The study of small animal models of human cardiovascular disease is critical to our understanding of the origin, progression, and treatment of this pervasive disease. Complete analysis of disease pathophysiology in these animal models requires measuring structural and functional changes at the level of the whole heart---a task for which an appropriate non-invasive imaging method is needed. The purpose of this work was thus to develop an imaging technique to support in vivo characterization of cardiac structure and function in rat and mouse models of cardiovascular disease. Whereas clinical cardiac magnetic resonance imaging (MRI) provides accurate assessment of the human heart, the extension of cardiac MRI from humans to rodents presents several formidable scaling challenges. Acquiring images of the mouse heart with organ definition and fluidity of contraction comparable to that achieved in humans requires an increase in spatial resolution by a factor of 3000 and an increase in temporal resolution by a factor of ten. No single technical innovation can meet the demanding imaging requirements imposed by the small animal. A functional cardiac magnetic resonance microscopy technique was developed by integrating improvements in physiological control, imaging hardware, biological synchronization of imaging, and pulse sequence design to achieve high-quality images of the murine heart with high spatial and temporal resolution. The specific methods and results from three different sets of imaging experiments are presented: (1) 2D functional imaging in the rat with spatial resolution of 175 mum2 x 1 mm and temporal resolution of 10 ms; (2) 3D functional imaging in the rat with spatial resolution of 100 mum 2 x 500 mum and temporal resolution of 30 ms; and (3) 2D functional imaging in the mouse with spatial resolution down to 100 mum2 x 1 mm and temporal resolution of 10 ms. The cardiac microscopy technique presented here represents a novel collection of technologies capable of acquiring routine high-quality images of murine cardiac structure and function with minimal artifacts and markedly higher spatial resolution compared to conventional techniques. This work is poised to serve a valuable role in the evaluation of cardiovascular disease and should find broad application in studies ranging from basic pathophysiology to drug discovery.

  16. Beyond arousal and valence: The importance of the biological versus social relevance of emotional stimuli

    PubMed Central

    Sakaki, Michiko; Niki, Kazuhisa; Mather, Mara

    2012-01-01

    The present study addressed the hypothesis that emotional stimuli relevant to survival or reproduction (biologically emotional stimuli) automatically affect cognitive processing (e.g., attention; memory), while those relevant to social life (socially emotional stimuli) require elaborative processing to modulate attention and memory. Results of our behavioral studies showed that: a) biologically emotional images hold attention more strongly than socially emotional images, b) memory for biologically emotional images was enhanced even with limited cognitive resources, but c) memory for socially emotional images was enhanced only when people had sufficient cognitive resources at encoding. Neither images’ subjective arousal nor their valence modulated these patterns. A subsequent functional magnetic resonance imaging study revealed that biologically emotional images induced stronger activity in visual cortex and greater functional connectivity between amygdala and visual cortex than did socially emotional images. These results suggest that the interconnection between the amygdala and visual cortex supports enhanced attention allocation to biological stimuli. In contrast, socially emotional images evoked greater activity in medial prefrontal cortex (MPFC) and yielded stronger functional connectivity between amygdala and MPFC than biological images. Thus, it appears that emotional processing of social stimuli involves elaborative processing requiring frontal lobe activity. PMID:21964552

  17. The Relationships among Body Image, Body Mass Index, Exercise, and Sexual Functioning in Heterosexual Women

    ERIC Educational Resources Information Center

    Weaver, Angela D.; Byers, E. Sandra

    2006-01-01

    Problems related to negative body image are very common among young women. In this study, we examined the relationship between women's body image and their sexual functioning over and above the effects of physical exercise and body mass index (BMI) in a sample of 214 university women. Low situational body image dysphoria and low body…

  18. Experimental evaluation and basis function optimization of the spatially variant image-space PSF on the Ingenuity PET/MR scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotasidis, Fotis A., E-mail: Fotis.Kotasidis@unige.ch; Zaidi, Habib; Geneva Neuroscience Centre, Geneva University, CH-1205 Geneva

    2014-06-15

    Purpose: The Ingenuity time-of-flight (TF) PET/MR is a recently developed hybrid scanner combining the molecular imaging capabilities of PET with the excellent soft tissue contrast of MRI. It is becoming common practice to characterize the system's point spread function (PSF) and understand its variation under spatial transformations to guide clinical studies and potentially use it within resolution recovery image reconstruction algorithms. Furthermore, due to the system's utilization of overlapping and spherical symmetric Kaiser-Bessel basis functions during image reconstruction, its image space PSF and reconstructed spatial resolution could be affected by the selection of the basis function parameters. Hence, a detailedmore » investigation into the multidimensional basis function parameter space is needed to evaluate the impact of these parameters on spatial resolution. Methods: Using an array of 12 × 7 printed point sources, along with a custom made phantom, and with the MR magnet on, the system's spatially variant image-based PSF was characterized in detail. Moreover, basis function parameters were systematically varied during reconstruction (list-mode TF OSEM) to evaluate their impact on the reconstructed resolution and the image space PSF. Following the spatial resolution optimization, phantom, and clinical studies were subsequently reconstructed using representative basis function parameters. Results: Based on the analysis and under standard basis function parameters, the axial and tangential components of the PSF were found to be almost invariant under spatial transformations (∼4 mm) while the radial component varied modestly from 4 to 6.7 mm. Using a systematic investigation into the basis function parameter space, the spatial resolution was found to degrade for basis functions with a large radius and small shape parameter. However, it was found that optimizing the spatial resolution in the reconstructed PET images, while having a good basis function superposition and keeping the image representation error to a minimum, is feasible, with the parameter combination range depending upon the scanner's intrinsic resolution characteristics. Conclusions: Using the printed point source array as a MR compatible methodology for experimentally measuring the scanner's PSF, the system's spatially variant resolution properties were successfully evaluated in image space. Overall the PET subsystem exhibits excellent resolution characteristics mainly due to the fact that the raw data are not under-sampled/rebinned, enabling the spatial resolution to be dictated by the scanner's intrinsic resolution and the image reconstruction parameters. Due to the impact of these parameters on the resolution properties of the reconstructed images, the image space PSF varies both under spatial transformations and due to basis function parameter selection. Nonetheless, for a range of basis function parameters, the image space PSF remains unaffected, with the range depending on the scanner's intrinsic resolution properties.« less

  19. WE-AB-202-04: Statistical Evaluation of Lung Function Using 4DCT Ventilation Imaging: Proton Therapy VS IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Q; Zhang, M; Chen, T

    Purpose: Variation in function of different lung regions has been ignored so far for conventional lung cancer treatment planning, which may lead to higher risk of radiation induced lung disease. 4DCT based lung ventilation imaging provides a novel yet convenient approach for lung functional imaging as 4DCT is taken as routine for lung cancer treatment. Our work aims to evaluate the impact of accounting for spatial heterogeneity in lung function using 4DCT based lung ventilation imaging for proton and IMRT plans. Methods: Six patients with advanced stage lung cancer of various tumor locations were retrospectively evaluated for the study. Protonmore » and IMRT plans were designed following identical planning objective and constrains for each patient. Ventilation images were calculated from patients’ 4DCT using deformable image registration implemented by Velocity AI software based on Jacobian-metrics. Lung was delineated into two function level regions based on ventilation (low and high functional area). High functional region was defined as lung ventilation greater than 30%. Dose distribution and statistics in different lung function area was calculated for patients. Results: Variation in dosimetric statistics of different function lung region was observed between proton and IMRT plans. In all proton plans, high function lung regions receive lower maximum dose (100.2%–108.9%), compared with IMRT plans (106.4%–119.7%). Interestingly, three out of six proton plans gave higher mean dose by up to 2.2% than IMRT to high function lung region. Lower mean dose (lower by up to 14.1%) and maximum dose (lower by up to 9%) were observed in low function lung for proton plans. Conclusion: A systematic approach was developed to generate function lung ventilation imaging and use it to evaluate plans. This method hold great promise in function analysis of lung during planning. We are currently studying more subjects to evaluate this tool.« less

  20. Advantages in functional imaging of the brain.

    PubMed

    Mier, Walter; Mier, Daniela

    2015-01-01

    As neuronal pathologies cause only minor morphological alterations, molecular imaging techniques are a prerequisite for the study of diseases of the brain. The development of molecular probes that specifically bind biochemical markers and the advances of instrumentation have revolutionized the possibilities to gain insight into the human brain organization and beyond this-visualize structure-function and brain-behavior relationships. The review describes the development and current applications of functional brain imaging techniques with a focus on applications in psychiatry. A historical overview of the development of functional imaging is followed by the portrayal of the principles and applications of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), two key molecular imaging techniques that have revolutionized the ability to image molecular processes in the brain. We conclude that the juxtaposition of PET and fMRI in hybrid PET/MRI scanners enhances the significance of both modalities for research in neurology and psychiatry and might pave the way for a new area of personalized medicine.

  1. Toward Dysfunctional Connectivity: A Review of Neuroimaging Findings in Pediatric Major Depressive Disorder

    PubMed Central

    Hulvershorn, Leslie; Cullen, Kathryn; Anand, Amit

    2011-01-01

    Child and adolescent psychiatric neuroimaging research typically lags behind similar advances in adult disorders. While the pediatric depression imaging literature is less developed, a recent surge in interest has created the need for a synthetic review of this work. Major findings from pediatric volumetric and functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), diffusion tensor imaging (DTI) and resting state functional connectivity studies converge to implicate a corticolimbic network of key areas that work together to mediate the task of emotion regulation. Imaging the brain of children and adolescents with unipolar depression began with volumetric studies of isolated brain regions that served to identify key prefrontal, cingulate and limbic nodes of depression-related circuitry elucidated from more recent advances in DTI and functional connectivity imaging. Systematic review of these studies preliminarily suggests developmental differences between findings in youth and adults, including prodromal neurobiological features, along with some continuity across development. PMID:21901425

  2. Noise correlation in PET, CT, SPECT and PET/CT data evaluated using autocorrelation function: a phantom study on data, reconstructed using FBP and OSEM.

    PubMed

    Razifar, Pasha; Sandström, Mattias; Schnieder, Harald; Långström, Bengt; Maripuu, Enn; Bengtsson, Ewert; Bergström, Mats

    2005-08-25

    Positron Emission Tomography (PET), Computed Tomography (CT), PET/CT and Single Photon Emission Tomography (SPECT) are non-invasive imaging tools used for creating two dimensional (2D) cross section images of three dimensional (3D) objects. PET and SPECT have the potential of providing functional or biochemical information by measuring distribution and kinetics of radiolabelled molecules, whereas CT visualizes X-ray density in tissues in the body. PET/CT provides fused images representing both functional and anatomical information with better precision in localization than PET alone. Images generated by these types of techniques are generally noisy, thereby impairing the imaging potential and affecting the precision in quantitative values derived from the images. It is crucial to explore and understand the properties of noise in these imaging techniques. Here we used autocorrelation function (ACF) specifically to describe noise correlation and its non-isotropic behaviour in experimentally generated images of PET, CT, PET/CT and SPECT. Experiments were performed using phantoms with different shapes. In PET and PET/CT studies, data were acquired in 2D acquisition mode and reconstructed by both analytical filter back projection (FBP) and iterative, ordered subsets expectation maximisation (OSEM) methods. In the PET/CT studies, different magnitudes of X-ray dose in the transmission were employed by using different mA settings for the X-ray tube. In the CT studies, data were acquired using different slice thickness with and without applied dose reduction function and the images were reconstructed by FBP. SPECT studies were performed in 2D, reconstructed using FBP and OSEM, using post 3D filtering. ACF images were generated from the primary images, and profiles across the ACF images were used to describe the noise correlation in different directions. The variance of noise across the images was visualised as images and with profiles across these images. The most important finding was that the pattern of noise correlation is rotation symmetric or isotropic, independent of object shape in PET and PET/CT images reconstructed using the iterative method. This is, however, not the case in FBP images when the shape of phantom is not circular. Also CT images reconstructed using FBP show the same non-isotropic pattern independent of slice thickness and utilization of care dose function. SPECT images show an isotropic correlation of the noise independent of object shape or applied reconstruction algorithm. Noise in PET/CT images was identical independent of the applied X-ray dose in the transmission part (CT), indicating that the noise from transmission with the applied doses does not propagate into the PET images showing that the noise from the emission part is dominant. The results indicate that in human studies it is possible to utilize a low dose in transmission part while maintaining the noise behaviour and the quality of the images. The combined effect of noise correlation for asymmetric objects and a varying noise variance across the image field significantly complicates the interpretation of the images when statistical methods are used, such as with statistical estimates of precision in average values, use of statistical parametric mapping methods and principal component analysis. Hence it is recommended that iterative reconstruction methods are used for such applications. However, it is possible to calculate the noise analytically in images reconstructed by FBP, while it is not possible to do the same calculation in images reconstructed by iterative methods. Therefore for performing statistical methods of analysis which depend on knowing the noise, FBP would be preferred.

  3. SU-E-J-86: Lobar Lung Function Quantification by PET Galligas and CT Ventilation Imaging in Lung Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eslick, E; Kipritidis, J; Keall, P

    2014-06-01

    Purpose: The purpose of this study was to quantify the lobar lung function using the novel PET Galligas ([68Ga]-carbon nanoparticle) ventilation imaging and the investigational CT ventilation imaging in lung cancer patients pre-treatment. Methods: We present results on our first three lung cancer patients (2 male, mean age 78 years) as part of an ongoing ethics approved study. For each patient a PET Galligas ventilation (PET-V) image and a pair of breath hold CT images (end-exhale and end-inhale tidal volumes) were acquired using a Siemens Biograph PET CT. CT-ventilation (CT-V) images were created from the pair of CT images usingmore » deformable image registration (DIR) algorithms and the Hounsfield Unit (HU) ventilation metric. A comparison of ventilation quantification from each modality was done on the lobar level and the voxel level. A Bland-Altman plot was used to assess the difference in mean percentage contribution of each lobe to the total lung function between the two modalities. For each patient, a voxel-wise Spearmans correlation was calculated for the whole lungs between the two modalities. Results: The Bland-Altman plot demonstrated strong agreement between PET-V and CT-V for assessment of lobar function (r=0.99, p<0.001; range mean difference: −5.5 to 3.0). The correlation between PET-V and CT-V at the voxel level was moderate(r=0.60, p<0.001). Conclusion: This preliminary study on the three patients data sets demonstrated strong agreement between PET and CT ventilation imaging for the assessment of pre-treatment lung function at the lobar level. Agreement was only moderate at the level of voxel correlations. These results indicate that CT ventilation imaging has potential for assessing pre-treatment lobar lung function in lung cancer patients.« less

  4. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  5. Quantitative Pulmonary Imaging Using Computed Tomography and Magnetic Resonance Imaging

    PubMed Central

    Washko, George R.; Parraga, Grace; Coxson, Harvey O.

    2011-01-01

    Measurements of lung function, including spirometry and body plethesmography, are easy to perform and are the current clinical standard for assessing disease severity. However, these lung functional techniques do not adequately explain the observed variability in clinical manifestations of disease and offer little insight into the relationship of lung structure and function. Lung imaging and the image based assessment of lung disease has matured to the extent that it is common for clinical, epidemiologic, and genetic investigation to have a component dedicated to image analysis. There are several exciting imaging modalities currently being used for the non-invasive study of lung anatomy and function. In this review we will focus on two of them, x-ray computed tomography and magnetic resonance imaging. Following a brief introduction of each method we detail some of the most recent work being done to characterize smoking-related lung disease and the clinical applications of such knowledge. PMID:22142490

  6. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury

    PubMed Central

    Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

    2011-01-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

  7. Neonatal brain resting-state functional connectivity imaging modalities.

    PubMed

    Mohammadi-Nejad, Ali-Reza; Mahmoudzadeh, Mahdi; Hassanpour, Mahlegha S; Wallois, Fabrice; Muzik, Otto; Papadelis, Christos; Hansen, Anne; Soltanian-Zadeh, Hamid; Gelovani, Juri; Nasiriavanaki, Mohammadreza

    2018-06-01

    Infancy is the most critical period in human brain development. Studies demonstrate that subtle brain abnormalities during this state of life may greatly affect the developmental processes of the newborn infants. One of the rapidly developing methods for early characterization of abnormal brain development is functional connectivity of the brain at rest. While the majority of resting-state studies have been conducted using magnetic resonance imaging (MRI), there is clear evidence that resting-state functional connectivity (rs-FC) can also be evaluated using other imaging modalities. The aim of this review is to compare the advantages and limitations of different modalities used for the mapping of infants' brain functional connectivity at rest. In addition, we introduce photoacoustic tomography, a novel functional neuroimaging modality, as a complementary modality for functional mapping of infants' brain.

  8. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.

  9. Design and Application of Multi-functional Electrogenerated Chemiluminescence Imaging Analyzer.

    PubMed

    Jiang, Guangfu; Liu, Xia; Wang, Yaqin; Ruan, Sanpeng; Qi, Honglan; Yang, Yong; Zhou, Qishe; Zhang, Chengxiao

    2016-01-01

    A multi-functional eletrogenerated chemiluminescence (ECL) imaging analyzer including both a photomultiplier tube and charged coupled device as detectors has been developed. The ECL imaging analyzer can effectively work for electrochemical study, ECL intensity detection at electrode array, and ECL imaging at bipolar electrodes or electrode array. As an ECL imaging example, an ECL biosensor for visual detection of matrix metalloproteinase 7 in the range from 0.05 to 1 ng/mL is demonstrated.

  10. Functional Imaging for Prostate Cancer: Therapeutic Implications

    PubMed Central

    Aparici, Carina Mari; Seo, Youngho

    2012-01-01

    Functional radionuclide imaging modalities, now commonly combined with anatomical imaging modalities CT or MRI (SPECT/CT, PET/CT, and PET/MRI) are promising tools for the management of prostate cancer particularly for therapeutic implications. Sensitive detection capability of prostate cancer using these imaging modalities is one issue; however, the treatment of prostate cancer using the information that can be obtained from functional radionuclide imaging techniques is another challenging area. There are not many SPECT or PET radiotracers that can cover the full spectrum of the management of prostate cancer from initial detection, to staging, prognosis predictor, and all the way to treatment response assessment. However, when used appropriately, the information from functional radionuclide imaging improves, and sometimes significantly changes, the whole course of the cancer management. The limitations of using SPECT and PET radiotracers with regards to therapeutic implications are not so much different from their limitations solely for the task of detecting prostate cancer; however, the specific imaging target and how this target is reliably imaged by SPECT and PET can potentially make significant impact in the treatment of prostate cancer. Finally, while the localized prostate cancer is considered manageable, there is still significant need for improvement in noninvasive imaging of metastatic prostate cancer, in treatment guidance, and in response assessment from functional imaging including radionuclide-based techniques. In this review article, we present the rationale of using functional radionuclide imaging and the therapeutic implications for each of radionuclide imaging agent that have been studied in human subjects. PMID:22840598

  11. Expanding applications, accuracy, and interpretation of laser speckle contrast imaging of cerebral blood flow

    PubMed Central

    Kazmi, S M Shams; Richards, Lisa M; Schrandt, Christian J; Davis, Mitchell A; Dunn, Andrew K

    2015-01-01

    Laser speckle contrast imaging (LSCI) provides a rapid characterization of cortical flow dynamics for functional monitoring of the microcirculation. The technique stems from interactions of laser light with moving particles. These interactions encode the encountered Doppler phenomena within a random interference pattern imaged in widefield, known as laser speckle. Studies of neurovascular function and coupling with LSCI have benefited from the real-time characterization of functional dynamics in the laboratory setting through quantification of perfusion dynamics. While the technique has largely been relegated to acute small animal imaging, its scalability is being assessed and characterized for both chronic and clinical neurovascular imaging. PMID:25944593

  12. An Optical Method for the In-Vivo Characterization of the Biomechanical Response of the Right Ventricle.

    PubMed

    Soltani, A; Lahti, J; Järvelä, K; Curtze, S; Laurikka, J; Hokka, M; Kuokkala, V-T

    2018-05-01

    The intraoperative in-vivo mechanical function of the left ventricle has been studied thoroughly using echocardiography in the past. However, due to technical and anatomical issues, the ultrasound technology cannot easily be focused on the right side of the heart during open-heart surgery, and the function of the right ventricle during the intervention remains largely unexplored. We used optical imaging and digital image correlation for the characterization of the right ventricle motion and deformation during open-heart surgery. This work is a pilot study focusing on one patient only with the aim of establishing the framework for long term research. These experiments show that optical imaging and the analysis of the images can be used to obtain similar parameters, and partly at higher accuracy, for describing the mechanical functioning of the heart as the ultrasound technology. This work describes the optical imaging based method to characterize the mechanical response of the heart in-vivo, and offers new insight into the mechanical function of the right ventricle.

  13. Research on image retrieval using deep convolutional neural network combining L1 regularization and PRelu activation function

    NASA Astrophysics Data System (ADS)

    QingJie, Wei; WenBin, Wang

    2017-06-01

    In this paper, the image retrieval using deep convolutional neural network combined with regularization and PRelu activation function is studied, and improves image retrieval accuracy. Deep convolutional neural network can not only simulate the process of human brain to receive and transmit information, but also contains a convolution operation, which is very suitable for processing images. Using deep convolutional neural network is better than direct extraction of image visual features for image retrieval. However, the structure of deep convolutional neural network is complex, and it is easy to over-fitting and reduces the accuracy of image retrieval. In this paper, we combine L1 regularization and PRelu activation function to construct a deep convolutional neural network to prevent over-fitting of the network and improve the accuracy of image retrieval

  14. Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology

    PubMed Central

    Vincent, K; Moore, J; Kennedy, S; Tracey, I

    2008-01-01

    Blood-oxygenation-level-dependent functional magnetic resonance imaging is a noninvasive technique that has become increasingly popular in the neurosciences. It measures the proportion of oxygenated haemoglobin in specific areas of the brain, mirroring blood flow and therefore function. Here we review how the findings from functional studies impact on areas of gynaecological practice as diverse as chronic pain, continence, and premenstrual dysphoric disorder. Finally we review some of the more novel applications of the technique, such as imaging of pelvic floor function and the effects of hypoxia on the fetus. PMID:19076956

  15. Supplementary value of functional imaging in forensic medicine.

    PubMed

    Mirzaei, Siroos; Sonneck-Koenne, Charlotte; Bruecke, Thomas; Aryana, Kamran; Knoll, Peter; Zakavi, Rasoul

    2012-01-01

    The aim of this study is to evaluate the role of functional imaging for forensic purposes. We reviewed a few outpatient cases that were sent to our department for examination after traumatic events and one case with neuropsychic disturbances. Functional imaging showed signs of traumatic lesions in the skeletal system, of brain metabolism and of renal failure. Functional disturbances following traumatic events are in some cases more important than morphological abnormalities. Targeted scintigraphic examinations could be applied for visualisation of traumatic lesions or evaluation of functional disturbances caused by traumatic events. These examinations can be used as evidence in the courtroom.

  16. POLYSITE - An interactive package for the selection and refinement of Landsat image training sites

    NASA Technical Reports Server (NTRS)

    Mack, Marilyn J. P.

    1986-01-01

    A versatile multifunction package, POLYSITE, developed for Goddard's Land Analysis System, is described which simplifies the process of interactively selecting and correcting the sites used to study Landsat TM and MSS images. Image switching between the zoomed and nonzoomed image, color and shape cursor change and location display, and bit plane erase or color change, are global functions which are active at all times. Local functions possibly include manipulation of intensive study areas, new site definition, mensuration, and new image copying. The program is illustrated with the example of a full TM maser scene of metropolitan Washington, DC.

  17. Functional Imaging of Working Memory and Peripheral Endothelial Function in Middle-Aged Adults

    ERIC Educational Resources Information Center

    Gonzales, Mitzi M.; Tarumi, Takashi; Tanaka, Hirofumi; Sugawara, Jun; Swann-Sternberg, Tali; Goudarzi, Katayoon; Haley, Andreana P.

    2010-01-01

    The current study examined the relationship between a prognostic indicator of vascular health, flow-mediated dilation (FMD), and working memory-related brain activation in healthy middle-aged adults. Forty-two participants underwent functional magnetic resonance imaging while completing a 2-Back working memory task. Brachial artery…

  18. Structural-functional relationships between eye orbital imaging biomarkers and clinical visual assessments

    NASA Astrophysics Data System (ADS)

    Yao, Xiuya; Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina; Plassard, Andrew; Harrigan, Rob L.; Mawn, Louise A.; Landman, Bennett A.

    2017-02-01

    Eye diseases and visual impairment affect millions of Americans and induce billions of dollars in annual economic burdens. Expounding upon existing knowledge of eye diseases could lead to improved treatment and disease prevention. This research investigated the relationship between structural metrics of the eye orbit and visual function measurements in a cohort of 470 patients from a retrospective study of ophthalmology records for patients (with thyroid eye disease, orbital inflammation, optic nerve edema, glaucoma, intrinsic optic nerve disease), clinical imaging, and visual function assessments. Orbital magnetic resonance imaging (MRI) and computed tomography (CT) images were retrieved and labeled in 3D using multi-atlas label fusion. Based on the 3D structures, both traditional radiology measures (e.g., Barrett index, volumetric crowding index, optic nerve length) and novel volumetric metrics were computed. Using stepwise regression, the associations between structural metrics and visual field scores (visual acuity, functional acuity, visual field, functional field, and functional vision) were assessed. Across all models, the explained variance was reasonable (R2 0.1-0.2) but highly significant (p < 0.001). Instead of analyzing a specific pathology, this study aimed to analyze data across a variety of pathologies. This approach yielded a general model for the connection between orbital structural imaging biomarkers and visual function.

  19. Inability to empathize: brain lesions that disrupt sharing and understanding another’s emotions

    PubMed Central

    2014-01-01

    Emotional empathy—the ability to recognize, share in, and make inferences about another person’s emotional state—is critical for all social interactions. The neural mechanisms underlying emotional empathy have been widely studied with functional imaging of healthy participants. However, functional imaging studies reveal correlations between areas of activation and performance of a task, so that they can only reveal areas engaged in a task, rather than areas of the brain that are critical for the task. Lesion studies complement functional imaging, to identify areas necessary for a task. Impairments in emotional empathy have been mostly studied in neurological diseases with fairly diffuse injury, such as traumatic brain injury, autism and dementia. The classic ‘focal lesion’ is stroke. There have been scattered studies of patients with impaired empathy after stroke and other focal injury, but these studies have included small numbers of patients. This review will bring together data from these studies, to complement evidence from functional imaging. Here I review how focal lesions affect emotional empathy. I will show how lesion studies contribute to the understanding of the cognitive and neural mechanisms underlying emotional empathy, and how they contribute to the management of patients with impaired emotional empathy. PMID:24293265

  20. In Vivo Imaging of Tissue Physiological Function using EPR Spectroscopy | NCI Technology Transfer Center | TTC

    Cancer.gov

    Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons.  The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function.  The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.

  1. Predictive assessment of kidney functional recovery following ischemic injury using optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Rajesh N.; Pivetti, Christopher D.; Ramsamooj, Rajendra

    Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. We aim to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm. The images were simultaneously recorded using a multimodal optical imaging system. We also analyzed to obtain time constants, which were correlated to kidney dysfunction asmore » determined by a subsequent survival study and histopathological analysis. This analysis of both the light scattering and autofluorescence images suggests that changes in tissue microstructure, fluorophore emission, and blood absorption spectral characteristics, coupled with vascular response, contribute to the behavior of the observed signal, which may be used to obtain tissue functional information and offer the ability to predict posttransplant kidney function.« less

  2. Predictive assessment of kidney functional recovery following ischemic injury using optical spectroscopy

    DOE PAGES

    Raman, Rajesh N.; Pivetti, Christopher D.; Ramsamooj, Rajendra; ...

    2017-05-03

    Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. We aim to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm. The images were simultaneously recorded using a multimodal optical imaging system. We also analyzed to obtain time constants, which were correlated to kidney dysfunction asmore » determined by a subsequent survival study and histopathological analysis. This analysis of both the light scattering and autofluorescence images suggests that changes in tissue microstructure, fluorophore emission, and blood absorption spectral characteristics, coupled with vascular response, contribute to the behavior of the observed signal, which may be used to obtain tissue functional information and offer the ability to predict posttransplant kidney function.« less

  3. WE-AB-202-01: Evaluating the Toxicity Reduction with CT-Ventilation Functional Avoidance Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradskiy, Y; Miyasaka, Y; Kadoya, N

    Purpose: CT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Studies have proposed to use 4DCT-ventilation imaging for functional avoidance radiotherapy which implies designing treatment plans to spare functional portions of the lung. Although retrospective studies have been performed to evaluate the dosimetric gains to functional lung; no work has been done to translate the dosimetric gains to an improvement in pulmonary toxicity. The purpose of our work was to evaluate the potential reduction in toxicity for 4DCT-ventilation based functional avoidance. Methods: 70 lung cancer patients with 4DCT imaging were used for the study. CT-ventilationmore » maps were calculated using the patient’s 4DCT, deformable image registrations, and a density-change-based algorithm. Radiation pneumonitis was graded using imaging and clinical information. Log-likelihood methods were used to fit a normal-tissue-complication-probability (NTCP) model predicting grade 2+ radiation pneumonitis as a function of doses (mean and V20) to functional lung (>15% ventilation). For 20 patients a functional plan was generated that reduced dose to functional lung while meeting RTOG 0617-based constraints. The NTCP model was applied to the functional plan to determine the reduction in toxicity with functional planning Results: The mean dose to functional lung was 16.8 and 17.7 Gy with the functional and clinical plans respectively. The corresponding grade 2+ pneumonitis probability was 26.9% with the clinically-used plan and 24.6% with the functional plan (8.5% reduction). The V20-based grade 2+ pneumonitis probability was 23.7% with the clinically-used plan and reduced to 19.6% with the functional plan (20.9% reduction). Conclusion: Our results revealed a reduction of 9–20% in complication probability with functional planning. To our knowledge this is the first study to apply complication probability to convert dosimetric results to toxicity improvement. The results presented in the current work provide seminal data for prospective clinical trials in functional avoidance. YV discloses funding from State of Colorado. TY discloses National Lung Cancer Partnership; Young Investigator Research grant.« less

  4. Non-invasive assessment of the liver using imaging

    NASA Astrophysics Data System (ADS)

    Thorling Thompson, Camilla; Wang, Haolu; Liu, Xin; Liang, Xiaowen; Crawford, Darrell H.; Roberts, Michael S.

    2016-12-01

    Chronic liver disease causes 2,000 deaths in Australia per year and early diagnosis is crucial to avoid progression to cirrhosis and end stage liver disease. There is no ideal method to evaluate liver function. Blood tests and liver biopsies provide spot examinations and are unable to track changes in function quickly. Therefore better techniques are needed. Non-invasive imaging has the potential to extract increased information over a large sampling area, continuously tracking dynamic changes in liver function. This project aimed to study the ability of three imaging techniques, multiphoton and fluorescence lifetime imaging microscopy, infrared thermography and photoacoustic imaging, in measuring liver function. Collagen deposition was obvious in multiphoton and fluorescence lifetime imaging in fibrosis and cirrhosis and comparable to conventional histology. Infrared thermography revealed a significantly increased liver temperature in hepatocellular carcinoma. In addition, multiphoton and fluorescence lifetime imaging and photoacoustic imaging could both track uptake and excretion of indocyanine green in rat liver. These results prove that non-invasive imaging can extract crucial information about the liver continuously over time and has the potential to be translated into clinic in the assessment of liver disease.

  5. Analysis of STM images with pure and CO-functionalized tips: A first-principles and experimental study

    NASA Astrophysics Data System (ADS)

    Gustafsson, Alexander; Okabayashi, Norio; Peronio, Angelo; Giessibl, Franz J.; Paulsson, Magnus

    2017-08-01

    We describe a first-principles method to calculate scanning tunneling microscopy (STM) images, and compare the results to well-characterized experiments combining STM with atomic force microscopy (AFM). The theory is based on density functional theory with a localized basis set, where the wave functions in the vacuum gap are computed by propagating the localized-basis wave functions into the gap using a real-space grid. Constant-height STM images are computed using Bardeen's approximation method, including averaging over the reciprocal space. We consider copper adatoms and single CO molecules adsorbed on Cu(111), scanned with a single-atom copper tip with and without CO functionalization. The calculated images agree with state-of-the-art experiments, where the atomic structure of the tip apex is determined by AFM. The comparison further allows for detailed interpretation of the STM images.

  6. Functional and morphological ultrasonic biomicroscopy for tissue engineers

    NASA Astrophysics Data System (ADS)

    Mallidi, S.; Aglyamov, S. R.; Karpiouk, A. B.; Park, S.; Emelianov, S. Y.

    2006-03-01

    Tissue engineering is an interdisciplinary field that combines various aspects of engineering and life sciences and aims to develop biological substitutes to restore, repair or maintain tissue function. Currently, the ability to have quantitative functional assays of engineered tissues is limited to existing invasive methods like biopsy. Hence, an imaging tool for non-invasive and simultaneous evaluation of the anatomical and functional properties of the engineered tissue is needed. In this paper we present an advanced in-vivo imaging technology - ultrasound biomicroscopy combined with complementary photoacoustic and elasticity imaging techniques, capable of accurate visualization of both structural and functional changes in engineered tissues, sequential monitoring of tissue adaptation and/or regeneration, and possible assistance of drug delivery and treatment planning. The combined imaging at microscopic resolution was evaluated on tissue mimicking phantoms imaged with 25 MHz single element focused transducer. The results of our study demonstrate that the ultrasonic, photoacoustic and elasticity images synergistically complement each other in detecting features otherwise imperceptible using the individual techniques. Finally, we illustrate the feasibility of the combined ultrasound, photoacoustic and elasticity imaging techniques in accurately assessing the morphological and functional changes occurring in engineered tissue.

  7. A Comparative Study of Different Deblurring Methods Using Filters

    NASA Astrophysics Data System (ADS)

    Srimani, P. K.; Kavitha, S.

    2011-12-01

    This paper attempts to undertake the study of Restored Gaussian Blurred Images by using four types of techniques of deblurring image viz., Wiener filter, Regularized filter, Lucy Richardson deconvolution algorithm and Blind deconvolution algorithm with an information of the Point Spread Function (PSF) corrupted blurred image. The same is applied to the scanned image of seven months baby in the womb and they are compared with one another, so as to choose the best technique for restored or deblurring image. This paper also attempts to undertake the study of restored blurred image using Regualr Filter(RF) with no information about the Point Spread Function (PSF) by using the same four techniques after executing the guess of the PSF. The number of iterations and the weight threshold of it to choose the best guesses for restored or deblurring image of these techniques are determined.

  8. Changes in Regional Ventilation During Treatment and Dosimetric Advantages of CT Ventilation Image Guided Radiation Therapy for Locally Advanced Lung Cancer.

    PubMed

    Yamamoto, Tokihiro; Kabus, Sven; Bal, Matthieu; Bzdusek, Karl; Keall, Paul J; Wright, Cari; Benedict, Stanley H; Daly, Megan E

    2018-05-04

    Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic image-guided planning for patients showing tumor regression and changes in regional ventilation during RT. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Word Imageability Enhances Association-memory by Increasing Hippocampal Engagement.

    PubMed

    Caplan, Jeremy B; Madan, Christopher R

    2016-10-01

    The hippocampus is thought to support association-memory, particularly when tested with cued recall. One of the most well-known and studied factors that influences accuracy of verbal association-memory is imageability; participants remember pairs of high-imageability words better than pairs of low-imageability words. High-imageability words are also remembered better in tests of item-memory. However, we previously found that item-memory effects could not explain the enhancement in cued recall, suggesting that imageability enhances association-memory strength. Here we report an fMRI study designed to ask, what is the role of the hippocampus in the memory advantage for associations due to imageability? We tested two alternative hypotheses: (1) Recruitment Hypothesis: High-imageability pairs are remembered better because they recruit the underlying hippocampal association-memory function more effectively. Alternatively, (2) Bypassing Hypothesis: Imageability functions by making the association-forming process easier, enhancing memory in a way that bypasses the hippocampus, as has been found, for example, with explicit unitization imagery strategies. Results found, first, hippocampal BOLD signal was greater during study and recall of high- than low-imageability word pairs. Second, the difference in activity between recalled and forgotten pairs showed a main effect, but no significant interaction with imageability, challenging the bypassing hypothesis, but consistent with the predictions derived from the recruitment hypothesis. Our findings suggest that certain stimulus properties, like imageability, may leverage, rather than avoid, the associative function of the hippocampus to support superior association-memory.

  10. Real-time assessment of tissue hypoxia in vivo with combined photoacoustics and high-frequency ultrasound.

    PubMed

    Gerling, Marco; Zhao, Ying; Nania, Salvatore; Norberg, K Jessica; Verbeke, Caroline S; Englert, Benjamin; Kuiper, Raoul V; Bergström, Asa; Hassan, Moustapha; Neesse, Albrecht; Löhr, J Matthias; Heuchel, Rainer L

    2014-01-01

    In preclinical cancer studies, non-invasive functional imaging has become an important tool to assess tumor development and therapeutic effects. Tumor hypoxia is closely associated with tumor aggressiveness and is therefore a key parameter to be monitored. Recently, photoacoustic (PA) imaging with inherently co-registered high-frequency ultrasound (US) has reached preclinical applicability, allowing parallel collection of anatomical and functional information. Dual-wavelength PA imaging can be used to quantify tissue oxygen saturation based on the absorbance spectrum differences between hemoglobin and deoxyhemoglobin. A new bi-modal PA/US system for small animal imaging was employed to test feasibility and reliability of dual-wavelength PA for measuring relative tissue oxygenation. Murine models of pancreatic and colon cancer were imaged, and differences in tissue oxygenation were compared to immunohistochemistry for hypoxia in the corresponding tissue regions. Functional studies proved feasibility and reliability of oxygenation detection in murine tissue in vivo. Tumor models exhibited different levels of hypoxia in localized regions, which positively correlated with immunohistochemical staining for hypoxia. Contrast-enhanced imaging yielded complementary information on tissue perfusion using the same system. Bimodal PA/US imaging can be utilized to reliably detect hypoxic tumor regions in murine tumor models, thus providing the possibility to collect anatomical and functional information on tumor growth and treatment response live in longitudinal preclinical studies.

  11. The Association Between Sexual Satisfaction and Body Image in Women

    PubMed Central

    Pujols, Yasisca; Meston, Cindy M.; Seal, Brooke N.

    2010-01-01

    Introduction Although sexual functioning has been linked to sexual satisfaction, it only partially explains the degree to which women report being sexually satisfied. Other factors include quality of life, relational variables, and individual factors such as body image. Of the few studies that have investigated the link between body image and sexual satisfaction, most have considered body image to be a single construct and have shown mixed results. Aim The present study assessed multiple body image variables in order to better understand which aspects of body image influence multiple domains of sexual satisfaction, including sexual communication, compatibility, contentment, personal concern, and relational concern in a community sample of women. Methods Women between the ages of 18 and 49 years in sexual relationships (N = 154) participated in an Internet survey that assessed sexual functioning, five domains of sexual satisfaction, and several body image variables. Main Outcome Measures Body image variables included the sexual attractiveness, weight concern, and physical condition subscales of the Body Esteem Scale, the appearance-based subscale of the Cognitive Distractions During Sexual Activity Scale, and body mass index. Total score of the Sexual Satisfaction Scale for Women was the main outcome measure. Sexual functioning was measured by a modified Female Sexual Function Index. Results Consistent with expectations, correlations indicated significant positive relationships between sexual functioning, sexual satisfaction, and all body image variables. A multiple regression analysis revealed that sexual satisfaction was predicted by high body esteem and low frequency of appearance-based distracting thoughts during sexual activity, even after controlling for sexual functioning status. Conclusion Several aspects of body image, including weight concern, physical condition, sexual attractiveness, and thoughts about the body during sexual activity predict sexual satisfaction in women. The findings suggest that women who experience low sexual satisfaction may benefit from treatments that target these specific aspects of body image. PMID:19968771

  12. Gender Differences in Peer and Parental Influences: Body Image Disturbance, Self-Worth, and Psychological Functioning in Preadolescent Children.

    ERIC Educational Resources Information Center

    Phares, Vicky; Steinberg, Ari R.; Thompson, J. Kevin

    2004-01-01

    The connections between body image disturbance and psychological functioning have been well established in samples of older adolescent girls and young women. Little is known, however, about body image in younger children. In particular, little is known about possible gender differences in preadolescent children. The current study explored…

  13. Hybrid imaging in foot and ankle disorders.

    PubMed

    García Jiménez, R; García-Gómez, F J; Noriega Álvarez, E; Calvo Morón, C; Martín-Marcuartu, J J

    Disorders of the foot and ankle are some of the most frequent ones affecting the musculoskeletal system and have a great impact on patients' quality of life. Accurate diagnosis is an important clinical challenge because of the complex anatomy and function of the foot, that make it difficult to locate the source of the pain by routine clinical examination. In the study of foot pathology, anatomical imaging (radiography, magnetic resonance imaging [MRI], ultrasound and computed tomography [CT]) and functional imaging (bone scan, positron emission tomography [PET] and MRI) techniques have been used. Hybrid imaging combines the advantages of morphological and functional studies in a synergistic way, helping the clinician manage complex problems. In this article we delve into the anatomy and biomechanics of the foot and ankle and describe the potential indications for the current hybrid techniques available for the study of foot and ankle disease. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  14. Retooling Laser Speckle Contrast Analysis Algorithm to Enhance Non-Invasive High Resolution Laser Speckle Functional Imaging of Cutaneous Microcirculation

    NASA Astrophysics Data System (ADS)

    Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.

    2017-01-01

    Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system.

  15. Retooling Laser Speckle Contrast Analysis Algorithm to Enhance Non-Invasive High Resolution Laser Speckle Functional Imaging of Cutaneous Microcirculation

    PubMed Central

    Gnyawali, Surya C.; Blum, Kevin; Pal, Durba; Ghatak, Subhadip; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.

    2017-01-01

    Cutaneous microvasculopathy complicates wound healing. Functional assessment of gated individual dermal microvessels is therefore of outstanding interest. Functional performance of laser speckle contrast imaging (LSCI) systems is compromised by motion artefacts. To address such weakness, post-processing of stacked images is reported. We report the first post-processing of binary raw data from a high-resolution LSCI camera. Sharp images of low-flowing microvessels were enabled by introducing inverse variance in conjunction with speckle contrast in Matlab-based program code. Extended moving window averaging enhanced signal-to-noise ratio. Functional quantitative study of blood flow kinetics was performed on single gated microvessels using a free hand tool. Based on detection of flow in low-flow microvessels, a new sharp contrast image was derived. Thus, this work presents the first distinct image with quantitative microperfusion data from gated human foot microvasculature. This versatile platform is applicable to study a wide range of tissue systems including fine vascular network in murine brain without craniotomy as well as that in the murine dorsal skin. Importantly, the algorithm reported herein is hardware agnostic and is capable of post-processing binary raw data from any camera source to improve the sensitivity of functional flow data above and beyond standard limits of the optical system. PMID:28106129

  16. Retrieving Coherent Receiver Function Images with Dense Arrays

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Zhan, Z.

    2016-12-01

    Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.

  17. Application of a Noise Adaptive Contrast Sensitivity Function to Image Data Compression

    NASA Astrophysics Data System (ADS)

    Daly, Scott J.

    1989-08-01

    The visual contrast sensitivity function (CSF) has found increasing use in image compression as new algorithms optimize the display-observer interface in order to reduce the bit rate and increase the perceived image quality. In most compression algorithms, increasing the quantization intervals reduces the bit rate at the expense of introducing more quantization error, a potential image quality degradation. The CSF can be used to distribute this error as a function of spatial frequency such that it is undetectable by the human observer. Thus, instead of being mathematically lossless, the compression algorithm can be designed to be visually lossless, with the advantage of a significantly reduced bit rate. However, the CSF is strongly affected by image noise, changing in both shape and peak sensitivity. This work describes a model of the CSF that includes these changes as a function of image noise level by using the concepts of internal visual noise, and tests this model in the context of image compression with an observer study.

  18. Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury.

    PubMed

    Shin, Samuel S; Bales, James W; Edward Dixon, C; Hwang, Misun

    2017-04-01

    A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality's advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.

  19. Imaging performance of annular apertures. IV - Apodization and point spread functions. V - Total and partial energy integral functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1983-01-01

    Reference is made to a study by Tschunko (1979) in which it was discussed how apodization modifies the modulation transfer function for various central obstruction ratios. It is shown here how apodization, together with the central obstruction ratio, modifies the point spread function, which is the basic element for the comparison of imaging performance and for the derivation of energy integrals and other functions. At high apodization levels and lower central obstruction (less than 0.1), new extended radial zones are formed in the outer part of the central ring groups. These transmutation of the image functions are of more than theoretical interest, especially if the irradiance levels in the outer ring zones are to be compared to the background irradiance levels. Attention is then given to the energy distribution in point images generated by annular apertures apodized by various transmission functions. The total energy functions are derived; partial energy integrals are determined; and background irradiance functions are discussed.

  20. A framework for joint image-and-shape analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Tannenbaum, Allen; Bouix, Sylvain

    2014-03-01

    Techniques in medical image analysis are many times used for the comparison or regression on the intensities of images. In general, the domain of the image is a given Cartesian grids. Shape analysis, on the other hand, studies the similarities and differences among spatial objects of arbitrary geometry and topology. Usually, there is no function defined on the domain of shapes. Recently, there has been a growing needs for defining and analyzing functions defined on the shape space, and a coupled analysis on both the shapes and the functions defined on them. Following this direction, in this work we present a coupled analysis for both images and shapes. As a result, the statistically significant discrepancies in both the image intensities as well as on the underlying shapes are detected. The method is applied on both brain images for the schizophrenia and heart images for atrial fibrillation patients.

  1. A Genome-Wide Association Study of Amygdala Activation in Youths with and without Bipolar Disorder

    ERIC Educational Resources Information Center

    Liu, Xinmin; Akula, Nirmala; Skup, Martha; Brotman, Melissa A.; Leibenluft, Ellen; McMahon, Francis J.

    2010-01-01

    Objective: Functional magnetic resonance imaging is commonly used to characterize brain activity underlying a variety of psychiatric disorders. A previous functional magnetic resonance imaging study found that amygdala activation during a face-processing task differed between pediatric patients with bipolar disorder (BD) and healthy controls. We…

  2. Four-Photon Imaging with Thermal Light

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Xue, Xinxin; Zhang, Xun; Yuan, Chenzhi; Sun, Jia; Song, Jianping; Zhang, Yanpeng

    2014-10-01

    In a near-field four-photon correlation measurement, ghost imaging with classical incoherent light is investigated. By applying the Klyshko advanced-wave picture, we consider the properties of four-photon spatial correlation and find that the fourth-order spatial correlation function can be decomposed into multiple lower-order correlation functions. On the basis of the spatial correlation properties, a proof-of-principle four-photon ghost imaging is proposed, and the effect of each part in a fourth-order correlation function on imaging is also analyzed. In addition, the similarities and differences among ghost imaging by fourth-, second-, and third-order correlations are also discussed. It is shown that the contrast and visibility of fourth-order correlated imaging are improved significantly, while the resolution is unchanged. Such studies can be very useful in better understanding multi photon interference and multi-channel correlation imaging.

  3. The Relationship Between Body Image and Domains of Sexual Functioning Among Heterosexual, Emerging Adult Women.

    PubMed

    Quinn-Nilas, Christopher; Benson, Lindsay; Milhausen, Robin R; Buchholz, Andrea C; Goncalves, Melissa

    2016-09-01

    Research suggests that body image affects sexual functioning, but the relationship between specific types of body image (evaluative, affective, and behavioral) and domains of sexual functioning (desire, arousal, and orgasm) has not been investigated. To determine whether, and to what degree, body image concerns (evaluative, affective, and behavioral) influence aspects of women's sexual functioning (desire, arousal, and orgasm). Eighty-eight sexually active women in heterosexual romantic relationships completed surveys assessing evaluative, affective, and behavioral body image and sexual functioning. Body composition data also were collected using dual energy x-ray absorptiometry. Sexual functioning was assessed using the desire, arousal, and orgasm subscales of the Female Sexual Functioning Index. Hierarchical multiple regression analysis indicated that poor evaluative, affective, and behavioral body image were detrimental to women's sexual functioning. Specifically, dissatisfaction with one's body predicted decrements in desire (β = -0.31, P < .05) and arousal (β = -0.35, P < .01). Similarly, feeling that others evaluate one's body negatively predicted decrements in desire (β = 0.22, P < .05) and arousal (β = 0.35, P < .01). Feeling negatively about one's appearance predicted decrements in arousal (β = 0.26, P < .05). Negative thoughts and feelings about one's body during a sexual encounter (body image self-consciousness) predicted decrements in arousal (β = -0.37, P < .01) and orgasm (β = -0.25, P < .05). Findings from this study suggest important linkages between body image and sexual functioning constructs and indicates that interventions to improve body image could have concomitant benefits related to sexual experience. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Monkey cortex through fMRI glasses

    PubMed Central

    Vanduffel, Wim; Zhu, Qi; Orban, Guy A.

    2015-01-01

    In 1998 several groups reported the feasibility of functional magnetic resonance imaging (fMRI) experiments in monkeys, with the goal to bridge the gap between invasive nonhuman primate studies and human functional imaging. These studies yielded critical insights in the neuronal underpinnings of the BOLD signal. Furthermore, the technology has been successful in guiding electrophysiological recordings and identifying focal perturbation targets. Finally, invaluable information was obtained concerning human brain evolution. We here provide a comprehensive overview of awake monkey fMRI studies mainly confined to the visual system. We review the latest insights about the topographic organization of monkey visual cortex and discuss the spatial relationships between retinotopy and category and feature selective clusters. We briefly discuss the functional layout of parietal and frontal cortex and continue with a summary of some fascinating functional and effective connectivity studies. Finally, we review recent comparative fMRI experiments and speculate about the future of nonhuman primate imaging. PMID:25102559

  5. Functional Neuro-Imaging and Post-Traumatic Olfactory Impairment

    PubMed Central

    Roberts, Richard J.; Sheehan, William; Thurber, Steven; Roberts, Mary Ann

    2010-01-01

    Objective: To evaluate via a research literature survey the anterior neurological significance of decreased olfactory functioning following traumatic brain injuries. Materials and Methods: A computer literature review was performed to locate all functional neuro-imaging studies on patients with post-traumatic anosmia and other olfactory deficits. Results: A convergence of findings from nine functional neuro-imaging studies indicating evidence for reduced metabolic activity at rest or relative hypo-perfusion during olfactory activations. Hypo-activation of the prefrontal regions was apparent in all nine post-traumatic samples, with three samples yielding evidence of reduced activity in the temporal regions as well. Conclusions: The practical ramifications include the reasonable hypothesis that a total anosmic head trauma patient likely has frontal lobe involvement. PMID:21716782

  6. Comparative study on the performance of textural image features for active contour segmentation.

    PubMed

    Moraru, Luminita; Moldovanu, Simona

    2012-07-01

    We present a computerized method for the semi-automatic detection of contours in ultrasound images. The novelty of our study is the introduction of a fast and efficient image function relating to parametric active contour models. This new function is a combination of the gray-level information and first-order statistical features, called standard deviation parameters. In a comprehensive study, the developed algorithm and the efficiency of segmentation were first tested for synthetic images. Tests were also performed on breast and liver ultrasound images. The proposed method was compared with the watershed approach to show its efficiency. The performance of the segmentation was estimated using the area error rate. Using the standard deviation textural feature and a 5×5 kernel, our curve evolution was able to produce results close to the minimal area error rate (namely 8.88% for breast images and 10.82% for liver images). The image resolution was evaluated using the contrast-to-gradient method. The experiments showed promising segmentation results.

  7. [The neurobiology of obsessive-compulsive disorder: new findings from functional magnetic resonance imaging (II)].

    PubMed

    Pena-Garijo, Josep; Ruipérez-Rodríguez, M Angeles; Barros-Loscertales, Alfonso

    2010-05-01

    In recent years, neuroscience has shown a growing interest in applying its methods to furthering the knowledge of psychiatric disorders, and one of the fundamental tools used to do so are neuroimaging techniques. Yet, in general, few studies have been conducted in which functional magnetic resonance has been applied in this field and findings are sometimes contradictory. In this study we review the specialised bibliography and present a critical discussion on the scientific literature published to date on the application of functional magnetic resonance and diffusion tensor imaging to one of the most widely studied disorders, from a neurobiological point of view, namely, obsessive-compulsive disorder. The study reviews the articles on the use of functional magnetic resonance imaging, as well as those dealing with neural connectivity, that have been indexed in the most commonly used medical databases on the topic since 1996. Most studies suggest that the prefrontal cortex (orbitofrontal and cingulate), the basal ganglia and the thalamus are involved in the pathogenesis of obsessive-compulsive disorder. Likewise, alterations in the white matter that affect neural connectivity have also been found. The contributions made by neuroimaging and, more specifically, by functional magnetic resonance imaging are and will undoubtedly continue to be a particularly interesting tool for explaining the aetiology of this disorder.

  8. Camera system resolution and its influence on digital image correlation

    DOE PAGES

    Reu, Phillip L.; Sweatt, William; Miller, Timothy; ...

    2014-09-21

    Digital image correlation (DIC) uses images from a camera and lens system to make quantitative measurements of the shape, displacement, and strain of test objects. This increasingly popular method has had little research on the influence of the imaging system resolution on the DIC results. This paper investigates the entire imaging system and studies how both the camera and lens resolution influence the DIC results as a function of the system Modulation Transfer Function (MTF). It will show that when making spatial resolution decisions (including speckle size) the resolution limiting component should be considered. A consequence of the loss ofmore » spatial resolution is that the DIC uncertainties will be increased. This is demonstrated using both synthetic and experimental images with varying resolution. The loss of image resolution and DIC accuracy can be compensated for by increasing the subset size, or better, by increasing the speckle size. The speckle-size and spatial resolution are now a function of the lens resolution rather than the more typical assumption of the pixel size. The study will demonstrate the tradeoffs associated with limited lens resolution.« less

  9. Factor analysis for delineation of organ structures, creation of in- and output functions, and standardization of multicenter kinetic modeling

    NASA Astrophysics Data System (ADS)

    Schiepers, Christiaan; Hoh, Carl K.; Dahlbom, Magnus; Wu, Hsiao-Ming; Phelps, Michael E.

    1999-05-01

    PET imaging can quantify metabolic processes in-vivo; this requires the measurement of an input function which is invasive and labor intensive. A non-invasive, semi-automated, image based method of input function generation would be efficient, patient friendly, and allow quantitative PET to be applied routinely. A fully automated procedure would be ideal for studies across institutions. Factor analysis (FA) was applied as processing tool for definition of temporally changing structures in the field of view. FA has been proposed earlier, but the perceived mathematical difficulty has prevented widespread use. FA was utilized to delineate structures and extract blood and tissue time-activity-curves (TACs). These TACs were used as input and output functions for tracer kinetic modeling, the results of which were compared with those from an input function obtained with serial blood sampling. Dynamic image data of myocardial perfusion studies with N-13 ammonia, O-15 water, or Rb-82, cancer studies with F-18 FDG, and skeletal studies with F-18 fluoride were evaluated. Correlation coefficients of kinetic parameters obtained with factor and plasma input functions were high. Linear regression usually furnished a slope near unity. Processing time was 7 min/patient on an UltraSPARC. Conclusion: FA can non-invasively generate input functions from image data eliminating the need for blood sampling. Output (tissue) functions can be simultaneously generated. The method is simple, requires no sophisticated operator interaction and has little inter-operator variability. FA is well suited for studies across institutions and standardized evaluations.

  10. Correspondence of the brain's functional architecture during activation and rest.

    PubMed

    Smith, Stephen M; Fox, Peter T; Miller, Karla L; Glahn, David C; Fox, P Mickle; Mackay, Clare E; Filippini, Nicola; Watkins, Kate E; Toro, Roberto; Laird, Angela R; Beckmann, Christian F

    2009-08-04

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."

  11. The Zernike expansion--an example of a merit function for 2D/3D registration based on orthogonal functions.

    PubMed

    Dong, Shuo; Kettenbach, Joachim; Hinterleitner, Isabella; Bergmann, Helmar; Birkfellner, Wolfgang

    2008-01-01

    Current merit functions for 2D/3D registration usually rely on comparing pixels or small regions of images using some sort of statistical measure. Problems connected to this paradigm the sometimes problematic behaviour of the method if noise or artefacts (for instance a guide wire) are present on the projective image. We present a merit function for 2D/3D registration which utilizes the decomposition of the X-ray and the DRR under comparison into orthogonal Zernike moments; the quality of the match is assessed by an iterative comparison of expansion coefficients. Results in a imaging study on a physical phantom show that--compared to standard cross--correlation the Zernike moment based merit function shows better robustness if histogram content in images under comparison is different, and that time expenses are comparable if the merit function is constructed out of a few significant moments only.

  12. Echocardiographic Evaluation of Left Atrial Mechanics: Function, History, Novel Techniques, Advantages, and Pitfalls.

    PubMed

    Leischik, Roman; Littwitz, Henning; Dworrak, Birgit; Garg, Pankaj; Zhu, Meihua; Sahn, David J; Horlitz, Marc

    2015-01-01

    Left atrial (LA) functional analysis has an established role in assessing left ventricular diastolic function. The current standard echocardiographic parameters used to study left ventricular diastolic function include pulsed-wave Doppler mitral inflow analysis, tissue Doppler imaging measurements, and LA dimension estimation. However, the above-mentioned parameters do not directly quantify LA performance. Deformation studies using strain and strain-rate imaging to assess LA function were validated in previous research, but this technique is not currently used in routine clinical practice. This review discusses the history, importance, and pitfalls of strain technology for the analysis of LA mechanics.

  13. Tc-99m Ethylenedicysteine and Tc-99m Dimercaptosuccinic Acid Scintigraphy-Comparison of the Two for Detection of Scarring and Differential Cortical Function.

    PubMed

    Dharmalingam, Anitha; Pawar, Shwetal U; Parelkar, Sandesh V; Shetye, Suruchi S; Ghorpade, Mangala K; Tilve, Gundu H

    2017-01-01

    The differential cortical function obtained by Tc-99m EC is comparable to that of Tc-99m DMSA. However, identification of scars on Tc-99m EC images needs to be studied. The aim of the study is to evaluate role of Tc-99m EC for detection of scarring and differential cortical function by comparing with Tc-99m DMSA. Prospective observational study of recurrent UTI; minimum 6 weeks after acute episode; when urine examination is negative for pus cells. Forty-seven children with normal positioned kidneys underwent Tc-99m EC and DMSA scintigraphy. The DRF and cortical phase images of both studies in the same image matrix size were evaluated by two independent observers for scarring; Tc-99m DMSA was considered as the gold standard. MS Excel 2007 and GraphPad Instat V3.1 and ROC analysis. There was no significant difference in the detection of scarring using two studies with Cohen's kappa coefficient (κ) 0.932. The sensitivity and specificity of Tc-99m EC for detection of scarring was 98.75% and 99.15%, respectively. There was good agreement between the differential cortical function calculated using two studies. The summed Tc-99m EC images with an acceptable high image contrast allow detection of cortical scarring in patients with normal kidney positions. It is an excellent single-modality comprehensive investigational agent for renal parenchymal defects, function, and excretion evaluation with the added advantages of lower cost, convenience, and low radiation exposure to the child.

  14. Improvement in cognitive and psychosocial functioning and self image among adolescent inpatient suicide attempters.

    PubMed

    Hintikka, Ulla; Marttunen, Mauri; Pelkonen, Mirjami; Laukkanen, Eila; Viinamäki, Heimo; Lehtonen, Johannes

    2006-12-29

    Psychiatric treatment of suicidal youths is often difficult and non-compliance in treatment is a significant problem. This prospective study compared characteristics and changes in cognitive functioning, self image and psychosocial functioning among 13 to 18 year-old adolescent psychiatric inpatients with suicide attempts (n = 16) and with no suicidality (n = 39) The two-group pre-post test prospective study design included assessments by a psychiatrist, a psychologist and medical staff members as well as self-rated measures. DSM-III-R diagnoses were assigned using the SCID and thereafter transformed to DSM-IV diagnoses. Staff members assessed psychosocial functioning using the Global Assessment Scale (GAS). Cognitive performance was assessed using the Wechsler Adult Intelligence Scale, while the Offer Self-Image Questionnaire (OSIQ) was used to assess the subjects' self-image. ANCOVA with repeated measures was used to test changes from entry to discharge among the suicide attempters and non suicidal patients. Logistic regression modeling was used to assess variables associated with an improvement of 10 points or more in the GAS score. Among suicide attempter patients, psychosocial functioning, cognitive performance and both the psychological self and body-image improved during treatment and their treatment compliance and outcome were as good as that of the non-suicidal patients. Suicidal ideation and hopelessness declined, and psychosocial functioning improved. Changes in verbal cognitive performance were more pronounced among the suicide attempters. Having an improved body-image associated with a higher probability of improvement in psychosocial functioning while higher GAS score at entry was associated with lower probability of functional improvement in both patient groups. These findings illustrate that a multimodal treatment program seems to improve psychosocial functioning and self-image among severely disordered suicidal adolescent inpatients. There were no changes in familial relationships, possibly indicating a need for more intensive family interventions when treating suicidal youths. Multimodal inpatient treatment including an individual therapeutic relationship seems recommendable for severely impaired psychiatric inpatients tailored to the suicidal adolescent's needs.

  15. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    PubMed

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  16. A Model-Based Approach for Microvasculature Structure Distortion Correction in Two-Photon Fluorescence Microscopy Images

    PubMed Central

    Dao, Lam; Glancy, Brian; Lucotte, Bertrand; Chang, Lin-Ching; Balaban, Robert S; Hsu, Li-Yueh

    2015-01-01

    SUMMARY This paper investigates a post-processing approach to correct spatial distortion in two-photon fluorescence microscopy images for vascular network reconstruction. It is aimed at in vivo imaging of large field-of-view, deep-tissue studies of vascular structures. Based on simple geometric modeling of the object-of-interest, a distortion function is directly estimated from the image volume by deconvolution analysis. Such distortion function is then applied to sub volumes of the image stack to adaptively adjust for spatially varying distortion and reduce the image blurring through blind deconvolution. The proposed technique was first evaluated in phantom imaging of fluorescent microspheres that are comparable in size to the underlying capillary vascular structures. The effectiveness of restoring three-dimensional spherical geometry of the microspheres using the estimated distortion function was compared with empirically measured point-spread function. Next, the proposed approach was applied to in vivo vascular imaging of mouse skeletal muscle to reduce the image distortion of the capillary structures. We show that the proposed method effectively improve the image quality and reduce spatially varying distortion that occurs in large field-of-view deep-tissue vascular dataset. The proposed method will help in qualitative interpretation and quantitative analysis of vascular structures from fluorescence microscopy images. PMID:26224257

  17. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  18. Brain Structure and Executive Functions in Children with Cerebral Palsy: A Systematic Review

    ERIC Educational Resources Information Center

    Weierink, Lonneke; Vermeulen, R. Jeroen; Boyd, Roslyn N.

    2013-01-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using…

  19. Functional Magnetic Resonance Imaging of Story Listening in Adolescents and Young Adults with Down Syndrome: Evidence for Atypical Neurodevelopment

    ERIC Educational Resources Information Center

    Jacola, L. M.; Byars, A. W.; Hickey, F.; Vannest, J.; Holland, S. K.; Schapiro, M. B.

    2014-01-01

    Background: Previous studies have documented differences in neural activation during language processing in individuals with Down syndrome (DS) in comparison with typically developing individuals matched for chronological age. This study used functional magnetic resonance imaging (fMRI) to compare activation during language processing in young…

  20. Characterization and simulation of noise in PET images reconstructed with OSEM: Development of a method for the generation of synthetic images.

    PubMed

    Castro, P; Huerga, C; Chamorro, P; Garayoa, J; Roch, M; Pérez, L

    2018-04-17

    The goals of the study are to characterize imaging properties in 2D PET images reconstructed with the iterative algorithm ordered-subset expectation maximization (OSEM) and to propose a new method for the generation of synthetic images. The noise is analyzed in terms of its magnitude, spatial correlation, and spectral distribution through standard deviation, autocorrelation function, and noise power spectrum (NPS), respectively. Their variations with position and activity level are also analyzed. This noise analysis is based on phantom images acquired from 18 F uniform distributions. Experimental recovery coefficients of hot spheres in different backgrounds are employed to study the spatial resolution of the system through point spread function (PSF). The NPS and PSF functions provide the baseline for the proposed simulation method: convolution with PSF as kernel and noise addition from NPS. The noise spectral analysis shows that the main contribution is of random nature. It is also proven that attenuation correction does not alter noise texture but it modifies its magnitude. Finally, synthetic images of 2 phantoms, one of them an anatomical brain, are quantitatively compared with experimental images showing a good agreement in terms of pixel values and pixel correlations. Thus, the contrast to noise ratio for the biggest sphere in the NEMA IEC phantom is 10.7 for the synthetic image and 8.8 for the experimental image. The properties of the analyzed OSEM-PET images can be described by NPS and PSF functions. Synthetic images, even anatomical ones, are successfully generated by the proposed method based on the NPS and PSF. Copyright © 2018 Sociedad Española de Medicina Nuclear e Imagen Molecular. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Characterization of adaptive statistical iterative reconstruction (ASIR) in low contrast helical abdominal imaging via a transfer function based method

    NASA Astrophysics Data System (ADS)

    Zhang, Da; Li, Xinhua; Liu, Bob

    2012-03-01

    Since the introduction of ASiR, its potential in noise reduction has been reported in various clinical applications. However, the influence of different scan and reconstruction parameters on the trade off between ASiR's blurring effect and noise reduction in low contrast imaging has not been fully studied. Simple measurements on low contrast images, such as CNR or phantom scores could not explore the nuance nature of this problem. We tackled this topic using a method which compares the performance of ASiR in low contrast helical imaging based on an assumed filter layer on top of the FBP reconstruction. Transfer functions of this filter layer were obtained from the noise power spectra (NPS) of corresponding FBP and ASiR images that share the same scan and reconstruction parameters. 2D transfer functions were calculated as sqrt[NPSASiR(u, v)/NPSFBP(u, v)]. Synthesized ACR phantom images were generated by filtering the FBP images with the transfer functions of specific (FBP, ASiR) pairs, and were compared with the ASiR images. It is shown that the transfer functions could predict the deterministic blurring effect of ASiR on low contrast objects, as well as the degree of noise reductions. Using this method, the influence of dose, scan field of view (SFOV), display field of view (DFOV), ASiR level, and Recon Mode on the behavior of ASiR in low contrast imaging was studied. It was found that ASiR level, dose level, and DFOV play more important roles in determining the behavior of ASiR than the other two parameters.

  2. Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome?

    PubMed

    Dupont, Sophie; Duron, Emmanuelle; Samson, Séverine; Denos, Marisa; Volle, Emmanuelle; Delmaire, Christine; Navarro, Vincent; Chiras, Jacques; Lehéricy, Stéphane; Samson, Yves; Baulac, Michel

    2010-04-01

    To retrospectively determine whether blood oxygen level-dependent functional magnetic resonance (MR) imaging can aid prediction of postoperative memory changes in epileptic patients after temporal lobe surgery. This study was approved by the local ethics committee, and informed consent was obtained from all patients. Data were analyzed from 25 patients (12 women, 13 men; age range, 19-52 years) with refractory epilepsy in whom temporal lobe surgery was performed after they underwent preoperative functional MR imaging, the Wada test, and neuropsychological testing. The functional MR imaging protocol included three different memory tasks (24-hour delayed recognition, encoding, and immediate recognition). Individual activations were measured in medial temporal lobe (MTL) regions of both hemispheres. The prognostic accuracy of functional MR imaging for prediction of postoperative memory changes was compared with the accuracy of the Wada test and preoperative neuropsychological testing by using a backward multiple regression analysis. An equation that was based on left functional MR imaging MTL activation during delayed recognition, side of the epileptic focus, and preoperative global verbal memory score was used to correctly predict worsening of verbal memory in 90% of patients. The right functional MR imaging MTL activation did not substantially correlate with the nonverbal memory outcome, which was only predicted by using the preoperative nonverbal global score. Wada test data were not good predictors of changes in either verbal or nonverbal memory. Findings suggest that functional MR imaging activation during a delayed-recognition task is a better predictor of individual postoperative verbal memory outcome than is the Wada test. RSNA, 2010

  3. Functional Cardiac Magnetic Resonance Imaging (MRI) in the Assessment of Myocardial Viability and Perfusion

    PubMed Central

    2003-01-01

    Executive Summary Objective The objective of this health technology policy assessment was to determine the effectiveness safety and cost-effectiveness of using functional cardiac magnetic resonance imaging (MRI) for the assessment of myocardial viability and perfusion in patients with coronary artery disease and left ventricular dysfunction. Results Functional MRI has become increasingly investigated as a noninvasive method for assessing myocardial viability and perfusion. Most patients in the published literature have mild to moderate impaired LV function. It is possible that the severity of LV dysfunction may be an important factor that can alter the diagnostic accuracy of imaging techniques. There is some evidence of comparable or better performance of functional cardiac MRI for the assessment of myocardial viability and perfusion compared with other imaging techniques. However limitations to most of the studies included: Functional cardiac MRI studies that assess myocardial viability and perfusion have had small sample sizes. Some studies assessed myocardial viability/perfusion in patients who had already undergone revascularization, or excluded patients with a prior MI (Schwitter et al., 2001). Lack of explicit detail of patient recruitment. Patients with LVEF >35%. Interstudy variability in post MI imaging time(including acute or chronic MI), when patients with a prior MI were included. Poor interobserver agreement (kappa statistic) in the interpretation of the results. Traditionally, 0.80 is considered “good”. Cardiac MRI measurement of myocardial perfusion to as an adjunct tool to help diagnose CAD (prior to a definitive coronary angiography) has also been examined in some studies, with methodological limitations, yielding comparable results. Many studies examining myocardial viability and perfusion report on the accuracy of imaging methods with limited data on long-term patient outcome and management. Kim et al. (2000) revealed that the transmural extent of hyperenhancement was significantly related to the likelihood of improvement in contractility after revascularization. However, the LVEF in the patient population was 43% prior to revascularization. It is important to know whether the technique has the same degree of accuracy in patients who have more severe LV dysfunction and who would most benefit from an assessment of myocardial viability. “Substantial” viability used as a measure of a patient’s ability to recover after revascularization has not been definitively reported (how much viability is enough?). Patients with severe LV dysfunction are more likely to have mixtures of surviving myocardium, including normal, infarcted, stunned and hibernating myocardium (Cowley et al., 1999). This may lead to a lack of homogeneity of response to testing and to revascularization and contribute to inter- and intra-study differences. There is a need for a large prospective study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and an alternate imaging technique. There is some evidence that MRI has comparable sensitivity, specificity and accuracy to PET for determining myocardial viability. However, there is a lack of evidence comparing the accuracy of these two techniques to predict LV function recovery. In addition, some studies refer to PET as the gold standard for the assessment of myocardial viability. Therefore, PET may be an ideal noninvasive imaging comparator to MRI for a prospective study with follow-up. To date, there is a lack of cost-effectiveness analyses (or any economic analyses) of functional cardiac MRI versus an alternate noninvasive imaging method for the assessment of myocardial viability/perfusion. Conclusion There is some evidence that the accuracy of functional cardiac MRI compares favourably with alternate imaging techniques for the assessment of myocardial viability and perfusion. There is insufficient evidence whether functional cardiac MRI can better select which patients [who have CAD and severe LV dysfunction (LVEF <35%)] may benefit from revascularization compared with an alternate noninvasive imaging technology. There is insufficient evidence whether functional cardiac MRI can better select which patients should proceed to invasive coronary angiography for the definitive diagnosis of CAD, compared with an alternate noninvasive imaging technology. There is a need for a large prospective (potentially multicentre) study with adequate follow-up time for patients with CAD and LV dysfunction (LVEF<35%) comparing MRI and PET. Since longer follow-up time may be associated with restenosis or graft occlusion, it has been suggested to have serial measurements after revascularization (Cowley et al., 1999). PMID:23074446

  4. When structure affects function--the need for partial volume effect correction in functional and resting state magnetic resonance imaging studies.

    PubMed

    Dukart, Juergen; Bertolino, Alessandro

    2014-01-01

    Both functional and also more recently resting state magnetic resonance imaging have become established tools to investigate functional brain networks. Most studies use these tools to compare different populations without controlling for potential differences in underlying brain structure which might affect the functional measurements of interest. Here, we adapt a simulation approach combined with evaluation of real resting state magnetic resonance imaging data to investigate the potential impact of partial volume effects on established functional and resting state magnetic resonance imaging analyses. We demonstrate that differences in the underlying structure lead to a significant increase in detected functional differences in both types of analyses. Largest increases in functional differences are observed for highest signal-to-noise ratios and when signal with the lowest amount of partial volume effects is compared to any other partial volume effect constellation. In real data, structural information explains about 25% of within-subject variance observed in degree centrality--an established resting state connectivity measurement. Controlling this measurement for structural information can substantially alter correlational maps obtained in group analyses. Our results question current approaches of evaluating these measurements in diseased population with known structural changes without controlling for potential differences in these measurements.

  5. Function Biomedical Informatics Research Network Recommendations for Prospective Multi-Center Functional Magnetic Resonance Imaging Studies

    PubMed Central

    Glover, Gary H.; Mueller, Bryon A.; Turner, Jessica A.; van Erp, Theo G.M.; Liu, Thomas T.; Greve, Douglas N.; Voyvodic, James T.; Rasmussen, Jerod; Brown, Gregory G.; Keator, David B.; Calhoun, Vince D.; Lee, Hyo Jong; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Gadde, Syam; Preda, Adrian; Lim, Kelvin O.; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.

    2011-01-01

    This report provides practical recommendations for the design and execution of Multi-Center functional Magnetic Resonance Imaging (MC-fMRI) studies based on the collective experience of the Function Biomedical Informatics Research Network (FBIRN). The paper was inspired by many requests from the fMRI community to FBIRN group members for advice on how to conduct MC-fMRI studies. The introduction briefly discusses the advantages and complexities of MC-fMRI studies. Prerequisites for MC-fMRI studies are addressed before delving into the practical aspects of carefully and efficiently setting up a MC-fMRI study. Practical multi-site aspects include: (1) establishing and verifying scan parameters including scanner types and magnetic fields, (2) establishing and monitoring of a scanner quality program, (3) developing task paradigms and scan session documentation, (4) establishing clinical and scanner training to ensure consistency over time, (5) developing means for uploading, storing, and monitoring of imaging and other data, (6) the use of a traveling fMRI expert and (7) collectively analyzing imaging data and disseminating results. We conclude that when MC-fMRI studies are organized well with careful attention to unification of hardware, software and procedural aspects, the process can be a highly effective means for accessing a desired participant demographics while accelerating scientific discovery. PMID:22314879

  6. Brain structure and executive functions in children with cerebral palsy: a systematic review.

    PubMed

    Weierink, Lonneke; Vermeulen, R Jeroen; Boyd, Roslyn N

    2013-05-01

    This systematic review aimed to establish the current knowledge about brain structure and executive function (EF) in children with cerebral palsy (CP). Five databases were searched (up till July 2012). Six articles met the inclusion criteria, all included structural brain imaging though no functional brain imaging. Study quality was assessed using the STROBE checklist. All articles scored between 58.7% and 70.5% for quality (100% is the maximum score). The included studies all reported poorer performance on EF tasks for children with CP compared to children without CP. For the selected EF measures non-significant effect sizes were found for the CP group compared to a semi-control group (children without cognitive deficits but not included in a control group). This could be due to the small sample sizes, group heterogeneity and lack of comparison of the CP group to typically developing children. The included studies did not consider specific brain areas associated with EF performance. To conclude, there is a paucity of brain imaging studies focused on EF in children with CP, especially of studies that include functional brain imaging. Outcomes of the present studies are difficult to compare as each study included different EF measures and cortical abnormality measures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Altered amygdala-prefrontal connectivity during emotion perception in schizophrenia.

    PubMed

    Bjorkquist, Olivia A; Olsen, Emily K; Nelson, Brady D; Herbener, Ellen S

    2016-08-01

    Individuals with schizophrenia evidence impaired emotional functioning. Abnormal amygdala activity has been identified as an etiological factor underlying affective impairment in this population, but the exact nature remains unclear. The current study utilized psychophysiological interaction analyses to examine functional connectivity between the amygdala and medial prefrontal cortex (mPFC) during an emotion perception task. Participants with schizophrenia (SZ) and healthy controls (HC) viewed and rated positive, negative, and neutral images while undergoing functional neuroimaging. Results revealed a significant group difference in right amygdala-mPFC connectivity during perception of negative versus neutral images. Specifically, HC participants demonstrated positive functional coupling between the amygdala and mPFC, consistent with co-active processing of salient information. In contrast, SZ participants evidenced negative functional coupling, consistent with top-down inhibition of the amygdala by the mPFC. A significant positive correlation between connectivity strength during negative image perception and clinician-rated social functioning was also observed in SZ participants, such that weaker right amygdala-mPFC coupling during negative compared to neutral image perception was associated with poorer social functioning. Overall, results suggest that emotional dysfunction and associated deficits in functional outcome in schizophrenia may relate to abnormal interactions between the amygdala and mPFC during perception of emotional stimuli. This study adds to the growing literature on abnormal functional connections in schizophrenia and supports the functional disconnection hypothesis of schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. [One decade of functional imaging in schizophrenia research. From visualisation of basic information processing steps to molecular-genetic oriented imaging].

    PubMed

    Tost, H; Meyer-Lindenberg, A; Ruf, M; Demirakça, T; Grimm, O; Henn, F A; Ende, G

    2005-02-01

    Modern neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have contributed tremendously to our current understanding of psychiatric disorders in the context of functional, biochemical and microstructural alterations of the brain. Since the mid-nineties, functional MRI has provided major insights into the neurobiological correlates of signs and symptoms in schizophrenia. The current paper reviews important fMRI studies of the past decade in the domains of motor, visual, auditory, attentional and working memory function. Special emphasis is given to new methodological approaches, such as the visualisation of medication effects and the functional characterisation of risk genes.

  9. White matter lesions relate to tract-specific reductions in functional connectivity.

    PubMed

    Langen, Carolyn D; Zonneveld, Hazel I; White, Tonya; Huizinga, Wyke; Cremers, Lotte G M; de Groot, Marius; Ikram, Mohammad Arfan; Niessen, Wiro J; Vernooij, Meike W

    2017-03-01

    White matter lesions play a role in cognitive decline and dementia. One presumed pathway is through disconnection of functional networks. Little is known about location-specific effects of lesions on functional connectivity. This study examined location-specific effects within anatomically-defined white matter tracts in 1584 participants of the Rotterdam Study, aged 50-95. Tracts were delineated from diffusion magnetic resonance images using probabilistic tractography. Lesions were segmented on fluid-attenuated inversion recovery images. Functional connectivity was defined across each tract on resting-state functional magnetic resonance images by using gray matter parcellations corresponding to the tract ends and calculating the correlation of the mean functional activity between the gray matter regions. A significant relationship between both local and brain-wide lesion load and tract-specific functional connectivity was found in several tracts using linear regressions, also after Bonferroni correction. Indirect connectivity analyses revealed that tract-specific functional connectivity is affected by lesions in several tracts simultaneously. These results suggest that local white matter lesions can decrease tract-specific functional connectivity, both in direct and indirect connections. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Language systems in normal and aphasic human subjects: functional imaging studies and inferences from animal studies.

    PubMed

    Wise, Richard J S

    2003-01-01

    The old neurological model of language, based on the writings of Broca, Wernicke and Lichtheim in the 19th century, is now undergoing major modifications. Observations on the anatomy and physiology of auditory processing in non-human primates are giving strong indicators as to how speech perception is organised in the human brain. In the light of this knowledge, functional activation studies with positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) are achieving a new level of precision in the investigation of language organisation in the human brain, in a manner not possible with observations on patients with aphasic stroke. Although the use of functional imaging to inform methods of improving aphasia rehabilitation remains underdeveloped, there are strong indicators that this methodology will provide the means to research a very imperfectly developed area of therapy.

  11. Detection of soft-tissue sarcoma recurrence: added value of functional MR imaging techniques at 3.0 T.

    PubMed

    Del Grande, Filippo; Subhawong, Ty; Weber, Kristy; Aro, Michael; Mugera, Charles; Fayad, Laura M

    2014-05-01

    To determine the added value of functional magnetic resonance (MR) sequences (dynamic contrast material-enhanced [DCE] and quantitative diffusion-weighted [DW] imaging with apparent diffusion coefficient [ADC] mapping) for the detection of recurrent soft-tissue sarcomas following surgical resection. This retrospective study was approved by the institutional review board. The requirement to obtain informed consent was waived. Thirty-seven patients referred for postoperative surveillance after resection of soft-tissue sarcoma (35 with high-grade sarcoma) were studied. Imaging at 3.0 T included conventional (T1-weighted, fluid-sensitive, and contrast-enhanced T1-weighted imaging) and functional (DCE MR imaging, DW imaging with ADC mapping) sequences. Recurrences were confirmed with biopsy or resection. A disease-free state was determined with at least 6 months of follow-up. Two readers independently recorded the signal and morphologic characteristics with conventional sequences, the presence or absence of arterial enhancement at DCE MR imaging, and ADCs of the surgical bed. The accuracy of conventional MR imaging in the detection of recurrence was compared with that with the addition of functional sequences. The Fisher exact and Wilcoxon rank sum tests were used to define the accuracy of imaging features, the Cohen κ and Lin interclass correlation were used to define interobserver variability, and receiver operating characteristic analysis was used to define a threshold to detect recurrence and assess reader confidence after the addition of functional imaging to conventional sequences. There were six histologically proved recurrences in 37 patients. Sensitivity and specificity of MR imaging in the detection of tumor recurrence were 100% (six of six patients) and 52% (16 of 31 patients), respectively, with conventional sequences, 100% (six of six patients) and 97% (30 of 31 patients) with the addition of DCE MR imaging, and 60% (three of five patients) and 97% (30 of 31 patients) with the addition of DW imaging and ADC mapping. The average ADC of recurrence (1.08 mm(2)/sec ± 0.19) was significantly different from those of postoperative scarring (0.9 mm(2)/sec ± 0.00) and hematomas (2.34 mm(2)/sec ± 0.72) (P = .03 for both). The addition of functional MR sequences to a routine MR protocol, in particular DCE MR imaging, offers a specificity of more than 95% for distinguishing recurrent sarcoma from postsurgical scarring.

  12. Evaluation of modulation transfer function of optical lens system by support vector regression methodologies - A comparative study

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Saboohi, Hadi; Ang, Tan Fong; Anuar, Nor Badrul; Rahman, Zulkanain Abdul; Pavlović, Nenad T.

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the polynomial and radial basis function (RBF) are applied as the kernel function of Support Vector Regression (SVR) to estimate and predict estimate MTF value of the actual optical system according to experimental tests. Instead of minimizing the observed training error, SVR_poly and SVR_rbf attempt to minimize the generalization error bound so as to achieve generalized performance. The experimental results show that an improvement in predictive accuracy and capability of generalization can be achieved by the SVR_rbf approach in compare to SVR_poly soft computing methodology.

  13. Towards a clinical implementation of μOCT instrument for in vivo imaging of human airways

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Cui, Dongyao; Ford, Timothy N.; Hyun, Daryl; Dong, Jing; Yin, Biwei; Birket, Susan E.; Solomon, George M.; Liu, Linbo; Rowe, Steven M.; Tearney, Guillermo J.

    2017-03-01

    High resolution micro-optical coherence tomography (µOCT) technology has been demonstrated to be useful for imaging respiratory epithelial functional microanatomy relevant to the study of pulmonary diseases such as cystic fibrosis and COPD. We previously reported the use of a benchtop μOCT imaging technology to image several relevant respiratory epithelial functional microanatomy at 40 fps and at lateral and axial resolutions of 2 and 1.3μm, respectively. We now present the development of a portable μOCT imaging system with comparable optical and imaging performance, which enables the μOCT technology to be translated to the clinic for in vivo imaging of human airways.

  14. A dual-modality optical coherence tomography and selective plane illumination microscopy system for mouse embryonic imaging

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Ran, Shihao; Le, Henry; Singh, Manmohan; Larina, Irina V.; Mayerich, David; Dickinson, Mary E.; Larin, Kirill V.

    2017-02-01

    Both optical coherence tomography (OCT) and selective plane illumination microscopy (SPIM) are frequently used in mouse embryonic research for high-resolution three-dimensional imaging. However, each of these imaging methods provide a unique and independent advantage: SPIM provides morpho-functional information through immunofluorescence and OCT provides a method for whole-embryo 3D imaging. In this study, we have combined rotational imaging OCT and SPIM into a single, dual-modality device to image E9.5 mouse embryos. The results demonstrate that the dual-modality setup is able to provide both anatomical and functional information simultaneously for more comprehensive tissue characterization.

  15. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    USDA-ARS?s Scientific Manuscript database

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  16. The year 2012 in the European Heart Journal-Cardiovascular Imaging: Part I.

    PubMed

    Edvardsen, Thor; Plein, Sven; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2013-06-01

    The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was started in 2012. During its first year, the new Journal has published an impressive collection of cardiovascular studies utilizing all cardiovascular imaging modalities. We will summarize the most important studies from its first year in two articles. The present 'Part I' of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging.

  17. Aberrant Functional Activation in School Age Children At-Risk for Mathematical Disability: A Functional Imaging Study of Simple Arithmetic Skill

    ERIC Educational Resources Information Center

    Davis, Nicole; Cannistraci, Christopher J.; Rogers, Baxter P.; Gatenby, J. Christopher; Fuchs, Lynn S.; Anderson, Adam W.; Gore, John C.

    2009-01-01

    We used functional magnetic resonance imaging (fMRI) to explore the patterns of brain activation associated with different levels of performance in exact and approximate calculation tasks in well-defined cohorts of children with mathematical calculation difficulties (MD) and typically developing controls. Both groups of children activated the same…

  18. The Contribution of the Insula to Motor Aspects of Speech Production: A Review and a Hypothesis

    ERIC Educational Resources Information Center

    Ackermann, Hermann; Riecker, Axel

    2004-01-01

    Based on clinical and functional imaging data, the left anterior insula has been assumed to support prearticulatory functions of speech motor control such as the ''programming'' of vocal tract gestures. In order to further elucidate this model, a recent functional magnetic resonance imaging (fMRI) study of our group (Riecker, Ackermann,…

  19. Using fMRI to Study Conceptual Change: Why and How?

    ERIC Educational Resources Information Center

    Masson, Steve; Potvin, Patrice; Riopel, Martin; Foisy, Lorie-Marlene Brault; Lafortune, Stephanie

    2012-01-01

    Although the use of brain imaging techniques, such as functional magnetic resonance imaging (fMRI) is increasingly common in educational research, only a few studies regarding science learning have so far taken advantage of this technology. This paper aims to facilitate the design and implementation of brain imaging studies relating to science…

  20. Correlative studies of structural and functional imaging in primary progressive aphasia.

    PubMed

    Panegyres, P K; McCarthy, M; Campbell, A; Lenzo, N; Fallon, M; Thompson, J

    2008-01-01

    To compare and contrast structural and functional imaging in primary progressive aphasia (PPA). A cohort of 8 patients diagnosed with PPA presenting with nonfluency were prospectively evaluated. All patients had structural imaging in the form of MRI and in 1 patient CAT scanning on account of a cardiac pacemaker. All patients had single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. SPECT and PET imaging had 100% correlation. Anatomical imaging was abnormal in only 6 of the 8 patients. Wernicke's area showed greater peak Z score reduction and extent of area affected than Broca's area (McNemar paired test: P = .008 for Z score reduction; P = .0003 for extent). PET scanning revealed significant involvement of the anterior cingulum. Functional imaging in PPA: (a) identified more patients correctly than anatomic imaging highlighting the importance of SPECT and PET in the diagnosis; and (b) demonstrated the heterogeneous involvement of disordered linguistic networks in PPA suggesting its syndromic nature.

  1. A study of the standard brain in Japanese children: morphological comparison with the MNI template.

    PubMed

    Uchiyama, Hitoshi T; Seki, Ayumi; Tanaka, Daisuke; Koeda, Tatsuya; Jcs Group

    2013-03-01

    Functional magnetic resonance imaging (MRI) studies involve normalization so that the brains of different subjects can be described using the same coordinate system. However, standard brain templates, including the Montreal Neurological Institute (MNI) template that is most frequently used at present, were created based on the brains of Western adults. Because morphological characteristics of the brain differ by race and ethnicity and between adults and children, errors are likely to occur when data from the brains of non-Western individuals are processed using these templates. Therefore, this study was conducted to collect basic data for the creation of a Japanese pediatric standard brain. Participants in this study were 45 healthy children (contributing 65 brain images) between the ages of 6 and 9 years, who had nothing notable in their perinatal and other histories and neurological findings, had normal physical findings and cognitive function, exhibited no behavioral abnormalities, and provided analyzable MR images. 3D-T1-weighted images were obtained using a 1.5-T MRI device, and images from each child were adjusted to the reference image by affine transformation using SPM8. The lengths were measured and compared with those of the MNI template. The Western adult standard brain and the Japanese pediatric standard brain obtained in this study differed greatly in size, particularly along the anteroposterior diameter and in height, suggesting that the correction rates are high, and that errors are likely to occur in the normalization of pediatric brain images. We propose that the use of the Japanese pediatric standard brain created in this study will improve the accuracy of identification of brain regions in functional brain imaging studies involving children. Copyright © 2012 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Methods for Dichoptic Stimulus Presentation in Functional Magnetic Resonance Imaging - A Review

    PubMed Central

    Choubey, Bhaskar; Jurcoane, Alina; Muckli, Lars; Sireteanu, Ruxandra

    2009-01-01

    Dichoptic stimuli (different stimuli displayed to each eye) are increasingly being used in functional brain imaging experiments using visual stimulation. These studies include investigation into binocular rivalry, interocular information transfer, three-dimensional depth perception as well as impairments of the visual system like amblyopia and stereodeficiency. In this paper, we review various approaches of displaying dichoptic stimulus used in functional magnetic resonance imaging experiments. These include traditional approaches of using filters (red-green, red-blue, polarizing) with optical assemblies as well as newer approaches of using bi-screen goggles. PMID:19526076

  3. Imaging in children with unilateral ureteropelvic junction obstruction: time to reduce investigations?

    PubMed

    Abadir, Nadin; Schmidt, Maria; Laube, Guido F; Weitz, Marcus

    2017-09-01

    The objective of the study was the development of an abridged risk-stratified imaging algorithm for the management of children with unilateral ureteropelvic junction obstruction (UPJO). Data on timing, frequency and duration of diagnostic imaging in children with unilateral UPJO was extracted retrospectively. Based on these findings, an abridged imaging algorithm was developed without changing the intended management by the clinicians and the outcome of the individual patient. The potential reduction of imaging studies was analysed and stratified by risk and management groups. The reduction in imaging studies, seen for ultrasound (US) and functional imaging (FI), was 45% each. On average, this is equivalent to 3 US and 1 FI studies less for every patient within the study period. The change was more pronounced in the low-risk groups. Progression of UPJO never occurred after 2 years of age and all secondary surgeries were carried out until the age of 3. Although our findings need to be validated by further prospective research, the developed imaging algorithm represents a risk-stratified approach towards less imaging studies in children with unilateral UPJO, and a follow-up beyond 3 years of age should be considered only in selected cases at the discretion of the clinician. What is Known: • ultrasound and functional imaging represent an integral part of therapeutic decision-making in children with unilateral ureteropelvic junction obstruction • imaging studies cannot accurately assess which patients are in need of surgical intervention, therefore close, serial imaging is preferred What is New: • a new, risk-stratified imaging algorithm was developed for the first 3 years of life • applying this algorithm could lead to a considerable reduction of imaging studies, and also the associated risks and health-care costs.

  4. An effective approach of lesion segmentation within the breast ultrasound image based on the cellular automata principle.

    PubMed

    Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong

    2012-10-01

    In this paper, a novel lesion segmentation within breast ultrasound (BUS) image based on the cellular automata principle is proposed. Its energy transition function is formulated based on global image information difference and local image information difference using different energy transfer strategies. First, an energy decrease strategy is used for modeling the spatial relation information of pixels. For modeling global image information difference, a seed information comparison function is developed using an energy preserve strategy. Then, a texture information comparison function is proposed for considering local image difference in different regions, which is helpful for handling blurry boundaries. Moreover, two neighborhood systems (von Neumann and Moore neighborhood systems) are integrated as the evolution environment, and a similarity-based criterion is used for suppressing noise and reducing computation complexity. The proposed method was applied to 205 clinical BUS images for studying its characteristic and functionality, and several overlapping area error metrics and statistical evaluation methods are utilized for evaluating its performance. The experimental results demonstrate that the proposed method can handle BUS images with blurry boundaries and low contrast well and can segment breast lesions accurately and effectively.

  5. Image analysis for the automated estimation of clonal growth and its application to the growth of smooth muscle cells.

    PubMed

    Gavino, V C; Milo, G E; Cornwell, D G

    1982-03-01

    Image analysis was used for the automated measurement of colony frequency (f) and colony diameter (d) in cultures of smooth muscle cells, Initial studies with the inverted microscope showed that number of cells (N) in a colony varied directly with d: log N = 1.98 log d - 3.469 Image analysis generated the complement of a cumulative distribution for f as a function of d. The number of cells in each segment of the distribution function was calculated by multiplying f and the average N for the segment. These data were displayed as a cumulative distribution function. The total number of colonies (fT) and the total number of cells (NT) were used to calculate the average colony size (NA). Population doublings (PD) were then expressed as log2 NA. Image analysis confirmed previous studies in which colonies were sized and counted with an inverted microscope. Thus, image analysis is a rapid and automated technique for the measurement of clonal growth.

  6. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  7. [MR tomography of the heart].

    PubMed

    Hahn, D; Beer, M; Sandstede, J

    2000-10-01

    The introduction of magnetic resonance (MR) tomography has fundamentally changed radiological diagnosis for many diseases. Invasive digital subtraction angiography has already been widely replaced by noninvasive MR angiography for most of the vascular diseases. The rapid technical development of MR imaging in recent years has opened new functional imaging techniques. MR imaging of the heart allows simultaneous measurement of morphological and functional parameters in a single noninvasive examination without any radiation exposure. Because of the high spatial resolution and the reproducibility cine MR imaging is now the gold standard for functional analysis. With the improvement of myocardial perfusion and viability studies many diseases of the heart can be diagnosed in a single examination. MR spectroscopy is the only method which allows a view of the metabolism of the heart. New examinations for vascular imaging and flow quantification complete the goal of "one-stop-shop" imaging of the heart. MR imaging is the only diagnostic modality which allows a complete evaluation of many diseases of the heart with one technique, basic examination as well as follow-up studies. The very rapid improvement in MRI will overcome most of the limitations in the near future, especially concerning MR coronary angiography.

  8. Structural, functional and spectroscopic MRI studies of methamphetamine addiction.

    PubMed

    Salo, Ruth; Fassbender, Catherine

    2012-01-01

    This chapter reviews selected neuroimaging findings related to long-term amphetamine and methamphetamine (MA) use. An overview of structural and functional (fMRI) MR studies, Diffusion Tensor Imaging (DTI), Magnetic Resonance Spectroscopy (MRS) and Positron Emission Tomography (PET) studies conducted in long-term MA abusers is presented. The focus of this chapter is to present the relevant studies as tools to understand brain changes following drug abstinence and recovery from addiction. The behavioral relevance of these neuroimaging studies is discussed as they relate to clinical symptoms and treatment. Within each imaging section this chapter includes a discussion of the relevant imaging studies as they relate to patterns of drug use (i.e., duration of MA use, cumulative lifetime dose and time MA abstinent) as well as an overview of studies that link the imaging findings to cognitive measures. In our conclusion we discuss some of the future directions of neuroimaging as it relates to the pathophysiology of addiction.

  9. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    PubMed

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  10. A Double-function Digital Watermarking Algorithm Based on Chaotic System and LWT

    NASA Astrophysics Data System (ADS)

    Yuxia, Zhao; Jingbo, Fan

    A double- function digital watermarking technology is studied and a double-function digital watermarking algorithm of colored image is presented based on chaotic system and the lifting wavelet transformation (LWT).The algorithm has realized the double aims of the copyright protection and the integrity authentication of image content. Making use of feature of human visual system (HVS), the watermark image is embedded into the color image's low frequency component and middle frequency components by different means. The algorithm has great security by using two kinds chaotic mappings and Arnold to scramble the watermark image at the same time. The algorithm has good efficiency by using LWT. The emulation experiment indicates the algorithm has great efficiency and security, and the effect of concealing is really good.

  11. Multi-frequency subspace migration for imaging of perfectly conducting, arc-like cracks in full- and limited-view inverse scattering problems

    NASA Astrophysics Data System (ADS)

    Park, Won-Kwang

    2015-02-01

    Multi-frequency subspace migration imaging techniques are usually adopted for the non-iterative imaging of unknown electromagnetic targets, such as cracks in concrete walls or bridges and anti-personnel mines in the ground, in the inverse scattering problems. It is confirmed that this technique is very fast, effective, robust, and can not only be applied to full- but also to limited-view inverse problems if a suitable number of incidents and corresponding scattered fields are applied and collected. However, in many works, the application of such techniques is heuristic. With the motivation of such heuristic application, this study analyzes the structure of the imaging functional employed in the subspace migration imaging technique in two-dimensional full- and limited-view inverse scattering problems when the unknown targets are arbitrary-shaped, arc-like perfectly conducting cracks located in the two-dimensional homogeneous space. In contrast to the statistical approach based on statistical hypothesis testing, our approach is based on the fact that the subspace migration imaging functional can be expressed by a linear combination of the Bessel functions of integer order of the first kind. This is based on the structure of the Multi-Static Response (MSR) matrix collected in the far-field at nonzero frequency in either Transverse Magnetic (TM) mode (Dirichlet boundary condition) or Transverse Electric (TE) mode (Neumann boundary condition). The investigation of the expression of imaging functionals gives us certain properties of subspace migration and explains why multi-frequency enhances imaging resolution. In particular, we carefully analyze the subspace migration and confirm some properties of imaging when a small number of incident fields are applied. Consequently, we introduce a weighted multi-frequency imaging functional and confirm that it is an improved version of subspace migration in TM mode. Various results of numerical simulations performed on the far-field data affected by large amounts of random noise are similar to the analytical results derived in this study, and they provide a direction for future studies.

  12. Feasibility of Small Animal Anatomical and Functional Imaging with Neutrons: A Monte Carlo Simulation Study

    NASA Astrophysics Data System (ADS)

    Medich, David C.; Currier, Blake H.; Karellas, Andrew

    2014-10-01

    A novel technique is presented for obtaining a single in-vivo image containing both functional and anatomical information in a small animal model such as a mouse. This technique, which incorporates appropriate image neutron-scatter rejection and uses a neutron opaque contrast agent, is based on neutron radiographic technology and was demonstrated through a series of Monte Carlo simulations. With respect to functional imaging, this technique can be useful in biomedical and biological research because it could achieve a spatial resolution orders of magnitude better than what presently can be achieved with current functional imaging technologies such as nuclear medicine (PET, SPECT) and fMRI. For these studies, Monte Carlo simulations were performed with thermal (0.025 eV) neutrons in a 3 cm thick phantom using the MCNP5 simulations software. The goals of these studies were to determine: 1) the extent that scattered neutrons degrade image contrast; 2) the contrasts of various normal and diseased tissues under conditions of complete scatter rejection; 3) the concentrations of Boron-10 and Gadolinium-157 required for contrast differentiation in functional imaging; and 4) the efficacy of collimation for neutron scatter image rejection. Results demonstrate that with proper neutron-scatter rejection, a neutron fluence of 2 ×107 n/cm2 will provide a signal to noise ratio of at least one ( S/N ≥ 1) when attempting to image various 300 μm thick tissues placed in a 3 cm thick phantom. Similarly, a neutron fluence of only 1 ×107 n/cm2 is required to differentiate a 300 μm thick diseased tissue relative to its normal tissue counterpart. The utility of a B-10 contrast agent was demonstrated at a concentration of 50 μg/g to achieve S/N ≥ 1 in 0.3 mm thick tissues while Gd-157 requires only slightly more than 10 μg/g to achieve the same level of differentiation. Lastly, neutron collimator with an L/D ratio from 50 to 200 were calculated to provide appropriate scatter rejection for thick tissue biological imaging with neutrons.

  13. Along-track calibration of SWIR push-broom hyperspectral imaging system

    NASA Astrophysics Data System (ADS)

    Jemec, Jurij; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2016-05-01

    Push-broom hyperspectral imaging systems are increasingly used for various medical, agricultural and military purposes. The acquired images contain spectral information in every pixel of the imaged scene collecting additional information about the imaged scene compared to the classical RGB color imaging. Due to the misalignment and imperfections in the optical components comprising the push-broom hyperspectral imaging system, variable spectral and spatial misalignments and blur are present in the acquired images. To capture these distortions, a spatially and spectrally variant response function must be identified at each spatial and spectral position. In this study, we propose a procedure to characterize the variant response function of Short-Wavelength Infrared (SWIR) push-broom hyperspectral imaging systems in the across-track and along-track direction and remove its effect from the acquired images. A custom laser-machined spatial calibration targets are used for the characterization. The spatial and spectral variability of the response function in the across-track and along-track direction is modeled by a parametrized basis function. Finally, the characterization results are used to restore the distorted hyperspectral images in the across-track and along-track direction by a Richardson-Lucy deconvolution-based algorithm. The proposed calibration method in the across-track and along-track direction is thoroughly evaluated on images of targets with well-defined geometric properties. The results suggest that the proposed procedure is well suited for fast and accurate spatial calibration of push-broom hyperspectral imaging systems.

  14. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Win, Khin Yin; Liu, Shuhua; Teng, Choon Peng; Zheng, Yuangang; Han, Ming-Yong

    2013-03-01

    In this article, the very recent progress of various functional inorganic nanomaterials is reviewed including their unique properties, surface functionalization strategies, and applications in biosensing and imaging-guided therapeutics. The proper surface functionalization renders them with stability, biocompatibility and functionality in physiological environments, and further enables their targeted use in bioapplications after bioconjugation via selective and specific recognition. The surface-functionalized nanoprobes using the most actively studied nanoparticles (i.e., gold nanoparticles, quantum dots, upconversion nanoparticles, and magnetic nanoparticles) make them an excellent platform for a wide range of bioapplications. With more efforts in recent years, they have been widely developed as labeling probes to detect various biological species such as proteins, nucleic acids and ions, and extensively employed as imaging probes to guide therapeutics such as drug/gene delivery and photothermal/photodynamic therapy.

  15. Biomedical Applications of Functionalized Hollow Mesoporous Silica Nanoparticles: Focusing on Molecular Imaging

    PubMed Central

    Shi, Sixiang; Chen, Feng; Cai, Weibo

    2013-01-01

    Hollow mesoporous silica nanoparticles (HMSNs), with a large cavity inside each original mesoporous silica nanoparticle (MSN), have recently gained increasing interest due to their tremendous potential for cancer imaging and therapy. The last several years have witnessed a rapid development in engineering of functionalized HMSNs (i.e. f-HMSNs) with various types of inorganic functional nanocrystals integrated into the system for imaging and therapeutic applications. In this review article, we summarize the recent progress in the design and biological applications of f-HMSNs, with a special emphasis on molecular imaging. Commonly used synthetic strategies for the generation of high quality HMSNs will be discussed in detail, followed by a systematic review of engineered f-HMSNs for optical, positron emission tomography, magnetic resonance, and ultrasound imaging in preclinical studies. Lastly, we also discuss the challenges and future research directions regarding the use of f-HMSNs for cancer imaging and therapy. PMID:24279491

  16. Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.; Knowlton, Robert C.; Hoo, Kent S.; Huang, H. K.

    1995-05-01

    Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the brain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstation to aid the noninvasive presurgical evaluation of epilepsy patients. These techniques include online access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitation of structural and functional information contained in the registered images. For illustration, we describe the use of these techniques in a patient case of nonlesional neocortical epilepsy. We also present out future work based on preliminary studies.

  17. Hyperpolarized (3)He magnetic resonance imaging: comparison with four-dimensional x-ray computed tomography imaging in lung cancer.

    PubMed

    Mathew, Lindsay; Wheatley, Andrew; Castillo, Richard; Castillo, Edward; Rodrigues, George; Guerrero, Thomas; Parraga, Grace

    2012-12-01

    Pulmonary functional imaging using four-dimensional x-ray computed tomographic (4DCT) imaging and hyperpolarized (3)He magnetic resonance imaging (MRI) provides regional lung function estimates in patients with lung cancer in whom pulmonary function measurements are typically dominated by tumor burden. The aim of this study was to evaluate the quantitative spatial relationship between 4DCT and hyperpolarized (3)He MRI ventilation maps. Eleven patients with lung cancer provided written informed consent to 4DCT imaging and MRI performed within 11 ± 14 days. Hyperpolarized (3)He MRI was acquired in breath-hold after inhalation from functional residual capacity of 1 L hyperpolarized (3)He, whereas 4DCT imaging was acquired over a single tidal breath of room air. For hyperpolarized (3)He MRI, the percentage ventilated volume was generated using semiautomated segmentation; for 4DCT imaging, pulmonary function maps were generated using the correspondence between identical tissue elements at inspiratory and expiratory phases to generate percentage ventilated volume. After accounting for differences in image acquisition lung volumes ((3)He MRI: 1.9 ± 0.5 L ipsilateral, 2.3 ± 0.7 L contralateral; 4DCT imaging: 1.2 ± 0.3 L ipsilateral, 1.3 ± 0.4 L contralateral), there was no significant difference in percentage ventilated volume between hyperpolarized (3)He MRI (72 ± 11% ipsilateral, 79 ± 12% contralateral) and 4DCT imaging (74 ± 3% ipsilateral, 75 ± 4% contralateral). Spatial correspondence between 4DCT and (3)He MRI ventilation was evaluated using the Dice similarity coefficient index (ipsilateral, 86 ± 12%; contralateral, 88 ± 12%). Despite rather large differences in image acquisition breathing maneuvers, good spatial and significant quantitative agreement was observed for ventilation maps on hyperpolarized (3)He MRI and 4DCT imaging, suggesting that pulmonary regions with good lung function are similar between modalities in this small group of patients with lung cancer. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  18. TH-E-BRF-02: 4D-CT Ventilation Image-Based IMRT Plans Are Dosimetrically Comparable to SPECT Ventilation Image-Based Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kida, S; University of Tokyo Hospital, Bunkyo, Tokyo; Bal, M

    Purpose: An emerging lung ventilation imaging method based on 4D-CT can be used in radiotherapy to selectively avoid irradiating highly-functional lung regions, which may reduce pulmonary toxicity. Efforts to validate 4DCT ventilation imaging have been focused on comparison with other imaging modalities including SPECT and xenon CT. The purpose of this study was to compare 4D-CT ventilation image-based functional IMRT plans with SPECT ventilation image-based plans as reference. Methods: 4D-CT and SPECT ventilation scans were acquired for five thoracic cancer patients in an IRB-approved prospective clinical trial. The ventilation images were created by quantitative analysis of regional volume changes (amore » surrogate for ventilation) using deformable image registration of the 4D-CT images. A pair of 4D-CT ventilation and SPECT ventilation image-based IMRT plans was created for each patient. Regional ventilation information was incorporated into lung dose-volume objectives for IMRT optimization by assigning different weights on a voxel-by-voxel basis. The objectives and constraints of the other structures in the plan were kept identical. The differences in the dose-volume metrics have been evaluated and tested by a paired t-test. SPECT ventilation was used to calculate the lung functional dose-volume metrics (i.e., mean dose, V20 and effective dose) for both 4D-CT ventilation image-based and SPECT ventilation image-based plans. Results: Overall there were no statistically significant differences in any dose-volume metrics between the 4D-CT and SPECT ventilation imagebased plans. For example, the average functional mean lung dose of the 4D-CT plans was 26.1±9.15 (Gy), which was comparable to 25.2±8.60 (Gy) of the SPECT plans (p = 0.89). For other critical organs and PTV, nonsignificant differences were found as well. Conclusion: This study has demonstrated that 4D-CT ventilation image-based functional IMRT plans are dosimetrically comparable to SPECT ventilation image-based plans, providing evidence to use 4D-CT ventilation imaging for clinical applications. Supported in part by Free to Breathe Young Investigator Research Grant and NIH/NCI R01 CA 093626. The authors thank Philips Radiation Oncology Systems for the Pinnacle3 treatment planning systems.« less

  19. Correspondence of the brain's functional architecture during activation and rest

    PubMed Central

    Smith, Stephen M.; Fox, Peter T.; Miller, Karla L.; Glahn, David C.; Fox, P. Mickle; Mackay, Clare E.; Filippini, Nicola; Watkins, Kate E.; Toro, Roberto; Laird, Angela R.; Beckmann, Christian F.

    2009-01-01

    Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is “at rest.” In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically “active” even when at “rest.” PMID:19620724

  20. Modification of measurement methods for evaluation of tissue-engineered cartilage function and biochemical properties using nanosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Sato, Masato; Kutsuna, Toshiharu; Ishihara, Masayuki; Mochida, Joji; Kikuchi, Makoto

    2008-02-01

    There is a demand in the field of regenerative medicine for measurement technology that enables determination of functions and components of engineered tissue. To meet this demand, we developed a method for extracellular matrix characterization using time-resolved autofluorescence spectroscopy, which enabled simultaneous measurements with mechanical properties using relaxation of laser-induced stress wave. In this study, in addition to time-resolved fluorescent spectroscopy, hyperspectral sensor, which enables to capture both spectral and spatial information, was used for evaluation of biochemical characterization of tissue-engineered cartilage. Hyperspectral imaging system provides spectral resolution of 1.2 nm and image rate of 100 images/sec. The imaging system consisted of the hyperspectral sensor, a scanner for x-y plane imaging, magnifying optics and Xenon lamp for transmmissive lighting. Cellular imaging using the hyperspectral image system has been achieved by improvement in spatial resolution up to 9 micrometer. The spectroscopic cellular imaging could be observed using cultured chondrocytes as sample. At early stage of culture, the hyperspectral imaging offered information about cellular function associated with endogeneous fluorescent biomolecules.

  1. Improved Software to Browse the Serial Medical Images for Learning

    PubMed Central

    2017-01-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. PMID:28581279

  2. Improved Software to Browse the Serial Medical Images for Learning.

    PubMed

    Kwon, Koojoo; Chung, Min Suk; Park, Jin Seo; Shin, Byeong Seok; Chung, Beom Sun

    2017-07-01

    The thousands of serial images used for medical pedagogy cannot be included in a printed book; they also cannot be efficiently handled by ordinary image viewer software. The purpose of this study was to provide browsing software to grasp serial medical images efficiently. The primary function of the newly programmed software was to select images using 3 types of interfaces: buttons or a horizontal scroll bar, a vertical scroll bar, and a checkbox. The secondary function was to show the names of the structures that had been outlined on the images. To confirm the functions of the software, 3 different types of image data of cadavers (sectioned and outlined images, volume models of the stomach, and photos of the dissected knees) were inputted. The browsing software was downloadable for free from the homepage (anatomy.co.kr) and available off-line. The data sets provided could be replaced by any developers for their educational achievements. We anticipate that the software will contribute to medical education by allowing users to browse a variety of images. © 2017 The Korean Academy of Medical Sciences.

  3. Lung perfusion measured using magnetic resonance imaging: New tools for physiological insights into the pulmonary circulation.

    PubMed

    Hopkins, Susan R; Prisk, G Kim

    2010-12-01

    Since the lung receives the entire cardiac output, sophisticated imaging techniques are not required in order to measure total organ perfusion. However, for many years studying lung function has required physiologists to consider the lung as a single entity: in imaging terms as a single voxel. Since imaging, and in particular functional imaging, allows the acquisition of spatial information important for studying lung function, these techniques provide considerable promise and are of great interest for pulmonary physiologists. In particular, despite the challenges of low proton density and short T2* in the lung, noncontrast MRI techniques to measure pulmonary perfusion have several advantages including high reliability and the ability to make repeated measurements under a number of physiologic conditions. This brief review focuses on the application of a particular arterial spin labeling (ASL) technique, ASL-FAIRER (flow sensitive inversion recovery with an extra radiofrequency pulse), to answer physiologic questions related to pulmonary function in health and disease. The associated measurement of regional proton density to correct for gravitational-based lung deformation (the "Slinky" effect (Slinky is a registered trademark of Pauf-Slinky incorporated)) and issues related to absolute quantification are also discussed. Copyright © 2010 Wiley-Liss, Inc.

  4. Neural Correlates of Symptom Dimensions in Pediatric Obsessive-Compulsive Disorder: A Functional Magnetic Resonance Imaging Study

    ERIC Educational Resources Information Center

    Gilbert, Andrew R.; Akkal, Dalila; Almeida, Jorge R. C.; Mataix-Cols, David; Kalas, Catherine; Devlin, Bernie; Birmaher, Boris; Phillips, Mary L.

    2009-01-01

    The use of functional magnetic resonance imaging on a group of pediatric subjects with obsessive compulsive disorder reveals that this group has reduced activity in neural regions underlying emotional processing, cognitive processing, and motor performance as compared to control subjects.

  5. Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel

    2011-01-01

    Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…

  6. Functional-structural reorganisation of the neuronal network for auditory perception in subjects with unilateral hearing loss: Review of neuroimaging studies.

    PubMed

    Heggdal, Peder O Laugen; Brännström, Jonas; Aarstad, Hans Jørgen; Vassbotn, Flemming S; Specht, Karsten

    2016-02-01

    This paper aims to provide a review of studies using neuroimaging to measure functional-structural reorganisation of the neuronal network for auditory perception after unilateral hearing loss. A literature search was performed in PubMed. Search criterions were peer reviewed original research papers in English completed by the 11th of March 2015. Twelve studies were found to use neuroimaging in subjects with unilateral hearing loss. An additional five papers not identified by the literature search were provided by a reviewer. Thus, a total of 17 studies were included in the review. Four different neuroimaging methods were used in these studies: Functional magnetic resonance imaging (fMRI) (n = 11), diffusion tensor imaging (DTI) (n = 4), T1/T2 volumetric images (n = 2), magnetic resonance spectroscopy (MRS) (n = 1). One study utilized two imaging methods (fMRI and T1 volumetric images). Neuroimaging techniques could provide valuable information regarding the effects of unilateral hearing loss on both auditory and non-auditory performance. fMRI-studies showing a bilateral BOLD-response in patients with unilateral hearing loss have not yet been followed by DTI studies confirming their microstructural correlates. In addition, the review shows that an auditory modality-specific deficit could affect multi-modal brain regions and their connections. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Revealing topological organization of human brain functional networks with resting-state functional near infrared spectroscopy.

    PubMed

    Niu, Haijing; Wang, Jinhui; Zhao, Tengda; Shu, Ni; He, Yong

    2012-01-01

    The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics. We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques. Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.

  8. Laser Polarized 129Xe Magnetic Resonance Imaging and Spectroscopy Studies: Development of a New Modality of Functional Imaging

    NASA Astrophysics Data System (ADS)

    Rosen, M.; Coulter, K. P.; Chupp, T. E.; Swanson, S. D.; Agranoff, B. W.

    1996-05-01

    One of the most exciting prospects for the application of laser polarized noble gas magnetic resonance imaging and spectroscopy of ^129Xe is the quantitative measurement of cerebral blood flow changes in response to various stimuli. Development of this new modality of functional imaging requires tracking the transport of inspirated laser polarized ^129Xe from the lungs to the blood and to the brain. We describe a series of experiments with rats that include producing noble gas magnetic resonance images and study of the uptake and transport of polarized ^129Xe in the blood and to the head. We have observed spectral components of the ^129Xe at about -200 ppm relative to the free gas and confirmed their transport to the head. The time dependence of this component in the head has been studied. Current efforts are to spatially localize the polarized ^129Xe and image the magnetization in the steady state.

  9. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  10. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  11. Influence of speckle image reconstruction on photometric precision for large solar telescopes

    NASA Astrophysics Data System (ADS)

    Peck, C. L.; Wöger, F.; Marino, J.

    2017-11-01

    Context. High-resolution observations from large solar telescopes require adaptive optics (AO) systems to overcome image degradation caused by Earth's turbulent atmosphere. AO corrections are, however, only partial. Achieving near-diffraction limited resolution over a large field of view typically requires post-facto image reconstruction techniques to reconstruct the source image. Aims: This study aims to examine the expected photometric precision of amplitude reconstructed solar images calibrated using models for the on-axis speckle transfer functions and input parameters derived from AO control data. We perform a sensitivity analysis of the photometric precision under variations in the model input parameters for high-resolution solar images consistent with four-meter class solar telescopes. Methods: Using simulations of both atmospheric turbulence and partial compensation by an AO system, we computed the speckle transfer function under variations in the input parameters. We then convolved high-resolution numerical simulations of the solar photosphere with the simulated atmospheric transfer function, and subsequently deconvolved them with the model speckle transfer function to obtain a reconstructed image. To compute the resulting photometric precision, we compared the intensity of the original image with the reconstructed image. Results: The analysis demonstrates that high photometric precision can be obtained for speckle amplitude reconstruction using speckle transfer function models combined with AO-derived input parameters. Additionally, it shows that the reconstruction is most sensitive to the input parameter that characterizes the atmospheric distortion, and sub-2% photometric precision is readily obtained when it is well estimated.

  12. Impaired thalamocortical connectivity in autism spectrum disorder: a study of functional and anatomical connectivity.

    PubMed

    Nair, Aarti; Treiber, Jeffrey M; Shukla, Dinesh K; Shih, Patricia; Müller, Ralph-Axel

    2013-06-01

    The thalamus plays crucial roles in the development and mature functioning of numerous sensorimotor, cognitive and attentional circuits. Currently limited evidence suggests that autism spectrum disorder may be associated with thalamic abnormalities, potentially related to sociocommunicative and other impairments in this disorder. We used functional connectivity magnetic resonance imaging and diffusion tensor imaging probabilistic tractography to study the functional and anatomical integrity of thalamo-cortical connectivity in children and adolescents with autism spectrum disorder and matched typically developing children. For connectivity with five cortical seeds (prefontal, parieto-occipital, motor, somatosensory and temporal), we found evidence of both anatomical and functional underconnectivity. The only exception was functional connectivity with the temporal lobe, which was increased in the autism spectrum disorders group, especially in the right hemisphere. However, this effect was robust only in partial correlation analyses (partialling out time series from other cortical seeds), whereas findings from total correlation analyses suggest that temporo-thalamic overconnectivity in the autism group was only relative to the underconnectivity found for other cortical seeds. We also found evidence of microstructural compromise within the thalamic motor parcel, associated with compromise in tracts between thalamus and motor cortex, suggesting that the thalamus may play a role in motor abnormalities reported in previous autism studies. More generally, a number of correlations of diffusion tensor imaging and functional connectivity magnetic resonance imaging measures with diagnostic and neuropsychological scores indicate involvement of abnormal thalamocortical connectivity in sociocommunicative and cognitive impairments in autism spectrum disorder.

  13. Reducing the Effects of Background Noise during Auditory Functional Magnetic Resonance Imaging of Speech Processing: Qualitative and Quantitative Comparisons between Two Image Acquisition Schemes and Noise Cancellation

    ERIC Educational Resources Information Center

    Blackman, Graham A.; Hall, Deborah A.

    2011-01-01

    Purpose: The intense sound generated during functional magnetic resonance imaging (fMRI) complicates studies of speech and hearing. This experiment evaluated the benefits of using active noise cancellation (ANC), which attenuates the level of the scanner sound at the participant's ear by up to 35 dB around the peak at 600 Hz. Method: Speech and…

  14. From nociception to pain perception: imaging the spinal and supraspinal pathways

    PubMed Central

    Brooks, Jonathan; Tracey, Irene

    2005-01-01

    Functional imaging techniques have allowed researchers to look within the brain, and revealed the cortical representation of pain. Initial experiments, performed in the early 1990s, revolutionized pain research, as they demonstrated that pain was not processed in a single cortical area, but in several distributed brain regions. Over the last decade, the roles of these pain centres have been investigated and a clearer picture has emerged of the medial and lateral pain system. In this brief article, we review the imaging literature to date that has allowed these advances to be made, and examine the new frontiers for pain imaging research: imaging the brainstem and other structures involved in the descending control of pain; functional and anatomical connectivity studies of pain processing brain regions; imaging models of neuropathic pain-like states; and going beyond the brain to image spinal function. The ultimate goal of such research is to take these new techniques into the clinic, to investigate and provide new remedies for chronic pain sufferers. PMID:16011543

  15. Promise of new imaging technologies for assessing ovarian function.

    PubMed

    Singh, Jaswant; Adams, Gregg P; Pierson, Roger A

    2003-10-15

    Advancements in imaging technologies over the last two decades have ushered a quiet revolution in research approaches to the study of ovarian structure and function. The most significant changes in our understanding of the ovary have resulted from the use of ultrasonography which has enabled sequential analyses in live animals. Computer-assisted image analysis and mathematical modeling of the dynamic changes within the ovary has permitted exciting new avenues of research with readily quantifiable endpoints. Spectral, color-flow and power Doppler imaging now facilitate physiologic interpretations of vascular dynamics over time. Similarly, magnetic resonance imaging (MRI) is emerging as a research tool in ovarian imaging. New technologies, such as three-dimensional ultrasonography and MRI, ultrasound-based biomicroscopy and synchrotron-based techniques each have the potential to enhance our real-time picture of ovarian function to the near-cellular level. Collectively, information available in ultrasonography, MRI, computer-assisted image analysis and mathematical modeling heralds a new era in our understanding of the basic processes of female and male reproduction.

  16. Features and limitations of mobile tablet devices for viewing radiological images.

    PubMed

    Grunert, J H

    2015-03-01

    Mobile radiological image display systems are becoming increasingly common, necessitating a comparison of the features of these systems, specifically the operating system employed, connection to stationary PACS, data security and rang of image display and image analysis functions. In the fall of 2013, a total of 17 PACS suppliers were surveyed regarding the technical features of 18 mobile radiological image display systems using a standardized questionnaire. The study also examined to what extent the technical specifications of the mobile image display systems satisfy the provisions of the Germany Medical Devices Act as well as the provisions of the German X-ray ordinance (RöV). There are clear differences in terms of how the mobile systems connected to the stationary PACS. Web-based solutions allow the mobile image display systems to function independently of their operating systems. The examined systems differed very little in terms of image display and image analysis functions. Mobile image display systems complement stationary PACS and can be used to view images. The impacts of the new quality assurance guidelines (QS-RL) as well as the upcoming new standard DIN 6868 - 157 on the acceptance testing of mobile image display units for the purpose of image evaluation are discussed. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier

    PubMed Central

    2012-01-01

    Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders. PMID:23421673

  18. Research with rTMS in the treatment of aphasia

    PubMed Central

    Naeser, Margaret A.; Martin, Paula I; Treglia, Ethan; Ho, Michael; Kaplan, Elina; Bashir, Shahid; Hamilton, Roy; Coslett, H. Branch; Pascual-Leone, Alvaro

    2013-01-01

    This review of our research with rTMS to treat aphasia contains four parts: Part 1 reviews functional brain imaging studies related to recovery of language in aphasia with emphasis on nonfluent aphasia. Part 2 presents the rationale for using rTMS to treat nonfluent aphasia patients (based on results from functional imaging studies). Part 2 also reviews our current rTMS treatment protocol used with nonfluent aphasia patients, and our functional imaging results from overt naming fMRI scans, obtained pre- and post- a series of rTMS treatments. Part 3 presents results from a pilot study where rTMS treatments were followed immediately by constraint-induced language therapy (CILT). Part 4 reviews our diffusion tensor imaging (DTI) study that examined white matter connections between the horizontal, midportion of the arcuate fasciculus (hAF) to different parts within Broca’s area (pars triangularis, PTr; pars opercularis, POp), and the ventral premotor cortex (vPMC) in the RH and in the LH. Part 4 also addresses some of the possible mechanisms involved with improved naming and speech, following rTMS with nonfluent aphasia patients. PMID:20714075

  19. Performance quantification of a millimeter-wavelength imaging system based on inexpensive glow-discharge-detector focal-plane array.

    PubMed

    Shilemay, Moshe; Rozban, Daniel; Levanon, Assaf; Yitzhaky, Yitzhak; Kopeika, Natan S; Yadid-Pecht, Orly; Abramovich, Amir

    2013-03-01

    Inexpensive millimeter-wavelength (MMW) optical digital imaging raises a challenge of evaluating the imaging performance and image quality because of the large electromagnetic wavelengths and pixel sensor sizes, which are 2 to 3 orders of magnitude larger than those of ordinary thermal or visual imaging systems, and also because of the noisiness of the inexpensive glow discharge detectors that compose the focal-plane array. This study quantifies the performances of this MMW imaging system. Its point-spread function and modulation transfer function were investigated. The experimental results and the analysis indicate that the image quality of this MMW imaging system is limited mostly by the noise, and the blur is dominated by the pixel sensor size. Therefore, the MMW image might be improved by oversampling, given that noise reduction is achieved. Demonstration of MMW image improvement through oversampling is presented.

  20. Functional magnetic resonance imaging: basic principles and application in the neurosciences.

    PubMed

    Labbé Atenas, T; Ciampi Díaz, E; Cruz Quiroga, J P; Uribe Arancibia, S; Cárcamo Rodríguez, C

    2018-03-12

    Functional magnetic resonance imaging (fMRI) is an advanced tool for the study of brain functions in healthy subjects and in neuropsychiatric patients. This tool makes it possible to identify and locate specific phenomena related to neuronal metabolism and activity. Starting with the detection of changes in the blood supply to a region that participates in a function, more complex approaches have been developed to study the dynamics of neuronal networks. Studies examining the brain at rest or involved in different tasks have provided evidence related to the onset, development, and/or response to treatment in various diseases. The diversity of the possible artifacts associated with image registration as well as the complexity of the analytical experimental designs has generated abundant debate about the technique behind fMRI. This article aims to introduce readers to the fundamentals underlying fMRI, to explain how fMRI studies are interpreted, and to discuss fMRI's contributions to the study of the mechanisms underlying diverse diseases of the nervous system. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. 7 T renal MRI: challenges and promises.

    PubMed

    de Boer, Anneloes; Hoogduin, Johannes M; Blankestijn, Peter J; Li, Xiufeng; Luijten, Peter R; Metzger, Gregory J; Raaijmakers, Alexander J E; Umutlu, Lale; Visser, Fredy; Leiner, Tim

    2016-06-01

    The progression to 7 Tesla (7 T) magnetic resonance imaging (MRI) yields promises of substantial increase in signal-to-noise (SNR) ratio. This increase can be traded off to increase image spatial resolution or to decrease acquisition time. However, renal 7 T MRI remains challenging due to inhomogeneity of the radiofrequency field and due to specific absorption rate (SAR) constraints. A number of studies has been published in the field of renal 7 T imaging. While the focus initially was on anatomic imaging and renal MR angiography, later studies have explored renal functional imaging. Although anatomic imaging remains somewhat limited by inhomogeneous excitation and SAR constraints, functional imaging results are promising. The increased SNR at 7 T has been particularly advantageous for blood oxygen level-dependent and arterial spin labelling MRI, as well as sodium MR imaging, thanks to changes in field-strength-dependent magnetic properties. Here, we provide an overview of the currently available literature on renal 7 T MRI. In addition, we provide a brief overview of challenges and opportunities in renal 7 T MR imaging.

  2. Dosimetric feasibility of 4DCT-ventilation imaging guided proton therapy for locally advanced non-small-cell lung cancer.

    PubMed

    Huang, Qijie; Jabbour, Salma K; Xiao, Zhiyan; Yue, Ning; Wang, Xiao; Cao, Hongbin; Kuang, Yu; Zhang, Yin; Nie, Ke

    2018-04-25

    The principle aim of this study is to incorporate 4DCT ventilation imaging into functional treatment planning that preserves high-functioning lung with both double scattering and scanning beam techniques in proton therapy. Eight patients with locally advanced non-small-cell lung cancer were included in this study. Deformable image registration was performed for each patient on their planning 4DCTs and the resultant displacement vector field with Jacobian analysis was used to identify the high-, medium- and low-functional lung regions. Five plans were designed for each patient: a regular photon IMRT vs. anatomic proton plans without consideration of functional ventilation information using double scattering proton therapy (DSPT) and intensity modulated proton therapy (IMPT) vs. functional proton plans with avoidance of high-functional lung using both DSPT and IMPT. Dosimetric parameters were compared in terms of tumor coverage, plan heterogeneity, and avoidance of normal tissues. Our results showed that both DSPT and IMPT plans gave superior dose advantage to photon IMRTs in sparing low dose regions of the total lung in terms of V5 (volume receiving 5Gy). The functional DSPT only showed marginal benefit in sparing high-functioning lung in terms of V5 or V20 (volume receiving 20Gy) compared to anatomical plans. Yet, the functional planning in IMPT delivery, can further reduce the low dose in high-functioning lung without degrading the PTV dosimetric coverages, compared to anatomical proton planning. Although the doses to some critical organs might increase during functional planning, the necessary constraints were all met. Incorporating 4DCT ventilation imaging into functional proton therapy is feasible. The functional proton plans, in intensity modulated proton delivery, are effective to further preserve high-functioning lung regions without degrading the PTV coverage.

  3. Mapping Variation in Vegetation Functioning with Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Townsend, P. A.; Couture, J. J.; Kruger, E. L.; Serbin, S.; Singh, A.

    2015-12-01

    Imaging spectroscopy (otherwise known as hyperspectral remote sensing) offers the potential to characterize the spatial and temporal variation in biophysical and biochemical properties of vegetation that can be costly or logistically difficult to measure comprehensively using traditional methods. A number of recent studies have illustrated the capacity for imaging spectroscopy data, such as from NASA's AVIRIS sensor, to empirically estimate functional traits related to foliar chemistry and physiology (Singh et al. 2015, Serbin et al. 2015). Here, we present analyses that illustrate the implications of those studies to characterize within-field or -stand variability in ecosystem functioning. In agricultural ecosystems, within-field photosynthetic capacity can vary by 30-50%, likely due to within-field variations in water availability and soil fertility. In general, the variability of foliar traits is lower in forests than agriculture, but can still be significant. Finally, we demonstrate that functional trait variability at the stand scale is strongly related to vegetation diversity. These results have two significant implications: 1) reliance on a small number of field samples to broadly estimate functional traits likely underestimates variability in those traits, and 2) if trait estimations from imaging spectroscopy are reliable, such data offer the opportunity to greatly increase the density of measurements we can use to predict ecosystem function.

  4. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits.

    PubMed

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-06-30

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult antisocial behavior and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional magnetic resonance imaging scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. A novel data processing technique for image reconstruction of penumbral imaging

    NASA Astrophysics Data System (ADS)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  6. How we may think: Imaging and writing technologies across the history of the neurosciences.

    PubMed

    Borck, Cornelius

    2016-06-01

    In the neurosciences, two alternative regimes of visualization can be differentiated: anatomical preparations for morphological images and physiological studies for functional representations. Adapting a distinction proposed by Peter Galison, this duality of visualization regimes is analyzed here as the contrast between an imaging and a writing approach: the imaging approach, focusing on mimetic representations, preserving material and spatial relations, and the writing approach as used in physiological studies, retaining functional relations. After a dominance of morphological images gathering iconic representations of brains and architectural brain theories, the advent of electroencephalography advanced writing approaches with their indexical signs. Addressing the brain allegedly at its mode of operation, electroencephalography was conceived as recording the brain's intrinsic language, extending the writing approach to include symbolic signs. The availability of functional neuroimaging signaled an opportunity to overcome the duality of imaging and writing, but revived initially a phrenological conflation of form and function, suppressing the writing approach in relation to imaging. More sophisticated visualization modes, however, converted this reductionism to the ontological productivity of social neuroscience and recuperated the theorizing from the writing approach. In light of the ongoing instrumental mediations between brains, data and theories, the question of how we may think, once proposed by Vannevar Bush as a prospect of enhanced human-machine interaction, has become the state of affairs in the entanglements of instruments and organic worlds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Effect of the image resolution on the statistical descriptors of heterogeneous media.

    PubMed

    Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime

    2018-02-01

    The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.

  8. Effect of the image resolution on the statistical descriptors of heterogeneous media

    NASA Astrophysics Data System (ADS)

    Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime

    2018-02-01

    The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.

  9. Approach to functional magnetic resonance imaging of language based on models of language organization.

    PubMed

    McGraw, P; Mathews, V P; Wang, Y; Phillips, M D

    2001-05-01

    Functional MR imaging (fMRI) has been a useful tool in the evaluation of language both in normal individuals and patient populations. The purpose of this article is to use various models of language as a framework to review fMRI studies. Specifically, fMRI language studies are subdivided into the following categories: word generation or fluency, passive listening, orthography, phonology, semantics, and syntax.

  10. Anatomic and functional imaging of tagged molecules in animals

    DOEpatents

    Weisenberger, Andrew G [Yorktown, VA; Majewski, Stanislaw [Grafton, VA; Paulus, Michael J [Knoxville, TN; Gleason, Shaun S [Knoxville, VA

    2007-04-24

    A novel functional imaging system for use in the imaging of unrestrained and non-anesthetized small animals or other subjects and a method for acquiring such images and further registering them with anatomical X-ray images previously or subsequently acquired. The apparatus comprises a combination of an IR laser profilometry system and gamma, PET and/or SPECT, imaging system, all mounted on a rotating gantry, that permits simultaneous acquisition of positional and orientational information and functional images of an unrestrained subject that are registered, i.e. integrated, using image processing software to produce a functional image of the subject without the use of restraints or anesthesia. The functional image thus obtained can be registered with a previously or subsequently obtained X-ray CT image of the subject. The use of the system described herein permits functional imaging of a subject in an unrestrained/non-anesthetized condition thereby reducing the stress on the subject and eliminating any potential interference with the functional testing that such stress might induce.

  11. A descriptive study of Lewy body dementia with functional imaging support in a Chinese population: a preliminary study.

    PubMed

    Shea, Y F; Chu, L W; Lee, S C

    2017-06-01

    Lewy body dementia includes dementia with Lewy bodies and Parkinson's disease dementia. There have been limited clinical studies among Chinese patients with Lewy body dementia. This study aimed to review the presenting clinical features and identify risk factors for complications including falls, dysphagia, aspiration pneumonia, pressure sores, and mortality in Chinese patients with Lewy body dementia. We also wished to identify any difference in clinical features of patients with Lewy body dementia with and without an Alzheimer's disease pattern of functional imaging. We retrospectively reviewed 23 patients with Lewy body dementia supported by functional imaging. Baseline demographics, presenting clinical and behavioural and psychological symptoms of dementia, functional and cognitive assessment scores, and complications during follow-up were reviewed. Patients with Lewy body dementia were further classified as having an Alzheimer's disease imaging pattern if functional imaging demonstrated bilateral temporoparietal hypometabolism or hypoperfusion with or without precuneus and posterior cingulate gyrus hypometabolism or hypoperfusion. The pre-imaging accuracy of clinical diagnosis was 52%. In 83% of patients, behavioural and psychological symptoms of dementia were evident. Falls, dysphagia, aspiration pneumonia, pressure sores, and death occurred in 70%, 52%, 26%, 26%, and 30% of patients, respectively with corresponding event rates per person-years of 0.32, 0.17, 0.18, 0.08, and 0.10. Patients with aspiration pneumonia compared with those without were more likely to have dysphagia (100% vs 35%; P=0.01). Deceased patients with Lewy body dementia, compared with alive patients, had a higher (median [interquartile range]) presenting Clinical Dementia Rating score (1 [1-2] vs 0.5 [0.5-1.0]; P=0.01), lower mean (± standard deviation) baseline Barthel index (13 ± 7 vs 18 ± 4; P=0.04), and were more likely to be prescribed levodopa (86% vs 31%; P=0.03). Patients with Lewy body dementia with an Alzheimer's disease pattern of functional imaging, compared with those without the pattern, were younger at presentation (mean ± standard deviation, 73 ± 6 vs 80 ± 6 years; P=0.02) and had a lower Mini-Mental State Examination score at 1 year (15 ± 8 vs 22 ± 6; P=0.05). Falls, dysphagia, aspiration pneumonia, and pressure sores were common among patients with Lewy body dementia. Those with an Alzheimer's disease pattern of functional imaging had a younger age of onset and lower 1-year Mini-Mental State Examination score.

  12. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  13. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larin, K V; Tuchin, V V

    2008-06-30

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging ofmore » tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth. (special issue devoted to application of laser technologies in biophotonics and biomedical studies)« less

  14. Structural functional associations of the orbit in thyroid eye disease: Kalman filters to track extraocular rectal muscles

    NASA Astrophysics Data System (ADS)

    Chaganti, Shikha; Nelson, Katrina; Mundy, Kevin; Luo, Yifu; Harrigan, Robert L.; Damon, Steve; Fabbri, Daniel; Mawn, Louise; Landman, Bennett

    2016-03-01

    Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic accuracy, improve timely intervention, and eventually preserve visual function. Recent studies have shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges arise in the identification of the individual extraocular rectus muscles that control eye movement. This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and artifacts. The purpose of our study is to investigate a method of automatically generating orbital metrics from CT imaging and demonstrate the utility of the approach by correlating structural metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly correlated with several clinical characteristics. Moreover, it is shown that the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each correlated with different categories of functional deficit. These findings serve as foundation for further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.

  15. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2013-08-01

    The hemodynamic response to neuronal activation is a well-studied phenomenon in the brain, due to the prevalence of functional magnetic resonance imaging. The retina represents an optically accessible platform for studying lamina-specific neurovascular coupling in the central nervous system; however, due to methodological limitations, this has been challenging to date. We demonstrate techniques for the imaging of visual stimulus-evoked hyperemia in the rat inner retina using Doppler optical coherence tomography (OCT) and OCT angiography. Volumetric imaging with three-dimensional motion correction, en face flow calculation, and normalization of dynamic signal to static signal are techniques that reduce spurious changes caused by motion. We anticipate that OCT imaging of retinal functional hyperemia may yield viable biomarkers in diseases, such as diabetic retinopathy, where the neurovascular unit may be impaired.

  16. False dyssynchrony: problem with image-based cardiac functional analysis using x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Kidoh, Masafumi; Shen, Zeyang; Suzuki, Yuki; Ciuffo, Luisa; Ashikaga, Hiroshi; Fung, George S. K.; Otake, Yoshito; Zimmerman, Stefan L.; Lima, Joao A. C.; Higuchi, Takahiro; Lee, Okkyun; Sato, Yoshinobu; Becker, Lewis C.; Fishman, Elliot K.; Taguchi, Katsuyuki

    2017-03-01

    We have developed a digitally synthesized patient which we call "Zach" (Zero millisecond Adjustable Clinical Heart) phantom, which allows for an access to the ground truth and assessment of image-based cardiac functional analysis (CFA) using CT images with clinically realistic settings. The study using Zach phantom revealed a major problem with image-based CFA: "False dyssynchrony." Even though the true motion of wall segments is in synchrony, it may appear to be dyssynchrony with the reconstructed cardiac CT images. It is attributed to how cardiac images are reconstructed and how wall locations are updated over cardiac phases. The presence and the degree of false dyssynchrony may vary from scan-to-scan, which could degrade the accuracy and the repeatability (or precision) of image-based CT-CFA exams.

  17. Quiet echo planar imaging for functional and diffusion MRI

    PubMed Central

    Price, Anthony N.; Cordero‐Grande, Lucilio; Malik, Shaihan; Ferrazzi, Giulio; Gaspar, Andreia; Hughes, Emer J.; Christiaens, Daan; McCabe, Laura; Schneider, Torben; Rutherford, Mary A.; Hajnal, Joseph V.

    2017-01-01

    Purpose To develop a purpose‐built quiet echo planar imaging capability for fetal functional and diffusion scans, for which acoustic considerations often compromise efficiency and resolution as well as angular/temporal coverage. Methods The gradient waveforms in multiband‐accelerated single‐shot echo planar imaging sequences have been redesigned to minimize spectral content. This includes a sinusoidal read‐out with a single fundamental frequency, a constant phase encoding gradient, overlapping smoothed CAIPIRINHA blips, and a novel strategy to merge the crushers in diffusion MRI. These changes are then tuned in conjunction with the gradient system frequency response function. Results Maintained image quality, SNR, and quantitative diffusion values while reducing acoustic noise up to 12 dB (A) is illustrated in two adult experiments. Fetal experiments in 10 subjects covering a range of parameters depict the adaptability and increased efficiency of quiet echo planar imaging. Conclusion Purpose‐built for highly efficient multiband fetal echo planar imaging studies, the presented framework reduces acoustic noise for all echo planar imaging‐based sequences. Full optimization by tuning to the gradient frequency response functions allows for a maximally time‐efficient scan within safe limits. This allows ambitious in‐utero studies such as functional brain imaging with high spatial/temporal resolution and diffusion scans with high angular/spatial resolution to be run in a highly efficient manner at acceptable sound levels. Magn Reson Med 79:1447–1459, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:28653363

  18. Simultaneous water activation and glucose metabolic rate imaging with PET

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Jeroen; Reader, Andrew J.

    2013-02-01

    A novel imaging and signal separation strategy is proposed to be able to separate [18F]FDG and multiple [15O]H2O signals from a simultaneously acquired dynamic PET acquisition of the two tracers. The technique is based on the fact that the dynamics of the two tracers are very distinct. By adopting an appropriate bolus injection strategy and by defining tailored sets of basis functions that model either the FDG or water component, it is possible to separate the FDG and water signal. The basis functions are inspired from the spectral analysis description of dynamic PET studies and are defined as the convolution of estimated generating functions (GFs) with a set of decaying exponential functions. The GFs are estimated from the overall measured head curve, while the decaying exponential functions are pre-determined. In this work, the time activity curves (TACs) are modelled post-reconstruction but the model can be incorporated in a global 4D reconstruction strategy. Extensive PET simulation studies are performed considering single [18F]FDG and 6 [15O]H2O bolus injections for a total acquisition time of 75 min. The proposed method is evaluated at multiple noise levels and different parameters were estimated such as [18F]FDG uptake and blood flow estimated from the [15O]H2O component, requiring a full dynamic analysis of the two components, static images of [18F]FDG and the water components as well as [15O]H2O activation. It is shown that the resulting images and parametric values in ROIs are comparable to images obtained from separate imaging, illustrating the feasibility of simultaneous imaging of [18F]FDG and [15O]H2O components. For more information on this article, see medicalphysicsweb.org

  19. Clinical Endpoints for the Study of Geographic Atrophy Secondary to Age-Related Macular Degeneration

    PubMed Central

    Sadda, SriniVas R.; Chakravarthy, Usha; Birch, David G.; Staurenghi, Giovanni; Henry, Erin C.; Brittain, Christopher

    2017-01-01

    Purpose To summarize the recent literature describing the application of modern technologies in the study of patients with geographic atrophy (GA) secondary to age-related macular degeneration (AMD). Methods Review of the literature describing the terms and definitions used to describe GA, imaging modalities used to capture and measure GA, and the tests of visual function and functional deficits that occur in patients with GA. Results In this paper we describe the evolution of the definitions used to describe GA. We compare imaging modalities used in the characterization of GA, report on the sensitivity and specificity of the techniques where data exist, and describe the correlations between these various modes of capturing the presence of GA. We review the functional tests that have been used in patients with GA, and critically examine their ability to detect and quantify visual deficits. Conclusion Ophthalmologists and retina specialists now have a wide range of assessments available for the functional and anatomic characterization of GA in patients with AMD. To date, studies have been limited by their unimodal approach and we recommend that future studies of GA use multimodal imaging. We also suggest strategies for the optimal functional testing of patients with GA. PMID:27652913

  20. Simpler images, better results

    NASA Astrophysics Data System (ADS)

    Chance, Britton

    1999-03-01

    The very rapid development of optical technology has followed a pattern similar to that of nuclear magnetic resonance: first, spectroscopy and then imaging. The accomplishments in spectroscopy have been significant--among them, early detection of hematomas and quantitative oximetry (assuming that time and frequency domain instruments are used). Imaging has progressed somewhat later. The first images were obtained in Japan and USA a few years ago, particularly of parietal stimulation of the human brain. Since then, rapid applications to breast and limb, together with higher resolution of the brain now make NIR imaging of functional activation and tumor detection readily available, reliable and affordable devices. The lecture has to do with the applications of imaging to these three areas, particularly to prefrontal imaging of cognitive function, of breast tumor detection, and of localized muscle activation in exercise. The imaging resolution achievable in functional activation appears to be FWHM of 4 mm. The time required for an image is a few seconds or even much less. Breast image detection at 50 microsecond(s) ec/pixel results in images obtainable in a few seconds or shorter times (bandwidths of the kHz are available). Finally, imaging of the body organs is under study in this laboratory, particularly in the in utero fetus. It appears that the photon migration theory now leads to the development of a wide number of images for human subject tissue spectroscopy and imaging.

  1. Characterizing Response to Elemental Unit of Acoustic Imaging Noise: An fMRI Study

    PubMed Central

    Luh, Wen-Ming; Talavage, Thomas M.

    2010-01-01

    Acoustic imaging noise produced during functional magnetic resonance imaging (fMRI) studies can hinder auditory fMRI research analysis by altering the properties of the acquired time-series data. Acoustic imaging noise can be especially confounding when estimating the time course of the hemodynamic response (HDR) in auditory event-related fMRI (fMRI) experiments. This study is motivated by the desire to establish a baseline function that can serve not only as a comparison to other quantities of acoustic imaging noise for determining how detrimental is one's experimental noise, but also as a foundation for a model that compensates for the response to acoustic imaging noise. Therefore, the amplitude and spatial extent of the HDR to the elemental unit of acoustic imaging noise (i.e., a single ping) associated with echoplanar acquisition were characterized and modeled. Results from this fMRI study at 1.5 T indicate that the group-averaged HDR in left and right auditory cortex to acoustic imaging noise (duration of 46 ms) has an estimated peak magnitude of 0.29% (right) to 0.48% (left) signal change from baseline, peaks between 3 and 5 s after stimulus presentation, and returns to baseline and remains within the noise range approximately 8 s after stimulus presentation. PMID:19304477

  2. Brain–heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field

    PubMed Central

    Raven, Erika P.; Duyn, Jeff H.

    2016-01-01

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain–heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain–heart interactions. PMID:27044994

  3. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field.

    PubMed

    Chang, Catie; Raven, Erika P; Duyn, Jeff H

    2016-05-13

    Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions. © 2016 The Author(s).

  4. Beef assessments using functional magnetic resonance imaging and sensory evaluation.

    PubMed

    Tapp, W N; Davis, T H; Paniukov, D; Brooks, J C; Brashears, M M; Miller, M F

    2017-04-01

    Functional magnetic resonance imaging (fMRI) has been used to unveil how some foods and basic rewards are processed in the human brain. This study evaluated how resting state functional connectivity in regions of the human brain changed after differing qualities of beef steaks were consumed. Functional images of participants (n=8) were collected after eating high or low quality beef steaks on separate days, after consumption a sensory ballot was administered to evaluate consumers' perceptions of tenderness, juiciness, flavor, and overall liking. Imaging data showed that high quality steak samples resulted in greater functional connectivity to the striatum, medial orbitofrontal cortex, and insular cortex at various stages after consumption (P≤0.05). Furthermore, high quality steaks elicited higher sensory ballot scores for each palatability trait (P≤0.01). Together, these results suggest that resting state fMRI may be a useful tool for evaluating the neural process that follows positive sensory experiences such as the enjoyment of high quality beef steaks. Published by Elsevier Ltd.

  5. Functional laser speckle imaging of cerebral blood flow under hypothermia

    NASA Astrophysics Data System (ADS)

    Li, Minheng; Miao, Peng; Zhu, Yisheng; Tong, Shanbao

    2011-08-01

    Hypothermia can unintentionally occur in daily life, e.g., in cardiovascular surgery or applied as therapeutics in the neurosciences critical care unit. So far, the temperature-induced spatiotemporal responses of the neural function have not been fully understood. In this study, we investigated the functional change in cerebral blood flow (CBF), accompanied with neuronal activation, by laser speckle imaging (LSI) during hypothermia. Laser speckle images from Sprague-Dawley rats (n = 8, male) were acquired under normothermia (37°C) and moderate hypothermia (32°C). For each animal, 10 trials of electrical hindpaw stimulation were delivered under both temperatures. Using registered laser speckle contrast analysis and temporal clustering analysis (TCA), we found a delayed response peak and a prolonged response window under hypothermia. Hypothermia also decreased the activation area and the amplitude of the peak CBF. The combination of LSI and TCA is a high-resolution functional imaging method to investigate the spatiotemporal neurovascular coupling in both normal and pathological brain functions.

  6. Two-Dimensional Hermite Filters Simplify the Description of High-Order Statistics of Natural Images.

    PubMed

    Hu, Qin; Victor, Jonathan D

    2016-09-01

    Natural image statistics play a crucial role in shaping biological visual systems, understanding their function and design principles, and designing effective computer-vision algorithms. High-order statistics are critical for conveying local features, but they are challenging to study - largely because their number and variety is large. Here, via the use of two-dimensional Hermite (TDH) functions, we identify a covert symmetry in high-order statistics of natural images that simplifies this task. This emerges from the structure of TDH functions, which are an orthogonal set of functions that are organized into a hierarchy of ranks. Specifically, we find that the shape (skewness and kurtosis) of the distribution of filter coefficients depends only on the projection of the function onto a 1-dimensional subspace specific to each rank. The characterization of natural image statistics provided by TDH filter coefficients reflects both their phase and amplitude structure, and we suggest an intuitive interpretation for the special subspace within each rank.

  7. Effect of multiple circular holes Fraunhofer diffraction for the infrared optical imaging

    NASA Astrophysics Data System (ADS)

    Lu, Chunlian; Lv, He; Cao, Yang; Cai, Zhisong; Tan, Xiaojun

    2014-11-01

    With the development of infrared optics, infrared optical imaging systems play an increasingly important role in modern optical imaging systems. Infrared optical imaging is used in industry, agriculture, medical, military and transportation. But in terms of infrared optical imaging systems which are exposed for a long time, some contaminations will affect the infrared optical imaging. When the contamination contaminate on the lens surface of the optical system, it would affect diffraction. The lens can be seen as complementary multiple circular holes screen happen Fraunhofer diffraction. According to Babinet principle, you can get the diffraction of the imaging system. Therefore, by studying the multiple circular holes Fraunhofer diffraction, conclusions can be drawn about the effect of infrared imaging. This paper mainly studies the effect of multiple circular holes Fraunhofer diffraction for the optical imaging. Firstly, we introduce the theory of Fraunhofer diffraction and Point Spread Function. Point Spread Function is a basic tool to evaluate the image quality of the optical system. Fraunhofer diffraction will affect Point Spread Function. Then, the results of multiple circular holes Fraunhofer diffraction are given for different hole size and hole spacing. We choose the hole size from 0.1mm to 1mm and hole spacing from 0.3mm to 0.8mm. The infrared wavebands of optical imaging are chosen from 1μm to 5μm. We use the MATLAB to simulate light intensity distribution of multiple circular holes Fraunhofer diffraction. Finally, three-dimensional diffraction maps of light intensity are given to contrast.

  8. Neurological soft signs are not "soft" in brain structure and functional networks: evidence from ALE meta-analysis.

    PubMed

    Zhao, Qing; Li, Zhi; Huang, Jia; Yan, Chao; Dazzan, Paola; Pantelis, Christos; Cheung, Eric F C; Lui, Simon S Y; Chan, Raymond C K

    2014-05-01

    Neurological soft signs (NSS) are associated with schizophrenia and related psychotic disorders. NSS have been conventionally considered as clinical neurological signs without localized brain regions. However, recent brain imaging studies suggest that NSS are partly localizable and may be associated with deficits in specific brain areas. We conducted an activation likelihood estimation meta-analysis to quantitatively review structural and functional imaging studies that evaluated the brain correlates of NSS in patients with schizophrenia and other psychotic disorders. Six structural magnetic resonance imaging (sMRI) and 15 functional magnetic resonance imaging (fMRI) studies were included. The results from meta-analysis of the sMRI studies indicated that NSS were associated with atrophy of the precentral gyrus, the cerebellum, the inferior frontal gyrus, and the thalamus. The results from meta-analysis of the fMRI studies demonstrated that the NSS-related task was significantly associated with altered brain activation in the inferior frontal gyrus, bilateral putamen, the cerebellum, and the superior temporal gyrus. Our findings from both sMRI and fMRI meta-analyses further support the conceptualization of NSS as a manifestation of the "cerebello-thalamo-prefrontal" brain network model of schizophrenia and related psychotic disorders.

  9. Joint functional impairment and thermal alterations in patients with Psoriatic Arthritis: A thermal imaging study.

    PubMed

    Capo, A; Ismail, E; Cardone, D; Celletti, E; Auriemma, M; Sabatini, E; Merla, A; Amerio, P

    2015-11-01

    Functional infrared imaging (fIRI) is used to provide information on circulation, thermal properties and thermoregulatory function of the cutaneous tissue in several clinical settings. This study aims to evaluate the application of fIRI in Psoriatic Arthritis (PsA) assessment, evaluating the thermoregulatory alterations due to joint inflammation in PsA patients both in basal conditions and after a mild functional (isometric) exercise; fIRI outcomes were compared with those provided by Power Doppler Ultrasonography (PWD-US). 10 patients with PsA and 11 healthy controls were enrolled in the study. The cutaneous temperature dynamics of 20 regions of interest located on the dominant hand were recorded by means of high-resolution thermal imaging at baseline and after a functional exercise. Higher temperature values and faster temperature variations characterized the PsA group compared to healthy controls, confirming that the PsA-related inflammatory state alters the normal thermal proprieties of the skin overlying inflamed joints. fIRI outcomes correlated with the PWD-US findings. fIRI applied to the study of the response to a functional stimulus may represent an innovative, non-invasive, and operator-independent method for the assessment of peripheral PsA. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. [Functional magnetic resonance imaging in psychiatry and psychotherapy].

    PubMed

    Derntl, B; Habel, U; Schneider, F

    2010-01-01

    technical improvements, functional magnetic resonance imaging (fMRI) has become the most popular and versatile imaging method in psychiatric research. The scope of this manuscript is to briefly introduce the basics of MR physics, the blood oxygenation level-dependent (BOLD) contrast as well as the principles of MR study design and functional data analysis. The presentation of exemplary studies on emotion recognition and empathy in schizophrenia patients will highlight the importance of MR methods in psychiatry. Finally, we will demonstrate insights into new developments that will further boost MR techniques in clinical research and will help to gain more insight into dysfunctional neural networks underlying cognitive and emotional deficits in psychiatric patients. Moreover, some techniques such as neurofeedback seem promising for evaluation of therapy effects on a behavioral and neural level.

  11. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    NASA Astrophysics Data System (ADS)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on aging, strain rate during isometric contraction was significantly reduced in the seniors; presumably from decrease in muscle slack and increase in stiffness with age. Other parameters of interest from this study that allow inferences on the ECM and lateral transmission are the asymmetry of deformation in the fiber cross section as well as the angle between the SR and muscle fiber. The last part of thesis, which is a 'work-in-progress', is the extension to 3D SR tensor mapping using a 3D spatial, 3D velocity encoded imaging sequence. This is combined with Diffusion Tensor Imaging to obtain the lead eigenvector (muscle fiber direction) at each voxel. The 3D SR is then rotated to the basis of the DTI to obtain a 'Fiber Aligned Strain rate: FASR'. The off diagonal elements of FASR are shear strain terms. Detailed analysis of the shear strain will provide a unique non-invasive method to probe lateral transmission.

  12. Functional Imaging in Radiotherapy in the Netherlands: Availability and Impact on Clinical Practice.

    PubMed

    Vogel, W V; Lam, M G E H; Pameijer, F A; van der Heide, U A; van de Kamer, J B; Philippens, M E; van Vulpen, M; Verheij, M

    2016-12-01

    Functional imaging with positron emission tomography/computed tomography (PET/CT) and multiparametric magnetic resonance (mpMR) is increasingly applied for radiotherapy purposes. However, evidence and experience are still limited, and this may lead to clinically relevant differences in accessibility, interpretation and decision making. We investigated the current patterns of care in functional imaging for radiotherapy in the Netherlands in a care evaluation study. The availability of functional imaging in radiotherapy centres in the Netherlands was evaluated; features available in >80% of academic and >80% of non-academic centres were considered standard of care. The impact of functional imaging on clinical decision making was evaluated using case questionnaires on lung, head/neck, breast and prostate cancer, with multiple-choice questions on primary tumour delineation, nodal involvement, distant metastasis and incidental findings. Radiation oncologists were allowed to discuss cases in a multidisciplinary approach. Ordinal answers were evaluated by median and interquartile range (IQR) to identify the extent and variability of clinical impact; additional patterns were evaluated descriptively. Information was collected from 18 radiotherapy centres in the Netherlands (all except two). PET/CT was available for radiotherapy purposes to 94% of centres; 67% in the treatment position and 61% with integrated planning CT. mpMR was available to all centres; 61% in the treatment position. Technologists collaborated between departments to acquire PET/CT or mpMR for radiotherapy in 89%. All sites could carry out image registration for target definition. Functional imaging generally showed a high clinical impact (average median 4.3, scale 1-6) and good observer agreement (average IQR 1.1, scale 0-6). However, several issues resulted in ignoring functional imaging (e.g. positional discrepancies, central necrosis) or poor observer agreement (atelectasis, diagnostic discrepancies, conformation strategies). Access to functional imaging with PET/CT and mpMR for radiotherapy purposes, with collaborating technologists and multimodal delineation, can be considered standard of care in the Netherlands. For several specific clinical situations, the interpretation of images may benefit from further standardisation. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Dual-modality imaging of function and physiology

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Iwata, Koji; Wong, Kenneth H.; Wu, Max C.; Da Silva, Angela; Tang, Hamilton R.; Barber, William C.; Hwang, Andrew B.; Sakdinawat, Anne E.

    2002-04-01

    Dual-modality imaging is a technique where computed tomography or magnetic resonance imaging is combined with positron emission tomography or single-photon computed tomography to acquire structural and functional images with an integrated system. The data are acquired during a single procedure with the patient on a table viewed by both detectors to facilitate correlation between the structural and function images. The resulting data can be useful for localization for more specific diagnosis of disease. In addition, the anatomical information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can be used to improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems also are being developed for biological research that involves small animals. The small-animal dual-modality systems offer advantages for measurements that currently are performed invasively using autoradiography and tissue sampling. By acquiring the required data noninvasively, dual-modality imaging has the potential to allow serial studies in a single animal, to perform measurements with fewer animals, and to improve the statistical quality of the data.

  14. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    PubMed Central

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2015-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson’s disease from healthy controls, and show great promise for differentiation between Parkinson’s disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson’s disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson’s disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. PMID:24954673

  15. Imaging performance of an isotropic negative dielectric constant slab.

    PubMed

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  16. Receiver function images of the central Chugoku region in the Japanese islands using Hi-net data

    NASA Astrophysics Data System (ADS)

    Ramesh, D. S.; Wakatsu, H. K.; Watada, S.; Yuan, X.

    2005-04-01

    Crustal configuration of the central Chugoku region with disposition of the Philippine Sea Plate (PHS) in this area are investigated through the receiver function approach using short-period Hi-net data. Images of the upper mantle discontinuities are also obtained. Restituted short-period receiver functions bring out discernible variations in average composition of the crust and its thickness in the study region. The Vp/ Vs values in the study area are generally high, reaching values in excess of 1.85 at a few places. The central part of the study region showing the highest Vp/ Vs values is coincidentally a subregion of least seismicity, possibly bestowed with special subsurface structure. Migrated receiver function images, both Ps and Pps images, unambiguously trace the NW subducting PHS taking a steeper plunge in the northwest part of the Chugoku region reaching depths of 70 km from its low dip disposition in the southeast. An excellent correlation of the subducting PHS with the hypocenters is also seen. We demonstrate that short-period data after restitution and application of appropriate low pass filters can indeed detect presence of the global 410-km and 660-km discontinuities and map their disposition reasonably well. Our migrated receiver functions image the deflections in the 410-km and 660-km discontinuities in an anti-correlated fashion on expected lines of Clapeyron slope predictions induced by subduction of the Pacific plate (PAC) beneath Japanese islands, though PAC itself is feebly traced but shows good correlation with slab seismicity.

  17. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies

    PubMed Central

    Verma, Nishant; Cowperthwaite, Matthew C.; Burnett, Mark G.; Markey, Mia K.

    2013-01-01

    Abstract Differentiating treatment-induced necrosis from tumor recurrence is a central challenge in neuro-oncology. These 2 very different outcomes after brain tumor treatment often appear similarly on routine follow-up imaging studies. They may even manifest with similar clinical symptoms, further confounding an already difficult process for physicians attempting to characterize a new contrast-enhancing lesion appearing on a patient's follow-up imaging. Distinguishing treatment necrosis from tumor recurrence is crucial for diagnosis and treatment planning, and therefore, much effort has been put forth to develop noninvasive methods to differentiate between these disparate outcomes. In this article, we review the latest developments and key findings from research studies exploring the efficacy of structural and functional imaging modalities for differentiating treatment necrosis from tumor recurrence. We discuss the possibility of computational approaches to investigate the usefulness of fine-grained imaging characteristics that are difficult to observe through visual inspection of images. We also propose a flexible treatment-planning algorithm that incorporates advanced functional imaging techniques when indicated by the patient's routine follow-up images and clinical condition. PMID:23325863

  18. Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.T.C.; Knowlton, R.; Hoo, K.S.

    1995-12-31

    Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the grain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstationmore » to aid the non-invasive presurgical evaluation of epilepsy patients. These techniques include on-line access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitative of structural and functional information contained in the registered images. For illustration, the authors describe the use of these techniques in a patient case of non-lesional neocortical epilepsy. They also present the future work based on preliminary studies.« less

  19. Cellular resolution functional imaging in behaving rats using voluntary head restraint

    PubMed Central

    Scott, Benjamin B.; Brody, Carlos D.; Tank, David W.

    2013-01-01

    SUMMARY High-throughput operant conditioning systems for rodents provide efficient training on sophisticated behavioral tasks. Combining these systems with technologies for cellular resolution functional imaging would provide a powerful approach to study neural dynamics during behavior. Here we describe an integrated two-photon microscope and behavioral apparatus that allows cellular resolution functional imaging of cortical regions during epochs of voluntary head restraint. Rats were trained to initiate periods of restraint up to 8 seconds in duration, which provided the mechanical stability necessary for in vivo imaging while allowing free movement between behavioral trials. A mechanical registration system repositioned the head to within a few microns, allowing the same neuronal populations to be imaged on each trial. In proof-of-principle experiments, calcium dependent fluorescence transients were recorded from GCaMP-labeled cortical neurons. In contrast to previous methods for head restraint, this system can also be incorporated into high-throughput operant conditioning systems. PMID:24055015

  20. Study on Vignetting Correction of Uav Images and Its Application to 2010 Ms7.0 Lushan Earthquake, China

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Wang, X.; Dou, A.; Ding, X.

    2014-12-01

    As the UAV is widely used in earthquake disaster prevention and mitigation, the efficiency of UAV image processing determines the effectiveness of its application to pre-earthquake disaster prevention, post-earthquake emergency rescue, and disaster assessment. Because of bad weather conditions after destructive earthquake, the wide field cameras captured images with serious vignetting phenomenon, which can significantly affects the speed and efficiency of image mosaic, especially the extraction of pre-earthquake building and geological structure information and also the accuracy of post-earthquake quantitative damage extraction. In this paper, an improved radial gradient correction method (IRGCM) was developed to reduce the influence from random distribution of land surface objects on the images based on radial gradient correction method (RGCM, Y. Zheng, 2008; 2013). First, a mean-value image was obtained by the average of serial UAV images. It was used as calibration instead of single images to obtain the comprehensive vignetting function by using RGCM. Then each UAV image would be corrected by the comprehensive vignetting function. A case study was done to correct the UAV images sequence, which were obtained in Lushan County after Ms7.0 Lushan, Sichuan, China earthquake occurred on April 20, 2013. The results show that the comprehensive vignetting function generated by IRGCM is more robust and accurate to express the specific optical response of camera in a particular setting. Thus it is particularly useful for correction of a mass UAV images with non-uniform illuminations. Also, the correction process was simplified and it is faster than conventional methods. After correction, the images have better radial homogeneity and clearer details, to a certain extent, which reduces the difficulties of image mosaic, and provides a better result for further analysis and damage information extraction. Further test shows also that better results were obtained by taking advantage of comprehensive vignetting function to the other UAV image sequences from different regions. The research was supported by these projects, NO.2012BAK15B02 and 2013IES010106.

  1. Functional brain imaging and bioacoustics in the Bottlenose dolphins, Tursiops truncatus

    NASA Astrophysics Data System (ADS)

    Ridgway, Sam; Finneran, James; Carder, Donald; van Bonn, William; Smith, Cynthia; Houser, Dorian; Mattrey, Robert; Hoh, Carl

    2003-10-01

    The dolphin brain is the central processing computer for a complex and effective underwater echolocation and communication system. Until now, it has not been possible to study or diagnose disorders of the dolphin brain employing modern functional imaging methods like those used in human medicine. Our most recent studies employ established methods such as behavioral tasks, physiological observations, and computed tomography (CT) and, for the first time, single photon emission computed tomography (SPECT), and positron emission tomography (PET). Trained dolphins slide out of their enclosure on to a mat and are transported by trainers and veterinarians to the laboratory for injection of a ligand. Following ligand injection, brief experiments include trained vocal responses to acoustic, visual, or tactile stimuli. We have used the ligand technetium (Tc-99m) biscisate (Neurolite) to image circulatory flow by SPECT. Fluro-deoxy-d-glucose (18-F-FDG) has been employed to image brain metabolism with PET. Veterinarians carefully monitored dolphins during and after the procedure. Through these methods, we have demonstrated that functional imaging can be employed safely and productively with dolphins to obtain valuable information on brain structure and function for medical and research purposes. Hemispheric differences and variations in flow and metabolism in different brain areas will be shown.

  2. [Correction of respiratory movement using ultrasound for cardiac nuclear medicine examinations: fundamental study using an X-ray TV machine].

    PubMed

    Yoda, Kazushige; Umeda, Tokuo; Hasegawa, Tomoyuki

    2003-11-01

    Organ movements that occur naturally as a result of vital functions such as respiration and heartbeat cause deterioration of image quality in nuclear medicine imaging. Among these movements, respiration has a large effect, but there has been no practical method of correcting for this. In the present study, we examined a method of correction that uses ultrasound images to correct baseline shifts caused by respiration in cardiac nuclear medicine examinations. To evaluate the validity of this method, simulation studies were conducted with an X-ray TV machine instead of a nuclear medicine scanner. The X-ray TV images and ultrasound images were recorded as digital movies and processed with public domain software (Scion Image). Organ movements were detected in the ultrasound images of the subcostal four-chamber view mode using slit regions of interest and were measured on a two-dimensional image coordinate. Then translational shifts were applied to the X-ray TV images to correct these movements by using macro-functions of the software. As a result, respiratory movements of about 20.1 mm were successfully reduced to less than 2.6 mm. We conclude that this correction technique is potentially useful in nuclear medicine cardiology.

  3. Imaging the square of the correlated two-electron wave function of a hydrogen molecule

    DOE PAGES

    Waitz, M.; Bello, R. Y.; Metz, D.; ...

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less

  4. BOLD magnetic resonance imaging in nephrology

    PubMed Central

    Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A; Hundley, W Gregory; Hall, John E

    2018-01-01

    Magnetic resonance (MR) imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD) MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. PMID:29559807

  5. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    PubMed

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  6. Imaging the square of the correlated two-electron wave function of a hydrogen molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waitz, M.; Bello, R. Y.; Metz, D.

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in whichmore » electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Finally, our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.« less

  7. Abnormal Functional Lateralization and Activity of Language Brain Areas in Typical Specific Language Impairment (Developmental Dysphasia)

    ERIC Educational Resources Information Center

    de Guibert, Clement; Maumet, Camille; Jannin, Pierre; Ferre, Jean-Christophe; Treguier, Catherine; Barillot, Christian; Le Rumeur, Elisabeth; Allaire, Catherine; Biraben, Arnaud

    2011-01-01

    Atypical functional lateralization and specialization for language have been proposed to account for developmental language disorders, yet results from functional neuroimaging studies are sparse and inconsistent. This functional magnetic resonance imaging study compared children with a specific subtype of specific language impairment affecting…

  8. Spectral contrast-enhanced optical coherence tomography for improved detection of tumor microvasculature and functional imaging of lymphatic drainage

    NASA Astrophysics Data System (ADS)

    SoRelle, Elliott D.; Liba, Orly; Sen, Debasish; de la Zerda, Adam

    2017-03-01

    Optical Coherence Tomography (OCT) is well-suited to study in vivo dynamics of blood circulation and lymphatic flow because of the technique's combination of rapid image acquisition, micron spatial resolution, and penetration depth in turbid tissues. However, OCT has been historically constrained by a dearth of contrast agents that are readily distinguished from the strong scattering intrinsic to biological tissues. In this study, we demonstrate large gold nanorods (LGNRs) as optimized contrast agents for OCT. LGNRs produce 32-fold greater backscattering than GNRs previously tested for contrast-enhanced OCT. Furthermore, LGNRs exhibit 110-fold stronger spectral signal than conventional GNRs when coupled with custom spectral detection algorithms. This signal enhancement enables picomolar OCT detection sensitivity in vivo and single-particle detection against optically-clear backgrounds. Moreover, the ability to synthesize LGNRs with tunable spectral peaks provides a viable platform for multiplexed imaging studies. To explore the advantages of LGNRs as OCT contrast agents, we implemented them for noninvasive 3D imaging of tumor blood supply and active lymphatic drainage in mice. Spectral detection of LGNRs enabled 100% improvement in imaging depth for detecting microvasculature (vessels 20 μm in diameter) in U87MG glioblastoma xenografts in mice pinnae. We also demonstrated our approach's ability to map the spatial dependence of lymph drainage and flow directionality within lymphatic capillaries. Using LGNRs with distinct spectra, we further identified the functional states of individual lymphatic valves in vivo. Thus, this approach provides a powerful new platform for functional imaging that may be extended for future molecular imaging studies with OCT.

  9. Hardware, software, and scanning issues encountered during small animal imaging of photodynamic therapy in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Sharma, Rahul; Varghai, Davood; Spring-Robinson, Chandra; Oleinick, Nancy L.; Muzic, Raymond F., Jr.; Dean, David

    2007-02-01

    Small animal imaging devices are now commonly used to study gene activation and model the effects of potential therapies. We are attempting to develop a protocol that non-invasively tracks the affect of Pc 4-mediated photodynamic therapy (PDT) in a human glioma model using structural image data from micro-CT and/or micro-MR scanning and functional data from 18F-fluorodeoxy-glucose (18F-FDG) micro-PET imaging. Methods: Athymic nude rat U87-derived glioma was imaged by micro-PET and either micro-CT or micro-MR prior to Pc 4-PDT. Difficulty insuring animal anesthesia and anatomic position during the micro-PET, micro-CT, and micro-MR scans required adaptation of the scanning bed hardware. Following Pc 4-PDT the animals were again 18F-FDG micro-PET scanned, euthanized one day later, and their brains were explanted and prepared for H&E histology. Histology provided the gold standard for tumor location and necrosis. The tumor and surrounding brain functional and structural image data were then isolated and coregistered. Results: Surprisingly, both the non-PDT and PDT groups showed an increase in tumor functional activity when we expected this signal to disappear in the group receiving PDT. Co-registration of the functional and structural image data was done manually. Discussion: As expected, micro-MR imaging provided better structural discrimination of the brain tumor than micro-CT. Contrary to expectations, in our preliminary analysis 18F-FDG micro-PET imaging does not readily discriminate the U87 tumors that received Pc 4-PDT. We continue to investigate the utility of micro-PET and other methods of functional imaging to remotely detect the specificity and sensitivity of Pc 4-PDT in deeply placed tumors.

  10. Crossed Cerebellar Tracer Uptake on Acute-Stage 123I-Iomazenil SPECT Imaging Predicts 3-Month Functional Outcome in Patients With Nonfatal Hypertensive Putaminal or Thalamic Hemorrhage.

    PubMed

    Kojima, Daigo; Komoribayashi, Nobukazu; Omama, Shinichi; Oikawa, Kohki; Fujiwara, Shunrou; Kobayashi, Masakazu; Kubo, Yoshitaka; Terasaki, Kazunori; Ogasawara, Kuniaki

    2018-06-01

    Whereas SPECT images obtained 180 minutes after administration of I-iomazenil (IMZ) (late images) are proportional to the distribution of central benzodiazepine receptor-binding potential, SPECT images obtained within 30 minutes after I-IMZ administration (early images) correlate with regional brain perfusion. The aim of the present study was to determine whether crossed cerebellar tracer uptake on acute-stage I-IMZ SPECT imaging predicts 3-month functional outcome in patients with nonfatal hypertensive putaminal or thalamic hemorrhage. Forty-six patients underwent early and late SPECT imaging with I-IMZ within 7 days after the onset of hemorrhage. A region of interest was automatically placed in the bilateral cerebellar hemispheres using a 3-dimensional stereotaxic region-of-interest template, and the ratio of the value in the cerebellar hemisphere contralateral to the affected side to that in the ipsilateral cerebellar hemisphere (ARcbl) was calculated in each patient. Each patient's physical function was measured using the modified Rankin scale (mRS) score 3 months after onset. The ARcbl on early (ρ = -0.511, P = 0.0003) and late (ρ = -0.714, P < 0.0001) images correlated with the mRS 3 months after the onset of hemorrhage. Multivariate analysis showed that only a low ARcbl in late images was significantly associated with a poor functional outcome (mRS score ≥3 at 3 months after onset) (95% confidence interval, 0.001-0.003; P = 0.0212). Crossed cerebellar tracer uptake on acute-stage I-IMZ SPECT imaging predicts 3-month functional outcome in patients with nonfatal hypertensive putaminal or thalamic hemorrhage.

  11. Potential benefit of a simultaneous, side-by-side display of contrast MDCT and echocardiography over routine sequential imaging for assessment of adult congenital heart disease: A preliminary study.

    PubMed

    Oe, Hiroki; Watanabe, Nobuhisa; Miyoshi, Toru; Osawa, Kazuhiro; Akagi, Teiji; Kanazawa, Susumu; Ito, Hiroshi

    2018-06-18

    Management of adult congenital heart disease (ACHD) patients requires understanding of its complex morphology and functional features. An innovative imaging technique has been developed to display a virtual multi-planar reconstruction obtained from contrast-enhanced multidetector-computed tomography (MDCT) corresponding to the same cross-sectional image from transthoracic echocardiography (TTE). The aim of this study is to assess the usefulness of this imaging technology in ACHD patients. This study consisted of 46 consecutive patients (30 women; mean age, 52±18 years old) with ACHD who had undergone contrast MDCT. All patients underwent TTE within a week of MDCT. An experienced sonographer who did not know the results of MDCT conducted a diagnosis using TTE and, then, using the new imaging technology. We studied whether this imaging technology provided additional or unexpected findings or makes more accurate diagnosis. In this imaging technology, MDCT cross-section provides higher-resolution image to the deep compared to corresponding TTE image. Depending on the MDCT section which can be arbitrarily set under the echo guide, we can diagnose unexpected or incremental lesions or more accurately assess the severity of the lesion in 27 patients (59%) compared to TTE study alone. This imaging technology was useful in the following situations: CONCLUSIONS: This integrated imaging technology provides incremental role over TTE in complex anatomy, and allows functional information in ACHD patients. Copyright © 2018 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  12. Functionality of veterinary identification microchips following low- (0.5 tesla) and high-field (3 tesla) magnetic resonance imaging.

    PubMed

    Piesnack, Susann; Frame, Mairi E; Oechtering, Gerhard; Ludewig, Eberhard

    2013-01-01

    The ability to read patient identification microchips relies on the use of radiofrequency pulses. Since radiofrequency pulses also form an integral part of the magnetic resonance imaging (MRI) process, the possibility of loss of microchip function during MRI scanning is of concern. Previous clinical trials have shown microchip function to be unaffected by MR imaging using a field strength of 1 Tesla and 1.5. As veterinary MRI scanners range widely in field strength, this study was devised to determine whether exposure to lower or higher field strengths than 1 Tesla would affect the function of different types of microchip. In a phantom study, a total of 300 International Standards Organisation (ISO)-approved microchips (100 each of three different types: ISO FDX-B 1.4 × 9 mm, ISO FDX-B 2.12 × 12 mm, ISO HDX 3.8 × 23 mm) were tested in a low field (0.5) and a high field scanner (3.0 Tesla). A total of 50 microchips of each type were tested in each scanner. The phantom was composed of a fluid-filled freezer pack onto which a plastic pillow and a cardboard strip with affixed microchips were positioned. Following an MRI scan protocol simulating a head study, all of the microchips were accurately readable. Neither 0.5 nor 3 Tesla imaging affected microchip function in this study. © 2013 Veterinary Radiology & Ultrasound.

  13. Carotid Stenosis And Ulcer Detectability As A Function Of Pixel Size

    NASA Astrophysics Data System (ADS)

    Mintz, Leslie J.; Enzmann, Dieter R.; Keyes, Gary S.; Mainiero, Louis M.; Brody, William R.

    1981-11-01

    Digital radiography, in conjunction with digital subtraction methods can provide high quality images of the vascular system,1-4 Spatial resolution is one important limiting factor of this imaging technique. Since spatial resolution of a digital image is a function of pixel size, it is important to determine the pixel size threshold necessary to provide information comparable to that of conventional angiograms. This study was designed to establish the pixel size necessary to identify accurately stenotic and ulcerative lesions of the carotid artery.

  14. Transthoracic Cardiac Acoustic Radiation Force Impulse Imaging

    NASA Astrophysics Data System (ADS)

    Bradway, David Pierson

    This dissertation investigates the feasibility of a real-time transthoracic Acoustic Radiation Force Impulse (ARFI) imaging system to measure myocardial function non-invasively in clinical setting. Heart failure is an important cardiovascular disease and contributes to the leading cause of death for developed countries. Patients exhibiting heart failure with a low left ventricular ejection fraction (LVEF) can often be identified by clinicians, but patients with preserved LVEF might be undetected if they do not exhibit other signs and symptoms of heart failure. These cases motivate development of transthoracic ARFI imaging to aid the early diagnosis of the structural and functional heart abnormalities leading to heart failure. M-Mode ARFI imaging utilizes ultrasonic radiation force to displace tissue several micrometers in the direction of wave propagation. Conventional ultrasound tracks the response of the tissue to the force. This measurement is repeated rapidly at a location through the cardiac cycle, measuring timing and relative changes in myocardial stiffness. ARFI imaging was previously shown capable of measuring myocardial properties and function via invasive open-chest and intracardiac approaches. The prototype imaging system described in this dissertation is capable of rapid acquisition, processing, and display of ARFI images and shear wave elasticity imaging (SWEI) movies. Also presented is a rigorous safety analysis, including finite element method (FEM) simulations of tissue heating, hydrophone intensity and mechanical index (MI) measurements, and thermocouple transducer face heating measurements. For the pulse sequences used in later animal and clinical studies, results from the safety analysis indicates that transthoracic ARFI imaging can be safely applied at rates and levels realizable on the prototype ARFI imaging system. Preliminary data are presented from in vivo trials studying changes in myocardial stiffness occurring under normal and abnormal heart function. Presented is the first use of transthoracic ARFI imaging in a serial study of heart failure in a porcine model. Results demonstrate the ability of transthoracic ARFI to image cyclically-varying stiffness changes in healthy and infarcted myocardium under good B-mode imaging conditions at depths in the range of 3-5 cm. Challenging imaging scenarios such as deep regions of interest, vigorous lateral motion and stable, reverberant clutter are analyzed and discussed. Results are then presented from the first study of clinical feasibility of transthoracic cardiac ARFI imaging. At the Duke University Medical Center, healthy volunteers and patients having magnetic resonance imaging-confirmed apical infarcts were enrolled for the study. The number of patients who met the inclusion criteria in this preliminary clinical trial was low, but results showed that the limitations seen in animal studies were not overcome by allowing transmit power levels to exceed the FDA mechanical index (MI) limit. The results suggested the primary source of image degradation was clutter rather than lack of radiation force. Additionally, the transthoracic method applied in its present form was not shown capable of tracking propagating ARFI-induced shear waves in the myocardium. Under current instrumentation and processing methods, results of these studies support feasibility for transthoracic ARFI in high-quality B-Mode imaging conditions. Transthoracic ARFI was not shown sensitive to infarct or to tracking heart failure in the presence of clutter and signal decorrelation. This work does provide evidence that transthoracic ARFI imaging is a safe non-invasive tool, but clinical efficacy as a diagnostic tool will need to be addressed by further development to overcome current challenges and increase robustness to sources of image degradation.

  15. Nonequilibrium fluctuations in metaphase spindles: polarized light microscopy, image registration, and correlation functions

    NASA Astrophysics Data System (ADS)

    Brugués, Jan; Needleman, Daniel J.

    2010-02-01

    Metaphase spindles are highly dynamic, nonequilibrium, steady-state structures. We study the internal fluctuations of spindles by computing spatio-temporal correlation functions of movies obtained from quantitative polarized light microscopy. These correlation functions are only physically meaningful if corrections are made for the net motion of the spindle. We describe our image registration algorithm in detail and we explore its robustness. Finally, we discuss the expression used for the estimation of the correlation function in terms of the nematic order of the microtubules which make up the spindle. Ultimately, studying the form of these correlation functions will provide a quantitative test of the validity of coarse-grained models of spindle structure inspired from liquid crystal physics.

  16. Substance Use and Its Relationship to Family Functioning and Self-Image in Adolescents

    ERIC Educational Resources Information Center

    Weiss, Jie Wu; Merrill, Vincent; Akagha, Kathy

    2011-01-01

    This study examined associations between substance use, family functioning, and self-image among four ethnic adolescent groups. Three thousand three hundred and fifteen 8th and 9th grade students were recruited from 10 schools in Los Angeles County. Participants completed a paper-and-pencil survey regarding their alcohol and marijuana use, along…

  17. Functional image-guided stereotactic body radiation therapy planning for patients with hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsegmed, Uranchimeg; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nakashima, Takeo

    The aim of the current planning study is to evaluate the ability of gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI)–guided stereotactic body radiation therapy (SBRT) planning by using intensity-modulated radiation therapy (IMRT) techniques in sparing the functional liver tissues during SBRT for hepatocellular carcinoma. In this study, 20 patients with hepatocellular carcinoma were enrolled. Functional liver tissues were defined according to quantitative liver-spleen contrast ratios ≥ 1.5 on a hepatobiliary phase scan. Functional images were fused with the planning computed tomography (CT) images; the following 2 SBRT plans were designed using a “step-and-shoot” static IMRT technique for each patient: (1) an anatomicalmore » SBRT plan optimization based on the total liver; and (2) a functional SBRT plan based on the functional liver. The total prescribed dose was 48 gray (Gy) in 4 fractions. Dosimetric parameters, including dose to 95% of the planning target volume (PTV D{sub 95%}), percentages of total and functional liver volumes, which received doses from 5 to 30 Gy (V5 to V30 and fV5 to fV30), and mean doses to total and functional liver (MLD and fMLD, respectively) of the 2 plans were compared. Compared with anatomical plans, functional image-guided SBRT plans reduced MLD (mean: plan A, 5.5 Gy; and plan F, 5.1 Gy; p < 0.0001) and fMLD (mean: plan A, 5.4 Gy; and plan F, 4.9 Gy; p < 0.0001), as well as V5 to V30 and fV5 to fV30. No differences were noted in PTV coverage and nonhepatic organs at risk (OARs) doses. In conclusion, EOB-MRI–guided SBRT planning using the IMRT technique may preserve functional liver tissues in patients with hepatocellular carcinoma (HCC).« less

  18. Functional magnetic resonance imaging in oncology: state of the art.

    PubMed

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate.

  19. "It's all about acceptance": A qualitative study exploring a model of positive body image for people with spinal cord injury.

    PubMed

    Bailey, K Alysse; Gammage, Kimberley L; van Ingen, Cathy; Ditor, David S

    2015-09-01

    Using modified constructivist grounded theory, the purpose of the present study was to explore positive body image experiences in people with spinal cord injury. Nine participants (five women, four men) varying in age (21-63 years), type of injury (C3-T7; complete and incomplete), and years post-injury (4-36 years) were recruited. The following main categories were found: body acceptance, body appreciation and gratitude, social support, functional gains, independence, media literacy, broadly conceptualizing beauty, inner positivity influencing outer demeanour, finding others who have a positive body image, unconditional acceptance from others, religion/spirituality, listening to and taking care of the body, managing secondary complications, minimizing pain, and respect. Interestingly, there was consistency in positive body image characteristics reported in this study with those found in previous research, demonstrating universality of positive body image. However, unique characteristics (e.g., resilience, functional gains, independence) were also reported demonstrating the importance of exploring positive body image in diverse groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Prospective Cohort Study Investigating Changes in Body Image, Quality of Life, and Self-Esteem Following Minimally Invasive Cosmetic Procedures.

    PubMed

    Sobanko, Joseph F; Dai, Julia; Gelfand, Joel M; Sarwer, David B; Percec, Ivona

    2018-04-13

    Minimally invasive cosmetic injectable procedures are increasingly common. However, a few studies have investigated changes in psychosocial functioning following these treatments. To assess changes in body image, quality of life, and self-esteem following cosmetic injectable treatment with soft tissue fillers and neuromodulators. Open, prospective study of 75 patients undergoing cosmetic injectable procedures for facial aging to evaluate changes in psychosocial functioning within 6 weeks of treatment. Outcome measures included the Derriford appearance scale (DAS-24), body image quality of life inventory (BIQLI), and the Rosenberg self-esteem scale. Body image dissatisfaction, as assessed by the DAS-24, improved significantly 6 weeks after the treatment. Body image quality of life, as assessed by the BIQLI, improved, but the change did not reach statistical significance. Self-esteem was unchanged after the treatment. Minimally invasive cosmetic injectable procedures were associated with reductions in body image dissatisfaction. Future research, using recently developed cosmetic surgery-specific instruments, may provide further insight into the psychosocial benefits of minimally invasive procedures.

  1. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    PubMed Central

    Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan

    2014-01-01

    The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high levels of self- and body-focused ruminations when AN patients are at rest. PMID:25324749

  2. Functional imaging of the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ell, P.J.; Jarritt, P.H.; Costa, D.C.

    1987-07-01

    The radionuclide tracer method is unique among all other imaging methodologies in its ability to trace organ or tissue function and metabolism. Physical processes such as electron or proton density assessment or resonance, edge identification, electrical or ultrasonic impedence, do not pertain to the image generation process in nuclear medicine, and if so, only in a rather secondary manner. The nuclear medicine imaging study is primarily a study of the chemical nature, distribution and interaction of the tracer/radiopharmaceutical utilized with the cellular system which requires investigation: the thyroid cells with sodium iodide, the recticular endothelial cells with colloidal particles, themore » adrenal medulla cells with metaiodobenzylguanidine, and so on. In the two most recent areas of nuclear medicine expansion, oncology (with labelled monoclonal antibodies) and neurology and psychiatry (with a whole new series of lipid soluble radiopharmaceuticals), specific cell systems can also be targeted and hence imaged and investigated. The study of structure as masterly performed by Virchow and all his successors over more than a century, is now definitely the prerogative of such imaging systems which excel with spatial and contrast resolution However the investigation of function and metabolism, has clearly passed from the laboratory animal protocol and experiment to the direct investigation in man, this being the achievement of the radionuclide tracer methodology. In this article, we review present interest and developments in that part of nuclear medicine activity which is aimed at the study of the neurological or psychiatric patient.« less

  3. Intensive care unit referring physician usage of PACS workstation functions based on disease categories

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Kundel, Harold L.; Shile, Peter E.; Carey, Bruce; Seshadri, Sridhar B.; Feingold, Eric R.

    1994-05-01

    As part of a study of the use of a PACS workstation compared to film in a Medical Intensive Care Unit, logs of workstation activity were maintained. The software for the workstation kept track of the type of user (i.e., intern, resident, fellow, or attending physician) and also of the workstation image manipulation functions used. The functions logged were: no operation, brightness/contrast adjustment, invert video, zoom, and high resolution display (this last function resulted in the display of the full 2 K X 2 K image rather than the usual subsampled 1 K X 1 K image. Associated data collection allows us to obtain the diagnostic category of the examination being viewed (e.g., location of tubes and lines, rule out: pneumonia, congestive heart failure, pneumothorax, and pleural effusion). The diagnostic categories and user type were then correlated with the use of workstation functions during viewing of images. In general, there was an inverse relationship between the level of training and the number of workstation uses. About two-thirds of the time, there was no image manipulation operation performed. Adjustment of brightness/contrast had the highest percentage of use overall, followed by zoom, video invert, and high resolution display.

  4. Study on Over-Sampling for Imager

    NASA Technical Reports Server (NTRS)

    Kigawa, Seiichiro; Sullivan, Pamela C.

    1998-01-01

    This report describes the potential improvement of the effective ground resolution of MTSAT (Multi-functional Transport Satellite) Imager. The IFOV (Instantaneous Field of View) of MTSAT Imager is 4 km for infrared and 1 km visible. A combination of some images acquired by the MTSAT Imager could generate 2 km-latticed infrared images. Furthermore, it is possible to generate an effective 2 km IFOV image by the enhancement of the 2 km-latticed image using Digital Signal Processing. This report also mentions the on-orbit demonstration of this concept.

  5. Occam's razor: supporting visual query expression for content-based image queries

    NASA Astrophysics Data System (ADS)

    Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.

    2005-01-01

    This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).

  6. Occam"s razor: supporting visual query expression for content-based image queries

    NASA Astrophysics Data System (ADS)

    Venters, Colin C.; Hartley, Richard J.; Hewitt, William T.

    2004-12-01

    This paper reports the results of a usability experiment that investigated visual query formulation on three dimensions: effectiveness, efficiency, and user satisfaction. Twenty eight evaluation sessions were conducted in order to assess the extent to which query by visual example supports visual query formulation in a content-based image retrieval environment. In order to provide a context and focus for the investigation, the study was segmented by image type, user group, and use function. The image type consisted of a set of abstract geometric device marks supplied by the UK Trademark Registry. Users were selected from the 14 UK Patent Information Network offices. The use function was limited to the retrieval of images by shape similarity. Two client interfaces were developed for comparison purposes: Trademark Image Browser Engine (TRIBE) and Shape Query Image Retrieval Systems Engine (SQUIRE).

  7. Dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce; Tang, H. Roger; Da Silva, Angela J.; Wong, Kenneth H.; Iwata, Koji; Wu, Max C.

    2001-09-01

    In comparison to conventional medical imaging techniques, dual-modality imaging offers the advantage of correlating anatomical information from X-ray computed tomography (CT) with functional measurements from single-photon emission computed tomography (SPECT) or with positron emission tomography (PET). The combined X-ray/radionuclide images from dual-modality imaging can help the clinician to differentiate disease from normal uptake of radiopharmaceuticals, and to improve diagnosis and staging of disease. In addition, phantom and animal studies have demonstrated that a priori structural information from CT can be used to improve quantification of tissue uptake and organ function by correcting the radionuclide data for errors due to photon attenuation, partial volume effects, scatter radiation, and other physical effects. Dual-modality imaging therefore is emerging as a method of improving the visual quality and the quantitative accuracy of radionuclide imaging for diagnosis of patients with cancer and heart disease.

  8. MRI tools for assessment of microstructure and nephron function of the kidney.

    PubMed

    Xie, Luke; Bennett, Kevin M; Liu, Chunlei; Johnson, G Allan; Zhang, Jeff Lei; Lee, Vivian S

    2016-12-01

    MRI can provide excellent detail of renal structure and function. Recently, novel MR contrast mechanisms and imaging tools have been developed to evaluate microscopic kidney structures including the tubules and glomeruli. Quantitative MRI can assess local tubular function and is able to determine the concentrating mechanism of the kidney noninvasively in real time. Measuring single nephron function is now a near possibility. In parallel to advancing imaging techniques for kidney microstructure is a need to carefully understand the relationship between the local source of MRI contrast and the underlying physiological change. The development of these imaging markers can impact the accurate diagnosis and treatment of kidney disease. This study reviews the novel tools to examine kidney microstructure and local function and demonstrates the application of these methods in renal pathophysiology. Copyright © 2016 the American Physiological Society.

  9. Imaging light responses of foveal ganglion cells in the living macaque eye.

    PubMed

    Yin, Lu; Masella, Benjamin; Dalkara, Deniz; Zhang, Jie; Flannery, John G; Schaffer, David V; Williams, David R; Merigan, William H

    2014-05-07

    The fovea dominates primate vision, and its anatomy and perceptual abilities are well studied, but its physiology has been little explored because of limitations of current physiological methods. In this study, we adapted a novel in vivo imaging method, originally developed in mouse retina, to explore foveal physiology in the macaque, which permits the repeated imaging of the functional response of many retinal ganglion cells (RGCs) simultaneously. A genetically encoded calcium indicator, G-CaMP5, was inserted into foveal RGCs, followed by calcium imaging of the displacement of foveal RGCs from their receptive fields, and their intensity-response functions. The spatial offset of foveal RGCs from their cone inputs makes this method especially appropriate for fovea by permitting imaging of RGC responses without excessive light adaptation of cones. This new method will permit the tracking of visual development, progression of retinal disease, or therapeutic interventions, such as insertion of visual prostheses.

  10. Brain abnormalities in antisocial individuals: implications for the law.

    PubMed

    Yang, Yaling; Glenn, Andrea L; Raine, Adrian

    2008-01-01

    With the increasing popularity in the use of brain imaging on antisocial individuals, an increasing number of brain imaging studies have revealed structural and functional impairments in antisocial, psychopathic, and violent individuals. This review summarizes key findings from brain imaging studies on antisocial/aggressive behavior. Key regions commonly found to be impaired in antisocial populations include the prefrontal cortex (particularly orbitofrontal and dorsolateral prefrontal cortex), superior temporal gyrus, amygdala-hippocampal complex, and anterior cingulate cortex. Key functions of these regions are reviewed to provide a better understanding on how deficits in these regions may predispose to antisocial behavior. Objections to the use of imaging findings in a legal context are outlined, and alternative perspectives raised. It is argued that brain dysfunction is a risk factor for antisocial behavior and that it is likely that imaging will play an increasing (albeit limited) role in legal decision-making. (c) 2008 John Wiley & Sons, Ltd.

  11. Functional magnetic resonance imaging of awake monkeys: some approaches for improving imaging quality

    PubMed Central

    Chen, Gang; Wang, Feng; Dillenburger, Barbara C.; Friedman, Robert M.; Chen, Li M.; Gore, John C.; Avison, Malcolm J.; Roe, Anna W.

    2011-01-01

    Functional magnetic resonance imaging (fMRI), at high magnetic field strength can suffer from serious degradation of image quality because of motion and physiological noise, as well as spatial distortions and signal losses due to susceptibility effects. Overcoming such limitations is essential for sensitive detection and reliable interpretation of fMRI data. These issues are particularly problematic in studies of awake animals. As part of our initial efforts to study functional brain activations in awake, behaving monkeys using fMRI at 4.7T, we have developed acquisition and analysis procedures to improve image quality with encouraging results. We evaluated the influence of two main variables on image quality. First, we show how important the level of behavioral training is for obtaining good data stability and high temporal signal-to-noise ratios. In initial sessions, our typical scan session lasted 1.5 hours, partitioned into short (<10 minutes) runs. During reward periods and breaks between runs, the monkey exhibited movements resulting in considerable image misregistrations. After a few months of extensive behavioral training, we were able to increase the length of individual runs and the total length of each session. The monkey learned to wait until the end of a block for fluid reward, resulting in longer periods of continuous acquisition. Each additional 60 training sessions extended the duration of each session by 60 minutes, culminating, after about 140 training sessions, in sessions that last about four hours. As a result, the average translational movement decreased from over 500 μm to less than 80 μm, a displacement close to that observed in anesthetized monkeys scanned in a 7 T horizontal scanner. Another major source of distortion at high fields arises from susceptibility variations. To reduce such artifacts, we used segmented gradient-echo echo-planar imaging (EPI) sequences. Increasing the number of segments significantly decreased susceptibility artifacts and image distortion. Comparisons of images from functional runs using four segments with those using a single-shot EPI sequence revealed a roughly two-fold improvement in functional signal-to-noise-ratio and 50% decrease in distortion. These methods enabled reliable detection of neural activation and permitted blood-oxygenation-level-dependent (BOLD) based mapping of early visual areas in monkeys using a volume coil. In summary, both extensive behavioral training of monkeys and application of segmented gradient-echo EPI sequence improved signal-to-noise and image quality. Understanding the effects these factors have is important for the application of high field imaging methods to the detection of sub-millimeter functional structures in the awake monkey brain. PMID:22055855

  12. Monte Carlo simulation of the spatial resolution and depth sensitivity of two-dimensional optical imaging of the brain

    PubMed Central

    Tian, Peifang; Devor, Anna; Sakadžić, Sava; Dale, Anders M.; Boas, David A.

    2011-01-01

    Absorption or fluorescence-based two-dimensional (2-D) optical imaging is widely employed in functional brain imaging. The image is a weighted sum of the real signal from the tissue at different depths. This weighting function is defined as “depth sensitivity.” Characterizing depth sensitivity and spatial resolution is important to better interpret the functional imaging data. However, due to light scattering and absorption in biological tissues, our knowledge of these is incomplete. We use Monte Carlo simulations to carry out a systematic study of spatial resolution and depth sensitivity for 2-D optical imaging methods with configurations typically encountered in functional brain imaging. We found the following: (i) the spatial resolution is <200 μm for NA ≤0.2 or focal plane depth ≤300 μm. (ii) More than 97% of the signal comes from the top 500 μm of the tissue. (iii) For activated columns with lateral size larger than spatial resolution, changing numerical aperature (NA) and focal plane depth does not affect depth sensitivity. (iv) For either smaller columns or large columns covered by surface vessels, increasing NA and∕or focal plane depth may improve depth sensitivity at deeper layers. Our results provide valuable guidance for the optimization of optical imaging systems and data interpretation. PMID:21280912

  13. Lymph Node Metastases Optical Molecular Diagnostic and Radiation Therapy

    DTIC Science & Technology

    2017-03-01

    because most imaging is based upon structures and not molecular functions. The one tool commonly used for metastases imaging is nuclear medicine...imaging, which is that micro metastases cannot be visualized at a relevant stage., largely because most imaging is based upon structures and not...evaluate the limits on structural , metabolic and immunologic probes for molecular imaging, and (4) to complete studies on metastatic breast cancer

  14. Attention bias in older women with remitted depression is associated with enhanced amygdala activity and functional connectivity.

    PubMed

    Albert, Kimberly; Gau, Violet; Taylor, Warren D; Newhouse, Paul A

    2017-03-01

    Cognitive bias is a common characteristic of major depressive disorder (MDD) and is posited to remain during remission and contribute to recurrence risk. Attention bias may be related to enhanced amygdala activity or altered amygdala functional connectivity in depression. The current study examined attention bias, brain activity for emotional images, and functional connectivity in post-menopausal women with and without a history of major depression. Attention bias for emotionally valenced images was examined in 33 postmenopausal women with (n=12) and without (n=21) a history of major depression using an emotion dot probe task during fMRI. Group differences in amygdala activity and functional connectivity were assessed using fMRI and examined for correlations to attention performance. Women with a history of MDD showed greater attentional bias for negative images and greater activity in brain areas including the amygdala for both positive and negative images (pcorr <0.001) than women without a history of MDD. In all participants, amygdala activity for negative images was correlated with attention facilitation for emotional images. Women with a history of MDD had significantly greater functional connectivity between the amygdala and hippocampal complex. In all participants amygdala-hippocampal connectivity was positively correlated with attention facilitation for negative images. Small sample with unbalanced groups. These findings provide evidence for negative attentional bias in euthymic, remitted depressed individuals. Activity and functional connectivity in limbic and attention networks may provide a neurobiological basis for continued cognitive bias in remitted depression. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Potential of PET-MRI for imaging of non-oncologic musculoskeletal disease.

    PubMed

    Kogan, Feliks; Fan, Audrey P; Gold, Garry E

    2016-12-01

    Early detection of musculoskeletal disease leads to improved therapies and patient outcomes, and would benefit greatly from imaging at the cellular and molecular level. As it becomes clear that assessment of multiple tissues and functional processes are often necessary to study the complex pathogenesis of musculoskeletal disorders, the role of multi-modality molecular imaging becomes increasingly important. New positron emission tomography-magnetic resonance imaging (PET-MRI) systems offer to combine high-resolution MRI with simultaneous molecular information from PET to study the multifaceted processes involved in numerous musculoskeletal disorders. In this article, we aim to outline the potential clinical utility of hybrid PET-MRI to these non-oncologic musculoskeletal diseases. We summarize current applications of PET molecular imaging in osteoarthritis (OA), rheumatoid arthritis (RA), metabolic bone diseases and neuropathic peripheral pain. Advanced MRI approaches that reveal biochemical and functional information offer complementary assessment in soft tissues. Additionally, we discuss technical considerations for hybrid PET-MR imaging including MR attenuation correction, workflow, radiation dose, and quantification.

  16. Magnetic nanoparticles as contrast agents for molecular imaging in medicine

    NASA Astrophysics Data System (ADS)

    O'Donnell, Matthew

    2018-05-01

    For over twenty years, superparamagnetic nanoparticles have been developed for a number of medical applications ranging from bioseparations, magnetic drug targeting, hyperthermia and imaging. Recent studies have shown that they can be functionalized for in vivo biological targeting, potentially enabling nanoagents for molecular imaging and site-localized drug delivery. Here we review several imaging technologies developed using functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as targeted molecular agents. Several imaging modalities have exploited the large induced magnetic moment of SPIONs to create local mechanical force. Magnetic force microscopy can probe nanoparticle uptake in single cells. For in vivo applications, magnetomotive modulation of primary images in ultrasound (US), photoacoustics (PA), and optical coherence tomography (OCT) can help identify very small concentrations of nanoagents while simultaneously suppressing intrinsic background signals from tissue.

  17. Advances in functional X-ray imaging techniques and contrast agents

    PubMed Central

    Chen, Hongyu; Rogalski, Melissa M.

    2012-01-01

    X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667

  18. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    PubMed

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  19. A database system to support image algorithm evaluation

    NASA Technical Reports Server (NTRS)

    Lien, Y. E.

    1977-01-01

    The design is given of an interactive image database system IMDB, which allows the user to create, retrieve, store, display, and manipulate images through the facility of a high-level, interactive image query (IQ) language. The query language IQ permits the user to define false color functions, pixel value transformations, overlay functions, zoom functions, and windows. The user manipulates the images through generic functions. The user can direct images to display devices for visual and qualitative analysis. Image histograms and pixel value distributions can also be computed to obtain a quantitative analysis of images.

  20. Sentence processing in the cerebral cortex.

    PubMed

    Sakai, K L; Hashimoto, R; Homae, F

    2001-01-01

    Human language is a unique faculty of the mind. It has been the ultimate mystery throughout the history of neuroscience. Despite many aphasia and functional imaging studies, the exact correlation between cortical language areas and subcomponents of the linguistic system has not been established. One notable drawback is that most functional imaging studies have tested language tasks at the word level, such as lexical decision and word generation tasks, thereby neglecting the syntactic aspects of the language faculty. As proposed by Chomsky, the critical knowledge of language involves universal grammar (UG), which governs the syntactic structure of sentences. In this article, we will review recent advances made by functional neuroimaging studies of language, focusing especially on sentence processing in the cerebral cortex. We also present the recent results of our functional magnetic resonance imaging (fMRI) study intended to identify cortical areas specifically involved in syntactic processing. A study of sentence processing that employs a newly developed technique, optical topography (OT), is also presented. Based on these findings, we propose a modular specialization of Broca's area, Wernicke's area, and the angular gyrus/supramarginal gyrus. The current direction of research in neuroscience is beginning to establish the existence of distinct modules responsible for our knowledge of language.

  1. Inter-vender and test-retest reliabilities of resting-state functional magnetic resonance imaging: Implications for multi-center imaging studies.

    PubMed

    An, Hyeong Su; Moon, Won-Jin; Ryu, Jae-Kyun; Park, Ju Yeon; Yun, Won Sung; Choi, Jin Woo; Jahng, Geon-Ho; Park, Jang-Yeon

    2017-12-01

    This prospective multi-center study aimed to evaluate the inter-vendor and test-retest reliabilities of resting-state functional magnetic resonance imaging (RS-fMRI) by assessing the temporal signal-to-noise ratio (tSNR) and functional connectivity. Study included 10 healthy subjects and each subject was scanned using three 3T MR scanners (GE Signa HDxt, Siemens Skyra, and Philips Achieva) in two sessions. The tSNR was calculated from the time course data. Inter-vendor and test-retest reliabilities were assessed with intra-class correlation coefficients (ICCs) derived from variant component analysis. Independent component analysis was performed to identify the connectivity of the default-mode network (DMN). In result, the tSNR for the DMN was not significantly different among the GE, Philips, and Siemens scanners (P=0.638). In terms of vendor differences, the inter-vendor reliability was good (ICC=0.774). Regarding the test-retest reliability, the GE scanner showed excellent correlation (ICC=0.961), while the Philips (ICC=0.671) and Siemens (ICC=0.726) scanners showed relatively good correlation. The DMN pattern of the subjects between the two sessions for each scanner and between three scanners showed the identical patterns of functional connectivity. The inter-vendor and test-retest reliabilities of RS-fMRI using different 3T MR scanners are good. Thus, we suggest that RS-fMRI could be used in multicenter imaging studies as a reliable imaging marker. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The left ventricle in aortic stenosis--imaging assessment and clinical implications.

    PubMed

    Călin, Andreea; Roşca, Monica; Beladan, Carmen Cristiana; Enache, Roxana; Mateescu, Anca Doina; Ginghină, Carmen; Popescu, Bogdan Alexandru

    2015-04-29

    Aortic stenosis has an increasing prevalence in the context of aging population. In these patients non-invasive imaging allows not only the grading of valve stenosis severity, but also the assessment of left ventricular function. These two goals play a key role in clinical decision-making. Although left ventricular ejection fraction is currently the only left ventricular function parameter that guides intervention, current imaging techniques are able to detect early changes in LV structure and function even in asymptomatic patients with significant aortic stenosis and preserved ejection fraction. Moreover, new imaging parameters emerged as predictors of disease progression in patients with aortic stenosis. Although proper standardization and confirmatory data from large prospective studies are needed, these novel parameters have the potential of becoming useful tools in guiding intervention in asymptomatic patients with aortic stenosis and stratify risk in symptomatic patients undergoing aortic valve replacement.This review focuses on the mechanisms of transition from compensatory left ventricular hypertrophy to left ventricular dysfunction and heart failure in aortic stenosis and the role of non-invasive imaging assessment of the left ventricular geometry and function in these patients.

  3. Analysis of nulling phase functions suitable to image plane coronagraphy

    NASA Astrophysics Data System (ADS)

    Hénault, François; Carlotti, Alexis; Vérinaud, Christophe

    2016-07-01

    Coronagraphy is a very efficient technique for identifying and characterizing extra-solar planets orbiting in the habitable zone of their parent star, especially in a space environment. An important family of coronagraphs is actually based on phase plates located at an intermediate image plane of the optical system, and spreading the starlight outside the "Lyot" exit pupil plane of the instrument. In this commutation we present a set of candidate phase functions generating a central null at the Lyot plane, and study how it propagates to the image plane of the coronagraph. These functions include linear azimuthal phase ramps (the well-known optical vortex), azimuthally cosine-modulated phase profiles, and circular phase gratings. Nnumerical simulations of the expected null depth, inner working angle, sensitivity to pointing errors, effect of central obscuration located at the pupil or image planes, and effective throughput including image mask and Lyot stop transmissions are presented and discussed. The preliminary conclusion is that azimuthal cosine functions appear as an interesting alternative to the classical optical vortex of integer topological charge.

  4. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    NASA Astrophysics Data System (ADS)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  5. Dual-Modality, Dual-Functional Nanoprobes for Cellular and Molecular Imaging

    PubMed Central

    Menon, Jyothi U.; Gulaka, Praveen K.; McKay, Madalyn A.; Geethanath, Sairam; Liu, Li; Kodibagkar, Vikram D.

    2012-01-01

    An emerging need for evaluation of promising cellular therapies is a non-invasive method to image the movement and health of cells following transplantation. However, the use of a single modality to serve this purpose may not be advantageous as it may convey inaccurate or insufficient information. Multi-modal imaging strategies are becoming more popular for in vivo cellular and molecular imaging because of their improved sensitivity, higher resolution and structural/functional visualization. This study aims at formulating Nile Red doped hexamethyldisiloxane (HMDSO) nanoemulsions as dual modality (Magnetic Resonance Imaging/Fluorescence), dual-functional (oximetry/detection) nanoprobes for cellular and molecular imaging. HMDSO nanoprobes were prepared using a HS15-lecithin combination as surfactant and showed an average radius of 71±39 nm by dynamic light scattering and in vitro particle stability in human plasma over 24 hrs. They were found to readily localize in the cytosol of MCF7-GFP cells within 18 minutes of incubation. As proof of principle, these nanoprobes were successfully used for fluorescence imaging and for measuring pO2 changes in cells by magnetic resonance imaging, in vitro, thus showing potential for in vivo applications. PMID:23382776

  6. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging.

    PubMed

    Borges, J P; Lopes, G O; Verri, V; Coelho, M P; Nascimento, P M C; Kopiler, D A; Tibirica, E

    2016-09-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men.

  7. Reconstruction of Missing Pixels in Satellite Images Using the Data Interpolating Empirical Orthogonal Function (DINEOF)

    NASA Astrophysics Data System (ADS)

    Liu, X.; Wang, M.

    2016-02-01

    For coastal and inland waters, complete (in spatial) and frequent satellite measurements are important in order to monitor and understand coastal biological and ecological processes and phenomena, such as diurnal variations. High-frequency images of the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)) derived from the Korean Geostationary Ocean Color Imager (GOCI) provide a unique opportunity to study diurnal variation of the water turbidity in coastal regions of the Bohai Sea, Yellow Sea, and East China Sea. However, there are lots of missing pixels in the original GOCI-derived Kd(490) images due to clouds and various other reasons. Data Interpolating Empirical Orthogonal Function (DINEOF) is a method to reconstruct missing data in geophysical datasets based on Empirical Orthogonal Function (EOF). In this study, the DINEOF is applied to GOCI-derived Kd(490) data in the Yangtze River mouth and the Yellow River mouth regions, the DINEOF reconstructed Kd(490) data are used to fill in the missing pixels, and the spatial patterns and temporal functions of the first three EOF modes are also used to investigate the sub-diurnal variation due to the tidal forcing. In addition, DINEOF method is also applied to the Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (SNPP) satellite to reconstruct missing pixels in the daily Kd(490) and chlorophyll-a concentration images, and some application examples in the Chesapeake Bay and the Gulf of Mexico will be presented.

  8. Clinical feasibility study of combined opto-acoustic and ultrasonic imaging modality providing coregistered functional and anatomical maps of breast tumors

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Smith, Remie J.; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Ermilov, Sergey; Conjusteau, André; Tsyboulski, Dmitri; Oraevsky, Alexander A.; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2013-03-01

    We report on findings from the clinical feasibility study of the ImagioTM. Breast Imaging System, which acquires two-dimensional opto-acoustic (OA) images co-registered with conventional ultrasound using a specialized duplex hand-held probe. Dual-wavelength opto-acoustic technology is used to generate parametric maps based upon total hemoglobin and its oxygen saturation in breast tissues. This may provide functional diagnostic information pertaining to tumor metabolism and microvasculature, which is complementary to morphological information obtained with conventional gray-scale ultrasound. We present co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical feasibility study. The clinical results illustrate that the technology may have the capability to improve the efficacy of breast tumor diagnosis. In doing so, it may have the potential to reduce biopsies and to characterize cancers that were not seen well with conventional gray-scale ultrasound alone.

  9. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  10. Real-time landmark-based unrestrained animal tracking system for motion-corrected PET/SPECT imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.S. Goddard; S.S. Gleason; M.J. Paulus

    2003-08-01

    Oak Ridge National Laboratory (ORNL) and Jefferson Lab and are collaborating to develop a new high-resolution single photon emission tomography (SPECT) instrument to image unrestrained laboratory animals. This technology development will allow functional imaging studies to be performed on the animals without the use of anesthetic agents. This technology development could have eventual clinical applications for performing functional imaging studies on patients that cannot remain still (Parkinson's patients, Alzheimer's patients, small children, etc.) during a PET or SPECT scan. A key component of this new device is the position tracking apparatus. The tracking apparatus is an integral part of themore » gantry and designed to measure the spatial position of the animal at a rate of 10-15 frames per second with sub-millimeter accuracy. Initial work focuses on brain studies where anesthetic agents or physical restraint can significantly impact physiologic processes.« less

  11. Imaging of respiratory muscles in neuromuscular disease: A review.

    PubMed

    Harlaar, L; Ciet, P; van der Ploeg, A T; Brusse, E; van der Beek, N A M E; Wielopolski, P A; de Bruijne, M; Tiddens, H A W M; van Doorn, P A

    2018-03-01

    Respiratory muscle weakness frequently occurs in patients with neuromuscular disease. Measuring respiratory function with standard pulmonary function tests provides information about the contribution of all respiratory muscles, the lungs and airways. Imaging potentially enables the study of different respiratory muscles, including the diaphragm, separately. In this review, we provide an overview of imaging techniques used to study respiratory muscles in neuromuscular disease. We identified 26 studies which included a total of 573 patients with neuromuscular disease. Imaging of respiratory muscles was divided into static and dynamic techniques. Static techniques comprise chest radiography, B-mode (brightness mode) ultrasound, CT and MRI, and are used to assess the position and thickness of the diaphragm and the other respiratory muscles. Dynamic techniques include fluoroscopy, M-mode (motion mode) ultrasound and MRI, used to assess diaphragm motion in one or more directions. We discuss how these imaging techniques relate with spirometric values and whether these can be used to study the contribution of the different respiratory muscles in patients with neuromuscular disease. Copyright © 2017. Published by Elsevier B.V.

  12. Functional optical coherence tomography for live dynamic analysis of mouse embryonic cardiogenesis

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Lopez, Andrew L.; Larina, Irina V.

    2018-02-01

    Blood flow, heart contraction, and tissue stiffness are important regulators of cardiac morphogenesis and function during embryonic development. Defining how these factors are integrated is critically important to advance prevention, diagnostics, and treatment of congenital heart defects. Mammalian embryonic development is taking place deep within the female body, which makes cardiodynamic imaging and analysis during early developmental stages in humans inaccessible. With thousands of mutant lines available and well-established genetic manipulation tools, mouse is a great model to understand how biomechanical factors are integrated with molecular pathways to regulate cardiac function and development. Dynamic imaging and quantitative analysis of the biomechanics of live mouse embryos have become increasingly important, which demands continuous advancements in imaging techniques and live assessment approaches. This has been one of the major drives to keep pushing the frontier of embryonic imaging for better resolution, higher speed, deeper penetration, and more diverse and effective contrasts. Optical coherence tomography (OCT) has played a significant role in addressing such demands, and its features in non-labeling imaging, 3D capability, a large working distance, and various functional derivatives allow OCT to cover a number of specific applications in embryonic imaging. Recently, our group has made several technical improvements in using OCT to probe the biomechanical aspects of live developing mouse embryos at early stages. These include the direct volumetric structural and functional imaging of the cardiodynamics, four-dimensional quantitative Doppler imaging and analysis of the cardiac blood flow, and fourdimensional blood flow separation from the cardiac wall tissue in the beating embryonic heart. Here, we present a short review of these studies together with brief descriptions of the previous work that demonstrate OCT as a valuable and useful imaging tool for the research in developmental cardiology.

  13. Feature tracking cardiac magnetic resonance imaging: A review of a novel non-invasive cardiac imaging technique

    PubMed Central

    Rahman, Zia Ur; Sethi, Pooja; Murtaza, Ghulam; Virk, Hafeez Ul Hassan; Rai, Aitzaz; Mahmod, Masliza; Schoondyke, Jeffrey; Albalbissi, Kais

    2017-01-01

    Cardiovascular disease is a leading cause of morbidity and mortality globally. Early diagnostic markers are gaining popularity for better patient care disease outcomes. There is an increasing interest in noninvasive cardiac imaging biomarkers to diagnose subclinical cardiac disease. Feature tracking cardiac magnetic resonance imaging is a novel post-processing technique that is increasingly being employed to assess global and regional myocardial function. This technique has numerous applications in structural and functional diagnostics. It has been validated in multiple studies, although there is still a long way to go for it to become routine standard of care. PMID:28515849

  14. High sensitivity contrast enhanced optical coherence tomography for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2017-02-01

    In this study, we developed and applied highly-scattering large gold nanorods (LGNRs) and custom spectral detection algorithms for high sensitivity contrast-enhanced optical coherence tomography (OCT). We were able to detect LGNRs at a concentration as low as 50 pM in blood. We used this approach for noninvasive 3D imaging of blood vessels deep in solid tumors in living mice. Additionally, we demonstrated multiplexed imaging of spectrally-distinct LGNRs that enabled observations of functional drainage in lymphatic networks. This method, which we call MOZART, provides a platform for molecular imaging and characterization of tissue noninvasively at cellular resolution.

  15. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet.

    PubMed

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-02-01

    Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼ 1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  16. A Functional Magnetic Resonance Imaging Study of Foreign-Language Vocabulary Learning Enhanced by Phonological Rehearsal: The Role of the Right Cerebellum and Left Fusiform Gyrus

    ERIC Educational Resources Information Center

    Makita, Kai; Yamazaki, Mika; Tanabe, Hiroki C.; Koike, Takahiko; Kochiyama, Takanori; Yokokawa, Hirokazu; Yoshida, Haruyo; Sadato, Norihiro

    2013-01-01

    Psychological research suggests that foreign-language vocabulary acquisition recruits the phonological loop for verbal working memory. To depict the neural underpinnings and shed light on the process of foreign language learning, we conducted functional magnetic resonance imaging of Japanese participants without previous exposure to the Uzbek…

  17. On the numbers of images of two stochastic gravitational lensing models

    NASA Astrophysics Data System (ADS)

    Wei, Ang

    2017-02-01

    We study two gravitational lensing models with Gaussian randomness: the continuous mass fluctuation model and the floating black hole model. The lens equations of these models are related to certain random harmonic functions. Using Rice's formula and Gaussian techniques, we obtain the expected numbers of zeros of these functions, which indicate the amounts of images in the corresponding lens systems.

  18. Stability and Composition of Functional Synergies for Speech Movements in Children with Developmental Speech Disorders

    ERIC Educational Resources Information Center

    Terband, H.; Maassen, B.; van Lieshout, P.; Nijland, L.

    2011-01-01

    The aim of this study was to investigate the consistency and composition of functional synergies for speech movements in children with developmental speech disorders. Kinematic data were collected on the reiterated productions of syllables spa(/spa[image omitted]/) and paas(/pa[image omitted]s/) by 10 6- to 9-year-olds with developmental speech…

  19. Fasting plasma insulin and the default mode network in women at risk for Alzheimer's disease.

    PubMed

    Kenna, Heather; Hoeft, Fumiko; Kelley, Ryan; Wroolie, Tonita; DeMuth, Bevin; Reiss, Allan; Rasgon, Natalie

    2013-03-01

    Brain imaging studies in Alzheimer's disease research have demonstrated structural and functional perturbations in the hippocampus and default mode network (DMN). Additional evidence suggests risk for pathological brain aging in association with insulin resistance (IR). This study piloted investigation of associations of IR with DMN-hippocampal functional connectivity among postmenopausal women at risk for Alzheimer's disease. Twenty middle-aged women underwent resting state functional magnetic resonance imaging. Subjects were dichotomized relative to fasting plasma insulin levels (i.e., > 8 μIU/mL [n = 10] and < 8 μIU/mL [n = 10]), and functional connectivity analysis contrasted their respective blood oxygen level-dependent signal correlation between DMN and hippocampal regions. Higher-insulin women had significantly reduced positive associations between the medial prefrontal cortex and bilateral parahippocampal regions extending to the right hippocampus, and conversely, between the left and right hippocampus and medial prefrontal cortex. Neuropsychological data (all within normal ranges) also showed significant differences with respect to executive functioning and global intelligence. The results provide further evidence of deleterious effects of IR on the hippocampus and cognition. Further imaging studies of the IR-related perturbations in DMN-hippocampal functional connectivity are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Motor and sensory function of the esophagus: revelations through ultrasound imaging.

    PubMed

    Mittal, Ravinder K

    2005-04-01

    Catheter based high frequency intraluminal ultrasound (HFIUS) imaging is a powerful tool to study esophageal sensory and motor function and dysfunction in vivo in humans. It has provided a number of important insights into the longitudinal muscle function of the esophagus. Based on the ultrasound images and intraluminal pressure recordings, it is clear that there is synchrony in the timing as well as the amplitude of contraction between the circular and the longitudinal muscle layers of the esophagus in normal subjects. On the other hand, in patients with spastic disorders of the esophagus, there is an asynchrony of contraction related to the timing and amplitude of contraction of the two muscle layers during peristalsis. Achalasia, diffuse esophageal spasm, and nutcracker esophagus (spastic motor disorders of the esophagus) are associated with hypertrophy of the circular as well as longitudinal muscle layers. A sustained contraction of the longitudinal muscle of the esophagus is temporally related to chest pain and heartburn and may very well be the cause of symptoms. Longitudinal muscle function of the esophagus can be studied in vivo in humans using dynamic ultrasound imaging. Longitudinal muscle dysfunction appears to be important in the motor and sensory disorders of the esophagus.

  1. Altered Whole-Brain and Network-Based Functional Connectivity in Parkinson's Disease.

    PubMed

    de Schipper, Laura J; Hafkemeijer, Anne; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2018-01-01

    Background: Functional imaging methods, such as resting-state functional magnetic resonance imaging, reflect changes in neural connectivity and may help to assess the widespread consequences of disease-specific network changes in Parkinson's disease. In this study we used a relatively new graph analysis approach in functional imaging: eigenvector centrality mapping. This model-free method, applied to all voxels in the brain, identifies prominent regions in the brain network hierarchy and detects localized differences between patient populations. In other neurological disorders, eigenvector centrality mapping has been linked to changes in functional connectivity in certain nodes of brain networks. Objectives: Examining changes in functional brain connectivity architecture on a whole brain and network level in patients with Parkinson's disease. Methods: Whole brain resting-state functional architecture was studied with a recently introduced graph analysis approach (eigenvector centrality mapping). Functional connectivity was further investigated in relation to eight known resting-state networks. Cross-sectional analyses included group comparison of functional connectivity measures of Parkinson's disease patients ( n = 107) with control subjects ( n = 58) and correlations with clinical data, including motor and cognitive impairment and a composite measure of predominantly non-dopaminergic symptoms. Results: Eigenvector centrality mapping revealed that frontoparietal regions were more prominent in the whole-brain network function in patients compared to control subjects, while frontal and occipital brain areas were less prominent in patients. Using standard resting-state networks, we found predominantly increased functional connectivity, namely within sensorimotor system and visual networks in patients. Regional group differences in functional connectivity of both techniques between patients and control subjects partly overlapped for highly connected posterior brain regions, in particular in the posterior cingulate cortex and precuneus. Clinico-functional imaging relations were not found. Conclusions: Changes on the level of functional brain connectivity architecture might provide a different perspective of pathological consequences of Parkinson's disease. The involvement of specific, highly connected (hub) brain regions may influence whole brain functional network architecture in Parkinson's disease.

  2. Correlation of two-photon in vivo imaging and FIB/SEM microscopy

    PubMed Central

    Blazquez-Llorca, L; Hummel, E; Zimmerman, H; Zou, C; Burgold, S; Rietdorf, J; Herms, J

    2015-01-01

    Advances in the understanding of brain functions are closely linked to the technical developments in microscopy. In this study, we describe a correlative microscopy technique that offers a possibility of combining two-photon in vivo imaging with focus ion beam/scanning electron microscope (FIB/SEM) techniques. Long-term two-photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool for studying the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing alterations occurring at the synaptic level and when this is required, electron microscopy is mandatory. FIB/SEM microscopy is a novel tool for three-dimensional high-resolution reconstructions, since it acquires automated serial images at ultrastructural level. Using FIB/SEM imaging, we observed, at 10 nm isotropic resolution, the same dendrites that were imaged in vivo over 9 days. Thus, we analyzed their ultrastructure and monitored the dynamics of the neuropil around them. We found that stable spines (present during the 9 days of imaging) formed typical asymmetric contacts with axons, whereas transient spines (present only during one day of imaging) did not form a synaptic contact. Our data suggest that the morphological classification that was assigned to a dendritic spine according to the in vivo images did not fit with its ultrastructural morphology. The correlative technique described herein is likely to open opportunities for unravelling the earlier unrecognized complexity of the nervous system. Lay Description Neuroscience and the understanding of brain functions are closely linked to the technical advances in microscopy. In this study we performed a correlative microscopy technique that offers the possibility to combine 2 photon in vivo imaging and FIB/SEM microscopy. Long term 2 photon in vivo imaging allows the visualization of functional interactions within the brain of a living organism over the time, and therefore, is emerging as a new tool to study the dynamics of neurodegenerative diseases, such as Alzheimer’s disease. However, light microscopy has important limitations in revealing synapses that are the connections between neurons, and for this purpose, the electron microscopy is necessary. FIB/SEM microscopy is a novel tool for three-dimensional (3D) high resolution reconstructions since it acquires automated serial images at ultrastructural level. This correlative technique will open up new horizons and opportunities for unravelling the complexity of the nervous system. PMID:25786682

  3. Human brain activity with functional NIR optical imager

    NASA Astrophysics Data System (ADS)

    Luo, Qingming

    2001-08-01

    In this paper we reviewed the applications of functional near infrared optical imager in human brain activity. Optical imaging results of brain activity, including memory for new association, emotional thinking, mental arithmetic, pattern recognition ' where's Waldo?, occipital cortex in visual stimulation, and motor cortex in finger tapping, are demonstrated. It is shown that the NIR optical method opens up new fields of study of the human population, in adults under conditions of simulated or real stress that may have important effects upon functional performance. It makes practical and affordable for large populations the complex technology of measuring brain function. It is portable and low cost. In cognitive tasks subjects could report orally. The temporal resolution could be millisecond or less in theory. NIR method will have good prospects in exploring human brain secret.

  4. Functional imaging and assessment of the glucose diffusion rate in epithelial tissues in optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Larin, K. V.; Tuchin, V. V.

    2008-06-01

    Functional imaging, monitoring and quantitative description of glucose diffusion in epithelial and underlying stromal tissues in vivo and controlling of the optical properties of tissues are extremely important for many biomedical applications including the development of noninvasive or minimally invasive glucose sensors as well as for therapy and diagnostics of various diseases, such as cancer, diabetic retinopathy, and glaucoma. Recent progress in the development of a noninvasive molecular diffusion biosensor based on optical coherence tomography (OCT) is described. The diffusion of glucose was studied in several epithelial tissues both in vitro and in vivo. Because OCT provides depth-resolved imaging of tissues with high in-depth resolution, the glucose diffusion is described not only as a function of time but also as a function of depth.

  5. Effect of phase-encoding direction on group analysis of resting-state functional magnetic resonance imaging.

    PubMed

    Mori, Yasuo; Miyata, Jun; Isobe, Masanori; Son, Shuraku; Yoshihara, Yujiro; Aso, Toshihiko; Kouchiyama, Takanori; Murai, Toshiya; Takahashi, Hidehiko

    2018-05-17

    Echo-planar imaging is a common technique used in functional magnetic resonance imaging (fMRI), however it suffers from image distortion and signal loss because of large susceptibility effects that are related to the phase-encoding direction of the scan. Despite this relationship, the majority of neuroimaging studies have not considered the influence of phase-encoding direction. Here, we aimed to clarify how phase-encoding direction can affect the outcome of an fMRI connectivity study of schizophrenia. Resting-state fMRI using anterior to posterior (A-P) and posterior to anterior (P-A) directions was used to examine 25 patients with schizophrenia (SC) and 37 matched healthy controls (HC). We conducted a functional connectivity analysis using independent component analysis and performed three group comparisons: A-P vs. P-A (all participants), SC vs. HC for the A-P and P-A datasets, and the interaction between phase-encoding direction and participant group. The estimated functional connectivity differed between the two phase-encoding directions in areas that were more extensive than those where signal loss has been reported. Although functional connectivity in the SC group was lower than that in the HC group for both directions, the A-P and P-A conditions did not exhibit the same specific pattern of differences. Further, we observed an interaction between participant group and the phase-encoding direction in the left temporo-parietal junction and left fusiform gyrus. Phase-encoding direction can influence the results of functional connectivity studies. Thus, appropriate selection and documentation of phase-encoding direction will be important in future resting-state fMRI studies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Laser marking of contrast images for optical read-out systems

    NASA Astrophysics Data System (ADS)

    Yulmetova, O. S.; Tumanova, M. A.

    2017-11-01

    In the present study the formation of contrast images that provide functionality of optical read-out systems is considered. The image contrast is determined by the difference of reflection coefficients of the beryllium surface covered with titanium nitride film (TiN) formed by physical vapor deposition and the image created on it by laser oxidation. Two ways of contrast variation are studied: by regulating both TiN reflection coefficient during vapor deposition and the reflection coefficient of the image obtained with the laser. The test results show the efficiency of the proposed approach.

  7. Two-wavelength ghost imaging through atmospheric turbulence.

    PubMed

    Shi, Dongfeng; Fan, Chengyu; Zhang, Pengfei; Shen, Hong; Zhang, Jinghui; Qiao, Chunhong; Wang, Yingjian

    2013-01-28

    Recent work has indicated that ghost imaging might find useful application in standoff sensing where atmospheric turbulence is a serious problem. There has been theoretical study of ghost imaging in the presence of turbulence. However, most work has addressed signal-wavelength ghost imaging. Two-wavelength ghost imaging through atmospheric turbulence is theoretically studied in this paper. Based on the extended Huygens-Fresnel integral, the analytical expressions describing atmospheric turbulence effects on the point spread function (PSF) and field of view (FOV) are derived. The computational case is also reported.

  8. Regularization iteration imaging algorithm for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Tong, Guowei; Liu, Shi; Chen, Hongyan; Wang, Xueyao

    2018-03-01

    The image reconstruction method plays a crucial role in real-world applications of the electrical capacitance tomography technique. In this study, a new cost function that simultaneously considers the sparsity and low-rank properties of the imaging targets is proposed to improve the quality of the reconstruction images, in which the image reconstruction task is converted into an optimization problem. Within the framework of the split Bregman algorithm, an iterative scheme that splits a complicated optimization problem into several simpler sub-tasks is developed to solve the proposed cost function efficiently, in which the fast-iterative shrinkage thresholding algorithm is introduced to accelerate the convergence. Numerical experiment results verify the effectiveness of the proposed algorithm in improving the reconstruction precision and robustness.

  9. Thyroid and parathyroid imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandler, M.P.; Patton, J.A.; Partain, C.L.

    1986-01-01

    This book describes the numerous modalities currently used in the diagnosis and treatment of both thyroid and parathyroid disorders. Each modality is fully explained and then evaluated in terms of benefits and limitations in the clinical context. Contents: Production and Quality Control of Radiopharmaceutics Used for Diagnosis and Therapy in Thyroid and Parathyroid Disorders. Basic Physics. Nuclear Instrumentation. Radioimmunoassay: Thyroid Function Tests. Quality Control. Embryology, Anatomy, Physiology, and Thyroid Function Studies. Scintigraphic Thyroid Imaging. Neonatal and Pediatric Thyroid Imaging. Radioiodine Thyroid Uptake Measurement. Radioiodine Treatment of Thyroid Disorders. Radiation Dosimetry of Diagnostic Procedures. Radiation Safety Procedures for High-Level I-131 Therapies.more » X-Ray Fluorescent Scanning. Thyroid Sonography. Computed Tomography in Thyroid Disease. Magnetic Resonance Imaging in Thyroid Disease. Parathyroid Imaging.« less

  10. The relationship between spatial configuration and functional connectivity of brain regions

    PubMed Central

    Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C

    2018-01-01

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. PMID:29451491

  11. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; hide

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  12. Comparative studies of brain activation with MEG and functional MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, J.S.; Aine, C.J.; Sanders, J.A.

    The past two years have witnessed the emergence of MRI as a functional imaging methodology. Initial demonstrations involved the injection of a paramagnetic contrast agent and required ultrafast echo planar imaging capability to adequately resolve the passage of the injected bolus. By measuring the local reduction in image intensity due to magnetic susceptibility, it was possible to calculate blood volume, which changes as a function of neural activation. Later developments have exploited endogenous contrast mechanisms to monitor changes in blood volume or in venous blood oxygen content. Recently, we and others have demonstrated that it is possible to make suchmore » measurements in a clinical imager, suggesting that the large installed base of such machines might be utilized for functional imaging. Although it is likely that functional MRI (fMRI) will subsume some of the clinical and basic neuroscience applications now touted for MEG, it is also clear that these techniques offer different largely complementary, capabilities. At the very least, it is useful to compare and cross-validate the activation maps produced by these techniques. Such studies will be valuable as a check on results of neuromagnetic distributed current reconstructions and will allow better characterization of the relationship between neurophysiological activation and associated hemodynamic changes. A more exciting prospect is the development of analyses that combine information from the two modalities to produce a better description of underlying neural activity than is possible with either technique in isolation. In this paper we describe some results from initial comparative studies and outline several techniques that can be used to treat MEG and fMRI data within a unified computational framework.« less

  13. Neuroimaging of the Periaqueductal Gray: State of the Field

    PubMed Central

    Linnman, Clas; Moulton, Eric A.; Barmettler, Gabi; Becerra, Lino; Borsook, David

    2011-01-01

    This review and meta-analysis aims at summarizing and integrating the human neuroimaging studies that report periaqueductal gray (PAG) involvement; 250 original manuscripts on human neuroimaging of the PAG were identified. A narrative review and meta-analysis using activation likelihood estimates is included. Behaviors covered include pain and pain modulation, anxiety, bladder and bowel function and autonomic regulation. Methods include structural and functional magnetic resonance imaging, functional connectivity measures, diffusion weighted imaging and positron emission tomography. Human neuroimaging studies in healthy and clinical populations largely confirm the animal literature indicating that the PAG is involved in homeostatic regulation of salient functions such as pain, anxiety and autonomic function. Methodological concerns in the current literature, including resolution constraints, imaging artifacts and imprecise neuroanatomical labeling are discussed, and future directions are proposed. A general conclusion is that PAG neuroimaging is a field with enormous potential to translate animal data onto human behaviors, but with some growing pains that can and need to be addressed in order to add to our understanding of the neurobiology of this key region. PMID:22197740

  14. H1 antihistamines and driving.

    PubMed

    Popescu, Florin Dan

    2008-01-01

    Driving performances depend on cognitive, psychomotor and perception functions. The CNS adverse effects of some H1 antihistamines can alter the patient ability to drive. Data from studies using standardized objective cognitive and psychomotor tests (Choice Reaction Time, Critical Flicker Fusion. Digital Symbol Substitution Test), functional brain imaging (Positron Emission Tomography, functional Magnetic Resonance Imaging), neurophysiological studies (Multiple Sleep Latency Test, auditory and visual evoked potentials), experimental simulated driving (driving simulators) and real driving studies (the Highway Driving Test, with the evaluation of the Standard Deviation Lateral Position, and the Car Following Test, with the measurement of the Brake Reaction Time) must be discussed in order to classify a H1 antihistamine as a true non-sedating one.

  15. H1 antihistamines and driving

    PubMed Central

    Florin-Dan, Popescu

    2008-01-01

    Driving performances depend on cognitive, psychomotor and perception functions. The CNS adverse effects of some H1 antihistamines can alter the patient ability to drive. Data from studies using standardized objective cognitive and psychomotor tests (Choice Reaction Time, Critical Flicker Fusion, Digital Symbol Substitution Test), functional brain imaging (Positron Emission Tomography, functional Magnetic Resonance Imaging), neurophysiological studies (Multiple Sleep Latency Test, auditory and visual evoked potentials), experimental simulated driving (driving simulators) and real driving studies (the Highway Driving Test, with the evaluation of the Standard Deviation Lateral Position, and the Car Following Test, with the measurement of the Brake Reaction Time) must be discussed in order to classify a H1 antihistamine as a true non-sedating one. PMID:20108503

  16. Improvement of white matter and functional connectivity abnormalities by repetitive transcranial magnetic stimulation in crossed aphasia in dextral.

    PubMed

    Lu, Haitao; Wu, Haiyan; Cheng, Hewei; Wei, Dongjie; Wang, Xiaoyan; Fan, Yong; Zhang, Hao; Zhang, Tong

    2014-01-01

    As a special aphasia, the occurrence of crossed aphasia in dextral (CAD) is unusual. This study aims to improve the language ability by applying 1 Hz repetitive transcranial magnetic stimulation (rTMS). We studied multiple modality imaging of structural connectivity (diffusion tensor imaging), functional connectivity (resting fMRI), PET, and neurolinguistic analysis on a patient with CAD. Furthermore, we applied rTMS of 1 Hz for 40 times and observed the language function improvement. The results indicated that a significantly reduced structural and function connectivity was found in DTI and fMRI data compared with the control. The PET imaging showed hypo-metabolism in right hemisphere and left cerebellum. In conclusion, one of the mechanisms of CAD is that right hemisphere is the language dominance. Stimulating left Wernicke area could improve auditory comprehension, stimulating left Broca's area could enhance expression, and the results outlasted 6 months by 1 Hz rTMS balancing the excitability inter-hemisphere in CAD.

  17. Effect of masking phase-only holograms on the quality of reconstructed images.

    PubMed

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image.

  18. Functional connectivity of the rodent brain using optical imaging

    NASA Astrophysics Data System (ADS)

    Guevara Codina, Edgar

    The aim of this thesis is to apply functional connectivity in a variety of animal models, using several optical imaging modalities. Even at rest, the brain shows high metabolic activity: the correlation in slow spontaneous fluctuations identifies remotely connected areas of the brain; hence the term "functional connectivity". Ongoing changes in spontaneous activity may provide insight into the neural processing that takes most of the brain metabolic activity, and so may provide a vast source of disease related changes. Brain hemodynamics may be modified during disease and affect resting-state activity. The thesis aims to better understand these changes in functional connectivity due to disease, using functional optical imaging. The optical imaging techniques explored in the first two contributions of this thesis are Optical Imaging of Intrinsic Signals and Laser Speckle Contrast Imaging, together they can estimate the metabolic rate of oxygen consumption, that closely parallels neural activity. They both have adequate spatial and temporal resolution and are well adapted to image the convexity of the mouse cortex. In the last article, a depth-sensitive modality called photoacoustic tomography was used in the newborn rat. Optical coherence tomography and laminar optical tomography were also part of the array of imaging techniques developed and applied in other collaborations. The first article of this work shows the changes in functional connectivity in an acute murine model of epileptiform activity. Homologous correlations are both increased and decreased with a small dependence on seizure duration. These changes suggest a potential decoupling between the hemodynamic parameters in resting-state networks, underlining the importance to investigate epileptic networks with several independent hemodynamic measures. The second study examines a novel murine model of arterial stiffness: the unilateral calcification of the right carotid. Seed-based connectivity analysis showed a decreasing trend of homologous correlation in the motor and cingulate cortices. Graph analyses showed a randomization of the cortex functional networks, suggesting a loss of connectivity, more specifically in the motor cortex ipsilateral to the treated carotid; however these changes are not reflected in differentiated metabolic estimates. Confounds remain due to the fact that carotid rigidification gives rise to neural decline in the hippocampus as well as unilateral alteration of vascular pulsatility; however the results support the need to look at several hemodynamic parameters when imaging the brain after arterial remodeling. The third article of this thesis studies a model of inflammatory injury on the newborn rat. Oxygen saturation and functional connectivity were assessed with photoacoustic tomography. Oxygen saturation was decreased in the site of the lesion and on the cortex ipsilateral to the injury; however this decrease is not fully explained by hypovascularization revealed by histology. Seed-based functional connectivity analysis showed that inter-hemispheric connectivity is not affected by inflammatory injury.

  19. Preparation of a Versatile Bifunctional Zeolite for Targeted Imaging Applications

    PubMed Central

    Ndiege, Nicholas; Raidoo, Renugan; Schultz, Michael K.; Larsen, Sarah

    2011-01-01

    Bifunctional zeolite Y was prepared for use in targeted in vivo molecular imaging applications. The strategy involved functionalization of the external surface of zeolite Y with chloropropyltriethoxysilane followed by reaction with sodium azide to form azide-functionalized NaY, which is amenable to copper(1) catalyzed click chemistry. In this study, a model alkyne (4-pentyn-1-ol) was attached to the azide-terminated surface via click chemistry to demonstrate feasibility for attachment of molecular targeting vectors (e.g., peptides, aptamers) to the zeolite surface. The modified particle efficiently incorporates the imaging radioisotope gallium-68 (68Ga) into the pores of the azide-functionalized NaY zeolite to form a stable bifunctional molecular targeting vector. The result is a versatile “clickable” zeolite platform that can be tailored for future in vivo molecular targeting and imaging modalities. PMID:21306141

  20. Functional magnetic resonance imaging in oncology: state of the art*

    PubMed Central

    Guimaraes, Marcos Duarte; Schuch, Alice; Hochhegger, Bruno; Gross, Jefferson Luiz; Chojniak, Rubens; Marchiori, Edson

    2014-01-01

    In the investigation of tumors with conventional magnetic resonance imaging, both quantitative characteristics, such as size, edema, necrosis, and presence of metastases, and qualitative characteristics, such as contrast enhancement degree, are taken into consideration. However, changes in cell metabolism and tissue physiology which precede morphological changes cannot be detected by the conventional technique. The development of new magnetic resonance imaging techniques has enabled the functional assessment of the structures in order to obtain information on the different physiological processes of the tumor microenvironment, such as oxygenation levels, cellularity and vascularity. The detailed morphological study in association with the new functional imaging techniques allows for an appropriate approach to cancer patients, including the phases of diagnosis, staging, response evaluation and follow-up, with a positive impact on their quality of life and survival rate. PMID:25741058

  1. Advanced Connectivity Analysis (ACA): a Large Scale Functional Connectivity Data Mining Environment.

    PubMed

    Chen, Rong; Nixon, Erika; Herskovits, Edward

    2016-04-01

    Using resting-state functional magnetic resonance imaging (rs-fMRI) to study functional connectivity is of great importance to understand normal development and function as well as a host of neurological and psychiatric disorders. Seed-based analysis is one of the most widely used rs-fMRI analysis methods. Here we describe a freely available large scale functional connectivity data mining software package called Advanced Connectivity Analysis (ACA). ACA enables large-scale seed-based analysis and brain-behavior analysis. It can seamlessly examine a large number of seed regions with minimal user input. ACA has a brain-behavior analysis component to delineate associations among imaging biomarkers and one or more behavioral variables. We demonstrate applications of ACA to rs-fMRI data sets from a study of autism.

  2. Recent lung imaging studies. [Effectiveness for diagnosis of chronic obstructive pulmonary disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taplin, G.V.; Chopra, S.K.

    1976-01-01

    Radionuclide lung imaging procedures have been available for 11 years but only the perfusion examination has been used extensively and mainly for the diagnosis of pulmonary embolism (P.E.). Its ability to reveal localized ischemia makes it a valuable test of regional lung function as well as a useful diagnostic aid in P.E. Although it had been recognized for several years that chronic obstructive pulmonary disease (COPD) can cause lung perfusion defects which may simulate pulmonary embolism, relatively little use has been made of either the radioxenon or the radioaerosol inhalation lung imaging procedures until the last few years as amore » means of distinguishing P.E. from COPD. In this review emphasis is placed on our recent experience with both of these inhalation procedures in comparison with pulmonary function tests and roentgenography for the early detection of COPD in population studies. Equal emphasis is given to simultaneous aerosol ventilation-perfusion (V/P) imaging for a functional diagnosis of P.E. Two new developments in regional lung diffusion imaging, performed after the inhalation of radioactive gases and/or rapidly absorbed radioaerosols are described. The experimental basis for their potential clinical application in pulmonary embolism detection is presented.« less

  3. Imaging quality evaluation method of pixel coupled electro-optical imaging system

    NASA Astrophysics Data System (ADS)

    He, Xu; Yuan, Li; Jin, Chunqi; Zhang, Xiaohui

    2017-09-01

    With advancements in high-resolution imaging optical fiber bundle fabrication technology, traditional photoelectric imaging system have become ;flexible; with greatly reduced volume and weight. However, traditional image quality evaluation models are limited by the coupling discrete sampling effect of fiber-optic image bundles and charge-coupled device (CCD) pixels. This limitation substantially complicates the design, optimization, assembly, and evaluation image quality of the coupled discrete sampling imaging system. Based on the transfer process of grayscale cosine distribution optical signal in the fiber-optic image bundle and CCD, a mathematical model of coupled modulation transfer function (coupled-MTF) is established. This model can be used as a basis for following studies on the convergence and periodically oscillating characteristics of the function. We also propose the concept of the average coupled-MTF, which is consistent with the definition of traditional MTF. Based on this concept, the relationships among core distance, core layer radius, and average coupled-MTF are investigated.

  4. Implementation and applications of dual-modality imaging

    NASA Astrophysics Data System (ADS)

    Hasegawa, Bruce H.; Barber, William C.; Funk, Tobias; Hwang, Andrew B.; Taylor, Carmen; Sun, Mingshan; Seo, Youngho

    2004-06-01

    In medical diagnosis, functional or physiological data can be acquired using radionuclide imaging with positron emission tomography or with single-photon emission computed tomography. However, anatomical or structural data can be acquired using X-ray computed tomography. In dual-modality imaging, both radionuclide and X-ray detectors are incorporated in an imaging system to allow both functional and structural data to be acquired in a single procedure without removing the patient from the imaging system. In a clinical setting, dual-modality imaging systems commonly are used to localize radiopharmaceutical uptake with respect to the patient's anatomy. This helps the clinician to differentiate disease from regions of normal radiopharmaceutical accumulation, to improve diagnosis or cancer staging, or to facilitate planning for radiation therapy or surgery. While initial applications of dual-modality imaging were developed for clinical imaging on humans, it now is recognized that these systems have potentially important applications for imaging small animals involved in experimental studies including basic investigations of mammalian biology and development of new pharmaceuticals for diagnosis or treatment of disease.

  5. Methodological considerations in conducting an olfactory fMRI study.

    PubMed

    Vedaei, Faezeh; Fakhri, Mohammad; Harirchian, Mohammad Hossein; Firouznia, Kavous; Lotfi, Yones; Ali Oghabian, Mohammad

    2013-01-01

    The sense of smell is a complex chemosensory processing in human and animals that allows them to connect with the environment as one of their chief sensory systems. In the field of functional brain imaging, many studies have focused on locating brain regions that are involved during olfactory processing. Despite wealth of literature about brain network in different olfactory tasks, there is a paucity of data regarding task design. Moreover, considering importance of olfactory tasks for patients with variety of neurological diseases, special contemplations should be addressed for patients. In this article, we review current olfaction tasks for behavioral studies and functional neuroimaging assessments, as well as technical principles regarding utilization of these tasks in functional magnetic resonance imaging studies.

  6. In vivo three-dimensional photoacoustic imaging of the renal vasculature in preclinical rodent models.

    PubMed

    Ogunlade, Olumide; Connell, John J; Huang, Jennifer L; Zhang, Edward; Lythgoe, Mark F; Long, David A; Beard, Paul

    2018-06-01

    Noninvasive imaging of the kidney vasculature in preclinical murine models is important for the assessment of renal development, studying diseases and evaluating new therapies but is challenging to achieve using existing imaging modalities. Photoacoustic imaging is a promising new technique that is particularly well suited to visualizing the vasculature and could provide an alternative to existing preclinical imaging methods for studying renal vascular anatomy and function. To investigate this, an all-optical Fabry-Perot-based photoacoustic scanner was used to image the abdominal region of mice. High-resolution three-dimensional, noninvasive, label-free photoacoustic images of the mouse kidney and renal vasculature were acquired in vivo. The scanner was also used to visualize and quantify differences in the vascular architecture of the kidney in vivo due to polycystic kidney disease. This study suggests that photoacoustic imaging could be utilized as a novel preclinical imaging tool for studying the biology of renal disease.

  7. Opto-acoustic image fusion technology for diagnostic breast imaging in a feasibility study

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Ulissey, Michael; Stavros, A. T.; Oraevsky, Alexander; Lavin, Philip; Kist, Kenneth; Dornbluth, N. C.; Otto, Pamela

    2015-03-01

    Functional opto-acoustic (OA) imaging was fused with gray-scale ultrasound acquired using a specialized duplex handheld probe. Feasibility Study findings indicated the potential to more accurately characterize breast masses for cancer than conventional diagnostic ultrasound (CDU). The Feasibility Study included OA imagery of 74 breast masses that were collected using the investigational Imagio® breast imaging system. Superior specificity and equal sensitivity to CDU was demonstrated, suggesting that OA fusion imaging may potentially obviate the need for negative biopsies without missing cancers in a certain percentage of breast masses. Preliminary results from a 100 subject Pilot Study are also discussed. A larger Pivotal Study (n=2,097 subjects) is underway to confirm the Feasibility Study and Pilot Study findings.

  8. Preclinical Magnetic Resonance Imaging and Systems Biology in Cancer Research

    PubMed Central

    Albanese, Chris; Rodriguez, Olga C.; VanMeter, John; Fricke, Stanley T.; Rood, Brian R.; Lee, YiChien; Wang, Sean S.; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F.; Wang, Yue

    2014-01-01

    Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy. PMID:23219428

  9. The history of MR imaging as seen through the pages of radiology.

    PubMed

    Edelman, Robert R

    2014-11-01

    The first reports in Radiology pertaining to magnetic resonance (MR) imaging were published in 1980, 7 years after Paul Lauterbur pioneered the first MR images and 9 years after the first human computed tomographic images were obtained. Historical advances in the research and clinical applications of MR imaging very much parallel the remarkable advances in MR imaging technology. These advances can be roughly classified into hardware (eg, magnets, gradients, radiofrequency [RF] coils, RF transmitter and receiver, MR imaging-compatible biopsy devices) and imaging techniques (eg, pulse sequences, parallel imaging, and so forth). Image quality has been dramatically improved with the introduction of high-field-strength superconducting magnets, digital RF systems, and phased-array coils. Hybrid systems, such as MR/positron emission tomography (PET), combine the superb anatomic and functional imaging capabilities of MR imaging with the unsurpassed capability of PET to demonstrate tissue metabolism. Supported by the improvements in hardware, advances in pulse sequence design and image reconstruction techniques have spurred dramatic improvements in imaging speed and the capability for studying tissue function. In this historical review, the history of MR imaging technology and developing research and clinical applications, as seen through the pages of Radiology, will be considered.

  10. A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe.

    PubMed

    Mah, Yee-Haur; Jager, Rolf; Kennard, Christopher; Husain, Masud; Nachev, Parashkev

    2014-07-01

    Making robust inferences about the functional neuroanatomy of the brain is critically dependent on experimental techniques that examine the consequences of focal loss of brain function. Unfortunately, the use of the most comprehensive such technique-lesion-function mapping-is complicated by the need for time-consuming and subjective manual delineation of the lesions, greatly limiting the practicability of the approach. Here we exploit a recently-described general measure of statistical anomaly, zeta, to devise a fully-automated, high-dimensional algorithm for identifying the parameters of lesions within a brain image given a reference set of normal brain images. We proceed to evaluate such an algorithm in the context of diffusion-weighted imaging of the commonest type of lesion used in neuroanatomical research: ischaemic damage. Summary performance metrics exceed those previously published for diffusion-weighted imaging and approach the current gold standard-manual segmentation-sufficiently closely for fully-automated lesion-mapping studies to become a possibility. We apply the new method to 435 unselected images of patients with ischaemic stroke to derive a probabilistic map of the pattern of damage in lesions involving the occipital lobe, demonstrating the variation of anatomical resolvability of occipital areas so as to guide future lesion-function studies of the region. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Label-free imaging of the native, living cellular nanoarchitecture using partial-wave spectroscopic microscopy

    PubMed Central

    Almassalha, Luay M.; Bauer, Greta M.; Chandler, John E.; Gladstein, Scott; Cherkezyan, Lusik; Stypula-Cyrus, Yolanda; Weinberg, Samuel; Zhang, Di; Thusgaard Ruhoff, Peder; Roy, Hemant K.; Subramanian, Hariharan; Chandel, Navdeep S.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The organization of chromatin is a regulator of molecular processes including transcription, replication, and DNA repair. The structures within chromatin that regulate these processes span from the nucleosomal (10-nm) to the chromosomal (>200-nm) levels, with little known about the dynamics of chromatin structure between these scales due to a lack of quantitative imaging technique in live cells. Previous work using partial-wave spectroscopic (PWS) microscopy, a quantitative imaging technique with sensitivity to macromolecular organization between 20 and 200 nm, has shown that transformation of chromatin at these length scales is a fundamental event during carcinogenesis. As the dynamics of chromatin likely play a critical regulatory role in cellular function, it is critical to develop live-cell imaging techniques that can probe the real-time temporal behavior of the chromatin nanoarchitecture. Therefore, we developed a live-cell PWS technique that allows high-throughput, label-free study of the causal relationship between nanoscale organization and molecular function in real time. In this work, we use live-cell PWS to study the change in chromatin structure due to DNA damage and expand on the link between metabolic function and the structure of higher-order chromatin. In particular, we studied the temporal changes to chromatin during UV light exposure, show that live-cell DNA-binding dyes induce damage to chromatin within seconds, and demonstrate a direct link between higher-order chromatin structure and mitochondrial membrane potential. Because biological function is tightly paired with structure, live-cell PWS is a powerful tool to study the nanoscale structure–function relationship in live cells. PMID:27702891

  12. Reduced prefrontal connectivity in psychopathy.

    PubMed

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  13. Reduced Prefrontal Connectivity in Psychopathy

    PubMed Central

    Motzkin, Julian C.; Newman, Joseph P.; Kiehl, Kent A.; Koenigs, Michael

    2012-01-01

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy. PMID:22131397

  14. Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology

    NASA Astrophysics Data System (ADS)

    Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat

    2014-07-01

    The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.

  15. Comparison of the Diagnostic Accuracy of DSC- and Dynamic Contrast-Enhanced MRI in the Preoperative Grading of Astrocytomas.

    PubMed

    Nguyen, T B; Cron, G O; Perdrizet, K; Bezzina, K; Torres, C H; Chakraborty, S; Woulfe, J; Jansen, G H; Sinclair, J; Thornhill, R E; Foottit, C; Zanette, B; Cameron, I G

    2015-11-01

    Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV. © 2015 by American Journal of Neuroradiology.

  16. Intraoperative magnetic resonance imaging assessment of non-functioning pituitary adenomas during transsphenoidal surgery.

    PubMed

    Patel, Kunal S; Yao, Yong; Wang, Renzhi; Carter, Bob S; Chen, Clark C

    2016-04-01

    To review the utility of intraoperative imaging in facilitating maximal resection of non-functioning pituitary adenomas (NFAs). We performed an exhaustive MEDLINE search, which yielded 5598 articles. Upon careful review of these studies, 31 were pertinent to the issue of interest. Nine studies examined whether intraoperative MRI (iMRI) findings correlated with the presence of residual tumor on MRI taken 3 months after surgical resection. All studies using iMRI of >0.15T showed a ≥90% concordance between iMRI and 3-month post-operative MRI findings. 24 studies (22 iMRI and 2 intraoperative CT) examined whether intraoperative imaging improved the surgeon's ability to achieve a more complete resection. The resections were carried out under microscopic magnification in 17 studies and under endoscopic visualization in 7 studies. All studies support the value of intraoperative imaging in this regard, with improved resection in 15-83% of patients. Two studies examined whether iMRI (≥0.3T) improved visualization of residual NFA when compared to endoscopic visualization. Both studies demonstrated the value of iMRI in this regard, particularly when the tumor is located lateral of the sella, in the cavernous sinus, and in the suprasellar space. The currently available literature supports the utility of intraoperative imaging in facilitating increased NFA resection, without compromising safety.

  17. Dual-Labeled Near-Infrared/99mTc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells

    PubMed Central

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-01-01

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m (99mTc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with 99mTc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner. PMID:27399687

  18. Dual-Labeled Near-Infrared/(99m)Tc Imaging Probes Using PAMAM-Coated Silica Nanoparticles for the Imaging of HER2-Expressing Cancer Cells.

    PubMed

    Yamaguchi, Haruka; Tsuchimochi, Makoto; Hayama, Kazuhide; Kawase, Tomoyuki; Tsubokawa, Norio

    2016-07-07

    We sought to develop dual-modality imaging probes using functionalized silica nanoparticles to target human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer cells and achieve efficient target imaging of HER2-expressing tumors. Polyamidoamine-based functionalized silica nanoparticles (PCSNs) for multimodal imaging were synthesized with near-infrared (NIR) fluorescence (indocyanine green (ICG)) and technetium-99m ((99m)Tc) radioactivity. Anti-HER2 antibodies were bound to the labeled PCSNs. These dual-imaging probes were tested to image HER2-overexpressing breast carcinoma cells. In vivo imaging was also examined in breast tumor xenograft models in mice. SK-BR3 (HER2 positive) cells were imaged with stronger NIR fluorescent signals than that in MDA-MB231 (HER2 negative) cells. The increased radioactivity of the SK-BR3 cells was also confirmed by phosphor imaging. NIR images showed strong fluorescent signals in the SK-BR3 tumor model compared to muscle tissues and the MDA-MB231 tumor model. Automatic well counting results showed increased radioactivity in the SK-BR3 xenograft tumors. We developed functionalized silica nanoparticles loaded with (99m)Tc and ICG for the targeting and imaging of HER2-expressing cells. The dual-imaging probes efficiently imaged HER2-overexpressing cells. Although further studies are needed to produce efficient isotope labeling, the results suggest that the multifunctional silica nanoparticles are a promising vehicle for imaging specific components of the cell membrane in a dual-modality manner.

  19. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    PubMed

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  20. Diminished rostral anterior cingulate activity in response to threat-related events in posttraumatic stress disorder.

    PubMed

    Kim, Minue J; Chey, Jeanyung; Chung, Ain; Bae, Soojeong; Khang, Hyunsoo; Ham, Byungjoo; Yoon, Sujung J; Jeong, Do-Un; Lyoo, In Kyoon

    2008-03-01

    Previous brain imaging studies have reported hyperactivation of the amygdala and hypoactivation of the anterior cingulate in posttraumatic stress disorder (PTSD) patients, which is believed to be an underlying neural mechanism of the PTSD symptoms. The current study specifically focuses on the abnormal activity of the rostral anterior cingulate, using a paradigm which elicits an unexpected processing conflict caused by salient emotional stimuli. Twelve survivors (seven men and five women) of the Taegu subway fire in 2003, who later developed PTSD, agreed to participate in this study. Twelve healthy volunteers (seven men and five women) were recruited for comparison. Functional brain images of all participants were acquired using functional magnetic resonance imaging while performing a same-different judgment task, which was modified to elicit an unexpected emotional processing conflict. PTSD patients, compared to comparison subjects, showed a decreased rostral anterior cingulate functioning when exposed to situations which induce an unexpected emotional processing conflict. Moreover, PTSD symptom severity was negatively correlated to the level of decrease in the rostral anterior cingulate activity. The results of this study provide evidence that the rostral anterior cingulate functioning is impaired in PTSD patients during response-conflict situations that involve emotional stimuli.

  1. User-oriented evaluation of a medical image retrieval system for radiologists.

    PubMed

    Markonis, Dimitrios; Holzer, Markus; Baroz, Frederic; De Castaneda, Rafael Luis Ruiz; Boyer, Célia; Langs, Georg; Müller, Henning

    2015-10-01

    This article reports the user-oriented evaluation of a text- and content-based medical image retrieval system. User tests with radiologists using a search system for images in the medical literature are presented. The goal of the tests is to assess the usability of the system, identify system and interface aspects that need improvement and useful additions. Another objective is to investigate the system's added value to radiology information retrieval. The study provides an insight into required specifications and potential shortcomings of medical image retrieval systems through a concrete methodology for conducting user tests. User tests with a working image retrieval system of images from the biomedical literature were performed in an iterative manner, where each iteration had the participants perform radiology information seeking tasks and then refining the system as well as the user study design itself. During these tasks the interaction of the users with the system was monitored, usability aspects were measured, retrieval success rates recorded and feedback was collected through survey forms. In total, 16 radiologists participated in the user tests. The success rates in finding relevant information were on average 87% and 78% for image and case retrieval tasks, respectively. The average time for a successful search was below 3 min in both cases. Users felt quickly comfortable with the novel techniques and tools (after 5 to 15 min), such as content-based image retrieval and relevance feedback. User satisfaction measures show a very positive attitude toward the system's functionalities while the user feedback helped identifying the system's weak points. The participants proposed several potentially useful new functionalities, such as filtering by imaging modality and search for articles using image examples. The iterative character of the evaluation helped to obtain diverse and detailed feedback on all system aspects. Radiologists are quickly familiar with the functionalities but have several comments on desired functionalities. The analysis of the results can potentially assist system refinement for future medical information retrieval systems. Moreover, the methodology presented as well as the discussion on the limitations and challenges of such studies can be useful for user-oriented medical image retrieval evaluation, as user-oriented evaluation of interactive system is still only rarely performed. Such interactive evaluations can be limited in effort if done iteratively and can give many insights for developing better systems. Copyright © 2015. Published by Elsevier Ireland Ltd.

  2. MRS proof-of-concept on atmospheric corrections. Atmospheric corrections using an orbital pointable imaging system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator)

    1980-01-01

    The feasibility of using a pointable imager to determine atmospheric parameters was studied. In particular the determination of the atmospheric extinction coefficient and the path radiance, the two quantities that have to be known in order to correct spectral signatures for atmospheric effects, was simulated. The study included the consideration of the geometry of ground irradiance and observation conditions for a pointable imager in a LANDSAT orbit as a function of time of year. A simulation study was conducted on the sensitivity of scene classification accuracy to changes in atmospheric condition. A two wavelength and a nonlinear regression method for determining the required atmospheric parameters were investigated. The results indicate the feasibility of using a pointable imaging system (1) for the determination of the atmospheric parameters required to improve classification accuracies in urban-rural transition zones and to apply in studies of bi-directional reflectance distribution function data and polarization effects; and (2) for the determination of the spectral reflectances of ground features.

  3. Research with Transcranial Magnetic Stimulation in the Treatment of Aphasia

    PubMed Central

    Martin, Paula I; Naeser, Margaret A.; Ho, Michael; Treglia, Ethan; Kaplan, Elina; Baker, Errol H.; Pascual-Leone, Alvaro

    2010-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been used to improve language behavior, including naming, in stroke patients with chronic, nonfluent aphasia. Part 1 of this paper reviews functional imaging studies related to language recovery in aphasia. Part 2 reviews the rationale for using rTMS to treat nonfluent aphasia (based on functional imaging); and presents our current rTMS protocol. We present language results from our rTMS studies, and imaging results from overt naming fMRI scans obtained pre- and post- a series of rTMS treatments. Part 3 presents results from a pilot study where rTMS treatments were followed immediately by constraint-induced language therapy. Part 4 reviews our diffusion tensor imaging study that examined possible connectivity of arcuate fasciculus to different parts of Broca’s area (pars triangularis, PTr; pars opercularis, POp); and to ventral premotor cortex (vPMC). The potential role of mirror neurons in R POp and vPMC in aphasia recovery is discussed. PMID:19818232

  4. Functional Spectral Domain Optical Coherence Tomography imaging

    NASA Astrophysics Data System (ADS)

    Bower, Bradley A.

    Spectral Domain Optical Coherence Tomography (SDOCT) is a high-speed, high resolution imaging modality capable of structural and functional characterization of tissue microstructure. SDOCT fills a niche between histology and ultrasound imaging, providing non-contact, non-invasive backscattering amplitude and phase from a sample. Due to the translucent nature of the tissue, ophthalmic imaging is an ideal space for SDOCT imaging. Structural imaging of the retina has provided new insights into ophthalmic disease. The phase component of SDOCT images remains largely underexplored, though. While Doppler SDOCT has been explored in a research setting, it has yet to gain traction in the clinic. Other, functional exploitations of the phase are possible and necessary to expand the utility of SDOCT. Spectral Domain Phase Microscopy (SDPM) is an extension of SDOCT that is capable of resolving sub-wavelength displacements within a focal volume. Application of sub-wavelength displacement measurement imaging could provide a new method for non-invasive optophysiological measurement. This body of work encompasses both hardware and software design and development for implementation of SDOCT. Structural imaging was proven in both the lab and the clinic. Coarse phase changes associated with Doppler flow frequency shifts were recorded and a study was conducted to validate Doppler measurement. Fine phase changes were explored through SDPM applications. Preliminary optophysiology data was acquired to study the potential of sub-wavelength measurements in the retina. To remove the complexity associated with in-vivo human retinal imaging, a first principles approach using isolated nerve samples was applied using standard SDPM and a depthencoded technique for measuring conduction velocity. Results from amplitude as well as both coarse and fine phase processing are presented. In-vivo optophysiology using SDPM is a promising avenue for exploration, and projects furthering or extending this body of work are discussed.

  5. Central obscuration effects on optical synthetic aperture imaging

    NASA Astrophysics Data System (ADS)

    Wang, Xue-wen; Luo, Xiao; Zheng, Li-gong; Zhang, Xue-jun

    2014-02-01

    Due to the central obscuration problem exists in most optical synthetic aperture systems, it is necessary to analyze its effects on their image performance. Based on the incoherent diffraction limited imaging theory, a Golay-3 type synthetic aperture system was used to study the central obscuration effects on the point spread function (PSF) and the modulation transfer function (MTF). It was found that the central obscuration does not affect the width of the central peak of the PSF and the cutoff spatial frequency of the MTF, but attenuate the first sidelobe of the PSF and the midfrequency of the MTF. The imaging simulation of a Golay-3 type synthetic aperture system with central obscuration proved this conclusion. At last, a Wiener Filter restoration algorithm was used to restore the image of this system, the images were obviously better.

  6. Structural and functional imaging for vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Li, Buhong; Gu, Ying; Wilson, Brian C.

    2017-02-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely used for the prevention or treatment of vascular-related diseases, such as localized prostate cancer, wet age-related macular degeneration, port wine stains, esophageal varices and bleeding gastrointestinal mucosal lesions. In this study, the fundamental mechanisms of vascular responses during and after V-PDT will be introduced. Based on the V-PDT treatment of blood vessels in dorsal skinfold window chamber model, the structural and functional imaging, which including white light microscopy, laser speckle imaging, singlet oxygen luminescence imaging, and fluorescence imaging for evaluating vascular damage will be presented, respectively. The results indicate that vessel constriction and blood flow dynamics could be considered as the crucial biomarkers for quantitative evaluation of vascular damage. In addition, future perspectives of non-invasive optical imaging for evaluating vascular damage of V-PDT will be discussed.

  7. Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.

    PubMed

    Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming

    2017-09-01

    Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.

  8. Functional brain response to food images in successful adolescent weight losers compared with normal-weight and overweight controls.

    PubMed

    Jensen, Chad D; Kirwan, C Brock

    2015-03-01

    Research conducted with adults suggests that successful weight losers demonstrate greater activation in brain regions associated with executive control in response to viewing high-energy foods. No previous studies have examined these associations in adolescents. Functional neuroimaging was used to assess brain response to food images among groups of overweight (OW), normal-weight (NW), and successful weight-losing (SWL) adolescents. Eleven SWL, 12 NW, and 11 OW participants underwent functional magnetic resonance imaging while viewing images of high- and low-energy foods. When viewing high-energy food images, SWLs demonstrated greater activation in the dorsolateral prefrontal cortex (DLPFC) compared with OW and NW controls. Compared with NW and SWL groups, OW individuals demonstrated greater activation in the ventral striatum and anterior cingulate in response to food images. Adolescent SWLs demonstrated greater neural activation in the DLPFC compared with OW/NW controls when viewing high-energy food stimuli, which may indicate enhanced executive control. OW individuals' brain responses to food stimuli may indicate greater reward incentive processes than either SWL or NW groups. © 2015 The Obesity Society.

  9. AUTOMATED ANALYSIS OF QUANTITATIVE IMAGE DATA USING ISOMORPHIC FUNCTIONAL MIXED MODELS, WITH APPLICATION TO PROTEOMICS DATA.

    PubMed

    Morris, Jeffrey S; Baladandayuthapani, Veerabhadran; Herrick, Richard C; Sanna, Pietro; Gutstein, Howard

    2011-01-01

    Image data are increasingly encountered and are of growing importance in many areas of science. Much of these data are quantitative image data, which are characterized by intensities that represent some measurement of interest in the scanned images. The data typically consist of multiple images on the same domain and the goal of the research is to combine the quantitative information across images to make inference about populations or interventions. In this paper, we present a unified analysis framework for the analysis of quantitative image data using a Bayesian functional mixed model approach. This framework is flexible enough to handle complex, irregular images with many local features, and can model the simultaneous effects of multiple factors on the image intensities and account for the correlation between images induced by the design. We introduce a general isomorphic modeling approach to fitting the functional mixed model, of which the wavelet-based functional mixed model is one special case. With suitable modeling choices, this approach leads to efficient calculations and can result in flexible modeling and adaptive smoothing of the salient features in the data. The proposed method has the following advantages: it can be run automatically, it produces inferential plots indicating which regions of the image are associated with each factor, it simultaneously considers the practical and statistical significance of findings, and it controls the false discovery rate. Although the method we present is general and can be applied to quantitative image data from any application, in this paper we focus on image-based proteomic data. We apply our method to an animal study investigating the effects of opiate addiction on the brain proteome. Our image-based functional mixed model approach finds results that are missed with conventional spot-based analysis approaches. In particular, we find that the significant regions of the image identified by the proposed method frequently correspond to subregions of visible spots that may represent post-translational modifications or co-migrating proteins that cannot be visually resolved from adjacent, more abundant proteins on the gel image. Thus, it is possible that this image-based approach may actually improve the realized resolution of the gel, revealing differentially expressed proteins that would not have even been detected as spots by modern spot-based analyses.

  10. Image-derived and arterial blood sampled input functions for quantitative PET imaging of the angiotensin II subtype 1 receptor in the kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Tao; Tsui, Benjamin M. W.; Li, Xin

    Purpose: The radioligand {sup 11}C-KR31173 has been introduced for positron emission tomography (PET) imaging of the angiotensin II subtype 1 receptor in the kidney in vivo. To study the biokinetics of {sup 11}C-KR31173 with a compartmental model, the input function is needed. Collection and analysis of arterial blood samples are the established approach to obtain the input function but they are not feasible in patients with renal diseases. The goal of this study was to develop a quantitative technique that can provide an accurate image-derived input function (ID-IF) to replace the conventional invasive arterial sampling and test the method inmore » pigs with the goal of translation into human studies. Methods: The experimental animals were injected with [{sup 11}C]KR31173 and scanned up to 90 min with dynamic PET. Arterial blood samples were collected for the artery derived input function (AD-IF) and used as a gold standard for ID-IF. Before PET, magnetic resonance angiography of the kidneys was obtained to provide the anatomical information required for derivation of the recovery coefficients in the abdominal aorta, a requirement for partial volume correction of the ID-IF. Different image reconstruction methods, filtered back projection (FBP) and ordered subset expectation maximization (OS-EM), were investigated for the best trade-off between bias and variance of the ID-IF. The effects of kidney uptakes on the quantitative accuracy of ID-IF were also studied. Biological variables such as red blood cell binding and radioligand metabolism were also taken into consideration. A single blood sample was used for calibration in the later phase of the input function. Results: In the first 2 min after injection, the OS-EM based ID-IF was found to be biased, and the bias was found to be induced by the kidney uptake. No such bias was found with the FBP based image reconstruction method. However, the OS-EM based image reconstruction was found to reduce variance in the subsequent phase of the ID-IF. The combined use of FBP and OS-EM resulted in reduced bias and noise. After performing all the necessary corrections, the areas under the curves (AUCs) of the AD-IF were close to that of the AD-IF (average AUC ratio =1 ± 0.08) during the early phase. When applied in a two-tissue-compartmental kinetic model, the average difference between the estimated model parameters from ID-IF and AD-IF was 10% which was within the error of the estimation method. Conclusions: The bias of radioligand concentration in the aorta from the OS-EM image reconstruction is significantly affected by radioligand uptake in the adjacent kidney and cannot be neglected for quantitative evaluation. With careful calibrations and corrections, the ID-IF derived from quantitative dynamic PET images can be used as the input function of the compartmental model to quantify the renal kinetics of {sup 11}C-KR31173 in experimental animals and the authors intend to evaluate this method in future human studies.« less

  11. Generation of realistic virtual nodules based on three-dimensional spatial resolution in lung computed tomography: A pilot phantom study.

    PubMed

    Narita, Akihiro; Ohkubo, Masaki; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2017-10-01

    The aim of this feasibility study using phantoms was to propose a novel method for obtaining computer-generated realistic virtual nodules in lung computed tomography (CT). In the proposed methodology, pulmonary nodule images obtained with a CT scanner are deconvolved with the point spread function (PSF) in the scan plane and slice sensitivity profile (SSP) measured for the scanner; the resultant images are referred to as nodule-like object functions. Next, by convolving the nodule-like object function with the PSF and SSP of another (target) scanner, the virtual nodule can be generated so that it has the characteristics of the spatial resolution of the target scanner. To validate the methodology, the authors applied physical nodules of 5-, 7- and 10-mm-diameter (uniform spheres) included in a commercial CT test phantom. The nodule-like object functions were calculated from the sphere images obtained with two scanners (Scanner A and Scanner B); these functions were referred to as nodule-like object functions A and B, respectively. From these, virtual nodules were generated based on the spatial resolution of another scanner (Scanner C). By investigating the agreement of the virtual nodules generated from the nodule-like object functions A and B, the equivalence of the nodule-like object functions obtained from different scanners could be assessed. In addition, these virtual nodules were compared with the real (true) sphere images obtained with Scanner C. As a practical validation, five types of laboratory-made physical nodules with various complicated shapes and heterogeneous densities, similar to real lesions, were used. The nodule-like object functions were calculated from the images of these laboratory-made nodules obtained with Scanner A. From them, virtual nodules were generated based on the spatial resolution of Scanner C and compared with the real images of laboratory-made nodules obtained with Scanner C. Good agreement of the virtual nodules generated from the nodule-like object functions A and B of the phantom spheres was found, suggesting the validity of the nodule-like object functions. The virtual nodules generated from the nodule-like object function A of the phantom spheres were similar to the real images obtained with Scanner C; the root mean square errors (RMSEs) between them were 10.8, 11.1, and 12.5 Hounsfield units (HU) for 5-, 7-, and 10-mm-diameter spheres, respectively. The equivalent results (RMSEs) using the nodule-like object function B were 15.9, 16.8, and 16.5 HU, respectively. These RMSEs were small considering the high contrast between the sphere density and background density (approximately 674 HU). The virtual nodules generated from the nodule-like object functions of the five laboratory-made nodules were similar to the real images obtained with Scanner C; the RMSEs between them ranged from 6.2 to 8.6 HU in five cases. The nodule-like object functions calculated from real nodule images would be effective to generate realistic virtual nodules. The proposed method would be feasible for generating virtual nodules that have the characteristics of the spatial resolution of the CT system used in each institution, allowing for site-specific nodule generation. © 2017 American Association of Physicists in Medicine.

  12. A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo.

    PubMed

    Disney, C M; Lee, P D; Hoyland, J A; Sherratt, M J; Bay, B K

    2018-04-14

    Many biological tissues have a complex hierarchical structure allowing them to function under demanding physiological loading conditions. Structural changes caused by ageing or disease can lead to loss of mechanical function. Therefore, it is necessary to characterise tissue structure to understand normal tissue function and the progression of disease. Ideally intact native tissues should be imaged in 3D and under physiological loading conditions. The current published in situ imaging methodologies demonstrate a compromise between imaging limitations and maintaining the samples native mechanical function. This review gives an overview of in situ imaging techniques used to visualise microstructural deformation of soft tissue, including three case studies of different tissues (tendon, intervertebral disc and artery). Some of the imaging techniques restricted analysis to observational mechanics or discrete strain measurement from invasive markers. Full-field local surface strain measurement has been achieved using digital image correlation. Volumetric strain fields have successfully been quantified from in situ X-ray microtomography (micro-CT) studies of bone using digital volume correlation but not in soft tissue due to low X-ray transmission contrast. With the latest developments in micro-CT showing in-line phase contrast capability to resolve native soft tissue microstructure, there is potential for future soft tissue mechanics research where 3D local strain can be quantified. These methods will provide information on the local 3D micromechanical environment experienced by cells in healthy, aged and diseased tissues. It is hoped that future applications of in situ imaging techniques will impact positively on the design and testing of potential tissue replacements or regenerative therapies. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  13. Positron emission tomography molecular imaging of dopaminergic system in drug addiction.

    PubMed

    Hou, Haifeng; Tian, Mei; Zhang, Hong

    2012-05-01

    Dopamine (DA) is involved in drug reinforcement, but its role in drug addiction remains unclear. Positron emission tomography (PET) is the first technology used for the direct measurement of components of the dopaminergic system in the living human brain. In this article, we reviewed the major findings of PET imaging studies on the involvement of DA in drug addiction, especially in heroin addiction. Furthermore, we summarized PET radiotracers that have been used to study the role of DA in drug addiction. To investigate presynaptic function in drug addiction, PET tracers have been developed to measure DA synthesis and transport. For the investigation of postsynaptic function, several radioligands targeting dopamine one (D1) receptor and dopamine two (D2) receptor are extensively used in PET imaging studies. Moreover, we also summarized the PET imaging findings of heroin addiction studies, including heroin-induced DA increases and the reinforcement, role of DA in the long-term effects of heroin abuse, DA and vulnerability to heroin abuse and the treatment implications. PET imaging studies have corroborated the role of DA in drug addiction and increase our understanding the mechanism of drug addiction. Copyright © 2012 Wiley Periodicals, Inc.

  14. Neuroimaging and sexual behavior: identification of regional and functional differences.

    PubMed

    Cheng, Joseph C; Secondary, Joseph; Burke, William H; Fedoroff, J Paul; Dwyer, R Gregg

    2015-07-01

    The neuroanatomical correlates of human sexual desire, arousal, and behavior have been characterized in recent years with functional brain imaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET). Here, we briefly review the results of functional neuroimaging studies in humans, whether healthy or suffering from sexual disorders, and the current models of regional and network activation in sexual arousal. Attention is paid, in particular, to findings from both regional and network studies in the past 3 years. We also identify yet unanswered and pressing questions of interest to areas of ongoing investigations for psychiatric, scientific, and forensic disciplines.

  15. Structural and functional brain changes in early- and mid-stage primary open-angle glaucoma using voxel-based morphometry and functional magnetic resonance imaging.

    PubMed

    Jiang, Ming-Ming; Zhou, Qing; Liu, Xiao-Yong; Shi, Chang-Zheng; Chen, Jian; Huang, Xiang-He

    2017-03-01

    To investigate structural and functional brain changes in patients with primary open-angle glaucoma (POAG) by using voxel-based morphometry based on diffeomorphic anatomical registration through exponentiated Lie algebra (VBM-DARTEL) and blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI), respectively.Thirteen patients diagnosed with POAG and 13 age- and sex-matched healthy controls were enrolled in the study. For each participant, high-resolution structural brain imaging and blood flow imaging were acquired on a 3.0-Tesla magnetic resonance imaging (MRI) scanner. Structural and functional changes between the POAG and control groups were analyzed. An analysis was carried out to identify correlations between structural and functional changes acquired in the previous analysis and the retinal nerve fiber layer (RNFL).Patients in the POAG group showed a significant (P < 0.001) volume increase in the midbrain, left brainstem, frontal gyrus, cerebellar vermis, left inferior parietal lobule, caudate nucleus, thalamus, precuneus, and Brodmann areas 7, 18, and 46. Moreover, significant (P < 0.001) BOLD signal changes were observed in the right supramarginal gyrus, frontal gyrus, superior frontal gyrus, left inferior parietal lobule, left cuneus, and left midcingulate area; many of these regions had high correlations with the RNFL.Patients with POAG undergo widespread and complex changes in cortical brain structure and blood flow. (ClinicalTrials.gov number: NCT02570867).

  16. Functional imaging of muscle oxygenation using a 200-channel cw NIRS system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Katsuyuki; Niwayama, Masatsugu; Kohata, Daisuke; Kudo, Nobuki; Hamaoka, Takatumi; Kime, Ryotaro; Katsumura, Toshihito

    2001-06-01

    Functional imaging of muscle oxygenation using NIRS is a promising technique for evaluation of the heterogeneity of muscle function and diagnosis of peripheral vascular disease or muscle injury. We have developed a 200-channel imaging system that can measure the changes in oxygenation and blood volume of muscles and that covers wider area than previously reported systems. Our system consisted of 40 probes, a multiplexer for switching signals to and from the probes, and a personal computer for obtaining images. In each probe, one two-wavelength LED (770 and 830 nm) and five photodiodes were mounted on a flexible substrate. In order to eliminate the influence of a subcutaneous fat layer, a correction method, which we previously developed, was also used in imaging. Thus, quantitative changes in concentrations of oxy- and deoxy-hemoglobin were obtained. Temporal resolution was 1.5 s and spatial resolution was about 20 mm, depending on probe separations. Exercise tests (isometric contraction of 50% MVC) on the thigh with and without arterial occlusion were conducted, and changes in muscle oxygenation were imaged using the developed system. Results showed that the heterogeneity of deoxygenation and reoxygenation during exercise and recovery periods, respectively, were clearly observed. These results suggest that optical imaging of dynamic change in muscle oxygenation using NIRS would be useful not only for basic physiological studies but also for clinical applications with respect to muscle functions.

  17. Infrared scanning laser ophthalmoscope imaging of the macula and its correlation with functional loss and structural changes in patients with stargardt disease.

    PubMed

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2011-05-01

    To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Eighteen eyes of 10 patients with Stargardt disease were studied. Scanning laser ophthalmoscope infrared images were compared with corresponding spectral-domain optical coherence tomography scans. Additionally, scanning laser ophthalmoscope microperimetry was performed, and results were superimposed on scanning laser ophthalmoscope infrared images and in selected cases on fundus autofluorescence images. Seventeen of 18 eyes showed a distinct hyporeflective foveal and/or perifoveal area with distinct borders on scanning laser ophthalmoscope infrared images, which was less evident on funduscopy and incompletely depicted in fundus autofluorescence images. This hyporeflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium and disorganization or loss of the photoreceptor cell inner segment-outer segment junction and external-limiting membrane on spectral-domain optical coherence tomography. Scanning laser ophthalmoscope infrared fundus images are useful for depicting retinal structural changes in patients with Stargardt disease. A spectral-domain optical coherence tomography/scanning laser ophthalmoscope microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history.

  18. SLO-infrared imaging of the macula and its correlation with functional loss and structural changes in patients with Stargardt disease

    PubMed Central

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2010-01-01

    Purpose To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Methods Eighteen eyes of 10 Stargardt patients were studied. Scanning laser ophthalmoscope (SLO) infrared images were compared to corresponding spectral domain optical coherence tomography (SD-OCT) scans. Additionally, SLO microperimetry was performed and results were superimposed on SLO infrared images and in selected cases on fundus autofluorescence (FAF) images. Results Seventeen of 18 eyes showed a distinct hypo-reflective foveal and/or perifoveal area with distinct borders on SLO-infrared images which was less evident on funduscopy and incompletely depicted in FAF images. This hypo-reflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium (RPE), disorganization or loss of the photoreceptor cell inner-outer segment (IS-OS) junction and external limiting membrane (ELM) on SD-OCT. Conclusion SLO-infrared fundus images are useful for depicting retinal structural changes in Stargardt patients. An SD-OCT/SLO microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history. PMID:21293320

  19. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment

    PubMed Central

    Ashok, A H; Marques, T R; Jauhar, S; Nour, M M; Goodwin, G M; Young, A H; Howes, O D

    2017-01-01

    Bipolar affective disorder is a common neuropsychiatric disorder. Although its neurobiological underpinnings are incompletely understood, the dopamine hypothesis has been a key theory of the pathophysiology of both manic and depressive phases of the illness for over four decades. The increased use of antidopaminergics in the treatment of this disorder and new in vivo neuroimaging and post-mortem studies makes it timely to review this theory. To do this, we conducted a systematic search for post-mortem, pharmacological, functional magnetic resonance and molecular imaging studies of dopamine function in bipolar disorder. Converging findings from pharmacological and imaging studies support the hypothesis that a state of hyperdopaminergia, specifically elevations in D2/3 receptor availability and a hyperactive reward processing network, underlies mania. In bipolar depression imaging studies show increased dopamine transporter levels, but changes in other aspects of dopaminergic function are inconsistent. Puzzlingly, pharmacological evidence shows that both dopamine agonists and antidopaminergics can improve bipolar depressive symptoms and perhaps actions at other receptors may reconcile these findings. Tentatively, this evidence suggests a model where an elevation in striatal D2/3 receptor availability would lead to increased dopaminergic neurotransmission and mania, whilst increased striatal dopamine transporter (DAT) levels would lead to reduced dopaminergic function and depression. Thus, it can be speculated that a failure of dopamine receptor and transporter homoeostasis might underlie the pathophysiology of this disorder. The limitations of this model include its reliance on pharmacological evidence, as these studies could potentially affect other monoamines, and the scarcity of imaging evidence on dopaminergic function. This model, if confirmed, has implications for developing new treatment strategies such as reducing the dopamine synthesis and/or release in mania and DAT blockade in bipolar depression. PMID:28289283

  20. Processing of food, body and emotional stimuli in anorexia nervosa: a systematic review and meta-analysis of functional magnetic resonance imaging studies.

    PubMed

    Zhu, Yikang; Hu, Xiaochen; Wang, Jijun; Chen, Jue; Guo, Qian; Li, Chunbo; Enck, Paul

    2012-11-01

    The characteristics of the cognitive processing of food, body and emotional information in patients with anorexia nervosa (AN) are debatable. We reviewed functional magnetic resonance imaging studies to assess whether there were consistent neural basis and networks in the studies to date. Searching PubMed, Ovid, Web of Science, The Cochrane Library and Google Scholar between January 1980 and May 2012, we identified 17 relevant studies. Activation likelihood estimation was used to perform a quantitative meta-analysis of functional magnetic resonance imaging studies. For both food stimuli and body stimuli, AN patients showed increased hemodynamic response in the emotion-related regions (frontal, caudate, uncus, insula and temporal) and decreased activation in the parietal region. Although no robust brain activation has been found in response to emotional stimuli, emotion-related neural networks are involved in the processing of food and body stimuli among AN. It suggests that negative emotional arousal is related to cognitive processing bias of food and body stimuli in AN. Copyright © 2012 John Wiley & Sons, Ltd and Eating Disorders Association.

  1. Mapping Language Function in the Brain: A Review of the Recent Literature.

    ERIC Educational Resources Information Center

    Crafton, Robert E.; Kido, Elissa

    2000-01-01

    Considers the potential importance of brain study for composition instruction, briefly describes functional imaging techniques, and reviews the findings of recent brain-mapping studies investigating the neurocognitive systems involved in language function. Presents a review of the recent literature and considers the possible implications of this…

  2. The Neural Substrates of Cognitive Control Deficits in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Solomon, Marjorie; Ozonoff, Sally J.; Ursu, Stefan; Ravizza, Susan; Cummings, Neil; Ly, Stanford; Carter, Cameron S.

    2009-01-01

    Executive function deficits are among the most frequently reported symptoms of autism spectrum disorders (ASDs), however, there have been few functional magnetic resonance imaging (fMRI) studies that investigate the neural substrates of executive function deficits in ASDs, and only one in adolescents. The current study examined cognitive…

  3. Functional Near-Infrared Spectroscopy Brain Imaging Investigation of Phonological Awareness and Passage Comprehension Abilities in Adult Recipients of Cochlear Implants

    ERIC Educational Resources Information Center

    Bisconti, Silvia; Shulkin, Masha; Hu, Xiaosu; Basura, Gregory J.; Kileny, Paul R.; Kovelman, Ioulia

    2016-01-01

    Purpose: The aim of this study was to examine how the brains of individuals with cochlear implants (CIs) respond to spoken language tasks that underlie successful language acquisition and processing. Method: During functional near-infrared spectroscopy imaging, CI recipients with hearing impairment (n = 10, mean age: 52.7 ± 17.3 years) and…

  4. A randomised-controlled trial investigating potential underlying mechanisms of a functionality-based approach to improving women's body image.

    PubMed

    Alleva, Jessica M; Diedrichs, Phillippa C; Halliwell, Emma; Martijn, Carolien; Stuijfzand, Bobby G; Treneman-Evans, Georgia; Rumsey, Nichola

    2018-06-01

    Focusing on body functionality is a promising technique for improving women's body image. This study replicates prior research in a large novel sample, tests longer-term follow-up effects, and investigates underlying mechanisms of these effects (body complexity and body-self integration). British women (N = 261) aged 18-30 who wanted to improve their body image were randomised to Expand Your Horizon (three online body functionality writing exercises) or an active control. Trait body image was assessed at Pretest, Posttest, 1-week, and 1-month Follow-Up. To explore whether changes in body complexity and body-self integration 'buffer' the impact of negative body-related experiences, participants also completed beauty-ideal media exposure. Relative to the control, intervention participants experienced improved appearance satisfaction, functionality satisfaction, body appreciation, and body complexity at Posttest, and at both Follow-Ups. Neither body complexity nor body-self integration mediated intervention effects. Media exposure decreased state body satisfaction among intervention and control participants, but neither body complexity nor body-self integration moderated these effects. The findings underscore the value of focusing on body functionality for improving body image and show that effects persist one month post-intervention. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Functional neuroanatomical networks associated with expertise in motor imagery.

    PubMed

    Guillot, Aymeric; Collet, Christian; Nguyen, Vo An; Malouin, Francine; Richards, Carol; Doyon, Julien

    2008-07-15

    Although numerous behavioural studies provide evidence that there exist wide differences within individual motor imagery (MI) abilities, little is known with regards to the functional neuroanatomical networks that dissociate someone with good versus poor MI capacities. For the first time, we thus compared, through functional magnetic resonance imaging (fMRI), the pattern of cerebral activations in 13 skilled and 15 unskilled imagers during both physical execution and MI of a sequence of finger movements. Differences in MI abilities were assessed using well-established questionnaire and chronometric measures, as well as a new index based upon the subject's peripheral responses from the autonomic nervous system. As expected, both good and poor imagers activated the inferior and superior parietal lobules, as well as motor-related regions including the lateral and medial premotor cortex, the cerebellum and putamen. Inter-group comparisons revealed that good imagers activated more the parietal and ventrolateral premotor regions, which are known to play a critical role in the generation of mental images. By contrast, poor imagers recruited the cerebellum, orbito-frontal and posterior cingulate cortices. Consistent with findings from the motor sequence learning literature and Doyon and Ungerleider's model of motor learning [Doyon, J., Ungerleider, L.G., 2002. Functional anatomy of motor skill learning. In: Squire, L.R., Schacter, D.L. (Eds.), Neuropsychology of memory, Guilford Press, pp. 225-238], our results demonstrate that compared to skilled imagers, poor imagers not only need to recruit the cortico-striatal system, but to compensate with the cortico-cerebellar system during MI of sequential movements.

  6. Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry's cardiomyopathy.

    PubMed

    Beer, Meinrad; Weidemann, Frank; Breunig, Frank; Knoll, Anita; Koeppe, Sabrina; Machann, Wolfram; Hahn, Dietbert; Wanner, Christoph; Strotmann, Jörg; Sandstede, Jörn

    2006-05-15

    The present study evaluated the evolution of cardiac morphology, function, and late enhancement as a noninvasive marker of myocardial fibrosis, and their inter-relation during enzyme replacement therapy in patients with Fabry's disease using magnetic resonance imaging and color Doppler myocardial imaging. Late enhancement, which was present in up to 50% of patients, was associated with increased left ventricular mass, the failure of a significant regression of hypertrophy during enzyme replacement therapy, and worse segmental myocardial function. Late enhancement may predict the effect of enzyme replacement therapy on left ventricular mass and cardiac function.

  7. In vivo, noninvasive functional measurements of bone sarcoma using diffuse optical spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Peterson, Hannah M.; Hoang, Bang H.; Geller, David; Yang, Rui; Gorlick, Richard; Berger, Jeremy; Tingling, Janet; Roth, Michael; Gill, Jonathon; Roblyer, Darren

    2017-12-01

    Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.

  8. The Function Biomedical Informatics Research Network Data Repository

    PubMed Central

    Keator, David B.; van Erp, Theo G.M.; Turner, Jessica A.; Glover, Gary H.; Mueller, Bryon A.; Liu, Thomas T.; Voyvodic, James T.; Rasmussen, Jerod; Calhoun, Vince D.; Lee, Hyo Jong; Toga, Arthur W.; McEwen, Sarah; Ford, Judith M.; Mathalon, Daniel H.; Diaz, Michele; O’Leary, Daniel S.; Bockholt, H. Jeremy; Gadde, Syam; Preda, Adrian; Wible, Cynthia G.; Stern, Hal S.; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G.

    2015-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical datasets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 dataset consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 Tesla scanners. The FBIRN Phase 2 and Phase 3 datasets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN’s multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. PMID:26364863

  9. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  10. Anterior temporal cortex and semantic memory: reconciling findings from neuropsychology and functional imaging.

    PubMed

    Rogers, Timothy T; Hocking, Julia; Noppeney, Uta; Mechelli, Andrea; Gorno-Tempini, Maria Luisa; Patterson, Karalyn; Price, Cathy J

    2006-09-01

    Studies of semantic impairment arising from brain disease suggest that the anterior temporal lobes are critical for semantic abilities in humans; yet activation of these regions is rarely reported in functional imaging studies of healthy controls performing semantic tasks. Here, we combined neuropsychological and PET functional imaging data to show that when healthy subjects identify concepts at a specific level, the regions activated correspond to the site of maximal atrophy in patients with relatively pure semantic impairment. The stimuli were color photographs of common animals or vehicles, and the task was category verification at specific (e.g., robin), intermediate (e.g., bird), or general (e.g., animal) levels. Specific, relative to general, categorization activated the antero-lateral temporal cortices bilaterally, despite matching of these experimental conditions for difficulty. Critically, in patients with atrophy in precisely these areas, the most pronounced deficit was in the retrieval of specific semantic information.

  11. A new methodical approach in neuroscience: assessing inter-personal brain coupling using functional near-infrared imaging (fNIRI) hyperscanning.

    PubMed

    Scholkmann, Felix; Holper, Lisa; Wolf, Ursula; Wolf, Martin

    2013-11-27

    Since the first demonstration of how to simultaneously measure brain activity using functional magnetic resonance imaging (fMRI) on two subjects about 10 years ago, a new paradigm in neuroscience is emerging: measuring brain activity from two or more people simultaneously, termed "hyperscanning". The hyperscanning approach has the potential to reveal inter-personal brain mechanisms underlying interaction-mediated brain-to-brain coupling. These mechanisms are engaged during real social interactions, and cannot be captured using single-subject recordings. In particular, functional near-infrared imaging (fNIRI) hyperscanning is a promising new method, offering a cost-effective, easy to apply and reliable technology to measure inter-personal interactions in a natural context. In this short review we report on fNIRI hyperscanning studies published so far and summarize opportunities and challenges for future studies.

  12. Combined Ventilation and Perfusion Imaging Correlates With the Dosimetric Parameters of Radiation Pneumonitis in Radiation Therapy Planning for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Doi, Yoshiko; Nakashima, Takeo

    2015-11-15

    Purpose: The purpose of this study was to prospectively investigate clinical correlations between dosimetric parameters associated with radiation pneumonitis (RP) and functional lung imaging. Methods and Materials: Functional lung imaging was performed using four-dimensional computed tomography (4D-CT) for ventilation imaging, single-photon emission computed tomography (SPECT) for perfusion imaging, or both (V/Q-matched region). Using 4D-CT, ventilation imaging was derived from a low attenuation area according to CT numbers below different thresholds (vent-860 and -910). Perfusion imaging at the 10th, 30th, 50th, and 70th percentile perfusion levels (F10-F70) were defined as the top 10%, 30%, 50%, and 70% hyperperfused normal lung, respectively.more » All imaging data were incorporated into a 3D planning system to evaluate correlations between RP dosimetric parameters (where fV20 is the percentage of functional lung volume irradiated with >20 Gy, or fMLD, the mean dose administered to functional lung) and the percentage of functional lung volume. Radiation pneumonitis was evaluated using Common Terminology Criteria for Adverse Events version 4.0. Statistical significance was defined as a P value of <.05. Results: Sixty patients who underwent curative radiation therapy were enrolled (48 patients for non-small cell lung cancer, and 12 patients for small cell lung cancer). Grades 1, 2, and ≥3 RP were observed in 16, 44, and 6 patients, respectively. Significant correlations were observed between the percentage of functional lung volume and fV20 (r=0.4475 in vent-860 and 0.3508 in F30) or fMLD (r=0.4701 in vent-860 and 0.3128 in F30) in patients with grade ≥2 RP. F30∩vent-860 results exhibited stronger correlations with fV20 and fMLD in patients with grade ≥2 (r=0.5509 in fV20 and 0.5320 in fMLD) and grade ≥3 RP (r=0.8770 in fV20 and 0.8518 in fMLD). Conclusions: RP dosimetric parameters correlated significantly with functional lung imaging.« less

  13. [Neuropsychological models of autism spectrum disorders - behavioral evidence and functional imaging].

    PubMed

    Dziobek, Isabel; Bölte, Sven

    2011-03-01

    To review neuropsychological models of theory of mind (ToM), executive functions (EF), and central coherence (CC) as framework for cognitive abnormalities in autism spectrum disorders (ASD). Behavioral and functional imaging studies are described that assess social-cognitive, emotional, and executive functions as well as locally oriented perception in ASD. Impairments in ToM and EF as well as alterations in CC are frequently replicated phenomena in ASD. Especially problems concerning social perception and ToM have high explanatory value for clinical symptomatology. Brain activation patterns differ between individuals with and without ASD for ToM, EF, und CC functions. An approach focussing on reduced cortical connectivity seems to be increasingly favored over explanations focussing on single affected brain sites. A better understanding of the complexities of ASD in future research demands the integration of clinical, neuropsychological, functional imaging, and molecular genetics evidence. Weaknesses in ToM and EF as well as strengths in detail-focussed perception should be used for individual intervention planning.

  14. Electroencephalographic imaging of higher brain function

    NASA Technical Reports Server (NTRS)

    Gevins, A.; Smith, M. E.; McEvoy, L. K.; Leong, H.; Le, J.

    1999-01-01

    High temporal resolution is necessary to resolve the rapidly changing patterns of brain activity that underlie mental function. Electroencephalography (EEG) provides temporal resolution in the millisecond range. However, traditional EEG technology and practice provide insufficient spatial detail to identify relationships between brain electrical events and structures and functions visualized by magnetic resonance imaging or positron emission tomography. Recent advances help to overcome this problem by recording EEGs from more electrodes, by registering EEG data with anatomical images, and by correcting the distortion caused by volume conduction of EEG signals through the skull and scalp. In addition, statistical measurements of sub-second interdependences between EEG time-series recorded from different locations can help to generate hypotheses about the instantaneous functional networks that form between different cortical regions during perception, thought and action. Example applications are presented from studies of language, attention and working memory. Along with its unique ability to monitor brain function as people perform everyday activities in the real world, these advances make modern EEG an invaluable complement to other functional neuroimaging modalities.

  15. MedXViewer: an extensible web-enabled software package for medical imaging

    NASA Astrophysics Data System (ADS)

    Looney, P. T.; Young, K. C.; Mackenzie, Alistair; Halling-Brown, Mark D.

    2014-03-01

    MedXViewer (Medical eXtensible Viewer) is an application designed to allow workstation-independent, PACS-less viewing and interaction with anonymised medical images (e.g. observer studies). The application was initially implemented for use in digital mammography and tomosynthesis but the flexible software design allows it to be easily extended to other imaging modalities. Regions of interest can be identified by a user and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. The extensible nature of the design allows for other functionality and hanging protocols to be available for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled e.g. quadrant zooming in mammographic studies. MedXViewer can integrate with a web-based image database allowing results and images to be stored centrally. The software and images can be downloaded remotely from this centralised data-store. Alternatively, the software can run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. Due to the advanced workstation-style functionality, the simple deployment on heterogeneous systems over the internet without a requirement for administrative access and the ability to utilise a centralised database, MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and co-ordinating remote collaborative viewing sessions (e.g. cancer reviews, interesting cases).

  16. Studying variability in human brain aging in a population-based German cohort-rationale and design of 1000BRAINS.

    PubMed

    Caspers, Svenja; Moebus, Susanne; Lux, Silke; Pundt, Noreen; Schütz, Holger; Mühleisen, Thomas W; Gras, Vincent; Eickhoff, Simon B; Romanzetti, Sandro; Stöcker, Tony; Stirnberg, Rüdiger; Kirlangic, Mehmet E; Minnerop, Martina; Pieperhoff, Peter; Mödder, Ulrich; Das, Samir; Evans, Alan C; Jöckel, Karl-Heinz; Erbel, Raimund; Cichon, Sven; Nöthen, Markus M; Sturma, Dieter; Bauer, Andreas; Jon Shah, N; Zilles, Karl; Amunts, Katrin

    2014-01-01

    The ongoing 1000 brains study (1000BRAINS) is an epidemiological and neuroscientific investigation of structural and functional variability in the human brain during aging. The two recruitment sources are the 10-year follow-up cohort of the German Heinz Nixdorf Recall (HNR) Study, and the HNR MultiGeneration Study cohort, which comprises spouses and offspring of HNR subjects. The HNR is a longitudinal epidemiological investigation of cardiovascular risk factors, with a comprehensive collection of clinical, laboratory, socioeconomic, and environmental data from population-based subjects aged 45-75 years on inclusion. HNR subjects underwent detailed assessments in 2000, 2006, and 2011, and completed annual postal questionnaires on health status. 1000BRAINS accesses these HNR data and applies a separate protocol comprising: neuropsychological tests of attention, memory, executive functions and language; examination of motor skills; ratings of personality, life quality, mood and daily activities; analysis of laboratory and genetic data; and state-of-the-art magnetic resonance imaging (MRI, 3 Tesla) of the brain. The latter includes (i) 3D-T1- and 3D-T2-weighted scans for structural analyses and myelin mapping; (ii) three diffusion imaging sequences optimized for diffusion tensor imaging, high-angular resolution diffusion imaging for detailed fiber tracking and for diffusion kurtosis imaging; (iii) resting-state and task-based functional MRI; and (iv) fluid-attenuated inversion recovery and MR angiography for the detection of vascular lesions and the mapping of white matter lesions. The unique design of 1000BRAINS allows: (i) comprehensive investigation of various influences including genetics, environment and health status on variability in brain structure and function during aging; and (ii) identification of the impact of selected influencing factors on specific cognitive subsystems and their anatomical correlates.

  17. COBRA: A prospective multimodal imaging study of dopamine, brain structure and function, and cognition.

    PubMed

    Nevalainen, N; Riklund, K; Andersson, M; Axelsson, J; Ögren, M; Lövdén, M; Lindenberger, U; Bäckman, L; Nyberg, L

    2015-07-01

    Cognitive decline is a characteristic feature of normal human aging. Previous work has demonstrated marked interindividual variability in onset and rate of decline. Such variability has been linked to factors such as maintenance of functional and structural brain integrity, genetics, and lifestyle. Still, few, if any, studies have combined a longitudinal design with repeated multimodal imaging and a comprehensive assessment of cognition as well as genetic and lifestyle factors. The present paper introduces the Cognition, Brain, and Aging (COBRA) study, in which cognitive performance and brain structure and function are measured in a cohort of 181 older adults aged 64 to 68 years at baseline. Participants will be followed longitudinally over a 10-year period, resulting in a total of three equally spaced measurement occasions. The measurement protocol at each occasion comprises a comprehensive set of behavioral and imaging measures. Cognitive performance is evaluated via computerized testing of working memory, episodic memory, perceptual speed, motor speed, implicit sequence learning, and vocabulary. Brain imaging is performed using positron emission tomography with [(11)C]-raclopride to assess dopamine D2/D3 receptor availability. Structural magnetic resonance imaging (MRI) is used for assessment of white and gray-matter integrity and cerebrovascular perfusion, and functional MRI maps brain activation during rest and active task conditions. Lifestyle descriptives are collected, and blood samples are obtained and stored for future evaluation. Here, we present selected results from the baseline assessment along with a discussion of sample characteristics and methodological considerations that determined the design of the study. This article is part of a Special Issue entitled SI: Memory & Aging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service

    NASA Astrophysics Data System (ADS)

    Nonogaki, S.; Nemoto, T.

    2014-12-01

    Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.

  19. Comparison of two interpolation methods for empirical mode decomposition based evaluation of radiographic femur bone images.

    PubMed

    Udhayakumar, Ganesan; Sujatha, Chinnaswamy Manoharan; Ramakrishnan, Swaminathan

    2013-01-01

    Analysis of bone strength in radiographic images is an important component of estimation of bone quality in diseases such as osteoporosis. Conventional radiographic femur bone images are used to analyze its architecture using bi-dimensional empirical mode decomposition method. Surface interpolation of local maxima and minima points of an image is a crucial part of bi-dimensional empirical mode decomposition method and the choice of appropriate interpolation depends on specific structure of the problem. In this work, two interpolation methods of bi-dimensional empirical mode decomposition are analyzed to characterize the trabecular femur bone architecture of radiographic images. The trabecular bone regions of normal and osteoporotic femur bone images (N = 40) recorded under standard condition are used for this study. The compressive and tensile strength regions of the images are delineated using pre-processing procedures. The delineated images are decomposed into their corresponding intrinsic mode functions using interpolation methods such as Radial basis function multiquadratic and hierarchical b-spline techniques. Results show that bi-dimensional empirical mode decomposition analyses using both interpolations are able to represent architectural variations of femur bone radiographic images. As the strength of the bone depends on architectural variation in addition to bone mass, this study seems to be clinically useful.

  20. Medial orbitofrontal cortex codes relative rather than absolute value of financial rewards in humans.

    PubMed

    Elliott, R; Agnew, Z; Deakin, J F W

    2008-05-01

    Functional imaging studies in recent years have confirmed the involvement of orbitofrontal cortex (OFC) in human reward processing and have suggested that OFC responses are context-dependent. A seminal electrophysiological experiment in primates taught animals to associate abstract visual stimuli with differently valuable food rewards. Subsequently, pairs of these learned abstract stimuli were presented and firing of OFC neurons to the medium-value stimulus was measured. OFC firing was shown to depend on the relative value context. In this study, we developed a human analogue of this paradigm and scanned subjects using functional magnetic resonance imaging. The analysis compared neuronal responses to two superficially identical events, which differed only in terms of the preceding context. Medial OFC response to the same perceptual stimulus was greater when the stimulus predicted the more valuable of two rewards than when it predicted the less valuable. Additional responses were observed in other components of reward circuitry, the amygdala and ventral striatum. The central finding is consistent with the primate results and suggests that OFC neurons code relative rather than absolute reward value. Amygdala and striatal involvement in coding reward value is also consistent with recent functional imaging data. By using a simpler and less confounded paradigm than many functional imaging studies, we are able to demonstrate that relative financial reward value per se is coded in distinct subregions of an extended reward and decision-making network.

  1. iScreen: Image-Based High-Content RNAi Screening Analysis Tools.

    PubMed

    Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua

    2015-09-01

    High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.

  2. A novel effective method for the assessment of microvascular function in male patients with coronary artery disease: a pilot study using laser speckle contrast imaging

    PubMed Central

    Borges, J.P.; Lopes, G.O.; Verri, V.; Coelho, M.P.; Nascimento, P.M.C.; Kopiler, D.A.; Tibirica, E.

    2016-01-01

    Evaluation of microvascular endothelial function is essential for investigating the pathophysiology and treatment of cardiovascular and metabolic diseases. Although laser speckle contrast imaging technology is well accepted as a noninvasive methodology for assessing microvascular endothelial function, it has never been used to compare male patients with coronary artery disease with male age-matched healthy controls. Thus, the aim of this study was to determine whether laser speckle contrast imaging could be used to detect differences in the systemic microvascular functions of patients with established cardiovascular disease (n=61) and healthy age-matched subjects (n=24). Cutaneous blood flow was assessed in the skin of the forearm using laser speckle contrast imaging coupled with the transdermal iontophoretic delivery of acetylcholine and post-occlusive reactive hyperemia. The maximum increase in skin blood flow induced by acetylcholine was significantly reduced in the cardiovascular disease patients compared with the control subjects (74 vs 116%; P<0.01). With regard to post-occlusive reactive hyperemia-induced vasodilation, the patients also presented reduced responses compared to the controls (0.42±0.15 vs 0.50±0.13 APU/mmHg; P=0.04). In conclusion, laser speckle contrast imaging can identify endothelial and microvascular dysfunctions in male individuals with cardiovascular disease. Thus, this technology appears to be an efficient non-invasive technique for evaluating systemic microvascular and endothelial functions, which could be valuable as a peripheral marker of atherothrombotic diseases in men. PMID:27599202

  3. Compressive light field imaging

    NASA Astrophysics Data System (ADS)

    Ashok, Amit; Neifeld, Mark A.

    2010-04-01

    Light field imagers such as the plenoptic and the integral imagers inherently measure projections of the four dimensional (4D) light field scalar function onto a two dimensional sensor and therefore, suffer from a spatial vs. angular resolution trade-off. Programmable light field imagers, proposed recently, overcome this spatioangular resolution trade-off and allow high-resolution capture of the (4D) light field function with multiple measurements at the cost of a longer exposure time. However, these light field imagers do not exploit the spatio-angular correlations inherent in the light fields of natural scenes and thus result in photon-inefficient measurements. Here, we describe two architectures for compressive light field imaging that require relatively few photon-efficient measurements to obtain a high-resolution estimate of the light field while reducing the overall exposure time. Our simulation study shows that, compressive light field imagers using the principal component (PC) measurement basis require four times fewer measurements and three times shorter exposure time compared to a conventional light field imager in order to achieve an equivalent light field reconstruction quality.

  4. [A Comparison Study on Early Damage Detection of Left Ventricular Function Based on Doppler Imaging Method for Children with Tumor].

    PubMed

    Liu, Ying; Zhang, Haowei; Zhang, Hang

    2015-12-01

    The early damage detection and evaluation are of great significance in treatment and prognosis to the left ventricular function for children with tumor. In this paper, it is reported that the early damage of the left ventricular function was observed by pulsed wave Doppler (PWD) and tissue Doppler imaging (TDI) in our laboratory. Eighty children half a year to fourteen years old were included in this study. The cardiac function indices in chemotherapy group and control group were measured and compared. The results showed that there was significant difference in mitral and tricuspid annulus flow spectrum between the two groups. Compared with PWD,TDI is more prompt, objective and accurate in detecting early damage of left ventricular function in children with tumor. And TDI is a good method for early identification of ventricular function damage in children with tumor.

  5. An Approach for Stitching Satellite Images in a Bigdata Mapreduce Framework

    NASA Astrophysics Data System (ADS)

    Sarı, H.; Eken, S.; Sayar, A.

    2017-11-01

    In this study we present a two-step map/reduce framework to stitch satellite mosaic images. The proposed system enable recognition and extraction of objects whose parts falling in separate satellite mosaic images. However this is a time and resource consuming process. The major aim of the study is improving the performance of the image stitching processes by utilizing big data framework. To realize this, we first convert the images into bitmaps (first mapper) and then String formats in the forms of 255s and 0s (second mapper), and finally, find the best possible matching position of the images by a reduce function.

  6. Review of free software tools for image analysis of fluorescence cell micrographs.

    PubMed

    Wiesmann, V; Franz, D; Held, C; Münzenmayer, C; Palmisano, R; Wittenberg, T

    2015-01-01

    An increasing number of free software tools have been made available for the evaluation of fluorescence cell micrographs. The main users are biologists and related life scientists with no or little knowledge of image processing. In this review, we give an overview of available tools and guidelines about which tools the users should use to segment fluorescence micrographs. We selected 15 free tools and divided them into stand-alone, Matlab-based, ImageJ-based, free demo versions of commercial tools and data sharing tools. The review consists of two parts: First, we developed a criteria catalogue and rated the tools regarding structural requirements, functionality (flexibility, segmentation and image processing filters) and usability (documentation, data management, usability and visualization). Second, we performed an image processing case study with four representative fluorescence micrograph segmentation tasks with figure-ground and cell separation. The tools display a wide range of functionality and usability. In the image processing case study, we were able to perform figure-ground separation in all micrographs using mainly thresholding. Cell separation was not possible with most of the tools, because cell separation methods are provided only by a subset of the tools and are difficult to parametrize and to use. Most important is that the usability matches the functionality of a tool. To be usable, specialized tools with less functionality need to fulfill less usability criteria, whereas multipurpose tools need a well-structured menu and intuitive graphical user interface. © 2014 Fraunhofer-Institute for Integrated Circuits IIS Journal of Microscopy © 2014 Royal Microscopical Society.

  7. Mapping the dynamics of brain perfusion using functional ultrasound in a rat model of transient middle cerebral artery occlusion

    PubMed Central

    Brunner, Clément; Isabel, Clothilde; Martin, Abraham; Dussaux, Clara; Savoye, Anne; Emmrich, Julius; Montaldo, Gabriel; Mas, Jean-Louis; Urban, Alan

    2015-01-01

    Following middle cerebral artery occlusion, tissue outcome ranges from normal to infarcted depending on depth and duration of hypoperfusion as well as occurrence and efficiency of reperfusion. However, the precise time course of these changes in relation to tissue and behavioral outcome remains unsettled. To address these issues, a three-dimensional wide field-of-view and real-time quantitative functional imaging technique able to map perfusion in the rodent brain would be desirable. Here, we applied functional ultrasound imaging, a novel approach to map relative cerebral blood volume without contrast agent, in a rat model of brief proximal transient middle cerebral artery occlusion to assess perfusion in penetrating arterioles and venules acutely and over six days thanks to a thinned-skull preparation. Functional ultrasound imaging efficiently mapped the acute changes in relative cerebral blood volume during occlusion and following reperfusion with high spatial resolution (100 µm), notably documenting marked focal decreases during occlusion, and was able to chart the fine dynamics of tissue reperfusion (rate: one frame/5 s) in the individual rat. No behavioral and only mild post-mortem immunofluorescence changes were observed. Our study suggests functional ultrasound is a particularly well-adapted imaging technique to study cerebral perfusion in acute experimental stroke longitudinally from the hyper-acute up to the chronic stage in the same subject. PMID:26721392

  8. The hippocampal formation participates in novel picture encoding: evidence from functional magnetic resonance imaging.

    PubMed Central

    Stern, C E; Corkin, S; González, R G; Guimaraes, A R; Baker, J R; Jennings, P J; Carr, C A; Sugiura, R M; Vedantham, V; Rosen, B R

    1996-01-01

    Considerable evidence exists to support the hypothesis that the hippocampus and related medial temporal lobe structures are crucial for the encoding and storage of information in long-term memory. Few human imaging studies, however, have successfully shown signal intensity changes in these areas during encoding or retrieval. Using functional magnetic resonance imaging (fMRI), we studied normal human subjects while they performed a novel picture encoding task. High-speed echo-planar imaging techniques evaluated fMRI signal changes throughout the brain. During the encoding of novel pictures, statistically significant increases in fMRI signal were observed bilaterally in the posterior hippocampal formation and parahippocampal gyrus and in the lingual and fusiform gyri. To our knowledge, this experiment is the first fMRI study to show robust signal changes in the human hippocampal region. It also provides evidence that the encoding of novel, complex pictures depends upon an interaction between ventral cortical regions, specialized for object vision, and the hippocampal formation and parahippocampal gyrus, specialized for long-term memory. Images Fig. 1 Fig. 3 PMID:8710927

  9. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study.

    PubMed

    Miao, Wen; Man, Fengyuan; Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A; He, Huiguang; Jiao, Yonghong

    2015-01-01

    To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender-matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1.

  10. On an image reconstruction method for ECT

    NASA Astrophysics Data System (ADS)

    Sasamoto, Akira; Suzuki, Takayuki; Nishimura, Yoshihiro

    2007-04-01

    An image by Eddy Current Testing(ECT) is a blurred image to original flaw shape. In order to reconstruct fine flaw image, a new image reconstruction method has been proposed. This method is based on an assumption that a very simple relationship between measured data and source were described by a convolution of response function and flaw shape. This assumption leads to a simple inverse analysis method with deconvolution.In this method, Point Spread Function (PSF) and Line Spread Function(LSF) play a key role in deconvolution processing. This study proposes a simple data processing to determine PSF and LSF from ECT data of machined hole and line flaw. In order to verify its validity, ECT data for SUS316 plate(200x200x10mm) with artificial machined hole and notch flaw had been acquired by differential coil type sensors(produced by ZETEC Inc). Those data were analyzed by the proposed method. The proposed method restored sharp discrete multiple hole image from interfered data by multiple holes. Also the estimated width of line flaw has been much improved compared with original experimental data. Although proposed inverse analysis strategy is simple and easy to implement, its validity to holes and line flaw have been shown by many results that much finer image than original image have been reconstructed.

  11. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico

    2006-06-01

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minati, Ludovico

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Givenmore » the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.« less

  13. Role of HIS/RIS DICOM interfaces in the integration of imaging into the Department of Veterans Affairs healthcare enterprise

    NASA Astrophysics Data System (ADS)

    Kuzmak, Peter M.; Dayhoff, Ruth E.

    1998-07-01

    The U.S. Department of Veterans Affairs is integrating imaging into the healthcare enterprise using the Digital Imaging and Communication in Medicine (DICOM) standard protocols. Image management is directly integrated into the VistA Hospital Information System (HIS) software and clinical database. Radiology images are acquired via DICOM, and are stored directly in the HIS database. Images can be displayed on low- cost clinician's workstations throughout the medical center. High-resolution diagnostic quality multi-monitor VistA workstations with specialized viewing software can be used for reading radiology images. DICOM has played critical roles in the ability to integrate imaging functionality into the Healthcare Enterprise. Because of its openness, it allows the integration of system components from commercial and non- commercial sources to work together to provide functional cost-effective solutions (see Figure 1). Two approaches are used to acquire and handle images within the radiology department. At some VA Medical Centers, DICOM is used to interface a commercial Picture Archiving and Communications System (PACS) to the VistA HIS. At other medical centers, DICOM is used to interface the image producing modalities directly to the image acquisition and display capabilities of VistA itself. Both of these approaches use a small set of DICOM services that has been implemented by VistA to allow patient and study text data to be transmitted to image producing modalities and the commercial PACS, and to enable images and study data to be transferred back.

  14. Enhancement of intrinsic optical signal recording with split spectrum optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Thapa, Damber; Wang, Benquan; Lu, Yiming; Son, Taeyoon; Yao, Xincheng

    2017-09-01

    Functional optical coherence tomography (OCT) of stimulus-evoked intrinsic optical signal (IOS) promises to be a new methodology for high-resolution mapping of retinal neural dysfunctions. However, its practical applications for non-invasive examination of retinal function have been hindered by the low signal-to-noise ratio (SNR) and small magnitude of IOSs. Split spectrum amplitude-decorrelation has been demonstrated to improve the image quality of OCT angiography. In this study, we exploited split spectrum strategy to improve the sensitivity of IOS recording. The full OCT spectrum was split into multiple spectral bands and IOSs from each sub-band were calculated separately and then combined to generate a single IOS image sequence. The algorithm was tested on in vivo images of frog retinas. It significantly improved both IOS magnitude and SNR, which are essential for practical applications of functional IOS imaging.

  15. Quantification of left ventricular functional parameter values using 3D spiral bSSFP and through-time non-Cartesian GRAPPA.

    PubMed

    Barkauskas, Kestutis J; Rajiah, Prabhakar; Ashwath, Ravi; Hamilton, Jesse I; Chen, Yong; Ma, Dan; Wright, Katherine L; Gulani, Vikas; Griswold, Mark A; Seiberlich, Nicole

    2014-09-11

    The standard clinical acquisition for left ventricular functional parameter analysis with cardiovascular magnetic resonance (CMR) uses a multi-breathhold multi-slice segmented balanced SSFP sequence. Performing multiple long breathholds in quick succession for ventricular coverage in the short-axis orientation can lead to fatigue and is challenging in patients with severe cardiac or respiratory disorders. This study combines the encoding efficiency of a six-fold undersampled 3D stack of spirals balanced SSFP sequence with 3D through-time spiral GRAPPA parallel imaging reconstruction. This 3D spiral method requires only one breathhold to collect the dynamic data. Ten healthy volunteers were recruited for imaging at 3 T. The 3D spiral technique was compared against 2D imaging in terms of systolic left ventricular functional parameter values (Bland-Altman plots), total scan time (Welch's t-test) and qualitative image rating scores (Wilcoxon signed-rank test). Systolic left ventricular functional values were not significantly different (i.e. 3D-2D) between the methods. The 95% confidence interval for ejection fraction was -0.1 ± 1.6% (mean ± 1.96*SD). The total scan time for the 3D spiral technique was 48 s, which included one breathhold with an average duration of 14 s for the dynamic scan, plus 34 s to collect the calibration data under free-breathing conditions. The 2D method required an average of 5 min 40s for the same coverage of the left ventricle. The difference between 3D and 2D image rating scores was significantly different from zero (Wilcoxon signed-rank test, p < 0.05); however, the scores were at least 3 (i.e. average) or higher for 3D spiral imaging. The 3D through-time spiral GRAPPA method demonstrated equivalent systolic left ventricular functional parameter values, required significantly less total scan time and yielded acceptable image quality with respect to the 2D segmented multi-breathhold standard in this study. Moreover, the 3D spiral technique used just one breathhold for dynamic imaging, which is anticipated to reduce patient fatigue as part of the complete cardiac examination in future studies that include patients.

  16. Temporal and spatial resolution required for imaging myocardial function

    NASA Astrophysics Data System (ADS)

    Eusemann, Christian D.; Robb, Richard A.

    2004-05-01

    4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.

  17. Neural processing of negative word stimuli concerning body image in patients with eating disorders: an fMRI study.

    PubMed

    Miyake, Yoshie; Okamoto, Yasumasa; Onoda, Keiichi; Shirao, Naoko; Okamoto, Yuri; Otagaki, Yoko; Yamawaki, Shigeto

    2010-04-15

    Eating disorders (EDs) are associated with abnormalities of body image perception. The aim of the present study was to investigate the functional abnormalities in brain systems during processing of negative words concerning body images in patients with EDs. Brain responses to negative words concerning body images (task condition) and neutral words (control condition) were measured using functional magnetic resonance imaging in 36 patients with EDs (12 with the restricting type anorexia nervosa; AN-R, 12 with the binging-purging type anorexia nervosa; AN-BP, and 12 with bulimia nervosa; BN) and 12 healthy young women. Participants were instructed to select the most negative word from each negative body-image word set and to select the most neutral word from each neutral word set. In the task relative to the control condition, the right amygdala was activated both in patients with AN-R and in patients with AN-BP. The left medial prefrontal cortex (mPFC) was activated both in patients with BN and in patients with AN-BP. It is suggested that these brain activations may be associated with abnormalities of body image perception. Amygdala activation may be involved in fearful emotional processing of negative words concerning body image and strong fears of gaining weight. One possible interpretation of the finding of mPFC activation is that it may reflect an attempt to regulate the emotion invoked by the stimuli. These abnormal brain functions may help provide better accounts of the psychopathological mechanisms underlying EDs. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Whole-head functional brain imaging of neonates at cot-side using time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Dempsey, Laura A.; Cooper, Robert J.; Powell, Samuel; Edwards, Andrea; Lee, Chuen-Wai; Brigadoi, Sabrina; Everdell, Nick; Arridge, Simon; Gibson, Adam P.; Austin, Topun; Hebden, Jeremy C.

    2015-07-01

    We present a method for acquiring whole-head images of changes in blood volume and oxygenation from the infant brain at cot-side using time-resolved diffuse optical tomography (TR-DOT). At UCL, we have built a portable TR-DOT device, known as MONSTIR II, which is capable of obtaining a whole-head (1024 channels) image sequence in 75 seconds. Datatypes extracted from the temporal point spread functions acquired by the system allow us to determine changes in absorption and reduced scattering coefficients within the interrogated tissue. This information can then be used to define clinically relevant measures, such as oxygen saturation, as well as to reconstruct images of relative changes in tissue chromophore concentration, notably those of oxy- and deoxyhaemoglobin. Additionally, the effective temporal resolution of our system is improved with spatio-temporal regularisation implemented through a Kalman filtering approach, allowing us to image transient haemodynamic changes. By using this filtering technique with intensity and mean time-of-flight datatypes, we have reconstructed images of changes in absorption and reduced scattering coefficients in a dynamic 2D phantom. These results demonstrate that MONSTIR II is capable of resolving slow changes in tissue optical properties within volumes that are comparable to the preterm head. Following this verification study, we are progressing to imaging a 3D dynamic phantom as well as the neonatal brain at cot-side. Our current study involves scanning healthy babies to demonstrate the quality of recordings we are able to achieve in this challenging patient population, with the eventual goal of imaging functional activation and seizures.

  19. THREE-DIMENSIONAL RANDOM ACCESS MULTIPHOTON MICROSCOPY FOR FAST FUNCTIONAL IMAGING OF NEURONAL ACTIVITY

    PubMed Central

    Reddy, Gaddum Duemani; Kelleher, Keith; Fink, Rudy; Saggau, Peter

    2009-01-01

    The dynamic ability of neuronal dendrites to shape and integrate synaptic responses is the hallmark of information processing in the brain. Effectively studying this phenomenon requires concurrent measurements at multiple sites on live neurons. Significant progress has been made by optical imaging systems which combine confocal and multiphoton microscopy with inertia-free laser scanning. However, all systems developed to date restrict fast imaging to two dimensions. This severely limits the extent to which neurons can be studied, since they represent complex three-dimensional (3D) structures. Here we present a novel imaging system that utilizes a unique arrangement of acousto-optic deflectors to steer a focused ultra-fast laser beam to arbitrary locations in 3D space without moving the objective lens. As we demonstrate, this highly versatile random-access multiphoton microscope supports functional imaging of complex 3D cellular structures such as neuronal dendrites or neural populations at acquisition rates on the order of tens of kilohertz. PMID:18432198

  20. Management of Liver Cancer Argon-helium Knife Therapy with Functional Computer Tomography Perfusion Imaging.

    PubMed

    Wang, Hongbo; Shu, Shengjie; Li, Jinping; Jiang, Huijie

    2016-02-01

    The objective of this study was to observe the change in blood perfusion of liver cancer following argon-helium knife treatment with functional computer tomography perfusion imaging. Twenty-seven patients with primary liver cancer treated with argon-helium knife and were included in this study. Plain computer tomography (CT) and computer tomography perfusion (CTP) imaging were conducted in all patients before and after treatment. Perfusion parameters including blood flows, blood volume, hepatic artery perfusion fraction, hepatic artery perfusion, and hepatic portal venous perfusion were used for evaluating therapeutic effect. All parameters in liver cancer were significantly decreased after argon-helium knife treatment (p < 0.05 to all). Significant decrease in hepatic artery perfusion was also observed in pericancerous liver tissue, but other parameters kept constant. CT perfusion imaging is able to detect decrease in blood perfusion of liver cancer post-argon-helium knife therapy. Therefore, CTP imaging would play an important role for liver cancer management followed argon-helium knife therapy. © The Author(s) 2014.

  1. Development of a 0.014-in., anti-solenoid loop MR imaging guidewire for intravascular 3.0-T MR imaging.

    PubMed

    Gu, Huidong; Zhang, Feng; Meng, Yanfeng; Qiu, Bensheng; Yang, Xiaoming

    2011-09-01

    This study aimed to develop a 0.014-in., anti-solenoid loop (ASL) magnetic resonance imaging guidewire (MRIG) for intravascular 3.0-T MR imaging. We first designed the ASL MRIG, which was made of a coaxial cable with its extended inner conductor and outer conductor connected to two micro-anti-solenoids. We then evaluated in vitro the functionality of the ASL MRIG by imaging a "vessel" in a phantom and achieving signal-to-noise ratio (SNR) and SNR contour map of the new 0.014-in. ASL MRIG. Subsequently, we validated in vivo the feasibility of using the ASL MRIG to generate intravenous 3.0-T MR images of parallel iliofemoral arteries of near-human-sized living pigs. In vitro evaluation showed that the 0.014-in. ASL MRIG functioned well as a receiver coil with the 3.0-T MR scanner, clearly displaying the vessel wall with even distribution of MR signals and SNR contours from the ASL MRIG. Of the in vivo studies, the new ASL MRIG enabled us to successfully generate intravenous 3.0-T MR imaging of the iliofemoral arteries. This study confirms that it is possible to build such small-looped MRIG at 0.014 in. for intravascular 3.0-T MR imaging. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Gas Phase UTE MRI of Propane and Propene

    PubMed Central

    Kovtunov, Kirill V.; Romanov, Alexey S.; Salnikov, Oleg G.; Barskiy, Danila A.; Chekmenev, Eduard Y.; Koptyug, Igor V.

    2016-01-01

    1H MRI of gases can potentially enable functional lung imaging to probe gas ventilation and other functions. In this work, 1H MR images of hyperpolarized and thermally polarized propane gas were obtained using UTE (ultrashort echo time) pulse sequence. A 2D image of thermally polarized propane gas with ~0.9×0.9 mm2 spatial resolution was obtained in less than 2 seconds, demonstrating that even non-hyperpolarized hydrocarbon gases can be successfully utilized for conventional proton MRI. The experiments were also performed with hyperpolarized propane gas and demonstrated acquisition of high-resolution multi-slice FLASH 2D images in ca. 510 s and non slice-selective 2D UTE MRI images in ca. 2 s. The UTE approach adopted in this study can be potentially used for medical lung imaging. Furthermore, the possibility to combine UTE with selective suppression of 1H signals from one of the two gases in a mixture is demonstrated in this MRI study. The latter can be useful for visualizing industrially important processes where several gases may be present, e.g., gas-solid catalytic reactions. PMID:27478870

  3. Biomarkers and perfusion – training-induced changes after stroke (BAPTISe): protocol of an observational study accompanying a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Physical activity is believed to exert a beneficial effect on functional and cognitive rehabilitation of patients with stroke. Although studies have addressed the impact of physical exercise in cerebrovascular prevention and rehabilitation, the underlying mechanisms leading to improvement are poorly understood. Training-induced increase of cerebral perfusion is a possible mediating mechanism. Our exploratory study aims to investigate training-induced changes in blood biomarker levels and magnetic resonance imaging in patients with subacute ischemic stroke. Methods/design This biomarker-driven study uses an observational design to examine a subgroup of patients in the randomized, controlled PHYS-STROKE trial. In PHYS-STROKE, 215 patients with subacute stroke (hemorrhagic and ischemic) receive either 4 weeks of physical training (aerobic training, 5 times a week, for 50 minutes) or 4 weeks of relaxation sessions (5 times a week, for 50 minutes). A convenience sample of 100 of these patients with ischemic stroke will be included in BAPTISe and will receive magnetic resonance imaging (MRI) scans and an additional blood draw before and after the PHYS-STROKE intervention. Imaging scans will address parameters of cerebral perfusion, vessel size imaging, and microvessel density (the Q factor) to estimate the degree of neovascularization in the brain. Blood tests will determine several parameters of immunity, inflammation, endothelial function, and lipometabolism. Primary objective of this study is to evaluate differential changes in MRI and blood-derived biomarkers between groups. Other endpoints are next cerebrovascular events and functional status of the patient after the intervention and after 3 months assessed by functional scores, in particular walking speed and Barthel index (co-primary endpoints of PHYS-STROKE). Additionally, we will assess the association between functional outcomes and biomarkers including imaging results. For all endpoints we will compare changes between patients who received physical fitness training and patients who had relaxation sessions. Discussion This exploratory study will be the first to investigate the effects of physical fitness training in patients with ischemic stroke on MRI-based cerebral perfusion, pertinent blood biomarker levels, and functional outcome. The study may have an impact on current patient rehabilitation strategies and reveal important information about the roles of MRI and blood-derived biomarkers in ischemic stroke. Trial registration NCT01954797. PMID:24330706

  4. Glymphatic MRI in idiopathic normal pressure hydrocephalus

    PubMed Central

    Ringstad, Geir; Vatnehol, Svein Are Sirirud; Eide, Per Kristian

    2017-01-01

    Abstract The glymphatic system has in previous studies been shown as fundamental to clearance of waste metabolites from the brain interstitial space, and is proposed to be instrumental in normal ageing and brain pathology such as Alzheimer’s disease and brain trauma. Assessment of glymphatic function using magnetic resonance imaging with intrathecal contrast agent as a cerebrospinal fluid tracer has so far been limited to rodents. We aimed to image cerebrospinal fluid flow characteristics and glymphatic function in humans, and applied the methodology in a prospective study of 15 idiopathic normal pressure hydrocephalus patients (mean age 71.3 ± 8.1 years, three female and 12 male) and eight reference subjects (mean age 41.1 + 13.0 years, six female and two male) with suspected cerebrospinal fluid leakage (seven) and intracranial cyst (one). The imaging protocol included T1-weighted magnetic resonance imaging with equal sequence parameters before and at multiple time points through 24 h after intrathecal injection of the contrast agent gadobutrol at the lumbar level. All study subjects were kept in the supine position between examinations during the first day. Gadobutrol enhancement was measured at all imaging time points from regions of interest placed at predefined locations in brain parenchyma, the subarachnoid and intraventricular space, and inside the sagittal sinus. Parameters demonstrating gadobutrol enhancement and clearance in different locations were compared between idiopathic normal pressure hydrocephalus and reference subjects. A characteristic flow pattern in idiopathic normal hydrocephalus was ventricular reflux of gadobutrol from the subarachnoid space followed by transependymal gadobutrol migration. At the brain surfaces, gadobutrol propagated antegradely along large leptomeningeal arteries in all study subjects, and preceded glymphatic enhancement in adjacent brain tissue, indicating a pivotal role of intracranial pulsations for glymphatic function. In idiopathic normal pressure hydrocephalus, we found delayed enhancement (P < 0.05) and decreased clearance of gadobutrol (P < 0.05) at the Sylvian fissure. Parenchymal (glymphatic) enhancement peaked overnight in both study groups, possibly indicating a crucial role of sleep, and was larger in normal pressure hydrocephalus patients (P < 0.05 at inferior frontal gyrus). We interpret decreased gadobutrol clearance from the subarachnoid space, along with persisting enhancement in brain parenchyma, as signs of reduced glymphatic clearance in idiopathic normal hydrocephalus, and hypothesize that reduced glymphatic function is instrumental for dementia in this disease. The study shows promise for glymphatic magnetic resonance imaging as a method to assess human brain metabolic function and renders a potential for contrast enhanced brain extravascular space imaging. PMID:28969373

  5. Glymphatic MRI in idiopathic normal pressure hydrocephalus.

    PubMed

    Ringstad, Geir; Vatnehol, Svein Are Sirirud; Eide, Per Kristian

    2017-10-01

    The glymphatic system has in previous studies been shown as fundamental to clearance of waste metabolites from the brain interstitial space, and is proposed to be instrumental in normal ageing and brain pathology such as Alzheimer's disease and brain trauma. Assessment of glymphatic function using magnetic resonance imaging with intrathecal contrast agent as a cerebrospinal fluid tracer has so far been limited to rodents. We aimed to image cerebrospinal fluid flow characteristics and glymphatic function in humans, and applied the methodology in a prospective study of 15 idiopathic normal pressure hydrocephalus patients (mean age 71.3 ± 8.1 years, three female and 12 male) and eight reference subjects (mean age 41.1 + 13.0 years, six female and two male) with suspected cerebrospinal fluid leakage (seven) and intracranial cyst (one). The imaging protocol included T1-weighted magnetic resonance imaging with equal sequence parameters before and at multiple time points through 24 h after intrathecal injection of the contrast agent gadobutrol at the lumbar level. All study subjects were kept in the supine position between examinations during the first day. Gadobutrol enhancement was measured at all imaging time points from regions of interest placed at predefined locations in brain parenchyma, the subarachnoid and intraventricular space, and inside the sagittal sinus. Parameters demonstrating gadobutrol enhancement and clearance in different locations were compared between idiopathic normal pressure hydrocephalus and reference subjects. A characteristic flow pattern in idiopathic normal hydrocephalus was ventricular reflux of gadobutrol from the subarachnoid space followed by transependymal gadobutrol migration. At the brain surfaces, gadobutrol propagated antegradely along large leptomeningeal arteries in all study subjects, and preceded glymphatic enhancement in adjacent brain tissue, indicating a pivotal role of intracranial pulsations for glymphatic function. In idiopathic normal pressure hydrocephalus, we found delayed enhancement (P < 0.05) and decreased clearance of gadobutrol (P < 0.05) at the Sylvian fissure. Parenchymal (glymphatic) enhancement peaked overnight in both study groups, possibly indicating a crucial role of sleep, and was larger in normal pressure hydrocephalus patients (P < 0.05 at inferior frontal gyrus). We interpret decreased gadobutrol clearance from the subarachnoid space, along with persisting enhancement in brain parenchyma, as signs of reduced glymphatic clearance in idiopathic normal hydrocephalus, and hypothesize that reduced glymphatic function is instrumental for dementia in this disease. The study shows promise for glymphatic magnetic resonance imaging as a method to assess human brain metabolic function and renders a potential for contrast enhanced brain extravascular space imaging. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  6. Form or function: Does focusing on body functionality protect women from body dissatisfaction when viewing media images?

    PubMed

    Mulgrew, Kate E; Tiggemann, Marika

    2018-01-01

    We examined whether shifting young women's ( N =322) attention toward functionality components of media-portrayed idealized images would protect against body dissatisfaction. Image type was manipulated via images of models in either an objectified body-as-object form or active body-as-process form; viewing focus was manipulated via questions about the appearance or functionality of the models. Social comparison was examined as a moderator. Negative outcomes were most pronounced within the process-related conditions (body-as-process images or functionality viewing focus) and for women who reported greater functionality comparison. Results suggest that functionality-based depictions, reflections, and comparisons may actually produce worse outcomes than those based on appearance.

  7. In vivo imaging of the Drosophila Melanogaster heart using a novel optical coherence tomography microscope

    NASA Astrophysics Data System (ADS)

    Izatt, Susan D.; Choma, Michael A.; Israel, Steven; Wessells, Robert J.; Bodmer, Rolf; Izatt, Joseph A.

    2005-03-01

    Real time in vivo optical coherence tomography (OCT) imaging of the adult fruit fly Drosophila melanogaster heart using a newly designed OCT microscope allows accurate assessment of cardiac anatomy and function. D. melanogaster has been used extensively in genetic research for over a century, but in vivo evaluation of the heart has been limited by available imaging technology. The ability to assess phenotypic changes with micrometer-scale resolution noninvasively in genetic models such as D. melanogaster is needed in the advancing fields of developmental biology and genetics. We have developed a dedicated small animal OCT imaging system incorporating a state-of-the-art, real time OCT scanner integrated into a standard stereo zoom microscope which allows for simultaneous OCT and video imaging. System capabilities include A-scan, B-scan, and M-scan imaging as well as automated 3D volumetric acquisition and visualization. Transverse and sagittal B-mode scans of the four chambered D. melanogaster heart have been obtained with the OCT microscope and are consistent with detailed anatomical studies from the literature. Further analysis by M-mode scanning is currently under way to assess cardiac function as a function of age and sex by determination of shortening fraction and ejection fraction. These studies create control cardiac data on the wild type D. melanogaster, allowing subsequent evaluation of phenotypic cardiac changes in this model after regulated genetic mutation.

  8. Echocardiographic strain and strain-rate imaging: a new tool to study regional myocardial function.

    PubMed

    D'hooge, Jan; Bijnens, Bart; Thoen, Jan; Van de Werf, Frans; Sutherland, George R; Suetens, Paul

    2002-09-01

    Ultrasonic imaging is the noninvasive clinical imaging modality of choice for diagnosing heart disease. At present, two-dimensional ultrasonic grayscale images provide a relatively cheap, fast, bedside method to study the morphology of the heart. Several methods have been proposed to assess myocardial function. These have been based on either grayscale or motion (velocity) information measured in real-time. However, the quantitative assessment of regional myocardial function remains an important goal in clinical cardiology. To do this, ultrasonic strain and strain-rate imaging have been introduced. In the clinical setting, these techniques currently only allow one component of the true three-dimensional deformation to be measured. Clinical, multidimensional strain (rate) information can currently thus only be obtained by combining data acquired using different transducer positions. Nevertheless, given the appropriate postprocessing, the clinical value of these techniques has already been shown. Moreover, multidimensional strain and strain-rate estimation of the heart in vivo by means of a single ultrasound acquisition has been shown to be feasible. In this paper, the new techniques of ultrasonic strain rate and strain imaging of the heart are reviewed in terms of definitions, data acquisition, strain-rate estimation, postprocessing, and parameter extraction. Their clinical validation and relevance will be discussed using clinical examples on relevant cardiac pathology. Based on these examples, suggestions are made for future developments of these techniques.

  9. Functional Brain Imaging

    PubMed Central

    2006-01-01

    Executive Summary Objective The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer’s disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson’s disease (PD). Clinical Need: Target Population and Condition Alzheimer’s disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson’s disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. The Technology Being Reviewed Functional Brain Imaging Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. Review Strategy The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology Assessment (INAHTA). The database search was supplemented with a search of relevant Web sites and a review of the bibliographies of selected papers. General inclusion criteria were applied to all conditions. Those criteria included the following: Full reports of systematic reviews, randomized controlled trials (RCTs), cohort-control studies, prospective cohort studies (PCS’), and retrospective studies. Sample sizes of at least 20 patients (≥ 10 with condition being reviewed). English-language studies. Human studies. Any age. Studying at least one of the following: fMRI, PET, MRS, or MEG. Functional brain imaging modality must be compared with a clearly defined reference standard. Must report at least one of the following outcomes: sensitivity, specificity, accuracy, positive predictive value (PPV), receiver operating characteristic curve, outcome measuring impact on diagnostic testing, treatment, patient health, or cost. Summary of Findings There is evidence to indicate that PET can accurately diagnose AD; however, at this time, there is no evidence to suggest that a diagnosis of AD with PET alters the clinical outcomes of patients. The addition of MRS or O-(2-18F-Fluoroethyl)-L-Tyrosine (FET)-PET to gadolinium (Gd)-enhanced MRI for distinguishing malignant from benign tumours during primary diagnosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients to distinguish malignant from benign tumours is unclear, because patients with a suspected brain tumour will likely undergo a biopsy despite additional imaging results. The addition of MRS, FET-PET, or MRI T2 to Gd-enhanced MRI for the differentiation of recurrence from radiation necrosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients with a suspected recurrence is in the monitoring of patients. Based on the evidence available, it is unclear if one of the imaging modalities (MRS, FET-PET, or MRI T2) offers significantly improved specificity over another. There may be a role for fMRI in the identification of surgical candidates for tumour resection; however, this requires further research. Based on the studies available, it is unclear if MEG has similar accuracy in localizing seizure foci to intracranial electroencephalogram (ICEEG). More high-quality research is needed to establish whether there is a difference in accuracy between MEG and ICEEG. The results of the studies comparing PET to noninvasive electroencephalogram (EEG) did not demonstrate that PET was more accurate at localizing seizure foci; however, there may be some specific conditions, such as tuberous sclerosis, where PET may be more accurate than noninvasive EEG. There may be some clinical utility for MEG or fMRI in presurgical functional mapping; however, this needs further investigation involving comparisons with other modalities. The clinical utility of MRS has yet to be established for patients with epilepsy. Positron emission tomography has high sensitivity and specificity in the diagnosis of PD and the differential diagnosis of parkinsonian syndromes; however, it is unclear at this time if the addition of PET in the diagnosis of these conditions contributes to the treatment and clinical outcomes of patients. There is limited clinical utility of functional brain imaging in the management of patients with MS at this time. Diagnosis of MS is established through clinical history, evoked potentials, and MRI. Magnetic resonance imaging can identify the multifocal white lesions and other structural characteristics of MS. PMID:23074493

  10. Functional brain imaging: an evidence-based analysis.

    PubMed

    2006-01-01

    The objective of this analysis is to review a spectrum of functional brain imaging technologies to identify whether there are any imaging modalities that are more effective than others for various brain pathology conditions. This evidence-based analysis reviews magnetoencephalography (MEG), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) for the diagnosis or surgical management of the following conditions: Alzheimer's disease (AD), brain tumours, epilepsy, multiple sclerosis (MS), and Parkinson's disease (PD). TARGET POPULATION AND CONDITION Alzheimer's disease is a progressive, degenerative, neurologic condition characterized by cognitive impairment and memory loss. The Canadian Study on Health and Aging estimated that there will be 97,000 incident cases (about 60,000 women) of dementia (including AD) in Canada in 2006. In Ontario, there will be an estimated 950 new cases and 580 deaths due to brain cancer in 2006. Treatments for brain tumours include surgery and radiation therapy. However, one of the limitations of radiation therapy is that it damages tissue though necrosis and scarring. Computed tomography (CT) and magnetic resonance imaging (MRI) may not distinguish between radiation effects and resistant tissue, creating a potential role for functional brain imaging. Epilepsy is a chronic disorder that provokes repetitive seizures. In Ontario, the rate of epilepsy is estimated to be 5 cases per 1,000 people. Most people with epilepsy are effectively managed with drug therapy; but about 50% do not respond to drug therapy. Surgical resection of the seizure foci may be considered in these patients, and functional brain imaging may play a role in localizing the seizure foci. Multiple sclerosis is a progressive, inflammatory, demyelinating disease of the central nervous system (CNS). The cause of MS is unknown; however, it is thought to be due to a combination of etiologies, including genetic and environmental components. The prevalence of MS in Canada is 240 cases per 100,000 people. Parkinson's disease is the most prevalent movement disorder; it affects an estimated 100,000 Canadians. Currently, the standard for measuring disease progression is through the use of scales, which are subjective measures of disease progression. Functional brain imaging may provide an objective measure of disease progression, differentiation between parkinsonian syndromes, and response to therapy. FUNCTIONAL BRAIN IMAGING: Functional brain imaging technologies measure blood flow and metabolism. The results of these tests are often used in conjunction with structural imaging (e.g., MRI or CT). Positron emission tomography and MRS identify abnormalities in brain tissues. The former measures abnormalities through uptake of radiotracers in the brain, while the latter measures chemical shifts in metabolite ratios to identify abnormalities. The potential role of functional MRI (fMRI) is to identify the areas of the brain responsible for language, sensory and motor function (sensorimotor cortex), rather than identifying abnormalities in tissues. Magnetoencephalography measures magnetic fields of the electric currents in the brain, identifying aberrant activity. Magnetoencephalography may have the potential to localize seizure foci and to identify the sensorimotor cortex, visual cortex and auditory cortex. In terms of regulatory status, MEG and PET are licensed by Health Canada. Both MRS and fMRI use a MRI platform; thus, they do not have a separate licence from Health Canada. The radiotracers used in PET scanning are not licensed by Health Canada for general use but can be used through a Clinical Trials Application. The literature published up to September 2006 was searched in the following databases: MEDLINE, MEDLINE In-Process & Other Non-Indexed Citations, EMBASE, Cochrane Database of Systematic Reviews, CENTRAL, and International Network of Agencies for Health Technology Assessment (INAHTA). The database search was supplemented with a search of relevant Web sites and a review of the bibliographies of selected papers. General inclusion criteria were applied to all conditions. Those criteria included the following: Full reports of systematic reviews, randomized controlled trials (RCTs), cohort-control studies, prospective cohort studies (PCS'), and retrospective studies.Sample sizes of at least 20 patients (≥ 10 with condition being reviewed).English-language studies.Human studies.Any age.STUDYING AT LEAST ONE OF THE FOLLOWING: fMRI, PET, MRS, or MEG.Functional brain imaging modality must be compared with a clearly defined reference standard.MUST REPORT AT LEAST ONE OF THE FOLLOWING OUTCOMES: sensitivity, specificity, accuracy, positive predictive value (PPV), receiver operating characteristic curve, outcome measuring impact on diagnostic testing, treatment, patient health, or cost. There is evidence to indicate that PET can accurately diagnose AD; however, at this time, there is no evidence to suggest that a diagnosis of AD with PET alters the clinical outcomes of patients. The addition of MRS or O-(2-(18)F-Fluoroethyl)-L-Tyrosine (FET)-PET to gadolinium (Gd)-enhanced MRI for distinguishing malignant from benign tumours during primary diagnosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients to distinguish malignant from benign tumours is unclear, because patients with a suspected brain tumour will likely undergo a biopsy despite additional imaging results. The addition of MRS, FET-PET, or MRI T2 to Gd-enhanced MRI for the differentiation of recurrence from radiation necrosis may provide a higher specificity than Gd-enhanced MRI alone. The clinical utility of additional imaging in patients with a suspected recurrence is in the monitoring of patients. Based on the evidence available, it is unclear if one of the imaging modalities (MRS, FET-PET, or MRI T2) offers significantly improved specificity over another. There may be a role for fMRI in the identification of surgical candidates for tumour resection; however, this requires further research. Based on the studies available, it is unclear if MEG has similar accuracy in localizing seizure foci to intracranial electroencephalogram (ICEEG). More high-quality research is needed to establish whether there is a difference in accuracy between MEG and ICEEG. The results of the studies comparing PET to noninvasive electroencephalogram (EEG) did not demonstrate that PET was more accurate at localizing seizure foci; however, there may be some specific conditions, such as tuberous sclerosis, where PET may be more accurate than noninvasive EEG. There may be some clinical utility for MEG or fMRI in presurgical functional mapping; however, this needs further investigation involving comparisons with other modalities. The clinical utility of MRS has yet to be established for patients with epilepsy. Positron emission tomography has high sensitivity and specificity in the diagnosis of PD and the differential diagnosis of parkinsonian syndromes; however, it is unclear at this time if the addition of PET in the diagnosis of these conditions contributes to the treatment and clinical outcomes of patients. There is limited clinical utility of functional brain imaging in the management of patients with MS at this time. Diagnosis of MS is established through clinical history, evoked potentials, and MRI. Magnetic resonance imaging can identify the multifocal white lesions and other structural characteristics of MS.

  11. Arterial input function derived from pairwise correlations between PET-image voxels.

    PubMed

    Schain, Martin; Benjaminsson, Simon; Varnäs, Katarina; Forsberg, Anton; Halldin, Christer; Lansner, Anders; Farde, Lars; Varrone, Andrea

    2013-07-01

    A metabolite corrected arterial input function is a prerequisite for quantification of positron emission tomography (PET) data by compartmental analysis. This quantitative approach is also necessary for radioligands without suitable reference regions in brain. The measurement is laborious and requires cannulation of a peripheral artery, a procedure that can be associated with patient discomfort and potential adverse events. A non invasive procedure for obtaining the arterial input function is thus preferable. In this study, we present a novel method to obtain image-derived input functions (IDIFs). The method is based on calculation of the Pearson correlation coefficient between the time-activity curves of voxel pairs in the PET image to localize voxels displaying blood-like behavior. The method was evaluated using data obtained in human studies with the radioligands [(11)C]flumazenil and [(11)C]AZ10419369, and its performance was compared with three previously published methods. The distribution volumes (VT) obtained using IDIFs were compared with those obtained using traditional arterial measurements. Overall, the agreement in VT was good (∼3% difference) for input functions obtained using the pairwise correlation approach. This approach performed similarly or even better than the other methods, and could be considered in applied clinical studies. Applications to other radioligands are needed for further verification.

  12. Cerebral networks of sustained attention and working memory: a functional magnetic resonance imaging study based on the Continuous Performance Test.

    PubMed

    Bartés-Serrallonga, M; Adan, A; Solé-Casals, J; Caldú, X; Falcón, C; Pérez-Pàmies, M; Bargalló, N; Serra-Grabulosa, J M

    2014-04-01

    One of the most used paradigms in the study of attention is the Continuous Performance Test (CPT). The identical pairs version (CPT-IP) has been widely used to evaluate attention deficits in developmental, neurological and psychiatric disorders. However, the specific locations and the relative distribution of brain activation in networks identified with functional imaging, varies significantly with differences in task design. To design a task to evaluate sustained attention using functional magnetic resonance imaging (fMRI), and thus to provide data for research concerned with the role of these functions. Forty right-handed, healthy students (50% women; age range: 18-25 years) were recruited. A CPT-IP implemented as a block design was used to assess sustained attention during the fMRI session. The behavioural results from the CPT-IP task showed a good performance in all subjects, higher than 80% of hits. fMRI results showed that the used CPT-IP task activates a network of frontal, parietal and occipital areas, and that these are related to executive and attentional functions. In relation to the use of the CPT to study of attention and working memory, this task provides normative data in healthy adults, and it could be useful to evaluate disorders which have attentional and working memory deficits.

  13. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease

    PubMed Central

    Klohs, Jan; Rudin, Markus; Shimshek, Derya R.; Beckmann, Nicolau

    2014-01-01

    In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature. PMID:24659966

  14. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy.

    PubMed

    King, Kathryn S; Chen, Clara C; Alexopoulos, Dimitrios K; Whatley, Millie A; Reynolds, James C; Patronas, Nicholas; Ling, Alexander; Adams, Karen T; Xekouki, Paraskevi; Lando, Howard; Stratakis, Constantine A; Pacak, Karel

    2011-09-01

    Accurate diagnosis of head and neck paragangliomas is often complicated by biochemical silence and lack of catecholamine-associated symptoms, making accurate anatomical and functional imaging techniques essential to the diagnostic process. Ten patients (seven SDHD, three SDHB), with a total of 26 head and neck paragangliomas, were evaluated with anatomical and functional imaging. This study compares five different functional imaging techniques [(18)F-fluorodihydroxyphenylalanine ((18)F-FDOPA) positron emission tomography (PET), (18)F-fluorodopamine ((18)F-FDA) PET/computed tomography (CT), (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET/CT, (123)I-metaiodobenzylguanidine ((123)I-MIBG) scintigraphy, and (111)In-pentetreotide scintigraphy] in the localization of head and neck paragangliomas. Prospectively (18)F-FDOPA PET localized 26 of 26 lesions in the 10 patients, CT/magnetic resonance imaging localized 21 of 26 lesions, (18)F-FDG PET/CT localized 20 of 26 lesions, (111)In-pentetreotide scintigraphy localized 16 of 25 lesions, (18)F-FDA PET/CT localized 12 of 26 lesions, and (123)I-MIBG scintigraphy localized eight of 26 lesions. Differences in imaging efficacy related to genetic phenotype, even in the present small sample size, included the negativity of (18)F-FDA PET/CT and (123)I-MIBG scintigraphy in patients with SDHB mutations and the accuracy of (18)F-FDG PET/CT in all patients with SDHD mutations, as compared with the accuracy of (18)F-FDG PET/CT in only one patient with an SDHB mutation. Overall, (18)F-FDOPA PET proved to be the most efficacious functional imaging modality in the localization of SDHx-related head and neck paragangliomas and may be a potential first-line functional imaging agent for the localization of these tumors.

  15. Functional Renal Imaging with 2-Deoxy-2-18F-Fluorosorbitol PET in Rat Models of Renal Disorders.

    PubMed

    Werner, Rudolf A; Wakabayashi, Hiroshi; Chen, Xinyu; Hirano, Mitsuru; Shinaji, Tetsuya; Lapa, Constantin; Rowe, Steven P; Javadi, Mehrbod S; Higuchi, Takahiro

    2018-05-01

    Precise regional quantitative assessment of renal function is limited with conventional 99m Tc-labeled renal radiotracers. A recent study reported that the PET radiotracer 2-deoxy-2- 18 F-fluorosorbitol ( 18 F-FDS) has ideal pharmacokinetics for functional renal imaging. Furthermore, 18 F-FDS is available via simple reduction from routinely used 18 F-FDG. We aimed to further investigate the potential of 18 F-FDS PET as a functional renal imaging agent using rat models of kidney disease. Methods: Two different rat models of renal impairment were investigated: induction of acute renal failure by intramuscular administration of glycerol in the hind legs, and induction of unilateral ureteral obstruction by ligation of the left ureter. At 24 h after these procedures, dynamic 30-min 18 F-FDS PET data were acquired using a dedicated small-animal PET system. Urine 18 F-FDS radioactivity 30 min after radiotracer injection was measured together with coinjected 99m Tc-diethylenetriaminepentaacetic acid urine activity. Results: Dynamic PET imaging demonstrated rapid 18 F-FDS accumulation in the renal cortex and rapid radiotracer excretion via the kidneys in healthy control rats. On the other hand, significantly delayed renal radiotracer uptake (continuous slow uptake) was observed in acute renal failure rats and unilateral ureteral obstruction kidneys. Measured urine radiotracer concentrations of 18 F-FDS and 99m Tc-diethylenetriaminepentaacetic acid correlated well with each other ( R = 0.84, P < 0.05). Conclusion: 18 F-FDS PET demonstrated favorable kinetics for functional renal imaging in rat models of kidney diseases. 18 F-FDS PET imaging, with its advantages of high spatiotemporal resolution and simple tracer production, could potentially complement or replace conventional renal scintigraphy in select cases and significantly improve the diagnostic performance of renal functional imaging. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  16. Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography

    PubMed Central

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-01-01

    Reconstructing low-dose X-ray CT (computed tomography) images is a noise problem. This work investigated a penalized weighted least-squares (PWLS) approach to address this problem in two dimensions, where the WLS considers first- and second-order noise moments and the penalty models signal spatial correlations. Three different implementations were studied for the PWLS minimization. One utilizes a MRF (Markov random field) Gibbs functional to consider spatial correlations among nearby detector bins and projection views in sinogram space and minimizes the PWLS cost function by iterative Gauss-Seidel algorithm. Another employs Karhunen-Loève (KL) transform to de-correlate data signals among nearby views and minimizes the PWLS adaptively to each KL component by analytical calculation, where the spatial correlation among nearby bins is modeled by the same Gibbs functional. The third one models the spatial correlations among image pixels in image domain also by a MRF Gibbs functional and minimizes the PWLS by iterative successive over-relaxation algorithm. In these three implementations, a quadratic functional regularization was chosen for the MRF model. Phantom experiments showed a comparable performance of these three PWLS-based methods in terms of suppressing noise-induced streak artifacts and preserving resolution in the reconstructed images. Computer simulations concurred with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS implementation may have the advantage in terms of computation for high-resolution dynamic low-dose CT imaging. PMID:17024831

  17. Gastrointestinal ostomies and sexual outcomes: a comparison of colorectal cancer patients by ostomy status.

    PubMed

    Reese, J B; Finan, P H; Haythornthwaite, J A; Kadan, M; Regan, K R; Herman, J M; Efron, J; Diaz, L A; Azad, N S

    2014-02-01

    Research examining effects of ostomy use on sexual outcomes is limited. Patients with colorectal cancer were compared on sexual outcomes and body image based on ostomy status (never, past, and current ostomy). Differences in depression were also examined. Patients were prospectively recruited during clinic visits and by tumor registry mailings. Patients with colorectal cancer (N = 141; 18 past ostomy; 25 current ostomy; and 98 no ostomy history) completed surveys assessing sexual outcomes (medical impact on sexual function, Female Sexual Function Index, International Index of Erectile Function), body image distress (Body Image Scale), and depressive symptoms (Center for Epidemiologic Studies Depression Scale-Short Form). Clinical information was obtained through patient validated self-report measures and medical records. Most participants reported sexual function in the dysfunctional range using established cut-off scores. In analyses adjusting for demographic and medical covariates and depression, significant group differences were found for ostomy status on impact on sexual function (p < .001), female sexual function (p = .01), and body image (p < .001). The current and past ostomy groups reported worse impact on sexual function than those who never had an ostomy (p < .001); similar differences were found for female sexual function. The current ostomy group reported worse body image distress than those who never had an ostomy (p < .001). No differences were found across the groups for depressive symptoms (p = .33) or male sexual or erectile function (p values ≥ .59). Colorectal cancer treatment puts patients at risk for sexual difficulties and some difficulties may be more pronounced for patients with ostomies as part of their treatment. Clinical information and support should be offered.

  18. Gastrointestinal ostomies and sexual outcomes: a comparison of colorectal cancer patients by ostomy status

    PubMed Central

    Finan, P. H.; Haythornthwaite, J. A.; Kadan, M.; Regan, K. R.; Herman, J. M.; Efron, J.; Diaz, L. A.; Azad, N. S.

    2014-01-01

    Purpose Research examining effects of ostomy use on sexual outcomes is limited. Patients with colorectal cancer were compared on sexual outcomes and body image based on ostomy status (never, past, and current ostomy). Differences in depression were also examined. Methods Patients were prospectively recruited during clinic visits and by tumor registry mailings. Patients with colorectal cancer (N = 141; 18 past ostomy; 25 current ostomy; and 98 no ostomy history) completed surveys assessing sexual outcomes (medical impact on sexual function, Female Sexual Function Index, International Index of Erectile Function), body image distress (Body Image Scale), and depressive symptoms (Center for Epidemiologic Studies Depression Scale—Short Form). Clinical information was obtained through patient validated self-report measures and medical records. Results Most participants reported sexual function in the dysfunctional range using established cut-off scores. In analyses adjusting for demographic and medical covariates and depression, significant group differences were found for ostomy status on impact on sexual function (p <.001), female sexual function (p =.01), and body image (p <.001). The current and past ostomy groups reported worse impact on sexual function than those who never had an ostomy (p <.001); similar differences were found for female sexual function. The current ostomy group reported worse body image distress than those who never had an ostomy (p <.001). No differences were found across the groups for depressive symptoms (p =.33) or male sexual or erectile function (p values≥.59). Conclusions Colorectal cancer treatment puts patients at risk for sexual difficulties and some difficulties may be more pronounced for patients with ostomies as part of their treatment. Clinical information and support should be offered. PMID:24091721

  19. 4-D OCT in Developmental Cardiology

    NASA Astrophysics Data System (ADS)

    Jenkins, Michael W.; Rollins, Andrew M.

    Although strong evidence exists to suggest that altered cardiac function can lead to CHDs, few studies have investigated the influential role of cardiac function and biophysical forces on the development of the cardiovascular system due to a lack of proper in vivo imaging tools. 4-D imaging is needed to decipher the complex spatial and temporal patterns of biomechanical forces acting upon the heart. Numerous solutions over the past several years have demonstrated 4-D OCT imaging of the developing cardiovascular system. This chapter will focus on these solutions and explain their context in the evolution of 4-D OCT imaging. The first sections describe the relevant techniques (prospective gating, direct 4-D imaging, retrospective gating), while later sections focus on 4-D Doppler imaging and measurements of force implementing 4-D OCT Doppler. Finally, the techniques are summarized, and some possible future directions are discussed.

  20. TCIApathfinder: an R client for The Cancer Imaging Archive REST API.

    PubMed

    Russell, Pamela; Fountain, Kelly; Wolverton, Dulcy; Ghosh, Debashis

    2018-06-05

    The Cancer Imaging Archive (TCIA) hosts publicly available de-identified medical images of cancer from over 25 body sites and over 30,000 patients. Over 400 published studies have utilized freely available TCIA images. Images and metadata are available for download through a web interface or a REST API. Here we present TCIApathfinder, an R client for the TCIA REST API. TCIApathfinder wraps API access in user-friendly R functions that can be called interactively within an R session or easily incorporated into scripts. Functions are provided to explore the contents of the large database and to download image files. TCIApathfinder provides easy access to TCIA resources in the highly popular R programming environment. TCIApathfinder is freely available under the MIT license as a package on CRAN (https://cran.r-project.org/web/packages/TCIApathfinder/index.html) and at https://github.com/pamelarussell/TCIApathfinder. Copyright ©2018, American Association for Cancer Research.

  1. Restoration of motion blurred image with Lucy-Richardson algorithm

    NASA Astrophysics Data System (ADS)

    Li, Jing; Liu, Zhao Hui; Zhou, Liang

    2015-10-01

    Images will be blurred by relative motion between the camera and the object of interest. In this paper, we analyzed the process of motion-blurred image, and demonstrated a restoration method based on Lucy-Richardson algorithm. The blur extent and angle can be estimated by Radon transform algorithm and auto-correlation function, respectively, and then the point spread function (PSF) of the motion-blurred image can be obtained. Thus with the help of the obtained PSF, the Lucy-Richardson restoration algorithm is used for experimental analysis on the motion-blurred images that have different blur extents, spatial resolutions and signal-to-noise ratios (SNR's). Further, its effectiveness is also evaluated by structural similarity (SSIM). Further studies show that, at first, for the image with a spatial frequency of 0.2 per pixel, the modulation transfer function (MTF) of the restored images can maintains above 0.7 when the blur extent is no bigger than 13 pixels. That means the method compensates low frequency information of the image, while attenuates high frequency information. At second, we fund that the method is more effective on condition that the product of the blur extent and spatial frequency is smaller than 3.75. Finally, the Lucy-Richardson algorithm is found insensitive to the Gaussian noise (of which the variance is not bigger than 0.1) by calculating the MTF of the restored image.

  2. Visual mental image generation does not overlap with visual short-term memory: a dual-task interference study.

    PubMed

    Borst, Gregoire; Niven, Elaine; Logie, Robert H

    2012-04-01

    Visual mental imagery and working memory are often assumed to play similar roles in high-order functions, but little is known of their functional relationship. In this study, we investigated whether similar cognitive processes are involved in the generation of visual mental images, in short-term retention of those mental images, and in short-term retention of visual information. Participants encoded and recalled visually or aurally presented sequences of letters under two interference conditions: spatial tapping or irrelevant visual input (IVI). In Experiment 1, spatial tapping selectively interfered with the retention of sequences of letters when participants generated visual mental images from aural presentation of the letter names and when the letters were presented visually. In Experiment 2, encoding of the sequences was disrupted by both interference tasks. However, in Experiment 3, IVI interfered with the generation of the mental images, but not with their retention, whereas spatial tapping was more disruptive during retention than during encoding. Results suggest that the temporary retention of visual mental images and of visual information may be supported by the same visual short-term memory store but that this store is not involved in image generation.

  3. Density functional theory study of the capacitance of single file ions in a narrow cylinder

    DOE PAGES

    Kong, Xian; Wu, Jianzhong; Henderson, Douglas

    2014-11-14

    In this paper, the differential capacitance of a model organic electrolyte in a cylindrical pore that is so narrow that the ions can form only a single file is studied by means of density functional theory (DFT). Kornyshev (2013), has studied this system and found the differential capacitance to have only a double hump shape (the so-called camel shape) whereas other geometries show this behavior only at low ionic concentrations that are typical for aqueous electrolytes. However, his calculation is rather approximate. In this DFT study we find that the double hump shape occurs only at low ionic concentrations. Atmore » high concentrations, the capacitance has only a single hump. Kornyshev considers a metallic cylinder and approximately includes the contributions of electrostatic images. Electrostatic images are not easily incorporated into DFT. In conclusion, images are not considered in this study and the question of whether Kornyshev’s result is due to his approximations or images cannot be answered. Simulations to answer this question are planned.« less

  4. A FUNCTIONAL NEUROIMAGING INVESTIGATION OF THE ROLES OF STRUCTURAL COMPLEXITY AND TASK-DEMAND DURING AUDITORY SENTENCE PROCESSING

    PubMed Central

    Love, Tracy; Haist, Frank; Nicol, Janet; Swinney, David

    2009-01-01

    Using functional magnetic resonance imaging (fMRI), this study directly examined an issue that bridges the potential language processing and multi-modal views of the role of Broca’s area: the effects of task-demands in language comprehension studies. We presented syntactically simple and complex sentences for auditory comprehension under three different (differentially complex) task-demand conditions: passive listening, probe verification, and theme judgment. Contrary to many language imaging findings, we found that both simple and complex syntactic structures activated left inferior frontal cortex (L-IFC). Critically, we found activation in these frontal regions increased together with increased task-demands. Specifically, tasks that required greater manipulation and comparison of linguistic material recruited L-IFC more strongly; independent of syntactic structure complexity. We argue that much of the presumed syntactic effects previously found in sentence imaging studies of L-IFC may, among other things, reflect the tasks employed in these studies and that L-IFC is a region underlying mnemonic and other integrative functions, on which much language processing may rely. PMID:16881268

  5. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study

    PubMed Central

    Xu, Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee

    2011-01-01

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual energy system used in this study can acquire up to 15 frame of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1 to 3.0 frames /sec). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual-energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy. PMID:21285477

  6. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study.

    PubMed

    Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee

    2011-02-21

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  7. Interaction of amino acid-functionalized silver nanoparticles and Candida albicans polymorphs: A deep-UV fluorescence imaging study.

    PubMed

    Dojčilović, Radovan; Pajović, Jelena D; Božanić, Dušan K; Bogdanović, Una; Vodnik, Vesna V; Dimitrijević-Branković, Suzana; Miljković, Miona G; Kaščaková, Slavka; Réfrégiers, Matthieu; Djoković, Vladimir

    2017-07-01

    The interaction of the tryptophan functionalized Ag nanoparticles and live Candida albicans cells was studied by synchrotron excitation deep-ultraviolet (DUV) fluorescence imaging at the DISCO beamline of Synchrotron SOLEIL. DUV imaging showed that incubation of the fungus with functionalized nanoparticles results in significant increase in the fluorescence signal. The analysis of the images revealed that the interaction of the nanoparticles with (pseudo)hyphae polymorphs of the diploid fungus was less pronounced than in the case of yeast cells or budding spores. The changes in the intensity of the fluorescence signals of the cells after incubation were followed in [327-353nm] and [370-410nm] spectral ranges that correspond to the fluorescence of tryptophan in non-polar and polar environment, respectively. As a consequence of the environmental sensitivity of the silver-tryptophan fluorescent nanoprobe, we were able to determine the possible accumulation sites of the nanoparticles. The analysis of the intensity decay kinetics showed that the photobleaching effects were more pronounced in the case of the functionalized nanoparticle treated cells. The results of time-integrated emission in the mentioned spectral ranges suggested that the nanoparticles penetrate the cells, but that the majority of the nanoparticles attach to the cells' surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The use of magnetic resonance imaging for studying female sexual function: A review.

    PubMed

    Vaccaro, Christine M

    2015-04-01

    Many would agree that there are two quintessential sexual organs in the female: the clitoris and the brain. Using non-invasive techniques of magnetic resonance imaging (MRI), investigators have gained insight into the mental and physical factors involved in female sexual function. Since only the external clitoral glans is easily accessible for direct measurement, the complete anatomy of the clitoris (including the internal components-paired corpora, crura, and bulbs) has only recently been described, with MRI providing the most sensitive way of distinguishing among the various soft tissue planes. Average sizes of clitoral structures and average distances between the clitoral complex and other pelvic landmarks have been measured. These measurements have been correlated with female sexual function: a longer distance between the clitoral complex and the vaginal lumen correlates with poorer sexual function, consistent with prior imaging studies. However, whether clitoral size influences function is debatable, so further studies are needed. Physiological investigations have demonstrated that female arousal disorder is unlikely to be due to inadequate genital engorgement. Some consider the brain to be the ultimate sexual organ, and several recent studies have used functional MRI (fMRI) to reveal sexual excitability in the brain. The normal sexual response requires deactivation of the frontal lobe and activation of the instinctual limbic system of the midbrain. As MR technology continues to improve, the mysteries of female sexuality will be further unraveled. © 2015 Wiley Periodicals, Inc.

  9. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies

    PubMed Central

    Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R.

    2017-01-01

    Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function. PMID:28867998

  10. Mapping the brain correlates of borderline personality disorder: A functional neuroimaging meta-analysis of resting state studies.

    PubMed

    Visintin, Eleonora; De Panfilis, Chiara; Amore, Mario; Balestrieri, Matteo; Wolf, Robert Christian; Sambataro, Fabio

    2016-11-01

    Altered intrinsic function of the brain has been implicated in Borderline Personality Disorder (BPD). Nonetheless, imaging studies have yielded inconsistent alterations of brain function. To investigate the neural activity at rest in BPD, we conducted a set of meta-analyses of brain imaging studies performed at rest. A total of seven functional imaging studies (152 patients with BPD and 147 control subjects) were combined using whole-brain Signed Differential Mapping meta-analyses. Furthermore, two conjunction meta-analyses of neural activity at rest were also performed: with neural activity changes during emotional processing, and with structural differences, respectively. We found altered neural activity in the regions of the default mode network (DMN) in BPD. Within the regions of the midline core DMN, patients with BPD showed greater activity in the anterior as well as in the posterior midline hubs relative to controls. Conversely, in the regions of the dorsal DMN they showed reduced activity compared to controls in the right lateral temporal complex and bilaterally in the orbitofrontal cortex. Increased activity in the precuneus was observed both at rest and during emotional processing. Reduced neural activity at rest in lateral temporal complex was associated with smaller volume of this area. Heterogeneity across imaging studies. Altered activity in the regions of the midline core as well as of the dorsal subsystem of the DMN may reflect difficulties with interpersonal and affective regulation in BPD. These findings suggest that changes in spontaneous neural activity could underlie core symptoms in BPD. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Agnosia, apraxia, callosal disconnection and other specific cognitive disorders.

    PubMed

    Acciarresi, Monica

    2012-01-01

    Cortical function deficits have long been studied by anatomoclinic correlations. Recent functional imaging studies have allowed scientists to better understand which cerebral areas and which networks are involved in cognitive function deficit. This chapter will review the current knowledge on agnosia, apraxia and callosal disconnection syndromes. Copyright © 2012 S. Karger AG, Basel.

  12. Portable Functional Neuroimaging as an Environmental Epidemiology Tool: A How-To Guide for the Use of fNIRS in Field Studies.

    PubMed

    Baker, Joseph M; Rojas-Valverde, Daniel; Gutiérrez, Randall; Winkler, Mirko; Fuhrimann, Samuel; Eskenazi, Brenda; Reiss, Allan L; Mora, Ana M

    2017-09-21

    The widespread application of functional neuroimaging within the field of environmental epidemiology has the potential to greatly enhance our understanding of how environmental toxicants affect brain function. Because many epidemiological studies take place in remote and frequently changing environments, it is necessary that the primary neuroimaging approach adopted by the epidemiology community be robust to many environments, easy to use, and, preferably, mobile. Here, we outline our use of functional near-infrared spectroscopy (fNIRS) to collect functional brain imaging data from Costa Rican farm workers enrolled in an epidemiological study on the health effects of chronic pesticide exposure. While couched in this perspective, we focus on the methodological considerations that are necessary to conduct a mobile fNIRS study in a diverse range of environments. Thus, this guide is intended to be generalizable to all research scenarios and projects in which fNIRS may be used to collect functional brain imaging data in epidemiological field surveys. https://doi.org/10.1289/EHP2049.

  13. Portable Functional Neuroimaging as an Environmental Epidemiology Tool: A How-To Guide for the Use of fNIRS in Field Studies

    PubMed Central

    Rojas-Valverde, Daniel; Gutiérrez, Randall; Winkler, Mirko; Fuhrimann, Samuel; Eskenazi, Brenda; Reiss, Allan L.; Mora, Ana M.

    2017-01-01

    Summary: The widespread application of functional neuroimaging within the field of environmental epidemiology has the potential to greatly enhance our understanding of how environmental toxicants affect brain function. Because many epidemiological studies take place in remote and frequently changing environments, it is necessary that the primary neuroimaging approach adopted by the epidemiology community be robust to many environments, easy to use, and, preferably, mobile. Here, we outline our use of functional near-infrared spectroscopy (fNIRS) to collect functional brain imaging data from Costa Rican farm workers enrolled in an epidemiological study on the health effects of chronic pesticide exposure. While couched in this perspective, we focus on the methodological considerations that are necessary to conduct a mobile fNIRS study in a diverse range of environments. Thus, this guide is intended to be generalizable to all research scenarios and projects in which fNIRS may be used to collect functional brain imaging data in epidemiological field surveys. https://doi.org/10.1289/EHP2049 PMID:28937962

  14. Young women's genital self-image and effects of exposure to pictures of natural vulvas.

    PubMed

    Laan, Ellen; Martoredjo, Daphne K; Hesselink, Sara; Snijders, Nóinín; van Lunsen, Rik H W

    2017-12-01

    Many women have doubts about the normality of the physical appearance of their vulvas. This study measured genital self-image in a convenience sample of college-educated women, and assessed whether exposure to pictures of natural vulvas influenced their genital self-image. Forty-three women were either shown pictures of natural vulvas (N = 29) or pictures of neutral objects (N = 14). Genital self-image was measured before and after exposure to the pictures and two weeks later. Sexual function, sexual distress, self-esteem and trait anxiety were measured to investigate whether these factors influenced genital self-image scores after vulva picture exposure. A majority of the participants felt generally positively about their genitals. Having been exposed to pictures of natural vulvas resulted in an even more positive genital self-image, irrespective of levels of sexual function, sexual distress, self-esteem and trait anxiety. In the women who had seen the vulva pictures, the positive effect on genital self-image was still present after two weeks. The results of this study seem to indicate that even in young women with a relatively positive genital self-image, exposure to pictures of a large variety of natural vulvas positively affects genital self-image. This finding may suggest that exposure to pictures of natural vulvas may also lead to a more positive genital self-image in women who consider labiaplasty.

  15. Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems.

    PubMed

    Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G

    2010-02-21

    Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2-1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit.

  16. Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems

    PubMed Central

    Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G

    2010-01-01

    Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2–1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit. PMID:20090187

  17. Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning.

    PubMed

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-11-01

    Resting-state functional MR imaging (rsfMR imaging) measures spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal and can be used to elucidate the brain's functional organization. It is used to simultaneously assess multiple distributed resting-state networks. Unlike task-based functional MR imaging, rsfMR imaging does not require task performance. This article presents a brief introduction of rsfMR imaging processing methods followed by a detailed discussion on the use of rsfMR imaging in presurgical planning. Example cases are provided to highlight the strengths and limitations of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Preclinical magnetic resonance imaging and systems biology in cancer research: current applications and challenges.

    PubMed

    Albanese, Chris; Rodriguez, Olga C; VanMeter, John; Fricke, Stanley T; Rood, Brian R; Lee, YiChien; Wang, Sean S; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F; Wang, Yue

    2013-02-01

    Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  19. Quantitative image quality evaluation of MR images using perceptual difference models

    PubMed Central

    Miao, Jun; Huo, Donglai; Wilson, David L.

    2008-01-01

    The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image quality of the thousands of test images which can be created when optimizing fast magnetic resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared very favorably to human observers in double-stimulus continuous-quality scale and functional measurement theory studies over a large range of image quality. The Case-PDM threshold for nonperceptible differences in a 2-alternative forced choice study varied with the type of image under study, but was ≈1.1 for diffuse image effects, providing a rule of thumb. Ordering the image quality evaluation models, we found in overall Case-PDM ≈ IDM (Sarnoff Corporation) ≈ SSIM [Wang et al. IEEE Trans. Image Process. 13, 600–612 (2004)] > mean squared error ≈ NR [Wang et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors conclude that Case-PDM is very useful in MR image evaluation but that one should probably restrict studies to similar images and similar processing, normally not a limitation in image reconstruction studies. PMID:18649487

  20. Bayesian Scalar-on-Image Regression with Application to Association Between Intracranial DTI and Cognitive Outcomes

    PubMed Central

    Huang, Lei; Goldsmith, Jeff; Reiss, Philip T.; Reich, Daniel S.; Crainiceanu, Ciprian M.

    2013-01-01

    Diffusion tensor imaging (DTI) measures water diffusion within white matter, allowing for in vivo quantification of brain pathways. These pathways often subserve specific functions, and impairment of those functions is often associated with imaging abnormalities. As a method for predicting clinical disability from DTI images, we propose a hierarchical Bayesian “scalar-on-image” regression procedure. Our procedure introduces a latent binary map that estimates the locations of predictive voxels and penalizes the magnitude of effect sizes in these voxels, thereby resolving the ill-posed nature of the problem. By inducing a spatial prior structure, the procedure yields a sparse association map that also maintains spatial continuity of predictive regions. The method is demonstrated on a simulation study and on a study of association between fractional anisotropy and cognitive disability in a cross-sectional sample of 135 multiple sclerosis patients. PMID:23792220

  1. Comparative assessment of fluorescent transgene methods for quantitative imaging in human cells.

    PubMed

    Mahen, Robert; Koch, Birgit; Wachsmuth, Malte; Politi, Antonio Z; Perez-Gonzalez, Alexis; Mergenthaler, Julia; Cai, Yin; Ellenberg, Jan

    2014-11-05

    Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells. © 2014 Mahen et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Functional imaging of hippocampal place cells at cellular resolution during virtual navigation

    PubMed Central

    Dombeck, Daniel A.; Harvey, Christopher D.; Tian, Lin; Looger, Loren L.; Tank, David W.

    2010-01-01

    Spatial navigation is a widely employed behavior in rodent studies of neuronal circuits underlying cognition, learning and memory. In vivo microscopy combined with genetically-encoded indicators provides important new tools to study neuronal circuits, but has been technically difficult to apply during navigation. We describe methods to image the activity of hippocampal CA1 neurons with sub-cellular resolution in behaving mice. Neurons expressing the genetically encoded calcium indicator GCaMP3 were imaged through a chronic hippocampal window. Head-fixed mice performed spatial behaviors within a setup combining a virtual reality system and a custom built two-photon microscope. Populations of place cells were optically identified, and the correlation between the location of their place fields in the virtual environment and their anatomical location in the local circuit was measured. The combination of virtual reality and high-resolution functional imaging should allow for a new generation of studies to probe neuronal circuit dynamics during behavior. PMID:20890294

  3. Concept of contrast transfer function for edge illumination x-ray phase-contrast imaging and its comparison with the free-space propagation technique.

    PubMed

    Diemoz, Paul C; Vittoria, Fabio A; Olivo, Alessandro

    2016-05-16

    Previous studies on edge illumination (EI) X-ray phase-contrast imaging (XPCi) have investigated the nature and amplitude of the signal provided by this technique. However, the response of the imaging system to different object spatial frequencies was never explicitly considered and studied. This is required in order to predict the performance of a given EI setup for different classes of objects. To this scope, in the present work we derive analytical expressions for the contrast transfer function of an EI imaging system, using the approximation of near-field regime, and study its dependence upon the main experimental parameters. We then exploit these results to compare the frequency response of an EI system with respect of that of a free-space propagation XPCi one. The results achieved in this work can be useful for predicting the signals obtainable for different types of objects and also as a basis for new retrieval methods.

  4. Continuous blood pressure recordings simultaneously with functional brain imaging: studies of the glymphatic system

    NASA Astrophysics Data System (ADS)

    Zienkiewicz, Aleksandra; Huotari, Niko; Raitamaa, Lauri; Raatikainen, Ville; Ferdinando, Hany; Vihriälä, Erkki; Korhonen, Vesa; Myllylä, Teemu; Kiviniemi, Vesa

    2017-03-01

    The lymph system is responsible for cleaning the tissues of metabolic waste products, soluble proteins and other harmful fluids etc. Lymph flow in the body is driven by body movements and muscle contractions. Moreover, it is indirectly dependent on the cardiovascular system, where the heart beat and blood pressure maintain force of pressure in lymphatic channels. Over the last few years, studies revealed that the brain contains the so-called glymphatic system, which is the counterpart of the systemic lymphatic system in the brain. Similarly, the flow in the glymphatic system is assumed to be mostly driven by physiological pulsations such as cardiovascular pulses. Thus, continuous measurement of blood pressure and heart function simultaneously with functional brain imaging is of great interest, particularly in studies of the glymphatic system. We present our MRI compatible optics based sensing system for continuous blood pressure measurement and show our current results on the effects of blood pressure variations on cerebral brain dynamics, with a focus on the glymphatic system. Blood pressure was measured simultaneously with near-infrared spectroscopy (NIRS) combined with an ultrafast functional brain imaging (fMRI) sequence magnetic resonance encephalography (MREG, 3D brain 10 Hz sampling rate).

  5. Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures

    NASA Astrophysics Data System (ADS)

    Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta

    2016-02-01

    Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.

  6. One-stop-shop stroke imaging with functional CT.

    PubMed

    Tong, Elizabeth; Komlosi, Peter; Wintermark, Max

    2015-12-01

    Advanced imaging techniques have extended beyond traditional anatomic imaging and progressed to dynamic, physiologic and functional imaging. Neuroimaging is no longer a mere diagnostic tool. Multimodal functional CT, comprising of NCCT, PCT and CTA, provides a one-stop-shop for rapid stroke imaging. Integrating those imaging findings with pertinent clinical information can help guide subsequent treatment decisions, medical management and follow-up imaging selection. This review article will briefly discuss the indication and utility of each modality in acute stroke imaging. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. General equations for optimal selection of diagnostic image acquisition parameters in clinical X-ray imaging.

    PubMed

    Zheng, Xiaoming

    2017-12-01

    The purpose of this work was to examine the effects of relationship functions between diagnostic image quality and radiation dose on the governing equations for image acquisition parameter variations in X-ray imaging. Various equations were derived for the optimal selection of peak kilovoltage (kVp) and exposure parameter (milliAmpere second, mAs) in computed tomography (CT), computed radiography (CR), and direct digital radiography. Logistic, logarithmic, and linear functions were employed to establish the relationship between radiation dose and diagnostic image quality. The radiation dose to the patient, as a function of image acquisition parameters (kVp, mAs) and patient size (d), was used in radiation dose and image quality optimization. Both logistic and logarithmic functions resulted in the same governing equation for optimal selection of image acquisition parameters using a dose efficiency index. For image quality as a linear function of radiation dose, the same governing equation was derived from the linear relationship. The general equations should be used in guiding clinical X-ray imaging through optimal selection of image acquisition parameters. The radiation dose to the patient could be reduced from current levels in medical X-ray imaging.

  8. Designing Image Operators for MRI-PET Image Fusion of the Brain

    NASA Astrophysics Data System (ADS)

    Márquez, Jorge; Gastélum, Alfonso; Padilla, Miguel A.

    2006-09-01

    Our goal is to obtain images combining in a useful and precise way the information from 3D volumes of medical imaging sets. We address two modalities combining anatomy (Magnetic Resonance Imaging or MRI) and functional information (Positron Emission Tomography or PET). Commercial imaging software offers image fusion tools based on fixed blending or color-channel combination of two modalities, and color Look-Up Tables (LUTs), without considering the anatomical and functional character of the image features. We used a sensible approach for image fusion taking advantage mainly from the HSL (Hue, Saturation and Luminosity) color space, in order to enhance the fusion results. We further tested operators for gradient and contour extraction to enhance anatomical details, plus other spatial-domain filters for functional features corresponding to wide point-spread-function responses in PET images. A set of image-fusion operators was formulated and tested on PET and MRI acquisitions.

  9. Dynamic studies of small animals with a four-color diffuse optical tomography imager

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph H.; Graber, Harry L.; Pei, Yaling; Farber, Mark; Stewart, Mark; Levina, Rita D.; Levin, Mikhail B.; Xu, Yong; Barbour, Randall L.

    2005-09-01

    We present newly developed instrumentation for full-tomographic four-wavelength, continuous wave, diffuse optical tomography (DOT) imaging on small animals. A small-animal imaging stage was constructed, from materials compatible with in-magnet studies, which offers stereotaxic fixation of the animal and precise, stable probe positioning. Instrument performance, based on calibration and phantom studies, demonstrates excellent long-term signal stability. DOT measurements of the functional rat brain response to electric paw stimulation are presented, and these demonstrate high data quality and excellent sensitivity to hemodynamic changes. A general linear model analysis on individual trials is used to localize and quantify the occurrence of functional behavior associated with the different hemoglobin state responses. Statistical evaluation of outcomes of individual trials is employed to identify significant regional response variations for different stimulation sites. Image results reveal a diffuse cortical response and a strong reaction of the thalamus, both indicative of activation of pain pathways by the stimulation. In addition, a weaker lateralized functional component is observed in the brain response, suggesting presence of motor activation. An important outcome of the experiment is that it shows that reactions to individual provocations can be monitored, without having to resort to signal averaging. Thus the described technology may be useful for studies of long-term trends in hemodynamic response, as would occur, for example, in behavioral studies involving freely moving animals.

  10. The influence of stimulus format on drawing—a functional imaging study of decision making in portrait drawing

    PubMed Central

    Miall, R.C.; Nam, Se-Ho; Tchalenko, J.

    2014-01-01

    To copy a natural visual image as a line drawing, visual identification and extraction of features in the image must be guided by top-down decisions, and is usually influenced by prior knowledge. In parallel with other behavioral studies testing the relationship between eye and hand movements when drawing, we report here a functional brain imaging study in which we compared drawing of faces and abstract objects: the former can be strongly guided by prior knowledge, the latter less so. To manipulate the difficulty in extracting features to be drawn, each original image was presented in four formats including high contrast line drawings and silhouettes, and as high and low contrast photographic images. We confirmed the detailed eye–hand interaction measures reported in our other behavioral studies by using in-scanner eye-tracking and recording of pen movements with a touch screen. We also show that the brain activation pattern reflects the changes in presentation formats. In particular, by identifying the ventral and lateral occipital areas that were more highly activated during drawing of faces than abstract objects, we found a systematic increase in differential activation for the face-drawing condition, as the presentation format made the decisions more challenging. This study therefore supports theoretical models of how prior knowledge may influence perception in untrained participants, and lead to experience-driven perceptual modulation by trained artists. PMID:25128710

  11. Neurobiological Risk Factors for Suicide Insights from Brain Imaging

    PubMed Central

    Cox Lippard, Elizabeth T.; Johnston, Jennifer A.Y.; Blumberg, Hilary P.

    2014-01-01

    Context This article reviews neuroimaging studies on neural circuitry associated with suicide-related thoughts and behaviors to identify areas of convergence in findings. Gaps in the literature for which additional research is needed are identified. Evidence acquisition A PubMed search was conducted and articles published prior to March 2014 were reviewed that compared individuals who made suicide attempts to those with similar diagnoses who had not made attempts or to healthy comparison subjects. Articles on adults with suicidal ideation and adolescents who had made attempts, or with suicidal ideation, were also included. Reviewed imaging modalities included structural magnetic resonance imaging, diffusion tensor imaging, single photon emission computerized tomography, positron emission tomography, and functional magnetic resonance imaging. Evidence synthesis Although many studies include small samples, and subject characteristics and imaging methods vary across studies, there were convergent findings involving the structure and function of frontal neural systems and the serotonergic system. Conclusions These initial neuroimaging studies of suicide behavior have provided promising results. Future neuroimaging efforts could be strengthened by more strategic use of common data elements, and a focus on suicide risk trajectories. At-risk subgroups defined by biopsychosocial risk factors and multidimensional assessment of suicidal thoughts and behaviors may provide a clearer picture of the neural circuitry associated with risk status—both current and lifetime. Also needed are studies investigating neural changes associated with interventions that are effective in risk reduction. PMID:25145733

  12. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    PubMed

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  13. Imaging: what can it tell us about parkinsonian gait?

    PubMed Central

    Bohnen, Nicolaas I.; Jahn, Klaus

    2013-01-01

    Functional neuroimaging has provided new tools to study cerebral gait control in Parkinson disease (PD). First, imaging of blood flow functions has identified a supraspinal locomotor network that includes the (frontal) cortex, basal ganglia, brainstem tegmentum and the cerebellum. These studies emphasize also the cognitive and attentional dependency of gait in PD. Furthermore, gait in PD and related syndromes like progressive supranuclear palsy may be associated with dysfunction of the indirect, modulatory prefrontal–subthalamic–pedunculopontine loop of locomotor control. The direct, stereotyped locomotor loop from the primary motor cortex to the spinal cord with rhythmic cerebellar input appears preserved and may contribute to the unflexible gait pattern in parkinsonian gait. Second, neurotransmitter and proteinopathy imaging studies are beginning to unravel novel mechanisms of parkinsonian gait and postural disturbances. Dopamine displacement imaging studies have shown evidence for a mesofrontal dopaminergic shift from a depleted striatum in parkinsonian gait. This may place additional burden on other brain systems mediating attention functions to perform previously automatic motor tasks. For example, our preliminary cholinergic imaging studies suggest significant slowing of gait speed when additional forebrain cholinergic denervation occurs in PD. Cholinergic denervation of the pedunculopontine nucleus and its thalamic projections have been associated with falls and impaired postural control. Deposition of β-amyloid may represent another non-dopaminergic correlate of gait disturbance in PD. These findings illustrate the emergence of dopamine non-responsive gait problems to reflect the transition from a predominantly hypodopaminergic disorder to a multisystem neurodegenerative disorder involving non-dopaminergic locomotor network structures and pathologies. PMID:24132837

  14. Longitudinal timed function tests in Duchenne muscular dystrophy: ImagingDMD cohort natural history.

    PubMed

    Arora, Harneet; Willcocks, Rebecca J; Lott, Donovan J; Harrington, Ann T; Senesac, Claudia R; Zilke, Kirsten L; Daniels, Michael J; Xu, Dandan; Tennekoon, Gihan I; Finanger, Erika L; Russman, Barry S; Finkel, Richard S; Triplett, William T; Byrne, Barry J; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2018-05-09

    Tests of ambulatory function are common clinical trial endpoints in Duchenne muscular dystrophy (DMD). The ImagingDMD study has generated a large data set using these tests, which can describe the contemporary natural history of DMD in 5-12.9 year olds. 92 corticosteroid treated boys with DMD and 45 controls participated in this longitudinal study. Subjects performed the 6 minute walk test (6MWT) and timed function tests (TFTs: 10m walk/run, 4 stairs, supine to stand). Boys with DMD had impaired functional performance even at 5-6.9 years. Boys older than 7 had significant declines in function over 1 year for 10m walk/run and 6MWT. 80% of subjects could perform all functional tests at 9 years old. TFTs appear to be slightly more responsive and predictive of disease progression than 6MWT in 7-12.9 year olds. This study provides insight into the contemporary natural history of key functional endpoints in DMD. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  15. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics.

  16. The Neurochemical and Microstructural Changes in the Brain of Systemic Lupus Erythematosus Patients: A Multimodal MRI Study

    PubMed Central

    Zhang, Zhiyan; Wang, Yukai; Shen, Zhiwei; Yang, Zhongxian; Li, Li; Chen, Dongxiao; Yan, Gen; Cheng, Xiaofang; Shen, Yuanyu; Tang, Xiangyong; Hu, Wei; Wu, Renhua

    2016-01-01

    The diagnosis and pathology of neuropsychiatric systemic lupus erythematosus (NPSLE) remains challenging. Herein, we used multimodal imaging to assess anatomical and functional changes in brains of SLE patients instead of a single MRI approach generally used in previous studies. Twenty-two NPSLE patients, 21 non-NPSLE patients and 20 healthy controls (HCs) underwent 3.0 T MRI with multivoxel magnetic resonance spectroscopy, T1-weighted volumetric images for voxel based morphometry (VBM) and diffusional kurtosis imaging (DKI) scans. While there were findings in other basal ganglia regions, the most consistent findings were observed in the posterior cingulate gyrus (PCG). The reduction of multiple metabolite concentration was observed in the PCG in the two patient groups, and the NPSLE patients were more prominent. The two patient groups displayed lower diffusional kurtosis (MK) values in the bilateral PCG compared with HCs (p < 0.01) as assessed by DKI. Grey matter reduction in the PCG was observed in the NPSLE group using VBM. Positive correlations among cognitive function scores and imaging metrics in bilateral PCG were detected. Multimodal imaging is useful for evaluating SLE subjects and potentially determining disease pathology. Impairments of cognitive function in SLE patients may be interpreted by metabolic and microstructural changes in the PCG. PMID:26758023

  17. Initial experience with a nuclear medicine viewing workstation

    NASA Astrophysics Data System (ADS)

    Witt, Robert M.; Burt, Robert W.

    1992-07-01

    Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.

  18. Functional MR imaging assessment of a non-responsive brain injured patient.

    PubMed

    Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B

    2001-10-01

    Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.

  19. Pain and functional imaging.

    PubMed Central

    Ingvar, M

    1999-01-01

    Functional neuroimaging has fundamentally changed our knowledge about the cerebral representation of pain. For the first time it has been possible to delineate the functional anatomy of different aspects of pain in the medial and lateral pain systems in the brain. The rapid developments in imaging methods over the past years have led to a consensus in the description of the central pain responses between different studies and also to a definition of a central pain matrix with specialized subfunctions in man. In the near future we will see studies where a systems perspective allows for a better understanding of the regulatory mechanisms in the higher-order frontal and parietal cortices. Also, pending the development of experimental paradigms, the functional anatomy of the emotional aspects of pain will become better known. PMID:10466155

  20. Near-Infrared Neuroimaging with NinPy

    PubMed Central

    Strangman, Gary E.; Zhang, Quan; Zeffiro, Thomas

    2009-01-01

    There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN) is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling, and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i) the role of non-invasive diffuse optical imaging in measuring brain function, (ii) the key computational requirements to support NIN experiments, (iii) our collection of software tools to support NIN, called NinPy, and (iv) future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html. PMID:19543449

  1. A study of structural and functional connectivity in early Alzheimer's disease using rest fMRI and diffusion tensor imaging.

    PubMed

    Balachandar, R; John, J P; Saini, J; Kumar, K J; Joshi, H; Sadanand, S; Aiyappan, S; Sivakumar, P T; Loganathan, S; Varghese, M; Bharath, S

    2015-05-01

    Alzheimer's disease (AD) is a progressive neurodegenerative condition where in early diagnosis and interventions are key policy priorities in dementia services and research. We studied the functional and structural connectivity in mild AD to determine the nature of connectivity changes that coexist with neurocognitive deficits in the early stages of AD. Fifteen mild AD subjects and 15 cognitively healthy controls (CHc) matched for age and gender, underwent detailed neurocognitive assessment and magnetic resonance imaging (MRI) of resting state functional MRI (rs-fMRI) and diffusion tensor imaging (DTI). Rest fMRI was analyzed using dual regression approach and DTI by voxel wise statistics. Patients with mild AD had significantly lower functional connectivity (FC) within the default mode network and increased FC within the executive network. The mild AD group scored significantly lower in all domains of cognition compared with CHc. But fractional anisotropy did not significantly (p < 0.05) differ between the groups. Resting state functional connectivity alterations are noted during initial stages of cognitive decline in AD, even when there are no significant white matter microstructural changes. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys

    NASA Astrophysics Data System (ADS)

    Roe, Anna W.

    2007-04-01

    Some exciting new efforts to use intrinsic signal optical imaging methods for long-term studies in anesthetized and awake monkeys are reviewed. The development of such methodologies opens the door for studying behavioral states such as attention, motivation, memory, emotion, and other higher-order cognitive functions. Long-term imaging is also ideal for studying changes in the brain that accompany development, plasticity, and learning. Although intrinsic imaging lacks the temporal resolution offered by dyes, it is a high spatial resolution imaging method that does not require application of any external agents to the brain. The bulk of procedures described here have been developed in the monkey but can be applied to the study of surface structures in any in vivo preparation.

  3. Effective Integration of Targeted Tumor Imaging and Therapy Using Functionalized InP QDs with VEGFR2 Monoclonal Antibody and miR-92a Inhibitor.

    PubMed

    Wu, Yi-Zhou; Sun, Jie; Zhang, Yaqin; Pu, Maomao; Zhang, Gen; He, Nongyue; Zeng, Xin

    2017-04-19

    Rapid diagnosis and targeted drug treatment require agents that possess multiple functions. Nanomaterials that facilitate optical imaging and direct drug delivery have shown great promise for effective cancer treatment. In this study, we first modified near-infrared fluorescent indium phosphide quantum dots (InP QDs) with a vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody to afford targeted drug delivery function. Then, a miR-92a inhibitor, an antisense microRNA that enhances the expression of tumor suppressor p63, was attached to the VEGFR2-InP QDs via electrostatic interactions. The functionalized InP nanocomposite (IMAN) selectively targets tumor sites and allows for infrared imaging in vivo. We further explored the mechanism of this active targeting. The IMAN was endocytosed and delivered in the form of microvesicles via VEGFR2-CD63 signaling. Moreover, the IMAN induced apoptosis of human myelogenous leukemia cells through the p63 pathway in vitro and in vivo. These results indicate that the IMAN may provide a new and promising chemotherapy strategy against cancer cells, particularly by its active targeting function and utility in noninvasive three-dimensional tumor imaging.

  4. Assessment of functional liver reserve: old and new in 99mTc-sulfur colloid scintigraphy.

    PubMed

    Matesan, Manuela M; Bowen, Stephen R; Chapman, Tobias R; Miyaoka, Robert S; Velez, James W; Wanner, Michele F; Nyflot, Matthew J; Apisarnthanarax, Smith; Vesselle, Hubert J

    2017-07-01

    A semiquantitative assessment of hepatic reticuloendothelial system function using colloidal particles scintigraphy has been proposed previously as a surrogate for liver function evaluation. In this article, we present an updated method for the overall assessment of technetium-99m (Tc)-sulfur colloid (SC) biodistribution that combines information from planar and attenuation-corrected Tc-SC single-photon emission computed tomography (SPECT) images. The imaging protocol described here was developed as an easy-to-implement method to assess overall and regional liver function changes associated with chronic liver disease. Thirty patients with chronic liver disease and primary liver cancers underwent Tc-SC whole-body planar imaging and upper-abdomen SPECT/computed tomography (CT) imaging before external beam radiation therapy. Liver plus spleen and bone marrow counts as a fraction of whole-body total counts were calculated from SC planar imaging. Attenuation correction Tc-SC images were rigidly coregistered with treatment planning CT images that contained liver and spleen regions-of-interest. Ratios of total liver counts to total spleen counts were obtained from the aligned Tc-SC SPECT and CT images, and were subsequently used to separate liver plus spleen counts obtained on the planar images. This hybrid SPECT/CT and planar scintigraphy approach yielded an updated estimation of whole-body SC distribution. These biodistribution estimates were compared with historical data for reference. Statistical associations of Tc-SC biodistribution to liver function parameters and liver disease scoring systems (Child-Pugh) were evaluated by Spearman rank correlation. Percentages of Tc-SC uptake ranged from 19.3 to 77.3% for the liver; 3.4 to 40.7% for the spleen; and 19.0 to 56.7% for the bone marrow. Spearman's correlation coefficient showed a significant statistical association between Child-Pugh score and bone marrow uptake at 0.55 (P≤0.05), liver uptake at 0.71 (P≤0.001), spleen uptake at 0.56 (P≤0.05), and spleen plus bone marrow uptake at 0.71 (P≤0.001). There was also a good correlation of SC uptake percentages with individual quantitative liver function components such as albumin and total bilirubin, and qualitative liver function components (varices, portal hypertension, ascites). For albumin: r=0.64 (P<0.001) compared with liver uptake percentage from the whole-body counts, r=0.49 (P<0.001) compared with splenic uptake percentage, and r=0.45 (P≤0.05) compared with bone marrow uptake percentage. We describe a novel liver function quantitative assessment method that combines whole-body planar images and SPECT/CT attenuation-corrected images of Tc-SC distribution. Attenuation-corrected SC images provide valuable regional liver function information, which is a unique feature compared with other imaging methods available. The results of our study indicate that the Tc-SC uptake by the liver, spleen, and bone marrow correlates with liver function parameters in patients with diffuse liver disease and the correlation with liver disease severity is slightly better for liver uptake percentages than for individual values of bone marrow and spleen uptake percentages.

  5. The year 2013 in the European Heart Journal--Cardiovascular Imaging: Part II.

    PubMed

    Plein, Sven; Edvardsen, Thor; Pierard, Luc A; Saraste, Antti; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2014-08-01

    The new multi-modality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. Here we summarize the most important studies from the journal's second year in two articles. Part I of the review has summarized studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging. Part II is focussed on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  6. The year 2013 in the European Heart Journal--Cardiovascular Imaging. Part I.

    PubMed

    Edvardsen, Thor; Plein, Sven; Saraste, Antti; Pierard, Luc A; Knuuti, Juhani; Maurer, Gerald; Lancellotti, Patrizio

    2014-07-01

    The new multimodality cardiovascular imaging journal, European Heart Journal - Cardiovascular Imaging, was created in 2012. Here, we summarize the most important studies from the journal's second year in two articles. Part I of the review will focus on studies in myocardial function, myocardial ischaemia, and emerging techniques in cardiovascular imaging, and Part II will focus on valvular heart diseases, heart failure, cardiomyopathies, and congenital heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  7. Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice.

    PubMed

    Wright, Patrick W; Brier, Lindsey M; Bauer, Adam Q; Baxter, Grant A; Kraft, Andrew W; Reisman, Matthew D; Bice, Annie R; Snyder, Abraham Z; Lee, Jin-Moo; Culver, Joseph P

    2017-01-01

    The interplay between hemodynamic-based markers of cortical activity (e.g. fMRI and optical intrinsic signal imaging), which are an indirect and relatively slow report of neural activity, and underlying synaptic electrical and metabolic activity through neurovascular coupling is a topic of ongoing research and debate. As application of resting state functional connectivity measures is extended further into topics such as brain development, aging and disease, the importance of understanding the fundamental physiological basis for functional connectivity will grow. Here we extend functional connectivity analysis from hemodynamic- to calcium-based imaging. Transgenic mice (n = 7) expressing a fluorescent calcium indicator (GCaMP6) driven by the Thy1 promoter in glutamatergic neurons were imaged transcranially in both anesthetized (using ketamine/xylazine) and awake states. Sequential LED illumination (λ = 454, 523, 595, 640nm) enabled concurrent imaging of both GCaMP6 fluorescence emission (corrected for hemoglobin absorption) and hemodynamics. Functional connectivity network maps were constructed for infraslow (0.009-0.08Hz), intermediate (0.08-0.4Hz), and high (0.4-4.0Hz) frequency bands. At infraslow and intermediate frequencies, commonly used in BOLD fMRI and fcOIS studies of functional connectivity and implicated in neurovascular coupling mechanisms, GCaMP6 and HbO2 functional connectivity structures were in high agreement, both qualitatively and also quantitatively through a measure of spatial similarity. The spontaneous dynamics of both contrasts had the highest correlation when the GCaMP6 signal was delayed with a ~0.6-1.5s temporal offset. Within the higher-frequency delta band, sensitive to slow wave sleep oscillations in non-REM sleep and anesthesia, we evaluate the speed with which the connectivity analysis stabilized and found that the functional connectivity maps captured putative network structure within time window lengths as short as 30 seconds. Homotopic GCaMP6 functional connectivity maps at 0.4-4.0Hz in the anesthetized states show a striking correlated and anti-correlated structure along the anterior to posterior axis. This structure is potentially explained in part by observed propagation of delta-band activity from frontal somatomotor regions to visuoparietal areas. During awake imaging, this spatio-temporal quality is altered, and a more complex and detailed functional connectivity structure is observed. The combined calcium/hemoglobin imaging technique described here will enable the dissociation of changes in ionic and hemodynamic functional structure and neurovascular coupling and provide a framework for subsequent studies of neurological disease such as stroke.

  8. Functional connectivity structure of cortical calcium dynamics in anesthetized and awake mice

    PubMed Central

    Wright, Patrick W.; Brier, Lindsey M.; Bauer, Adam Q.; Baxter, Grant A.; Kraft, Andrew W.; Reisman, Matthew D.; Bice, Annie R.; Snyder, Abraham Z.; Lee, Jin-Moo; Culver, Joseph P.

    2017-01-01

    The interplay between hemodynamic-based markers of cortical activity (e.g. fMRI and optical intrinsic signal imaging), which are an indirect and relatively slow report of neural activity, and underlying synaptic electrical and metabolic activity through neurovascular coupling is a topic of ongoing research and debate. As application of resting state functional connectivity measures is extended further into topics such as brain development, aging and disease, the importance of understanding the fundamental physiological basis for functional connectivity will grow. Here we extend functional connectivity analysis from hemodynamic- to calcium-based imaging. Transgenic mice (n = 7) expressing a fluorescent calcium indicator (GCaMP6) driven by the Thy1 promoter in glutamatergic neurons were imaged transcranially in both anesthetized (using ketamine/xylazine) and awake states. Sequential LED illumination (λ = 454, 523, 595, 640nm) enabled concurrent imaging of both GCaMP6 fluorescence emission (corrected for hemoglobin absorption) and hemodynamics. Functional connectivity network maps were constructed for infraslow (0.009–0.08Hz), intermediate (0.08–0.4Hz), and high (0.4–4.0Hz) frequency bands. At infraslow and intermediate frequencies, commonly used in BOLD fMRI and fcOIS studies of functional connectivity and implicated in neurovascular coupling mechanisms, GCaMP6 and HbO2 functional connectivity structures were in high agreement, both qualitatively and also quantitatively through a measure of spatial similarity. The spontaneous dynamics of both contrasts had the highest correlation when the GCaMP6 signal was delayed with a ~0.6–1.5s temporal offset. Within the higher-frequency delta band, sensitive to slow wave sleep oscillations in non-REM sleep and anesthesia, we evaluate the speed with which the connectivity analysis stabilized and found that the functional connectivity maps captured putative network structure within time window lengths as short as 30 seconds. Homotopic GCaMP6 functional connectivity maps at 0.4–4.0Hz in the anesthetized states show a striking correlated and anti-correlated structure along the anterior to posterior axis. This structure is potentially explained in part by observed propagation of delta-band activity from frontal somatomotor regions to visuoparietal areas. During awake imaging, this spatio-temporal quality is altered, and a more complex and detailed functional connectivity structure is observed. The combined calcium/hemoglobin imaging technique described here will enable the dissociation of changes in ionic and hemodynamic functional structure and neurovascular coupling and provide a framework for subsequent studies of neurological disease such as stroke. PMID:29049297

  9. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  10. Effect of heroin use on changes of brain functions as measured by functional magnetic resonance imaging, a systematic review.

    PubMed

    Fareed, Ayman; Kim, Jungjin; Ketchen, Bethany; Kwak, Woo Jin; Wang, Danzhao; Shongo-Hiango, Hilaire; Drexler, Karen

    2017-01-01

    In this study the authors focus on reviewing imaging studies that used resting state functional magnetic resonance imaging for individuals with a history of heroin use. This review study compiled existing research addressing the effect of heroin use on decision making by reviewing available functional neuroimaging data. Systematic review of the literatures using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. Eligible articles were retrieved through a computer-based MEDLINE and PsycINFO search from 1960 to December 2015 using the major medical subject headings "heroin, fMRI" (all fields). Only English language was included. Thirty-seven articles were initially included in the review. Sixteen were excluded because they did not meet the inclusion criteria. The results of 21 articles that met all the inclusion criteria were presented. Based on the 21 studies included in the current review, there is evidence that heroin use may have a direct and damaging effect on certain brain functions and that these changes may be associated with impulsive and unhealthy decision making. From the review of these studies, the authors understand that a longer duration of heroin use may be associated with more damaging effects on brain functions. The authors also understand that these brain changes could last long after abstinence, which may increase the risk of relapse to heroin use. More research is needed to create a biomarker map for patients with heroin use disorder that can be used to guide and assess response to treatment.

  11. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms I: Revisiting Cluster-Based Inferences.

    PubMed

    Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Sathian, K

    2018-02-01

    In a recent study, Eklund et al. employed resting-state functional magnetic resonance imaging data as a surrogate for null functional magnetic resonance imaging (fMRI) datasets and posited that cluster-wise family-wise error (FWE) rate-corrected inferences made by using parametric statistical methods in fMRI studies over the past two decades may have been invalid, particularly for cluster defining thresholds less stringent than p < 0.001; this was principally because the spatial autocorrelation functions (sACF) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggested otherwise. Here, we show that accounting for non-Gaussian signal components such as those arising from resting-state neural activity as well as physiological responses and motion artifacts in the null fMRI datasets yields first- and second-level general linear model analysis residuals with nearly uniform and Gaussian sACF. Further comparison with nonparametric permutation tests indicates that cluster-based FWE corrected inferences made with Gaussian spatial noise approximations are valid.

  12. Medication Overuse Headache: Pathophysiological Insights from Structural and Functional Brain MRI Research.

    PubMed

    Schwedt, Todd J; Chong, Catherine D

    2017-07-01

    Research imaging of brain structure and function has helped to elucidate the pathophysiology of medication overuse headache (MOH). This is a narrative review of imaging research studies that have investigated brain structural and functional alterations associated with MOH. Studies included in this review have investigated abnormal structure and function of pain processing regions in people with MOH, functional patterns that might predispose individuals to development of MOH, similarity of brain functional patterns in patients with MOH to those found in people with addiction, brain structure that could predict headache improvement following discontinuation of the overused medication, and changes in brain structure and function after discontinuation of medication overuse. MOH is associated with atypical structure and function of brain regions responsible for pain processing as well as brain regions that are commonly implicated in addiction. Several studies have shown "normalization" of structure and function in pain processing regions following discontinuation of the overused medication and resolution of MOH. However, some of the abnormalities in regions also implicated in addiction tend to persist following discontinuation of the overused medication, suggesting that they are a brain trait that predisposes certain individuals to medication overuse and MOH. © 2017 American Headache Society.

  13. The relationship between spatial configuration and functional connectivity of brain regions.

    PubMed

    Bijsterbosch, Janine Diane; Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C; Harrison, Samuel J; Smith, Stephen M

    2018-02-16

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used 'functional connectivity fingerprints' to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. © 2018, Bijsterbosch et al.

  14. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging.

    PubMed

    Syed, Maleeha F; Lindquist, Martin A; Pillai, Jay J; Agarwal, Shruti; Gujar, Sachin K; Choe, Ann S; Caffo, Brian; Sair, Haris I

    2017-12-01

    Functional connectivity in resting-state functional magnetic resonance imaging (rs-fMRI) has received substantial attention since the initial findings of Biswal et al. Traditional network correlation metrics assume that the functional connectivity in the brain remains stationary over time. However, recent studies have shown that robust temporal fluctuations of functional connectivity among as well as within functional networks exist, challenging this assumption. In this study, these dynamic correlation differences were investigated between the dorsal and ventral sensorimotor networks by applying the dynamic conditional correlation model to rs-fMRI data of 20 healthy subjects. k-Means clustering was used to determine an optimal number of discrete connectivity states (k = 10) of the sensorimotor system across all subjects. Our analysis confirms the existence of differences in dynamic correlation between the dorsal and ventral networks, with highest connectivity found within the ventral motor network.

  15. Blurred image restoration using knife-edge function and optimal window Wiener filtering.

    PubMed

    Wang, Min; Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects.

  16. Blurred image restoration using knife-edge function and optimal window Wiener filtering

    PubMed Central

    Zhou, Shudao; Yan, Wei

    2018-01-01

    Motion blur in images is usually modeled as the convolution of a point spread function (PSF) and the original image represented as pixel intensities. The knife-edge function can be used to model various types of motion-blurs, and hence it allows for the construction of a PSF and accurate estimation of the degradation function without knowledge of the specific degradation model. This paper addresses the problem of image restoration using a knife-edge function and optimal window Wiener filtering. In the proposed method, we first calculate the motion-blur parameters and construct the optimal window. Then, we use the detected knife-edge function to obtain the system degradation function. Finally, we perform Wiener filtering to obtain the restored image. Experiments show that the restored image has improved resolution and contrast parameters with clear details and no discernible ringing effects. PMID:29377950

  17. Cortical Plasticity and Olfactory Function in Early Blindness

    PubMed Central

    Araneda, Rodrigo; Renier, Laurent A.; Rombaux, Philippe; Cuevas, Isabel; De Volder, Anne G.

    2016-01-01

    Over the last decade, functional brain imaging has provided insight to the maturation processes and has helped elucidate the pathophysiological mechanisms involved in brain plasticity in the absence of vision. In case of congenital blindness, drastic changes occur within the deafferented “visual” cortex that starts receiving and processing non visual inputs, including olfactory stimuli. This functional reorganization of the occipital cortex gives rise to compensatory perceptual and cognitive mechanisms that help blind persons achieve perceptual tasks, leading to superior olfactory abilities in these subjects. This view receives support from psychophysical testing, volumetric measurements and functional brain imaging studies in humans, which are presented here. PMID:27625596

  18. Susceptibility-based functional brain mapping by 3D deconvolution of an MR-phase activation map.

    PubMed

    Chen, Zikuan; Liu, Jingyu; Calhoun, Vince D

    2013-05-30

    The underlying source of T2*-weighted magnetic resonance imaging (T2*MRI) for brain imaging is magnetic susceptibility (denoted by χ). T2*MRI outputs a complex-valued MR image consisting of magnitude and phase information. Recent research has shown that both the magnitude and the phase images are morphologically different from the source χ, primarily due to 3D convolution, and that the source χ can be reconstructed from complex MR images by computed inverse MRI (CIMRI). Thus, we can obtain a 4D χ dataset from a complex 4D MR dataset acquired from a brain functional MRI study by repeating CIMRI to reconstruct 3D χ volumes at each timepoint. Because the reconstructed χ is a more direct representation of neuronal activity than the MR image, we propose a method for χ-based functional brain mapping, which is numerically characterised by a temporal correlation map of χ responses to a stimulant task. Under the linear imaging conditions used for T2*MRI, we show that the χ activation map can be calculated from the MR phase map by CIMRI. We validate our approach using numerical simulations and Gd-phantom experiments. We also analyse real data from a finger-tapping visuomotor experiment and show that the χ-based functional mapping provides additional activation details (in the form of positive and negative correlation patterns) beyond those generated by conventional MR-magnitude-based mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    PubMed

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  20. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    PubMed

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  1. MR-DTI and PET multimodal imaging of dopamine release within subdivisions of basal ganglia

    NASA Astrophysics Data System (ADS)

    Tziortzi, A.; Searle, G.; Tsoumpas, C.; Long, C.; Shotbolt, P.; Rabiner, E.; Jenkinson, M.; Gunn, R. N.

    2011-09-01

    The basal ganglia is a group of anatomical nuclei, functionally organised into limbic, associative and sensorimotor regions, which plays a central role in dopamine related neurological and psychiatric disorders. In this study, we combine two imaging modalities to enable the measurement of dopamine release in functionally related subdivisions of the basal ganglia. [11C]-(+)-PHNO Positron Emission Tomography (PET) measurements in the living human brain pre- and post-administration of amphetamine allow for the estimation of regional dopamine release. Combined Magnetic Resonance Diffusion Tensor Imaging (MR-DTI) data allows for the definition of functional territories of the basal ganglia from connectivity information. The results suggest that there is a difference in dopamine release among the connectivity derived functional subdivisions. Dopamine release is highest in the limbic area followed by the sensorimotor and then the associative area with this pattern reflected in both striatum and pallidum.

  2. Phase pupil functions for focal-depth enhancement derived from a Wigner distribution function.

    PubMed

    Zalvidea, D; Sicre, E E

    1998-06-10

    A method for obtaining phase-retardation functions, which give rise to an increase of the image focal depth, is proposed. To this end, the Wigner distribution function corresponding to a specific aperture that has an associated small depth of focus in image space is conveniently sheared in the phase-space domain to generate a new Wigner distribution function. From this new function a more uniform on-axis image irradiance can be accomplished. This approach is illustrated by comparison of the imaging performance of both the derived phase function and a previously reported logarithmic phase distribution.

  3. Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study.

    PubMed

    Ansari, Daniel; Dhital, Bibek

    2006-11-01

    Numerical magnitude processing is an essential everyday skill. Functional brain imaging studies with human adults have repeatedly revealed that bilateral regions of the intraparietal sulcus are correlated with various numerical and mathematical skills. Surprisingly little, however, is known about the development of these brain representations. In the present study, we used functional neuroimaging to compare the neural correlates of nonsymbolic magnitude judgments between children and adults. Although behavioral performance was similar across groups, in comparison to the group of children the adult participants exhibited greater effects of numerical distance on the left intraparietal sulcus. Our findings are the first to reveal that even the most basic aspects of numerical cognition are subject to age-related changes in functional neuroanatomy. We propose that developmental impairments of number may be associated with atypical specialization of cortical regions underlying magnitude processing.

  4. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    PubMed Central

    Mariappan, Leo; Hu, Gang; He, Bin

    2014-01-01

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction. PMID:24506649

  5. College Students' Attitudes towards Age-Related Changes in Physical Appearance.

    ERIC Educational Resources Information Center

    Kanter, Allison; Agliata, Daniel; Tantleff-Dunn, Stacey

    The aim of this study was to identify factors associated with young adults' concerns about age related changes in body image and their anticipated impact on psychosocial functioning. One hundred and sixty-seven college students completed the Body Image and Aging Survey, designed to assess age related issues in body image, the Peer Dieting Survey,…

  6. Contextualized Emotional Images in Children's Dreams: Psychological Adjustment in Conditions of Military Trauma

    ERIC Educational Resources Information Center

    Helminen, Elisa; Punamaki, Raija-Leena

    2008-01-01

    This study examines the impact of military trauma on contextualized emotional images in children's dreams, and the function of the intensity and valence of the emotional images in protecting mental health from negative trauma impact. Participants were 345 Palestinian children and adolescents (aged 5-16 years) belonging to high trauma (Gaza) and…

  7. Cultural Interpretations of the Visual Meaning of Icons and Images Used in North American Web Design

    ERIC Educational Resources Information Center

    Knight, Eliot; Gunawardena, Charlotte N.; Aydin, Cengiz Hakan

    2009-01-01

    This study examines cross-cultural interpretations of icons and images drawn from US academic websites. Participants from Morocco, Sri Lanka, Turkey, and the USA responded to an online questionnaire containing 18 icons and images representing online functions and information types common on US academic websites. Participants supplied meanings for…

  8. Shining Lights or Lone Wolves? Creativity and Self Image in Primary School Children.

    ERIC Educational Resources Information Center

    Hoff, Eva V.; Carlsson, Ingegerd

    2002-01-01

    This study examined the relationship between self-image and creativity in 69 Swedish 4th graders using three measures of creativity. Results showed no self-image differences between children with high and low creativity. Different creativity measures were significantly related with the exception of one subtest of the Creative Functioning Test,…

  9. Prussian blue nanocubes: multi-functional nanoparticles for multimodal imaging and image-guided therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Cook, Jason R.; Dumani, Diego S.; Kubelick, Kelsey P.; Luci, Jeffrey; Emelianov, Stanislav Y.

    2017-03-01

    Imaging modalities utilize contrast agents to improve morphological visualization and to assess functional and molecular/cellular information. Here we present a new type of nanometer scale multi-functional particle that can be used for multi-modal imaging and therapeutic applications. Specifically, we synthesized monodisperse 20 nm Prussian Blue Nanocubes (PBNCs) with desired optical absorption in the near-infrared region and superparamagnetic properties. PBNCs showed excellent contrast in photoacoustic (700 nm wavelength) and MR (3T) imaging. Furthermore, photostability was assessed by exposing the PBNCs to nearly 1,000 laser pulses (5 ns pulse width) with up to 30 mJ/cm2 laser fluences. The PBNCs exhibited insignificant changes in photoacoustic signal, demonstrating enhanced robustness compared to the commonly used gold nanorods (substantial photodegradation with fluences greater than 5 mJ/cm2). Furthermore, the PBNCs exhibited superparamagnetism with a magnetic saturation of 105 emu/g, a 5x improvement over superparamagnetic iron-oxide (SPIO) nanoparticles. PBNCs exhibited enhanced T2 contrast measured using 3T clinical MRI. Because of the excellent optical absorption and magnetism, PBNCs have potential uses in other imaging modalities including optical tomography, microscopy, magneto-motive OCT/ultrasound, etc. In addition to multi-modal imaging, the PBNCs are multi-functional and, for example, can be used to enhance magnetic delivery and as therapeutic agents. Our initial studies show that stem cells can be labeled with PBNCs to perform image-guided magnetic delivery. Overall, PBNCs can act as imaging/therapeutic agents in diverse applications including cancer, cardiovascular disease, ophthalmology, and tissue engineering. Furthermore, PBNCs are based on FDA approved Prussian Blue thus potentially easing clinical translation of PBNCs.

  10. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors.

    PubMed

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A

    2015-11-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional.

  11. Intensity-Curvature Measurement Approaches for the Diagnosis of Magnetic Resonance Imaging Brain Tumors

    PubMed Central

    Ciulla, Carlo; Veljanovski, Dimitar; Rechkoska Shikoska, Ustijana; Risteski, Filip A.

    2015-01-01

    This research presents signal-image post-processing techniques called Intensity-Curvature Measurement Approaches with application to the diagnosis of human brain tumors detected through Magnetic Resonance Imaging (MRI). Post-processing of the MRI of the human brain encompasses the following model functions: (i) bivariate cubic polynomial, (ii) bivariate cubic Lagrange polynomial, (iii) monovariate sinc, and (iv) bivariate linear. The following Intensity-Curvature Measurement Approaches were used: (i) classic-curvature, (ii) signal resilient to interpolation, (iii) intensity-curvature measure and (iv) intensity-curvature functional. The results revealed that the classic-curvature, the signal resilient to interpolation and the intensity-curvature functional are able to add additional information useful to the diagnosis carried out with MRI. The contribution to the MRI diagnosis of our study are: (i) the enhanced gray level scale of the tumor mass and the well-behaved representation of the tumor provided through the signal resilient to interpolation, and (ii) the visually perceptible third dimension perpendicular to the image plane provided through the classic-curvature and the intensity-curvature functional. PMID:26644943

  12. Initial evaluation of discrete orthogonal basis reconstruction of ECT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E.B.; Donohue, K.D.

    1996-12-31

    Discrete orthogonal basis restoration (DOBR) is a linear, non-iterative, and robust method for solving inverse problems for systems characterized by shift-variant transfer functions. This simulation study evaluates the feasibility of using DOBR for reconstructing emission computed tomographic (ECT) images. The imaging system model uses typical SPECT parameters and incorporates the effects of attenuation, spatially-variant PSF, and Poisson noise in the projection process. Sample reconstructions and statistical error analyses for a class of digital phantoms compare the DOBR performance for Hartley and Walsh basis functions. Test results confirm that DOBR with either basis set produces images with good statistical properties. Nomore » problems were encountered with reconstruction instability. The flexibility of the DOBR method and its consistent performance warrants further investigation of DOBR as a means of ECT image reconstruction.« less

  13. Influence of environmental tobacco smoke on morphology and functions of cardiovascular system assessed using diagnostic imaging.

    PubMed

    Gać, Paweł; Poręba, Małgorzata; Pawlas, Krystyna; Sobieszczańska, Małgorzata; Poręba, Rafał

    Exposure to tobacco smoke is a significant problem of environmental medicine. Tobacco smoke contains over one thousand identified chemicals including numerous toxicants. Cardiovascular system diseases are the major cause of general mortality. The recent development of diagnostic imaging provided methods which enable faster and more precise diagnosis of numerous diseases, also those of cardiovascular system. This paper reviews the most significant scientific research concerning relationship between environmental exposure to tobacco smoke and the morphology and function of cardiovascular system carried out using diagnostic imaging methods, i.e. ultrasonography, angiography, computed tomography and magnetic resonance imaging. In the forthcoming future, the studies using current diagnostic imaging methods should contribute to the reliable documentation, followed by the wide-spreading knowledge of the harmful impact of the environmental tobacco smoke exposure on the cardiovascular system.

  14. Development of integrated semiconductor optical sensors for functional brain imaging

    NASA Astrophysics Data System (ADS)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  15. Improved Diagnostic Accuracy of Alzheimer's Disease by Combining Regional Cortical Thickness and Default Mode Network Functional Connectivity: Validated in the Alzheimer's Disease Neuroimaging Initiative Set.

    PubMed

    Park, Ji Eun; Park, Bumwoo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun

    2017-01-01

    To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal ( p < 0.001) and supramarginal gyrus ( p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.

  16. Mesoscale brain explorer, a flexible python-based image analysis and visualization tool.

    PubMed

    Haupt, Dirk; Vanni, Matthieu P; Bolanos, Federico; Mitelut, Catalin; LeDue, Jeffrey M; Murphy, Tim H

    2017-07-01

    Imaging of mesoscale brain activity is used to map interactions between brain regions. This work has benefited from the pioneering studies of Grinvald et al., who employed optical methods to image brain function by exploiting the properties of intrinsic optical signals and small molecule voltage-sensitive dyes. Mesoscale interareal brain imaging techniques have been advanced by cell targeted and selective recombinant indicators of neuronal activity. Spontaneous resting state activity is often collected during mesoscale imaging to provide the basis for mapping of connectivity relationships using correlation. However, the information content of mesoscale datasets is vast and is only superficially presented in manuscripts given the need to constrain measurements to a fixed set of frequencies, regions of interest, and other parameters. We describe a new open source tool written in python, termed mesoscale brain explorer (MBE), which provides an interface to process and explore these large datasets. The platform supports automated image processing pipelines with the ability to assess multiple trials and combine data from different animals. The tool provides functions for temporal filtering, averaging, and visualization of functional connectivity relations using time-dependent correlation. Here, we describe the tool and show applications, where previously published datasets were reanalyzed using MBE.

  17. Robust biological parametric mapping: an improved technique for multimodal brain image analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Beason-Held, Lori; Resnick, Susan M.; Landman, Bennett A.

    2011-03-01

    Mapping the quantitative relationship between structure and function in the human brain is an important and challenging problem. Numerous volumetric, surface, region of interest and voxelwise image processing techniques have been developed to statistically assess potential correlations between imaging and non-imaging metrics. Recently, biological parametric mapping has extended the widely popular statistical parametric approach to enable application of the general linear model to multiple image modalities (both for regressors and regressands) along with scalar valued observations. This approach offers great promise for direct, voxelwise assessment of structural and functional relationships with multiple imaging modalities. However, as presented, the biological parametric mapping approach is not robust to outliers and may lead to invalid inferences (e.g., artifactual low p-values) due to slight mis-registration or variation in anatomy between subjects. To enable widespread application of this approach, we introduce robust regression and robust inference in the neuroimaging context of application of the general linear model. Through simulation and empirical studies, we demonstrate that our robust approach reduces sensitivity to outliers without substantial degradation in power. The robust approach and associated software package provides a reliable way to quantitatively assess voxelwise correlations between structural and functional neuroimaging modalities.

  18. An optimal algorithm for reconstructing images from binary measurements

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Lu, Yue M.; Sbaiz, Luciano; Vetterli, Martin

    2010-01-01

    We have studied a camera with a very large number of binary pixels referred to as the gigavision camera [1] or the gigapixel digital film camera [2, 3]. Potential advantages of this new camera design include improved dynamic range, thanks to its logarithmic sensor response curve, and reduced exposure time in low light conditions, due to its highly sensitive photon detection mechanism. We use maximum likelihood estimator (MLE) to reconstruct a high quality conventional image from the binary sensor measurements of the gigavision camera. We prove that when the threshold T is "1", the negative loglikelihood function is a convex function. Therefore, optimal solution can be achieved using convex optimization. Base on filter bank techniques, fast algorithms are given for computing the gradient and the multiplication of a vector and Hessian matrix of the negative log-likelihood function. We show that with a minor change, our algorithm also works for estimating conventional images from multiple binary images. Numerical experiments with synthetic 1-D signals and images verify the effectiveness and quality of the proposed algorithm. Experimental results also show that estimation performance can be improved by increasing the oversampling factor or the number of binary images.

  19. Blind deconvolution of astronomical images with band limitation determined by optical system parameters

    NASA Astrophysics Data System (ADS)

    Luo, L.; Fan, M.; Shen, M. Z.

    2007-07-01

    Atmospheric turbulence greatly limits the spatial resolution of astronomical images acquired by the large ground-based telescope. The record image obtained from telescope was thought as a convolution result of the object function and the point spread function. The statistic relationship of the images measured data, the estimated object and point spread function was in accord with the Bayes conditional probability distribution, and the maximum-likelihood formulation was found. A blind deconvolution approach based on the maximum-likelihood estimation technique with real optical band limitation constraint is presented for removing the effect of atmospheric turbulence on this class images through the minimization of the convolution error function by use of the conjugation gradient optimization algorithm. As a result, the object function and the point spread function could be estimated from a few record images at the same time by the blind deconvolution algorithm. According to the principle of Fourier optics, the relationship between the telescope optical system parameters and the image band constraint in the frequency domain was formulated during the image processing transformation between the spatial domain and the frequency domain. The convergence of the algorithm was increased by use of having the estimated function variable (also is the object function and the point spread function) nonnegative and the point-spread function band limited. Avoiding Fourier transform frequency components beyond the cut off frequency lost during the image processing transformation when the size of the sampled image data, image spatial domain and frequency domain were the same respectively, the detector element (e.g. a pixels in the CCD) should be less than the quarter of the diffraction speckle diameter of the telescope for acquiring the images on the focal plane. The proposed method can easily be applied to the case of wide field-view turbulent-degraded images restoration because of no using the object support constraint in the algorithm. The performance validity of the method is examined by the computer simulation and the restoration of the real Alpha Psc astronomical image data. The results suggest that the blind deconvolution with the real optical band constraint can remove the effect of the atmospheric turbulence on the observed images and the spatial resolution of the object image can arrive at or exceed the diffraction-limited level.

  20. Penalized weighted least-squares approach for low-dose x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong

    2006-03-01

    The noise of low-dose computed tomography (CT) sinogram follows approximately a Gaussian distribution with nonlinear dependence between the sample mean and variance. The noise is statistically uncorrelated among detector bins at any view angle. However the correlation coefficient matrix of data signal indicates a strong signal correlation among neighboring views. Based on above observations, Karhunen-Loeve (KL) transform can be used to de-correlate the signal among the neighboring views. In each KL component, a penalized weighted least-squares (PWLS) objective function can be constructed and optimal sinogram can be estimated by minimizing the objective function, followed by filtered backprojection (FBP) for CT image reconstruction. In this work, we compared the KL-PWLS method with an iterative image reconstruction algorithm, which uses the Gauss-Seidel iterative calculation to minimize the PWLS objective function in image domain. We also compared the KL-PWLS with an iterative sinogram smoothing algorithm, which uses the iterated conditional mode calculation to minimize the PWLS objective function in sinogram space, followed by FBP for image reconstruction. Phantom experiments show a comparable performance of these three PWLS methods in suppressing the noise-induced artifacts and preserving resolution in reconstructed images. Computer simulation concurs with the phantom experiments in terms of noise-resolution tradeoff and detectability in low contrast environment. The KL-PWLS noise reduction may have the advantage in computation for low-dose CT imaging, especially for dynamic high-resolution studies.

  1. IMAGEP - A FORTRAN ALGORITHM FOR DIGITAL IMAGE PROCESSING

    NASA Technical Reports Server (NTRS)

    Roth, D. J.

    1994-01-01

    IMAGEP is a FORTRAN computer algorithm containing various image processing, analysis, and enhancement functions. It is a keyboard-driven program organized into nine subroutines. Within the subroutines are other routines, also, selected via keyboard. Some of the functions performed by IMAGEP include digitization, storage and retrieval of images; image enhancement by contrast expansion, addition and subtraction, magnification, inversion, and bit shifting; display and movement of cursor; display of grey level histogram of image; and display of the variation of grey level intensity as a function of image position. This algorithm has possible scientific, industrial, and biomedical applications in material flaw studies, steel and ore analysis, and pathology, respectively. IMAGEP is written in VAX FORTRAN for DEC VAX series computers running VMS. The program requires the use of a Grinnell 274 image processor which can be obtained from Mark McCloud Associates, Campbell, CA. An object library of the required GMR series software is included on the distribution media. IMAGEP requires 1Mb of RAM for execution. The standard distribution medium for this program is a 1600 BPI 9track magnetic tape in VAX FILES-11 format. It is also available on a TK50 tape cartridge in VAX FILES-11 format. This program was developed in 1991. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation.

  2. A novel method for fast imaging of brain function, non-invasively, with light

    NASA Astrophysics Data System (ADS)

    Chance, Britton; Anday, Endla; Nioka, Shoko; Zhou, Shuoming; Hong, Long; Worden, Katherine; Li, C.; Murray, T.; Ovetsky, Y.; Pidikiti, D.; Thomas, R.

    1998-05-01

    Imaging of the human body by any non-invasive technique has been an appropriate goal of physics and medicine, and great success has been obtained with both Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) in brain imaging. Non-imaging responses to functional activation using near infrared spectroscopy of brain (fNIR) obtained in 1993 (Chance, et al. [1]) and in 1994 (Tamura, et al. [2]) are now complemented with images of pre-frontal and parietal stimulation in adults and pre-term neonates in this communication (see also [3]). Prior studies used continuous [4], pulsed [3] or modulated [5] light. The amplitude and phase cancellation of optical patterns as demonstrated for single source detector pairs affords remarkable sensitivity of small object detection in model systems [6]. The methods have now been elaborated with multiple source detector combinations (nine sources, four detectors). Using simple back projection algorithms it is now possible to image sensorimotor and cognitive activation of adult and pre- and full-term neonate human brain function in times < 30 sec and with two dimensional resolutions of < 1 cm in two dimensional displays. The method can be used in evaluation of adult and neonatal cerebral dysfunction in a simple, portable and affordable method that does not require immobilization, as contrasted to MRI and PET.

  3. More than looking good: impact on quality of life moderates the relationship between functional body image and physical activity in men with SCI.

    PubMed

    Bassett, R L; Martin Ginis, K A

    2009-03-01

    Cross-sectional. To examine the relationship between body image and leisure time physical activity (LTPA) among men with spinal cord injury (SCI). Specifically, to examine the moderating function of the perceived impact of body image on quality of life (QOL). Ontario, Canada. Men with SCI (N=50, 50% paraplegic) reported, (a) their functional and appearance body image (Adult Body Satisfaction Questionnaire), (b) their perceived impact of body image on QOL and (c) LTPA performed over the previous 3 days. Body image was in the 'normal' range compared with the general population. Linear regression analysis found a significant LTPA x body image impact on QOL interaction beta=0.39, P<0.05. Post hoc analysis showed that among individuals who reported a negative effect of body image on QOL, those who engaged in LTPA were less satisfied with their physical function than those who did not. For those who did not perceive their body image to negatively impact their QOL, there was generally no difference in functional body image between those who engaged in LTPA and those who did not. Appearance body image is not related to LTPA for men with SCI. It has been suggested that body dissatisfaction may motivate some individuals to engage in LTPA. However, for men living with SCI, functional body image may be associated with LTPA only when a negative effect on QOL is perceived. Future research should consider the moderating function of the perceived impact of body image on QOL when examining the relationship between LTPA and body image among men living with SCI.

  4. Reduced integration and differentiation of the imitation network in autism: A combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study.

    PubMed

    Fishman, Inna; Datko, Michael; Cabrera, Yuliana; Carper, Ruth A; Müller, Ralph-Axel

    2015-12-01

    Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms. Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion. Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology. Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD. © 2015 American Neurological Association.

  5. Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients.

    PubMed

    Voskrebenzev, Andreas; Gutberlet, Marcel; Klimeš, Filip; Kaireit, Till F; Schönfeld, Christian; Rotärmel, Alexander; Wacker, Frank; Vogel-Claussen, Jens

    2018-04-01

    In this feasibility study, a phase-resolved functional lung imaging postprocessing method for extraction of dynamic perfusion (Q) and ventilation (V) parameters using a conventional 1H lung MRI Fourier decomposition acquisition is introduced. Time series of coronal gradient-echo MR images with a temporal resolution of 288 to 324 ms of two healthy volunteers, one patient with chronic thromboembolic hypertension, one patient with cystic fibrosis, and one patient with chronic obstructive pulmonary disease were acquired at 1.5 T. Using a sine model to estimate cardiac and respiratory phases of each image, all images were sorted to reconstruct full cardiac and respiratory cycles. Time to peak (TTP), V/Q maps, and fractional ventilation flow-volume loops were calculated. For the volunteers, homogenous ventilation and perfusion TTP maps (V-TTP, Q-TTP) were obtained. The chronic thromboembolic hypertension patient showed increased perfusion TTP in hypoperfused regions in visual agreement with dynamic contrast-enhanced MRI, which improved postpulmonary endaterectomy surgery. Cystic fibrosis and chronic obstructive pulmonary disease patients showed a pattern of increased V-TTP and Q-TTP in regions of hypoventilation and decreased perfusion. Fractional ventilation flow-volume loops of the chronic obstructive pulmonary disease patient were smaller in comparison with the healthy volunteer, and showed regional differences in visual agreement with functional small airways disease and emphysema on CT. This study shows the feasibility of phase-resolved functional lung imaging to gain quantitative information regarding regional lung perfusion and ventilation without the need for ultrafast imaging, which will be advantageous for future clinical translation. Magn Reson Med 79:2306-2314, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. A triple modality BSA-coated dendritic nanoplatform for NIR imaging, enhanced tumor penetration and anticancer therapy.

    PubMed

    Cao, Jie; Ge, Ruifen; Zhang, Min; Xia, Junfei; Han, Shangcong; Lu, Wei; Liang, Yan; Zhang, Tingting; Sun, Yong

    2018-05-17

    Functional theranostic systems for drug delivery capable of concurrent near-infrared (NIR) fluorescence imaging, active tumor targeting and anticancer therapies are desired for concise cancer diagnosis and treatment. Dendrimers with controllable size and surface functionalities are good candidates for such platforms. However, integration of active targeting ligands and imaging agents separately on the surface or encapsulation of the imaging agents in the inner core of the dendrimers will result in a more complex composition or reduced drug loading efficiency. Herein, we reported a PAMAM-based theranostic system, with a simple integrin-specific imaging ligand prepared from two motifs. One motif is a NIR carbocyanine fluorescent dye (Cyp) for precise in vivo monitoring of the system and identification of tumor or cancer cells, and the other is a novel tumor-penetrating cyclic peptide (CRGDKGPDC, abbreviated iRGD). BSA was non-covalently bonded with Cyp to reduce NIR agent fluorescence-quenching aggregates and enhance imaging signals. The chemotherapy effect of these dendritic systems was achieved by encapsulating paclitaxel into the hydrophobic interior of the dendrimers. In vitro and in vivo targeting and penetrating studies revealed that a significantly high amount of the dendritic systems was endocytosed by HepG2 cells and enhanced accumulation and penetration at tumor sites. Our safety evaluation showed that masking of cationic-end groups of PAMAM to neutral or anionic groups has resulted in decreased or even zero-toxicity. The preliminary antitumor efficacy of the dendritic system was evaluated. In vitro and in vivo studies confirmed that paclitaxel-encapsulated functionalized PAMAM can efficiently kill HepG2 cancer cells. In conclusion, our functionalized theranostic dendritic system could be a promising nanocarrier to effectively deliver drugs to deep tumor regions for anticancer therapy.

  7. Resting-State Functional MR Imaging for Determining Language Laterality in Intractable Epilepsy.

    PubMed

    DeSalvo, Matthew N; Tanaka, Naoaki; Douw, Linda; Leveroni, Catherine L; Buchbinder, Bradley R; Greve, Douglas N; Stufflebeam, Steven M

    2016-10-01

    Purpose To measure the accuracy of resting-state functional magnetic resonance (MR) imaging in determining hemispheric language dominance in patients with medically intractable focal epilepsies against the results of an intracarotid amobarbital procedure (IAP). Materials and Methods This study was approved by the institutional review board, and all subjects gave signed informed consent. Data in 23 patients with medically intractable focal epilepsy were retrospectively analyzed. All 23 patients were candidates for epilepsy surgery and underwent both IAP and resting-state functional MR imaging as part of presurgical evaluation. Language dominance was determined from functional MR imaging data by calculating a laterality index (LI) after using independent component analysis. The accuracy of this method was assessed against that of IAP by using a variety of thresholds. Sensitivity and specificity were calculated by using leave-one-out cross validation. Spatial maps of language components were qualitatively compared among each hemispheric language dominance group. Results Measurement of hemispheric language dominance with resting-state functional MR imaging was highly concordant with IAP results, with up to 96% (22 of 23) accuracy, 96% (22 of 23) sensitivity, and 96% (22 of 23) specificity. Composite language component maps in patients with typical language laterality consistently included classic language areas such as the inferior frontal gyrus, the posterior superior temporal gyrus, and the inferior parietal lobule, while those of patients with atypical language laterality also included non-classical language areas such as the superior and middle frontal gyri, the insula, and the occipital cortex. Conclusion Resting-state functional MR imaging can be used to measure language laterality in patients with medically intractable focal epilepsy. (©) RSNA, 2016 Online supplemental material is available for this article.

  8. Resting-State Functional MR Imaging for Determining Language Laterality in Intractable Epilepsy

    PubMed Central

    Tanaka, Naoaki; Douw, Linda; Leveroni, Catherine L.; Buchbinder, Bradley R.; Greve, Douglas N.; Stufflebeam, Steven M.

    2016-01-01

    Purpose To measure the accuracy of resting-state functional magnetic resonance (MR) imaging in determining hemispheric language dominance in patients with medically intractable focal epilepsies against the results of an intracarotid amobarbital procedure (IAP). Materials and Methods This study was approved by the institutional review board, and all subjects gave signed informed consent. Data in 23 patients with medically intractable focal epilepsy were retrospectively analyzed. All 23 patients were candidates for epilepsy surgery and underwent both IAP and resting-state functional MR imaging as part of presurgical evaluation. Language dominance was determined from functional MR imaging data by calculating a laterality index (LI) after using independent component analysis. The accuracy of this method was assessed against that of IAP by using a variety of thresholds. Sensitivity and specificity were calculated by using leave-one-out cross validation. Spatial maps of language components were qualitatively compared among each hemispheric language dominance group. Results Measurement of hemispheric language dominance with resting-state functional MR imaging was highly concordant with IAP results, with up to 96% (22 of 23) accuracy, 96% (22 of 23) sensitivity, and 96% (22 of 23) specificity. Composite language component maps in patients with typical language laterality consistently included classic language areas such as the inferior frontal gyrus, the posterior superior temporal gyrus, and the inferior parietal lobule, while those of patients with atypical language laterality also included non-classical language areas such as the superior and middle frontal gyri, the insula, and the occipital cortex. Conclusion Resting-state functional MR imaging can be used to measure language laterality in patients with medically intractable focal epilepsy. © RSNA, 2016 Online supplemental material is available for this article. PMID:27467465

  9. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  10. Health IT and inappropriate utilization of outpatient imaging: A cross-sectional study of U.S. hospitals.

    PubMed

    Appari, Ajit; Johnson, M Eric; Anthony, Denise L

    2018-01-01

    To determine whether the use of information technology (IT), measured by Meaningful Use capability, is associated with lower rates of inappropriate utilization of imaging services in hospital outpatient settings. A retrospective cross-sectional analysis of 3332 nonfederal U.S. hospitals using data from: Hospital Compare (2011 outpatient imaging efficiency measures), HIMSS Analytics (2009 health IT), and Health Indicator Warehouse (market characteristics). Hospitals were categorized for their health IT infrastructure including EHR Stage-1 capability, and three advanced imaging functionalities/systems including integrated picture archiving and communication system, Web-based image distribution, and clinical decision support (CDS) with physician pathways. Three imaging efficiency measures suggesting inappropriate utilization during 2011 included: percentage of "combined" (with and without contrast) computed tomography (CT) studies out of all CT studies for abdomen and chest respectively, and percentage of magnetic resonance imaging (MRI) studies of lumbar spine without antecedent conservative therapy within 60days. For each measure, three separate regression models (GLM with gamma-log link function, and denominator of imaging measure as exposure) were estimated adjusting for hospital characteristics, market characteristics, and state fixed effects. Additionally, Heckman's Inverse Mills Ratio and propensity for Stage-1 EHR capability were used to account for selection bias. We find support for association of each of the four health IT capabilities with inappropriate utilization rates of one or more imaging modality. Stage-1 EHR capability is associated with lower inappropriate utilization rates for chest CT (incidence rate ratio IRR=0.72, p-value <0.01) and lumbar MRI (IRR=0.87, p-value <0.05). Integrated PACS is associated with lower inappropriate utilization rate of abdomen CT (IRR=0.84, p-value <0.05). Imaging distribution over Web capability is associated with lower inappropriate utilization rates for chest CT (IRR=0.66, p-value <0.05) and lumbar MRI (IRR=0.86, p-value <0.05). CDS with physician pathways is associated with lower inappropriate utilization rates for abdomen CT (IRR=0.87, p-value <0.01) and lumbar MRI (IRR=0.90, p-value <0.05). All other cases showed no association. The study offers mixed results. Taken together, the results suggest that the use of Stage-1 Meaningful Use capable EHR systems along with advanced imaging related functionalities could have a beneficial impact on reducing some of the inappropriate utilization of outpatient imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Brain Abnormalities in Congenital Fibrosis of the Extraocular Muscles Type 1: A Multimodal MRI Imaging Study

    PubMed Central

    Wu, Shaoqin; Lv, Bin; Wang, Zhenchang; Xian, Junfang; Sabel, Bernhard A.; He, Huiguang; Jiao, Yonghong

    2015-01-01

    Purpose To explore the possible brain structural and functional alterations in congenital fibrosis of extraocular muscles type 1 (CFEOM1) patients using multimodal MRI imaging. Methods T1-weighted, diffusion tensor images and functional MRI data were obtained from 9 KIF21A positive patients and 19 age- and gender- matched healthy controls. Voxel based morphometry and tract based spatial statistics were applied to the T1-weighted and diffusion tensor images, respectively. Amplitude of low frequency fluctuations and regional homogeneity were used to process the functional MRI data. We then compared these multimodal characteristics between CFEOM1 patients and healthy controls. Results Compared with healthy controls, CFEOM1 patients demonstrated increased grey matter volume in bilateral frontal orbital cortex and in the right temporal pole. No diffusion indices changes were detected, indicating unaffected white matter microstructure. In addition, from resting state functional MRI data, trend of amplitude of low-frequency fluctuations increases were noted in the right inferior parietal lobe and in the right frontal cortex, and a trend of ReHo increase (p<0.001 uncorrected) in the left precentral gyrus, left orbital frontal cortex, temporal pole and cingulate gyrus. Conclusions CFEOM1 patients had structural and functional changes in grey matter, but the white matter was unaffected. These alterations in the brain may be due to the abnormality of extraocular muscles and their innervating nerves. Future studies should consider the possible correlations between brain morphological/functional findings and clinical data, especially pertaining to eye movements, to obtain more precise answers about the role of brain area changes and their functional consequence in CFEOM1. PMID:26186732

  12. Advanced MRI in Multiple Sclerosis: Current Status and Future Challenges

    PubMed Central

    Fox, Robert J.; Beall, Erik; Bhattacharyya, Pallab; Chen, Jacqueline; Sakaie, Ken

    2011-01-01

    Synopsis Magnetic resonance imaging (MRI) has rapidly become a leading research tool in the study of multiple sclerosis (MS). Conventional imaging is useful in diagnosis and management of the inflammatory stages of MS, but has limitations in describing the degree of tissue injury as well as the cause of progressive disability seen in the later stages of disease. Advanced MRI techniques hold promise to fill this void. Magnetization transfer imaging is a widely available technique that can characterize demyelination and may be useful in measuring putative remyelinating therapies. Diffusion tensor imaging describes the three-dimensional diffusion of water and holds promise in characterizing neurodegeneration and putative neuroprotective therapies. Spectroscopy measures the imbalance of cellular metabolites and could help unravel the pathogenesis of neurodegeneration in MS. Functional (f) MRI can be used to understand the functional consequences of MS injury, including the impact on cortical function and compensatory mechanisms. These imaging tools hold great promise to increase our understanding of MS pathogenesis and provide greater insight into the efficacy of new MS therapies. PMID:21439446

  13. Anti-CEA-functionalized superparamagnetic iron oxide nanoparticles for examining colorectal tumors in vivo

    NASA Astrophysics Data System (ADS)

    Huang, Kai-Wen; Chieh, Jen-Jie; Lin, In-Tsang; Horng, Herng-Er; Yang, Hong-Chang; Hong, Chin-Yih

    2013-10-01

    Although the biomarker carcinoembryonic antigen (CEA) is expressed in colorectal tumors, the utility of an anti-CEA-functionalized image medium is powerful for in vivo positioning of colorectal tumors. With a risk of superparamagnetic iron oxide nanoparticles (SPIONPs) that is lower for animals than other material carriers, anti-CEA-functionalized SPIONPs were synthesized in this study for labeling colorectal tumors by conducting different preoperatively and intraoperatively in vivo examinations. In magnetic resonance imaging (MRI), the image variation of colorectal tumors reached the maximum at approximately 24 h. However, because MRI requires a nonmetal environment, it was limited to preoperative imaging. With the potentiality of in vivo screening and intraoperative positioning during surgery, the scanning superconducting-quantum-interference-device biosusceptometry (SSB) was adopted, showing the favorable agreement of time-varied intensity with MRI. Furthermore, biological methodologies of different tissue staining methods and inductively coupled plasma (ICP) yielded consistent results, proving that the obtained in vivo results occurred because of targeted anti-CEA SPIONPs. This indicates that developed anti-CEA SPIONPs owe the utilities as an image medium of these in vivo methodologies.

  14. Ultrahigh sensitivity endoscopic camera using a new CMOS image sensor: providing with clear images under low illumination in addition to fluorescent images.

    PubMed

    Aoki, Hisae; Yamashita, Hiromasa; Mori, Toshiyuki; Fukuyo, Tsuneo; Chiba, Toshio

    2014-11-01

    We developed a new ultrahigh-sensitive CMOS camera using a specific sensor that has a wide range of spectral sensitivity characteristics. The objective of this study is to present our updated endoscopic technology that has successfully integrated two innovative functions; ultrasensitive imaging as well as advanced fluorescent viewing. Two different experiments were conducted. One was carried out to evaluate the function of the ultrahigh-sensitive camera. The other was to test the availability of the newly developed sensor and its performance as a fluorescence endoscope. In both studies, the distance from the endoscopic tip to the target was varied and those endoscopic images in each setting were taken for further comparison. In the first experiment, the 3-CCD camera failed to display the clear images under low illumination, and the target was hardly seen. In contrast, the CMOS camera was able to display the targets regardless of the camera-target distance under low illumination. Under high illumination, imaging quality given by both cameras was quite alike. In the second experiment as a fluorescence endoscope, the CMOS camera was capable of clearly showing the fluorescent-activated organs. The ultrahigh sensitivity CMOS HD endoscopic camera is expected to provide us with clear images under low illumination in addition to the fluorescent images under high illumination in the field of laparoscopic surgery.

  15. The Function Biomedical Informatics Research Network Data Repository.

    PubMed

    Keator, David B; van Erp, Theo G M; Turner, Jessica A; Glover, Gary H; Mueller, Bryon A; Liu, Thomas T; Voyvodic, James T; Rasmussen, Jerod; Calhoun, Vince D; Lee, Hyo Jong; Toga, Arthur W; McEwen, Sarah; Ford, Judith M; Mathalon, Daniel H; Diaz, Michele; O'Leary, Daniel S; Jeremy Bockholt, H; Gadde, Syam; Preda, Adrian; Wible, Cynthia G; Stern, Hal S; Belger, Aysenil; McCarthy, Gregory; Ozyurt, Burak; Potkin, Steven G

    2016-01-01

    The Function Biomedical Informatics Research Network (FBIRN) developed methods and tools for conducting multi-scanner functional magnetic resonance imaging (fMRI) studies. Method and tool development were based on two major goals: 1) to assess the major sources of variation in fMRI studies conducted across scanners, including instrumentation, acquisition protocols, challenge tasks, and analysis methods, and 2) to provide a distributed network infrastructure and an associated federated database to host and query large, multi-site, fMRI and clinical data sets. In the process of achieving these goals the FBIRN test bed generated several multi-scanner brain imaging data sets to be shared with the wider scientific community via the BIRN Data Repository (BDR). The FBIRN Phase 1 data set consists of a traveling subject study of 5 healthy subjects, each scanned on 10 different 1.5 to 4 T scanners. The FBIRN Phase 2 and Phase 3 data sets consist of subjects with schizophrenia or schizoaffective disorder along with healthy comparison subjects scanned at multiple sites. In this paper, we provide concise descriptions of FBIRN's multi-scanner brain imaging data sets and details about the BIRN Data Repository instance of the Human Imaging Database (HID) used to publicly share the data. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Misleading first impressions: different for different facial images of the same person.

    PubMed

    Todorov, Alexander; Porter, Jenny M

    2014-07-01

    Studies on first impressions from facial appearance have rapidly proliferated in the past decade. Almost all of these studies have relied on a single face image per target individual, and differences in impressions have been interpreted as originating in stable physiognomic differences between individuals. Here we show that images of the same individual can lead to different impressions, with within-individual image variance comparable to or exceeding between-individuals variance for a variety of social judgments (Experiment 1). We further show that preferences for images shift as a function of the context (e.g., selecting an image for online dating vs. a political campaign; Experiment 2), that preferences are predictably biased by the selection of the images (e.g., an image fitting a political campaign vs. a randomly selected image; Experiment 3), and that these biases are evident after extremely brief (40-ms) presentation of the images (Experiment 4). We discuss the implications of these findings for studies on the accuracy of first impressions. © The Author(s) 2014.

  17. Neural correlates of cognitive improvements following cognitive remediation in schizophrenia: a systematic review of randomized trials

    PubMed Central

    Isaac, Clémence; Januel, Dominique

    2016-01-01

    Background Cognitive impairments are a core feature in schizophrenia and are linked to poor social functioning. Numerous studies have shown that cognitive remediation can enhance cognitive and functional abilities in patients with this pathology. The underlying mechanism of these behavioral improvements seems to be related to structural and functional changes in the brain. However, studies on neural correlates of such enhancement remain scarce. Objectives We explored the neural correlates of cognitive enhancement following cognitive remediation interventions in schizophrenia and the differential effect between cognitive training and other therapeutic interventions or patients’ usual care. Method We searched MEDLINE, PsycInfo, and ScienceDirect databases for studies on cognitive remediation therapy in schizophrenia that used neuroimaging techniques and a randomized design. Search terms included randomized controlled trial, cognitive remediation, cognitive training, rehabilitation, magnetic resonance imaging, positron emission tomography, electroencephalography, magnetoencephalography, near infrared spectroscopy, and diffusion tensor imaging. We selected randomized controlled trials that proposed multiple sessions of cognitive training to adult patients with a schizophrenia spectrum disorder and assessed its efficacy with imaging techniques. Results In total, 15 reports involving 19 studies were included in the systematic review. They involved a total of 455 adult patients, 271 of whom received cognitive remediation. Cognitive remediation therapy seems to provide a neurobiological enhancing effect in schizophrenia. After therapy, increased activations are observed in various brain regions mainly in frontal – especially prefrontal – and also in occipital and anterior cingulate regions during working memory and executive tasks. Several studies provide evidence of an improved functional connectivity after cognitive training, suggesting a neuroplastic effect of therapy through mechanisms of functional reorganization. Neurocognitive and social-cognitive training may have a cumulative effect on neural networks involved in social cognition. The variety of proposed programs, imaging tasks, and techniques may explain the heterogeneity of observed neural improvements. Future studies would need to specify the effect of cognitive training depending on those variables. PMID:26993787

  18. Integration of radiographic images with an electronic medical record.

    PubMed Central

    Overhage, J. M.; Aisen, A.; Barnes, M.; Tucker, M.; McDonald, C. J.

    2001-01-01

    Radiographic images are important and expensive diagnostic tests. However, the provider caring for the patient often does not review the images directly due to time constraints. Institutions can use picture archiving and communications systems to make images more available to the provider, but this may not be the best solution. We integrated radiographic image review into the Regenstrief Medical Record System in order to address this problem. To achieve adequate performance, we store JPEG compressed images directly in the RMRS. Currently, physicians review about 5% of all radiographic studies using the RMRS image review function. PMID:11825241

  19. Functionalized Gold Nanorods for Tumor Imaging and Targeted Therapy

    PubMed Central

    Gui, Chen; Cui, Da-xiang

    2012-01-01

    Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years. The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention. Gold nanorods exhibit great potential in applications such as tumor molecular imaging and photothermal therapy. In this article, we review some of the main advances made over the past few years in the application of gold nanorods in surface functionalization, molecular imaging, and photothermal therapy. We also explore other prospective applications and discuss the corresponding concepts, issues, approaches, and challenges, with the aim of stimulating broader interest in gold nanorod-based nanotechnology and improving its practical application. PMID:23691482

  20. Appearance Investment and Everyday Interpersonal Functioning: An Experience Sampling Study

    ERIC Educational Resources Information Center

    Forand, Nicholas R.; Gunthert, Kathleen C.; German, Ramaris E.; Wenze, Susan J.

    2010-01-01

    Several studies have shown that body satisfaction affects interpersonal functioning. However, few have studied the specific interpersonal correlates of another important body image dimension, appearance investment--that is, the importance a woman places on appearance. We used an experience sampling design with PDA (personal digital assistant)…

Top